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This paper deals with the single vehicle routing problem with stochastic demands (VRPSD). We formu-

late a stochastic dynamic programming model and implement Approximate Dynamic Programming (ADP)

algorithms to overcome the curses of dimensionality. The developed ADP algorithms are based on Value

Function Approximations (VFA) with lookup table representation. The standard VFA algorithm is extended

and improved for the VRPSD. In the improved VFA algorithm (VFA+), we consider a Q-learning algo-

rithm with bounded lookup tables and efficient maintenance. The VFA+ reduces the computational time

significantly and still delivers high quality solutions. The significant reduction in computational time enables

solving larger scale instances, which is important for real-life decision making. Test instances found in the

literature are used to validate and benchmark our obtained results.
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1. Introduction

Consider a vehicle starting at a central bank and filling up ATMs at different places. For security

reasons, it is not allowed to carry a large amount of money. Consequently, the vehicle is forced to

make several short tours during its operating period (e.g., a working day) going back and forth to

the central bank. Moreover, the needed cash in the ATMs is not known beforehand. Other similar

examples of this described problem family in real-life are: beer distribution to retail outlets, the re-

supply of baked goods at food stores, replenishment of liquid gas at research laboratories, stocking

of vending machines (Yang et al. 2000), local deposit collection from bank branches, less-than-

truckload package collection, garbage collection, home heating oil delivery, and forklift routing (Ak

and Erera 2007).

The above described problem is related to the well-known Vehicle Routing Problem (VRP). The

standard deterministic VRP is described extensively in the literature (see e.g., Laporte 2007). In

contrast, this paper studies a single vehicle routing problem where stochastic demand is incurred

(denoted as the VRPSD), very similar to Secomandi (2001). In general, this problem is similar

to the standard vehicle routing problem where the aim is to construct a set of shortest routes for

a fleet of fixed capacity. In the stochastic case, however, each customer has a given and known

demand distribution and the actual demand realization is unknown until the vehicle arrives at the

customer, when the customer’s actual demand is observed. In the VRPSD, the vehicle may be

unable to satisfy the actual customer’s demand realization when visiting the customer (denoted

as a failure). As such, the vehicle needs to return to the depot for a refill and return back to the

partially served customer. In general, the vehicle serves every customer once unless a failure occurs,

in which case a detour-to-depot is executed.

In this paper, we formulate the VRPSD using a stochastic dynamic programming model.

Dynamic programming (DP) provides an elegant framework to model stochastic optimization prob-

lems. However, DP faces the well-known three curses of dimensionality (states, outcomes, and

decisions) and cannot deal with practical size problems. In addition, the single vehicle routing

problem with stochastic demands is a difficult and computationally demanding problem. Over the

past years, computing power has increased dramatically, giving a sound basis to efficiently handle

stochastic and dynamic vehicle routing problems. Our paper employs an Approximate Dynamic

Programming (ADP) strategy. ADP emerges as an efficient and effective tool in solving large scale

stochastic optimization problems, combining the flexibility of simulation with the intelligence of

optimization. It is a powerful approach to model and solve problems which are large, complex and
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with stochastic and/or dynamic elements (Powell 2007). Referring to Pillac et al. (2012), ADP

successfully solves large-scale freight transport and fleet management problems while coping with

the scalability problems of DP (see also e.g., Godfrey and Powell 2002, Powell et al. 2002, Powell

and Van Roy 2004, Simão et al. 2009).

In this paper, we develop ADP algorithms based on Value Function Approximations (VFA)

with lookup table representation. We first design a standard VFA algorithm by using the ADP

framework. To achieve good computational performance and solution quality, several adaptations

are needed. Using post-decision state variables in ADP allows making decisions without having

to compute the expectation. However, for the VRPSD, post-decision state variables omit impor-

tant information about the current state and the decision. Therefore, we consider a Q-learning

algorithm with lookup table representation in which we store the state-decision pairs and their

values (i.e., Q-factors). However, the size of a standard lookup table increases exponentially (as

it depends on both the state and decision). For this reason, we improve the standard Q-learning

algorithm with bounded lookup tables and efficient maintenance strategies. We also design effec-

tive exploration/exploitation strategies such that we obtain higher quality solutions with lower

computational time, as compared to the rollout algorithm in Secomandi (2001). We denote this

improved VFA algorithm as VFA+.

The contribution of this paper to the literature is as follows. First, we formulate the vehicle

routing problem with stochastic demands using a unified stochastic dynamic programming mod-

eling framework (Powell 2007, 2011, Powell et al. 2012), which allows for flexible extensions of the

problem in real-life applications. Second, we design efficient ADP algorithms that allow us to solve

large scale problems in reasonable time. The standard VFA with lookup table representation is

improved using a Q-learning algorithm with bounded lookup tables and efficient maintenance. Our

algorithm comparisons on test instances from the literature (Secomandi 2001, Solomon 1987) show

that, for small size test instances, the VFA+ algorithm on average covers more than 50% of the

performance gap between the Rollout and the optimal solution; for large size test instances, VFA+

consistently outperforms the Rollout algorithm with better solution quality and less computational

time. The significant reduction in computational time enables solving larger scale instances, which

is important for real-life decision making. Further, we analyze the effect of the depot location on the

relative performances of the algorithms. Last, this paper provides important insights on applying

ADP to deal with stochastic and combinatorial problems such as VRPSD, using bounded lookup

tables with efficient maintenance and exploration-and-exploitation strategies.
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The paper is structured as follows. The literature review is given in Section 2. The problem

formulation is presented in Section 3, and the ADP algorithms are described in Section 4. The

experiment design and numerical results are given in Sections 5 and 6. Section 7 concludes this

paper.

2. Literature review

Stochastic vehicle routing problems are characterized by some random elements in their problem

definition (Gendreau et al. 1996a). In the literature, researchers consider stochastic demands (see

e.g., Bertsimas 1992, Dror et al. 1993), stochastic customers (see e.g., Bent and Van Hentenryck

2004), stochastic demand and customers (see e.g., Gendreau et al. 1995, Gendreau et al. 1996b)

and stochastic travel times (see e.g., Laporte et al. 1992, Kenyon and Morton 2003). Gendreau

et al. (1996a) review the literature on stochastic VRPs and their different flavours.

There are a number of papers closely related to our paper. Secomandi (2000, 2001) deals with

the VRPSD, considering detour-to-depot schemes and allowing for early replenishment. Secomandi

(2000) presents a stochastic shortest path problem formulation based on a Markov Decision Process

(MDP), and develops two heuristics: a rollout algorithm and an approximate policy iteration.

