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Abstract

Machines at customers have to be provided with spare parts upon failure. Consider a number

of groups of machines, for each of which a target aggregate fill rate or target average response

time (waiting time) should be met. Between groups, commonality exists, i.e., some parts occur

in the material breakdown structure of machines in multiple groups. Instead of using separate

stocks per group of machines, we study the potential benefits of exploiting commonality by using

a shared stock for all groups together. For this purpose, we formulate a multi-item single-site

spare parts inventory model, with the objective to minimize the spare parts provisioning costs,

i.e., inventory holding and transportation costs, under the condition that all service level con-

straints are met. We develop a heuristic solution procedure using a decomposition approach as

in Dantzig-Wolfe decomposition, in order to obtain both a heuristic solution and a lower bound

for the optimal costs. In a case study and a numerical experiment, we show that significant re-

ductions in spare parts provisioning costs can be obtained by using shared stocks. Furthermore,

we show how the size of the potential benefits behaves as a function of the number of groups,

the percentage of commonality and the occurrence of commonality in cheap or expensive items.

Keywords: Inventory control, spare parts, system approach, commonality, service level con-

straints.

1 Introduction

This paper aims to provide managerial insights into the effect of commonality on spare parts

provisioning costs for capital goods. Although the developed insights may apply to other industries
∗Corresponding author. Phone: +31 40 2472637, Fax: +31 40 2464596, E-mail: a.a.kranenburg@tue.nl.
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as well, our focus is on the capital goods industry because especially in that industry, spare parts

inventory management plays an important role. Usually, spare parts are expensive, and therefore

managerial attention is justified. Spare parts models are desired to be multi-item models, i.e., rather

than focussing on the performance for an individual item, they focus on the performance for all

items together because that is what the customer really bothers. These models have been studied

since the late sixties, starting with Feeney and Sherbrooke [2] and Sherbrooke [4]. Commonality,

i.e., the fact that parts are used in more than one machine type, has received attention in several

papers (see Van Mieghem [5] and the references therein). As far as we know, however, little research

exists on commonality in multi-item spare parts models. This paper is devoted to this topic.

In Section 2, we present a multi-item single-site spare parts inventory model with commonality,

followed by an analysis of this model in Section 3. The core part of the paper regarding insights

into the effect of commonality is in Section 4, where we present a case study and a numerical

experiment. The paper is concluded in Section 5.

2 Model

Consider a number of machines at one or more customers. Machines consist of multiple parts, also

referred to as stock-keeping units (SKU-s). Each SKU is assumed to be either a consumable part or

a repairable part (repairable parts with condemnation constitute a mixture; they could be captured

as well but would require a slightly more complicated notation than used below). The machines are

divided into groups (a group may also be seen as a customer class). Usually, such a group contains

all machines at one customer or all machines of a specific machine family or machine type at one

customer, but other compositions of groups are possible as well. Between groups, commonality

exists, i.e., some parts occur in the material breakdown structure of machines in multiple groups.

Let I denote the set of SKU-s, with |I| ≥ 1, and let J denote the set of groups, with |J | ≥ 1 (|J | = 1

can be used for the situation with a separate stock per group). For each SKU i ∈ I and group

j ∈ J , failures (demands) are assumed to occur according to a Poisson process with constant rate

mi,j (≥ 0). If SKU i does not occur in the material breakdown structure of machines in group j,

then mi,j = 0 by definition. Let µi :=
∑

j∈J mi,j , i ∈ I. Let Mj :=
∑

i∈I mi,j , j ∈ J , and assume

that Mj > 0.

If one of the parts of a machine fails, the machine is down and the defective part has to be

replaced by a spare part. A failure of a machine is always caused by one defective part, and can

be remedied by replacing that part only. All requests for spare parts are sent to one warehouse.

