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Baja California Sur 23096, México
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Instabilities and long-term evolution of two-dimensional circular flows around a rigid
circular cylinder (island) are studied analytically and numerically. For that we consider
a base flow consisting of two concentric neighbouring rings of uniform but different
vorticity, with the inner ring touching the cylinder. We first study the inviscid linear
stability of such flows to perturbations of the free edges of the rings. For a given
ratio of the vorticity in the rings, the governing parameters of the problem are the
radii of the inner and outer rings scaled on the cylinder radius. In this two-dimensional
parameter space, we determine analytically the regions of linear stability/instability
of each azimuthal mode m = 1, 2, . . . . In the physically most meaningful case of
zero net circulation, for each mode m > 1, two regions are identified: a regular
instability region where mode m is unstable along with some other modes, and a
unique instability region where only mode m is unstable. After the conditions of
linear instability are established, inviscid contour-dynamics and high-Reynolds-number
finite-element simulations are conducted. In the regular instability regions, simulations
of both kinds typically result in the formation of vortical dipoles or multipoles. In the
unique instability regions, where the inner vorticity ring is much thinner than the outer
ring, the inviscid contour-dynamics simulations do not reveal dipole emission. In the
viscous simulation, because viscosity has time to widen the inner ring, the instability
develops in the same manner as in the regular instability regions.

Key words: instability, vortex breakdown, vortex flows

1. Introduction
A circular flow with alternating vorticity around a cylinder can be experimentally

obtained in a rotating fluid by spinning a vertical cylinder for a reasonably long time
and then stopping it abruptly. After stopping the cylinder rotation, the fluid velocity
drops sharply to zero at the rigid wall; far enough from the cylinder, the fluid is
virtually at rest. Thus, inside the viscous boundary layer (which widens slowly), the
vorticity is positive, and outside, next to the boundary layer, negative, and the net
circulation of the flow is zero. Such a flow can be stable or not. The instability
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(a) (b)

FIGURE 1. Unstable evolution of a vortical flow with zero net circulation around a cylinder
as observed in an experiment. The flow is induced in a rotating fluid by prolonged spinning
and abrupt stopping of the cylinder; the photographs of dye dispersal are taken from above
at a small angle relative to the cylinder axis. (a) The flow just before the appearance of the
instability; the dark circular strip marks the periphery of the flow. (b) Emergence of two
vortical dipoles.

manifests itself in that, after some time, the flow begins to lose its circular symmetry,
and the vortical structure takes the shape of a rotating ellipse or a curvilinear triangle
(azimuthal mode-2 or -3 instability). This process normally culminates in the shedding
of two or three vortex dipoles (figure 1).

These observations lead us to the following questions: What are the conditions
for a flow around a cylinder to be stable? If the flow is unstable, how long can
it survive, i.e. what are the growth rates of its unstable modes, and what vortical
patterns can emerge due to the instability? This topic is of oceanographic significance.
When an island possesses a topographic ‘skirt’ (a sufficiently steep bottom slope),
potential vorticity contours can be closed thus causing the existence of a closed flow
around the island (Pedlosky, Iacono & Napolitano 2009). Also, island-trapped inertial
or subinertial waves induced by tidal or planetary waves (Longuet-Higgins 1969, 1970;
Brink 1999; Dyke 2005) and tidal rectification (Loder & Wright 1985; Wright &
Loder 1985; Chen & Beardsley 1995) may cause the formation of mass-transporting
currents around islands. One may expect that, in case of instability, such a current
will emit vortex dipoles. Coastal waters near islands are usually rich in chemical and
biological material, while the vortex dipoles are normally quite robust and, therefore,
can serve as carriers of the trapped material.

The aim of our present study is to establish the conditions for linear instability
of a two-dimensional azimuthally symmetric shear flow around a rigid circular
boundary and to study the long-term, nonlinear evolution of unstable flows, including
the formation of new vortical patterns. We assume that, in terms of vorticity, the
unperturbed flow is composed of two concentric neighbouring rings of uniform but
different vorticity; this assumption makes feasible the investigation of linear stability
analytically in the contour-dynamics framework. In this respect, our formulation has
some features in common with the model considered by Flierl (1988) who studied the
stability of a ‘shielded’ circular barotropic vortex with a stepwise vorticity distribution,
also referred to as a two-contour Rankine vortex. This and the three-contour Rankine
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FIGURE 2. Circular flows with zero net circulation (Γ = 0). (a) Theoretical profiles of
vorticity Q (bold stepwise line) and velocity V (solid continuous line) determined by (2.1)
at a = 1.5 and b = 2.6. (b) The azimuthal velocity profile determined by (2.1) at a = 1.08
and b = 1.75 (solid continuous line) and that obtained in a simulation with small viscosity
(Re= 3×104) just before the instability (circular asymmetry) becomes visible (smooth dashed
line).

vortex were also considered by Kozlov & Makarov (1985a,b), Carton (1992), Morel &
Carton (1994) and Makarov (1996). We first perform the linear stability analysis and
subsequently, based on the analytical results, carry out some numerical simulations.

At the stability analysis stage, we regard the fluid to be inviscid and consider
the perturbations that affect the free edges of the two rings only. We apply the
azimuthal normal-mode approach and determine the regions of stability/instability on
the parameter plane spanned by the outer radii of the two rings scaled on the radius of
the rigid boundary. The condition of zero net circulation, though relevant to the above-
described experiment, does not ease the analysis. The analytical results, therefore,
are valid for a flow with an arbitrary stepwise two-ring vorticity profile and zero
velocity at the rigid circular boundary. Next, two kinds of numerical simulations are
performed, namely, the inviscid contour-dynamics and high-Reynolds-number finite-
element simulations, with most attention being given to the zero net circulation case.