Secomandi (2001) gives more details on the rollout algorithm, which uses a nearest insertion and a

2-int heuristic as its base sequence, and a cyclic heuristic to generate new partial routes. According

to the author, the rollout policy is the first computationally tractable algorithm for approximately

solving the problem under the re-optimization approach. Novoa and Storer (2009) extend the rollout

algorithm by implementing different base sequences, two-step look-ahead policies and pruning

schemes. Goodson et al. (2013) present a rollout policy framework for general stochastic dynamic

programs and apply the framework to solve for VRPs with stochastic demands and duration limits.

The base sequence uses local search utilizing a relocation neighborhood and a first-improving search

criteria, as well as a combined pre- and post-decision state heuristic. Furthermore, the algorithm

is enhanced by a problem-specific dynamic decomposition scheme.

This paper can also be situated in the family of re-optimization algorithms for the VRP with

stochastic demands. Dror et al. (1989, 1993) are the early papers that introduce the re-optimization

strategies. They optimally re-sequence the unvisited customers whenever a vehicle arrives at a

customer and observes the demand. Secomandi and Margot (2009) also considers a VRPSD under

re-optimization. They formulate the problem in terms of a finite horizon MDP for the single vehicle
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case. They develop a partial re-optimization methodology to compute suboptimal re-optimization

policies for the problem. In this methodology, they select a set of states for the MDP by using two

heuristics: the partitioning heuristic and the sliding heuristic. They compute an optimal policy on

this restricted set of states by a backward dynamic programming.

In the VRPSD literature, there are a number of papers dealing with developing an optimal

restocking policy with a predefined customer sequence. Yang et al. (2000) study strategies of

planning preventive returns to the depot at strategic points along the vehicle routes. They prove

that for each customer, there exists a threshold number such that the optimal decision is to continue

to next customer if the remaining load is greater than or equal to the threshold number or otherwise

to return to the depot for replenishment.

Tatarakis and Minis (2009) study the multi-product delivery routing with stochastic demands.

They develop a dynamic programming algorithm to solve a compartmentalized case of multi-

product delivery to derive the optimal policy in a reasonable amount of time. Minis and Tatarakis

(2011) extend the problem to a pickup and delivery case of the VRPSD. They provide an algorithm

to determine the minimum expected routing cost and a policy to make the optimal decisions

including the detour-to-depot decisions for the stock replenishment. Recently, Pandelis et al. (2012)

prove the optimal structure of the same problem for any positive number of multiple products.

The VRPSD is also studied with additional constraints. Erera et al. (2010) consider VRP with

stochastic demands and constraints on the travel time durations of the tours. The authors define and

study various restocking detour policies in the paper. Lei et al. (2011) study the VRP problem with

stochastic customers with time windows. The problem is modeled using stochastic programming

with recourse and the solution strategy is proposed as a large neighborhood search heuristic.

In this paper, we model and solve the VRPSD using an ADP framework. Powell (2007, 2011)

provide a comprehensive introduction to the basic ideas of ADP and address key algorithmic issues

when designing ADP algorithms. For the dynamic VRP problems, a unified framework is presented

in Powell et al. (2012) where various polices including the ADP approach are explained.

3. Problem description and model formulation

We study a single vehicle routing problem with stochastic customer demands (VRPSD). On an

undirected graph G = (V,E), V = {0, . . . ,N} is the vertex set and E is the edge set. Vertex 0
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denotes the depot, whereas vertices i= 1, . . . ,N denote the customers to be served. A nonnegative

distance dij is associated with each edge (i, j)∈E, representing the travel distance (or cost, time,

etc.) between vertices i and j.

A single vehicle with full capacity Q starts from the depot, serves all the customers to perform

only deliveries (or only pick-ups), and returns to the depot at the end of the tour. Each customer

i ∈ V is associated with a stochastic demand Di, the true value of which is revealed upon the

arrival of the vehicle at the customer. If the vehicle does not have sufficient capacity to serve a

customer (a “failure” occurs), it partially serves the customer, returns to the depot to replenish,

and comes back to the customer to fulfill the remaining demand. The vehicle then continues its

tour to the next customer or the depot (at the end of the tour). The objective is to minimize the

expected total travel distance. We assume that the depot has plenty quantity of the commodity

and the maximum possible demand of each customer is smaller than the vehicle capacity.

If early replenishment is allowed, the vehicle can return to the depot to replenish before encoun-

tering a failure. In the offline planning version of the problem, the vehicle always follows a prede-

termined order to visit the customers, while in the online planning version, the vehicle is allowed

to re-route (re-optimize) after serving each customer. In this paper, our focus is on the online

planning problem with early replenishment (as in Secomandi 2000, 2001).

Next, we formulate the problem as a stochastic dynamic program, using the notation as described

in Powell (2007, 2011).

The problem is divided into t= 0,1, . . . ,N,N + 1 stages. t= 0 represents the start of the tour at

the depot, t=N + 1 represents the end of the tour back to the depot, and t= 1, . . . ,N represents

the number of customers that have been visited during the tour.

State

The state variable is defined as:

St = (it, lt, Jt), t= {0,1, . . . ,N,N + 1}, (1)
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where
it: the current customer being served (or the depot when t= 0 and t=N + 1);

lt: the current capacity in the vehicle after serving the current customer (0≤ lt ≤Q);

Jt: the vector (jt,1, . . . , jt,N) that represents the customers’ service status: jt,i = 1, if

customer i has already been served; jt,i = 0, otherwise.

Therefore, when the vehicle starts at the depot, the initial state is S0 = (0,Q,0, . . . ,0), and

when the vehicle returns to the depot after serving all the customers, the final state becomes

SN+1 = (N + 1, lN+1,1, . . . ,1). Note that lN+1 = lN is the vehicle’s remaining capacity after serving

the last customer.

Decision variables

After serving the current customer, two types of decisions are to be made: which customer to serve

next and whether to return to the depot before visiting the next customer. The decision variables

are defined as:

xt = (it+1, rt), t= {0,1, . . . ,N}, (2)

where
it+1: the next customer to be served;

rt: rt = 1 indicates returning to the depot before visiting the next customer; rt = 0

otherwise.

Further, we define Xπ
t (St) as the decision function that determines decision xt at stage t under

policy π, given state St. Each π ∈ Π refers to a different policy and Π denotes the set of all

implementable policies.

Exogenous information

The customer demand Dit+1
has a customer specific discrete distribution. The actual customer

demand D̂it+1
is only revealed after the vehicle arrives at customer it+1.

Wt+1 = D̂it+1
, t= {0,1, . . . ,N − 1}. (3)
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State transition function

Given the current state St = (it, lt, Jt), the decision xt = (it+1, rt), and the exogenous information

Wt+1 = D̂it+1
, the state transition function is defined as, for t= {0,1, . . . ,N},

St+1 = SM(St, xt,Wt+1)

=


(it+1,Q− D̂it+1

, Jt+1), if rt = 1,

(it+1, lt− D̂it+1
, Jt+1), if rt = 0 and lt ≥ D̂it+1

,

(it+1, lt +Q− D̂it+1
, Jt+1), if rt = 0 and lt < D̂it+1

,

(4)

where the service status vector Jt+1 is updated as: jt+1,i = 1, if i = it+1; jt+1,i = jt,i, otherwise.