This warehouse coordinates spare parts provisioning to the customers. If a requested part i ∈ I is

available at the warehouse, it is delivered immediately. Otherwise, an emergency shipment takes

place to fulfill the demand. For the stock at the warehouse, such a demand can be considered a
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lost sale. The average time for an emergency shipment from the supplier to the warehouse is temi

and the corresponding costs are cem
i .

For each SKU i ∈ I, the stock in the warehouse is controlled by a base stock policy with base

stock level Si. The holding costs per time unit for one unit of SKU i are ch
i . When a part i in the

warehouse stock is used to fulfill customer demand, a ready-for-use part i arrives in the warehouse

to refill the stock after a regular replenishment lead time with mean tri (≥ temi ). Per SKU, lead times

are independent and identically distributed, and lead times for different SKU-s are independent.

Let cr
i (≤ cem

i ) denote the costs related to a regular replenishment shipment.

In case of a consumable, an emergency shipment may come either from another source as for

regular replenishments, or from the same source. In the latter case, an emergency shipment may

mean that a faster transportation channel is used than for regular replenishments. For a repairable,

an emergency shipment may mean that for one of the parts in the repair shop the repair is done (or

finished) against the highest possible speed (in case of a zero base stock level, this has to be the part

that just failed). Alternatively, it may mean that a part is obtained from another source. In that

case, we assume that the part that just failed is sent back to this other source (either immediately

or after repair), so that the inventory position remains constant.

Customers strive for minimal down time of their machines, and therefore, for each group a service

level constraint is defined with respect to spare parts provisioning by the warehouse. Constraints

are defined in terms of a maximum average waiting time (response time) Ŵj,obj for the aggregate

stream of requests from group j ∈ J . For SKU i, let Wi(Si) and βi(Si), i ∈ I, denote the average

waiting time and item fill rate, respectively. For each j ∈ J , let Ŵj(S) denote the average waiting

time per request for the aggregate demand stream of for that group, where S := {Si}i∈I denotes

an overall policy for all SKU-s. The behavior of the physical stock of SKU i is as in an Erlang loss

system with arrival rate µi and mean service time tri , and hence βi(Si) is equal to one minus the

Erlang loss probability:

βi(Si) = 1− (µit
r
i )

Si/Si!∑Si
k=0 (µitri )k/k!

. (1)

Further,

Wi(Si) = (1− βi(Si))temi , i ∈ I, (2)

and the average waiting times Ŵj(S) are weighted sums of the average waiting times Wi(Si) for

individual SKU-s, with the fractions mi,j/Mj as weights:

Ŵj(S) =
∑
i∈I

mi,j

Mj
Wi(Si), j ∈ J. (3)

Let ri ∈ {0, 1}, i ∈ I, denote whether for SKU i the parts in the replenishment pipeline are

counted as inventory (ri = 1), or not (ri = 0). Naturally, ri = 1 for repairables and ri = 0 for

consumables that are supplied from an external source. For consumables that are supplied by a
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source within the same company, both ri = 0 and ri = 1 may occur. For each SKU i, the expected

number of parts in the pipeline is µiβi(Si)tri (according to Little’s law), and hence the inventory

holding costs per time unit are given by

ch
i [Si − (1− ri)µiβi(Si)tri ].

Transportation costs per time unit for SKU i are

µi[βi(Si)cr
i + (1− βi(Si))cem

i ] = µic
r
i + µi(1− βi(Si))(cem

i − cr
i ).

Note that the first term µic
r
i is independent of Si. We define ci(Si) as the spare parts provisioning

costs that depend on Si (also called relevant costs):

ci(Si) := ch
i [Si − (1− ri)µiβi(Si)tri ] + µi(1− βi(Si))(cem

i − cr
i ). (4)

The objective is to minimize the total spare parts provisioning costs subject to the aggregate

waiting time constraints for the groups. Our optimization problem is as follows:

(P ) min
∑
i∈I

ci(Si)

subject to
∑
i∈I

mi,j

Mj
Wi(Si) ≤ Ŵj,obj , j ∈ J,

Si ∈ N0, i ∈ I,

with N0 := N
⋃
{0}. The optimal costs of Problem (P ) are denoted by CP .

