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Summary

Microfluidic analysis devices are becoming more common as a tool for clinical
analysis. In these devices, fluid transport and mixing of multiple components
are common tasks. A possible way of achieving these tasks can be found
in nature, where small hairs, named cilia, are found on micro-organisms and
surfaces. These hairs move the surrounding fluid, or move the micro-organism
through the fluid. As in micro-fluidics, the generated flows are inertialess in
general. By mimicking natural cilia, several successful microfluidic actuators
for pumping and mixing have been developed recently [1–8].

In order to understand the working principles of these devices and improve
their design, a numerical model is presented in this thesis. With this model, we
study the fluid-structure interaction of the cilium with the surrounding fluid.
Since cilia are very thin structures which show large deformations, a model
which can cope with large deformations is required. We therefore choose to
model the fluid on a fixed Eulerian grid and the solid on a moving Lagrangian
grid. Initially we used a fictitious domain/Lagrange multiplier technique to
couple both domains. Simulations showed however, that this technique is in-
accurate near the moving interface between the fluid and the cilium. This
inaccuracy stems from two causes, namely the fictitious fluid domain and
the discretization of the Lagrange multiplier. The first cause is eliminated
by replacing the fictitious domain with the eXtended Finite Element Method
(xfem). The second cause is removed by applying coupling in a weak man-
ner, without the need for a Lagrange multiplier. This method gives accurate
results for Newtonian, generalized Newtonian and viscoelastic fluids in com-
bination with an elastic solid. The major advantages of this method are its
accuracy and optimal convergence rates, without including problem dependent
parameters.

In Chapter 4, the new numerical model is used to study the influence of
the actuation frequency on the transport and mixing efficiency of one or two
artificial cilia. It is shown that there exists a frequency for which the flow rate
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is maximum. The reason for this maximum is that a fluid-structure interaction
problem has an intrinsic time-scale. This makes the system frequency depen-
dent, even if fluid and solid inertia are negligable. At the highest flow rate, the
amount of displaced fluid per cycle is not the highest. So using the amount of
displaced fluid as an objective may not lead to the largest flow rate possible in
the system. For the mixing analysis two cilia are modeled, each having a differ-
ent intrinsic time-scale. Both are actuated by the same actuation force, thus
showing different motion. This leads to a phase difference between the two
cilia, which has been shown to enhance mixing [9]. The mixing performance is
measured by tracking a blob in time, which was initially placed in between the
cilia. The stretch of this blob is a measure for the local mixing efficiency, and
an exponential increase indicates chaotic mixing. A length stretch increase is
observed in all cases. Changing the cilium thickness of one of the cilia has a
clear beneficial effect on mixing. For mixing, the amount of fluid moved by the
cilia is also important, as the mixing performance at low actuation frequency
is much better than at high actuation frequency, where the movement of the
cilia, and hence the induced flow, is less.

In order to perform simulations of artificial cilia in a non-Newtonian fluid,
the numerical model proposed in Chapter 4 is extended in Chapter 6. In ad-
dition, a local mesh refinement scheme is developed in order to make accurate
simulations within a shorter time-frame feasible. Both the mesh refinement
scheme and the viscoelastic fluid-structure interaction scheme are tested, and
shown to be stable and accurate.

This extended numerical model is used in Chapter 7 for the simulation
of generalized Newtonian and viscoelastic fluid flow by artificial cilia. It is
shown that by making use of the typical time-scale of the cilia system and the
time-scale of the generalized Newtonian fluid, the net fluid flow of a general-
ized Newtonian fluid has a higher dependence on the actuation force than a
Newtonian fluid.

In the final chapter conclusions and recommendations for future work are
given.

ii



Contents

Summary i

1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Modeling of flow generated by artificial cilia 5

2.1 Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Boundary, interface and initial conditions . . . . . . . . . . . . 11

2.3 Solid actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Transport and mixing analysis . . . . . . . . . . . . . . . . . . 15

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Inertial effects in a micromixer based on artificial cilia 21

3.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 XFEM and weak interface conditions 33

4.1 XFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Weakly-applied Dirichlet boundary conditions . . . . . . . . . . 41

4.3 Mesh moving schemes . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



5 Simulation of transport and mixing by artificial cilia: Newto-

nian fluid 63

5.1 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Chaotic cilium motion . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Numerical tools for modeling of cilia driven flow of non-Newtonian

fluids 81

6.1 Saliva rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Fluid-structure interaction with a non-Newtonian fluid . . . . . 83
6.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Simulation of transport by artificial cilia: non-Newtonian flu-

ids 101

7.1 Transport of a generalized Newtonian fluid . . . . . . . . . . . 101
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Conclusions and recommendations 109

8.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Time integration and linearizion 121

A.1 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B Intersecting and Delaunay triangulation 123

B.1 Intersecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.2 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . 125

C Weakly-imposed Dirichlet boundary conditions for the Pois-

son equation 127

Samenvatting 129

Curriculum Vitae 133

List of Publications 135

iv



Chapter 1

Introduction

Since the invention of the transistor in 1923, the size of a transistor changed
from several centimeters to tens of nanometers nowadays. This continuing
miniaturization has led to the development of integrated circuits (IC’s) with in-
creasing complexity and, more importantly, increasing functionality. IC’s allow
people to communicate whenever and wherever they want, navigate through
foreign countries and share information with the whole world at the blink of an
eye. So the development of a technical device, the humble transistor, and its
miniaturization, has changed not only today’s technology but also our society.

By using production techniques developed for IC fabrication, a new branch
of fluid dynamics was formed in the 1980’s: microfluidics. It focuses on flow
in channels with dimensions between 100 nanometer and 1 millimeter. By
integrating more and more building blocks such as valves, patterned surfaces
and moving structures, fluids could be manipulated.

In the early 1990’s the idea of adding sensing and control capabilities to
the microfluidic device, yielding a fully integrated system for chemical analysis,
which became known as micro Total Analysis System (µTAS) was introduced.
Even a step further is the integration of processes not directly related to the
chemical analysis itself, such as fluid storage, transport and mixing, which is
known as a Lab-on-a-Chip (LOC) device. The main advantages of these LOC
devices versus the conventional laboratory tests are the low amounts of fluids
used [10], the reduction of hands-on-time of lab technicians, faster analysis
times reached, small devices sizes reached and the possibility to parallelize
tests. Some of the applications are DNA-amplification, bacteria and virus
detection in water and artificial organs for drug testing [11]. Although most
of these devices are still not commercially available they show the potential
of a low-cost portable fluid testing device, which could change our lives quite
significantly in the near future.

Although there is a lot of attention in the LOC community for miniatur-
izing the chemical analysis steps, the integration of the more basic task of
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manipulating fluids [12–14] in a LOC device is still not trivial. Whereas one
branch focusses on the manipulation of individual droplets [15], others focus
on the motion of bulk fluids. Channels can be filled by capillary forces alone.
Mixing of two fluids can be accomplished by diffusion if the lengthscales are
small enough [16–18], inertial effects, a static mixer [19, 20] or accoustically
[21]. Opposed to these static ways (static in the sence that only the fluid
moves) of manipulating a fluid, are the active microfluidic actuators which
move fluid around. One of the most common active actuators are valves [22],
which are used for pumping and mixing, and can be pneumatically or elec-
trically actuated. A new development in active microfluidic manipulation is
formed by actuators inspired by nature, namely artificial cilia. Due to their
resemblance with and derivation from the small hairs which nature uses for
fluid transport on the sub-millimeter length-scale, these actuators are known
as artificial cilia. The artificial cilia can either be actuated by electrostatic
forces [1], magnetic forces [2, 4–8, 23, 24], light [25] or, in case of simplified
biological system, biochemically [26].

Although these systems indeed generate flow and mix fluids, still many
questions about the working principles behind cilia driven flow remain unan-
swered. The working principles can be revealed both experimentally as well as
numerically. On the experimental side several different systems are used. Here
we will model a system for electrostatic cilia as was developed by Den Toonder
et al. [1], or a magnetic system as was developed and used in the European
ARTIC project [4, 5]. In both cases polymer rectangular beams were produced.
Since several other groups have been working on magnetically actuated cilia,
information about their devices is also given.

Den Toonder et al. [1] used electrostatic actuation to actuate polyimide
flaps of 100 µm length, 20 µm width and 2 µm thickness. These cilia were
placed in a channel in groups of 100 ( 5 rows of 20 artificial cilia). By actuation
at 100 Hz they showed improved mixing performance. Due to the high electric
fields, silicone oil was used.

The magnetically actuated cilia which were developed in the ARTIC pro-
gram [4, 5], have a length of 70 µm, width of 20 µm and thickness of 0.9µm
and consist of a rubber or hydrogel matrix filled with magnetic particles and
yield velocities up to 2 mm s−1 [4].

In the group of prof. Superfine, artificial cilia have been developed which
are polymer rods with magnetic particles inside [2, 7]. These rods are 25 µm
long and have a radius of 700 nm. When actuated with a rotating magnetic
field, these system achieve flows of 280 nl min−1.

Vilfan et al. [23] used superparamagnetic particles, aligned them in trenches
and applied a rotating magnetic field. The cilia had a length of 45 µm and a
width of 5 µm. They obtained fluid velocities up to 4 µm s−1at an actuation
frequency of 0.5 Hz.

The cilia made by Oh et al. [27] are 400 µm long, 75 µm wide and 10 µm
thick. They are excited by a piezoactuator to beat at frequencies of 30 to 100

2



Hz in water, and velocities up to 180 µm s−1 were observed.

In addition to the fabrication and experimental investigation of artificial
cilia, numerical models are developed, modelling the motion of the cilia and
the surrounding fluid. In order to accurately compute the flow field near the
cilia, the interaction of the moving cilium with the surrounding fluid has to
be taken into account. This requires a fluid-structure interaction (fsi) model,
which find many applications, such as modelling flow through hart valves [28]
and blood vessels [29, 30], and modelling flow over objects such as wings or
flags. Methods for solving these problems can be split into two groups: one
where the discretised fluid grid moves along the solid [29–32] and one where
this fluid grid is fixed [28, 33–35]. The first group of methods are known as
Arbitrary Lagrange Euler (ALE) methods, and work fine for small deformation
of the solid. For larger deformations the fluid grid becomes degenerated and
a new grid has to be made in order to keep the method accurate. The second
group does not have this disadvantage, so it can easily be used for problems
having large solid deformations. The disadvantage of these methods is that it
is difficult to accurately enforce the interface conditions in the fluid domain,
since the interface is not nicely aligned with the fluid grid.

Using these models several research groups have investigated the flow gen-
erated by artificial cilia [9, 23, 36, 37]. In these models the cilia are modeled
as an elastic beam or rod or as a string of magnetic particles and the fluid is
either modeled as a drag force [23] or the complete flow field of a Newtonian
fluid is computed in addition to the cilium motion.

The numerical model used by Khatavkar et al. and Khaderi et al. [9, 36, 37]
is based on a fixed fluid grid, where a fictious fluid body is present undereath
the solid and the interface conditions are enforced with a Lagrange multiplier.
This method is known as a fictitious domain Lagrange multiplier technique. It
has the advantage that it is easy to use, since the fluid is computed on a fixed
grid and the solid on a moving grid. The accuracy of the flow field near the
cilia is not accurate however, due to the fictitious fluid domain and the used
discretization of the Lagrange multiplier. This is also shown in recent work on
the simulation of twin-screw extruders where this method has been used for
describing the moving rotors [38]. Especially the erros in the velocity gradients
are large. In order to perform more detailed transport and mixing studies in
the vicinity of the cilia and possibly use non-Newtonian fluids, this method
is probably not accurate enough. Especially for non-Newtonian fluids, large
errors in the velocity gradients should be avoided, since this quickly leads to
numerical instabilities.

1.1 Challenges

One of the major application areas of Lab-on-a-Chip devices is medical diag-
nostics. In medical diagnosis biological fluids such as blood, urine or saliva
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are analyzed. As the artificial cilia are a building block of these LOC devices,
they have to propel these fluids. Biological fluids are water based, but they
may contain cells and large protein molecules; these fluids therefore show dif-
ferent rheological properties than the matrix fluid (water) and they are often
heterogeneous at the micrometer length-scale. The current experimental and
numerical studies almost always use a Newtonian fluid like water or a silicon oil
as medium, however. In order to validate whether the results obtained in wa-
ter can also be extrapolated to the more complex biological fluids, which may
show non-Newtonian behavior, the influence of the rheology on flows generated
by artificial cilia has to be investigated.

Since the current numerical models do not give accurate results near the
cilia, a model has to be developed which accurately represents the flow field
near the cilia. Some recent developments which enable the accurate capturing
of discontinuities in flows (eXtendend Finite Element Method [35]) and other
ways of imposing interface conditions (weak Dirichlet boundary conditions
[39–41]) have opened up the road to the developement of such a models.

Hence the objective of this thesis is the development of such a model and
the application of this model to transport and mixing problems involving both
Newtonian and non-Newtonian fluids. This requires an accurate representation
of the velocity (gradients), in particular near the cilia surface.

1.2 Outline of the thesis

In this thesis a model is developed for the simulation of the mixing and pump-
ing behavior of one or more cilia in a microfluidic device. In the following
Chapter 2, the model domain, the governing equations and the boundary con-
ditions are given and after a dimension analysis the important dimensionless
groups are identified. In Chapter 3 the mixing performance of a microfluidic
mixer which is electrostatically actuated is both simulated and measured. On
the basis of the numerical results in this chapter, a more detailed numerical
model for fluid-structure interaction is introduced in Chapter 4. With this
model the transport and mixing performance of a system containing a New-
tonian fluid is analyzed in Chapter 5. In the following chapter, the numerical
model of Chapter 4 is expanded for non-Newtonian fluids. In this chapter the
rheology of saliva is also assessed and appropriate models are selected. Using
these models simulations of transport and mixing of a non-Newtonian fluid
are performed and results are shown in Chapter 7. Finally conclusions and
recommendations are given in Chapter 8.
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Chapter 2

Modeling of flow generated

by artificial cilia

In this chapter a model for flow that is induced by artificial cilia will be intro-
duced. In the subsequent chapters, this model will be used as a starting point
for developing numerical tools for studying this flow. Although the model is
developed with this purpose in mind, it can be used for studying a broader
class of problems in which fluid-structure interaction plays a role.

The most basic microfluidic device is a simple rectangular channel, through
which one or more fluids are transported. By adding small structures, extra
functions can be included. If for instance grooves are made in the channel walls
or other passive structures are added, efficient mixing can be accomplished
[19, 42]. These structures have that advantage that they are robust since there
are no moving parts. On the other hand they have the disadvantage that they
require an external pump which generates the flow over these structures. The
fact that mixing cannot be switched on and off during flow can, in certain
cases, also be an disadvantage. By adding active structures, the flow can be
locally actuated however. With locally actuated flaps or rods, the artificial
cilia, embedded pumps and mixers can be fabricated [1–4, 6, 7, 24]. The main
difference between these transport and mixing devices is the configuration and
direction of actuation of the cilia with respect to the channel direction. If
the cilia are placed perpendicular to the channel and actuated in the channel
direction, they can be used for pumping. If they are placed parallel to the
channel and actuated perpendicular to the channel they can be used for mixing.
In Figure 2.1 the pumping and mixing configurations along with the main
fluid transport directions are shown. In Figure 2.2 the two-dimensional cross-
section of the transport and mixing configuration is shown, again with the
main flow direction generated by the cilia indicated. The only difference
between modeling a pump and a mixer is the boundary condition at the left and
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Figure 2.1: Left: The channel geometry in which the cilia are used for trans-
port. The cilia are placed perpendicular to the channel and the generated
flow direction, given by the red arrow, is in the channel direction. Right: The
channel geometry in which the cilia are used for mixing multiple fluids. The
cilia are placed in the channel direction and are actuated perpendicular to the
channel direction. The generated flow is therefore also in the latter direction,
and due the fixed walls causes a vortex, which is indicated by the red arrow.

right channel wall. Although the main flow direction in the mixing geometry
is indicated by a vortex, this does not mean that the generation of such a
vortex also leads to good mixing. For good mixing symmetry breaking is also
required, which will be discussed in later chapters. In this thesis, we will
only consider a two-dimensional model of artificial cilia. The main reason for
that is, that computation times become excessively long for three dimensional
calculations and may even be impossible with the numerical methods at hand.
The 2D model is only valid if the cilia and channel are much longer in the third
dimension than in the modeled two dimensions. Therefore the cilia have either
to be very wide, or placed relatively close together thus forming one virtual
cilium. With the devices of Den Toonder et al. [1] and Hussong et al. [4] in
mind as typical systems this holds, since here arrays of closely packed cilia are
placed in the channel.

The goal of this chapter is to develop a model of artificial cilia for the
geometry given above. This model will then be used in subsequent chapters,
where numerical tools for computing solutions to this model will be introduced
and subsequently used in simulations.

This chapter is set up as follows: In Section 2.1 the equations of motion
of the artificial cilia will be introduced. In Section 2.2 the interface conditions
for fluid-structure interaction, contact problems and solid actuation are given,
after which a scaling analysis is performed in Section 2.4. Finally, Section 2.5
will be on the quantification of the performance of the transport and mixing
devices.
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Figure 2.2: Left: The cross-section of Figure 2.1 (left), with only a single
cilium. The top and bottom walls have no-slip boundary conditions and the
channel is periodic in horizontal direction. Hence, the flow is mainly in hor-
izontal direction, as indicated by the arrows. Right: A cross-section of the
mixing configuration of Figure 2.1 (right), with only a single cilium. Here all
walls have no-slip boundary conditions, thus the cilium generates a rotational
flow, as given by the arrow.

2.1 Balance equations

We model a single cilium in a microfluidic channel as depicted in Figure 2.3,
where the fluid domain is given by Ωf, the solid domain by Ωs and their mutual
interface by Γfs. The height H and width W of the domain and the length L
and thickness Tc of the cilium are still to be specified. Since both natural as
well as artificial cilia are small, with lengths between 10 µm and 1 mm, and
thicknesses between tens and hundreds of nm’s, one could wonder whether
they can be treated as homogeneous continua. The same question holds for
the transported fluid, which is usually water, or a water-based biological fluid
such as mucus or saliva. The polymer molecules in these solution have a size of
about 10-50 nm. The applicability of continuum mechanics can be answered by
comparing the typical length-scales of the system to the typical structural and
molecular length-scales. If the length-scales of the system are much larger than
the latter length-scales, the system can be considered a homogeneous contin-
uum, otherwise it should be treated either as a heterogeneous continuum or a
group of molecules. For artificial cilia which are placed in a channel, the chan-
nel dimensions are also of importance and they are of the order of a millimeter
for the height and width and several centimeters for the length. As indicated
in the introduction, we are interested in the flow phenomena induced by a
single cilium and a group of cilia. In addition to that, we are also interested in
the local flow around a cilium. This means, that we have to model our domain
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Figure 2.3: The model domain, with a channel of width W , and height H , the
cilium length L and thickness Tc. The fluid domain Ωf and solid domain Ωs

have the commone interface Γfs

at a level which describes both effects at the channel size dimension, induced
flow for example, as well as effects at the cilium thickness, local shear-rates
for example. Since the length-scales in our system are much smaller than our
macroscopic length-scales, the question can be raised whether the governing
equations of motion used for describing motion at the macroscopic level are
still valid for our system. In other words: Can we use continuum mechanics?
The macroscopic equations are based on the assumption that a small change
in size of the system under consideration should not alter the properties of the
matter. We therefore compare specific sizes of the cilium, channel and fluid
with the size of the molecules of which they are comprised. The artificial cilia
under consideration are made out of a polymer material [1] which can be filled
with magnetic particles [5], in case of magnetic actuation. The particles them-
selves have a radius of about 10 nm [5], and like to cluster. The size of these
clusters is in the order of (50 − 100 nm) which is about the thickness of the
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cilium. Hence their influence on mechanical and magnetic properties must be
taken into account. The molecular weight of the polymers forming the matrix
(Poly(butyl acrylate)) is 4 · 104 g mol−1, with a polydispersity index of about
3 [5]. This results in a radius of gyration in the order of tens of nanometers,
hence for the thinnest cilia Tc < 500nm, there are still more than ten chains in
the thickness. So the cilia can be considered as a continuum. The transported
fluid is either water or a macromolecular solution in water. Since the size of
a water molecule is 200 pm, and the cilium thickness is 500 nm, water can be
considered a continuum in this case. For a macromolecular solution however,
the size of a molecule (Xanthan gum) is 350 nm [43] or 150-250 nm for corn
starch [44]. Which is comparable to the thickness of the cilium, so for the
thinnest cilia the macromolecular solution cannot be treated as a continuum.

From the analysis of the previous paragraphs it is clear that we may con-
sider the modeled system as a continuum and use the macroscopic equations
of motion, except for very thin cilia where the thickness is of the same order
as the size of the polymers comprising them or surrounding them. Since we
want to avoid non-continuum mechanical modeling, we will only use cilia with
a thickness larger than 500nm. Now it is established that the cilium and fluid
domain both can be considered homogeneous continua, for these choice of the
problem dimensions, the reference frame has to be chosen. Here we choose to
model the fluid domain in a fixed Eulerian framework and the solid in a mov-
ing Lagrangian frame, which is most appropriate for the individual problems.
If fluid and solid domains are coupled however this causes some difficulties
which will be identified and overcome later in this chapter. The governing
equations of motion consist of the conservation equations of mass and mo-
mentum, the boundary and initial conditions and the constitutive relations for
fluid and solid stress. Since the boundary and initial conditions are problem
dependent, they will be stated for each problem separately. We will model
this problem isothermally, since no external heat sources or sinks are present
and the internal heat source are either absent (reactions) or considered to be
low (mechanical dissipation). Since we consider the flow of a water based fluid
at relatively low pressures, we will assume the fluid to be incompressible. We
will also assume the solid to be incompressible, and initially stress-free. After
these assumptions the conservation and constitutive relations are given by:

Fluid:

∇ · u = 0 in Ωf, (2.1)

ρf

(

∂u

∂t
+ u ·∇u

)

= ∇ · σf + f f in Ωf, (2.2)

Solid:

det(F )− 1 = 0 in Ωs, (2.3)

ρs
D2d

Dt2
= ∇ · σs + f s in Ωs, (2.4)

9



where u is the fluid velocity, ρf is the fluid density, σf is the Cauchy stress
in the fluid, f f are body forces on the fluid, F is the deformation gradient
tensor, ρs is the density of the solid, d is the displacement of the solid, σs

is the Cauchy stress in the solid, f s are the body forces on the solid. The
interface conditions coupling the two domains Ωf and Ωs at Γfs will be given
in Subsection 2.2.1.

2.1.1 Constitutive Relations

In the momentum equations of the fluid and solid and in the interface condi-
tion for fluid-structure interaction, the fluid and solid stress still need to be
specified. For viscous fluids the stress is related to the rate of deformation,
whilst for solids it is related to the deformation. The most simple model for
fluids is the Newtonian model, which is given by:

σf = 2ηD − pfI, (2.5)

with η the viscosity, D the rate-of-deformation tensor and pf the fluid pressure.
If the fluid is in-elastic non-Newtonian (e.g. the viscosity is not constant), the
constitutive relation for the fluid stress is often described by a generalized
Newtonian fluid model, for example the Carreau model:

σf = 2η(γ̇)D − pfI,

η(γ̇) = η∞ +
η0 − η∞

√

(1 + (λγ̇)(1−n)/2)2
, (2.6)

where η0 and η∞ are the viscosities at zero and infinite shear rate, λ is the
timescale at which the viscosity starts to decrease with slope 1 − n. The
generalized Newtonian model describes the shear thinning behaviour, which is
the steady decrease of the steady state shear viscosity above a certain shear
rate. This model does not show stress build up and relaxation, which are
common to many elastic non-Newtonian fluids.

Apart from flows dominated by steady shear, the generalized Newtonian
model differs from the behaviour of real non-Newtonian fluids. Hence, a more
elaborate model is needed in these cases. Since we are interested in the be-
havior of biological non-Newtonian fluids, which are often macromolecular so-
lutions, the Oldroyd-B model is used:

σf = 2η∞D + τ − pfI,

τ = G(c− I), (2.7)

λOB
▽

c +c− I = 0 (2.8)

where η∞ is the solvent viscosity, τ is the extra stress tensor, G is the modulus
of the viscoelastic fluid and c the conformation tensor giving the average stretch
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and orientation of the polymer molecules. The upper-convected time derivative

of c is defined as:
▽

c=
∂c

∂t
+ u ·∇c− L · c− c · LT and λOB is the relaxation

time. Here also a solvent is included by adding the Newtonian fluid stress of
the solvent with viscosity η∞. Another widely used viscoelastic model is the
Giesekus model, for which the evolution equation of the conformation tensor
is given by:

λG
▽

c +(c− I) + α(c − I)2 = 0, (2.9)

where α is a parameter describing the anisotropic friction between a polymer
and the surrounding, and λG is a relaxation time, similar to λOB.