That is, the service status of customer it+1 is changed to 1 (being served) and the service statuses

of other customers remain unchanged. Note the letter “M” in the first equation of Equation (4)

represents “model” as in Powell (2007, 2011).

If the vehicle returns to the depot to replenish after serving customer t (rt = 1), it arrives at

the next customer it+1 with full capacity Q. Therefore, the capacity after serving customer it+1

becomes Q− D̂it+1
. If the vehicle travels to the next customer iit+1

without returning to the depot

(rt = 0), it arrives at customer it+1 with capacity lt. If lt is sufficient to serve the realized demand

D̂it+1
, lt+1 becomes lt− D̂it+1

; otherwise, the vehicle encounters a failure and needs to replenish at

the depot to satisfy demand D̂it+1
, thus lt+1 becomes lt +Q− D̂it+1

.

Cost function

The vehicle’s actual travel distance or cost depends on both the decision and realized demand at the

next customer Wt+1 = D̂it+1
. Therefore, the (expected) cost function ct(St, xt) can be decomposed

into a deterministic and a stochastic parts, as below.

ct(St, xt) =Ct(St, xt) +E[∆Ct+1(St, xt,Wt+1)], (5)

where

Ct(St, xt) =

dit,0 + d0,it+1
, if rt = 1,

dit,it+1
, if rt = 0,

(6)
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and

∆Ct+1(St, xt,Wt+1) =


0 if rt = 1,

0, if rt = 0 and lt ≥ D̂it+1
,

dit+1,0 + d0,it+1
, if rt = 0 and lt < D̂it+1

.

(7)

The calculations of (6) and (7) follow the same logic as in the state transition function (4).

Objective function

The objective of the stochastic dynamic program is to find the optimal policy π ∈Π to minimize

the expected total cost (travel distance) to serve all the customers, that is,

min
π∈Π

N∑
t=0

ct(St, xt)

=min
π∈Π

N∑
t=0

ct(St,X
π
t (St)), (8)

where xt =Xπ
t (St) is the decision made according to the decision function Xπ

t (St) under policy π,

given the current state St. Note that the expectation is embedded in the calculation of the cost

function ct(St, xt).

4. Approximate Dynamic Programming

If the state, decision, and outcome spaces are finite discrete, the stochastic dynamic program (8)

can be solved recursively using Bellman’s equations,

Vt(St) = min
xt∈Xt

(Ct(St, xt) +E[Vt+1(St+1)]). (9)

The value function Vt(St) specifies the value of being in a state St, in which Ct(St, xt) accounts for

the immediate cost associated with the current state St and decision xt, while the value function

Vt+1(St+1) = Vt+1(SM(St, xt,Wt+1)) evaluates the future impact of the decision xt under the realized

exogenous information Wt+1.

To overcome the three curses of dimensionality (states, decisions, and outcomes) associated with

the classical DP approach, in approximate dynamic programming (ADP), we replace the exact
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value function Vt+1(·) in Equation (9) with an approximation V̄t+1(·) as in Equation (10). Instead

of the exact evaluation of Vt+1(·) often in a backward manner, V̄t+1(·) can be evaluated via step-

forward simulation, by integrating a variety of rich classes of stochastic optimization and simulation

methodologies.

V̄t(St) = min
xt∈Xt

(Ct(St, xt) +E[V̄t+1(St+1)]). (10)

While the approximate value function V̄t+1(·) can take a variety of forms (such as weighted sum

of basis functions, piecewise linear functions, regression models, neural networks), the lookup table

representation is a generic model-free form that is often used when the value function structure

can hardly be clearly defined, which is the case of the VRPSD under study. In this section, we

first introduce a generic value function approximation (VFA) with lookup table representation,

and then describe an improved version (VFA+), which addresses the problem characteristics of the

VRPSD.

4.1. Value Function Approximation Algorithm (VFA)

Algorithm 4.1 depicts a generic value function approximation approach with lookup table repre-

sentation. In Step 0a, we use the Rollout algorithm (Secomandi 2001) as the heuristic to initialize

the state values.

Striking a good balance between exploration and exploitation remains an important and cutting-

edge research question in ADP and other related research areas such as simulation optimization

and machine learning. In our VFA algorithm, we use the fixed exploration rate strategy. That

is, with probability ρ (for example, 0.10), we explore the impact of a randomly selected decision;

otherwise, we stick to the optimal decision based on the current value function (Step 2a). In Section

4.2, we describe an improvement on the exploration and exploitation strategy using preventive

returns and restocking.

In step 2b, we use the exponential smoothing function to update the value function approximation

V̄t(St) with the observed value v̂t(St). That is,

V̄ n
t (St) = (1−αn−1)V̄ n−1

t (Snt ) +αn−1v̂
n
t , (11)

where αn−1 is the stepsize.
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Algorithm 4.1 A generic VFA approach with lookup table representation.

Step 0. Initialization.

Step 0a. Initialize V̄ 0
t (St) for all states St.

Step 0b. Choose an initial state S1
0 .

Stap 0c. Set the iteration counter n= 1.

Step 1. Choose a sample path ωn.

Step 2. For t= 0,1, . . . ,N , do:

Step 2a. If exploitation, solve

v̂nt = minxt∈Xt(Ct(St, xt) +E[V̄ n−1
t+1 (St+1)]), (∗)

and let xnt be the solution.

If exploration, randomly choose a solution xnt ∈Xt.

Step 2b. Update V̄ n
t (St) using

V̄ n
t (St) =

(1−αn−1)V̄ n−1
t (Snt ) +αn−1v̂

n
t , if St = Snt ,

V̄ n−1
t (St), otherwise.

Step 2c. State transition.

Snt+1 = SM(Snt , x
n
t ,Wt+1(ωn)).

Step 3. Let n= n+ 1. If n≤N, go to step 1.

Note that N denotes the pre-set maximum number of iterations.

Step 4. Output the value function, {V̄ Nt (Sxt )}N−1
t=0 .

For calculating αn−1, we apply the Bias-adjusted Kalman Filter (BAKF) stepsize rule (George

and Powell 2006, Powell 2007), which is given by

αn−1 = 1− (σ̄2)n

(1 + λ̄n−1)(σ̄2)n + (β̄n)2
. (12)

(σ̄2)n denotes the estimate of the variance of the value function V̄ n
t (Snt ) and β̄n denotes the estimate

of bias due to smoothing a nonstationary data series. The BAKF stepsize rule adaptively balances

the estimate of the noise (σ̄2)n and the estimate of the bias β̄n that is attributable to the transient

nature of the data in the ADP solution process. We refer to George and Powell (2006) and Section

6.5.3 in Powell (2007) for more details.