Notice that straightforward application of the described model constitutes a situation with

shared stock for all groups. The situation with a separate stock per group can be obtained either

by a slight modification of the input data (removing the commonality property by replacing common

SKU-s by group-specific SKU-s for each group it occurs in) or by solving Problem (P ) for each

group individually. Summarizing, the model provides a framework to compare the use of separate

stocks per group to the use of a shared stock for all groups together.

Remark. In case the average emergency shipment times temi are the same for all SKU-s, i.e.,

temi = tem for all i ∈ I, the average waiting time constraints may be rewritten as∑
i∈I

mi,j

Mj
βi(Si) ≥ β̂j,obj , j ∈ J,

with

β̂j,obj = 1−
Ŵj,obj

tem
.

Thus, in that case, the average waiting time constraints are equivalent to aggregate fill rate con-

straints.
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3 Analysis

A lower bound for the optimal costs CP of Problem (P ) may be obtained by a decomposition and

column generation method which reveals close similarity to Dantzig-Wolfe decomposition for linear

programming problems (see Dantzig and Wolfe [1] for a general description of that method). In

Subsection 3.1, we describe the decomposition and column generation method for our problem.

Next, in Subsection 3.2, we present a way to obtain a feasible solution for Problem (P ), i.e., an

upper bound on CP .

3.1 Lower bound

Like in Dantzig-Wolfe decomposition, a Master Problem is introduced in which the variables of our

original problem are expressed as convex combination of columns that contain all possible values

for the decision variables in the original problem. Let K := N0 denote the set of base stock policies

for each of the SKU-s i ∈ I. Let Sk
i , i ∈ I, k ∈ K, denote the (fixed) base stock level of policy k

for SKU i, and let xk
i ∈ {0, 1}, i ∈ I, k ∈ K, be a variable indicating whether policy k for SKU i is

chosen (xk
i = 1) or not (xk

i = 0). Relaxing the integrality constraint on xk
i , i ∈ I, k ∈ K, a suitable

Master Problem related to Problem (P ) is defined as follows:

(MP ) min
∑
i∈I

∑
k∈K

ci(Sk
i )xk

i

subject to
∑
i∈I

∑
k∈K

mi,j

Mj
Wi(Sk

i )xk
i ≤ Ŵj,obj , j ∈ J, (MP.1)

∑
k∈K

xk
i = 1, i ∈ I, (MP.2)

xk
i ≥ 0, i ∈ I, k ∈ K.

The optimal costs of Problem (MP ) are denoted by CMP . Notice that the relaxation of the

integrality condition on xk
i , i ∈ I, k ∈ K, in Problem (MP ) allows for fractional values of xk

i ,

i ∈ I, k ∈ K and thus corresponds to allowing randomized policies. Therefore, CMP constitutes a

lower bound on CP .

Besides Problem (MP ), a Restricted Master Problem, Problem (RMP ), is defined that for

each SKU i ∈ I only considers a small subset Ki ⊆ K of columns (policies). The optimal costs of

Problem (RMP ) are denoted by CRMP . For each SKU i ∈ I, let Ki initially consist of one policy

k, with Sk
i := min{Si|Wi(Si) ≤ Ŵj,obj , j ∈ J, Si ∈ N0}. For given Ki, i ∈ I, Problem (RMP ) can

be solved using the simplex method, if the number of variables is at least |I| + |J |. Notice that

we satisfy that condition, since our choice of |I| initial policies implies |I| variables xk
i and the |J |

service level constraints (MP.1) lead to |J | slack variables. Furthermore, notice that our choice of

initial policies constitutes a feasible solution for Problem (RMP ).
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After solving Problem (RMP ) with the |I| initial policies, we are interested in policies that were

not yet considered, but that would improve the solution of Problem (RMP ) if they were added. To

check if such policies exist, we solve, for each SKU i ∈ I, a so-called column generation subproblem

that for that SKU generates a policy with the lowest reduced cost coefficient. Given an optimal

solution for Problem (RMP ), let uj ≤ 0, j ∈ J , denote the dual variables (shadow prices) related

to the |J | service level constraints (MP.1), and let vi, i ∈ I, denote the dual variables related

to the |I| convexity constraints (MP.2). Then, for our Problem (RMP ), the column generation

subproblem for an SKU i ∈ I, is as follows.