2. Linear stability analysis
Consider a two-dimensional circularly symmetric flow around a rigid inner boundary

(a circular cylinder). Let the velocity profile of the flow be associated with two
rings of uniform vorticity, of which the inner ring touches the cylinder. We shall
use the polar coordinates r and θ and regard all the variables and constants to be
dimensionless, taking the radius of the cylinder as the length scale and the vorticity
and inverse vorticity in the inner ring as the vorticity and time scales, respectively (an
alternative time scale is used in § 3.2, where the numerical simulations are discussed).
So, the cylinder radius and the vorticity in the inner ring will be taken equal to unity;
the vorticity in the outer ring will be denoted as −γ = const (figure 2). Relevant to
the experiment mentioned in § 1 is γ > 0; however, the subsequent analysis does not
require specification of the sign of γ . Assuming the two rings to share a common
interface contour, we get a stepwise radial vorticity distribution with three contours
bounding the rings; in the unperturbed state, these contours are r = 1, r = a and r = b
(where 1 < a < b), with the velocity at r = 1 being zero (this models the viscous
boundary condition at the cylinder, § 1).
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Thus, the unperturbed vorticity and azimuthal velocity profiles Q(r) and V(r) are

Q(r)=


1, 1 6 r < a,
−γ, a 6 r < b,
0, b 6 r,

V(r)= 1
2


r − 1/r, 1 6 r < a,
−γ r + [(1+ γ )a2 − 1]/r, a 6 r < b,
[−γ (b2 − a2)+ a2 − 1]/r, b 6 r.


(2.1)

The subsequent analysis is facilitated by writing Q in terms of the Heaviside step
function H(),

Q(r)= 1− (1+ γ )H(r − a)+ γH(r − b). (2.2)

The net circulation of the flow is

Γ = π[−γ (b2 − a2)+ a2 − 1], (2.3)

and Γ = 0 when

γ = a2 − 1
b2 − a2

. (2.4)

As seen from (2.1) and (2.4), if Γ = 0, the velocity outside the contour r = b is
identically zero (figure 2), otherwise it drops at infinity as 1/r. The case of zero net
circulation (2.4), therefore, is of special interest as the only case where the net energy
of the flow is finite.

In the contour-dynamics framework, perturbations will not affect the values of
vorticity within the rings, and only the free interface and the outermost contour
are subject to perturbations (the rigid boundary r = 1 remains immovable). Thus, we
assume that the perturbed vorticity field q̃ is obtained from the base field (2.2) by
adding small perturbations fa(θ, t) and fb(θ, t) to a and b:

q̃= 1− (1+ γ )H[r − (a+ fa(θ, t)] + γH[r − (b+ fb(θ, t)]. (2.5)

Now decomposing q̃ into a sum q̃= Q+ q, where q is a small perturbation, linearizing
(2.5) in the neighbourhood of the base state Q, and taking into account that

dQ

dr
=−(1+ γ )δ(r − a)+ γ δ(r − b), (2.6)

we obtain the expression for the vorticity perturbation in the linear approximation:

q= (1+ γ )δ(r − a)fa(θ, t)− γ δ(r − b)fb(θ, t), (2.7)

where δ() is the Dirac δ-function. Since fa and fb are small, q is small in the integral
sense.

Any perturbation of the vorticity field is associated with perturbations in the
velocity and stream function fields. Let u = u(r, θ, t) and v = v(r, θ, t) be the radial
and azimuthal components of the velocity perturbation, respectively. In the linear
approximation, u (as a function of r) is supposed to be continuous; in contrast, as will
be shown below, v will necessarily have jumps at r = a and r = b.

The equation of vorticity conservation linearized about the base state is

∂q

∂t
+ 1

r
V(r)

∂q

∂θ
+ u

dQ

dr
= 0. (2.8)
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Because r = a+ fa(θ, t) and r = b+ fb(θ, t) are material contours, (2.2), (2.7) and (2.8)
imply the following two equations in fa and fb:

∂fa(θ, t)

∂t
+ 1

a
V(a)

∂fa(θ, t)

∂θ
− u(a, θ, t)= 0, (2.9)

∂fb(θ, t)

∂t
+ 1

b
V(b)

∂fb(θ, t)

∂θ
− u(b, θ, t)= 0. (2.10)

A formal way to get (2.9) and (2.10) is to substitute into (2.8) the expressions

∂q

∂t
= (1+ γ )δ(r − a)

∂fa(θ, t)

∂t
− γ δ(r − b)

∂fb(θ, t)

∂t
, (2.11)

∂q

∂θ
= (1+ γ )δ(r − a)

∂fa(θ, t)

∂θ
− γ δ(r − b)

∂fb(θ, t)

∂θ
(2.12)

obtained by differentiation of (2.7). This substitution yields the equation

(1+ γ )δ(r − a)

[
∂fa(θ, t)

∂t
+ 1

r
V(r)

∂fa(θ, t)

∂θ
− u

]
− γ δ(r − b)

[
∂fb(θ, t)

∂t
+ 1

r
V(r)

∂fb(θ, t)

∂θ
− u

]
= 0. (2.13)

Integration of the left- and right-hand sides of (2.13) over two non-overlapping
segments, one of which includes the point r = a and the other includes the point
r = b, results in (2.9) and (2.10).

