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Chapter 1 

Introduetion 

1.1 General introduetion 

All through the history of polymer science and technology the thermodynamic 
behavior of polymer fluids bas attracted a great deal of attention. Over the last 
half century the field bas evolved enormously. Initial studies dealt with 'simple' 
solutions of linear polymers marked by relatively simple phase behavior.1- 9 Nowa
days polymer materials are available having complex molecular architectures and, 
quite often, a concurring complex thermodynamic behavior. An outstanding ex
ample is the miero-pbase ordering in (random) block copolymer melts dictated by 
the block copolymer structure.10• 11 Other examples of complex thermodynamic 
behavior are provided by, e.g. solutions and mixtures containing well defined 
dendrimers, comb-, star- and branched polymers.12- 17 Evidence is available that 
these systems are characterized by a substantially richer phase behavior than the 
'simple' systems. A quite recent example is offered by the complex miscibility con
ditions of mixtures of linear and regularly short chain branched polyolefins18• 19 

which have become available with the development of metallocene catalysts.20 

These more recent studies indicate that the detailed molecular architecture is 
quite impoitant for the actual phase behavior. As it turns out, also the quantita
tive details of the phase behavior of the more 'simple' systems of linear polymers 
referred to in the beginning of the paragraph, are quite subtie and determined 
by the molecular architecture, i.e., the chain connectivity of the simple linear 
molecules. Therefore, to arrive at an accurate prediction of the properties of 
polymer materials, it is worthwhile to establish the effects of chain connectivity 
on the phase behavior of linear chain fluids before attempting to attack systems 
involving more complex molecular architectures. In a next step, an accurate de-
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scription of the complex materials could be attempted. This, however, will not 
be the subject of the present thesis. 

The relation between the thermodynamic properties and the details of the 
molecular architecture and interactions is provided by the specialty of statistica! 
mechanics.21 The generallaws of statistica! mechanics can be exploited in several 
ways. One approach is to derive theories, based on these laws, employing a model 
for the molecular architecture and interactions.21•22 Theories are inevitably ap
proximate as in the process of translating the general statistica! mechanics laws to 
actual theoretica! relations, depending on a limited number of state varia bles, it is 
necessary to make some approximations. Another approach which has witnessed 
much progress recently is large scale Monte Carlo and moleculaJ; dynamics com
puter simulations. 23• 24 These studies provide many insights regarding the physics 
of model (polymer) Huids, and also essentially exact benchmarks against which 
approximate theoriescan be tested. 

A first milestone in the theoretical understanding of the theJ;modynamic be
havior of polymer materialscan be pointed out in the workof Flory, 1- 5 Huggins6• 7 

and Staverman.8•9 These authors independently provided a rationalization of the 
phase behavior of solutions of linear polymer molecules employing a fully occu
pied lattice to model the Huid. Their theory rationalized the striking asymmetry 
with respect to composition of the UCST 1 liquid-liquid miscibility gap in such 
solutions.1 Flory-Huggins (FH)-like theories also provided insight in, e.g., the 
molecular mechanisms responsible for the occurrence of LCST 2 miscibility gaps 
in compressible mixtures or solutions. It turned out that the LCST can be at
tributed to differences in compressibility of the constituents25

-
28 or to the presence 

of directional-specific interactions. 29 

Notwithstanding the successes of the simple FH theory, it also has short
comings. Most imperfections of the FH theory can be related to the use of the 
lattice model and to the complete lack of reference to the polymer architecture. 
The problems, related to the lattice model, are not unique to polymers but also 
appear in atomie and small molecule Huids. Nowadays, to study the structure 
and the thermodynamic behavior of these 'simple' Huids distribution function 
theories are widely employed.21•22 Fora monatomic Huid, distribution functions 
describe the microscopie features of a Huid on the level of (intermolecular) cor
relations among a set of particles. 21

•
22

•
30 It turns out that knowledge about the 

correlations between a pair of particles suffices to predict relevant thermody-

1UCST: Upper critica! solution temperature. 
2LCST: Lower critical solution temperature. 
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namic properties.21•22•30 Furthermore, these pair correlations can be measured 
experimentallyin scattering experiments.31

•
32 

From the distribution function theories of simple fiuids it is understood that 
the restrictions of the lattice model are particularly problematie if local packing 
effects are important.33 Distribution function theories are particularly successful 
in predicting these microscopie structural features. U nfortunately, the therma
dynamie behavior of the fiuid predicted from the theoretica! correlation functions 
is plagued with inconsistencies.21 •34- 4° For instance, the equation of state of the 
fiuid can be calculated from the correlation functions in different ways, but, each 
calculation route yields a different result.21•34-40 Of course, if the predicted corre
lation functions would be exact, the different routes should give the same results. 

