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1. INTRODUCTION

Including effects of the double layer composition
on the charge transfer rate at electrodes was initiated
by Frumkin [1] for one electron proton reduction as
an extension to the classical Butler–Volmer equation.
Later contributions were e.g. by Parsons [2] who
extended Frumkin’s approach to a multiple electron
reaction, Itskovich et al. [3] who assumed a constant
concentration (and thus a constant chemical poten�
tial) for the species in the reduced state, and France�
schetti and MacDonald [4, 5] who mentioned
Frumkin’s approach in the context of electrochemical
impedance spectroscopy. Calculations for a complete
electrochemical cell were first performed by Bonne�
font et al. [6] (in [3–5] only single electrode systems
were used), and extended in later work by Bazant and
coworkers, [7–10] who also introduced the concept of
the generalized Frumkin–Butler–Volmer (gFBV)
equation [9]. In addition, applications of the Frumkin
approach were reported on e.g. corrosion, [11, 12] fuel
cells, [13, 14] nano�electrodes, [15] and batteries
[16, 17].

To introduce the basic concept of the gFBV theory
we first consider the structure of the double layer,
which is a combination of the charge free Stern layer
and the diffuse layer (DL), as we will explain next. We
assume that an ion including its solvation (i.e. hydra�
tion) shell cannot approach an electrode infinitesimal
close as shown in Fig. 5. As a result, we can identify a
plane of closest approach, which coincides with the
outer Helmholtz plane. Note that we implicitly
neglect ion adsorption on the inner Helmholtz plane,
i.e., we assume that no ions break free from their sol�
vation shell. Consequently, we have a charge free layer
sandwiched between the electrode and the outer
Helmholtz plane, which we refer to as the Stern layer.
Next, we assume that an electron can tunnel across the
Stern layer, so that we have electron transfer between
the ions at the outer Helmholtz plane and the metal of
the electrode, and refer to this position as the reaction
plane (Fig. 1). Obviously, this view of the reaction
plane is very simplistic and in reality many effects can
influence its position (and thus the thickness of the
Stern layer), such as the surface roughness of the elec�
trode, [18] the presence of an oxide layer, [19] or the
distance across which the electrons can tunnel [20].
Therefore we will consider the Stern layer thickness as
an adjustable parameter, which we use to study the
effect of the double layer composition.
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Adjacent to the reaction plane a DL containing a
non�zero space charge density is formed. As a result
we have large electrical field strengths in this layer,
while ion concentration gradients counter the forces
acting on the ions due to these electrical fields. Includ�
ing the DLs in an electrochemical model goes beyond
the common assumption of electroneutrality, which is
ubiquitous in the literature of electrochemical model�
ing [21–28]. However, including diffuse layers might
be important as the electrical potential and ion con�
centration gradients in these nanoscopic layers are
large compared to the more gradual changes in the
electroneutral bulk electrolyte. Therefore, the poten�
tial drop across the DL might have a significant contri�
bution to the overall cell voltage, while ion concentra�
tions at the reaction plane near the electrode differ
from their concentration in the bulk region. Conse�
quently, the formation of DLs can have a large influ�
ence on the charge transfer rate at electrodes, a rate
which according to the gFBV theory depends on the
local potential drop and ion concentration at the reac�
tion plane, as we will explain in the next section.

2. GENERALIZED 
FRUMKIN–BUTLER–VOLMER EQUATION

Contrary to the classical Butler–Volmer equation
[29], where the bulk ion concentration and the poten�
tial drop from the metal of the electrode to the bulk
electrolyte are the stimuli that drive the reaction, we
use the local ion concentration and electrical field
strength at the reaction plane in the gFBV equation as
these stimuli instead. At the reaction plane we assume an
electrochemical reaction of the form, O + ne–  R,
where we have ideal thermodynamics for the species in
the reduced and oxidized states, and use their concen�

tration, ci, instead of their activities, ai, to obtain a
Faradaic current according to,

(1)

where Ki are rate constants, αO and αR are the transfer
coefficients (αO + αR = 1), f is equals F/RT, with F is
Faraday’s constant, R is the gas constant and T is tem�
perature, ΔVS is the potential drop across the Stern
layer, subscript rp indicates that the concentration is
evaluated at the reaction plane, and subscript O and R
denote the oxidized state (or oxidation reaction) and
reduced state (or reduction reaction), respectively.