The perturbation flow is conveniently represented in terms of the perturbation stream
function ψ which is defined as

1
r

∂ψ

∂θ
=−u,

∂ψ

∂r
= v, (2.14)

and is related to q via the Poisson equation

∇2ψ = q. (2.15)

The next step in the normal-mode linear stability analysis is assuming each of the
functions fa, fb and ψ to be a complex azimuthal mode-m wave with the complex
frequency ω and amplitude α = const, β = const and φ(r), respectively,

fa = αeim(θ−ωt), fb = βeim(θ−ωt), ψ = φ(r)eim(θ−ωt); (2.16)

here m is an integer and the function φ(r) is to be specified. More precisely,
σ = Re(ω) is the frequency and g = m|Im(ω)| is the growth rate of the unstable
mode-m perturbation. From (2.9), (2.10), (2.14) and (2.16) we obtain the following
equations in α and β:

−ωα + 1
a

V(a)α + 1
a
φ(a)= 0, (2.17)

−ωβ + 1
b

V(b)β + 1
b
φ(b)= 0. (2.18)

Using (2.7) and (2.16), we reduce (2.15) to an ordinary differential equation in φ:

φ′′ + 1
r
φ′ − m2

r2
φ = α(1+ γ )δ(r − a)− βγ δ(r − b), (2.19)
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where primes designate differentiation with respect to r. Thus, in the segments
1 6 r < a, a 6 r < b and b 6 r, the function φ is a linear combination of rm and
r−m.

Along with (2.14) and (2.16), the boundary conditions u = 0 at r = 1 and u, v→ 0
at infinity involve:

φ(0)= 0, φ→ 0 at r→ 0. (2.20)

Since u should be continuous, the matching conditions

φ(a−)= φ(a+), φ(b−)= φ(b+) (2.21)

must be obeyed. Two more conditions which a solution to (2.19) necessarily satisfies
are obtained by integrating the left- and right-hand sides of (2.19) in the intervals
a− χ 6 r 6 a+ χ and b− χ 6 r 6 b+ χ as χ→ 0 and by using (2.21):

φ′(a+)− φ′(a−)= α(1+ γ ), φ′(b+)− φ′(b−)=−βγ. (2.22)

Thus, the perturbation of the tangential velocity component has jumps at r = a and
r = b.

The solution to (2.19) that obeys conditions (2.20)–(2.22) is:

φ(r)=


C(rm − r−m), 1 6 r < a,
Drm + Er−m, a 6 r < b,
Fr−m, b 6 r,

(2.23)

where the coefficients C, D, E and F are functions of the parameters a, b, m, α, β and
γ :

C = 1
2m

[
1

bm−1
βγ − 1

am−1
α(1+ γ )

]
, D= 1

2m

1
bm−1

βγ, (2.24)

E =− 1
2m

[
1

bm−1
βγ + a2m − 1

am−1
α(1+ γ )

]
,

F = 1
2m

[
b2m − 1

bm−1
βγ − a2m − 1

am−1
α(1+ γ )

]
.

 (2.25)

Using (2.1), (2.24) and (2.25) we can now write the expressions for
V(a)/a,V(b)/b, φ(a)/a and φ(b)/b that appear in (2.17) and (2.18):

1
a

V(a)= 1
2

a2 − 1
a2

,
1
b

V(b)= 1
2
−γ (b2 − a2)+ a2 − 1

b2
, (2.26)

1
a
φ(a)=− 1

2m

a2m − 1
a2m

(1+ γ )α + 1
2m

a2m − 1
am+1bm−1

γβ, (2.27)

1
b
φ(b)=− 1

2m

a2m − 1
am−1bm+1

(1+ γ )α + 1
2m

b2m − 1
b2m

γβ. (2.28)

Substitution of (2.26)–(2.28) into (2.17) and (2.18) and grouping of the terms with the
common factors α and β yields two linear homogeneous equations in α and β,

(A1 − ω)α + B1β = 0, (2.29)
A2α + (B2 − ω)β = 0, (2.30)
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FIGURE 3. Regions on the (a,b)-plane, in which azimuthal modes m = 2, 3, 4 and m > 5
are unstable, Γ = 0 (zero net circulation). (a) General view. (b) Magnified regions of unique
instability (lighter shaded). Solid circles on dashed straight lines label the states used to
initialize the numerical simulations; the darker shaded area beneath the bold dashed line is the
area of invalid combinations of a and b.

where the four coefficients A1, B1, A2 and B2 are given by the following formulae:

A1 = 1
2

a2 − 1
a2
− 1

2m

a2m − 1
a2m

(1+ γ ), A2 =− 1
2m

a2m − 1
am−1bm+1

(1+ γ ), (2.31)

B1 = 1
2m

a2m − 1
am+1bm−1

γ, B2 = 1
2

a2 − 1− γ (b2 − a2)

b2
+ 1

2m

b2m − 1
b2m

γ. (2.32)

The solvability condition for the linear homogeneous equations (2.29) and (2.30),

ω2 − (A1 + B2)ω + (A1B2 − A2B1)= 0, (2.33)

determines the eigenvalues (complex frequencies ω in (2.16)) as functions of m, a, b
and γ :

ω = 1
2 [(A1 + B2)±

√
D], (2.34)

where

D(m, a, b, γ )= (A1 + B2)
2 − 4(A1B2 − A2B1). (2.35)

The instability condition is D < 0, whereas the mode-m frequency σ and growth rate g
are

σ(m, a, b, γ )= 1
2(A1 + B2), g(m, a, b, γ )= 1

2 m
√
|D(m, a, b, γ )|. (2.36)

At m= 1 we get A1B2−A2B1 = 0 and A1+B2 6= 0, so D(1, a, b, γ ) > 0. Thus, mode
1 is linearly stable independently of a, b and γ .