Since the cilium is basically a slender beam, with bending as the main
mode of deformation, a simple elastic model suffices to describe this. Here we
use the Mooney-Rivlin model:

σs = GsI (B − I)GsII

(

B−1 − I
)

− psI, (2.10)

where GsI and GsII are the moduli of the solid, B = F · F T is the Finger
tensor, or left Cauchy-Green deformation tensor, B−1 = F−T · F−1 and ps
is the solid pressure. In many simulations GsII = 0 and the Mooney-Rivlin
model reduces to the neo-Hookean model. In cases where large compressive
stresses are encountered, the Mooney-Rivlin model is used, since it shows a
increasing stiffness in compression, which stabilizes the numerical simulations.

2.2 Boundary, interface and initial conditions

At the boundaries of the fluid and solid domain boundary conditions have
to be specified. At the fluid-structure interface these boundary conditions
couple both domains. Since both the fluid and solid momentum equation
contain time-dependent terms, initial conditions have to be specified. As will
be shown, the interface conditions for fluid-structure interaction will also give
rise to a time-dependent term, which also requires an initial condition for the
displacement of the solid. Since the cilium is connected to the bottom of the
channel, the possibility exists that the free end will touch the bottom of the
channel. This means that solid-rigid contact takes place and this has to be
modeled accordingly.

2.2.1 Interface conditions

At the fluid-solid interface Γfs, no-slip boundary conditions are assumed. This
means that all components of the velocity and traction are continuous over the
interface, which results in the following conditions:

u− ∂d

∂t
= 0 on Γfs, (2.11)

nf · σf + ns · σs = 0 on Γfs, (2.12)

11
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Figure 2.4: Contact of the cilium Ωs with the rigid wall Ωr on the contact line
Γrs.

where the normals nf and ns are pointing outward of the respective body,
hence ns = −nf. The first interface condition (2.11) is a kinematic interface
condition, while the second (2.12) is a dynamic interface condition. Both can
be adapted easily to allow for slip between the two materials.

2.2.2 Solid rigid contact

For certain initial shapes of the cilia and types of actuation, the cilia can
contact the wall of the channel. The solid body Ωs comes into contact with
the rigid body Ωr on the common boundary Γrs, see Figure 2.4. The position
of a material point in the solid with respect to the rigid boundary is defined as
δ. Assuming no-slip conditions at contact, the equations which hold at contact
are:

δ · nr ≤ 0, (2.13)

λs · nr ≥ 0, (2.14)

δ · λs = 0, (2.15)

where nr is the normal pointing outward of the rigid body and λs is the contact
force. These two inequalities and one equality are known as the Karush-Kuhn-
Tucker (KKT) conditions [45].

2.3 Solid actuation

The cilia are actuated by an external magnetic field or by electrostatic actua-
tion. Magnetically actuated cilia are studied by Khaderi et al. [36, 37], where
either permanently magnetic or super-paramagnetic particles are embedded in
the polymer matrix which comprises the cilium. Other research groups are
also studying magnetic actuation, mainly because it circumvents the largest
drawback of electrostatic actuation: most fluids are affected by the electro-
static field because they are conductive, which may even lead to deterioration
of molecules and cells present in the fluid (e.g. electrophoretic effects). On the
other hand the conductivity of the fluid will screen the electric field, leading
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to decreased electrostatic forces. Most biological fluids do not, or only slightly,
interact with a magnetic field however. The main drawback of magnetic ac-
tuation is the fact that it is a volume force, while the fluid drag is a surface
force. Thus upon miniaturization, scaling is less favorable to magnetic actu-
ation. Since the electrostatic force is also a surface force, it scales the same
as the fluid drag. Hence from this respect it is favorable over the magnetic
force. We will consider both electrostatically and magnetically actuated cilia.
In case of magnetic actuation, the magnetic forces and moments on the cilium
are modeled as a body force.

2.3.1 Electrostatic actuation

The artificial cilia fabricated by den Toonder et al. [1], were actuated electro-
statically. Since we want to study the flow in this device in the next chapter,
an accurate description of the actuation is required. For this the governing
equations for the electric field have to be introduced as well as corresponding
interface conditions. The slowly varying electric field in Ω = Ωf ∪ Ωs is given
by the Maxwell equations:

∇×E = 0 in Ω, (2.16)

∇ ·De = 0 in Ω, (2.17)

where E is the electric field, and De the electric displacement, given for a
linear isotropic dielectric medium by the constitutive relation De = ǫE, where
ǫ is the dielectric constant. The electric field is solely determined by an electric
field potential φ, the electric field can be written as: E = −∇φ, which satisfies
Equation (2.16). Thus the problem can be reduced to:

−∇ · (ǫ∇φ) = 0 in Ω. (2.18)

This problem has the following boundary conditions:

φ = φD on ΓD, (2.19)

n ·De = ǫ
∂φ

∂n
= jN on ΓN, (2.20)

where φD is value for the Dirichlet boundary condition on ΓD, n is the outward
facing normal of Ω, jN is the value for the Neumann boundary condition on
ΓN and Γ = ΓD ∪ ΓN.

The stress in a volume of material due to the applied electric field is given
by the Maxwell stress tensor [46]:

σM = ǫ

(

EE − E ·E
2

I

)

. (2.21)
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Since the cilium and the fluid are two different dielectric materials, the
dielectric constant ǫ differs and at the interface Γfs the following conditions
hold:

φf = φs, (2.22)

nf ·De,f = −ns ·De,s. (2.23)

In case the cilium is approximated as a perfect conductor, with ǫs = ∞N V−2,
and taking into account the requirement that De remains finite, the electric
field Es = 0. If the fluid is a dielectric, the electrostatic traction vector on the
solid at Γfs can be written as:

tM = ns ·(σM,f−σM,s) = −nf ·σM,f = −nf ·
[

ǫf

(

EfEf −
Ef ·Ef

2
I

)]

. (2.24)

Thus the electrostatic traction at the conductor is solely determined by the
electric field in and the permittivity of the fluid. Note that this electrostatic
traction creates a jump between the two traction vectors of the fluid and the
solid, thus yielding an adapted dynamic interface Equation (2.12) condition:

nf · σf + ns · σs = tM on Γfs, (2.25)

which can be used instead of Equation (2.12).

2.3.2 Initial conditions

The momentum equations of the solid and fluid contain time dependent terms,
hence initial conditions have to be specified. In case a viscoelastic model is
used, initial conditions have to be specified too. In all cases the fluid and solid
are considered to be at rest, and the conformation tensor to be in equilibrium
initially:

u(x, t = t0) = 0 ∀x ∈ Ωf, (2.26)

d(x, t = t0) = 0 ∀x ∈ Ωs, (2.27)

c(x, t = t0) = I ∀x ∈ Ωf. (2.28)

2.4 Dimensional analysis

In this section we rewrite the governing equations of motion in a dimensionless
form, which reveals the dimensionless groups governing the problem. Since
the cilia are driven by a body force, the displacement and the velocity are
not known a priori, as they are part of the solution. We therefore also give
expressions for their dimension full form. The fluid is considered to be Newto-
nian for the moment. The variables are scaled as follows, where (̂) denotes the
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dimensionless variable: ∇ =
1

L
∇̂, u = U û, d = Dd̂, pf =

ηU

L
p̂f, ps =

GD

L
p̂s,

f = f0f̂ . Here U is the typical velocity, D the typical displacement and f0 the
typical body force on the cilium. The modulus of the solid Gs = GsI +GsII .
Omitting allˆfor readability, we obtain the following dimensionless form of the
governing equations:

Fluid:

∇ · u = 0 in Ωf, (2.29)

St
∂u

∂t
+Reu ·∇u = 2∇ ·D −∇pf in Ωf, (2.30)

Solid:

det(F ) = 1 in Ωs, (2.31)

El
∂2d

∂t2
= ∇ · (B − I)−∇ps +R1f in Ωs, (2.32)

Interface conditions:

R2u− ∂d

∂t
= 0 on Γfs, (2.33)

R3nf · (D − pfI) + ns · (B − I − psI) = 0 on Γfs, (2.34)

in which a number of dimensionless groups appear, which are listed in Table
2.1. Since the interface conditions always balance, the last two groups must

always be unity, resulting in a time-scale t3 =
η

Gs
. Note that even if inertia

of both fluid and solid are unimportant the system is time-dependent with a
typical time-scale t3. Although the slenderness of the cilium certainly plays a
role in the deformation it is not included in the scaling.

2.5 Transport and mixing analysis

Artificial cilia are used for transport and mixing in microfluidic devices. In
order to show how different fluids and cilium properties change the transport
and mixing in these devices, it is important to quantify transport and mixing
performance.

If the cilia are used for the transport of fluid the most obvious variable to
compare with, is the average flow rate, which is defined as the total flow during
a cycle divided by the cycle time. The higher the average flow rate the better
the cilia perform.

In mixing, the performance of a device can be measured in different ways.
In order to explain them, a short introduction to mixing is necessary.

Two fluids which have a common interface, interact with each other at
the interface via diffusion. The transport is then given by the instationary
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Table 2.1: The dimensionless groups in a fluid-structure interaction problem.

Re
ρfUL

η
The Reynolds number, which is the ratio between
the convective inertial and viscous forces.

St
ρfL

2

ηt1
The Stokes number defining the ratio between insta-
tionary inertial forces and viscous forces. t1 is either

an actuation time-scale, or t1 =
L

U
, in which case

the Stokes number is equal to the Reynolds number.

El
ρsL

2

Gst22
The elasticity number, giving the ratio between in-
ertial and elastic forces in the solid. t2 is either the

actuation time-scale or t2 =

√

ρsL
2

G
, in which case

El = 1.

R1
f0L

2

GsD
The ratio between the applied force and the elastic
force.

R2
Ut3
D

The ratio between the fluid velocity and the solid
velocity at the interface, where t3 is the typical time-
scale of the system, which is yet to be determined.

R3
ηU

GsD
The ratio between the fluid and solid traction at the
interface.
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convection diffusion equation:

∂c

∂t
+ u ·∇c = k∇2c, (2.35)

where c is the concentration of one of the fluids, t is time, u is the external
velocity field and k is the diffusion constant. By scaling this equation with

c = c0ĉ, t = tmixt̂,u = U û and ∇ =
1

Lint
∇̂, where Lint is the distance between

two interfaces,

St
∂c

∂t
+ Peu ·∇c = ∇

2c, (2.36)

two dimensionless groups appear: The Strouhal number St =
L2
int

kt2mix

and the

Péclet number Pe =
ULint

k
, see Equation 2.36. In this equation the hats are

omitted to increase readability. In case there is no convection, Pe = 0, the

typical timescale becomes: tmix =
L2
int

k
. So for large Lint and low k it takes

very long for diffusion to mix the two fluids. Since the diffusion constant k
cannot be changed in general, the only option to decrease tmix is to decrease
Lint. This can be achieved by setting up a flow in which alternative layers of
each fluid are formed, thus decreasing Lint. In the other limit where Pe = ∞,
the mixing is completely convection dominated, and the molecules to be mixed
move affinely with the flow. Hence the evolution of the position of a material

point x is given by
dx

dt
= u, which means that the mixing time becomes tmix =

Lint

U
. So for high Péclet numbers, the mixing time scales linearly with the

interface thickness, whereas for low Péclet numbers it scales quadratically. For
convection dominated mixing problems, the mixing performance can directly

be quantified by integrating
dx

dt
= u for a given initial condition x(t = 0) = x0

and a given period of time. By measuring the initial distance l0 between two
points at t = 0 and at the end l1of the given period, the stretch is defined as λ =
l1
l0
. Instead of defining a global average stretch, we compute the local stretch

by placing a drop in the flow and recording its circumferential length in time.
The rate at which the interface length increases quantifies the effectiveness of
the flow for mixing. If the mixing length increases exponentially, as for instance
in elongational flow, the mixing is said to be optimal. The main disadvantage
of this mixing measure is the fact that it depends on the initial placement of
the drop, so it is a local mixing measure. An example of the initial drop and
its shape after flow is applied is shown in Figure 2.5.

In order to ascertain whether mixing occurs in every part of the domain, a
more global mixing measure has to be used. One is the intensity of segregation,
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(a) (b)

Figure 2.5: The shape of the drop before flow is applied (a) and after flow is
applied (b). It is clear that the circumferential length has increased due to
flow.

(a) (b)

Figure 2.6: The intensity of segregation I for two different situations: (a)
I = 1 and (b) I = 0.

which is the second order moment of the concentration distribution [47]:

I =

∫

Ωf

(c(x)− c̄)dx
∫

Ωf

c̄(1− c̄)dx
, (2.37)

where I is the intensity of segregation, c(x) is the concentration in x and c̄ is

the average concentration defined as c̄ =

∫

Ωf

c(x)dx
∫

Ωf

dx
. If I = 1 the mixture is

completely segregated, see Figure 2.6(a), and I = 0 means a fully homogeneous
mixture, see Figure 2.6(b). It is clear that it quantifies mixing globally, since
it requires averaging over the whole domain, so the whole domain contributes
to I.

Mixing can also be quantified by the Shannon entropy of mixing [48], or
better the rate at which this mixing entropy changes. In order to compute both
of them, the domain is subdivided into a number of cells nc and particles are
tracked under influence of the flow. At each time-step the number of particles
ni in cell i is counted and stored. The discrete entropy of mixing S and its
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(a) (b)

Figure 2.7: The Shannon mixing entropy S for two different situations: (a)
S = low and (b) S = high.

increase rate κS are then computed from this information as follows:

S =
−1

npart

nc
∑

i=1

ni log
ni

npart
, (2.38)

κS =
S − S0

Smax − S0
, (2.39)

where npart is the total number of particles in the entire domain, S0 is the initial
mixing entropy and Smax is the maximal mixing entropy. An illustration of
the distribution of particles ins cells for a low (Figure 2.7(a)) and high (Figure
2.7(b)) mixing entropy is given in Figure 2.7.

The Shannon entropy is cell size dependent, hence the mixing effectiveness
can be asessed on different length-scales by changing the amount of cells. Both
S and κS are global mixing measures, since S is an average over all cells.

2.6 Conclusions

We model the flow induced by artificial cilia by using continuum mechanics.
Two different cases will be studied: A transport geometry were the cilia are
actuated in the direction of the channel and a mixing geometry in which the
cilia are actuated perpendicular to the channel direction. The kinematic and
dynamic interface conditions coupling the solid cilium domain to the fluid do-
main are also determined. After scaling the equations of motion the important
dimensionless groups are defined. The actuation of the cilia is also treated and
performance measures for the transport and mixing geometries are defined as
well. In the process of deriving the model the following important observations
were made:

• Both fluid and artificial cilium can be treated as an homogeneous con-
tinuum, except when the cilia contain magnetic particles and are thinner
than 50 nm.
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• The only difference in the transport and mixing geometry is the boundary
condition for the fluid, the rest is the same.

• Every fluid-structure interaction problem, involving a non-rigid solid, is
time dependent, since the fluid velocity is coupled to the solid deforma-
tion, which yields a typical time scale t3.

• In a transport geometry the net flow per cycle is our performance mea-
sure, in a mixing geometry it can either be the length stretch of a drop,
the intensity of segregation or the entropy increase rate.
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Chapter 3

Inertial effects in a

micromixer based on

artificial cilia 1

In this chapter the flow in a microfluidic mixer is studied with the models
presented in the previous chapter. Since this chapter is largely based on our
paper [49] on this mixer, we will follow the structure of this paper.

The analysis of bio-fluids in lab-on-chip devices involves fluid transport and
fluid mixing in micro-channels. Due to the small length scales, viscous forces
gain importance with respect to inertial forces, rendering turbulent mixing
impossible. The ratio between inertial and viscous forces is characterized by
the Reynolds number (Re), so for microfluidic devices Re is usually smaller
than 1. Diffusive mixing on the other hand, is slow, even at these small length
scales, since material transport is still convection dominated. The ratio be-
tween convective and diffusive mass transport is given by the Péclet number
(Pe), which is generally large for microfluidic devices. Therefore novel mixing
concepts have to be developed leading to chaotic advection at low Re, but high
Pe.

Among them are active mixers [1] and passive mixers [19, 20]. For active
micro-mixers operating in cycles, net flow can only be induced through tem-
poral or spatial asymmetry. If Re ≪ 1, i.e. under Stokes flow conditions, only
spatial asymmetry remains to achieve a net flow effect. By mimicking fluid
transport at the sub-millimeter scale from nature, more in particular from
ciliated Paramecia, Den Toonder et al. [1] have created a micro-mixer with ar-
tificial cilia. The electrostatically actuated artificial cilia were polymer based
micro-actuators coated with an ultra thin conductive film, see Figure 3.1. The

1This chapter is largely based on: M. Baltussen, P. Anderson, F. Bos, and J. den Toonder.

Inertial effects in a micro-mixer based on artificial cilia. Lab Chip, 9:2326 – 2331, 2009
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Figure 3.1: A micrograph of the curled polymer MEMS in its non-actuated
shape.

cilia are actuated in a cycle which consists of two phases:

• A constant voltage difference between the substrate and the film is ap-
plied, causing the film to roll out fully onto the substrate.

• The potential difference is switched off and the cilium recovers elastically
back to its initial configuration.

Unit cells of 1 mm2 containing 100 of these cilia were placed in arrays at
the bottom of the micro-channel, see Figure 3.2(a), and integrated into a mi-
crofluidic device Figure 3.2(b). This micromixer generated substantial flow
velocities. The mixing as observed from a top view of the channel was good,
but above all very fast. Over the length of two unit cells (of 1 mm each), the
fluid is mixed, which was not expected for a micro-mixer in Stokes flow. A
closer look reveals however that the local velocities U of the cilia are in the

order of 0.1− 1m s−1, hence the local Reynolds number, Re =
ρUL

η
= 1− 10

, with density ρ = 9.3 · 102 kg m−3, cilium length L = 100 µm and viscosity
η = 9.3 mPa s, based on the silicone oil used in experiments. Therefore, the
flow on the length scale of the cilia is dominated by inertia, for at least part of
the actuation cycle. The mixing quality was assessed by taking images from
a top view of the channel, hence the flow in a cross-section of the channel is
unknown, so it could be that large structured layers exist in the cross-sectional
plane. In this case the fluid is highly segregated in the cross-sectional plane,
while it seems fully mixed from the top. Also the role of inertia on the gen-
erated flow remains unsure. Therefore the objective is to study the mixing
patterns in the cross-sections of this micro-mixer with a both a numerical
model and experiments, and assess the role of inertia.
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(a) (b)

Figure 3.2: (a) The actual mixing channel viewed from the top showing three
unit cells in alternating order. The large arrow indicates the imposed flow
direction, and the small arrows indicate the actuation direction of the row of
cilia. (b) The Y-channel with two inputs and one output. The artificial cilia
are integrated on the bottom of the channel.

3.1 Modelling

The mixing device of den Toonder et al. [1] is modelled. This device consists
of a Y-shaped channel with two inflows and one outflow, see Figure 3.2b. The
bottom of the channel is covered with curled actuators, the artificial cilia, see
Figure 3.1. These cilia are electrostatically actuated polymer MEMS. Sixteen
mixing units of 1 × 1 mm2 each with 5 × 20 artificial cilia are placed on the
bottom of the channel, see Figure 3.2a for a top view of the mixing units.
The two-dimensional cross-section of the channel is modeled. So the cilia

x

y

Figure 3.3: The modeled cross-sectional domain with five cilia on the bottom
of the channel.

are assumed infinitely long in the imposed flow direction. The channel and
the modeled domain are depicted in Figure 3.3. The channel has a height of
0.5 mm, and a width of 1.0 mm. Each cilium has a thickness Tc of 2 µm , and
length L of 100 µm . Although the artificial cilia are layered structures, with
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different mechanical properties, the entire cilium is modeled as a single solid
with the properties of the thickest layer, which is polyimide. The initial curled
shape with radius R = 32 µm of the cilia is shown in Figure 3.3. The cilia are
attached to the channel floor at one end. The fluid domain Ωf is modeled as
an incompressible Newtonian fluid, and the solid domain as an incompressible,
inertialess, neo-Hookean solid. The fluid is modeled in an Eulerian manner,
the solid in a Lagrangian manner. This leads to the following conservation
equations of mass and momentum, see Equations (2.1) and (2.4):

Fluid:

∇ · u = 0 in Ωf, (3.1)

ρf

(

∂u

∂t
+ u ·∇u

)

= ∇ · σf in Ωf , (3.2)

Solid:

det(F )− 1 = 0 in Ωs, (3.3)

−∇ · σs = f s in Ωs, (3.4)

where the variables are defined as in Section 2.1 and f s is the actuation force
on the solid.

No-slip boundary conditions are taken on the channel walls and the cilia are
attached to the wall at the lowest vertical boundary, i.e. the channel floor. On
the fluid/solid boundary, the interface conditions Equations (2.11) and (2.12)
hold.

3.1.1 Actuation

The cilium is actuated electrostatically. The electrostatic surface force is mod-
elled by assuming a parallel plate capacitor geometry, where the upper plate
with potential ∆V is the cilium and the lower, grounded plate the channel
floor. An electric field E = −∆V/hey exists between the upper and lower
plate, with h the distance between the upper and lower plate. Since the cilia
move, the distance between the cilium and the wall also changes. Hence the
local electrifield changes through a change in h. This electric field causes a
traction on both conducting plates, which attracts the cilium towards the bot-
tom of the channel so that it rolls out onto the bottom. By making use of the
Gauss divergence theorem and the Maxwell stress tensor this traction on the
upper plate is given by [46], see Section 2.3.1:

t = −n · σM = −ey · ǫ
(

EE − E ·E
2

I

)

, (3.5)

where ǫ is the dielectric constant of the fluid between the two plates, n = −ey
the vector normal to the upper plate. For numerical reasons, the traction on
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the boundary is transformed into a body force f s by assuming a averaging t

over the cilium thickness Tc , leading to:

f s =
−ǫ
2Tc

(

∆V

h

)2

ey. (3.6)

One full cycle of the cilium motion will be simulated. The actuation force will
be applied until the cilia are fully unrolled, so flat against the lower wall. Then
the force is released and the cilia recover elastically to their initial shape. The
cycle is finished when the fluid has come to a rest. The velocity field obtained
from this cycle is used as input for particle tracking for 50 cycles.

3.1.2 Scaling

The problem is governed by two dimensionless groups, see Section 2.4, namely
the Reynolds number (Re) and R1 defined as the ratio between elastic and

applied forces in the cilium R1 =
L2f0
D

, where the typical displacement

D is taken equal to L and f0 = 1.75 · 109 N m−3 is the typical force com-
puted from the following parameters used in experiments [1]: ǫ = 8.854 ·
10−12 A2s4kg−1m−3,∆V = 100 V, h = 1 µm and Tc = 2 µm . The typical
length scale h for the applied force is taken equal to the dielectric layer thick-
ness of the experimental device [1]. The fluid has a viscosity of 9.3mPa s. The
Reynolds number is varied from 0 to 10 by changing the density between 0
and 9300 kg m−3 . The solid has a modulus of 1 GPa, hence R1 = 5.7 · 103
throughout all calculations.

3.2 Numerical methods

The set of Equations (3.1)-(3.4) is solved with a finite element method (fem).
A fictitious domain method [50] is used where the solid “floats” inside the fluid
domain, which comprises both the fluid and solid domain:

Ω̂f = Ωf ∪Ωs, (3.7)

where Ω̂f is the total fluid domain, containing the fictitious part Ωs. This
fictitious part leads to additional physical effects, which may be neglected if
the momentum of the fictitious fluid is lower than the momentum of the solid.
Here we assume that this is the case. This method has been successfully used
for the simulation of particle suspensions [51, 52] and fluid-structure interac-
tion [28, 33, 53]. The corresponding weak form of Equations (3.1)-(3.4), after
introducing test functions v, q,w, r, integration over the entire domain and
applying partial integration reads: Find u ∈ U , pf ∈ Pf,d ∈ D, ps ∈ Ps such
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that:

(q,∇ · u)Ω̂f
= 0,

(

v,Re(
∂u

∂t
+ u ·∇u)

)

Ω̂f

+

(Dv,D)Ω̂f
− (v,n · 2D − pfI)Γf

+ (v,∇pf)Ω̂f
= 0,

(r, det(F )− 1)Ωs
= 0,

(Dw,B − I)Ωs
− (w,n · (B − I − psI))Γs

−
(w,f s)Ωs

= 0,

∀v ∈ U , q ∈ Pf,w ∈ D, r ∈ Ps, (3.8)

where (a, b)Ω denotes the proper inner product of functions a and b on the

domain Ω and Da =
1

2
(∇aT +∇a). In this weak form boundary terms arise

due to partial integration. These terms represent the traction on the fluid and
solid boundaries Γf and Γs respectively. These boundaries can be split into a
part where Dirichlet and Neumann boundary conditions are applied, such that
Γ = ΓD ∪ ΓN. Since no Neumann conditions are present in this problem, the
entire boundary is Dirichlet.