For the potential drop across the Stern layer we
require an additional boundary condition, which can
be obtained from the electrical field strength at the
reaction plane and the properties of the Stern layer as
independently proposed by Itskovich et al. [3],
Franceschetti and Macdonald [5], and Bonnefont
et al. [6]. Namely, the potential drop across the Stern
layer follows from the electrical field strength, E = –�V,
at the reaction plane according to,

(2)

where λS is the Stern layer thickness, n is the outward
normal vector on the reaction plane, thus pointing out
of the electrolyte phase, and subscript rp indicates that
the gradient in electrical potential is evaluated at the
reaction plane. Substitution of Eq. (2) into Eq. (1)
results in the physically intuitive expression [9],

(3)

for the Faradaic charge transfer relation, which only
depends on local properties at the reaction plane.
Consequently, Eq. (3) clearly shows the difference
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rp
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Fig. 1. Schematics of the double layer structure; (a) the potential drop across the double layer, and (b) the plane of closest
approach.
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between the gFBV equation and the classical Butler–
Volmer approach, since for the latter case the potential
in the exponential terms is an “over potential” relative
to some reference value and condition, while the con�
centration of species are determined at the bulk�dif�
fuse layer interface. As a result, the classical Butler–
Volmer approach cannot be applied to systems where
we have charging of the bulk region due to currents
above the diffusion limitation [7, 8, 30–32] or the
overlap of DLs, such as found in micro� and
nanochannels [33–35]. Additionally, the dependence
of the electrical potential on the charge transfer rate in
the gFBV equation is easier�to�grasp than the “over
potential” in the classical Butler–Volmer approach,
while it can be transparently incorporated in the
boundary conditions of a system without the require�
ment of a reference or equilibrium condition.

To show the effect of the double layer composition
on the charge transfer rate we consider the limit of
infinitesimal thin DLs, i.e. the thin�DL limit. The
thin�DL limit is a very useful approximation for elec�
trochemical cells with a relatively large electrode spac�
ing compared to the characteristic length scale for the
thickness of the DL, i.e. the Debye length,

λD =  [7, 8], where ε is the permittiv�
ity, and c

∞
 the ionic strength of the electrolyte. In the

thin�DL limit we can use the equilibrium DL proper�
ties to describe the ion concentration at the reaction
plane [6–8, 30, 36], which result from the Poisson�
Boltzmann (PB) ion distribution [36–38],

(4)

where zi is the valence of ionic species i, ΔVDL is the
potential drop across the DL (“zeta potential”), and
subscript bulk refers to the bulk region (“plane of zero
charge”). Beyond the assumption of ions as point
charges and thus the PB distribution, steric effects can
play an important role on the structure of the DL at
high electrode potentials, so that Eq. (4) changes sig�
nificantly, as e.g. discussed in [18, 19, 39]. However,
these effects are not considered in the current work.

We now substitute the PB ion distribution in Eq. (1)
and follow [40], namely; we express the potential drop
across the DL as function of the double layer capaci�
tance. We write the double layer capacitance, Cd, as the
capacitance of the DL and the Stern layer in series,
i.e., 1/Cd = 1/CDL + 1/CS, where CDL and CS refer to
the capacitance of the DL and the Stern layer, respec�
tively [19]. The capacitance of two parallel planes is by
definition given as C = Δq/ΔV, where Δq and ΔV are
the difference in charge stored and the electrical
potential difference between both planes, respectively.
Since the Stern layer remains charge neutral we can
write ΔVDL = (1 + CDL/CS)–1(Vm – Vbulk), which
relates the potential drop across the DL to the poten�
tial drop across the complete double layer, and ΔVS =

εrε0RT/2F 2c
∞

ci gr,
ci bulk,

zifΔVDL–( ),exp=

Cd/CS(Vm – Vbulk) for the potential drop across the
Stern layer. Substitution in Eq. (1) yields