In figures 3 and 4, the regions of instability of modes 2, 3, 4 and m > 5 are
shown for three cases, where the net circulation Γ is zero, −π and +π (see (2.3)).
A comparison of the three stability diagrams indicates that the instability regions at
Γ =−π are simply connected and at Γ > 0, generally, are not.

One more observation is that the limit of a and b going to infinity is equivalent to
the limit wherein the circular cutout in the (x, y)-plane shrinks into a point (in which
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FIGURE 4. Regions on the (a,b)-plane in which azimuthal modes m = 2, 3, 4 and m > 5
are unstable. (a) Γ = π, (b) Γ = −π. Shaded area beneath the bold dashed line, invalid
combinations of a and b.

the flow velocity vanishes). In this limit, the pair of concentric vorticity rings becomes
a uniform-vorticity shielded monopole, which can be thought of as a superposition
of two concentric circular patches of uniform vorticity. Therefore, the boundaries of
the stability/instability regions determined by the condition D = 0 (with D given by
(2.35)) should approach asymptotically the rays b/a = const (different constants for
different m) representing the stability bounds for shielded monopoles, which were
established by Flierl (1988). A direct analytical calculation based on (2.31), (2.32) and
(2.35) confirms that this is indeed the case (figures 3a and 4).

From this point on, the physically most meaningful case of finite energy, i.e. of zero
net circulation, Γ = 0, is considered.

For each mode m > 2, we identify two regions of instability in the parameter space,
a so-called regular instability region where mode m is unstable along with some other
modes and a region of unique instability where only mode m is unstable (figures 3 and
5). In the case of m = 2, both of these regions stretch to infinity, so neither a nor b is
limited from above, and only higher unstable modes are found in the regular stability
region. At m > 2 in the unique instability regions, parameter a is limited (a < 1.175),
while b is not, and the inner ring is much thinner than the outer one (figure 2b). In the
latter case, the growth rate of a specific mode is one or two orders of magnitude lower
than the typical growth rates in the regular instability region for a< 1.5 (figure 5). If a
is small enough, then at any b= const the growth rates decrease with decreasing a. In
the next section, contour-dynamics and high-Reynolds-number numerical simulations
in the regions of regular and unique instability are discussed.

3. Numerical simulations
3.1. Methods

To examine the nonlinear evolution of unstable flows with the profiles given by (2.1),
we apply two alternative techniques, contour-dynamics simulations and high-Reynolds-
number finite-element simulations, for which identical initial conditions are set based
on the analytical results. In both cases, we consider nine examples (see figures 3
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the numerical simulations and indicate the corresponding growth rates.

and 5), in which Γ = 0. Even though the numerical noise is sufficient to trigger the
instability, the growth rates in the regions of unique instability are small (figure 5c).
Therefore, to accelerate the computations, we slightly perturb the interface and the
outermost contours (which originally are r = a and r = b) redefining them at t = 0 as

r = r(0)a ≡ a
1+ p sin(mθ)√

1+ 1
2 p2

, r = r(0)b ≡ b
1+ p sin(mθ)√

1+ 1
2 p2

, (3.1)

where m is the number of the azimuthal mode whose instability is to be examined.
Although the perturbation factor p in (3.1) is supposed to be small, it is nevertheless
finite. The normalization with

√
1+ p2/2 in (3.1) keeps the areas of the rings (hence,

their total circulations) unchanged for any p. In fact, the correction to the p sin(mθ)
perturbation caused by the normalization is order p2 and, therefore, is immaterial when
p is small enough. The simulations discussed below in § 3.2 were run with p= 0.005.

The contour-dynamics, or contour-surgery method (Zabusky, Hughes & Roberts
1979; Dritschel 1988; see also Kozlov 1983; Pullin 1992) is widely used for high-
resolution simulations of the dynamics of uniform-vorticity patches. Once the shape
and location of the contour bounding a uniform-vorticity patch are known, the flow
induced by the patch is calculated by inverting the Laplace operator in the Poisson
equation that relates the flow stream function and the vorticity field. This calculation
implies the use of the Green function G(x, y; x0, y0), which can be interpreted as the
stream function of a flow induced by a unit point vortex located at a point (x0, y0) on
the (x, y)-plane, and computation of contour integrals over the patch boundaries. The
construction of the Green function in complex domains is often facilitated by the use
of image vortices (Coppa, Peano & Peinetti 2002; Johnson & McDonald 2004; Elcrat,
Fornberg & Miller 2005; Crowdy & Surana 2007). For a plane with a circular cutout
of unit radius centred at the origin of the frame of reference, a Green function can be
written as

G(x, y; x0, y0)= 1
4π

[
ln R2 − ln

(
R2

0r2
0

r2

)]
(3.2)
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(e.g. Milne-Thomson 1996; Crowdy 2010), where

R2 = (x− x0)
2 + (y− y0)

2, R2
0 =

(
x− x0

r2
0

)2

+
(

y− y0

r2
0

)2

,

r2 = x2 + y2, r2
0 = x2

0 + y2
0,

 (3.3)

with (x0/r2
0, y0/r2

0) being the coordinates of the image vortex inside the circle (recall
that all the variables are dimensionless, and the radius of the circle is 1). It is readily
verified that this function vanishes at r = 1 and goes to a constant limit as r→∞.