The interface conditions are applied with a Lagrange multiplier method
[50, 54] which adds the kinematic interface condition as a constraint to the
weak form (3.8) leading to the following additional terms:

(

s,u− ḋ
)

Γfs

+ (v,λ)Γfs
− (w,λ)Γfs

∀s ∈ L, (3.9)

where ḋ =
dd

dt
, λ ∈ L is the Lagrange multiplier and s ∈ L is the test function

for the weak form of the kinematic interface condition. The Lagrangemultiplier
is identified to be the traction on Γfs: λ = n · (2D−pfI) = −n · (B−I−psI).
Thus the dynamic interface condition is also fulfilled since the tractions on the
fluid and the solid are, apart from the sign, the same, namely λ.

Since the set of equations is timedependent and nonlinear, appropriate
timestepping and linearizion have to be applied, in order to solve them. Using
first-order implicit Euler for the time-dependent terms and Newton-Raphson
iteration for the non-linear terms, the final set of equations to be solved is:
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Find ui+1
j+1 ∈ U , pi+1

f,j+1 ∈ Pf, δ di+1
j+1 ∈ D, pi+1

s,j+1 ∈ Ps,λ
i+1
j+1 ∈ L such that:

−
(

q,∇ · ui+1
j+1

)

Ω̂f

= 0,
(

v,Re(
ui+1
j+1 − ui

∆t
+ ui+1

j+1 ·∇ui+1
j+1)

)

Ω̂f

+

(

Dv,D
i+1
j+1

)

Ω̂f

−
(

v,∇pi+1
f,j+1

)

Ω̂f

+ (v,λ)Γfs
= 0

(

r, det(F i+1
j+1)− 1

)

Ωs

= 0,
(

Dw,R1(B
i+1
j+1 − I)

)

Ωs

−
(

w,∇pi+1
s,j+1

)

Ωs

+
(

w,f i+1
s, j+1

)

Ωs

− (w,λ)Γfs
= 0,

(

s,ui+1
j+1 −

di+1
j + δd− di

∆t

)

Γfs

= 0,

∀v ∈ U , q ∈ Pf,w ∈ D, r ∈ Ps, s ∈ L, (3.10)

where i + 1 and i denote the value at the current and previous time ti+1 =
ti+∆t, j+1 and j the current and previous iterative step and δd is the iterative
displacement step. Details about the time integration and linearization can be
found in Appendix A, Sections A.1 and A.2.

The shape functions for the trial functions (u, pf, δd, ps,λ) and their corre-
sponding weight functions (v, q,w, r, s) are

(

Q9
2, Q

4
1, Q

9
2, Q

4
1, P

2
1

)

. The combi-
nation Q4

2Q
4
1 is a stable element for incompressible problems from the Taylor-

Hood family.
The final set of equations will be solved with a direct solver (HSL MA41

[55]) in a fully coupled manner.

3.3 Experiments

The distributive mixing flow is visualized by optical coherence tomography
(OCT) [56, 57]. In this procedure particles are illuminated by a low coherent
light source. From the reflected light beam and a reference beam a interference
pattern can be drawn which shows the particle positions. The main advantage
of this technique is that it can measure particle positions very deep in translu-
cent objects, which is ideal for this micro-mixer since the channel is made from
PDMS. OCT generated time-dependent images of the flow pattern evolution
within the same cross-sectional plane as the simulations are recorded.

3.3.1 Materials

The experimental device and set-up as described in detail in Den Toonder et
al. [1] was used in this experiment. The channel is Y-shaped, with two fluid
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inlets and one outlet. The width of the channel is 1 mm, the height 0.5 mm
and the length 2 cm respectively. The floor of the channel is covered with 16
adjacent areas of 1mm× 1mm squares with 5 rows of 20 cilia each, see Figure
3.2a. Both of the entrances were connected to a syringe pump (Harvard Ap-
paratus, Model 11- plus, single syringe pump). One syringe contained silicone
oil (Wacker AK10) with a viscosity of 9.3mPa s with a density of 930 kgm−3,
the other syringe contained the same oil seeded with TiO2 particles, with a
density of 4500 kgm−3.

Due to the density difference between the particles and the oil, sedimenta-
tion occurs. The sedimentation velocity [58] of particles with a radius of 10µm
under Stokes conditions is 80µms−1, which is much lower than the typical ve-
locity in the cross-sectional plane of 1 ms−1, hence particles follow the flow
sufficiently to characterize the flow. In the axial channel direction however the
velocity is only 0.2mm s−1 , so the influence of gravity and pumping are of the
same order and the particles do not follow the flow. Therefore sedimentation
takes place while particles move through the channel, but the particle motion
in the cross-sectional plane represents the fluid motion.

The Spectral Radar Optical Coherence Tomography System of Thorlabs
GmbH was used, which has a depth resolution of 3.5 µm , an in-plane reso-
lution of 10 µm, and which can capture eight frames per second. Although
3D visualizations are possible, only the cross-sectional flow at a single axial
position in the channel was captured.

3.3.2 Methods

The experiments were conducted as follows: First the two pumps and the OCT
set-up were switched on. After two distinct separate flows were observed, the
artificial cilia were actuated at 80Hz and a recording was started. After about
15 minutes the heavier TiO2 particles sedimented on the cilia, resulting in
cilia malfunction and the experiment was stopped. Since the OCT sampling
frequency is only 8 Hz, while the cilia actuation frequency is 80 Hz, individual
cycles cannot be distinguished. Due to the high electric fields 100 V/1 µm =
100MV m−1, electrokinetic effects are expected, but the use of an AC field at
1 kHz prevented these effects.

3.4 Results

Net fluid motion for Stokes flow only happens if the cilia motion is asymmetric.
The asymmetry of the cilia movement can be visualized by plotting the path
of the very tip of the cilium over one cycle. If the rolling path and rolling-back
path do not coincide, the motion is asymmetric. The size of the area enclosed
by both paths, the swept area, is a measure for extent of the asymmetry.
The direction of fluid motion can also deducted from this plot. For inertial
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flow this is not the case, since also the time-scales of rolling and rolling-back
play a role. The simulated tip position of the left most cilium within the
computational domain is given in Figure 3.4 for Re = 0 (left) and Re = 10
(right). From Figure 3.4 it is observed that for Re = 0 the net flow will be
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Figure 3.4: Simulated tip position of the leftmost cilium for Re = 0 (left) and
Re = 10 (right). The dashed line is the unrolling path when the electric force is
switched on, the solid line is the rolling path during which the force is switched
off. The left most position is the starting position. Both displacements are
given in micrometers.

to the left for this cilium, since the path during recovery lies above the path
during unrolling. The amount of fluid which is displaced is relatively small
compared to the entire swept area. For Re = 10, the net swept area increases
but not significantly. Furthermore the flow direction is unknown, since also
the timescales of unrolling and recovering play a role.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Original particle distribution (a). Particle distributions after 50
cycles for Re = 0 (b), Re = 0.1 (c), Re = 1 (d), Re = 5 (e) and Re = 10 (f).
The Reynolds number is based on the cilium length.

The distributive mixing properties for different Reynolds numbers are stud-
ied next. A rectangular block containing 2500 particles is placed in the right
half of the domain, see Figure 3.5(a). These particles are convected by the
flow for 50 cycles of cilia actuation and their final positions are plotted in
Figure 3.5 for various local Reynolds numbers. The distribution of particles
over the domain becomes better for higher Reynolds number, indicating better
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distributive mixing. The motion of particles for Re = 0, 0.1 is in the oppo-
site direction to that of the Re = 1, 5, 10 simulations. Therefore a Reynolds
number exist where there is no global flow, and hence mixing only occurs on
the local level. This is the critical Re where the flow direction changes. Two
flow domains can be seen, one for the three left cilia and one for the two right
cilia. The distinct change in flow around Re = 1 is also observed in nature
[59]. In order to quantify the mixing effectiveness, the entropy increase rate
κS , as defined in (2.38), is computed for a typical domain size of 30x15 cells,
and given in Figure 3.6. From this figure it is observed that for Re = 0, 0.1, κS
is negative, indicating structure formation, so we have demixing rather than
mixing. For Re = 1 κS remains about constant, so although the particles
move, the distribution remains about the same. For Re = 5, 10 increases, indi-
cating good mixing. Due to inaccuracies in the velocity field, several particles
are accumulated on the moving cilium and on the lower wall, as can be seen in
Figure 3.5. If the particles should be tracked for even more cycles, more and
more particles are artificially accumulated in these areas. In order to obtain
accurate mixing simulations a more accurate model is required, so that this
accumulation is avoided. The particle distributions for Re = 1 at 50 cycles,

0 10 20 30 40 50
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−0.1

0

0.1

0.2

Cycle[−]

κ
[−

]

Re=0
Re=0.1
Re=1
Re=5
Re=10

Figure 3.6: Evolution of the entropy increase rate κS for a range of Reynolds
numbers.

Re = 5 at 12 cycles and Re = 10 at 5 cycles are almost identical, see Figure 3.7.
This indicates that the net flow per cycle increases with the Reynolds number,
while the basic flow remains the same. This means however that the same
mixing state can be reached for all Re above the critical Re by just increasing
the number of cycles.

Thus far the numerical simulations show that Stokes flow and inertial flow
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Figure 3.7: Simulated particle distributions for Re = 1, 50 cycles (left), Re = 5,
12 cycles (middle) and Re = 10, 8 cycles (right).

give different flow patterns and that particles are better distributed for higher
Reynolds numbers. In the experiments, the Reynolds number is estimated to
be of O(1). This is based on a local fluid velocity, taken equal to the cilium
velocity, of 1 ms−1 a density of 0.93 kgm−3, a cilium length 100 µm and a
viscosity of 9.3 mPa s. It was therefore hypothesised that local inertial effects
could play an important role [1]. This is indeed verified by comparing the flow
structure as measured by OCT with the computed patterns, shown in Figure
3.8. The experimental results resemble the numerical results for high Reynolds
numbers, when inertia is important, well, whereas the simulated patterns for
the low Reynolds numbers are completely different. The number of simulated
and observed cycles differ however. Following the previous paragraph, the same
mixing state can be obtained for any Re above the critical Reynolds number.
This indicates that Re = 10 is higher than the actual Re in experiments,
but still the computed particle distributions can be used for comparison with
experiments, as long as the comparison is made at a different number of cycles,
as is done in Figure 3.8. Both experiments and simulations show that the initial

40 cycles 6 cycles 6 cycles

140 cycles 10 cycles 10 cycles

580 cycles 22 cycles 22 cycles

Figure 3.8: Left: images from OCT experiments. Middle: simulated particle
distributions for Re = 0. Right: simulated particle distributions for Re = 10.

block of particles is stretched. Stretching alone will not give good mixing
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however. From simulations it is clear that a separatrix exists between the two
cilia groups. Hence fluid in one domain cannot get into the other domain, and
good mixing cannot be obtained. Therefore symmetry breaking is necessary
[60], which can be obtained by placing segments with mirrored alternating
layouts in the channel, as shown in Fig. 2a. The alternating use of 3-2 and 2-3
configurations shifts the separatrix within the channel, breaking symmetry.

3.5 Conclusions

Numerical simulations and experimental visualization of the flow in the micro-
mixer which is based on electrostatic artificial cilia have been performed. For
five different Reynolds numbers, based on the cilium length and speed, a direct
numerical simulation of one cilium motion cycle has been carried out. The
obtained velocity field has been used for tracking particles for multiple cycles.
The resulting particle distributions show that for Re = 0, 0.1 the nature of
the induced flow is opposite to the flow for Re = 1, 5, 10. This is due to the
growing importance of inertial effects for larger Re. It is also observed that
increasingly better distributive mixing occurs for Re = 1, 5, 10. The simulation
results are compared with optical coherence tomography flow visualizations,
and good qualitative comparison is found for the Re = 10 case. This confirms
that the observed flow behavior in the mixer based on artificial cilia is caused
by inertial, rather than viscous phenomena.

Although these simulations give insight in the physics controlling the mix-
ing behavior, it cannot be used for mixing simulations of more cycles, due
to the inaccuracy of the velocity field near the cilium. Hence more accurate
models are required in these simulations.
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Chapter 4

XFEM and weak interface

conditions

This chapter treats the numerical aspects of fluid structure interaction model-
ing. Due to the flexibility of the cilia, large deformations are expected. Meth-
ods in which both the fluid and solid mesh deform are therefore not that
attractive, since large deformations deteriorate the mesh quality, thus lead-
ing to inaccurate solutions. A possible solution is the generation of a new
mesh when the mesh becomes too distorted. This is not attractive in general,
since mesh generation is expensive. Another solution is to keep the fluid mesh
stationary and let the solid mesh move. With this solution no re meshing is
required, so this approach is computationally cheaper. On the other hand the
interface conditions (2.11) and (2.12) are only aligned with the solid mesh,
and not with the fluid mesh, which makes it more difficult to enforce both
conditions accurately. In the previous chapter a fictitious domain/Lagrange
multiplier technique has been used for enforcing these conditions. The simula-
tions from the previous chapter tell us something about the large scale physics
at hand; namely that fluid inertia is important in this particular mixer. Near
the fluid-structure interface however, the results are not very accurate. Let
us consider the following typical example of pressure driven flow over a single
cilium is given. For a large cilium deformation, the fluid velocity, pressure,
vorticity and shear-stress on the boundary of the cilium are shown in Figure
4.1.
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Figure 4.1: The fluid domain with the deformed cilium with the fluid pressure
(a) and the following quantities on the boundary: velocity in x−direction (b),
pressure (c), vorticity (d) and shear-stress (e).

The velocity field along the boundary is more or less smooth, but the
pressure and the derived quantities such as the vorticity and shear-stress, show
non-smooth behavior. So at least at the boundary these quantities are not
smooth and also not accurate, since a shear-stress which is rapidly changing
sign is not physically valid. These errors are caused by two effects:
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• In the fictitious domain technique the solid floats in the fluid. Hence the
equations of motion of the fluid are not only applied in the fluid domain,
but also in the solid domain. This is unphysical as it causes the fluid
domain to be continuous, whilst in reality is discontinuous.

• In order for the Lagrange multiplier technique to be stable, strict require-
ments have to be put on its discretization [54]. If the discretization is
too dense compared to the fluid element, too many interface conditions
are enforced causing spurious oscillations, whilst if too few are enforced,
the interface conditions are, obviously, violated.

Both issues are of concern to us, since we want to accurately describe the
flow field near the cilium, in order to perform mixing analysis, and, as will be
shown in later chapters, to study the flow of a viscoelastic fluid pumped by
cilia. For mixing analysis the accuracy of the velocity field is important, since
the analysis relies on the tracking of points. If the velocity field is inaccurate,
points end up at the boundaries of the domain, or, which is more likely, at
the cilium wall. For the simulation of transport of non-Newtonian fluids the
velocity gradients have to be accurate, since errors in the velocity gradient is a
cause for numerical instability of the simulation. A solution to both problems
mentioned above will be given in this chapter. The methods which solve these
problems are also found in a recent paper [61]. First the problem of introducing
discontinuities into a finite element by using the eXtended Finite Element
Method (xfem) is given in Section 4.1. Subsequently methods for enforcing
the kinematic interface condition are given in Section 4.2. The Arbitrary
Lagrange Euler method (ALE) will also be introduced in this chapter. It is used
for computing reference solutions, against which new methods are compared,
and as a starting point for the derivation of schemes for problems having
instationary and convective terms in the fluid domain. The solid is modeled
in a Lagrangian reference frame, which moves along with the solid. Hence the
inertial terms can be treated with standard techniques, as will be shown in
Subsection 4.3.

4.1 XFEM

The classical Galerkin Finite Element Method (gfem), uses polynomials as
shapefunctions for the test and trial functions. The entire domain is subdi-
vided into smaller domains, the elements, which together form the mesh. The
polynomials are defined element wise. Since the test and trial functions are
polynomials, they are at least continuous within an element. Therefore discon-
tinuities cannot be described accurately within an element. At the boundary
between elements however they can be described accurately, since the shape-
functions of an element are only defined in that single element. So in many
problems where discontinuities arise (fluid-structure interaction, multi compo-
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nent flow, contact) the mesh is generated in such a way that it aligns with the
discontinuities in the field variable or it’s derivatives. If the position of the
discontinuities is time dependent, the element boundaries should follow the
discontinuities, which requires motion of the mesh itself. Often the movement
of the mesh is large, causing the elements to be elongated or distorted. Since
the geometrical shape of an element in part determines the accuracy, elongated
and distorted elements should be avoided and preparing a new mesh of (part
of) the domain is often the only option.

The eXtended Finite Element Method xfem allows the use of many more
functions as shapefunction. Usually additional functions are added to the
traditional polynomials in the following way:

a ≈
N
∑

i=1

φi(x)Ai(x); Ai(x) = ai +

N
∑

i=1

M
∑

j=1

fj(x)aji, (4.1)

where a is the function to be approximated, N are the number of degrees of
freedom of variable a, φi is the i-th polynomial shapefunction, ai the standard
degree of freedom in node i, fj is an additional function, M the number of
additional functions and aij the additional degrees of freedom for function j
in node i. So by introducing extra functions, also the number of degrees of
freedom increases.

In the case of fluid solid interaction, in absence of interfacial forces (such
as electrostatic forces or interfacial tension) the velocity and traction are con-
tinuous over Γfs, leading to the interface conditions:

u− ḋ = 0, (4.2)

n · σf − n · σs = 0, (4.3)

where u is the fluid velocity, ḋ the solid velocity, n the outward normal of
the fluid on Γfs, σf the fluid stress and σs the solid stress. The solid and
fluid stresses and the derivatives of the displacement and velocity may be
discontinuous, and often are. Note, that if the stress is discontinuous, the
pressure is discontinuous as well (except if the other contributions to the stress
are exactly the same).

Since the equations of motion of the solid are defined in a Lagrangian
frame, the fluid-structure interface is always aligned with the boundary edges
of the solid elements. Hence the discontinuity in the stress, pressure and dis-
placement derivatives do not require any special treatment. The discontinuity
of stress, pressure and velocity gradient in the fluid domain requires special
treatment however, since the equations of motion of the fluid are defined in a
fixed Eulerian frame, with corresponding fixed elements.

Following the xfem framework the following shape functions for u, pf,d, ps
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and their corresponding testfunctions v, q,w, r are introduced:

u ≈
Nv
∑

i=1

φi(x)U i(x); U i(x) = uiH(x) (4.4)

pf ≈
Npf
∑

i=1

ψi(x)Pf,i(x); Pf,i(x) = pf,iH(x), (4.5)

d ≈
Nd
∑

i=1

µi(x)Di(x) (4.6)

ps ≈
Nps
∑

i=1

µi(x)Ps,i(x) (4.7)

v ≈
Nv
∑

i=1

φi(x)V i(x); V i(x) = uiH(x) (4.8)

q ≈
Npf
∑

i=1

ψi(x)Qi(x); Qi(x) = qiH(x), (4.9)

w ≈
Nw
∑

i=1

µi(x)W i(x) (4.10)

r ≈
Nps
∑

i=1

µi(x)Ri(x) (4.11)

where H(x) is a Heaviside function defined as:

H(x) =

{

0 ∀x ∈ Ωs,

1 ∀x ∈ Ωf,
(4.12)

and Nv, Npf , Nd, Nps denote the amount of the degrees of freedom for the
velocity, fluid pressure, displacement and solid pressure respectively. By using
the Heaviside function, the shape functions do only exist in the part of the
element which contains fluid. This requires the exact knowledge about which
part of a fluid element contains fluid and which part contains the solid. How
to define these two regions is the topic of the next subsection.

4.1.1 Subdomain splitting

A fluid element is intersected by a solid element as depicted in Figure 4.2.
The intersection defines the border between the areas where H(x) is zero and
one. Hence it splits the fluid domain into two parts. For problems with rigid
body motions, an interface description by a levelset function has been used for
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Figure 4.2: The intersection of the solid boundary with a fluid element, the
squares denote the nodes of the fluid element, the circles the nodes of
the solid boundary.

defining both regions in the fluid domain. This levelset based quadtree/eltree
subdivision scheme has been used successfully by several authors [38, 62]. Here
we will employ the following strategy, which is also graphically depicted in
Figure 4.3:

• Find all the intersections of the solid boundary with the edges of the
fluid element.

• Perform a Delaunay triangulation on all nodes of the fluid element, the
solid boundary element and the intersection points. This generates a full
Delaunay triangulation for the entire fluid element. More information
about performing the Delaunay triangulation is given in Appendix B.

• Find the triangles which are in the fluid or solid.

• Since the solid displacement has Q2 shape functions, the boundary is
also a quadratic curve. The Delaunay algorithm creates linear triangles
however, so additional points are added to the linear triangles to make
them quadratic. This also ensures that the triangle exactly aligns with
the solid boundary

• The triangles are used as sub-element for the spatial integration of the
governing equations.

• Spatial integration of integrals over the interface takes place on line ele-
ments on the interface which follow the solids discretization. Hence line
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elements which intersect with fluid elements are split into two sub line
elements.

With this method the solid boundary is exactly followed, so no “hole” or
overlap exist.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: The process of finding the fluid and solid subdomain from the
intersection of the solid boundary with the vertices of the fluid element, the
initial situation is given in (a). First the intersection points are found (b).

Then a Delaunay triangulation of solid and fluid nodes and intersection
points is generated (c). The fluid and solid triangles are detected (d). Addi-

tional points are added to the triangle to make it quadratic (e). Finally
sub-elements for spatial integration of the interface integrals are added, with
corresponding end nodes (f).

4.1.2 Spatial integration

The weak form of the governing equations involves both domain and bound-
ary integrals. The domain integrals are evaluated over the fluid domain. In
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order to retain optimal convergence of the fem, the integrals in the weak
form have to be exactly evaluated for a given set of shape functions. In the
fem the domain integral is split into integrals over each element separately.
The sum of all these integrals is the domain integral. Suppose the follow-
ing integral has to be evaluated: (a, b)Ω, with functions a(x, y) and b(x, y).

This becomes the sum over N elements: (a, b)Ω =
∑N

i=1 (a, b)Ωi
where Ωi

is the domain of element i. In general this integral over Ωi cannot be eval-
uated analytically and a numerical quadrature rule is used. In quadrature
rules the integrand is evaluated at several points and the value of the inte-
grand is multiplied with a weight. The position of the points, the amount
of points and weight determine the accuracy of the rule. One of these nu-
merical quadrature rules is Gauss quadrature, which is often used in fem.
For n points the 1D Gauss rule can evaluate a polynomial of order 2n − 1
exactly [63]. The positions and weights for a given order of integrand are
tabulated for reference domains. In order to use these tabulated Gauss rule,
the integral has to be mapped to the reference domain, which means a coor-
dinate transformation of the global coordinates (x, y) to the local coordinates
(ξ, η). In fem the same shape functions are used for interpolating the vari-
ables as for mapping the coordinates, which is known as iso-parametric map-
ping. This yields : (a(x, y), b(x, y))Ωi

= (a(ξ, η), b(ξ, η)J)Ωref
, with J = detF

the determinant of the Jacobian matrix F =
∂x

∂ξ
with x = xex + yey and

ξ = ξeξ + ηeη . Here Q2Q1 elements for the velocity-pressure are used. For a
two dimensional problem with undeformed quadrilateral elements, this means
that fourth order functions for the velocity are found. In case where a mass
matrix (φi, φj)Ωi

=
(

O(ξ4η4)
)

Ωi
is present, eighth-order functions are present

and have to be evaluated exactly. In order to do this, a (3 × 3) Gauss rule
(fifth order accurate in ξ and η) is used for the quadrilateral elements which
are not intersected. This method only attains the required accuracy if the
quadrilateral is not deformed. For the deformed quadratic sub-triangles used
in xfem, the exact evaluation of the mass matrix requires evaluation of func-
tions of O(ξ5η4), leading to a 25 point integration rule which is tenth order
accurate [64].