(5)

for the charge transfer rate, where α* = αR ×

 Equation (5)

has the same form as the classical Butler–Volmer
equation, however, the effective transfer coefficient,
α*, differs from its true value depending on the DL to
Stern layer capacitance ratio. The capacitance of the
DL and Stern layer per unit area is given as CDL =
⎯qDL/ΔVDL, and CS = ε/λS, where qDL is the charge
stored in the DL. According to the Gouy–Chapman
theory the charge stored in the DL equals qD =

±  [38], which

results in

(6)

for the capacitance ratio of a binary electrolyte, i.e.
zi = ±1, where δ is the Stern layer thickness relative to
the Debye length, δ = λS/λD. Next, we can identify two
limits for the effective transfer coefficient. The first
limit is the condition of a zero Stern layer thickness to
Debye length ratio, i.e., δ  0, where we have α* =
zO/n. We will refer to this limit as the Gouy–Chapman
(GC) limit [7, 9], since in this limit the DL, which is
at equilibrium described by the GC theory, dominates
the charge transfer rate at the electrode. The second
limit is the opposite condition where the Stern layer
thickness to Debye length ratio is infinite, i.e., δ  ∞,
where we thus have α*  αR, and we retain the clas�
sical Butler–Volmer equation. We will refer to this
limit as the Helmholtz (H) limit [7, 9], since in this
limit the potential drop across the double layer exactly
equals the potential drop from the metal phase to the
reaction, or outer Helmholtz, plane.

Finally, we show results for the effective transfer
coefficient as function of the potential drop across the
double layer for various values of the Stern layer to
Debye length ratios (Fig. 2). To determine the potential
drop across the double layer (ΔVDL + ΔVS = Vm–Vbulk)
we use ΔVS = λDδqDL/ε [38], where we assume a con�
stant bulk ion concentration, which is valid in the low
current regime. Furthermore, we consider an electro�
chemical reaction involving the transfer of one elec�

tron (αR = αO =  see [7]) with the valence of the ions

in the oxidized state equal to one. The results pre�
sented in Fig. 2 show that for δ = 0, i.e. the GC�limit,
we have an effective transfer coefficient of 1, while for
δ = ∞, (H�limit) we have α* = αR. For small values of

JF KRcO bulk,
α*nf Vm Vbulk–( )–{ }exp=

– KOcR bulk,
1 α*–( )nf Vm Vbulk–( ){ }exp

CS/CDL 1+( ) 1– zO

nαR

�������� CDL/CS 1+( ) 1–+
⎩ ⎭
⎨ ⎬
⎧ ⎫

.

2RTε ci bulk ,
zifΔVDL–( )exp 1–{ }

i∑
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������� δ
fΔVDL

������������
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δ and Vm – Vbulk we find clear deviations from the
H�limit, and thus the classical Butler–Volmer equa�
tion, while for increasing values of Vm–Vbulk all lines
converge towards the H�limit as the capacitance ratio
CDL/CS blows up for high values of the potential drop
across the DL (note that f = ~40 1/V at T = 273 K).
Consequently, deviations from the classical Butler–
Volmer approach are likely to occur at small electrode
potentials in combination with small Stern layer thick�
ness to Debye length ratios. However, note that the DL
capacitance cannot increase unbounded if steric
effects for ion crowding in the DL are taken into
account, which result in a maximum capacitance for
cell voltages that are not much larger than the zero�
voltage [19], and might thus lead to deviations from
the H�limit at higher voltages as well.

3. POISSON–NERNST–PLANCK 
TRANSPORT THEORY

Ion transport in a dilute electrolyte is generally
described by the Nernst–Planck (NP) equation,
where it is assumed that ions behave as ideal point
charges [21]. We can substitute the NP flux equation in
a mass balance to obtain,

(7)

where  is the time�derivative of the ion concentra�
tion, Ji is the flux, Di the diffusion coefficient, zi the
valence of the ions, and V is the local electrostatic
potential in volts. In Eq. (7) we do not consider advec�
tion of the solvent or chemical reactions within the
bulk of the electrolyte. The former is important when
e.g. flow cells are considered [14, 35], while the latter
cannot be omitted when describing transport of pro�
tons and hydroxyl ions due to the self�dissociation of
water [13, 41, 42]. The electrical potential in the local�
density mean�field approximation is related to the
charge density by Poisson’s equation

(8)

If we use Eqs. (7) and (8) and combine them with
appropriate boundary conditions we obtain a self�con�
sistent set of equations for the description of mass
transfer in the bulk electrolyte of an electrochemical
cell according to the full Poisson–Nernst–Planck
(PNP) transport theory.