(SUB(i)) min ci(Si)−
∑
j∈J

uj
mi,j

Mj
Wi(Si)− vi

subject to Si ∈ N0.

Let SSUB(i) denote an optimal policy (base stock level) for Problem (SUB(i)), and let CSUB(i)

denote the cost of an optimal solution of Problem (SUB(i)), i.e., the lowest reduced cost coefficient.

It can be shown that βi(Si) is increasing and concave on its entire domain N0 (see Lemma 2

in Kranenburg and Van Houtum [3], p.13). Since ci(Si) consists of a term that is linear in Si,

and terms having βi(Si) with a non-positive coefficient (see (4)), and the objective function of

Problem (SUB(i)) further consists of another term containing βi(Si) (via Wi(Si)) with a non-

positive coefficient and a constant term vi, the objective function of Problem (SUB(i)) is convex

in Si. This implies that Problem (SUB(i)) can be solved in a straightforward way. If there exists

an optimal policy SSUB(i) with a negative reduced cost coefficient CSUB(i) for SKU i, this policy is

added to Ki.

As long as a policy with a negative reduced cost coefficient exists for one or more SKU-s, adding

columns to Problem (RMP ) and solving Problem (RMP ) is done iteratively. If for none of the

SKU-s i ∈ I a policy with negative reduced cost can be found, the obtained solution for Problem

(RMP ) is optimal for Problem (MP ) as well. This iterative procedure is finite, as can be seen

as follows. We start the procedure with |I| policies that constitute a feasible solution with costs

CRMP . In each iteration, we add for each item a policy if there exists one with negative reduced

cost, i.e., a policy that would decrease CRMP if it would be added. The number of policies that

satisfies this condition is finite, and therefore the number of iterations is finite.

In total, |I|+ |J | variables are in the basis. Notice that at most |J | SKU-s will have fractional

xk
i -values because the convexity constraints (MP.2) require that for each i at least one xk

i is a basic

variable. Furthermore, notice that the number of service level constraints (MP.2) that is satisfied

with equality is at least equal to the number of SKU-s that has fractional xk
i -values.
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3.2 Upper bound

After a lower bound has been found for Problem (P ), as described above, an upper bound, i.e., a

feasible solution for Problem (P ), can be determined as follows.

If none of the xk
i -values in the solution of Problem (MP ) is fractional, the obtained solution of

Problem (MP ) is feasible for Problem (P ) as well.

If fractional xk
i -values do occur, however, we need to apply some further steps. Since the number

of fractional xk
i -values is at most |J |, and, usually, |J | is very small compared to |I|, it would be

reasonable to select for each of these few SKU-s, the policy with a non-zero xk
i -value and the highest

base stock level. Obviously, this results in a feasible solution for Problem (P ), but it may lead to

a somewhat loose upper bound if one of these SKU-s happens to be expensive. Therefore, another

procedure is proposed to obtain an upper bound.

Select for each SKU i ∈ I the policy with a non-zero xk
i -value and the lowest base stock level

Sk
i , and refer to this policy as policy k′. Notice that ci(D) ≥ ci(Sk′

i ) for D > Sk′
i , D ∈ N. This

holds because βi(D) ≥ βi(Sk′
i ), and thus if ci(D) < ci(Sk′

i ), a feasible solution would exist with

xk′
i = 0 that has lower costs than the current solution of Problem (MP ). This would contradict to

the choice of k′. Let Si := Sk′
i and S := {Si}i∈I . Notice that Ŵj(S) > Ŵj,obj for at least one j.