While the amount of degrees of freedom remains the same in both inter-
sected and non-intersected elements, the amount of work required to obtain the
element matrices and vectors differs a lot, due to larger amount of integration
points in the intersected elements.

For the line integral similar reasoning holds and the same eighth order
functions have to be integrated accurately, hence a five point Gauss rule is
used for integration, yielding nineth order accuracy.
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4.2 Weakly-applied Dirichlet boundary condi-

tions

The equations of motion for the fluid and solid are defined in a different ref-
erence frame. The fluid is given in a fixed Eulerian reference frame, while the
solid is given in a deforming Lagrangian reference frame. We would like that
the discrete form of this set of equations is given in the same reference frames.
This means that the discretization of the fluid domain does not move, while
the discretization of the solid does.

Since the fluid mesh is fixed and the fluid-structure interface moves, this
interface does not coincide with the element edges. Hence the fluid and solid
do not have common nodes at which the interface conditions can be applied
and other techniques have to be used.

In order to simplify matters, let us notice the following. If the restriction is
made that the solid is not allowed to move at all, the problem is basically only
a fluid problem, where the kinematic interface condition Eq. (2.11) becomes an
essential boundary condition for the velocity, with value ufs and the dynamic
interface condition Eq. (2.12) vanishes. In the following the inertial terms will
be neglected, just for the sake of brevity. The fluid will also be considered to
be Newtonian, so σ = 2ηD − pfI. This leads to the following problem:

−∇ · σ = 0 in Ωf, (4.13)

∇ · u = 0 in Ωf, (4.14)

u = ufs on Γfs, (4.15)

u = 0 on ΓD. (4.16)

The weak form of this set of equations is found after multiplying Eqs. (4.13)
and (4.14) with test functions v, q and integrating them over the entire fluid
domain: Find u ∈ U , pf ∈ Pf such that:

− (v,∇ · σ)Ω − (q,∇ · u)Ω = 0 ∀v ∈ U , q ∈ Pf.

After applying partial integration to the first term an additional boundary
term arises along the entire boundary Γ:

− (v,∇ · σ)Ω = (Dv,σ)Ωf
− (v,n · σ)Γ , (4.17)

where Dv =
1

2
(∇vT + ∇v) and n is the outward facing normal on Γ. The

last term in this equation is the traction at the boundary Γ. Since the traction
is given on the part of the boundary where Neumann boundary conditions are
applied ΓN, this integral can be split into three parts:

(v,n · σ)Γ = (v, tN)ΓN
+ (v,n · σ)Γfs

+ (v,n · σ)ΓD
, (4.18)
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where tN is the traction at the Neumann boundary. The last term is the
traction at the Dirichlet boundary. It is common in the fem to choose v = 0

on the Dirichlet boundary, and we will do so accordingly. The last term then
drops out and the final weak form reads:

Find u ∈ U , pf ∈ Pf:

(Dv,σ)Ωf
− (v, tN)ΓN

− (v,n · σ)Γfs
− (q,∇ · u)Ω = 0 (4.19)

∀v ∈ U , q ∈ Pf.

The next step is finding a method for applying the essential boundary condition
at Γfs on the system. We will consider three methods, the Lagrange multiplier
method, the Gerstenberger-Wall scheme and our new scheme which is based
on the Gerstenberger-Wall scheme.

4.2.1 Lagrange multiplier

In a Lagrange multiplier scheme the essential boundary condition is treated as
a constraint on the system. Therefore an additional degree of freedom is added
to the system for every condition to be enforced. These additional degrees of
freedom are the Lagrange multipliers λ and their physical meaning will be
determined later on.

Find u ∈ U , pf ∈ Pf,λ ∈ L:

(Dv,σ)Ωf
− (v, tN)ΓN

+ (v,λ)Γfs
= 0 (4.20)

− (q,∇ · u)Ω = 0 (4.21)

(µ,u− ufs)Γfs
= 0 (4.22)

∀v ∈ U , q ∈ Pf,µ ∈ L.

This scheme has the following properties:

• The Lagrange multiplier can be identified as minus the boundary traction
at Γfs.

• Since λ only exists on Γfs, it is quite natural to define it only on this
boundary. So the fluid is discretized on the domain, and the Lagrange
multiplier on the boundary. For stability reasons the discretization of the
constraint cannot be chosen independently from the fluid discretization
[54]. Since both are defined on a different geometry, finding a stable
combination is difficult.

• The resulting system is symmetric.
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4.2.2 Gerstenberger-Wall scheme

Recently Gerstenberger and Wall [39] have introduced a method for applying
Dirichlet boundary conditions on boundaries which are not aligned with the
element edges. Their method is based on the observation that the Lagrange
multiplier in a Lagrange multiplier scheme can be identified as the traction.
They therefore propose to introduce an extra stress variable σ̂ which is related
to the Lagrange multiplier in the following way: n · σ̂ = −λ and replace λ

and µ with −n · σ̂ and −n · m̂, with m̂ the new test function. Since σ̂ has
more components than λ, the resulting system is underdetermined. In order to
make this additional stress variable unique they add an extra equation relating
it to the rate of deformation tensor D:

(

m̂,
σ̂ + pfI

2η
−D

)

Ωf

+ (n · m̂,u− ufs)Γfs
= 0 (4.23)

Then the final weak form reads:

Find u ∈ U , pf ∈ Pf, σ̂ ∈ S:

(Dv,σ)Ωf
− (v, tN)ΓN

− (v,n · σ̂)Γfs
= 0 (4.24)

− (q,∇ · u)Ω = 0 (4.25)
(

m̂,
σ̂ + pfI

2η
−D

)

Ωf

+ (n · m̂,u− ufs)Γfs
= 0 (4.26)

∀v ∈ U , q ∈ Pf, m̂ ∈ S.

The properties of this scheme are:

• The new Lagrange multiplier σ̂ is defined on the domain thus finding a
stable combination is easier than with the original Lagrange multiplier
scheme.

• Since an extra stress is added to the system, this method can be seen as
a mixed method.

• The system is asymmetric. It cannot be made symmetric, due to the
presence of the pressure term in the last equation.

• The extra stress tensor can be defined only in the elements containing
Γfs if their approximation space is discontinuous and encompasses the
function space of σ. If it is defined locally, it can be eliminated from the
system by inverting it locally, thus reducing the size of the final system.

• The method shows optimal convergence of pressure and velocity for both
continuous as well as discontinuous discretization of σ̂ [39].
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• In order to make σ̂ unique the constitutive relation of the fluid has to
be inverted. This is possible for linear constitutive relations, but may be
difficult or even impossible for non-linear relations and relations involv-
ing an extra evolution equation. Since both the generalized Newtonian
and viscoelastic models proposed in Chapter 2 belong to this class, the
applicability of this scheme is uncertain.

Due to the latter property we propose an adaptation to the model, which
renders the use of non-linear and viscoelastic fluid models possible.

4.2.3 Modified Gerstenberger-Wall for non-linear consti-

tutive relations

The Gerstenberger-Wall scheme for weakly imposing Dirichlet boundary con-
ditions is adapted such that it can be used with a wider range of constitutive
relations. This adaptation was shown to work in a recent paper of Baltussen et

al. [61]. By adding an extra rate of deformation tensor E to the system instead
of the stress tensor σ̂, the inversion of the constitutive relation is avoided and
the system reads:

Find u ∈ U , pf ∈ Pf,E ∈ E :
(Dv,σ)Ωf

− (v, tN)ΓN
− (v,n · (2ηE − pfI))Γfs

= 0, (4.27)

− (q,∇ · u)Ω = 0, (4.28)

(H ,E −D)Ωf
+ (n ·H ,u− ufs)Γfs

= 0 (4.29)

∀v ∈ U , q ∈ Pf,H ∈ E .
The next step is to replace E in the boundary traction term with D and add
an extra term to compensate for this:

. . .− (v,n · (2ηE − pfI))Γfs
=

. . .− (v,n · (2ηD − pfI))Γfs
+ (v,n · 2η(E −D))Γfs

(4.30)

where the first term on the right is the traction on the boundary in the original
variables u and pf and the second term is a viscous traction term which is only
non-zero due to the different discretization of E and D. In order to use this
method for non-Newtonian fluids, which are usually not written as a function
of D we propose the following. The first term is computed with the non-
Newtonian constitutive relation, and the second term is retained, where η
is replaced by the viscosity-like parameter κ. The second term can now be
regarded as a stabilization term with parameter κ. For a Newtonian fluid
and κ = η the scheme is exactly the same as the Gerstenberger-Wall scheme.
The extra rate of deformation tensor E can be eliminated from the system by
solving Eq. (4.29):

Ei =
∑

j

M−1
ij

(

(φi,D)Ωf
− 1

2
(nφj ,n[u− ufs] + [u− ufs]n)Γfs

)

(4.31)
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whereM−1
ij is the inverse of the mass matrixMij = (φi, φj)Ωf

. The shapefunc-
tions φ have been defined for the interpolation of E. By using locally defined
shapefunctions, the mass matrix is defined on each element separately and can
be inverted on element level. By replacing all occurrences of E =

∑N
i=1 φiEi

with the expression in Eq. (4.31), the system becomes:
Find u ∈ U , pf ∈ Pf:

(Dv,σ)Ωf
− (v, tN)ΓN

− (v,n · (2ηD − pfI))Γfs
+

(

v,n · 2κ(D − φiM
−1
ij

(

(φi,D)Ωf
−

1

2
(φj ,n[u− ufs] + [u− ufs]n)Γfs

)

)

)

Γfs

−

(q,∇ · u)Ω = 0 (4.32)

∀v ∈ U , q ∈ Pf.

If φi is chosen such that it fully encompasses the shapefunctions of u, then

the projection of D on the space of E, which is the term φi[M
−1
ij

(

(φj ,D)Ωf

)

]

becomes φiDi = D. For the velocity-pressure we use Q9
2Q

4
1 elements of the

Taylor-Hood family, and for E we use Q9,d
2 , which fully encompasses the Q2

interpolation of the velocity. In this case, only the boundary term remains and
the final set of equations becomes: Find u ∈ U , pf ∈ Pf:

(Dv,σ)Ωf
− (v, tN)ΓN

− (v,n · (2ηD − pfI))Γfs
+

∑

i

∑

j

M−1
ij (vn, κφi)Γfs

: (φj ,n[u− ufs] + [u− ufs]n)Γfs
= 0, (4.33)

− (q,∇ · u)Ω = 0 (4.34)

∀v ∈ U , q ∈ Pf.

In this final form the stabilization term with factor κ has a remarkable resem-
blance with the stabilization term in Nitsche’s method [65]: C (v,u− ufs)Γfs

,
where C is a stabilization parameter which depends on the problem and the
mesh. The major advantages of the method presented here are:

• For Newtonian fluids the stabilization parameter κ has a physical mean-
ing, namely the viscosity, whereas C has not.

• Stabilization automatically scales with the length over volume ratio of the
elements containing boundaries, whereas complicated eigenvalue analysis
is needed to get the same scaling behavior for Nitsche’s method [66].

4.2.4 Fluid solid interaction

In the previous sections several methods for enforcing Dirichlet boundary con-
ditions on the fluid domain were proposed. With one of these methods the
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kinematic interface condition Eq. (2.11) is enforced on the fluid and solid. The
dynamic interface condition Eq. (2.12), is not enforced by this method how-
ever. The weak form of the fluid-structure interaction problem is found by
using the weak form of the momentum and continuity balance of the fluid,
Eqs. (4.27)-(4.29) and applying Eq. (4.30). For the solid part Eqs. (2.3)-(2.4)
are multiplied with a test function and partially integrated where necessary.
In the weak Dirichlet boundary condition, the value for ufs is replaced by ḋ.

Find u ∈ U , pf ∈ Pf,E ∈ E ,d ∈ D, ps ∈ Ps such that:

(Dv,σf)Ωf
− (v,nf · σf)Γf

+ (v,nf · 2κ(E −D))Γfs
= 0, (4.35)

− (qf,∇ · u)Ωf
= 0, (4.36)

(H ,E −D)Ωf
+
(

nf ·H ,u− ḋ
)

Γfs

= 0, (4.37)

(Dw,σs)Ωs
− (w,ns · σs)Γs

= 0, (4.38)

(qs, det(F )− 1)Ωf
= 0, (4.39)

∀v ∈ U , q ∈ Pf,H ∈ E ,w ∈ D, r ∈ Ps.

The dynamic interface condition nf ·σf+ns ·σs = 0 is enforced by replacing the
traction term in the momentum equation of the solid by minus the traction on
the fluid. The traction on the fluid has two components, the traction coming
from the constitutive relation and the traction due to stabilization. Hence the
final weak form reads:

Find u ∈ U , pf ∈ Pf,E ∈ E ,d ∈ D, ps ∈ Ps such that:

(Dv,σf)Ωf
− (v,nf · σf)Γf

+ (v,nf · 2κ(E −D))Γfs
= 0, (4.40)

− (qf,∇ · u)Ωf
= 0, (4.41)

(H ,E −D)Ωf
+
(

nf ·H ,u− ḋ
)

Γfs

= 0, (4.42)

(Dw,σs)Ωs
− (w,ns · σs)Γs

+

(w,nf · σf)Γfs
− (w,nf · 2κ(E −D))Γfs

= 0, (4.43)

(qs, det(F )− 1)Ωs
= 0, (4.44)

∀v ∈ U , q ∈ Pf,H ∈ E ,w ∈ D, r ∈ Ps.

The extra variables E can be eliminated from the system as was described
in Section 4.2.3. Recently the Gerstenberger-Wall scheme was also adapted
for fluid-structure interaction by Mayer et al. [34]. They used the standard
Gerstenberger-Wall formulation for imposing the kinematic interface condition,
and enforced the dynamic interface condition by replacing the traction on the
solid by the traction on the fluid, as we did. The major difference, as with
the original Gerstenberger-Wall scheme, remains that in our case the extra
variable is chosen as the rate of deformation tensor, instead of the Cauchy
stress tensor. Hence the constitutive relation of the fluid does not have to be
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inverted. In addition, our scheme with the stabilization term scaling with κ
can be used for non-Newtonian fluid models.

4.3 Mesh moving schemes

In the previous sections a numerical method for solving fluid-structure interac-
tion problems with fixed fluid grids was introduced. This method is validated
by comparing it with an ALE scheme for fluid-structure interaction. ALE
which stands for Arbitrary Lagrange Euler, which is the most widely used
method for fluid-structure interaction having small deformations and requires
the motion of the fluid grid in such a manner that Γfs remains a boundary of
both the fluid as the solid mesh. Since this method requires a body-fitted fluid
mesh which moves in time, it is referred to as the moving body-fitted mesh
(mbfm). The major disadvantage of the xfem approach given in the previ-
ous sections is that convective and time-dependent terms in the fluid domain
cannot be treated in a fully Eulerian manner. Since the shape of the fluid
domain changes in time, the fluid field variables are not constantly available in
all points of the domain. This poses a problem for finite-difference based time
integration schemes, where these field variables are supposed to be known at
all positions and at all times. In Subsection 4.3.2 a remedy to this problem
will be introduced. It requires the convection of the field variables with an
ALE method.

4.3.1 MBFM

The method for modeling fluid-structure interaction will be validated by com-
paring it with a moving body-fitted mesh (mbfm), which is basically an ALE
method. In this method the fluid mesh is allowed to move in an arbitrary man-
ner. The fluid solid interface is always a common boundary of the fluid and
solid mesh, hence the velocities are always continuous. For the set of equations
Eqs. (2.1-2.4) and neglecting solid inertia it reads:

ρ

(

δu

δt
+ (u− umesh) ·∇u

)

= ∇ · σf in Ωf, (4.45)

∇ · u = 0 in Ωf, (4.46)

−∇ · σs = f s in Ωs, (4.47)

det(F ) = 1 in Ωs, (4.48)

where the fluid mesh velocity umesh is introduced. The adaptation of the
convective term with umesh should be applied on every occurrence, so also in
the constitutive relation for the viscoelastic case.

The mesh displacement dmesh is defined by solving a Poisson’s equation
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∇
2dmesh = 0 on the fluid domain having the following boundary conditions:

dmesh(x) =

{

d ∀x ∈ Γfs,

0 ∀x 6∈ Γfs,
(4.49)

where d the solid displacement. By applying these boundary conditions the
fluid mesh exactly follows the solid mesh at Γfs, and has smooth gradients,
thus avoiding highly distorted elements.

The fluid mesh velocity is related to the fluid mesh displacement by the
following kinematic relation:

umesh =
δdmesh

δt
. (4.50)

The time derivative of the mesh displacement,
δdmesh

δt
, is treated with a first-

order implicit Euler scheme, see Section A.1 in Appendix A.
Since the interface conditions are enforced in a strong form, either the fluid

velocity or the solid displacement could be eliminated from the system at Γfs,
thus reducing the amount of variables. This requires having different elements
on the interface. Instead of defining new elements, we make use of a Lagrange
multiplier to enforce the kinematic interface condition Eq. (2.11) via point
collocation which requires some extra degrees of freedom.

Please note that in case of the Stokes equation it is not required to compute
the mesh velocity from the mesh displacement, since inertial terms are absent.
If however a viscoelastic fluid is modeled the mesh velocity has to be computed,
since the convective derivative in the constitutive relation does not vanish.

4.3.2 XFEM-ALE

In the derivation of the weak interface conditions the fluid was considered to
be inertialess, hence no time dependent and convective terms were present in
the fluid’s momentum equation. If this term is included and discretized in time
(see A.1)1, the following term arises in the momentum equation of the fluid:

ρ
ui+1 − ui

∆t
. . . (4.51)

where i and i + 1 denote the velocity at the previous and current time step
respectively. Since the fluid is solved on an Eulerian grid, this requires that
ui+1 has to be known everywhere in the current domain Ωi+1

f . This is the case
for problems with stationary boundaries, since Ωi+1

f = Ωi
f . If the boundaries

are not stationary, such as in fluid-structure interaction, Ωi+1
f 6= Ωi

f, u
i is not

known everywhere. This problem is also shown schematically in Figure 4.4.

1Here the implicit Euler scheme is used, but this problem arises with every finite difference

time stepping scheme
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(a) (b) (c)

Figure 4.4: The fluid domain Ωf at t
i (a), at ti+1 and the resulting indicated

region where no information on ui is present.

There are basically two solutions to this problem, which is common to all
xfem problems with moving boundaries and time dependent governing equa-
tions. The first is using space-time elements for the total problem [67], thus
abandoning the finite difference time discretization and using time as an addi-
tional dimension. Although this method is very elegant, since it circumvents
all the problems with time integration altogether, it also requires a different
approach to the implementation of xfemẆe therefore opt to use, the less ele-
gant, but equally adequate method of convecting the variables at Ωi

f to Ωi+1
f .

This requires the deformation of Ωi
f in such a way that the boundaries exactly

match Ωi+1
f , which is graphically depicted in Figure 4.5. This method is basi-

cally applying ALE at every timestep, thus the machinery developed for ALE
can be used immediately without much adaptation. The deformation applied
to the mesh of Ωi

f can be the real deformation during a time step (Lagrange),
or an artificial deformation which sole purpose is to align the boundaries at
ti+1. The latter has successfully been used by Choi et al. [62], where the defor-
mations during a time step were small. They compute the mesh deformation
by solving a Poisson problem, which has the boundary movement as essential
boundary condition. Since only information from ti−1 has to be transported
to ti+1, the mesh is only deformed with the deformation during these two time
steps. Hence the deformation is relatively small and the elements are only
slightly distorted.

Here we employ the scheme of Choi et al. [62], with a small modification.
We will use the current mesh as the reference point, whereas Choi used the
mesh at the previous timestep as the reference point. The advantage of the
method used here is that only the value of the essential boundary condition
changes for each mesh deformation, hence the matrix resulting from the dis-
cretized system remains unchanged. Therefore solution of this system is fast,
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ti−1 ti
previous iterative

step ti+1

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.5: The xfem mesh (top) at ti−1 (a), ti (b), previous iteration (c) and
ti+1 (d) and the ALE meshes (bottom) having a displacement from ti+1 to
ti−1 (e), to ti (f) and to the mesh at the previous iteration (g).

as the LU-decomposition of this matrix can be stored and used repetitively.
Since Γfs moves through the fixed fluid mesh, the essential boundary terms for
the Poisson’s equation cannot be imposed in the standard way, e.g. by split-
ting the system into known and unknown degrees of freedom and elimination of
the former. Here we will use the weakly imposed boundary conditions which
we also used for enforcing essential and interface conditions in the previous
section. The derivation follows similar lines and can be found in Appendix
C. This results in the following weak set of equations to be solved: Find
dmesh ∈ Dmesh such that:

(

∇kT ,∇dmesh

)

Ω
− (k,n ·∇dmesh)Γfs

+
∑

i

∑

j

M−1
ij (kn, κφi)Γfs

: (φj ,n[d− dmesh] + [d− dmesh]n)Γfs
= 0 (4.52)

∀k ∈ Dmesh.

The Poisson equation is solved in the entire fixed fluid domain, so the fluid
“insid” the solid is also taken into account. The mesh movement is thus solved
with a fictitious domain technique. By taking into account the fluid mesh
inside the solid, the fluid mesh deformation remains smooth.
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4.4 Solution procedure

A multi physics problem such as fluid-structure interaction can be solved to-
gether, known as the fully coupled approach or monolithic approach, or the
individual problems (fluid and solid) can be solved individually where the inter-
face conditions are used to transfer information from one problem to another.
This is known as a decoupled approach. The former has the advantage that
it is more stable, at the cost of solving a larger system. The latter has the
advantage that specialized packages can be used for each subproblem and cou-
pling is relatively easy since it only involves prescribing boundary conditions.
The major drawback of this method is that it is only stable for problems with
a stiff solid and/or a very low viscous fluid. The stability of the decoupled
approach can be illustrated by the following example.

x

f

Figure 4.6: A simple fluid-solid interaction model with a dashpot(fluid) and a
spring(solid) in parallel.

Example. 1. Consider a spring and dashpot in parallel, connected on
one side to a wall and on the other side a force acts upon the system,
see Figure 4.6. The spring represents the solid and the dashpot the fluid.
This is a simple model for fluid solid interaction neglecting inertia. For
this system the governing equation reads:

kx+ dẋ = f,

where k is the stiffness of the spring, x is the displacement, d is the damp-
ing coefficient of the dashpot, ẋ is the velocity and f is the applied force,
which is constant in time. The initial condition is x(t = 0) = x0. Since
the problem is time dependent we use an Euler backward time integration
scheme, which leads to the following system:

kxi+1 + d
xi+1 − xi

∆t
= f.
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For the fully coupled approach the solution reads: xi+1 =
f +

d

∆t
xi

k +
d

∆t

. For

stability analysis the growth factor λ is defined as xi+1 = λxi, where

λ < 1 for the system to be stable. In the fully coupled case λ =

d

∆t

k +
d

∆t

,

which is always smaller than one for k, d,∆t > 0, hence the scheme is
unconditionally stable and any desired temporal accuracy can be obtained.
In the decoupled approach the system is split up into two subproblems,
for instance the following two:

xi+1
j+1 =

f − fj
k

,

fj+1 = d
xi+1
j+1 − xi

∆t
, (4.53)

where the subscript j indicates the j-th iterative step. The stability of
the iterative scheme can be ascertained in a similar way as in the previous

paragraph by computing xi+1
j+1 = λxi+1

j . In this case λ =
d

∆tk
< 1, which

is only valid if ∆t >
d

k
, hence there exists a minimal time step ∆tmin =

d

k
for stability, while there exists a maximal time step for accuracy ∆tmax. If
∆tmin > ∆tmax the system can be solved with the desired accuracy. This
is usually the case for stiff elastic bodies and problems where the viscous

forces are low
d

k
≪ 1. If ∆tmin < ∆tmax however, the system is not stable

for the desired temporal accuracy. This is the case for elastic bodies with

low stiffness and large viscous forces
d

k
≥ 1. So for these systems the

decoupled approach fails and a fully coupled approach has to be used.