In Equation (10), the approximate value function V̄t(St) is associated with the pre-decision state

St. Solving for Equation (∗) in Step 2a requires the calculation of the expected value of V̄t+1(St+1)

within the min operator, which is computationally demanding. To improve the computational

efficiency in ADP, Powell (2007) introduces the notion of post-decision state Sxt = SM,x(St, xt),
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which captures the state of the system immediately after the decision making, but before new

information arrives. With the approximate value function around post-decision state V̄ n−1
t (Sxt ), we

can solve for v̂nt (St) in Step 2a with

v̂nt (St) = min
xt∈Xt

(Ct(St, xt) + V̄ n−1
t (Sxt )), (13)

which avoids the expectation within the min operator, but normally requires more effort in esti-

mating V̄ n−1
t (Sxt ).

In VRPSD, the post-decision state omits certain critical information. For example, besides know-

ing the next customer to visit, the actual cost or travel distance depends on both the realized

demand of the next customer D̂it+1
and the current capacity lt, which can vary significantly (refer

to equation (7)). Further, the tradeoff between traveling directly to the next customer or detour-to-

depot also depends on the relative distances between the current customer and the next customer

or depot, respectively. Consequently, we somehow lose the “memoryless” property in VRPSD. Our

numerical experiments also show that the approximate value function around post-decision state

does not work very well, which confirms our observation.

Q-learning is another algorithm that has certain similarities to DP using the value function

around post-decision states. In Q-learning, a Q-factor, Qt(St, xt), stores the value of a state-decision

pair and it captures the value of being in a state and taking a particular decision (Bertsekas and

Tsitsiklis 1995, Sutton and Barto 1998, Powell 2007, Bertsekas 2012). However, a potential problem

with Q-learning is that the size of the lookup table increases exponentially because it depends

on both the state and the decision. In the next section, we describe how to better utilize the

lookup tables with Q-factors via efficient maintenance and exploration/exploitation strategies in

our improved algorithm (VFA+).

4.2. Improved Value Function Approximation Algorithm (VFA+)

The value function approximation (VFA) with lookup table representation as described in Algo-

rithm 4.1 is a generic ADP approach. As previously mentioned, an alternative way to store the

value function is to use Q-factors. Q-factors, Qt(St, xt), store the value of a state-decision pair in

the lookup table. The state-decision pair at stage t is: (St, xt) = ((it, lt, Jt), (it+1, rt)). We should

note that the decision consists of the next customer to visit at stage t+ 1 and whether to return

to the depot before visiting the next customer.
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For the VRPSD, we improve the computational performance and the solution quality of the

standard VFA algorithm with Q-learning by considering the approximate values of the Q-factors.

We define Q̄n
t (St, xt) as the approximate value of Qt(St, xt) after n iterations. We use a double pass

algorithm to update Q̄t(St, xt), as shown in Algorithm 4.2. At each iteration, we first find a customer

sequence based on the values of the state-decision pairs (Q-factors) from the past iterations in the

forward pass. Then, we update the Q-factors using the realized cost in the backward pass.

Algorithm 4.2 Q-learning approach for the V FA+ algorithm with double pass

Step 0. Initialization.

Step 0a. Initialize Q̄0
t (St, xt) for all states St and decisions xt ∈Xt.

Step 0b. Choose an initial state (S1
0).

Stap 0c. Set the iteration counter n= 1.

Step 1. Choose a sample path ωn.

Step 2. (Forward pass) For t= 0,1, . . . ,N , do:

Step 2a. If exploitation, find

xnt = argmin
xt∈Xt

(Q̄n−1
t (St, xt) +SD(St, S

n
t )),

If exploration, choose a solution xnt ∈Xt
based on the exploration-and-exploitation strategies described in the paper.

Step 2b. Compute the next state Snt+1 = SM(Snt , x
n
t ,Wt+1(ωn)).

Step 3. (Backward pass) Set q̂nN+1 = 0 and do for all t=N,N − 1, . . . ,0:

Step 3a. Calculate:

q̂nt =Ct(S
n
t , x

n
t ) + q̂nt+1

Step 3b. Update Q̄n
t (St, x

n
t ) using

Q̄n
t (Snt , x

n
t ) = (1−αn−1)Q̄n−1

t (Snt , x
n
t ) +αn−1q̂

n
t .

Step 4. Let n= n+ 1. If n≤N, go to step 1.

Note that N denotes the pre-set maximum number of iterations.

Step 5. Return the Q-factors, {Q̄Nt }N−1
t=0 .

As the size of the lookup table with Q-factors grows exponentially with both state and decision,

we limit the number of stored Q-factors in the lookup table (bounded lookup table). At each

iteration, we mostly visit the state-decision pairs that are already in the lookup table. Consequently,

the values of the state-decision pairs (Q-factors) in the lookup table are more frequently updated,

and therefore more accurate.
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In Step 2a of Algorithm 4.2, one important notion is the state difference, SD(St, S
′
t). Due to

the limited size of the bounded lookup table, we may frequently come into states that are not

contained in the lookup table. In this case, we look at the most similar states. To determine these

most similar states, we define the state difference SD between two states with identical it value as

(where c1 is a constant):

SD(St, S
′
t) =

∑
|jt− j′t|+ c1× |lt− l′t| (14)

As the number of states-decision pairs grows with the vehicle capacity and with the number of

customers, then, we consider a bounded lookup table with a subset of state-decision pairs. When

we arrive at a state-decision pair that is not contained in the bounded lookup table, we identify

the “nearest” state-decision pair according to Equation (14). Accordingly, we update the value

of the nearest state-decision pair, already in the bounded lookup table with the minimum state

difference, instead of the state-decision pair that is not in the bounded lookup table.

Further, the exponential growth in the state and decision space in the VRPSD forces us to find

a good balance between exploration and exploitation. In VFA+, the exploitation is obtained by

focusing on a limited number of state-decision pairs, such that good cost estimates can be found

by frequent visits to these pairs. The exploration is obtained by using a variety of randomized

heuristics for our travel decisions.

Further, we improve the performance in terms of solution quality and computational time by

considering the following algorithmic strategies:

1. Use different initialization heuristics;

2. Organize and maintain the bounded lookup table;

3. Explore and exploit using preventive returns and restocking.

We give more details on the algorithmic strategies below.

Use different initialization heuristics

We use a mix of three simple initialization heuristics. The first one is based on the cyclic tours

that Secomandi (2001) derives in his a priori approach. By considering all the possible customers

being visited first in the route, we obtain Q-factor values associated with each customer visited

at stage t, i.e., it. The second heuristic is a randomized nearest neighbor heuristic, where early

replenishments are only done when this gives an immediate advantage. In the third heuristic, we
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use a variation of the cone covering method, introduced by Fisher and Jaikumar (1981) and then

applied by Fan et al. (2006) to a similar problem. The advantage of the third heuristic lies in that it

considers both the geographic location and the expected demand of each customer, thus generates

routes with approximately the same expected total demand.