At the initial instant, the two vorticity rings are bounded by the contours
r = 1, r = ra and r = rb. With the passage of time the fluid contours may undergo
deformations and reconnections due to the surgery (splitting and pooling together of
vorticity patches and removal of thin filaments). In our contour-dynamics simulations,
to enable the separation of the positive-vorticity area from the cylinder, we consider
the innermost contour, just like the interface and outermost contours, as a fluid one.
Theoretically, the Green function (3.2) used in our code should keep the normal
velocities at the rigid boundary equal to zero, but in practical computations, the
accumulation of numerical errors can cause some penetration inside the unit circle of
the nodes distributed over the fluid contours. To avoid this unwanted effect (which
is in fact very small) we follow the recipe of Macaskill, Padden & Dritschel (2003),
i.e. introduce a fictitious border outside the rigid boundary at a short distance ε from
it, and bring back to this fictitious border any node that enters the gap between the
two borders. Thus, the code is characterized by four parameters, 1t, 1l, 1S and ε

representing, respectively, the time step, the distance between two neighbouring nodes
on a contour, the area critical for patch removal, and the distance between the rigid
boundary and the fictitious border; 1l/8 serves as the width of a filament critical
for reconnection. By varying the parameters 1t, 1l, 1S and ε, we found that quite
high resolution at reasonable expenditure of time of computations can be achieved
with 1t = 0.005, 1l = 0.03 (which corresponds to 210 nodes over a circle of a unit
radius), 1S = 0.005π, and ε = 10−6. These values are used in the contour-dynamics
simulations discussed below.

Aiming to study the effect of weak viscosity on the instability of flows with
stepwise vorticity profiles (2.1) we apply the COMSOL CFD facility (Comsol AB
2012). It is a finite-element solver for the time-dependent velocity field. We solve
an initial-value problem for the Navier–Stokes equations in two dimensions. The
integration in time is performed with an implicit second-order backward-difference
scheme whose absolute tolerance is 10−5 and employing fourth-order integration
for the Lagrangian elements used. The fluid is assumed to be incompressible with
unit mass density, and the Reynolds number Re (inverse non-dimensional viscosity
coefficient) is taken equal to 3 × 104. The computations are run for a 40 × 40 square
with a circular cutout of radius 1. At the inner boundary (r = 1) we use the no-slip
condition. In order to make the effect of the outer boundary as small as possible,
we apply the stress-free condition at x = ±20 and y = ±20; the adequacy of the
chosen box size is confirmed by experimenting with larger squares. The computational
domain is subdivided into five sub-domains that are defined by the inequalities r > 14
(region I), 6 < r < 14 (region II), rb < r < 6 (region III), ra < r < rb (region IV), and
1< r < ra (region V). All of the five sub-domains are discretized with an unstructured
mesh consisting of triangular elements (approximately 4.5 × 106 mesh elements in
total). The typical mesh element size in these sub-domains decreases from 0.2 in
region I to 0.004 in region IV and then to 0.002 in region V. In order to resolve fine-
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scale structures that might emerge close to the no-slip wall (r = 1), the mesh-element
size close to this boundary is taken as 0.001. The resulting number of degrees of
freedom solved for is approximately 15 × 106. The integration in time is initialized
with the velocity field that complies with the stepwise vorticity distribution subjected
to the perturbation (3.1).

There are different ways to compute the initial velocity field. The method employed
in our simulations is appropriate for the case of zero net circulation, Γ = 0, considered
below. We solve the Poisson equation for the stream function Ψ with the source term
given by the first of (2.1) with r(0)a and r(0)b replacing a and b (see (3.1)), the boundary
conditions being Ψ = 0 at r = 1, ∂Ψ/∂x = 0 at x = ±20 and ∂Ψ/∂y = 0 at y = ±20.
The velocity field is then obtained by differentiation of Ψ . The choice of the Neumann
condition for Ψ at the outer boundary is justified by the fact that, at Γ = 0, the
flow velocity at the outer boundaries is negligibly small. Indeed, in the absence of
perturbation, the velocity at r > b is identically zero (see (2.1) and (2.4)). The small
perturbation (3.1) imposed on the vorticity distribution causes the presence of a small
perturbation in the stream function outside the vorticity rings. According to (2.23),
(2.25) and (3.1), with increasing r, this perturbation decreases as F/rm ∼ p/rm, and
the velocity as p/rm+1 (see (2.16)). Thus, for p= 0.005, the velocity at the boundaries
x, y=±20 is order 10−6 or less.

3.2. Results and discussion
We present here the results for the case of zero net circulation, Γ = 0. The parameters
of the initial states are labelled in figure 3 by solid circles, and the expected growth
rates of linear instability are shown in figure 5. So, for each numerical method, the
results of nine simulations are shown, grouped in three series.

In the contour-dynamics simulations (figures 6–8), three main scenarios can be
distinguished. In the first series (figure 6), the width of the inner ring is 0.5, while
the width of the outer ring, remaining comparable with the width of the inner ring,
decreases with increasing m from 1.1 at m = 2 to 0.55 at m = 4 (figures 3a and
5a). Accordingly, the absolute value of the vorticity in the outer ring, |γ |, increases
approximately from 0.28 to 0.64. In all of the three cases considered, m = 2, 3 and 4,
the emergence of m dipoles is observed (figure 6).