Similar behavior is also caused when inertial forces are important in the
fluid and/or solid. This leads to the so called ”added mass effect”, which
also causes a restriction on the minimal time step, if the system is solved in a
decoupled manner and not handled appropriately [68]. Although several more
stable decoupling approaches have been developed [29, 32, 69], we opt for a
fully coupled approach, since artificial cilia have a low geometrical stiffness
and are easily deformed by flow.
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4.4.1 Approximation spaces

The approximation spaces U ,Pf,D,Ps, E have not be introduced. Due to com-
patibility conditions for incompressible fluid flow the discrete approximation
spaces U ,Pf are defined as:

U = u ∈ H1
0 (Ωf) : u|Ωf,h

∈ Q9
2(Ωf,h),

Pf = pf ∈ L2
0(Ωf) : pf|Ωf,h

∈ Q4
1(Ωf,h),

(4.54)

where Ωf is the union of fluid elements Ωf,h. For the approximation spaces of
the equations of motion of the solid, which is also incompressible, a similar
combination is chosen:

D = d ∈ H1
0 (Ωs) : d|Ωs,h

∈ Q9
2(Ωs,h),

Ps = ps ∈ L2
0(Ωs) : ps|Ωs,h

∈ Q4
1(Ωs,h),

(4.55)

where Ωs is the union of solid elements Ωs,h. The spaces Qb
a is defined on a

quadrilateral element in two dimensions as:

Qb
a = v : v(x, y) =

a
∑

i,j=0

ci,jx
iyjon each element (4.56)

where b denotes the number of degrees of freedom in the element. The ap-
proximation of E is chosen discontinuous, in order to eliminate this variable
locally. Hence

E = E ∈ H1
0 (Ωf) : E|Ωf,h

∈ Q9,d
2 (Ωf,h).

4.5 Test problems

The methods described in the previous sections will be tested in several prob-
lems. First xfem in combination with weakly imposed boundary conditions
will be tested for flow of a Newtonian fluid around a cylinder. The next prob-
lem will be fluid-structure interaction with a Newtonian fluid without and with
fluid inertia.

4.5.1 Flow around a cylinder

The flow around a cylinder in a channel will be studied. The channel is periodic
and shown in Figure 4.7. For the flow of a Newtonian fluid around a cylinder
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R

W

H

Figure 4.7: Periodic domain for flow around a cylinder, with radius R, height
H = 10R and width W = 10R.

with radius R the following solution is known:

ûx =
(R2 − r2) cos2 θ + r2 ln(r/R) + (1/2)(r2 −R2))

r2
,

ûy =
(R2 − r2) cos θ sin θ

r2
,

p̂f =
−2 cos θ

r
+ 10, (4.57)

where (r, θ) are polar coordinates originating at the center of the cylinder.
The radius is taken to be 0.2 which results in (H,L) = (2, 2). The boundary
conditions on the square domain are taken as the exact solution of Eq. (4.57)
and are imposed in a strong manner. The no-slip boundary condition on the
cylinder wall is imposed weakly with the modified Gerstenberger-Wall scheme,
as described in Subsection 4.2.3. The pressure is prescribed in the lower left
corner of the domain. For convergence analysis the following relative L2 error
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norms are defined:

ǫL2,u =

(

∫

Ωf

||u− û||2dx
)1/2

(

∫

Ωf

||û||2dx
)1/2

, (4.58)

ǫL2,pf
=

(

∫

Ωf

||pf − p̂f||2dx
)1/2

(

∫

Ωf

||p̂f||2dx
)1/2

. (4.59)

The mesh is uniform and consists of square elements with size h. If κ = η,
the original Gerstenberger-Wall scheme is found. For this scheme the errors
are plotted versus h, and show optimal convergence as seen in Figure (4.8). In
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Figure 4.8: The relative L2 errors for the velocity and pressure versus the size
of an element h.

the modified Gerstenberger-Wall scheme an additional stability parameter κ is
introduced. By computing the relative L2 errors in the velocity and pressure
for h = 0.0377 for different ratios of κ/η, the sensitivity of the solution to κ/η
can be assessed. The result is shown in Figure 4.9. From this figure it can
be seen that for 10−1 < κ/η < 200, the solution is accurate and stable. Both
for smaller and larger ratios the solution is inaccurate and shows wiggles. It
is also clear that the optimum value is κ/η = 1, and that low ratios should be
avoided, since the error increases rapidly below κ/η = 0.1. This is a promising
result, since it shows that accurate solutions can be found, independent of the
real viscosity or even the real constitutive behavior, which may not show a
constant viscosity along the boundary.
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Figure 4.9: The relative L2 error norms in velocity and pressure for different
κ/η.

4.5.2 Pressure drop over an elastic beam

A pressure drop ∆p is applied over an elastic beam in a square channel, see
Figure 4.10. The pressure drop is applied through Neumann boundary condi-
tions on the left and right boundary. In order to avoid singularities in the fluid
stress near the tips of the beam, the top is rounded off with a radius of 0.0099.
This value leaves a small straight section at the top of the cilium, which was
required for meshing. Both mbfm and xfem are used to solve the problem.
The mbfm scheme is used as a reference solution against which the xfem so-
lution is compared. The solution will be compared on Γfs. The deformation
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p1 p2

W

H

L

Figure 4.10: A pressure drop ∆p = p1 − p2 over a beam of length L = 0.5H in
channel with height H and length W . The thickness of the beam is 0.02H .

of the beam is relatively small (the tip deflection is less then 0.01H), so the
mesh in the ALE scheme is still well-posed. The velocity components, pressure
and shear-stress components are compared for different mesh densities after
ten timesteps at t = 10−3 s. The viscosity of the fluid is 1 mPas, the modulus
of the cilium is 1 MPa and the applied pressure drop ∆p = 10 Pa. The xfem

mesh is regular with N elements in x and y-direction. The coarsest ALE mesh
is shown in Figure 4.11.

The resulting velocity, pressure and shear-stress are given in Figure 4.12
for N = 101, 201, 301 for xfem and mbfm as a reference solution. For the two
most refined xfem meshes, the x-velocity, pressure and shear-stress are very
similar to the mbfm reference solution. Only for the coarsest mesh significant
differences exist in the pressure and in the vorticity, where some sharp peaks
appear. This verifies that the xfem method with weakly imposed interface
conditions results in the same solution as the mbfm for sufficiently refined
meshes.

4.5.3 Pressure driven flow over a beam with fluid inertia

The flow over an elastic beam with fluid inertia is considered. The domain
remains unchanged and is given in Figure 4.10. The startup of flow will be
simulated both by mbfm and xfem-ALE. The fluid is initially in rest u = 0,
and the following parameters are used in the computation: ∆p = 10 Pa, η =
10−3 Pa s, ρ = 103 kg m3 and the height of the channel is 1 cm. The velocity
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Figure 4.11: The coarsest ALE mesh, with a zoomed in view of the region
around the tip of the rounded beam. The boundary of the solid is given in
blue.

is estimated by scaling the instationary inertial term with the pressure drop
in the momentum equation of the fluid, which is valid as long as the viscous

forces are smaller than the inertial forces. This gives U =
∆pt

ρH
, with t the

time at which the velocity is computed. For t = 10−2 this gives U = 10−2,
corresponding to a Reynolds number of 100, which makes the assumption that
the pressure drop and the instationary inertial term balance valid. A timestep
of ∆t = 2.5 · 10−4 is used and 40 timesteps are taken. For the same mbfm

mesh as in the previous analysis and for two xfem-ALE meshes Nx = 101, 201
the solution is given in Figure 4.13. The x-velocity, pressure and shear-stress
for the xfem-ALE simulation is very similar to the solution from the mbfm

simulation. Even for the coarsest mesh xfem-ALE gives approximately the
same result. This confirms that xfem-ALE gives correct results in the primary
variables velocity and pressure as well as in the derivatives of the velocity.

4.6 Conclusions

In this chapter the numerical aspects in solving the fluid-structure interaction
problem as encountered in cilia driven flow were treated. First the deficiencies
of the fictitious domain/Lagrange multiplier method were shown, namely that
it cannot capture discontinuities in the solution and that imposing kinematic
interface conditions with Lagrange multipliers can lead to difficulties. The first
problem was solved by using xfem, which allows discontinuous shapefunctions
in the finite element method, and the second was solved by using a newly
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Figure 4.12: The results from an ALE (mbfm) and xfem-weak interface sim-
ulation of beam in a channel over which a pressure drop is applied. All values
are plotted along Γfs starting at the right lower corner going counter clockwise.
Figure (a) shows the velocity in in x-direction, (b) is a zoom of (a) near the
cilium tip. (c) Shows the pressure over the entire cilium length, and (d) is a
zoom in of (c) near the tip. The shear-stress τxy is shown in (e) and a zoom
in (f).

developed method for imposing Dirichlet boundary conditions in a weak sense.
The latter method was extended in order to use it for more general constitutive
relations, such as generalized Newtonian and viscoelastic fluid models. In
the same spirit the incorporation of the dynamic interface condition, which
forces traction continuity, was treated and a weak form for the fluid-structure
interaction problem was presented. This method does not require additional
degrees of freedom, thus does not enlarge the final system to be solved. Finally
the accuracy of the weak interface conditions was assessed, both for Dirichlet
boundary conditions and for fluid-structure interface conditions. In both cases
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Figure 4.13: The results from an ALE (mbfm) and xfem-weak interface simu-
lation of beam in a channel over which a pressure drop is applied. Startup flow
from rest. All values are plotted along Γfs starting at the right lower corner
going counter clockwise. Figure (a) shows the velocity in in x-direction, (b) is
a zoom of (a) near the cilium tip. (c) Shows the pressure over the entire cilium
length, and (d) is a zoom in of (c) near the tip. The shear-stress τxy is shown
in (e) and a zoom in (f).

the method was stable and accurate. For the Dirichlet boundary conditions
optimal convergence rates for the velocity and pressure were found. For two
fluid-structure interaction problems where a pressure drop was applied over a
beam in a channel, the velocity, pressure and shear-stress were compared at
the boundary of the beam. For both simulations without inertia it was shown
that xfem with weakly imposed interface conditions gives the same results as
the Moving Body Fitted Mesh (mbfm) solution, which was the reference. For
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flows with inertia, xfem with temporary ALE steps also gave the same results
as the mbfm scheme. Although the deformation of the beam was small, both
xfem and xfem-ALE will also give accurate results for larger deformations
since the fluid mesh is fixed. In the case of inertial flow, the ALE steps will
only have small deformations, thus have small errors. We can thus conclude
that the modified Gerstenberger-Wall scheme for fluid-structure interaction is
spatially optimally convergent and gives the same results as a moving mesh
approach, with the advantage that a fixed mesh can be used for the fluid
domain at all timesteps.
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Chapter 5

Simulation of transport

and mixing by artificial

cilia: Newtonian fluid

In the previous chapters a model of artificial cilia was developed and accurate
numerical techniques for solving the model equations were introduced. This
opens up the road for studying the flow generated by artificial cilia. In Section
5.1 a single cilium is actuated with a constant body force, in order to find the
scaling relations for this problem, mimicking a magnetically actuated cilium.
In several studies a rotating magnetic field is used to actuate the cilia [2, 4, 36].
Here this rotating magnetic field is modeled as a rotating body force. Since
fluid-structure interaction problems have an intrinsic time-scale, as shown in
Chapter 2, even in absence of fluid and solid inertia, the dynamics of the system
change with changing actuation frequency. Thus the influence of the actuation
frequency on the motion and the generated flow is studied in Subsection 5.1.2.
Khatavkar et al. [9] showed that two cilia which where actuated by the same
rotating body force, but with a difference in phase angle of 90 degrees generated
efficient mixing. Since the actuation of each cilium individually is cumbersome
in practice, we would like to use the same actuation means for all cilia, yet
still let them move at a phase angle. Since the motion of the cilium depends
both on the time-scale t3 and the actuation frequency, two cilia with different
time-scales, but the same actuation frequency will show different motion. By
scanning the available parameter space, we analyze the mixing performance of
systems with two cilia, which have different properties. Results of this analysis
are shown in Section 5.2. As the goal of mixing is to create chaotic motion of
fluid particles in a non-chaotic flow, the possibility of having chaotic motion
of the cilium is investigated in Section 5.3.
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5.1 Transport

Artificial cilia are mainly developed as microfluidic actuators, which cause
either fluid transport or fluid mixing [1, 2, 36]. As was shown in Chapter 2, the
main difference between transport and mixing are the boundary conditions for
the fluid domain. For transport a periodic domain is considered, for mixing a
closed domain. Although the boundary condition has profound effects on the
flow, the modeling and actuation of the cilia remains unchanged.

In Section 2.4 it was shown that a fluid-structure interaction problem in-
volving a non-rigid solid, has an intrinsic time-scale t3. This time-scale is
present in the system due to the interface conditions at the fluid-structure in-
terface, and not due to inertial terms in the momentum equations of the fluid
or solid. In this section the influence of problem parameters on this time-scale
are simulated. The domain under consideration is a periodic domain contain-
ing a single cilium at the center of the domain, as depicted in Figure 5.1. The

W

L

H

Tc

Ωf

Ωs

Γfs

Figure 5.1: The periodic channel with height H , width W = H , cilium length
Lc and cilium thickness Tc.

fluid and solid are assumed to be inertialess, so all time dependent and con-
vective terms are considered to be absent in both the momentum equation of
the fluid and solid. This is valid for slowly varying actuation forces, resulting
in low velocities and small effects of inertia.
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5.1.1 Results: scaling

A cilium actuated with a body force which follows the following step-function
is modeled:

f =

{

0 ∀t ≤ 0,

f0ex ∀t > 0,
(5.1)

where f0 is the magnitude of the actuation force. The position of the top-right
corner of the cilium as well as the velocity in this point are recorded. The
stiffness of the cilium is varied, either by changing the modulus or the thickness.
In addition the influence of viscosity and aspect ratio are investigated. For
η = 1, L = 0.5H , Tc = 0.02H , f0 = 4·103 andGs = 10n where n = 3−8, the tip

velocities in x-direction are shown in Figure 5.2. The velocity is scaled by
f0L
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Figure 5.2: The tip velocity versus time in x-direction for different moduli of
the cilium.

and time with
η

f0L
. Since only the modulus is varied, the scaling parameters

of time and velocity are independent of this variation thus showing different
behavior. The velocity drops off more slowly if the modulus is decreased. This

suggests that the time can be scaled with t3 =
η

G
, which is shown in Figure

5.3. The decay of the x-velocity overlaps for all moduli larger than 106. So for
stiff cilia the appropriate time-scale is indeed t3. The time-scale of the more
compliant cilia scales differently, and the reason for this effect must be sought
in the fact that for very compliant cilia the deformation is different than for
stiff cilia. Stiff cilia deform only due to the applied force, compliant cilia due
to the applied force and the viscous drag. The initial velocity is independent
of the stiffness of the cilium, which is explained by the fact that the solid
is stress-free initially. Therefore the initial displacement of the solid requires
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Figure 5.3: The tip velocity of a cilium in a periodic channel with varying
modulus versus time. (a): velocity x-direction (b): zoomed-in plot of the
x-velocity.

almost no force, thus most of the force is used for overcoming the viscous drag

of the cilium. By scaling the tip velocity with
f0L

2

η
, the initial velocities for

different viscosities, applied forces and cilium lengths fall onto a single curve.
This scaling also has a consequence for the initial timestep used in simulations;

It only depends on the time-scale
η

f0L
, so for every cilium stiffness it is the

same.

5.1.2 Rotating force field

In the previous subsection a constant actuation force was used, which is the
most simple forcing available and thus enables us to determine the character-
istic time-scale of the system. Although the main characteristics of the fluid-
structure interaction problem can be studied systematically with this forcing,
it is difficult to realize this in practice. Hence a periodic actuation force [1, 9]
or field [2, 36] was proposed by a number of authors. Here we use the following
periodic actuation body force:

f = f0 (cos(2πωt)ex − sin(2πωt)ey) , (5.2)

where f0 is the amplitude of the actuation force which is constant in time.

Since the fluid-structure interaction has a time-scale t3 =
η

Gs
, as we have seen

in the previous section, and an external actuation time-scale
1

ω
is introduced,

the following dimensionless group can be formed R4 = ωt3. This dimensionless
number gives the ratio between the actuation time-scale and the intrinsic time-
scale of the system. If R4 ≪ 1 the cilium will follow the force quasi-statically.
If R4 ≫ 1 the cilium is not able to follow the force and will not move. In
between those limits the cilium will lag behind the force. This behavior is
studied by varying R4 through variation of ω and keeping all other parameters
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the same. The following parameter set was used in the simulations: H =
1, L = H,Lc = 0.5H,Tc = 0.02H, η = 1, Gs = 1 · 104, f0 = 8 · 103. Hence
the characteristic time-scale t3 = 1 · 10−4. Again the top-right position of
the cilium, the velocity in that point and the flow rate over the channel will
be monitored in time. The path followed by the tip is shown in Figure 5.4.
For small R4 ≤ 1.15 · 10−3 values, the actuation shows similar motion with
increasing frequency. This motion also becomes periodic after one actuation
period. For intermediate values 1.15 · 10−3 < R4 < 7.5 · 10−3, the motion of
the cilium changes a lot, and the motion becomes periodic after several cycles.
The amount of cycles required increases with increasing actuation frequency.
For the highest actuation frequencies R4 ≥ 7.5 · 10−3, the motion of the cilium
is reduced even more, and the motion has not become periodic, at least not
within the time the simulation was performed. Figure 5.4(i) shows the highest
actuation frequency simulated, where the tip of the cilium follows a more or less
circular path each cycle. The cilium is moving only slightly. For even larger
actuation frequencies, it is expected that the motion will become even less,
until the cilium is stagnant at very high frequencies. This can be seen as the
cilium being unable to follow the quickly rotating force field. From this analysis
we learn that the actuation frequency for a different cilium/fluid combination
should be changed too, in order to give the same cilium motion. So naively
using the same actuation scheme for a given cilium/fluid combination will not
always work.
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(b) R4 = 1.15 · 10−4
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(d) R4 = 3 · 10−4
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(e) R4 = 5 · 10−4
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(f) R4 = 7.5 · 10−4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x-coordinate [H]

y
-c

oo
rd

in
at

e 
[H

]

(g) R4 = 10−3
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(h) R4 = 1.25 · 10−3
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(i) R4 = 10−2

Figure 5.4: The path followed by the top-right corner of the cilium for various
actuation frequencies.

For R4 = 3 · 10−4, the motion of the cilium during a periodic cycle and
for R4 = 10−3 the motion of the last simulated cycle, which is not periodic, is
shown in Figure 5.5. In red the part of the cycle is given where the horizontal
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(a) (b)

Figure 5.5: The motion of the cilium for R4 = 3 · 10−4(a) and R4 = 10−3(b).
The red snapshots indicated when the horizontal component of the rotating
actuation force is pointing to the right, and the blue snapshots when it is
pointing to the left.

part of the rotating body force is pointing to the right, in blue where it is
pointing to the left. The cilium actuated at low frequency, clearly sweeps a
larger area than the high frequency actuated cilium. In both cases the cilium
buckles when the body force is oriented towards the anchoring point, which
folds the cilium during the motion to the left. When the force is applied away
from the anchoring point, the cilium is stretched out and displaces much more
fluid. For the higher actuation frequency, the tip of the cilium does not move
that much, while the middle section of the cilium does move, which results in
an peculiar cilium cycle. The total amount of fluid which is transported during

one cycle is computed by first computing the flowrate Q =
∫H

0 n · uds on the
right boundary of the computational domain and then integrating q =

∫

Qdt
over 1/ω when a steady state has been reached. The resulting flowrate Q is
given in Figure 5.6 for ωt3 = 1 · 10−4 and ωt3 = 1 · 10−3.
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Figure 5.6: The flowrate versus time for two actuation frequencies: (a) ωt3 =
1 · 10−4 (b) ωt3 = 1 · 10−3.

From this time dependent flow the total flow per cycle q is computed by
integrating Q over one cycle when the flow has become periodic. For the higher
actuation frequencies R4 > 10−3 the flow becomes periodic while the motion of
the cilium is not periodic. A possible reason could be that the cilium motion is
similar at longer times, yet not periodic. This would lead to almost the same
flow field. For a range of actuation frequencies, the flow per cycle is given
in Figure 5.7. The flow per cycle decreases steadily for increasing actuation
frequency, which can be related to the decrease of the swept area with R4 in
Figure 5.4. By multiplying the flow per cycle with the frequency of actuation,
the flow-rate is obtained. For cilia in a transport geometry, the flow-rate is
the objective function which should be maximized. In Figure 5.8, the flow rate
is given as a function of the actuation frequency and it has three regions. At
low frequencies the flow-rate increases linearly, since the motion of the cilium
is independent of the frequency for low frequencies. So the flow per cycle is
about constant and the flow-rate scales linearly with frequency. At very high
frequencies, the cilium is almost stagnant and hardly any fluid is displaced per
cycle. Even if this low flow per cycle is multiplied with the high frequency the
flow-rate is still very low. For an increasing actuation frequency, the flow-rate
decreases in this region. Since the flow-rate increases at low frequencies and
decreases at high frequencies an optimum is present in order to have a smooth
transition. In this case the optimum is found at R4 = ωt3 = 3 · 10−4. So the
cilia pump most effectively when they do not displace the largest amount of
fluid per cycle, which means that using the largest amount of displaced fluid
per cycle is not the best optimization parameter. For real systems where we
would like to achieve good transport performance, and the viscosity is 1 mPa
s (water) and the modulus of the cilium is 1 MPa, the actuation frequency
should be 3 · 105 Hz, which is rather high. For a more viscous fluid with a
more compliant cilium this could become O(102) Hz, which is more realistic.
A possible explanation for the high frequencies is the fact that only material
stiffness is used for scaling t3 and not the geometrical stiffness of the beam.
This also explains why the transition of the motion of the cilium starts at about
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R4 = 1 · 10−4, while one would expect a transition at R4 = 1. The factor 104

is a non-dimensional pre-factor, incorporating the geometrical stiffness of a

beam. So changing the geometry, or better the length/thickness ratio
L

Tc
of

the beam, means also changing this pre-factor.
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Figure 5.7: The total net flow generated by the actuated cilia during one cycle
when the motion of the cilium has come periodic, given for different actuation
frequencies.

5.2 Mixing

Artificial cilia can be used as an active micro-fluidic mixer, since the flow is
convection dominated, rather than diffusion dominated, even in micro-fluidic
channels (See Section 2.5). This means that efficient mixing occurs through
chaotic advection only. Khatavkar et al. [9] showed that the phase lag between
two individual cilia affects the mixing performance significantly. If both move
synchronously, the phase lag is zero and it is 180 degrees if they both move
exactly opposite, as shown in Figure 5.2.
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Figure 5.8: The flow total net flowrate for different actuation frequencies
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(a) (b) (c)

Figure 5.9: The phase lag expressed in angles: (a) 0 degrees, which means
synchronous motion of two cilia. (b) 90 degrees, which means that one cilium
is lagging behind with quarter of a period compared to the other and (c) 180
degrees, which means opposite motion of two cilia.

In [9], the mixing performance was measured by monitoring the length in-
crease of a drop which was initially placed in between the two cilia. It was
shown that a phase angle of 90 degrees achieved the best mixing. In the
work of Khatavkar [9], the phase lag between the two cilia was induced ex-
ternally by applying phase angle between the rotating force of each individual
cilium. Although this method can easily be used in simulations, the individ-
ual actuation of a single cilium is not that easily achieved in practice. The
main problem is that individual field generators, either electric or magnetic,
have to be miniaturized and incorporated into the micro-fluidic device. This
makes the device more complicated and thus both the failure rate and costs
are higher. Therefore other means of generating a phase lag between cilia,
without requiring individual actuation have to be found. The starting point
of developing such a system is the observation that the motion of the cilia
is frequency dependent, as was observed in the previous section. There the
motion of the cilium was recorded for different actuation frequencies, and a
decrease in motion was observed for an increase in frequency. Therefore, by
actuating two cilia with different characteristic frequencies we would observe
different motion of both cilia. Instead of changing the actuation frequency, we
propose to change the typical time-scale of each individual cilium by changing
the stiffness of the cilium, and keeping the actuation field constant for all cilia.
This can be incorporated into the device by changing the cilium thickness.

5.2.1 Problem description

A rectangular domain is modelled containing two cilia, see Figure 5.10. Either
the modulus of the individual cilia or its thickness is changed. Since the
motion of a cilium depends on the actuation frequency, two different actuation
frequencies will be used leading to R4 = 3 · 10−4, the optimal for transport
and R4 = 1 · 10−3, which resulted in less fluid transport. All values of R4 were
computed with the properties of the left cilium. We would like to know under
which conditions this system leads to mixing of the fluid.