The boundary conditions for an applied electrode
potential are straightforward and given by

(9)

for the potential at the reaction (outer Hemholtz)
plane, while the fluxes of the reacting species are cou�
pled to the charge transfer according to Jin = JF/F and
the fluxes of the inert species are zero. The boundary
conditions for a system where a constant current is
applied are more elaborate and can be derived by con�

c· i ∇ Ji⋅– ∇ Di ∇ci zicif∇V+( )[ ],⋅= =

c· i

∇ ε∇V( )⋅ F zici.
i
∑–=

V
rp

V m λS∇Vn–=

sidering that in an electrolyte the electrical current is
equal to the sum of the ionic conduction current and
the Maxwell displacement current, i.e. [6, 11, 43, 44],

(10)

where the first term represent the conduction current
and the second term the Maxwell current. At the elec�
trodes the conduction term equals the Faradaic cur�
rent, and we obtain [11, 43]

(11)

for the potential gradient at the reaction plane. The
contribution of the Faradaic current in Eq. (11) is
time�dependent until the steady�state is reached,
where it exactly equals the applied current, and the
Maxwell current vanish completely.

The assumption of electroneutrality to describe
mass transfer is ubiquitous in the literature of electro�
chemistry [21–28]. Considering Poisson’s equation,
i.e. Eq. (8), goes beyond this assumption since it cou�
ples the electrical potential to the space charge den�
sity. Interesting in this equation is the factor between
the second derivative of the electrical potential and
the space charge density, which is F/ε and equals
1.4 × 1014 V m/mol in aqueous electrolytes. The large
magnitude of this term results in an enormous electri�
cal field for even a small excess of space charge, which

I F ziJi( )
i
∑– ε d

dt
����∇V,–=

∇V
rp

1
ε
�� JF t '( )n I–[ ]dt '
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Fig. 2. The effective transfer coefficient for a typical one
electron transfer reaction for various values of the Stern
layer thickness to Debye length ratios; zO = 1, n = 1, and
αR = 1/2.
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will counteract the separation of charges [21]. Also,
this term implies that very small deviations from elec�
troneutrality can results in a non�linear electrical
potential distribution [21]. Therefore, simply setting the
space charge term in Eq. (8) equal to zero and solving
the resulting Laplace’s equation will result in a flawed
model. The proper way of dealing with electroneutrality
is to replace Poisson’s equation by ci = 0. As a

result we reduce the number of field variables in our
model and make our system of equations more tracta�
ble for analytical or numerical solutions. Obviously,
electroneutrality is violated near the electrodes where
we have the formation of DLs, as here large gradients
in electrical potential develop. Consequently, we can
only use the electroneutrality assumption in the bulk
electrolyte when the DLs are negligibly small com�
pared to feature size of the electrochemical cell, char�
acterized by ε = λD/L � 1, where L is the electrode
spacing [6–10, 18, 19, 30, 36, 45–47]. While in addi�
tion we need to apply appropriate boundary condi�
tions for the bulk electrolyte, which account for the
potential and concentration gradients at interfaces due
to the formation of DLs. In general these gradients are
well described by the equilibrium properties of the
DLs, see [6–10, 18, 19, 30, 36, 45–47].

Note that in many electrochemical cells models the
assumption of electroneutrality is accompanied by
Laplace’s equation for the electrical potential. How�
ever, electroneutrality does not imply a Laplacian
directly from Poisson’s equation, as we will discuss
below. Let us consider a system consisting of two par�
allel electrodes with infinity large area spaced by a
finite distance, L, that sandwich a monovalent and
binary electrolyte, with the anion and cation concen�
tration denoted as ca and cc, respectively. Due to the
infinite electrode area we can describe this system
using a one�dimensional model with spatial coordi�
nate X, which according to Eq. (7) results in

(12)

for the mass balance of the dimensionless salt concen�
tration, c = (cc + ca)/2c

∞
, while for the dimensionless

charge density, ρ = (cc – ca)/2c
∞

, we have

(13)

which approaches zero for ε � 1. From Eq. (13) we
can obtain an expression for the migration term (i.e.
the second term between square brackets), which we
substitute in Eq. (12) to obtain [7, 8, 21, 39, 48–52],