In the second series (figure 7), the width of the inner ring is 1.5. Here, as m
increases from 2 to 4, the width of the outer ring decreases from 1.5 to 0.6, i.e. to
approximately one-third of the width of the inner ring (figures 3a and 5b), and |γ |
increases approximately from 0.54 to 1.56. At m = 2, the evolution resembles that in
the first series (cf. figures 6a and 7a). In our opinion this is due to the fact that, in
both cases, |γ | is considerably smaller than 1, the vorticity in the inner ring, while
the inner and outer rings are comparably wide. At m = 4, where the outer ring is
almost three times thinner than the inner one and |γ | ≈ 1.56, the four relatively strong
but compact negative-vorticity protuberances tear off only part of the positive-vorticity
ring, while the other part remains stuck to the cylinder, thus causing the existence of a
counterclockwise flow near the cylinder. The emerged dipoles, being unbalanced, have
a clockwise rotation component in their motion, and therefore approach the cylinder
(figure 7c). Thus, we observe the formation of a vortex pentapole, an almost four-fold
symmetric configuration with a central positive-vorticity ring (whose outer edge tends
to take a four-pointed star shape) surrounded with four negative satellite vortices.The
whole structure rotates counter-clockwise, with the theoretical frequency σ of the
linear wave being a good estimate for the angular velocity. The contour surgery makes
the dynamical system non-conservative, thus enabling it to stabilize in a certain state
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FIGURE 6. (Colour online) Evolution of the vorticity field in the contour-dynamics
simulations at a = 1.5 and (a) b = 2.6 (m = 2), (b) b = 2.25 (m = 3), (c) b = 2.05 (m = 4).
Lighter grey/darker grey patches (red/blue online) mark positive/negative vorticity; light-grey
circle in the centre shows the solid cylinder. The parameters (a, b) of the initial states are
indicated in figures 3(a) and 5(a) (regular instability regions). Figures in the corners specify
time scaled on 2π/σ(m, a, b, γ ) (see (2.36) for the definition of σ ).
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FIGURE 7. (Colour online) Evolution of the vorticity field in the contour-dynamics
simulations at a = 2.5 and (a) b = 4 (m = 2), (b) b = 3.52 (m = 3), (c) b = 3.1 (m = 4).
The parameters (a, b) are indicated in figures 3(a) and 5(b) (regular instability regions). Time
and grey scale (colour online) as in figure 6; contours in the rightmost lower panel indicate
streamlines in the co-rotating frame of reference.
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FIGURE 8. (Colour online) Evolution of the vorticity field in the contour-dynamics
simulations at (a) a = 1.2 and b = 2.5 (m = 2), (b) a = 1.13 and b = 2.062 (m = 3), (c)
a = 1.08 and b = 1.75 (m = 4). The parameters (a, b) of the initial states are indicated in
figures 3(b) and 5(c) (unique instability regions). Time and grey scale (colour online) as in
figure 6; contours as in figure 7.
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FIGURE 9. Evolution of the amplitudes of the Fourier harmonics comprising the
perturbations of the vorticity contours in the simulation at a = 1.08 and b = 1.75. (a)
Interface contour; (b) outer contour. Solid lines labelled 4, 8 and 16 represent the amplitudes
of modes 4, 8 and 16, respectively; dashed line, the mode-12 amplitude. Time (abscissa) is
scaled on the theoretical period of the mode-4 wave. The corresponding evolution of the
vorticity field is shown in figure 8(c).

(compare the shapes of the material contours and the streamlines in figure 7c) and not
oscillate near to a stable state. The case of m = 3 in the second series is intermediate
between the two considered above. Here, the dipoles are able to move further away
from the cylinder; nevertheless, the tendency to form a quadrupole can be traced here
as well (figure 7b).

In the third series (unique instability regions), the inner ring is very thin compared
to the cylinder and the outer ring. The impact of instability on two such rings is
different (figure 8). Whereas the inner ring virtually rearranges into m symmetrically
located crescent pieces (connected with thin filaments), the outer ring undergoes
moderate deformation, and, depending on m, demonstrates a tendency to take the
shape of an ellipse (figure 8a), rounded triangle (figure 8b) or rounded square
(figure 8c) with some bulges on the sides. In each of the third-series simulations,
no detectable filamentation occurs, and the whole structure tends to oscillate near a
steadily rotating state whose angular velocity is close to the initial frequency σ (weak
dissipation caused by computational errors may even stimulate convergence to this
state). The co-rotating stream function field is more inert than the vorticity distribution;
therefore, the streamlines in figure 8 give some idea of these hypothetical steady
states.

In the first two series of simulations, where the two vorticity rings are comparably
wide, the mode-m waves propagating on both the outer and interface contours can
grow until the shape of the two rings is corrupted considerably and m dipoles emerge;
subsequently, this may lead to the formation of multipoles (figure 7c). The emergence
of dipoles and multipoles from two- and three-contour Rankine vortices, respectively,
was reported by Kozlov & Makarov (1985a), Carton (1992), Morel & Carton (1994)
and Makarov (1996).

In the third series (unique instability regions), the instability develops in a
fundamentally different way. To better understand this process, as an example, we
consider the m= 4 case, where a= 1.08 and b= 1.75, and represent the perturbations
r = ra(t, θ) − a and r = rb(t, θ) − b developing on the interface and the outer contours
as series of azimuthal harmonics truncated at harmonic 36 (figure 9). Such a Fourier
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expansion can be performed only for the times at which the functions ra(t, θ) and
rb(t, θ) are single-valued; this is why there are voids in the graphs in figure 9(b).
As we see, at the initial, weakly nonlinear stage the perturbation is bi-modal: it is
comprised, in essence, of the leading mode 4 and a resonance mode 8 which grow
quasi-exponentially. At a later, significantly nonlinear stage, modes 12 and 16 arise,
while the rest of harmonics remain weaker than these.