Three different sets of simulations have been performed, one in which the
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Figure 5.10: The mixing domain of height H and width = 1.5H containing
two cilia with length L = 0.5H , spaced 0.5H apart. The thickness of the left
cilium is Tc1, of the right cilium Tc2. A blob is placed in between the cilia for
measuring mixing performance.

modulus of the right cilium is increased from 2.5[f0L] to 2.5 · 103[f0L] for
R4 = 3 · 10−4. In the second set the stiffness of the right cilium is increased
by increasing the thickness from Tc2 = Tc1 to Tc2 = 2Tc1 with R4 = 3 ·
10−4 and the last set contains the same thickness variation with R4 = 1 ·
10−3. The conditions for the simulations with the cilia moduli, thicknesses and
actuation frequencies are given in Tables 5.1 -5.3. The mixing performance

Table 5.1: Variation of cilium modulus.

Name Modulus left
cilium [f0L]

Modulus
right cilium
[f0L]

Tc1[L] Tc2[L] R4[−]

A1 2.5 2.5 0.04 0.04 3
A2 2.5 2.5 · 101 0.04 0.04 3 · 10−4

A3 2.5 2.5 · 102 0.04 0.04 3 · 10−4

A4 2.5 2.5 · 103 0.04 0.04 3 · 10−4

can be measured in several ways, see Section 2.5. Since it is not clear whether
the movement of the cilium becomes periodic, measures which depend on the
periodicity of the velocity field cannot be used. Hence we use the simplest
mixing measure, which is the stretch of a blob of material. The blob with
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Table 5.2: Variation of cilium thickness, ωt3 = 3 · 10−4.

Name Modulus left
cilium [f0L]

Modulus
right cilium
[f0L]

Tc1[L] Tc2[L] R4[−]

B1 2.5 2.5 0.04 0.04 3 · 10−4

B2 2.5 2.5 0.04 0.06 3 · 10−4

B3 2.5 2.5 0.04 0.08 3 · 10−4

Table 5.3: Variation of cilium thickness, ωt3 = 10−3.

Name Modulus left
cilium [f0L]

Modulus
right cilium
[f0L]

Tc1[L] Tc2[L] R4[−]

C1 2.5 2.5 0.04 0.04 10−3

C2 2.5 2.5 0.04 0.06 10−3

C3 2.5 2.5 0.04 0.08 10−3

radius 0.2L is placed in between the two cilia with the center at (x, y) =
(0.75H, 0.6H), as shown in Figure 5.10. The blob is placed in between the
cilia, since the most stretching due to elongation flow is expected in this region.
The change of interfacial length of the blob will be computed over time.

5.2.2 Results

The interfacial length stretch (l/l0 = l/(0.8πL) of the blob is given versus
time in Figure 5.11 for the simulations given in Table 5.1. All simulations
are performed for at least two actuation cycles (each cycle has a period of
1/(t3ω) = 1/(3 · 10−4). Although the length of the blob increases for all
moduli, there is not a clear trend. The blob is stretched the most for the
intermediate modulus 25 [f0L]. Good mixing is indicated by an exponential
increase in length (indicating an exponential decrease in distance opposite to
the stretching direction). For the blob which is stretched the most this seems
to be the case, although longer simulations should be performed in order to
confirm this. If the cilium thickness of the right cilium is increased, a stronger
effect is found, see Fig 5.12.
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Figure 5.11: The stretch of the blob versus time for different moduli of the
right cilium for the parameters in Table 5.1.
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Figure 5.12: The stretch of the blob versus time for different thicknesses of the
right cilium for the parameters in Table 5.2.

A clear trend can be seen: larger differences in cilium thickness lead to
better mixing. And again the stretch seems to be exponential, but longer
simulations have to confirm this. For the simulations at the higher frequencies,
the trend is the same, see Figure 5.13, yet the overall stretch is lower. Hence
larger fluid displacements seem to be important in order to obtain efficient
mixing. In all cases the results do not give any information on the mixing
performance in the remainder of the domain.

5.3 Chaotic cilium motion

The motion of an artificial cilium in an inertialess fluid is described by Eqs. (2.2–
2.3, 2.11–2.12). This set of equations is time dependent and also non-linear.
The nonlinearity of the problem is due to the movement of Γfs, due to quadratic
terms in the constitutive relation of the solid and due to the slenderness of the
cilium which causes different behavior in tension and compression (buckling).
Dynamical systems can show remarkable movement if they are highly non-
linear. Bifurcations, which means that two or more solutions are possible or
even chaos, where an infinite, but bounded, amount of solutions is possible are
observed if the system is highly non-linear. The main question is whether bi-
furcations and chaos can also be expected for the artificial cilia. Let’s consider
the following simplified model of a cilium, consisting of a dashpot represent-
ing the fluid drag with damping coefficient d, a spring representing the cilium
with stiffness k and a driving force f . The displacement x is the only free vari-
able in the system. The stiffness of the spring is chosen to be k = k0(x − 1),
representing a higher stiffness in tension than in compression. The driving
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Figure 5.13: The stretch of the blob versus time for different thicknesses of the
right cilium for the parameters in Table 5.3. For comparison the stretch for
configuration A1 is also shown.

force f = f0 sin(2πωt), where f0 is the force amplitude and ω the frequency of
oscillation. The equation of motion then becomes:

dẋ+ kx = f,

dẋ + k0(x− 1)x = f0 sin 2πωt. (5.3)

After using an explicit Euler time integration scheme the discretized equation
becomes:

d
xi+1 − xi

∆t
+ k0(x

i − 1)xi = f0 sin 2πωt
i, (5.4)

where the superscripts i + 1 and i denote the variable at the current and
previous timestep respectively and ∆t is the timestep. Re-arranging yields:

xi+1 = xi − k0
d∆t

(xi − 1)xi +
f0
d∆t

sin 2πωti, (5.5)

which is the “Logistic Map” with an extra forcing term. The logistic map [70]

is known to show a bifurcation at R =
k0
d∆t

> 2, which for a given k0 and d

means ∆t <
d

2k0
. For 2 < R < 4 it shows more bifurcations, and for R > 4

the motion is chaotic, thus having no periodicity. So even for this very simple
non-linear model of a cilium, bifurcations and chaos can be observed if R is
high enough. Low R values are related to a low stiffness of the cilium and
much damping large. So for cilia with a large aspect ratio moving through
a viscous fluid bifurcations and chaos can be expected for this simple model.
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The predictions of this simple model have not been verified with simulations
of the full fluid-structure interaction model.

5.4 Conclusions

In this chapter the model developed in Chapter 4 was used for the simulation
of cilia in a Newtonian fluid. Both transport and mixing are investigated.
For the transport geometry it was found that the time-scale of motion for

stiff cilia (G > 106) indeed is t3 =
η

G
as was predicted from the scaling

analysis in Section 2.4, while for the more compliant cilia the time-scale is
η

f0L
. This difference was explained by the fact that viscous forces play an

important role in both the deformation and time-scale of deformation for the
compliant cilia, while it only affects the time-scale for the stiffer cilia. In all

cases the tip velocity of the cilium scales with
f0L

2

η
, which is independent of

the stiffness of the cilium. This was explained by the absence of elastic forces at
the very beginning of actuation, hence the actuation force is balanced only by
the viscous drag forces on the cilium. This has an important consequence for
the simulations, namely that the timestep is independent of the cilium stiffness,
and moreover independent of t3. This means that very small timesteps have to
be used although the system moves on a much larger time-scale. The cilia are
also actuated with a rotating body force with varying frequency. It was shown
that the motion of the cilium tip become periodic for the lower frequencies
R4 = 1−7.5 ·10−4, while for the higher frequencies the motion did not become
periodic within the time-scale of simulation. The computed flow per cycle
steadily decreased for increasing frequency and the total flow rate showed an
optimum at R4 = 3 · 10−4. For low frequencies the flow rate increased linearly
with frequency, and for higher frequencies the flow rate dropped. On the basis
of the notion that cilium motion depends on the actuation frequency, a two cilia
micromixer was designed, where the intrinsic time-scale of the individual cilia
were changed, instead of the actuation frequency. The time-scale was either
changed by changing the modulus of the individual cilia or by changing cilium
thickness. The mixing performance was assessed by analyzing the length-
stretch of a blob placed in between the two cilia. The system with two cilia
with different modulus showed an increase in stretch, yet a clear trend was not
observed. The stretch increase seemed to be exponential, although this has
to be confirmed by longer simulations. For the system with different cilium
thicknesses, the length stretch increased with the ratio of cilium thicknesses,
and again the stretch seemed to increase exponentially. For a system with
different thicknesses, but actuated at a higher frequency, the stretch is much
lower than at low frequency, but the trend between thickness ratio and stretch
is still observed. It was shown that for a non-linear stiffness of the cilium, the
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cilium motion could become chaotic for a one dimensional model system. This
has not been confirmed with simulations.
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Chapter 6

Numerical tools for

modeling of cilia driven

flow of non-Newtonian

fluids

In Chapter 4 a model was developed for cilia driven flow of a Newtonian fluid.
Although many fluids are Newtonian, i.e. show a linear relation between the
fluid stress and the rate of deformation, an even larger group of fluids behaves
non-Newtonian. The branch of science which studies the relation between fluid
stress and deformation is rheology. An important class of non-Newtonian fluids
are macromolecular solutions. In these solutions even a small weight fraction
of macromolecules changes the rheology significantly even if the solvent is a
Newtonian fluid.

Artificial cilia are fluid manipulators for Lab-on-a-Chip devices. In these
devices, biological fluids such as blood, urine and saliva are analyzed, all of
which are solutions of cells or proteins in water. A solution of large molecules,
such as proteins shows distinct flow effects due to the interaction of the elastic
proteins with the viscous drag of the water surrounding them. These effects,
among them shear-thinning, strain-hardening and normal stresses in shear
flow, are known as viscoelastic effects.

A lot of research has been done to understand and control the flow in
microfluidic devices, but almost all work, both experimental and numerical,
was performed with water as the model fluid. Since water and biological fluids
have different flow properties, it is important to ascertain whether the flow
phenomena and control strategies found for Newtonian fluids also work for
non-Newtonian fluids.
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The most profound differences are expected for force driven flows. In force
driven flows, the kinematics are not determined fully by the essential boundary
conditions, but also by natural boundary conditions. Since the stress in a non-
Newtonain fluid depends nonlinearly on the velocity gradient, a small change
in such a natural boundary condition leads to a large change in the velocity
gradient. In systems with actuators this effect is also expected, since the
motion of the actuators is almost always force driven. This means that the
rheology of the fluid has a profound effect on the flow, and more importantly
on the efficiency of the actuators.

In this thesis we will focus on saliva, since it is a homogeneous fluid, even at
the scale of microfluidic channels. Although the rheological properties of saliva
have been studied in the past [71], not much data is available in literature.
Hence we have measured the shear rheology of human, unfiltered, saliva. The
measurement data serves as an input to the fluid-structure interaction model
developed in the previous chapter. In order to model non-Newtonian fluid
flow, the model has to be adapted to allow different constitutive behavior, and
to stabilize the numerical model in the case of viscoelastic computations. This
model is given in Section 6.2.

6.1 Saliva rheology

One of the fluids which is analyzed in Lab-on-a-Chip devices is saliva. Saliva is
a solution of large molecules, macromolecules, in water. It plays an important
role in the digestive system, by lubrication and adding enzymes, and in oral
hygene, by cleaning the mouth [72]. It therefore contains information on the
person’s health, and since it is easily sampled, it is often used for analysis.
If looked at from a rheological standpoint, instead of a biological one, saliva
contains large molecules which give it different flow behavior than the solvent,
which is water, alone. Under steady shear it shows a decrease in shear viscos-
ity, known as shear-thinning [73]. By filtering out the longer molecules, this
behavior is suppressed. Since not much rheological data on saliva is found in
literature [73], or the measured ranges are quite small, we performed steady
state shear measurements on human whole saliva (HWS), which was not fil-
tered.

6.1.1 Materials and methods

The rheology of human whole saliva is tested using an ARES 902-30004 rheome-
ter of Rheometric Scientific. A plate-plate setup (50 mm diameter plates) was
used. Saliva samples were collected from five test subjects, by letting them
drool into a plastic cup. The drooling prevented much of the air bubbles,
which are usually present in saliva and hence homogeneous samples were ob-
tained. The donors were instructed not to eat or drink anything other than
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water for one and a half hours before the test. Directly after donation, 2-3 ml
of saliva was pipetted in between the plates of the rheometer. Then a series of
steady-state shear tests were performed where the steady-state viscosity was
measured after 50 s of shearing at shear-rates of 1 up to 500 s−1. The series
were performed four times, where the results from the first set were disre-
garded, since they always showed lower and non-reproducible viscosities. The
most likely reason for this behavior are air bubbles, which are broken up at
the high shear-rates of the first series. The results of the remaining three series
were reproducible. Initial tests in which the viscosity was recorded from the
commence of shearing showed that it took 50 s to reach steady state, hence
the steady state viscosity was recorded only after 50 s. The reason for this
could be the reversible (elastic) effects or irreversible effects (break up of a
network). The latter can be ruled out, since the sample showed the same tran-
sient behavior when the experiment was repeated. Hence the time-dependency
is attributed to elastic effects.

6.1.2 Results

The measured saliva rheology data is shown in the top of Figure 6.1. The error
bars indicate the standard deviation of all measurements and test subjects and
is due to differences between the subjects, not between different measurements
of the same sample. This shows that the test method used is reproducible. It
is also clear that saliva is extremely shear thinning, since the viscosity declines
rapidly over this range of shear rates, whilst no zero-shear rate plateau and
infinite shear rate plateau is found. A wider range of shear rates has been used
for only one test person and is shown in the lower part of Figure 6.1. It shows
the remarkably high zero shear rate plateau of 70 Pas. It is expected that
the viscosity remains constant at 1 mPas at higher shear rates, which is the
viscosity of water. A fit of the Carreau rheological model, Equation (2.6), to
this measurement yields n = 0.2, η0 = 70 Pa s, η∞ = 1 mPa s, λ = 100 s. The
plateau viscosity at high shear rates is taken as the solvent viscosity, which is
water.

6.2 Fluid-structure interaction with a non-New-

tonian fluid

The equations of motion which govern the motion in a fluid-structure interac-
tion problem consist of the momentum and continuity equation for both the
fluid and solid Equations (2.1)-(2.4), a kinematic and a dynamic interface con-
dition Equations (2.11)-(2.12) and the constitutive relations for both fluid and
solid Equations (2.5)-(2.10). Since the interface conditions are independent of
the constitutive relation of the fluid and solid, a numerical model for fluid-
structure interaction will be derived without introducing a material model.
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Figure 6.1: Top: The measured saliva viscosity for all test subjects, showing
clear shear thinning. The error bars indicate the standard deviation. Bottom:
A single measurement of saliva of only one test subject over a wider range,
showing a low shear rate plateau of 70 Pa s. Measurements at higher shear
rates were not possible due to fluid inertial effects.

These will be introduced at a later stage. The weak form of the momentum
and mass balance equations of the fluid and solid with the interface conditions
incorporated reads:

Find u ∈ U , pf ∈ Pf,d ∈ D, ps ∈ Ps such that:

(Dv,σf)Ωf
− (v,nf · σf)Γfs

− (v, tNf)ΓNf
+

κ
∑

i

∑

j

M−1
ij (vnf, φi)Γfs

:
(

φj ,nf[u− ḋ] + [u− ḋ]nf

)

Γfs

= 0

(q,∇ · u)Ωf
= 0

(Dw,σs)Ωs
+ (w,nf · σf)Γfs

− (w, tNs)ΓNs
− (w,f)Ωs

−

κ
∑

i

∑

j

M−1
ij (wnf, φi)Γfs

:
(

φj ,nf[u− ḋ] + [u− ḋ]nf

)

Γfs

= 0 (6.1)

(r, detF − 1)Ωs
= 0,

∀v ∈ U , q ∈ Pf,w ∈ D, r ∈ Ps
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where the traction term on the solid ns · σs on Γfs has been replaced by
−nf · σf. Additionally the extra variable E which is used for enforcing the
kinematic interface condition, has been eliminated from the system, as was
done in Section 4.2.3.

If the solid is rigid, this system is shown to be stable for Newtonian, gen-
eralized Newtonian and viscoelastic fluids for a large range of the stabilization
parameter κ [61]. If the solid is flexible and free to move, the system is shown
to converge to a reference solution based on a moving fluid mesh in Chapter
4 for a Newtonian fluid. Combining both results, we expect this system to be
able to simulate fluid-structure interaction with complex fluids.

The solid is modeled as an incompressible Mooney-Rivlin solid, thus σs =
Gsi,I(B− I)+GsII(B

−1 − I)− psI. For the fluid either a generalized Newto-
nian, an Oldroyd-B or a Giesekus model is used. Both generalized Newtonian
and Giesekus models describe shear-thinning. Both the Oldroyd-B and the
Giesekus model are able to describe time-dependent effects and normal stresses
in shear flow. The generalized Newtonian model has a shear-rate dependent
viscosity; one particular form is the Carreau model (see Section 2.1.1):

η(γ̇) = η∞ +
η0 − η∞

√

(1 + (λγ̇)(1−n)/2)2
. (6.2)

The Oldroyd-B model gives the fluid stress in terms of the conformation tensor
c which is related to the orientation and stretch of the long molecules, see
Section 2.1.1. The fluid stress for this model reads:

σf = 2η∞D − pfI +G(c − I) (6.3)

where η∞ is the viscosity of the solvent, which is water and G is the modulus
of the viscoelastic fluid. The conformation tensor has the following weak form
of the evolution equation, which has to be solved in addition to the mass and
momentum balance equation:

(

s,
∂c

∂t
+ u ·∇c−L · c− c ·LT +

1

λG
[(c− I) + α(c − I)2]

)

Ωf

= 0 (6.4)

which is given for the Giesekus model. If α = 0 the Oldroyd-B model is
obtained.

For the generalized Newtonian model, the constitutive relation Equation
(2.6) is used in the weak form of the equations of motion Equation (6.1).
This also holds for the viscoelastic model, but then the evolution equation of
the conformation tensor has to be solved additionally. In principle also other
constitutive relations for the fluid and solid can be used, if the physics demand
so.
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6.2.1 Time dependence

For both the fluid models a non-linear time-dependent system is found. In
order to solve this system we need to apply a proper time-stepping scheme
and linearize it. In this chapter only the time discretization of Equation (6.4)
will be treated since the time dependency in the kinematic interface condition
is treated the same as for the Newtonian case, i. e. an Euler backward scheme
is used. The linearizion of constitutive equation of the solid is also the same as
for the Newtonian case, and will therefore not be treated in this chapter. The
final set of equations to be solved is: Find u ∈ U , pf ∈ Pf,d ∈ D, ps ∈ Ps, c ∈ C
such that:

(Dv, 2η(γ̇)D − pfI +G(c − I))Ωf
−

(v,nf · [2η(γ̇)D − pfI +G(c − I)])Γfs
− (v, tNf)ΓNf

+
∑

i

∑

j

M−1
ij (vnf, κφi)Γfs

:
(

φj ,nf[u− ḋ] + [u− ḋ]n
)

Γfs

= 0

(q,∇ · u)Ωf
= 0

(Dw, Gs(B − I))Ωs
+

(w,nf · [2η(γ̇)D − pfI +G(c− I)])Γfs
−

(w, tNs)ΓNs
− (w,f)Ωs

−
∑

i

∑

j

M−1
ij (wnf, κφi)Γfs

:
(

φj ,nf[u− ḋ] + [u− ḋ]n
)

Γfs

= 0

(r, detF − 1)Ωs
= 0

(

s,
∂c

∂t
+ u ·∇c−L · c− c · LT +

1

λG
[(c − I) + α(c − I)2]

)

Ωf

= 0, (6.5)

∀v ∈ U , q ∈ Pf,w ∈ D, r ∈ Ps, s ∈ C,

where the generalized Newtonian case is found for G = 0, and the Oldroyd-B
case is found for η0 = η∞.

6.2.2 Time discretization

The time dependent term in the kinematic interface condition is discretized in
time with a semi-implicit scheme. The evolution equation of the conformation
tensor is treated semi-implicitly by taking all convective terms fully implicit
and the relaxation terms explicit, which yields the following relation for c at
t = ti+1:

ci+1 − ci

∆t
+ui+1 ·∇ci+1−Gi+1 ·ci+1−ci+1 ·GT, i+1+

1

λG
[(ci−I)+α(ci−I)],

(6.6)
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where ∆t is the time-step. The relaxation terms are taken explicitly, since it
does not require the linearizion of the relaxation terms, which can be com-
plicated for non-linear models. Since the system is solved fully coupled, the
viscoelastic contribution to the fluid stress is easily incorporated in the follow-
ing way:

σi+1
f = 2η∞Di+1 − pi+1

f I +G
(

ci+1 − I
)

. (6.7)

In the temporary ALE scheme the velocity in the convective term is replaced
by the velocity minus the mesh velocity:

ui+1 ·∇ci+1 => (ui+1 − umesh) ·∇ci+1, (6.8)

as was done for the inertial terms in Section 4.3.

6.2.3 Stabilization

The simulation of viscoelastic flow is less stable than the simulation of Newto-
nian flow due to several reasons, which are of a physical or numerical nature.
The non-linear constitutive relation is the first, which can lead to non-physical
but mathematically valid solutions which are not desired. This problem can
be avoided by choosing the proper model and model parameters. Another is
the presence of a convective term in the constitutive relation, which can lead
to very small stress boundary layers if the flow is convection dominated. This
problem is also encountered in flows of a Newtonian fluid where inertia domi-
nates the flow. This is a numerical source of instabilities, since as long as the
boundary layer and the element size are of equal order the boundary layer can
be captured and the physical solution is found. In viscoelastic fluids however,
the boundary layer can be very thin in regions where the velocities are low,
but the velocity gradients are large, since the constitutive relation does not
contain a diffusive term. Hence stabilization is required, since it is expensive
to choose the mesh fine enough to capture this boundary layer.

This is remedied by using the Streamline Upwind Petrov Galerkin method
(SUPG) [74], in which the standard test function is replaced by a test function
containing the convective term:

(

s+ τui ·∇s,

ci+1 − ci

∆t
+ ui+1 ·∇ci+1 −Li+1 · ci+1 − ci+1 · Li+1,T +

ci − I

λOB

)

Ωf

= 0

(6.9)

where τ is a stabilization parameter which scales with
h

U
where h is the element

size in the direction of the velocity and U the typical velocity. The typical
velocity is the average of the velocity magnitude over the integration points.
In the neighborhood of the interface however the velocities can be low which
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would lead to too high values of τ . Here τ = 0.5∆t, as was done by Choi et
al. [62]. The switchover between the two ways of scaling τ depends on the
value of the Courant number C, which is the ratio between the velocity and
the discrete velocity C = h/∆t:

τ =



















h

2U
C ≥ 1

∆t

2
C < 1

(6.10)

In order to stabilize the flow of a viscoelastic fluid, G an extra representation of
velocity gradient tensor L is added to the system, which is known as DEVSS-G
[75]. An additional term in the momentum equation of the fluid is added and
all occurrences of L in the constitutive relation are replaced by G. This leads
to the following additional terms in the momentum equation:

. . . α
(

DT
v ,L

i+1 −Gi+1
)

Ωj,f

. . . , (6.11)

where α is a stabilization parameter which is usually chosen equal to the poly-
mer viscosity GλOB [76]. Note that in case L and G are identical, the stabi-
lization term disappears making the method consistent.