The distribution function theories have recently also been generalized to macro
molecular materials. A successful application is the polymer reference interaction 
site model (PRISM) initiated by Curro and Schweizer41- 45 and based on the RISM 
theory for smal! molecule fiuids of Chandler and collaborators.34•35•46- 51 In the 
RISM theory the microscopie structure of the fiuid is not only determined by 
intermolecular correlations but also by intra-molecular correlations. For smal! 
(rigid) molecules the intra-molecular correlations are prescribed by the molecular 
structure and merely put constraints on the possible intermolecular correlations. 
However, for chain like (fiexible) molecules the situation is more complex. The 
intra-molecular correlatioiis are not only determined by the structure of the sin
gle chain but are also perturbed by the environment provided by the surrounding 
molecules. Thus, intra-molecular and intermolecular correlations exert a mutual 
infiuence and should be determined self-consistently.49•50•52- 56 Only very recently, 
such a self-consistent scheme has been suggested and its accuracy remains to be 
established. 49, 50,52-56 

Thus, in principle, the PRISM concept provides the possibility to involve the 
detailed molecular architecture in the theoretica! discussion. Initial applications 
were restricted to linear chains of which the intra-molecular structure was hy
pothesized to be idea13 , and hence, independent of the environment.44 Having in 
mind the ideality hypothesis of Flory,57 it was argued that this should be area
sonable approximation fora pure homo-polymer. However, the Flory hypothesis 
can only be valid at length scales comparable to the radius of gyration of the 
chain molecule. Thus, at the size of a monomer unit, which is important for the 
local packing, the ideal chain structure is not really appropriate. It turns out that 

3Typical for the ideal chain is that the average squared end-to-end distance < r 2 > is 
proportional to the number of point segments s, according to < r2 >"' (s 1)1 . 
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this may even lead to unphysical behavior both in the intermolecular correlations 
as well as in the thermodynamic properties.58•59 Furthermore, the Flory ideality 
hypothesis is certainly not universally applicable, e.g. at low densities and in 
mixtures it is known to fail. As another drawback of the distribution function 
theories, it was observed that the thermodynamic inconsisten<;:ies may become 
extremely large and it is not always clear which path to the thermodynamica 
should be preferred.60 

Hence, although distribution function theories in general and PRISM theory 
in particular provide an interesting approach to the theory of polymer fl.uids, there 
is certainly scope left for alternative developments. Such an alternative approach, 
due toFreed and coworkers,61- 64 concentrated on the effect of chain connectivity 
and molecular structure but keeping the lattice model as it isl very convenient 
for theoretica! digressions. Freed et al. proposed a formally exact solution of 
the lattice model in a cluster expansion, which is quite similar to the Mayer 
expansion for off-lattice fl.uids. 61 In the lattice cluster (LC) theory it is possible 
to mimic chemical details of the molecular structure and to study the infl.uence 
of these details on the thermodynamic properties.18•19 However, the truncation 
of the expansion makes that the full chain connectivity is not captured and that 
the expansion is only applicable for small values of the expansion variables. 

Beside the PRISM and LC studies, numerous theoretica! developments ex
ist, operating more in an ad hoc fashion by making some plausible (physical) 
assumption to push ahead the theoretica} discussion. Although such theories 
are less general than e.g. the PRISM theory and the LC theory they may have 
the potential to provide insight in the relation between microscopie details and 
macroscopie properties. They may even yield more accurate predictions for the 
specific systems considered. Some theoriesof this type relevant for our purposes 
are the theories of Szleifer65 and Weinhold, Kumar and Szleifer,66 which will be 
discussed in the following chapter. 

1. 2 Scope of the thesis 

In very general terms we aim at understanding the infl.uence of the intra-molecular 
architecture of macromolecules on the microscopie structure of the fl.uid and the 
thermodynamic behavior. Clearly, this objective is too broad and we willlimit 
our contribution to the study of linear, fl.exible molecules. However, despite this 
restricted objective, the theoretica} development should be sufliciently fl.exible 
and facilitate applications to more complicated molecular architectures. 
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1.3 Outline of the thesis 

In chapter 2 the general principles of classica! statistica! mechanics are intro

duced and the conneetion to thermadynamie properties is explained. From these 
principles a series of theories will be deduced which will serve as reference points 
in the development to come in the main body of the thesis. 