(14)

where D* = 2DcDa/(Dc + Da), which is the “ambipolar
diffusivity” of the salt. Eq. (14) now resembles Fick’s

zii∑

c 1
2
�� ∂

X∂
����� Dc Da+( ) c∂

X∂
����� Dc Da–( )cf V∂

X∂
�����+⎝ ⎠

⎛ ⎞=

ρ 1
2
�� ∂

X∂
����� Dc Da–( ) c∂

X∂
����� Dc Da+( )cf V∂

X∂
�����+⎝ ⎠

⎛ ⎞ ,=

c D* ∂2c

X2∂
�������,=

second law for the diffusion of neutral species [50, 53],
indicating that the salt behaves like one species due to
the high forces required to separate the cat� and anions
in solution. From Eq. (13) we obtain a replacement for
Poisson’s equation according to

(15)

which, by neglecting any redistribution of species and
after the Maxwell current died out, follows Ohm’s law
where the electrical current is given by I = κ∂XV, with
the electrolyte conductivity, κ = fFc

∞
(Dc + Da).

Though Eq. (15) is derived for our particular system of
a binary monovalent electrolyte, similar “modified
Poisson’s equations” can always be deduced by assum�
ing electroneutrality. In systems where we have a large
excess of inert supporting electrolyte the potential is
screened across the DLs and a relation for the electri�
cal field in the bulk is not required [46]. Note that in
many electrochemical cell models ion redistribution
due to mass transfer is neglected, and Eq. (15) con�
denses to a simple Laplacian equation. However, this
is only appropriate under stringent conditions and
does not follow from neglecting the space charge den�
sity in Eq. (8) directly.

Let us continue our discussion on mass transfer in
the system described above by considering the case
where we impose a constant electrical current onto the
electrodes, while one species is inert and the other
electrochemically active at the electrodes. Conse�
quently, we have conservation of the inert species, i.e.
∫cinertdx = c

∞
L, so that from Eq. (14) we find that at

steady�state we have a linear ion concentration profile
of the inert species with a maximum slope equal to
±2c

∞
/L. When we substitute this concentration profile

into the flux equation for the inert species (which
equals zero at steady�state) we find that ±2c

∞
/L =

⎯zici/∂XV, which after substitution into the flux equa�
tion for the electrochemically active species leads to
the diffusion limiting current, Ilim = 4FDc

∞
/L, where

D is the diffusion coefficient of the reactive species.
Note that we cannot apply a current above this limita�
tion, unless we break the electroneutrality condition
and have an expansion of the DLs or introduce
another electrode reaction [7, 8, 21, 30, 31, 46].

Next, we consider the diffusion time scale of the
system, i.e. τ = tL2/D. At this time scale the Maxwell
current is negligible compared to the conduction cur�
rent for systems where ε2 � 1 [47]. As a result the
applied current to the system equals the conduction
current, a situation for which Eq. (14) has an exact
solution in terms of an infinite series [50, 51]

(16)

∂
X∂

����� cf V∂
X∂

�����⎝ ⎠
⎛ ⎞ Dc Da–( )

Dc Da+( )
������������������� ∂2c

X2∂
�������– ,=

c x τ,( ) 1 2iapp
1
2
�� x– fn

2Nx
L

��������⎝ ⎠
⎛ ⎞cos⎝ ⎠

⎛ ⎞

n 1=

n  = ∞

∑–
⎩ ⎭
⎨ ⎬
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where fn = exp(–4N2τ)/N2, N = π(2n – 1), x = X/L

and we have scaled the applied current, Iapp, according
to iapp = Iapp/Ilim. The exponential term in Eq. (16) will
vanish for times that are large compared to the diffu�
sion time scale leaving c(x) = 1 + iapp(1 – 2x), which is
exactly the classical steady�state solution for planar
electrochemical cells [6–9, 26, 45].