6.2.4 Spatial discretization

Since the DEVSS-G problem is a mixed problem, the interpolation functions
for the velocity, fluid pressure, velocity gradient problem cannot be chosen
independently. In addition the shape functions for c are also related. For
(u, p,G, c) Baaijens et al. [76] found that Q9

2Q
4
1Q

4
1Q

4
1 interpolation is stable,

hence this combination of shape functions will be used here. Since the solid is
also incompressible, the shape functions for the displacement and solid pressure
are chosen to be Q9

2Q
9
1, which fulfills the Babuska-Brezzi condition. The extra

rate-of deformation tensor E will be interpolated discontinuously having the
same order as the velocity, yielding a Q9,d

2 element. Since the velocity, fluid
pressure, conformation tensor and velocity gradient are computed on a fixed
grid, whilst the interface moves, these variables show a jump at the interface.
Hence xfem will be used to model this jump. This means that the trial and
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testfunctions are defined in the following way:

u ≈
Nu
∑

i=1

φi(x)U i; U i(x) = uiH(x) (6.12)

pf ≈
Npf
∑

i=1

ψi(x)Pf,i; Pf,i(x) = pf,i(x)H(x), (6.13)

G ≈
Ng
∑

i=1

νi(x)G2,i; G2,i(x) = Gi(x)H(x), (6.14)

c ≈
Nc
∑

i=1

ξi(x)Ci; Ci(x) = ci(x)H(x), (6.15)

d ≈
Nd
∑

i=1

µi(x)Di, (6.16)

ps ≈
Nps
∑

i=1

ψf,i(x)Ps,i, (6.17)

v ≈
Nu
∑

i=1

φi(x)V i; V i(x) = V iH(x) (6.18)

q ≈
Npf
∑

i=1

ψi(x)Qi; Qi(x) = qi(x)H(x), (6.19)

H ≈
Ng
∑

i=1

νi(x)H2,i; H2,i(x) = H i(x)H(x), (6.20)

s ≈
Nc
∑

i=1

ξi(x)Si; Si(x) = si(x)H(x), (6.21)

w ≈
Nd
∑

i=1

µi(x)W i, (6.22)

r ≈
Nps
∑

i=1

ψf,i(x)Ri, (6.23)

where H(x) is the Heaviside function defined in Equation (4.12). Using these
trail and testfunctions and linearization, the discretized system is represented

89



by:
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(6.24)
where the submatrices A−Os are defined as:

A =

(

∇φT +∇φ,
1

2
η(γ̇j)

(

∇φ+∇φT
)

)

Ωf

(6.25)

B = −
(

ψT
f ,∇φ

)

Ωf

(6.26)

C =
(

∇φT +∇φ,
α

4

(

∇φ+∇φT
)

)

Ωf

(6.27)

D = −
(

νT + ν,
α

4

(

∇φ+∇φT
)

)

Ωf

(6.28)

E =
(

νT + ν,
α

4

(

ν + νT
)

)

Ωf

(6.29)

F =
(

∇φT +∇φ,Gξ
)

Ωf

(6.30)

G =
(

ξT + τuj ·∇ξT , φ ·∇cj
)

Ωf

, (6.31)

H =
(

ξT + τuj ·∇ξT ,−ν · cj − cj · νT
)

Ωf

, (6.32)

I =

(

ξT + τuj ·∇ξT ,
ξ

∆t
+ uj ·∇ξ −Gj · ξ − ξ ·GT

j

)

Ωf

, (6.33)

J =
(

−σT
s,j · (∇µT

∇µ)T + σT
s,j ·∇µT

∇µ+∇µT · C ·∇µ
)

Ωs

, (6.34)

K = −
(

ψT
s ,∇µ

)

Ωs

, (6.35)

Lf = −
(

φT ,nf,j · [η(γ̇j)(∇φ+∇φT )]
)

Γfs

, (6.36)

Mf =
(

φT ,nf,j · [ψfI]
)

Γfs

, (6.37)

Nf = −
(

φT ,nf,j · [Gξ]
)

Γfs

, (6.38)

Ls =
(

µT ,nf,j · [η(γ̇j)(∇φ+∇φT )]
)

Γfs

, (6.39)

Ms = −
(

µT ,nf,j · [ψfI]
)

Γfs

, (6.40)

Ns =
(

µT ,nf,j · [Gξ]
)

Γfs

, (6.41)

Of =
∑

k

∑

l

M−1
kl (φTnf,j , κφk)Γfs

: (φl,nf,jφ+ φnf,j)Γfs
, (6.42)

Os = −
∑

k

∑

l

M−1
kl (µTnf,j , κφk)Γfs

:
(

φl,nf,j
µ

∆t
+

µ

∆t
nf,j

)

Γfs

, (6.43)
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where σs,j = GsI (Bj − I))+GsII

(

B−1
j − I

)

−ps,jI is the solid Cauchy stress
at the previous iteration and the fourth-order tensor C is a linearization of the
constitutive equation. The right-hand side vectors f − j have been defined as:

f =
(

φT , tNf

)

ΓNf

, (6.44)

gf =
∑

k

∑

l

M−1
kl (φTnf,j , κφk)Γfs

:

(

φl,nf,j
dj − di

∆t
+

dj − di

∆t
nf,j

)

Γfs

, (6.45)

gf = −
∑

k

∑

l

M−1
kl (µTnf,j, κφk)Γfs

:

(

φl,nf,j
dj − di

∆t
+

dj − di

∆t
nf,j

)

Γfs

, (6.46)

h =

(

ξT + τjuj ·∇xiT ,
ci

∆t
+ uj ·∇cj−

Gj · cj − cj ·GT
j − cj − I − α(cj − I)2

λG

)

Ωf

, (6.47)

i =
(

µT , tNs

)

ΓNs

, (6.48)

j =
(

µT ,f
)

Ωs

, (6.49)

k =
(

ψT
s , (detF j − 1)/ detF j

)

Ωs

. (6.50)

Since the evolution equation of c is time dependent, and xfem is used, in-
formation from the previous time steps and iterative steps was found at the
current iterative step by using a temporary ALE scheme as was used for the
systems with fluid inertia in Section 4.3.2.

6.2.5 Solution procedure

The fluid-structure interaction problem in the previous chapters was solved
in a fully coupled manner since this is more stable than solving them decou-
pled. In case viscoelastic fluid models are used, the evolution equation for
the conformation tensor can be solved separately or at the same time as the
fluid-structure interaction problem. The choice for an explicit (decoupled) or
implicit (coupled) approach again depends on the time-scales involved. The
time-scale of the fluid is the relaxation time λOB, for an Oldroyd-B or λG for
a Giesekus fluid, and the time-scale of the fluid-structure interaction problem

is t3, defined as
η

Gs
. Since we would like to study a wide range of relaxation

times of the fluid, whilst keeping t3 fixed, a fully coupled approach is the safest,
since it is more stable than the decoupled approach. It however requires the
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solution of a much larger system, which makes it computationally much more
expensive.

6.2.6 Local mesh refinement

Initial tests of the coupled approach presented in the previous section revealed
that the computations at a mesh size of (Nx, Ny) = (91, 91) that the solution
of a single time increment took about 6 minutes. The Newtonian simulations
typically required 1000 to 10000 time-steps, which means that the viscoelas-
tic simulations would take between 5 and 50 days to complete, which is not
acceptable. The main reason for the long simulation time is the large amount
of fluid elements. Since each fluid element contains degrees of freedom for the
velocity, pressure, velocity gradient and conformation tensor, a reduction of
the amount of elements will reduce the amount of degrees of freedom accord-
ingly. Although the number of elements should be reduced, the accuracy of
the solution should not suffer. This is accomplished by using large elements
in regions far away from the cilium and small elements near the cilium. We
propose the following simple and robust mesh adaptation method.

Two meshes spanning the fluid domain are generated. The second meshM2

is n times more refined than mesh M1. This means that n×n elements of M2

exactly overlap with one element in M1. Initially all elements of M1 are used
for the computation, and the elements of M2 are not. At parts of the mesh
where efinement is required, such as near Γfs, elements of M2 are marked for
computation and the corresponding elements ofM1 are not marked any longer,
leading to the situation depicted in Figure 6.2. The part of the fluid domain
connected to M1 is Ωf,M1

and the part of the fluid domain connected to M2 is
Ωf,M

2
and Ωf = Ωf,M

1
∪Ωf,M

2
. The common boundary between these domains

is ΓM12
. At ΓM12

the same kinematic and dynamic interface conditions hold as
for the fluid-structure interaction problem, namely continuity of the velocity
and traction, Equations (2.11) and (2.12). These conditions couple velocity and
pressure on one side to velocity and pressure on the other side. For viscoelastic
flow an extra condition is required, which defines the conformation tensor on
the inflow part of either Ωf,M

1
or Ωf,M

2
. Inflow is defined as n1 · u1 < 0,

with n1 the outward normal of Ωf,M1
on ΓM12

and u1 the velocity in Ωf,M1
.

The velocity gradient tensor G is not coupled at the interface, but ∇uT is
through the treatment of the kinematic and dynamic interface conditions. For
a viscoelastic problem, the conformation tensor is coupled at the inflow part
by adding the following term to the weak form of the equations of motion:

. . .+ (v1, νn1 · (c1 − c2))ΓM12

+ (v2, (1− ν)n2 · (c2 − c1))ΓM12

. . . (6.51)

where the subscripts 1 and 2 denote the coarse and fine parts of the domain.The
parameter ν determines on which subdomain the inflow condition for the con-
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(a) (b)

(c) (d)

Figure 6.2: The coarse (a) and fine (b) meshes which serve as a starting point
for the local mesh refinement technique. Several elements are selected for
refinement (c) and these refined elements are combined with the other non-
refined elements (d). At the interface (depicted in blue) the coarse and fine
domains are coupled via interface conditions.

formation tensor should be applied:

ν =

{

1 if n1 · u1 < 0,

0 if n1 · u1 ≥ 0.
(6.52)

The method presented above has one level of refinement, which is sufficient
for our purpose. The extension to multiple levels is relatively easy, by only

93



introducing multiple domains of different refinement and multiple boundary
integrals in the weak form.

6.3 Validation

An elastic flap (L = 0.5H,Tc = 0.02H) in a channel with geometries H =
W = 1 · 10−3 m is subjected to a prescribed velocity on the left boundary:
uin = 600y(H − y)ex. The flap is rounded off with radius r = 0.0098H
and located at the center of the channel, see Figure 6.3. The fluid viscosity
η∞ = 1 · 10−3 Pa s, and the Oldroyd-B model is used with a relaxation time
λOB = 0.1 s, G = 1 Pa, GsI = 1·104 Pa and GsII = 0Pa. The typical shear-rate
γ̇ = U/H = 10−4/10−3 = 0.1, with the typical velocity U = 10−4 m s−1. This
results in a Weissenberg number of Wi= λOBγ̇ = 0.01, which should not cause
numerical difficulties found in very elastic flows. Note however that this is the
global Weissenberg number and that locally the fluid can behave elastically
due to high local deformation rates. At inflow nf · u < 0, c = I. The right
boundary is taken stress-free: n ·σ = 0. The velocity is imposed on the fluid,
instead of a pressure drop as was done in the test problem of Section 4.5.2,
since this will prescribe the global kinematics of the flow. If a pressure drop
would be applied, and the solvent viscosity is low, very large deformations are
expected in the beginning, since both fluid and solid behave fully elastically
at short time-scales. Various variables are given along the cilium boundary
at t = 10−1 for ∆t = 10−2 in Figure 6.4. A typical solution for cxx is shown
in Figure 6.5. Near the tip of the cilium there is a region where the fluid is
compressed (left) and where the fluid is extended (right). This is reflected in
compression and stretch of the polymer chains, leading to cxx smaller than one
and larger than one respectively.

6.3.1 Local mesh refinement

The local mesh refinement scheme of the previous section is tested by using a
single refined element in Couette flow of a Oldroyd-B fluid of Wi = λOBU/H =
10, where λ is the relaxation time of the fluid, U the applied velocity and H
the height of the channel. The flow is periodic inthe horizontal direction. An
initial disturbance is placed on the initial value of the conformation tensor of
order O(10−3). The mesh used for this computation is shown in Figure 6.6.
The proposed method is compared with a regular mesh where the periodicity
is enforced with Lagrange multipliers and a regular mesh where periodicity is
enforced with the Lesaint-Raviart coupling of Equation (6.51). For a stable
method the initial disturbance should damp out in time. Since the growth rate
of a possibly unstable system can be very low, the simulation is performed
for at time of 30λOB. The difference of the solution with the steady state
value cs, is computed and given in Figure 6.7. In addition to the numerical
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uin

W

H

L

Figure 6.3: Imposed flow over a beam of length L = 0.5H in channel with
heigth H and length W . The thickness of the beam is 0.02H .

schemes the transient behavior as predicted by Kupferman [77] and the slowest
decaying eigenmode predicted by Gorodtsov and Leonov [78] are shown. Both
the regular DEVSS-G/SUPG with Lagrange multipliers and Lesaint-Raviart
upwiding for the periodic boundary condition, nicely follow the transient form
predicted by Kupferman and they eventually follow the slowest decaying mode
predicted by Gorodtsov and Leonov. The local mesh refinement scheme shows
some shoulder after the initial growth and subsequent decay, but eventually
follows the slowest eigen mode. Therefore this refinement scheme is stable, at
least for this refinement level and this amount of refined elements.

The local mesh refinement has also been applied to the viscoelastic cilium
model. A layer around the cilium is 3 times more finer than the surrounding
mesh, and a simulation of a Giesekus fluid (α = 0.05) at Wi = 0.1 is shown
in Figure 6.8. The simulation is free from oscillations and the mesh is locally
refined around the cilium as can be seen in the figure.

6.4 Conclusion

In this chapter the model for fluid-structure interaction with a Newtonian fluid,
which was presented in previous chapters, was extended to non-Newtonian flu-
ids. This allows us to study the differences in flow and cilium motion between
a Newtonian and a non-Newtonian fluid. This is practically relevant since
in practical microfluidic systems, biological fluids such as saliva are analysed,
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Figure 6.4: Various variables along the cilium boundary: (a) x-velocity, (b)
pressure, (c) vorticity, (d) cxx, (e) cxy and (f) cyy.

and saliva has a different rheology than its main constituent water, which is
Newtonian. The most prominent non-Newtonian feature of polymer solutions,
among which saliva, is shear-thinning, which is the decrease of the shear vis-
cosity under steady shear. This effect was studied by performing steady state
shear tests on human whole saliva, and it was found that the shear viscosity
at low shear rates γ̇ < 10−2 s−1 was about 70 Pa s. At higher shear-rates the
viscosity scaled with γ̇−0.8, until it reaches the shear viscosity of water which
is 1 mPa s. Thus at low shear-rates the viscosity is a factor 70.000 larger
than that of water, while there is a large range where it decreases rapidly from
this value to that of water. In order to model shear-thinning behavior two
non-Newtonian models were used, a generalized Newtonian model which is
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Figure 6.5: A typical solution of cxx for the XFEM method for Wi=0.01 at
t = 10−1.

Figure 6.6: The locally refined mesh used for testing the stability of this re-
finement method in Couette flow.

only capable of the modeling the decrease in shear viscosity, and the Oldroyd-
B model, which is capable of capturing time-dependent effects and normal
stresses in shear. The first can only describe the steady-state viscosity de-
crease, while the Oldroyd-B model can describe elastic effects. In order to use
these models the fluid-structure interaction model of Chapter 4 was adapted.
For the generalized Newtonian model the changes are relatively simple, whilst
for the Oldroyd-B model additional stabilization terms have to be added to
the discretized momentum and conformation evolution equation, known as the
DEVSS-G/SUPG method for solving viscoelastic flow.

In order to avoid stability problems due to splitting the system into a fluid
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Figure 6.7: The growth and decline of an initial disturbance on the conforma-
tion tensor for Couette flow for different numerical schemes.

Figure 6.8: The xx-component of the conformation tensor for prescribed flow
over a cilium of a Giesekus fluid for α = 0.05 and Wi = 0.1.

and a solid problem and solving them sequentially, the resulting set of equa-
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tions is solved simultaneously, resulting in a large system with many unknowns.
The viscoelastic model was shown to be stable by solving flow over an elastic
flap with Wi=0.01.

Since the fully coupled set of equations has many unknowns per element,
and fine meshes are required for accurate results near the cilium, the compu-
tation of a single actuation cycle can take several weeks. Since large gradients
are present mainly near the cilium, a local mesh refinement strategy is pro-
posed, which reduces the amount of unknowns and thus computation time.
The stability of this local refinement scheme was tested by checking how an
initial disturbance in the conformation tensor damps out for a Couette flow
(without fluid-structure interaction). Even for very long simulations the refine-
ment scheme is stable and finally reaches the predicted damping slope. This
scheme is also tested in a situation where an external flow is applied over an
elastic flap, and a stable solution is also shown for a Giesekus fluid at Wi=0.1.
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Chapter 7

Simulation of transport by

artificial cilia:

non-Newtonian fluids

In the previous chapter a model for the flow of complex fluids generated by
artificial cilia was introduced. In this chapter this model will be used for the
simulation of such flows, and differences between the flow of a Newtonian and
a non-Newtonian fluid will be studied. Since complex fluids show a time-
dependent behavior, an extra time-scale is introduced into the system. If this
time-scale is much shorter than the actuation time-scale, the fluid stresses build
up very fast and time-dependent effects due to the rheology of the fluid are
minimal. If the fluid time-scale is much longer than the actuation time-scale,
time-dependent effects govern the motion of the cilia and the fluid. So the ratio

between the actuation period and the fluid-structure time-scale t3 =
η

Gs
in the

Newtonian case, the ratio between the relaxation time λOB and the actuation
period also becomes important for complex fluids.

7.1 Transport of a generalized Newtonian fluid

In Chapter 5 it was shown for Newtonian fluids, that the typical time scale

at which a cilium moves is t3 =
η

Gs
, for sufficiently stiff cilia. For Newtonian

fluids the viscosity η is constant, but for non-Newtonian fluids it is not, and
depends on the shear-rate γ̇. In addition to the time-scale, the initial velocity

U =
f0L

2

η
also depends on the viscosity. It is therefore useful to look at the

rate dependence of the viscosity. If we define a characteristic shear-rate by
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Figure 7.1: The viscosity (dashed line, left axis), as shear stress (solid line, right
axis) for a shear-thinning fluid. Three regions are present: (1) Newtonian low
shear-rate plateau, (2) shear-thinning region and (3) high shear-rate plateau.

γ̇ =
U

L
=

f0L

η(γ̇)
, then we obtain a characteristic shear stress of τxy = η(γ̇)γ̇ =

f0L. The characteristic shear-rate and viscosity at this shear stress can now be
found in Figure 7.1, where a typical viscosity and corresponding shear stress
profile are given for a shear-thinning fluid. Although it is important to get
estimates of the characteristic displacement, velocity and time scale, it is much
more interesting to see the influence of changes of these variables due to the
changes in f0 because this is the parameter that can be controlled in practice.
In shear-thinning fluids, three regions can be distinguished (see Figure 7.1 ):
region 1 where τxy and γ̇ are low and η is high and independent of γ̇, region 2,
where η rapidly decreases with increasing shear-rate, this is the shear-thinning
region, and region 3 where τxy is large and the viscosity independent of γ̇, but
lower than in region 1. A change of f0 within regions 1 and 3 will only result
in a small change of characteristic time-scale, velocity and displacement; the
viscosity remains the same however, hence this situation is the same as for a
Newtonian fluid. In the second region a change in f0 leads to large changes in
η and therefore the characteristic velocity and time scale will change too, far
more than in the first and third region.

We anticipate that, for the effect of the non-Newtonian behavior to be
largest, possibly resulting in enhanced net flow, the dynamic contrast between
the forward and the backward stroke of the cilia should be large, and therefore
different forces should be applied shifting back and forth between different
positions in region 2 of Figure 7.1. To study this, we propose the following
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Figure 7.2: Cilium tip velocity as function of time for R5 < 1,R6 < 1 (left)
and R5 > 1,R6 > 1 (right).

actuation scheme; apply a large actuation force f1 for a time ∆t1 as forward
stroke and a smaller force f2 for ∆t2 as a backward stroke. Both forces only act
in horizontal direction, and are related as follows: f1/f2 = (∆t2)/(∆t1). We
therefore have three free parameters: f1, f2 and ∆t1. Since the characteristic
time-scale is t3, and the typical time-scales of applying the force are ∆t1and
∆t2, two new dimensionless groups appear:

R5 =
t3
∆t1

, (7.1)

R6 =
t3
∆t2

, (7.2)

which give the ratios of the characteristic time-scale of the system to the time-
scales of the applied force. If both are smaller than unity the cilium moves
to its steady state position and remains there for the remainder of the stroke.
If R5 or R6 are larger than unity the steady state position is not reached
before the end of the applied force. See Figure 7.2 for a schematic view of the
two situations. From the scaling analysis it follows that for a given system,
the actuation force governs the time scale of movement, i.e. it controls the
dynamics of the system. In particular, if the two non-dimensional numbers
R5 and R6 are different, the dynamical behavior of the system is different
between the forward and the backward strokes, which can lead to asymmetric
cilia motion. This is true for a Newtonian as well as for a shear-thinning
fluid. However for a shear-thinning fluid this difference can be much more
pronounced since the characteristic time scale t3 itself depends on the time
scale of the applied force through its viscosity dependence, as explained above.
The relation between R5 and R6 is chosen as follows:

R5 =
η1
η2

√

f1
f2

R6 (7.3)

where η1 and η2 are the typical viscosities in forward and backward stroke
respectively. So the force ratio has a smaller influence on the difference in
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Figure 7.3: The modeled periodic domain with a single cilium. The fluid
domain (Ωf), grey solid domain (Ωs) and the cilium boundary (Γi) are indicated
in the figure. The cilium has length L and thickness Tc, the domain is square
and has dimensions (2L× 2L).

dynamics during forward and backward stroke than the viscosity ratio. Hence
even for small force ratios large differences in dynamics can be apparent when
the fluid is shear-thinning. We have carried out simulations for a Newtonian
liquid with η0 = 0.1 Pa s and a shear thinning liquid with the parameters
given in Section 6.1.2 (n = 0.2, η0 = 70 Pa s, η∞ = 1 mPa s, λ = 100 s).
The domain is 1 mm × 1 mm, the cilium is L × Tc = 0.5 mm × 10µ m, see
Figure 7.1 and the actuation force is varied in order to investigate its influence.
Simulations have been performed for 20 cycles, in order to exclude transient
effects. Simulations have been performed for ∆t1 = 0.02 s, ∆t2 = 0.04 s and
for four different actuation forces f1 = [2, 3, 4, 5] · 105 Nm−3. This results in
f2 = [1, 1.5, 2, 2.5] · 105 Nm−3. The cilium trajectories for both the Newtonian
and shear-thinning fluid and an actuation force of f1 = 4 ·105Nm−3 are shown
in Figure 7.4. The red positions are obtained during forward motion, the blue
positions during backward motion. While the path of the cilium is more or less
symmetric around the initial configuration for the Newtonian fluid, the path in
the shear-thinning fluid is tilted in the forward stroke direction. This is a direct
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consequence of the different viscosities and time-scales during the forward and
backward stroke. Since the forward stroke involves a higher force, the time-
scale is shorter and hence there will be more deflection. During the backward
stroke the force is lower and the time-scale is larger. For the Newtonian fluid
R5 =

√
2R6, for this actuation scheme, so the dynamics are different during

forward and backward stroke. A similar analysis for the shear-thinning fluid
requires information on the actual viscosities, which will be shown in the next
paragraph. A typical viscosity profile at the start of forward and backward

Figure 7.4: The forward (blue) and backward (red) stroke of a cilium in a
Newtonian fluid (left) and the shear-thinning fluid (right). Both have the
same actuation cycle with f1 = 4 · 105 Nm−3.

actuation is shown in Figure 7.5, from which it is clear that the lowest viscosity
found in forward stroke is about 10 times lower than the viscosity found in the
backward stroke. This leads to R5 = 0.1

√
2R6, so a ten times smaller ratio

than for the Newtonian case. It is also clear that the viscosity itself is not
constant over the entire domain, thus leading to different flow profiles further
away from the cilium. This has also been observed by Smith et al. [79] in a
Maxwell fluid, where particle motion was different for a Newtonian liquid than
for the Maxwell fluid. The net flow produced during one actuation cycle is
computed at the 11th cycle. The path followed by the cilium is constant for
each cycle by then, so no transient effects are observed anymore. The channel
width is taken 1mm, yielding a square channel cross-section. In addition to the
flow rate the efficiency was computed by taking the ratio of the net flow over
the total amount of fluid which was moved (so both forward and backward).
For the studied actuation parameters the results are given in Figure 7.6.
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Figure 7.5: The decadic logarithm of the viscosity at the beginning of forward
stroke of the 11th cycle (left) and at the beginning of the backward stroke of
the same cycle (right) for a generalized Newtonian fluid.
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Figure 7.6: The flow rate and the efficiency for different actuation forces for a
Newtonian and generalized Newtonian fluid.

Flow is generated in all cases, but the flow of a shear-thinning fluid is
positive while the flow of a Newtonian fluid is negative. So the flow direction
depends on the fluids constitutive relation. The efficiency is low in both cases,
but for the Newtonian fluid it is about constant at 0.55%, while for the shear-
thinning fluid it increases. The reason for the high efficiency at the lowest
actuation force is not known.