This holds because xk′
i is fractional for at least one i. It can be verified that for this i it holds that

βi(Sk′
i ) < βi(Sl

i), and thus that Wi(Sk′
i ) > Wi(Sl

i), and furthermore that ci(Sk′
i ) < ci(Sl

i), with l

denoting any other policy with fractional xl
i-value, and that xk′

i = 1 would lead to an infeasible

solution, i.e., a solution with Ŵj(S) > Ŵj,obj for at least one j.

We evaluate a number of neighbors Si, i ∈ I, of S and select the best one. This step is repeated

until we have obtained a feasible solution for Problem (P ). Neighbor Si is the set of policies with

for all SKU-s identical base stock levels as for S, except for SKU i, for which the base stock level is

increased with one unit. Neighboring policies are evaluated with respect to the decrease in distance

to the target average waiting times per unit cost increase,∑
j∈J

[
Ŵj(S)− Ŵj,obj

]+
−

∑
j∈J

[
Ŵj(Si)− Ŵj,obj

]+

ci(Si
i)− ci(Si)

,

with [a]+ := max{0, a}, and the neighbor for which this value is largest is selected.

4 Numerical Results

In this section, we numerically study the potential benefits of exploiting commonality by using a

shared stock for all machine families together instead of using a separate stock per machine family.

We show results for a case study that we have done with data of ASML, in Subsection 4.1, and

results of a numerical experiment with a smaller data set, in Subsection 4.2. The model has been

implemented in AIMMS 3.4, and XA is used as solver for the linear programming problems.

7



Data set M1/M2 CP1 CP2 (Ŵ1,obj , Ŵ2,obj) (Ŵ1,obj , Ŵ2,obj) (Ŵ1,obj , Ŵ2,obj) (Ŵ1,obj , Ŵ2,obj)

= (0.10, 0.10) = (0.10, 0.05) = (0.05, 0.10) = (0.05, 0.05)

1 8.95 0.12 0.23 0.96 0.93 0.96 0.94

2 0.40 0.10 0.12 0.96 0.97 0.96 0.97

3 33.22 0.12 0.26 0.93 0.94 0.93 0.94

4 2.37 0.12 0.25 0.93 0.93 0.93 0.92

5 0.75 0.10 0.19 0.97 0.97 0.96 0.96

6 0.57 0.19 0.32 0.93 0.94 0.91 0.91

7 1.25 0.18 0.30 0.94 0.95 0.93 0.93

8 10.00 0.12 0.26 0.92 0.93 0.92 0.93

Table 1: Results case study ASML

For each instance, we define the commonality percentage CPj for group j as

CPj :=
|(i|mi,j < µi,mi,j > 0)|

|(i|mi,j > 0)|
, j ∈ J.

It can be interpreted as the percentage of SKU-s in group j that is common (i.e., these parts also

receive demand from at least one other group).

4.1 Case study at ASML

In the case study, we consider 8 data sets of ASML, corresponding to 8 different local warehouses.

For each data set, we have |J | = 2 groups. The average number of SKU-s per group is about

700, and varies between 400 and 1000. Failure rates are low, on average 0.25 per year, and vary

between 0.0005 and 40 per year. The relative size of the groups, expressed in terms of M1/M2,

and CP1 and CP2 are given in Table 1. On average, CPj is 0.19. For the 10% most expensive

SKU-s per group, the commonality percentages are about the same as the depicted values, which

gives us an indication that for all groups, the occurrence of commonality is equally distributed

over cheap and expensive SKU-s. Emergency replenishment costs cem
i and times temi and regular

replenishment costs cr
i and times tri are SKU-independent. At ASML, tri = 14 days (= 2 weeks),

and temi = 1 day. The value for (cem
i − cr

i ) is set equal to 0.1 times the average holding costs

ch
i . We set ri = 1 for all i, so pipeline stock is included in holding costs. For each data set, we

compare using shared and separate stock, and we do that for four situations: (Ŵ1,obj , Ŵ2,obj) ∈
{(0.10, 0.10), (0.10, 0.05), (0.05, 0.10), (0.05, 0.05)} (the targets Ŵj,obj are expressed in days). In

Table 1, the spare parts provisioning costs for the shared stock situations are depicted as a fraction

of the spare parts provisioning costs in the separate stock cases.