In chapter 3 a new intra-molecular correlation function is derived, employ
ing an integral equation approach. In the intra-molecular correlation function the 
long range correlations due to the chain connectivity are accounted for. The new 

intra-molecular correlation function is used to predict the intermolecular correla
tions employing the PRISM theory. The predicted inter- and intra-molecular pair 
correlations as well as the thermadynamie results are presented and compared to 
Monte Carlo simulation results. 

In chapter 4 the derivation of a new lattice theory, coined w-theory, incor
porating the long range consequences of chain connectivity is presented. The 
influence of the chain connectivity on the thermadynamie properties of pure 
components and binary mixtures is determined self-consistently. A preliminary 

comparison of the theory to Monte Carlo simulation results is presented. 
In chapter 5 the new lattice theory and its predictions for compressible pure 

components are compared to those from a selection of lattice theories available in 
literature. In particular the equation of state and the vapor-liquid coexistence are 
stuclied as a function of chain length. The theoretica! results are again confronted 
with Monte Carlo simulation results. 

In chapter 6 the analysis of the different theories, initiated in the previous 
chapter, is extended to binary polymer mixtures. Special attention is given to 
the equation of state and the liquid-liquid coexistence of such mixtures. Again a 
comparison to available MC simulation data is presented. 

Finally in chapter 7, the main results of this thesis are emphasized and 
potential applications and extensions of the w-theory are sketched. 
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Chapter 2 

Statistica! thermodynamics and 
theories of chain liquids 

2.1 Introduetion 

The relation between the thermodynamica! and microscopie representation of 
molecular system is provided by the specialty of statistica! mechanics. A se
lection of statistica! mechanics results, necessary for the developments to come, 
are summarized. These general statistica! mechanica! tools are invoked to derive 
a number of (lattice) theories for polymer systems, that will serve as reference 
points for the new theoretica! results derived in this thesis. 

2.2 Statistica! thermodynamics: Partition func

tions and thermodynamics 

A sample of a real Huid contains in the order of 1023 particles. It is impossible and 
also not desirabie to describe its behavior in all molecular details. For systems 
containing such large number of particles, we are rather interested in, e.g., the 
equilibrium thermadynamie properties which only depend on a limited number 
of state variables. Statistica! mechanics provides the relationships between the 
details of the microscopie interactions of particles and the macroscopie behavior. 
Consider an isolated system of N structureless particles in a volume V and at 
temperature T. The total energy, or Hamiltonian, 1tN, of the system reads1 

N 2 
~ P· ( N) ( N) 1tN = f;;: 2~ + UN r + UN,e:r:t r (2.1) 

10 



where, Pi is the momenturn of partiele i, m is the mass of a particle, and rN = 
( r1, · · · , r N) are the positions of the partieles. The first term is the kinetic energy 
contribution to the total energy, UN(rN) is the total interaction potential energy 
and UN,ext is the contribution of an external field 

N 

UN,e:et(rN) = L Uext(ri) (2.2) 
i=l 

One of the basic results of statistkal mechanics relates the probability dW N(rN, pN) 

to find N particles in the vicinity of the positions r 1, • • • , r N and ha ving momenta 
in the vicinity of valnes p 1 , • • • , PN to the Hamiltonian 1iN according to2 

(2.3) 

where e-fJ1iN is the Boltzmann factor with /3 = 1fk8T, k8 is the Boltzmann 
constant and dr N is an element of the phase space volume 

drNdpN 
dr N = (2rrn)3N (2.4) 

with n = h/2rr, and h the constant of Planck. The factor (2rrn)3N accounts for 
the Heisenberg's uncertainty principle.2 The normalizing factor ZN in eq 2.3 is 
called the canonical partition function given by1 

ZN = ~! j · · · j e-fJ1iN(rN,PN>drN (2.5) 

1/N! accounts for the indistinguishability of the N particles. 
In view of the independenee of UN(rN) and UN,ext(rN) on pN, we can integrate 
ZN over momenta. Moreover, this integration can be performed independently 
for all particles. The final result reads 

1 
ZN = N!A3NQN (2.6) 

where A= (2rr/31i2/m) is the de Broglie thermal wavelength with m the mass of 
a partiele and QN is the configurational partition function given by 