7.2 Conclusions

The motion of a single cilium in a periodic array has been modeled, both
within a Newtonian and a shear-thinning fluid. A scaling analysis showed
that the characteristic displacements, velocities and time-scales of the system
are determined by the solid modulus, cilium length, fluid viscosity and applied
force only. Hence for a system with a given geometry and modulus, the applied
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force is the only control parameter. The dynamical response of the cilium to
the applied force is determined by the ratio of the characteristic time-scale of
the system itself to the time-scale of applying the load both for Newtonian
and shear-thinning fluids. Hence, applying different forces and loading rates
during the forward and the backward stroke can lead to asymmetric motion of
the cilium resulting in a net induced flow. This effect can be much larger for
shear-thinning fluids, and non-Newtonian fluids in general, than for Newtonian
fluids due to the shear-rate dependency of viscosity of the former, causing a
different viscosity and hence different characteristic time scale between the two
strokes. We found that, for a particular design of the system, this difference
in dynamical behavior led to higher flow rates in opposite direction and higher
efficiencies for saliva than for a Newtonian liquid with the same actuation and
comparable cilia deflection.
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Chapter 8

Conclusions and

recommendations

In this thesis fluid propulsion by artificial cilia was studied. In Chapter 2, a
model of cilia driven flow was developed and all the necessary tools for studying
this flow were introduced. After performing a dimension analysis, a charac-
teristic time-scale was found in this fluid-structure interaction problem, even
when inertial effects in the fluid and solid were absent. The time-scale scales
with the viscosity over the cilium stiffness. This means that the motion of and
flow generated by cilia is inherently time-dependent. In Chapter 3, the flow in
an electrostatically actuated micro-mixer was studied with the model devel-
oped in the previous chapter. It was shown that fluid inertia plays important
roles in this micro-mixer. It changed the flow direction, with respect to a fluid
having no inertia, and it improved the mixing performance. It is important to
note however that the model used, was not very accurate near the moving cilia.
This problem was addressed in Chapter 4, where two causes for this inaccu-
racy were exposed. The first cause was the fictitious domain method. In this
method a fictitious fluid body is included in the equations of motion. This was
solved by using the eXtended Finite Element Method (xfem ), where the equa-
tions of motion are applied on the actual domains only. The second problem
was imposing the kinematic interface condition at the cilium-fluid interface.
This condition couples the fluid velocity to the solid velocity. Previously this
condition was enforced via a constraint on the fluid and solid velocity via a
Lagrange multiplier. The stability of systems being constrained with Lagrange
multipliers strongly depends on the discretization of the Lagrange multiplier,
the fluid and solid. For systems with moving interfaces it is often difficult to
find a stable combination. This problem was solved by introducing an adapta-
tion of a recently developed method of imposing Dirichlet conditions in a weak
manner. This method was shown to be stable, accurate and showed optimal

109



convergence rates. Only one additional parameter was introduced, which is
equal to the viscosity in the Newtonian case and chosen equal to the polymer
viscosity in the non-Newtonian case. The model developed in Chapter 4 was
used for simulating cilia driven flow of a Newtonian fluid in Chapter 5. First
it was shown that these systems indeed have a time-scale which governs the
motion of the cilium. Since the system is time-dependent, the influence the ac-
tuation frequency on the transport and mixing performance was investigated.
It was shown that the transport performance changes strongly with the actu-
ation frequency. Both at low and high actuation frequencies the flow-rate was
low, indicating an optimal operational frequency, which was indeed found. A
phase delay between individual cilia aids mixing, [9]. Since the motion of a
cilium depends on the time-scale of the system and the actuation frequency,
changing the time-scale could lead to improved mixing. Hence the stiffness of
one of two cilia was changed by changing the modulus and the cilium thick-
ness. For mixing analysis a blob of material was tracked for several periods
and the length was recorded. It was found that increasing the thickness of
the cilium had larger effects on the mixing performance than increasing the
modulus. Exponential length increase, which indicates good mixing, seemed
to be present, although the amount of periods was too low to confirm this. The
rheological properties of saliva were measured, and it was shown that human
whole saliva has a high zero-shear rate viscosity of 70 Pa s, shows pronounced
shear-thinning since the viscosity scales with γ̇−0.8. Additionally a model for
studying viscoelastic fluid-structure interaction was developed and tested in
Chapter 6. In order to perform simulations within a realistic time-frame, a
local mesh refinement technique was developed in the same chapter. This
scheme was shown to be stable in a Couette flow of an Oldroyd-B fluid, which
was initially disturbed. In the final Chapter 7, the influence of rheology on
the motion and flow generated by cilia was investigated. For a generalized
Newtonian fluid, the influence of the applied force magnitude on the flow-rate
was investigated, and compared to a Newtonian fluid. It was observed that
the flow-rate shows a linear dependence on the actuation force for the Newto-
nian case, while the behavior is non-linear for the generalized Newtonian case.
This indicates that slight variations in the actuation force large differences in
flow-rate are expected for generalized Newtonian fluids.

8.1 Recommendations

In this thesis an accurate numerical model of fluid propulsion by artificial
cilia was developed. The model incorporates fluid-structure interaction, with
Newtonian or non-Newtonian fluids and local mesh adaptation. This numerical
tool can also be used for the simulation of other fluid-structure interaction
problems, such flow of fluids containing vesicles, rigid and non-rigid particles.
One of the most interesting problems in this respect is accurately modeling
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the deformation of cells in narrow channels, where large deformations of the
cell membrane are expected. Other possible applications are the modeling of
production processes which involve moving boundaries and contain two phases,
complex fluids, suspensions or combinations of these aspects.

In this thesis only a small portion of all the possible problems arising in
ciliar flow have been addressed. An interesting problem from a physical point
of view is proving that ciliar motion can become chaotic when the problem
becomes highly non-linear. This would have the direct result that the flow is
also chaotic, opening up the road for efficient mixers. Since chaotic systems are
sensitive to initial disturbances, a practical question is how much the motion
of a cilium depends on the initial direction of the actuation force. If this is
sensitive it could well be that it becomes hard to compare experimental data
with simulations and getting reproducible experimental results.
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Experimental investigation of the flow induced by artificial cilia. Lab Chip,
11:2017, 2011.

[5] J. Belardi, N. Schorr, O. Prucker, and J. Rühe. Artificial cilia: Genera-
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[40] N. Moës, E. Béchet, and M. Tourbier. Imposing Dirichlet boundary condi-
tions in the extended finite element method. Int. J. Numer. Meth. Engng.,
67:1641–1669, 2006.

[41] J. Dolbow and I. Harari. An efficient finite element method for embedded
interface problems. Int. J. Numer. Meth. Engng., 78:229–252, 2009.

[42] M.K. Singh, P.D. Anderson, and H.E.H. Meijer. Understanding and Opti-
mizing the SMX mixer. Macromolecular Rapid Communications, 30:362–
376, 2009.

[43] M. Milas and M. Rinaudo. Properties of xanthan gum in aqueous so-
lutions: role of the conformational transistion. Carbohydrate Research,
158:191–204, 1986.

[44] J.A. Han and S.T. Lim. Structural changes in corn starches during alkaline
dissolution by vortexing. Carbohydrate Polymers, 55:193–199, 2004.

[45] N. Kikuchi and J.T. Oden. Contact problems in elasticity: a study of

variational inequalities and finite element methods. SIAM, Philadelphia,
8th edition, 1988.

[46] L.D. Landau, E.M. Lifschitz, and L.P. Pitaevskii. Electrodynamics of

Continuous Media. Butterworth Heinemann, Oxford, 1984.

[47] P. Danckwerts. The definition and measurement of some characteristics
of mixtures. Applied Scientific Research, 3:279–296, 1952.

116



[48] C.E. Shannon. A Mathematical Theory of Communication. Bell Sys.

Tech. J., 27:379–423,623–656, 1948.

[49] M. Baltussen, P. Anderson, F. Bos, and J. den Toonder. Inertial effects
in a micro-mixer based on artificial cilia. Lab Chip, 9:2326 – 2331, 2009.

[50] R. Glowinski, T.W. Pan, and J. Periaux. A fictitious domain method
for Dirichlet problem and applications. Comp. Meth. Appl. Mech. Eng.,
111:283–303, 1994.

[51] R. Glowinski, T.W. Pan, T.I. Hesla, and D.D. Joseph. A distributed
Lagrange multiplier/fictitious domain method for particulate flows. Int.

J. Multiphase Flow, 25:755–794, 1999.

[52] W.R. Hwang, M.A. Hulsen, and H.E.H. Meijer. Direct simulation of
particle suspensions in sliding bi-periodic frames. J. Comput. Phys.,
194(1):742–772, 2004.

[53] J. de Hart, G.W.M. Peters, P.J.G. Schreurs, and F.P.T. Baaijens. A
three-dimensional computational analysis of fluid-structure interaction in
the aortic valve. J. Biomech., 35(1):699–712, 2003.
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unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der

Universität Hamburg, 36:9–15, 1971.

[66] J. Dolbow, A. Embar, and I. Harari. Imposing Dirichlet boundary con-
ditions with Nitsche’s method and spline-based finite elements. Int. J.

Numer. Meth. Engng., 83:877–898, 2010.

[67] A. Zillian and H. Netuzhylov. Hybridized enriched space-time finite ele-
ment method for analysis of thin-walled structures immersed in general-
ized Newtonian fluids. Computers and Structures, 88:1265–1277, 2010.

[68] P. Causin, J.G. Gerbeau, and F. Nobile. Added-mass effect in the design
of partitioned algorithms for fluid-structure problems. Comp. Meth. Appl.

Mech. Eng., 194:4506–4527, 2005.

[69] M. von Scheven and E. Ramm. Strong coupling schemes for interaction
of thin-walled structures and incompressible flows. Int. J. Numer. Meth.

Engng., 87:214–231, 2011.

[70] H.G. Schuster and W. Just. Deterministic Chaos. Wiley-VCH, Weinheim,
4th edition, 1984.

[71] J.R. Stokes and G.A. Davies. Viscoelasticity of human whole saliva col-
lected after acid and mechanical stimulation. Biorheology, 44:141–160,
2007.

[72] M.D. Kaplan and B.J. Baum. The functions of saliva. Dysphagia, 8:225–
229, 1993.

[73] J.R. Stokes and G.A. Davies. Viscoelasticity of human whole saliva col-
lected after acid and mechanical stimulation. Biorheology, 44:141–160.

[74] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular emphasis on the
incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Eng.,
32:199–259, 1982.

118
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Appendix A

Time integration and

linearizion

The set of governing equations (2.1-2.12) is both time dependent and non-
linear. By applying a time stepping procedure for all time dependent equations
and linearizing all non-linear terms, a set of linear equations can be solved for
each individual time step. First the time dependent terms will be treated,
followed by the non-linear terms.

A.1 Time integration

All time dependent terms are either solved with first order implicit Euler
scheme, which for

∂a

∂t
+ f(a) = 0

reads:
∂a

∂t
+ f(a) =

ai+1 − ai

∆t
+ f(ai+1) +O(∆t), (A.1)

where the subscripts i + 1 and i indicate the value at the i + 1-th and i-th
time step and ∆t is the time step. This method is first order accurate and

is unconditionally stable for all time steps if Re(
∂f

∂ai+1
) > 0. When higher

accuracy is required we choose to use a second order Gear method [80], which
requires evaluation of f(a) only at the current time step i+ 1:

∂a

∂t
+ f(a) =

3ai+1 − 4ai + ai−1

2∆t
+ f(ai+1) +O(∆t2). (A.2)

This method is also unconditionally stable, for the same condition as mentioned
above.
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If a variable at time i+1 is required ( for instance in the implicit treatment
of the viscoelastic stress ) implicit Euler is used, yielding:

aj+1 = aj + f(aj+1)∆t+O(∆t2), (A.3)

which is second-order accurate. So even when the time derivatives of a are
treated with (A.2), it’s update can be taken with (A.3), without losing the
accuracy [81].

A.2 Linearization

The fluid-structure interaction problems presented in this thesis requires an
iterative solution approach, since the interface position changes in time. No

Several terms in the governing equations of motion are non-linear, more
specifically they are quadratic. Since For the linearizion of these terms we
use a Newton-Raphson scheme, which is second-order convergent. For this the
following approximation of ab is used:

ab = (aj + δa)(bj + δb) =ajbj + ajδb+ δajbj + δaδb (A.4)

aj+1bj + ajbj+1 − ajbj + δaδb, (A.5)

where j indicates the previous iterative step and j+1 the current one, 〈〉j+1 =
〈〉j + δ〈〉.

Where non-linear terms occur in governing equations of the solid, which
has a Lagrangian basis, the appropriate reference frame has to be chosen. Here
we use the total Lagrange approach, where all deformations are related to the
original configuration.
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Appendix B

Intersecting and Delaunay

triangulation

The eXtended Finite Element Method presented in this thesis requires the
subdivision of fluid elements in a part which belongs to the fluid domain and a
part which doesn’t. Splitting the domain into two parts consists of two steps,
first the intersection of the boundary of the solid with the edges of the fluid
element is found and second the intersection points and the nodes of the fluid
element are used as input for a Delaunay triangulation. Both steps, and their
practical implementation, are discussed in this appendix.

B.1 Intersecting

The intersection points between Γfs and all edges of the fluid elements are found
by starting at the first element of Γfs and checking if it intersects with any of the
edges of the fluid element which contains the first node of the first element. If
an intersection is found, the search for intersections is continued in the adjacent
fluid element. If no intersection is found, the search is continued with the next
element of Γfs. Both the elements on Γfs, which are solid element edges, and
the edges of the fluid element are parameterized by the shape functions of the
elements. In the Finite Element Method, the shape functions are polynomials
and the elements are isoparametrically mapped to a reference element. Hence
the position x of a local coordinate (ξl, η l) is given by:

x =

N
∑

i=1

φi(ξl, η l)xi, (B.1)

where φi are the shape functions of the element. At an intersection the coor-
dinate along the solid element edge xs is equal to the coordinate at the fluid
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Figure B.1: The method for finding intersections of interface elements fs0−5

with the edges of the fluid elements F0−5. The search starts in fs0, and the
intersection with edge 2 of F0 is found, and the search for intersections of
fs0 with F1 continues. Since no other intersections of s0 with F1 are found,
the search continues with fs1, which has no intersections with F1 too, so
intersections between fs2 and F1 are sought. This intersection is found and
the search continues in F4 etc..

element xf:

xs − xf =

Ns
∑

i=1

φi,s(ξint,s, ηint,s)xi,s −
Nf
∑

j=1

φj,f(ξint,f, ηint,f)xj,f = 0, (B.2)

where (ξint,s, ηint,s) are the local coordinates of the intersection point at the
solid edge and ξint,f, ηint,f the local coordinates of the intersection point at the
fluid edge. At an element edge either ξ or η is −1, 1. Hence Eq. (B.2) reduces to
a two equations, one for each spatial dimension of x, and two unknowns ((ξint,s
or ηint,s) and (ξint,f or ηint,f)). This system can be solved if an intersection
exists. The existence of a solution depends on the order of the polynomial and
can be determined before computation of the intersection point takes place.
If both the shape functions of the fluid and solid are linear, or if both are
quadratic and one is not curved, Eq. (B.2) can be solved analytically. In all
other cases the resulting system has to be linearized and solved numerically. By
solving Eq. (B.2) all intersection points are found, even if they lay outside the
reference domain [−1, 1]. Hence only intersection points within the reference
domain are treated as true intersection points. By following all solid elements
along Γfs, it stays continuous and problems with holes are avoided, which
makes this method robust. By using the shape functions of the elements, the
method is general. Practical limits due to the linearizion of the final equation
will probably limit its use to lower order polynomials however, which is fine
since we only use Q2 elements for fluid and solid.
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Figure B.2: In Figure (a) not all inner products ni · ai are negative, hence p1
lies outside T1. In Figure (b), all inner products ni · ai are negative, which
means p1 lies inside T1.

B.2 Delaunay triangulation

All nodes of an intersected fluid element and the intersection points are input
for a Delaunay triangulation. A Delaunay triangulation consists of two steps:

• Adding points to the triangulation.

• Making all triangles locally Delaunay.

The first step is performed in the following way:

• Two triangular elements are created from the all nodes of the fluid ele-
ment except the center node.

• The remaining intersection points are added one by one. At each addition
the residing element is determined and this element is subdivided into
three new elements.

Point p1 is residing in triangle T1 if each inner product of the normal of edge
ei with the vector ai connecting p1 with the starting point of ei is negative, as
shown in Figure B.2.
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Appendix C

Weakly-imposed Dirichlet

boundary conditions for

the Poisson equation

The Poisson equation on the domain Ω with the respective Dirichlet and Neu-
mann boundary conditions is:

∇
2d = 0 in Ω, (C.1)

n ·∇d = tN on ΓN, (C.2)

d = dD on ΓD, (C.3)

where tN is the flux on the Neumann boundary and dD the value for the
displacement on the Dirichlet boundary. By multiplying with test-function
w, applying partial integration, and substitution of the Neumann boundary
condition, the weak form of Eq. (C.1) reads:

(

∇wT ,∇d
)

Ω
− (w, tN)ΓN

− (w,n ·∇d)ΓD
= 0. (C.4)

The Dirichlet boundary condition is imposed in a weak manner by introducing
the projection of E−∇d as an extra equation to the system and after partial
integration the weak form of this additional equation reads:

(H ,E)Ω + (n ·H,d)ΓN
+ (n ·H ,d)ΓD

= 0. (C.5)

By adding and substracting the last term it reads:

(H ,E)Ω + (n ·H,d)ΓN
+ (n ·H,d)ΓD

+ (n ·H ,d)ΓD
− (n ·H ,d)ΓD

= 0,
(C.6)
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where the Dirichlet boundary condition can be filled in into the last term:

(H,E)Ω + (n ·H,d)ΓN
+ (n ·H,d)ΓD

+ (n ·H ,d)ΓD
− (n ·H ,dD)ΓD

= 0.
(C.7)

After partially integrating back, the final equation for E reads:

(H,E)Ω + (n ·H,d− dD)ΓD
= 0. (C.8)

In Eq. (C.4), ∇d in the Dirichlet boundary term is replaced by E by adding
(w,n · (∇v −E))ΓD

to the system. The final set of equations then reads:

(

∇wT ,∇d
)

Ω
− (w, tN)ΓN

−
(w,n ·∇d)ΓD

+ (w,n · (∇d−E))ΓD
= 0,

(H,E)Ω + (n ·H,d− dD)ΓD
= 0. (C.9)

The extra variable E can be eliminated from the system in a similar way as
was done in Section 4.2.3.
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Samenvatting

Microfluidische analyse apparaten worden steeds meer gemeengoed in de klin-
ische analyse. Het mengen en transporteren van meerdere vloeistoffen is een
veel voorkomende stap in deze apparaten. Omdat vloeistoftransport op mi-
crometerschaal ook in de natuur belangrijk is, kunnen werkingsprincipes uit
de natuur bestudeerd en gekopiëerd worden om vloeistoftransport en menging
in microfluidische apparaten teweeg te brengen. Een voorbeeld van vloeistof-
transport in de natuur zijn de trilhaartjes die men op verschillende micro-
organismen en in de longen aantreft. Deze haartjes, cilia genaamd, gedragen
zich als micro-actuatoren en verplaatsen de omliggende vloeistof. Dit resul-
teert in de voortbeweging van het micro-organisme, of in de stroming van
de vloeistof. Omdat de cilia klein zijn, wordt de stroming gedomineerd door
viskeuze effecten, hetgeen in het algemeen ook geldt voor de microfluidische ap-
paraten. Recentelijk zijn verschillende zogenaamde artificiële cilia ontwikkeld,
die allen vloeistoffen verplaatsen [1–8].

In dit proefschrift wordt een numeriek model opgesteld en gebruikt om de
werkingsprincipes die ten grondslag liggen aan deze apparaten te bestuderen
en te verbeteren. Dit model beschrijft de vloeistof-vaste stof interactie van een
cilium met de omringende vloeistof. Aangezien de deformaties van de cilia,
die als slanke balken kunnen worden beschouwd, groot zijn, is het een vereiste
dat het numerieke model deze grote deformaties ook nauwkeurig beschrijft. Er
is daarom gekozen voor een model waar de vloeistof op een vast, Euleriaans,
raster wordt beschreven en de vaste stof op een meebewegend, Lagrangiaans,
raster. In eerste instantie is een fictitious domain/Lagrange multiplier techniek
gebruikt om het vloeistof en vaste stof domein met elkaar te verbinden. Uit
simulaties bleek echter dat deze methode te onnauwkeurig was, met name in
de nabijheid van het cilium.

Aan deze onnauwkeurigheid liggen twee oorzaken ten grondslag, zijnde het
fictieve vloeistofdomein en de discretisatie van de Lagrange multiplier. De
eerste bron van onnauwkeurigheid is verholpen door het gebruik van de eX-
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tended Finite Element Method (xfem). De tweede oorzaak is verholpen door
het zwak voorschrijven van de randvoorwaarden op de ciliumrand, zonder ge-
bruik te maken van Lagrange multipliers. De combinatie van beiden, levert een
nauwkeurige methode op, waarmee vloeistof-vaste stof interactie, voor New-
tonse, gegeneraliseerd Newtonse en viscoelastische vloeistoffen. Deze methode
heeft als voordeel dat een nauwkeurige oplossing gevonden wordt met optimale
convergentie, zonder dat er probleem afhankelijke parameters gëıntroduceerd
dienen te worden.

Dit nieuwe numerieke model wordt in hoofdstuk 4 gebruikt om de invloed
van de actuatie-frequentie op de transport- en mengeffectiviteit te bestuderen.
Er wordt aangetoond dat er een optimale frequentie bestaat waarop het debiet
maximaal is. Dit optimum wordt veroorzaakt door de intrinsieke tijdsafhan-
kelijkheid van het vloeistof-vaste stof probleem, welke niet veroorzaakt wordt
door massatraagheid van het systeem. De frequentie waarbij het debiet op-
timaal is, is niet hetzelfde als de frequentie waarbij de hoeveelheid vloeistof
verplaatst per cyclus optimaal is. Daarom is het van belang het debiet te opti-
maliseren en niet de hoeveelheid verplaatste vloeistof per cyclus. Het mengge-
drag van artificiële cilia is bestudeerd door twee cilia te nemen die een ver-
schillende intrinsieke tijdschaal hebben en deze met een roterende kracht met
gelijkblijvende amplitude en frequentie te actueren. Doordat beide cilia een
andere tijdschaal hebben, bewegen zij ook anders. Dit leidt tot een faseverschil
tussen beiden, hetgeen goed menggedrag tot gevolg heeft [9]. De mengeffec-
tiviteit wordt gekwantificeerd door de vorm van een druppel, die intiëel tussen
de cilia geplaatst is, in de tijd te volgen. Een exponentiële toename van de
omtrek wijst op chaotisch mengen. Een toename van de omtrek, al dan niet
exponentieel, is gevonden in alle simulaties. Het veranderen van de dikte van
een van de twee cilia heeft een duidelijk positief effect op de mengeffectiviteit.
De effectiviteit wordt ook bepaald door de hoeveelheid vloeistof die verplaatst
wordt per actuatiecyclus. Bij lage actuatiefrequenties wordt er meer vloeistof
verplaatst en is de menging beter dan bij hoge actuatiefrequenties waar weinig
vloeistof wordt verplaatst.

Het numerieke model uit hoofdstuk 4 is aangepast in hoofdstuk 6 om de in-
vloed van niet-Newtons vloeistofgedrag op de stroming te onderzoeken. Tevens
is een methode ontwikkeld om locale rasterverfijning toe te passen, hetgeen
nauwkeurige simulaties toelaat die minder rekentijd vergen. Zowel het vis-
coelastische vloeistof-vaste stof interactie probleem als de locale rasterverfijn-
ing zijn getoetst en stabiel en nauwkeurig bevonden.

Dit numerieke model is gebruikt in hoofdstuk 7 om stroming van gegener-
aliseerd Newtonse en viscoelastische vloeistofstroming gëınduceerd door ar-
tificiële cilia te bestuderen. Het debiet van een gegeneraliseerd Newtonse
vloeistof laat een grotere afhankelijkheid van de actuatiekracht zien dan het
debiet van een Newtonse vloeistof. Dit wordt verklaard door de aanwezigheid
van een extra tijdschaal in het niet-Newtonse systeem.

In het laatste hoofdstuk worden de conclusies en aanbevelingen gegeven.
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