For the initialization of the Q-factors, we first cluster the customers into a few groups (depending

on the expected number of replenishments). Then, we apply the nearest neighbor heuristic to the

clusters to create one tour per group. Finally, we create one tour for all customers by applying a

savings algorithm to the customers linked to the depot, until there are no intermediate visits to the

depot in the tour. For the resulting customer sequence, we determine the optimal replenishment

visits similar to Secomandi (2001). In the clustering, we apply randomization to get a larger solution

set. For each of the heuristics, we find 600 sample paths to create an initial set of state-decision

pairs and their values (Q-factors) in the lookup table. For state-decision pairs that are visited

multiple times, we take the minimum of the Q-factors.

Organize and maintain the bounded lookup table

We denote the set of state-decision pairs that have the same it as an “it set”, i.e., {(St, xt)|St =

(it, ·, ·)}, and let |it| denote its size. That is, an it set consists of all possible combinations of the

state-decision variables: (it, lt, Jt) and the decision: (it+1, rt) with the same it. We provide a detailed

illustration of it sets in the Appendix. To control the exponential growth of the lookup table, we

limit the number of stored Q-factors in each it set to a maximum (denoted as |it|max).

We use a three-level pruning to maintain the bounded lookup table. Pruning Procedure I exam-

ines and maintains the size of each it set at each iteration, while Pruning Procedures II and III

provide additional maintenance and value update of the it set every fixed number of iterations.

Pruning Procedure I:

When the size of an it set reaches |it|max, we perform the pruning procedure I (Algorithm 4.3).

We remove the state-decision pairs that have been visited only once. In addition, we remove the

state-decision pairs that have a value higher than the average value and also a number of visits

less than the average number of visits in the it set. Usually, about half of the state-decision pairs is

removed in this procedure. Note that, apart from the Q-factor, we also record the number of visits
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to each state-decision pair, n′(St, xt), which is used in Pruning Procedure I as well as in Equation

(15) of the value updating procedure.

Based on our numerical evaluation, we set |it|max as 150 state-decision pairs for instances with less

than 20 customers and 250 state-decision pairs for larger instances. Higher |it|max values lead not

only to longer computational time but also to poorer results, because the most relevant Q-factors

will be updated less often.

Algorithm 4.3 Pruning Procedure I

Step 1. Check the size of the it set.

Step 2. Keep the state-decision pairs in the it set, if |it|< |it|max.

Step 3. If the size of the it set reaches its maximum (|it| ≥ |it|max), remove the state-decision pairs

from the it set under the following criteria:

Step 3a. If their value is greater than the average Q-factor value of the it set, that is,

Q(St, xt)≥ (
∑
{(St,xt)|St=(it,·,·)}Q(St, xt))/|it|;

and if also their number of visits is less than the average number of visits of the it set, that is,

n′(St, xt)≤ (
∑
{(St,xt)|St=(it,·,·)} n

′(St, xt))/|it|.

Pruning Procedures II and III:

Different from Pruning Procedure I, Pruning Procedures II and III limit the number of potential

next customers in the it set. These two procedures are implemented every fixed number of iterations.

In Pruning Procedure II (Algorithm 4.4), we look at the decision on the next customer to visit

(it+1) among the state-decision pairs in the it set. For each it+1, we calculate the average Q-factor

value of the state-decision pairs with xt = (it+1, ·), denoted as Q̄it+1
. We only keep the state-decision

pairs whose Q̄it+1
are among the best kt potential next customers. The number kt depends on

the stage t, and decreases during the ADP, to gradually focus more on the best decisions on the

potential next customer to visit.

Pruning Procedure III uses the double pass DP approach, and at the same time updates the Q-

factors. In this procedure, we update the Q-factors in the backward pass while pruning the lookup

table in the forward pass.
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Algorithm 4.4 Pruning Procedures II

Step 1. For each it+1 of the state-decision pairs in the it set, calculate the average Q-factor

Q̄it+1
= (

∑
{(St,xt)|St=(it,·,·),xt=(it+1,·)}Q(St, xt))/n(it, it+1),

where n(it, it+1) denotes the number of state-decision pairs in the it set with the same it+1.

Step 2. Sort the customers, it+1, according to an ascending order of Q̄it+1
.

Step 3. Select the first kt customers and remove all the state-decision pairs (St, xt) whose

next customer, it+1, are not among these kt customers.

When we have a sample path, we only update the values of the state-decision pairs that we

actually visit as in Algorithm 4.2. To obtain better estimates, we also update the values of the

state-decision pairs that use a part of the sample path. To achieve this, we perform an update

process every fixed number of iterations by using a backward DP algorithm for all state-decision

pairs in the bounded lookup table. For the update process, we start from the last stage and compute

the minimum expected cost for each state-decision pair in the bounded lookup table. The values

of the state-decision pairs, including the ones using a part of the sample path, are updated using

the minimum expected cost, and recursively, the updated values are used for the update of the

Q-factors in previous stages.

After the backward DP, we remove the state-decision pairs with the same next customer, it+1

that never give the minimum expected value, Qmin(St), in the backward DP procedure. The update

and the pruning procedure is described in Algorithm 4.5.

Algorithm 4.5 Pruning Procedures III

Step 1. (Backward DP) For all t=N,N − 1, . . . ,0:

Step 1a. Find the minimum state value among the possible next customers:

Qmin(St) = minit+1
[E[(Ct(St, xt)] + minxt+1∈Xt+1

(SD(St+1, S
′
t+1) +Q(St+1, xt+1))].

Step 1b. Update all Qt(St, xt) in the lookup table with the decision xt using:

Qt(St, xt) = (1−αn−1)Qt(St, xt) +αn−1Qmin(St).

Step 2. (Forward DP) Pruning: do for all t= 0,1, . . . ,N + 1:

Remove the state-decision pairs with the same it+1 that are never qualified for Qmin(St).

Updating Procedure:
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In every sample path simulation, we update the value of the visited state-decision pairs using

the harmonic stepsize rule.

αn−1 =
a

a+n′(St, xt)− 1
, (15)

where a is a constant. Note that the stepsize αn−1 depends on the number of visits to the state-

decision pair, n′(St, xt), rather than the iteration counter n.

In VFA+, the value of a depends on the decision. If all decisions taken after the visit of a state-

decision pair in the sample path are optimal (exploitation decisions), we assign a high value to a.