(2.7) 

The configurational probability can be also found by integrating eq 2.3 over all 

momenta and is given by1 

(2.8) 
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where 

(2.9) 

is the probability density function in configurational space with the normalization 
J DN(rN)drN = 1. The configurational probability DN(rN) can be used to cal
culate the average of any function of the coordinates, X(rN), according to 

(2.10) 

The Helmholtz free energy A of the system is related to the partition function 
as3 

(2.11) 

which gives upon combination with eq 2.6 

(2.12) 

The first term in this equation is the kinetic contribution to the free energy and 
the second term gives the configurational contribution to the free energy. 

As soon as the Helmholtz free energy is available, other thermodynamic func
tions are easily obtained via exact thermodynamic relations4 

dA = -SdT - pdV + JLdN 

Thus, 

(2.13) 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

Furthermore, the thermodynamic relation such as eqs 2.12, 2.13 and 2.14 can 
be used to discuss heterogeneons phase equilibria. For instance, a pure compo
nent may exhibit liquid-vapor coexistence. In the pV-plane of a pure component 
depicted in tigure 2.1, a stable, a metastable and an unstable region can be de
fined. In the stabie region the Huid remains in one phase, whereas in the unstable 
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and metastabie regions, a fluid will uitimateiy phase separate into two phases. 
These three regions are separated by the binodal and spinoclal curves. The liquid
vapor binodal curve defines the coexistence between a liquid and a vapor phase 
and delineates the stabie and meta-stabie regions. Coexisting liquid and vapor 
phases obey the thermodynamic equilibria criteria 

T 

f.Ll = f.Lv 

Pl =Pv 

Tl= Tv 

c 

V 

(2.15a) 

(2.15b) 

(2.15c) 

Figure 2.1: Phase diagram of a pure substance, showing liquid-va.por coexistence 

region. Binodal (--) and spinodal (----)curves, critica! state (•). 

At the spinoclal curve, separating the meta-stabie and unstabie regions, the 

compressibility diverges, i.e. "-T -+ oo, which corresponds to the following condi
tion 

8
2AI -8pl 1 

8V2 N,T = 8V N,T = v,.,T =O 
(2.16) 

Binodal and spinoclal curves share a common tangent in the critica! state obeying 

the conditions 82 A/8V2
IN,T = 0 and 83 Af8V3

IN,T = 0. 
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In addition to the vapor-liquid coexistence mixturesmayalso show heteroge
neons liquid-liquid equilibria. Consider a binary mixture of components 1 and 
2. Generally in the pT4>2-space, with 4>2 the concentration of co:tnponent 2, of a 
binary system a two-phase region or miscibility gap may exist bounded by the 

binodal condition 

Hl - 1111 
r'l - r'l 

Hl- Hl/ 
r-2- r-2 

PI =p" 

T 1 =T" 

with the primes indicating the coexisting phases. 

Homogeneaus 

c 

I 

T 
I \ 
I · c 

I 
\ SI! 

. Unstable \ ~ 
S!l lt;. 
Cll I i i' 

Heterogeneaus 

(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

Figure 2.2: Phase diagram of a binary mixture, showing the liquid-liquid miscibility 

gap. Binodal (--) and spinodal (----)curves, critical state (•). 

Again, the :tniscibility gap is subdivided by the spinoclal in two metastable and 
one unstable regions. Binodal and spinoclal make contact at the critical state, 
which for a strictly binary system is situated at the top of both curves. The 
spinoclal and critical conditions obey the following conditions 

spinodal: fJ2Gf84>~!T,p = 0 

critical: 82G/84>ilr,p = 0 and &3Gf84>~lr.v = 0 
(2.18) 

with G the Gibbs free energy or free enthalpy. 
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2.3 Computer simulations: Monte Carlo tech

nique 

The average of configurational functions, such as X(rN) defined in eq 2.10, can 
be obtained directly from computer simulation studies. For actual calculation, 
< X > may he estimated by approximating the integrals of eq 2.10 with sums 
over a finite number, N, of configurations in the sample 

(2.19) 

where the sums run from l = 1 to l = N, UN(l) is the total potential of config
uration l. In order to eliminate the bias and balance the contribution of config
urations, an appropriate weight is attached toeach configuration. If W(l) is the 
probability of choosing a configuration l, eq 2.19 will he 