As can be seen from Table 1, on average 6% can be saved in spare parts provisioning costs in

the ASML data sets. Target fill rate levels and the relative sizes of the groups seem to have little

8



influence on this.

Besides in comparisons between shared and separate stock, we are interested in the performance

of the method. On average, it took 13 seconds to run this model on a Pentium 4 computer, where

the maximum duration was 26 seconds. The method provides an upper bound (UB) for the optimal

costs CP of Problem (P ), i.e., a feasible solution, and a lower bound (LB). We define the relative

distance G between both bounds as

G :=
UB − LB

LB
,

and observed that the method generates quite good solutions: G is on average 0.06% and at most

0.3% in the considered cases.

4.2 Numerical experiment

In addition to the case study, we performed a numerical experiment as well, in which we varied

characteristics that were given in the case study. In the experiment, we chose arbitrarily 100 SKU-s

from one group in one data set of ASML and checked their representativeness by plotting failure

rates versus prices. This showed a pattern similar to the complete set of SKU-s for that group.

For these 100 SKU-s, we studied several scenarios for situations with 2 and 5 groups. We let all

groups have these 100 SKU-s (with their failure rates and prices). In these scenarios, we varied

the CPj-value from 0% to 100% in steps of 20% (within a scenario we assumed CPj equal for all

j). Furthermore, we varied the commonality setting, indicating if commonality occurs in cheap or

expensive SKU-s or equally distributed over all SKU-s. According to these settings, we declared an

SKU in a scenario either as completely common (i.e., occurring in all groups) or as group-specific.

Regular replenishment costs and times, emergency replenishment costs and times, and the ri were

chosen identically to the values in the case study, and Ŵj,obj = 0.05 for all j. For these settings,

we show in Figures 1 and 2 graphically the savings of using shared stocks compared to using

separate stocks (i.e., 0% commonality). Of course, at 100% commonality, the commonality setting

is indifferent. From Figures 1 and 2, it can be seen that enormous savings can be obtained if the

commonality percentage CPj is high. Furthermore, if the number of groups increases, the benefits

of using shared instead of separate stocks increases as well. Thirdly, commonality in expensive

SKU-s is from a managerial point of view much more interesting than having commonality mainly

in cheap SKU-s. Even if CPj is about 40%, only a small saving can be obtained if the commonality

occurs in cheap SKU-s only. Lastly, in Figure 1 with commonality setting ’equal’ and CPj = 20%

ASML’s situation can be positioned.

Again, the performance of the method was quite well. The gap G was reasonably larger than in

the case study, most likely because of the smaller number of SKU-s considered. Its average value

was 2.7%, and in one case, G was 12%. The computation time was on average less than 2 seconds

(at most 3).
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Figure 1: Spare parts provisioning costs for two groups
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Figure 2: Spare parts provisioning costs for five groups
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5 Conclusions

We have developed a multi-item, single-stage spare parts inventory model with multiple groups

to study the effect of commonality on spare parts provisioning costs for capital goods. A case

study in which we studied several data sets of ASML, an original equipment manufacturer in

the semiconductor industry, showed that on average 6% reduction can be obtained in spare parts

provisioning costs if stocks for different groups are shared. In a numerical experiment with a

smaller data set, we showed that a larger number of groups increases potential benefits considerably.

Also, we have seen that the savings obtained by shared stocks are significantly affected by the

commonality percentage and the degree to which the commonality occurs in the expensive SKU-s.
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