If however after the visit of a state-decision pair, we take an exploration decision, we either assign

a low value to a (in case of improvement) or set a equal to zero (in case of non-improvement). In

this way, we avoid that the state-decision pair becomes unattractive by not considering the best

route afterwards.

Exploration and exploitation using preventive returns and restocking

In each step of the ADP algorithm, we may select the best decision based on the current Q-factors

in the bounded lookup table (exploitation), or we may select an alternative decision in order to

discover potentially better decisions (exploration). In VFA+, the exploitation options are:

• the decision with the best Q-factor value in the lookup table (and perfect match for remaining

customers and capacity),

• the decision with the lowest sum of the Q-factor and the state difference in the lookup table.

The exploration options are:

• the decision with the second best Q-factor value (as this is the most promising alternative),

• the decision where the next customer is randomly selected from the lookup table, combined

with a randomized early replenishment decision rt,

• the decision where the next customer, it+1 is randomly selected from the set of mt nearest (in

distance) unvisited customers, combined with a randomized early replenishment decision rt. The

value of mt may be different for different stages.

The options above are considered with different probabilities. Note that once we have applied an

exploration decision, the further decisions are preferably exploitation decisions, in order to obtain

good cost estimates for this explorative decision.
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At the end of the tour, when the vehicle capacity gets scarcer, it makes sense to return to the

depot for early replenishment if the vehicle is close to the depot. Using the demand probability

distribution of the non-visited customers, we determine the minimum expected number of remaining

depot visits, both with and without returning to the depot. If the difference between the two values

exceeds 0.9, we first return to the depot and then serve the remaining customers.

Parameter settings

The algorithmic strategies in VFA+ described above are all designed to improve the computational

performance, but they also create a large number of parameter settings, such as probabilities in

the sample path selection, updating parameters, parameters in the maintenance of the bounded

lookup table, etc.

We conduct a number of preliminary tests to set the parameter settings to be used. Based on

our preliminary computational evaluation, we fix some of the parameter settings and limit the

possibilities for others to two or three options. For instance, the total duration of the ADP is fixed

on 250,000 iterations; Pruning Procedures II and III are performed every 10,000 iterations; the

value a in the harmonic stepsize rule, Equation (15) is set to 0 (exploration without improvement),

1 (exploration with improvement), or 5 (exploitation). We use this setting for all instances and

report the results in the paper.

5. Experimental design

In this section, we describe the test instances used in the numerical experiments and our method-

ology to evaluate the algorithms.

5.1. Test Instances

We use two sources of instance generation in the literature, from Secomandi (2001) and Solomon

(1987). In both sets of test instances, we consider delivery to customers from the depot. We use

the test instances of Secomandi (2001) to compare our value function approximation algorithms

(VFA and VFA+) with the Rollout algorithm in Secomandi (2001). We also test the algorithms
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with the Solomon instances which is a standard reference in the VRP literature. Two different sets

of Solomon instances are generated to evaluate the effect of the depot location, which is either at

the center or at the corner.

The first set of instances are based on Secomandi (2001). The instances are generated with

different number of customers. Specifically, the instances with 5 to 19 customers are denoted as the

“small size instances,” and the instances with 20,30, . . . ,60 customers are denoted as the “large size

instances.” The test instances also differ in the values of the expected fill rate f̄ =
∑N

i=1E(Di)/Q.

f̄ ′ ≡max{0, f̄ − 1} can be viewed as the expected number of route failures, and f̄ ′ is in the set

{0.75,1.25,1.75}. Therefore, there are 3 variants for each small size and large size instances. The

values of Q for all possible (f̄ ′,N) pairs are computed by rounding 3N/f̄ to the nearest integer.

For each instance, the customer demands are divided into low, medium, and high categories,

following three discrete uniform probability distributions. Every customer is assigned to one of

these demand categories with equal probability (1/3). For the small size instances (N < 20), the

demand categories are U(1,3),U(2,4),U(3,5), and for the large size instances (N ≥ 20), they are

U(1,5),U(6,10),U(11,15). The depot is fixed at the corner. For each (f̄ ′,N) pair, 10 replications

are generated for each of the small size instances and 5 replications are generated for each of the

large size instances. We refer to these instances as the “Secomandi instances” in the rest of the

paper.

The Solomon instances are based on the RC instances (RC101 to RC105 and RC201 to RC205)

from Solomon (1987). As the number of the customers and the demand distributions in Solomon

(1987) are not comparable to the Secomandi instances, we modify the Solomon instances in two

ways: the demand distribution and the customer selection. The demand distributions are modified

as follows. Originally, the customer demands in the Solomon instances are between 0 and 40. We

denote the demand types in the Solomon instances between the intervals (0,10], (10,20], (20,30],

(30,40] as 1, 2, 3, 4, respectively. We then assign the demand distributions U(0,4),U(2,6),U(4,8)

and U(6,10) to the four demand types respectively. The customer selection process is based on

the customer ready times. The customers are ordered based on their ready times without using

their time windows. We pick the first N customers to construct our instances. For the small size

instances, we select the first 5 to 15 customers. The vehicle capacity Q is then set to [8N/1.75]. After

the modification, we generate two instance sets according to the location of the depot: Solomon A,

where the depot is located at the center, and Solomon B, where the depot is located at the corner.

For Solomon A instances, the depot is located at (40,50), which is approximately at the center of

the customers. For Solomon B instances, we swap the depot located at (40,50) and the customer

located at (5,5). We generate 10 replications for each of the Solomon instances.
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5.2. Evaluation methodology

We study three algorithms for the VRPSD: the Rollout algorithm, the VFA, and the VFA+. The

solution quality is evaluated by policy simulation and the solution time is measured by the central

processing unit (CPU) time. We evaluate the policy of each algorithm using simulation with a

sample size of 2000 and report the mean of the evaluated objective values and solution times.

In the simulation, the same set of random seeds are used such that the different algorithms use

the same demand samples. We report the improvements of VFA and VFA+ relative to the solution

from the Rollout algorithm. For small size instances, we find the optimal objective values by solving

a standard backward MDP using Equation (9). We also report the optimal objective values and

their improvements compared to the Rollout algorithm. Note that we choose the Rollout algorithm

as the benchmark because the optimal policy can only be obtained for small size instances.

6. Numerical results

This section provides the numerical results and analysis. All evaluations are run on a computer

with an Intel Xeon CPU X7560 (2.27GHz) and 63.9GB RAM. The programming language is Java.

Algorithm comparison: Solution quality

We first compare the solutions quality of the algorithms for the VRPSD. Specifically, we compare

the evaluated objective values of the Rollout algorithm, the VFA, the VFA+, as well as the optimal

values (for small size instances). Further, we also provide the improvements of the latter three

algorithms relative to the Rollout algorithm.