X =2::::..:::1 X=-(.:.....:.l)___,ex:-=-p.:...,[ -~fJ---:-U N-:-:7(~l) ]"-/W~( l) < >""' - Lz exp[-fJUN(l)]!W(l) 

If the Boltzmann distribution is selected for W(l), i.e. 

eq 2.20 reduces to 

W(l) = exp[-fJUN(l)] 

1 N 
<X>~ N L:X(l) 

l=l 

(2.20) 

(2.21) 

{2.22) 

In the well known Monte Carlo simulation technique the configurations are 
sampled by successive random displacements of N molecules in a box of volume 
V. The moves are accepted or rejected according to the Metropolis acceptance 
rules.5 Let b..UN = UN(n) - UN(l) denotes the change of total potential energy 
when the system changes from configuration l to n. A trial move is accepted 
unconditionally if b..U N is negative, but it is accepted only with a possibility 
exp( -fJb..U N) if b..U N is positive. It can he shown that the Metropolis acceptance 
rules lead to the correct Boltzmann distribution. 

Computer simulations provide direct access to the thermadynamie properties 
based on the microscopie details embodied in the interactions of the system. Due 
to their empirical status, simulations are also referred as computer experiments 

and can he used, e.g. to test approximate theories. 
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2.4 Molecular model: The lattice model 

To put the general statistica! mechanica! relationships to use, a model for the 
molecular interactions must be chosen. In the following applications it .will be 
assumed that the total potential energy UN(rN) is pairwise decomposable 

N 

UN(rN) =I: u(rï, ri) 
i<j 

with u(ri,rj) the interaction potential between segments i and j. 

(2.23) 

Furthermore, we will also adopt the lattice model. Despite the drawbacks 
connected to the lattice model, it is still quite popular in the theoretica! studies 
of polymers. More precisely we will assume that the molecules can be placed on 
a cubic lattice (lattice coordination number z = 6) of N L lattice sites in total 
of which Nh sites are vacant. Each molecule occupies s consecutive lattice sites. 
Hence the total volume V is given by 

(2.24) 

with v* the lattice site volume. 
Furthermore, the interactions between non-covalently bonded segments are 

defined by nearest neighbor interaction energy, -e(e ~ 0). Hence, the total 
interaction potential given by eq 2.23 can be written as 

(2.25) 

with n(\IT) the number of nearest neighbor contact pairs in the lattice contigura
tion \lf, which is described by all positions of all segments on the lattice. On the 
lattice the con:figurational integral, eq 2. 7, red u ces to a configurational sum over 
the set {\IT} of all allowed lattice con:figurations 

QN =I: exp( -tJUN(\If)) 
{111} 

(2.26) 

There are several practical advantages to the lattice model. First, the ac
tual calculation on the lattice is signi:ficantly easier than the calculation of the 
o:ff-lattice model.6 Second, simulations are much easier and less time consuming 
on-lattice than o:ff-lattice.6-10 lt is well known and explained in paragraph 2.3 
that molecular simulations provide essentially exact information for the investi
gated model.11 Hence, the more efficient lattice simulations can provide more 
information and make a more extensive comparison amenable. 
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2.5 Partition function theories 

2.5.1 The Flory-Huggins theory 

The Flory-Huggins (FH) mean field theory has been formulated more than half 
a century ago. The starting point of these authors was a mixture of Nh solvents 
and N chain molecules each occupying 1 and s connective sites respectively on 
the lattice. The volume of the system does not change upon mixing, i.e. V = 
Nh v* +sN v* = N Lv*. Assuming that the interaction potential energy U N does not 
depend on the particular configuration W of the system, eq 2.26 can be factored 
as follows 

QN = exp(-f3UN) L 1 = exp(-f3UN)O 
111 

(2.27) 

where nis the total number of allowed lattice configurations. Combining eqs 2.27, 
2.12 and 2.14a and concentrating on the configurational aspects, the entropy of 
the system is given by 

S = kBlnO (2.28) 

Flory assumed that each segment can be placed independently on the lattice, 
therefore, the total number of configurations n is given by the product of inde
pendent segmental contributions12 

(2.29) 

By introducing Stirling's approximation for the factorials, n! = (nfe)n, and some 
algebraic manipulation the entropy, S, is given by 

S = -kB{Nh ln[Nh/(Nh + sN)] + Nln[sNf(Nh + sN)] 

- Nln s- N(s- 1) ln[(z- 1)/e]} 
(2.30) 