The inner vorticity ring is very thin at the beginning and touches a fixed inner
boundary (at least, at the quasi-exponential stage), while the area occupied by the
positive vorticity must be conserved during the evolution. In such circumstances,
strong growth of a perturbation on the interface contour would have lead to the
formation of high and compact outward crests alternating with long and flattened
troughs, i.e. to the growth of both low (4 and 8) and higher modes. A bimodal
perturbation, however, cannot take such a shape; accordingly, in our case, the growth
of harmonics 4 and 8 is rather limited, and the quasi-exponential phase gives way
to the oscillation of the amplitudes near the levels of 0.075 and 0.025, respectively
(figure 9a).

The perturbations developing on the two contours enter the nonlinear stage
simultaneously; in this stage the amplitudes of their harmonics oscillate. As the linear
analysis suggests (§ 2), the amplitudes of a specific harmonic wave propagating on
the interface and outer contours are comparable. Therefore, at the beginning of the
nonlinear stage, the amplitudes of the leading harmonics 4 and 8 in the perturbation
developing on the outer contour are approximately 0.2 and 0.05, i.e. are, respectively,
30 % and 8 % of the initial width of the outer ring (figure 9b). Close to the moment
when the amplitude of harmonic 4 reaches its local maximum, the bulges of the
outer ring begin acting as anticyclonic vortices inducing local clockwise motion. This
causes the entrainment of the neighbouring zero-vorticity fluid and overturning of
the bulges backward relative to the direction of their propagation (figures 9b and
8c). But due to the relative weakness of the perturbation, i.e. because it does not
penetrate deep into the outer ring, this overturning does not lead to the emergence
of dipoles, and the outer contour smooths out with time (figures 9b and 8c). The
overturning occurs again close to the moment when the second local maximum is
reached (figures 9b and 8c), and then again the outer contour smooths out. Important
in this context is the oscillation of the amplitudes of harmonics 4 and 8 (with signs
of slow stabilization at certain levels); note that in a longer simulation, modes 12 and
16 decrease considerably. This fact strengthens our guess regarding the existence of a
steady state near which the vortical structure oscillates (and to which it conceivably
may converge). To verify this hypothesis we simulated the evolution of a state made
up by superimposing upon the unperturbed contours of modes 4 and 8 with the
amplitudes estimated based on the Fourier analysis at T = 2. The changes in the
shape of the vortex structure and in amplitudes of the harmonics in this simulation
were relatively small. The existence of a steady state near the developing structure is
another, dynamical-systems reading of the early ceasing of the growth of instability.

The development observed in the simulation with a = 1.08 and b = 1.75 (figure 8c)
has some resemblance to that in the simulation presented in figure 7(c), where the
outer ring is noticeably thinner than the inner one, and large part of the positive-
vorticity ring remains attached to the rigid cylinder. The fundamental difference,
however, is that in the simulation with a = 1.08 and b = 1.75 the thin ring is
sandwiched between the rigid boundary and a massive neighbouring ring, whereas
in the simulation with a = 2.5 and b = 3.1 the thin ring has more freedom since both
of its boundaries are fluid.
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Three series of simulations with the same parameters as above were run using the
finite-element high-Reynolds-number code. In the regular instability regions, i.e. in the
first two series where a= 1.5 and 2.5 (figures 10 and 11), the same sequence of events
as in the contour-dynamics simulations is observed, although one can recognize some
time lag (cf. figures 10, 11 and 6, 7). In the unique instability regions (figure 12),
however, the evolution differs radically from that observed in the contour-dynamics
simulations (cf. figures 12 and 8). Now, one can distinguish two phases in the
evolution. In the first phase, the inner vorticity ring slowly increases its width, and
in the second phase, the instability appears, culminating in the emission of m dipoles.
Note that, in the contour-dynamics simulations, the velocity profile remains practically
unchanged as long as the flow remains almost circular.

To discuss the competition between the ring widening and growth of instability
in the viscous evolution let us again consider as an example the case of a = 1.08
and b = 1.75, in which the mode-4 instability results in the emission of four dipoles
(figure 12c). Viscosity, both physical and numerical, has a smoothing effect on the
velocity profile (figure 2b). This is possibly the cause of the delay in the instability
development in the first phase (figures 8c and 12c). The first phase lasts till T = 0.5
(figures 2b and 12c), where T = (σ/2π)t is time normalized by the theoretical period
of the mode-4 wave. During this time, which corresponds to 300 units of t, in a
purely linear process, the mode-4 perturbation growing with the theoretical growth
rate g ≈ 0.01 (figure 5c) should increase from 0.5 % (see (3.2)) to 10 % and become
pronounced. This is what in essence happens in the contour-dynamics simulation
(figures 8c and 9), where harmonic 4 in the perturbation developing on the interface
and outer contours reaches, respectively, the levels of 5 % and 6.7 % (note that some
energy goes to the excitation of mode 8 and higher modes, so the process here
is weakly nonlinear). In contrast, in the viscous evolution, by T = 0.5, the flow is
still almost circularly symmetric (figure 12c); Fourier analysis of the vorticity field
confirms this observation. The most significant feature, however, is that because the
inner front of the velocity profile is initially 8 times (roughly) steeper than the outer
one, the viscosity in the inner vorticity ring functions 64 times more efficiently than
in the outer ring. Accordingly, by T = 0.5, the inner ring widens considerably, while
the outer ring does not (some extra widening might occur due to the ‘grid viscosity’,
but this effect is reduced due to the use of an especially fine mesh close to the inner
boundary, r = 1). The viscous widening proceeds in time according to the square-root
law; therefore it can compete with the exponential growth of the linear instability only
during a limited time period, namely, within the first phase of evolution. The widening
of the inner vorticity ring means that, effectively, parameter a increases from 1.08 to
approximately 1.18, while b barely changes (figure 2b). So the point representing the
almost circular flow on the (a, b)-plane moves gradually from the region of mode-4
unique instability to the regular instability region of this mode (figure 3b). Therefore
the instability develops basically in the same way as in the case a= 1.5 and b = 2.05,
leading to the emission of four dipoles (compare figures 10c and 12c). The same
reasoning is applicable to modes 2 and 3 (figure 12a,b).