Though Eq. (16) will provide an exact solution for
the ion redistribution across the cell as function of
time for an infinite number of terms, its use for deriv�
ing analytical current�voltage relations is limited even
for n = 1. We will demonstrate this by considering the
potential drop across the electroneutral bulk region of
the electrolyte. Previously we found that the Maxwell
current vanishes at the diffusion time scale [47], so
that the conduction current equals the applied electri�
cal current. Converted to the dimensionless parameter
introduced above, and writing ϕ = fV, Eq. (10)
becomes 2iapp = c∂xϕ, which results in

(17)

for the potential drop across the bulk region, where
superscript 0 and 1 indicate the concentration at x = 0
and x = 1, respectively. Note that the potential drop
across the bulk is positive when positive charge flow
from the left to the right through the cell. The integral
in Eq. (17) has no exact solution when c is given by

1
2
��

Δϕbulk ϕ0 ϕ1–
iapp

c
������dx

x  = 0

x  = 1

∫= =

Eq. (16). However, it can be solved rather easily by
assuming a linear distribution of species,

(18)

where the concentration at x = 0 and x = 1 follow from
Eq. (16) according to

(19)

where the ± sign refers to the positive sign at x = 0 and
the negative sign at x = 1, which from τ ~ 0.1 onward
can be approximated by the first term of the summa�
tion only [47], so that

(20)

where g(τ) = 1 – 8/π2exp(–π2τ). In Fig. 3a we present
results for c according to Eq. (16) relative to Eq. (20).
We observe that Eq. (20) is indeed a good approxima�
tion for τ > 0.1. In Fig. 3b we show that the corre�
sponding profiles of c are almost linear at τ ~ 0.1.
Therefore we will substitute Eq. (20) into Eq. (18) to
obtain

(21)

for the distribution of ions between the two electrodes
at times that are comparable to the diffusion time
scale. Finally, substituting Eq. (21) into Eq. (17) gives,

(22)

c x τ,( ) c0 c1 c0–( )x,+=

c τ( ) 1 iapp 1 2 fn τ( )
n 1=
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c x τ,( ) iappg τ( ) 1 2x–( ) 1+=

Δϕbulk
2
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tanh=
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Fig. 3. Comparison between the salt profiles across the cell according to the exact solution and its first order approximation;
(a) the relative error between the dimensionless salt concentration at x = 0 according to Eq. (16) with n = 10 and its first order
approximation for n = 1, i.e. Eq. (21) as function of dimensionless time τ for iapp equal to 1/3, 2/3 and 1; (b) the concentration
profiles corresponding to (a) for τ = 0.1 according to Eq. (16) (full lines) and their linear approximation (dashed lines).
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for the potential drop across the electroneutral bulk.
Combining this potential drop with the potential
drops across the DL and the Stern layer will enable us
to construct the transient behavior of the cell potential
of an electrochemical cell under an imposed current as
we will discuss in the next section.

4. DEBYE, HARMONIC, 
AND DIFFUSION TIME SCALE

In this section we derive analytical relations for the
transient response of the cell potential to a step in
applied current. These relations include the initial
period of capacitive charging of the system as well as
the redistribution of ions across the bulk region. As we
will show, combining the relations derived here will
enable us to construct the complete transient behavior
of the cell potential for an electrochemical cell con�
taining a monovalent electrolyte as discussed in the
previous section. We consider the case where the cat�
ion is the reactive ion, which is formed from the metal
of the electrode at x = 0 and incorporated again in the
metal of the electrode at x = 1. Furthermore, we
assume that the metal atom concentration is large and
not affected by the electrochemical process. Conse�
quently, we can write KOcR = JO for the oxidation rate.

First, we derive an expression for the capacitive
charging of the bulk region of the electrochemical cell.
In the absence of ion redistribution, i.e. c(x, τ) = 1 and
ρ(x, τ) = 0, the potential drop across the bulk region is
linear and equals Δϕbulk = –∂xϕ, so that from Eq. (10)
converted to dimensionless parameters we obtain the
differential equation, dτ = ε2/(2Iapp + Δϕbulk)dΔϕbulk,
which results in

(23)

for the initial charging of the bulk region. Note that
τ/ε2 in Eq. (23) represents the Debye time scale, which
is a material property of the electrolyte and has a char�
acteristic value for aqueous solutions in the range of ns
to μs [36].