The composition dependent contribution toS, the first two terms on the rhs, are 
known as the FH(S) combinatorial entropy. The other contributions are due to 
the conformational entropy of the molecules. The entropy of mixing ó.S can be 
calculated according to 

ó.S = S- Sp- Sh = -kB[Nh ln tPh + Nln t:/J] (2.31) 

with Sh and SP the entropies of solvent and s-mer in the pure state; tjJ = sN / N L 

and t:/Jh = 1 - tjJ the volume fractions of polymer and solvent respectively. 
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The excess interaction energy tl.U is given by12 

(3/:l.U = f3(U- Uh- Up) = ( Nh )( Ns )z(3(Ehp _ Ehh + Epp) = <Ph<PX 
~ ~ ~+~ ~+~ 2 

(2.32) 

where x= z(3[-2Ehp+(Ehh+Epp)]/2 is the Flory-Ruggins parameter, up and uh are 
the internal energiesof pures-mers and pure solvent respectively. Combining eqs 
2.31 and 2.32 the corresponding expression for the excess Relmholtz free energy 
of the binary mixture per lattice site is 

(3/:l.A (3(A- Ah - Ap) -~. l -~. <P l -~. -~. -~. 
-N = N = 'f'h n 'f'h + - n 'f' + X'f'h'f' 

L L S 
(2.33) 

Eq 2.33 is the celebrated Flory-Ruggins (Staverman) expression and was inde
pendently derived by Flory, Ruggins and Staverman. Rowever, it is the Flory 
derivation that leads to the simple result, eq 2.33. Ruggins and also Staverman 
derived extra refinements to this basic result. In particular, the Ruggins expres
sion is discussed in the subsequent paragraph. Eq 2.33 can be reeast to describe 
the excess Relmholtz free energy of a compressible pure component. In this case, 
the lattice sites occupied by solvent molecules are assumed to be vacant. Making 
the following associations: Ehh = Ehp = 0, Epp = E, <P = y and <Ph = 1 - y; with y 
occupied site fraction, the excess free energy expression per segment reads13 

(3/:l.A 1 - y 1 z 
-- = --ln(1- y) + -lny- -/3€(1- y) 
Ns y s 2 

(2.34) 

The corresponding expression for the Relmholtz free energy of the pure compo
nent is given by13 

(3A 1- y 1 z 
- = --ln(1- y) + -lny- -(3Ey 
Ns y s 2 

(2.35) 

2.5.2 The Ruggins theory 

In the Flory-Ruggins theory the in:fluence of chain connectivity on the configura
tional properties is completely ignored and segments in a chain can be inserted 
independently. Ruggins formulated a correction for chain connectivity, including 
the effect of nearest neighbor covalent honds, resulting in an additional entropie 
contribution. If the nearest neighbor connectivity is also taken into consideration 
for the internal energy an additional composition or density dependenee is found. 
The Ruggins Relmholtz free energy fora single pure component is given by 

(3A = 1 - y ln(1- y) + ~ ln y- 1 - ay ln(1- ay) + (1 - a) (3Eq (2.36) 
Ns y s 'YY 'Y 
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where 'Y = 2/z; a= 7(1- 1/s) is the average fraction of covalent contactsof a 
segment in an s-mer; q = (1- a:)y/(1-a:y) is the inter-segmental contact fraction 
of a chain, which is a measure for the number of non-covalent contacts the s-mers 

can make. 
The Flory-Huggins theory is recovered by assuming an infinite coordination 

number, i.e. z -+ oo, thus, a = 0 and the inter-segmental contact fraction reduces 
to the occupied site fraction, i.e. q = y. The Flory-Huggins and Ruggins theories 
successfully and qualitatively explain a number of features of the thermodynamic 
properties of polymers. However, in these simple mean field theories random 
mixing is assumed. The random mixing theory is a good approximation for 
weakly interacting polymers, but it is certainly not for stronger interactions. 