Table 1 summarizes the results for the Secomandi instances for both small and large size

instances. The entries are the averages of all variants of the fill rate and demand distribution for

each instance size. When we consider the instances with N ≤ 15, the optimal algorithm performs

on average 3.78% better than the Rollout algorithm. On the same instances with N ≤ 15, we see

that both the VFA and the VFA+ on average perform better than the Rollout algorithm. For

instance, the VFA+ on average improves the solution of the Rollout algorithm by 1.97%, covering

the performance gap between the Rollout and the optimal solution by more than 50%.
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Table 1 also demonstrates that the difference between the solution quality of the VFA+ and

VFA is on average not very large for small size instances with N ≤ 15. However, as the problem

size increases from N > 8, the performance of the VFA algorithm gets worse whereas the VFA+

algorithm still outperforms the Rollout algorithm.

When the number of customers increases from 16 to 19, obtaining the optimal solution becomes

computationally intractable. For these instances, the performance of the VFA gets worse than the

Rollout algorithm. The VFA+, however, still outperforms the Rollout algorithm.

For large size instances (N ≥ 20), both the optimal algorithm and the VFA become computa-

tionally intractable. The VFA+ algorithm outperforms the Rollout algorithm and the percentage

improvement of the VFA+ algorithm increases from 1.87% (small size instances) to 2.97% (large

size instances).

Table 1 Overview of the performance of the Rollout, VFA, VFA+ and the Optimal Algorithm on Secomandi

instances

Secomandi Rollout VFA VFA+ Opt VFA VFA+ Opt

N Value Value Value Value Imprv.*% Imprv.*% Imprv.*%

5 5.51 5.37 5.55 5.34 2.41% -0.75% 3.07%

6 5.40 5.28 5.29 5.21 2.24% 2.08% 3.55%

7 5.27 5.13 5.13 5.07 2.76% 2.67% 3.90%

8 5.54 5.44 5.40 5.31 1.82% 2.57% 4.12%

9 5.36 5.29 5.25 5.16 1.36% 2.10% 3.62%

10 5.44 5.35 5.33 5.26 1.59% 2.09% 3.41%

11 6.08 6.01 5.97 5.84 1.10% 1.88% 3.90%

12 6.27 6.20 6.11 5.95 1.26% 2.56% 5.10%

13 6.20 6.10 6.11 6.00 1.56% 1.42% 3.19%

14 6.21 6.14 6.08 6.01 1.22% 2.08% 3.29%

15 6.22 6.10 6.04 5.95 1.92% 2.91% 4.31%

Average 5.77 5.67 5.66 5.56 1.73% 1.97% 3.78%

16 6.64 6.61 6.51 0.40% 1.89%

17 6.36 6.41 6.28 -0.71% 1.27%

18 6.23 6.27 6.12 -0.54% 1.89%

19 6.66 6.72 6.57 -0.98% 1.36%

Average (Small size instances) 5.96 5.89 5.85 1.10% 1.87%

20 6.86 6.73 6.61 1.81% 3.64%

30 7.51 7.52 7.21 -0.10% 4.04%

40 8.14 7.98 1.98%

50 8.49 8.29 2.29%

60 9.07 8.79 3.09%

Average (Large size instances) 8.01 7.78 2.97%

Grand Average 6.47 6.33 2.21%

* Percentage cost improvement relative to the Rollout algorithm.

Table 2 presents the results of the Solomon A and the Solomon B instances with the number of

customers: N ≤ 15. The results represented are the average values for each instance size. The left

part of the table shows the results when the depot is approximately at the center of the customers
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(Solomon A) and the right part of the table presents the results when the depot is approximately

at the corner (Solomon B). We use these two sets of instances to analyze the effect of the depot

location on the performance of the algorithms.

The results for Solomon A instances show that when the depot is at the center, the relative

performance of the VFA, the VFA+ algorithm and the optimal algorithm is on average not much

different from the performance of the Rollout algorithm. This suggests that the Rollout algorithm

performs good and also the VFA algorithms and the optimal algorithm behaves similarly with the

central depot.

When we look at Solomon B instances, the results are similar to the results of the Secomandi

instances with N ≤ 15. Both the VFA and the VFA+ algorithm improve the solution of the Rollout

algorithm by covering on average more than 50% of the performance gap between the Rollout

and the optimal solution. Intuitively, moving the depot from the center to the corner increases

the average customer-depot distance. Therefore, when the depot is at the corner, the penalty of a

failure is higher as we have to travel on average longer distance back to the depot. This indicates

that in value function algorithms, the decisions for which customer to go next and for the early

replenishments are made efficiently such that the overall cost decreases.

Table 2 Overview of the performance of the Rollout, VFA, VFA+ and the Optimal Algorithm on Solomon A

and Solomon B instances

Solomon A (The Depot at the Center)

Rollout VFA VFA+ Opt VFA VFA+ Opt

N Value Value Value Value Imprv.*% Imprv.*% Imprv.*%

5 1.423 1.406 1.391 1.387 1.23% 2.31% 2.57%

6 1.645 1.652 1.623 1.612 -0.44% 1.35% 2.01%

7 1.854 1.849 1.862 1.836 0.22% -0.44% 0.96%

8 2.090 2.079 2.106 2.065 0.54% -0.75% 1.21%

9 2.290 2.292 2.285 2.257 -0.08% 0.20% 1.43%

10 2.358 2.350 2.336 2.323 0.32% 0.92% 1.47%

11 2.502 2.513 2.487 2.468 -0.41% 0.60% 1.38%

12 2.662 2.673 2.642 2.633 -0.39% 0.77% 1.09%

13 2.714 2.717 2.693 2.673 -0.10% 0.80% 1.51%

14 2.905 2.921 2.892 2.874 -0.56% 0.44% 1.04%

15 3.014 3.017 2.981 2.954 -0.12% 1.09% 1.99%

Average 2.314 2.315 2.300 2.280 -0.05% 0.63% 1.47%

Solomon B (The Depot at the Corner)

Rollout VFA VFA+ Opt VFA VFA+ Opt

Value Value Value Value Imprv.*% Imprv.*% Imprv.*%

2.811 2.799 2.791 2.779 0.43% 0.74% 1.14%

2.817 2.776 2.775 2.766 1.46% 1.49% 1.81%

2.789 2.718 2.712 2.699 2.56% 2.76% 3.22%

3.047 2.911 2.935 2.890 4.48% 3.70% 5.16%

3.146 3.031 3.060 3.007 3.63% 2.73% 4.42%

3.086 3.054 3.038 2.996 1.04% 1.58% 2.92%

3.261 3.230 3.217 3.169 0.95% 1.36% 2.83%

3.387 3.369 3.334 3.300 0.53% 1.57% 2.55%

3.358 3.335 3.331 3.283 0.67% 0.79% 2.22%

3.605 3.558 3.590 3.489 1.31% 0.43% 3.22%

3.673 3.607 3.627 3.519 1.78% 1.25% 4.18%

3.180 3.126 3.128 3.082 1.69% 1.64% 3.09%

* Percentage cost improvement relative to the Rollout algorithm.