Close to the inner boundary, r = 1, the evolution of the flow field as simulated
with the high-Reynolds-number code also differs from that observed in the contour-
dynamics simulations. Most remarkable is the occurrence of boundary layer separation,
which is visible in some of the snapshots presented in figures 10–12. For example,
in figure 10(a) we observe the emergence of two oppositely signed spiky vortical
structures at the cylinder. The development of this process is shown in figure 13
at high magnification. Similar behaviour is visible in figure 10(b) at T = 0.45
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FIGURE 10. (Colour online) Evolution of the vorticity field in the high-Reynolds-number
simulations (Re = 3 × 104) at a = 1.5 and (a) b = 2.6 (m = 2), (b) b = 2.25 (m = 3), (c)
b = 2.05 (m = 4). The parameters (a, b) are indicated in figures 3(a) and 5(a) (regular
instability regions). Time and grey scale (colour online) as in figure 6.
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FIGURE 11. (Colour online) Evolution of the vorticity field in the high-Reynolds-number
simulations (Re= 3× 104) at a= 2.5 and (a) b= 4 (m= 2), (b) b= 3.52 (m= 3), (c) b= 3.1
(m = 4). The parameters (a, b) are indicated in figures 3(a) and 5(b) (regular instability
regions). Time and grey scale (colour online) as in figure 6.
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FIGURE 12. Evolution of the vorticity field in the high-Reynolds-number simulations
(Re = 3 × 104), at (a) a = 1.2 and b = 2.5 (m = 2), (b) a = 1.13 and b = 2.062 (m = 3),
(c) a = 1.08 and b = 1.75 (m = 4). The parameters (a, b) of the initial states are indicated in
figures 3(b) and 5(c) (unique instability regions). Time and grey scale (colour online) as in
figure 6.
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(a) (b)

FIGURE 13. (Colour online) Initial and developed stages of the boundary layer separation in
the high-Reynolds-number simulation (Re = 3 × 104) at a = 1.5 and b = 2.6. The vorticity
field at (a) T = 0.5 and (b) at T = 0.63. Grey scale (colour online) as in figure 6.

and T = 0.6, in figure 11(a) at T = 0.65, in figure 11(b) at T = 0.6, and in figure 12(b)
at T = 0.9. The separation of the boundary layer results from the loss of azimuthal
symmetry as the mode-m instability develops. This leads to localized flow reversal
having m-fold symmetry, hence to the boundary-layer separation. Moreover, as the
emerged m dipoles detach from the cylinder and move away from it, once again
oppositely signed vorticity is produced at the no-slip cylinder wall leading to the
formation of fine-structure (secondary) dipoles that seem to cling to the cylinder (see
e.g. figure 10a, T = 0.86, T = 1.0 and figure 11a, T = 1.4).

4. Conclusion
By applying the azimuthal normal-mode approach, we determined analytically the

regions of flow stability/instability on the (a, b)-plane, where a and b are the outer
radii of the two vorticity rings scaled on the radius of the rigid boundary. For the
flows with zero net circulation, it is shown that, for any mode m > 2, apart from the
region where this mode and some other modes are unstable (we term this region the
regular instability region), a region exists in which mode m and only this mode is
unstable (the unique instability region). In the unique instability region at m > 2, the
inner vorticity ring is much thinner than the outer ring.

In order to study the long-term nonlinear evolution of linearly unstable flows,
numerical simulations of two kinds were performed: inviscid contour-dynamics
simulations and high-Reynolds-number finite-element simulations. The contour-
dynamics simulations were made feasible by using the Green function for the Laplace
operator on a plane with a circular cutout. To simulate the weakly viscous dynamics,
we used the finite-element COMSOL software (Comsol AB 2012).

In the regular instability regions, for two vorticity rings of comparable width, the
results obtained with the two techniques are qualitatively the same. Here we observe
the emission of dipoles, the number of dipoles being determined by the number of
the most unstable mode. When a and b are such that the outer ring is considerably
thinner than the inner ring and, therefore, the negative vorticity in it is sufficiently
strong, the dipoles are unbalanced thus having a clockwise rotation component in
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their motion. Therefore, the dipoles approach the cylinder, tending to form a vortex
multipole around it.

In all the simulations carried out for the unique instability regions, the inner ring is
considerably thinner than the outer one, and the results depend significantly on which
of the two numerical techniques is used. In the contour-dynamics simulations, the
vorticity rings undergo considerable deformation, but no dipole emission is observed.
The latter is related to the fact that the thin ring is sandwiched between the rigid
cylinder and a massive outer ring.

In the finite-element simulations, two phases of evolution can be distinguished. In
the first phase, the viscous widening of the inner ring is faster than the growth of
instability. This, in effect, moves the point representing the flow in the parameter
space (a, b) from the unique instability region into the regular instability region of
mode m. As a result, in the second phase, the instability development follows the
scenario typical of the regular instability regions. Another, secondary, effect observed
in all of the high-Reynolds-number simulations in the vicinity of the rigid cylinder
is the separation of the viscous boundary layer at relatively early stages of nonlinear
evolution of the flow.
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