Next, we derive an expression for the potential drop
across the double layers. To do this we consider the
current at the reaction plane, i.e., Eq. (11), from
which we obtain,

(24)

for the time derivative of the potential drop across the
Stern layer, where the ±�sign refers to the positive
value at position x = 1 and the negative value at posi�
tion x = 0, and jF = JF/Ilim, which is the Faradaic cur�
rent scaled to the diffusion limiting current. We
assume that the DLs are in quasi�equilibrium (valid
for ε � 1) and are thus described by the PB distribution
according to Eq. (4), while again no redistribution of

Δϕbulk 2iapp 1 τ/ε2–( )exp–[ ]=

dΔϕS

dτ
����������

2δ jF iapp–( )
ε

������������������������±=

ions in the bulk region occurs, so that the Faradaic
current equals,

(25)

where ΔϕDL = 2sinh–1  [38], and the reaction

rate constants are scaled to the diffusion limiting cur�
rent, kR = KRc

∞
/Ilim and jO = JO/Ilim. Note that in

Eq. (24) the dynamics is characterized by the time
scale τ/ε, which is the harmonic time scale of the sys�
tem [36]. Consequently, we have the charging of the
bulk region at the Debye time scale, while the charging
of the DLs is at the longer harmonic time scale, fol�
lowed by the redistribution of ions at the longest diffu�
sion time scale.

Finally, we can solve Eqs. (24) and (25) numerically
and combine the results for ΔϕS and ΔϕDL with the
result for Δϕbulk of Eq. (23) according to

(26)

to obtain the initial cell potential as function of time.
Next we discuss a simplified solution of Eq. (24) in the
limit of small potentials drops across the double layer.
For small potential drops across the Stern layer, which
e.g. occur in case of fast electrode kinetics, we can lin�
earize the Faradaic current, such that

(27)

where i* = kR – jO, which after substitution into
Eq. (24) and integration results in,

(28)

for the potential drop across the Stern layer, where the
±�sign again refers to the positive value at position
x = 1 and the negative value at position x = 0. For
small values of ΔϕS we can derive the potential drop
across the DL from Eq. (28) according to
ΔϕDL = ΔϕS/δ, which after substitution of Eqs. (23)
and (28) in Eq. (26) results in an analytical description
of the initial capacitive charging of the system for low
potential drops across the double layer. However, note
that for a large unbalance in the gFBV equation, i.e.,
when |kR – jO| � 0, the assumption of a small potential
drop across the double layer is not satisfied, even for
fast electrode kinetics, due to the relatively high open
cell potential. Next, we assume that kR = jO = k at both

jF± kR
1
2
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reaction planes, so that an unbalance in the gFBV equa�
tion is absent. As result we obtain from Eqs. (23), (26)
and (28),

(29)

for the cell potential as function of time up to the har�
monic time scale.

Solutions for the cell potential at the diffusion time
scale were already presented in [47] for both the GC�
and H�limit as previously discussed in the current
work. Here we restate the results presented in [47] and
briefly describe their derivation. First we consider the
gFBV equation for the electrochemical charge trans�
fer, which equals the applied current at the diffusion
time scale, and where we again use the PB relation, i.e.
Eq. (4), to obtain,

(30)

where cm is the concentration at the very edge of the
bulk region and subscript m either denotes the anode
side (A) at x = 0 or the cathode side (C) at x = 1. Equa�
tion (30) differs from Eq. (25) in not assuming that the
ion concentration in the bulk remains constants but
can vary in time. Note that in many models a charge
transfer relation is used with some fixed pre�term for
the reaction rate constant that does not account for
ion redistribution due to mass transfer. Consequently,
the applicability of these models is limited to the rela�
tively small field where ion redistribution is negligible.
Returning to our limiting cases, we can derive the
potential drop across the double layer from Eq. (30) as
function of the applied potential and ion concentra�
tion at the very edge of the bulk region. In the
GC�limit the Stern layer does not sustain any voltage
drop, so that from Eq. (30) we obtain,

(31)

while for the H�limit, where the potential across the
DL equals zero, we obtain,

(32)
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Finally, we can combine Eqs. (20), (22), and (26)
with either Eqs. (31) or (32) to obtain