Algorithm comparison: Computational times

Figure 1 shows the normalized computational times (in logarithmic scale) for the different algo-

rithms in solving the Secomandi instances. The normalized time is calculated as the computational
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time relative to solving the instances with N = 5 customers. Figure 1 shows that the MDP solution

time increases at a much higher rate than other algorithms. The VFA+ has the slowest rate of

increase as the number of the customers increases. This shows that the VFA+ algorithm reduces the

computational time significantly when compared to the optimal algorithm, the Rollout algorithm

and the VFA while providing good quality solutions by using bounded lookup tables with efficient

maintenance.

In Figure 1, there is a sudden jump up in the computational time of the VFA and Rollout

algorithms from the small size (≤ 19 customers) to the large size instances (≥ 20 customers). This

is because, in the experimental design of the large size instances, we use demand categories with a

wider range that increases the number of the state-decision pairs (see Section 5.1). However, due

to the use of bounded lookup tables with efficient maintenance, the VFA+ algorithm successfully

mitigates this increase in the state-decision space (see “state difference” explanation in Section

4.2).
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Figure 1 Computational times for different algorithms based on the Secomandi instances
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7. Conclusions

This paper deals with the single vehicle routing problem with stochastic demands (VRPSD). The

VRPSD is a difficult stochastic combinatorial optimization problem that becomes intractable for

large size instances. In this paper, we formulate a multi-stage stochastic dynamic programming

model and implement Approximate Dynamic Programming (ADP) algorithms to overcome the

curses of dimensionality for the VRPSD. The ADP algorithms are based on Value Function Approx-

imations (VFA) with a lookup table representation. The standard VFA is improved for VRPSD

with a Q-learning algorithm with bounded lookup tables and efficient maintenance (VFA+), as well

as exploration-and-exploitation strategies using preventive returns and restocking.

We validate and benchmark our proposed algorithms using test instances in the literature. The

VFA+ algorithm obtains good quality solutions with shorter computational time, especially for

large size instances. For small size instances where the optimal solutions are available, VFA+

improves the Rollout algorithm by covering on average more than 50% of the performance gap

between the Rollout and the optimal solutions. For large size instances, VFA+ outperforms both

VFA and the Rollout algorithm. This demonstrates the effectiveness in the algorithm design of

VFA+.

In Approximate Dynamic Programming, the use of post-decision states helps to capture the state

of the system immediately after the decision making but before the new (exogenous) information

arrives. It also helps to avoid the expectation within the min or max operator. However, in a

stochastic combinatorial optimization problem such as VRPSD, we need both the state and the

decision information to evaluate the impact of the decision, where the practice of post-decision

states appears to be inappropriate. Therefore, we improve the ADP algorithm with a Q-learning

algorithm where we store the values of state-decision pairs, i.e., Q-factors. It however suffers more

from the curses of dimensionality. We design bounded lookup tables with efficient maintenance to

overcome this. Further, we design exploration-and-exploitation strategies using preventive returns

for VRPSD. The combination of the above algorithmic strategies appear to play an important role

in making better routing and restocking decisions in VRPSD. This paper provides an exploratory

algorithmic research on the application of Q-learning algorithms with bounded lookup table and

efficient maintenance as well as exploration-and-exploitation strategies in dealing with difficult

stochastic and combinatory problems. More in-depth research is called for along this line.
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Appendix. The illustration for state-decision pairs and it sets

In Figure 2, an illustration for the state-decision pairs and it sets is given for a small single vehicle routing

problem. In this example, there are only 3 customers, the capacity of the vehicle is 4 units and the demand

of each customer follows a discrete uniform distribution U(1,2). Here, we only show the branch from the

customer 1 at state 1 until the termination state which ends at the depot. The it sets are grouped according

to the current customer.

Stage 1 Stage 2 Stage 3

i2=2  set  i3=3  set 
((2,3,{1,1,0}),(3,0)) ((3,3,{1,1,1}),(0,0))
((2,2,{1,1,0}),(3,0)) ((3,2,{1,1,1}),(0,0))
((2,1,{1,1,0}),(3,0)) ((3,1,{1,1,1}),(0,0))
((2,0,{1,1,0}),(3,0)) ((3,0,{1,1,1}),(0,0))
((2,3,{1,1,0}),(3,1))
((2,2,{1,1,0}),(3,1))

i1=1 set  ((2,1,{1,1,0}),(3,1))
((1,3,{1,0,0}),(2,0)) ((2,0,{1,1,0}),(3,1))
((1,2,{1,0,0}),(2,0))
((1,3,{1,0,0}),(2,1))
((1,2,{1,0,0}),(2,1))
((1,3,{1,0,0}),(3,0))
((1,2,{1,0,0}),(3,0))
((1,3,{1,0,0}),(3,1)) i2=3  set  i3=2  set 
((1,2,{1,0,0}),(3,1)) ((3,3,{1,0,1}),(2,0)) ((2,3,{1,1,1}),(0,0))

((3,2,{1,0,1}),(2,0)) ((2,2,{1,1,1}),(0,0))
((3,1,{1,0,1}),(2,0)) ((2,1,{1,1,1}),(0,0))
((3,0,{1,0,1}),(2,0)) ((2,0,{1,1,1}),(0,0))
((3,3,{1,0,1}),(2,1))
((3,2,{1,0,1}),(2,1))
((3,1,{1,0,1}),(2,1))
((3,0,{1,0,1}),(2,1))

i1=2 set 
((2,3,{0,1,0}),(1,0))
((2,2,{0,1,0}),(1,0))
((2,3,{0,1,0}),(1,1))
((2,2,{0,1,0}),(1,1))
((2,3,{0,1,0}),(3,0))
((2,2,{0,1,0}),(3,0))
((2,3,{0,1,0}),(3,1))
((2,2,{0,1,0}),(3,1))

i1=3 set 
((3,3,{0,0,1}),(1,0))
((3,2,{0,0,1}),(1,0))
((3,3,{0,0,1}),(1,1))
((3,2,{0,0,1}),(1,1))
((3,3,{0,0,1}),(2,0))
((3,2,{0,0,1}),(2,0))
((3,3,{0,0,1}),(2,1))
((3,2,{0,0,1}),(2,1))

Depot Depot

i2=2  

i2=3  

i3=2  

i3=3  

i2=1  

i2=3  

i2=1  

i2=2  

i4=0  

i4=0  

Figure 2 The illustration for state-decision pairs and it sets
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Gendreau, M., G. Laporte, R. Séguin. 1995. An exact algorithm for the vehicle routing problem with

stochastic demands and customers. Transportation Science 29(2) 143–155.
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