(33)

for the cell potential in case of the GC�limit and,

(34)

for the H�limit, where βm = 4jO,mkR,m and
ϕ0 = ln(jO,CkR,A/jO,AkR,C), which is the open cell
potential. Equations (33) and (34) become accurate
after τ ~ 0.1 when the ion concentration and the
potential drop across the bulk region are well predicted
by Eqs. (20) and (22), respectively. For long times, i.e.
τ  ∞, we obtain the steady�state solutions reported
in [9] except for a sign reversal of all terms due to the
reversed definition of the cell potential in [9]. It is
interesting to see that the difference between Eqs. (33)
and (34) vanishes when the kinetic rate constants
become very high. Namely, the second term in
Eq. (32) becomes negligible when jO,m � i, and the
same holds for the second and third term of Eq. (34)
for βm � i2/(1 ± g(τ)i). In addition, it was observed
that the solutions for increasing thickness of the Stern
layer converges rapidly to the H�limit [47]. Therefore,
for higher values of the Stern layer thickness the differ�
ence between the classical BV and the gFBV equation
is indistinguishable. An effect which is similar to that
presented in Fig. 2.

Results that show the correspondence between the
full PNP�gFBV theory and the simplified models
derived above are presented in Fig. 4a. The full PNP�
gFBV model results are computed by implementing
the dimensionless equivalents of Eqs. (7) and (8) with
boundary conditions according to Eq. (11) in the
commercial finite element code COMSOL (a more
detailed description of this procedure can be found in
[47]). The results show that even at a relatively low
value of the kinetic constant, namely; k = 0.3, the sim�
plified model according to Eq. (29) is a good approxi�
mation for the transient current, while for k = 0.1 the
solution based on solving the simple differential equa�
tion of Eq. (24) gives a good approximation. In addi�
tion we can use the relations for the cell potential at the
diffusion time scale, i.e. Eqs. (33) and (34), in combi�
nation with either Eq. (24) or (29) to construct the
whole start�up behavior from τ = 0 up to the steady�
state of the electrochemical cell (Fig. 4b). Here we
clearly see that for the model parameters considered
here (iapp = 0.75, k = 2, and δ = 10) the GC� and

ϕcell GC,
ϕ0
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H�limit give a lower and upper boundary for the time�
dependent cell potential that are sufficiently close
together to fairly accurately predict the response for an
arbitrary value of the Stern layer thickness δ.

To summarize, we first have the capacitive charging
of the bulk region at the Debye time scale, followed by
the formation of the DLs at the harmonic time scale,
while finally the cell potential further evolves due to
the redistribution of ions at the diffusion time scale.
Consequently, the transient behavior of the cell poten�
tial of an electrochemical cell in response to an applied
electrical current proceeds at three distinct time
scales.

CONCLUSIONS

We have used the generalized Frumkin–Butler–
Volmer (gFBV) equation to describe the charge trans�
fer rate due to an electrochemical reaction at an elec�
trode. In the gFBV equation it is assumed that the
electrochemical reaction proceeds at a predefined
plane near the electrode. We have shown that for an
infinitely large spacing between this reaction plane
and the metal of the electrode relative to the Debye
length, which is a characteristic length scale for the
diffuse layer containing a non�zero space charge den�
sity, we obtain the classical Butler–Volmer equation as
the correct limit of the gFBV equation. In the opposite
limit, where the reaction plane coincides with the
metal electrode, the charge transfer rate is dominated
by the properties of the diffuse layer. Consequently, in
this case the gFBV deviates significantly from the clas�
sical Butler–Volmer equation, since the latter equa�

tion does not consider the non�zero space charge den�
sity in the diffuse layer.

In addition we have shown that the gFBV equation
more naturally combines with the Poisson–Nernst–
Planck (PNP) transport theory for ionic species than
the classical Buter–Volmer equation. From the full
PNP�gFBV model we have derived analytical relations
for the transient behavior of the cell potential of an
electrochemical in response to a step in the applied
current. It followed from these relations that the evo�
lution of the cell potential proceeds at three distinct
time scales. Namely; (i) the Debye time scale for the
capacitive charging of the electroneutral bulk region,
(ii) the harmonic time scale for the formation of the
diffuse layer, and (iii) the diffusion time scale for the
redistribution of ions across the cell. We showed that
by combining the solutions for all three time scales we
can construct the complete transient behavior of the
cell, from the very initial capacitive charging all the
way up to the steady state.
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