2.5.3 The non-random mixing Theory 

a. Mixture of monomers A/ B Guggenheim came to meet the dissatisfaction 
with the random mixing approximation by developing bis quasi-chemical (non
random mixing) theory. 14 At first, consider a binary mixture of monomers of 
type A and B. Although for a mixture of two monomers the total number of 
configurational states on the lattice is given by eq 2.29 (s = 1), the distinct 
configurational states w need further specification according to the number of 
C AA, C BB and CAB contact pairs. Let us denote, for a mixture of monomers, the 
number of AB pairs in a partienlar configuration by zx. Then the number of AA 
pairs equals !z(NA -x) and the number of BB pairs is !z(NB-x). Guggenheim 
assumed the different type of contact pairs to he independent and proposed the 
following expression for the number of configurations with a given number of AB 
pairs zx, O(NA,NB,x) 14 

Hz(NA +NB)}! 
x)}!Hzx}!Hzx}!{Ïz(NB- x)}! (

2
.
37

) 

where h( NA, NB) is a normalizing factor and ~ z( NA + NB) is the total number 
of contact pairs. 
The summation of eq 2.37 over all values of x must equal the total number of 
configurations, given by eq 2.29 (s = 1) 

"'"' (NA+ NB)! 
L-O(NA,NB,x) = N 'N 1 

i1J A· B· 
(2.38) 

As an approximation the sum on the left hand side of eq 2.38 can he replaced by 
its maximum term which can he found by differentiating eq 2.37 with respect to 

19 



x and setting the result equal to zero. The most likely value of x, obtained in 
the case of random mixing and denoted by x"', obeys the condition 

(2.39) 

Combining eqs 2.37 and 2.38 with the maximum condition, the normalizing factor, 
h(NA, NB), can be obtained 

(NA+ NB)! Hz( NA- x"')}!Hzx"'}!Hzx"'}!Üz(NB- x"')}! 
h(NA,NB) = NA!NB! Hz(NA +NB)}! 

(2.40) 

Substituting eqs 2.40 into 2.37 we then have 

(NA+ NB)! Hz(NA- x*)}!Hzx"'}!{!zx*}!Üz(NB- x"')}! 
fl.(NA,NB,x)= 1 1 }{1 {1 NA!NB! hz(NA- x)}!hzx ! 2zx}! 2z(NB- x)}! 

(2.41) 

For the interacting monomer mixture, the internal energy of a particular con
figuration with a given number of contact pairs is given by 

(2.42) 

where .ó.W = €AA + €BB- 2t:AB· 
Note that only the last term depends on the configuration of the molecules 

on the lattice as prescribed by the parameter x. The configurational partition 
function is given by 

Again we may approximate the sum by its maximum term. lf we denote the 
value of x in the maximum term by x, we have 

where x, determined by fJ1nQN/&x = 0, obeys the so-called·quasi-chemical con
dition 

(2.45) 

Alternatively, for athermal mixture (.ó.W = 0) we reeover the random mixing 
result14 

x 2 =(NA- x)(NB- x), i.e. x= x• for .ó.W = 0 (2.46) 
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b. Pure component s-mers A similar procedure can he applied to a com
pressible pure polymer. Here we will only summarize the main results. Let us de
fine some useful variables pertinent to the subsequent discussion: the non-bonded 
cantacts of an s-mer zqc = s(z- 2) + 2 = sz(l -a); the total number of segmen
tal contact pairs Qt = zqcN /2; the number of segment-vacancy contact pairs QtX, 

with x a microscopie parameter defining the fraction of segment-vacancy contact 
pairs in relation to the total number of segmental contact pairs Qt· The number 
of segment-segment cantacts is qt(q- x) and the number of hole-hole cantacts is 
qt(l- q- x). Following Guggenheim, the number of configuration O(N, T, V, x) 
is approximated by14 

O(N T V ) _ N [qt(q- x*)]![(qtx*)!j2[qt(l- q- x*)]! 
' ' ,x - H [qt(q- x)]![(qtx)!J2[qt(l- q- x)]! 

(2.47) 

where x* = q(l-q) is the value of x for random mixing, and N H is a normalization 
factor that assures that eq 2.47 reduces to the combinatorial entropy of Huggins, 
eq 2.36, for the random mixing case. The partition function is given by an 
equation similar to eq 2.43 and can again he approximated by the maximum 
term of the sum 

QN(N,T, V)= LO(N,T, V,x)exp[-,Be(N,T, V,x)] 
(2.48) 

~ O(N,T, V,x)exp[-,Be(N,T, V,x)J 

The microscopie parameter x can he computed from the maximum condition 

(2.49) 

2.5.4 The conformational theory of Szleifer 

Another interesting approach is due to Szleifer et aP5•16 The configurational 
energy of a polymer salution is given by an expression similar to eq 2.25 

(2.50) 

where nw(\11), nhh(\11) and nnp(\11) are the number of polymer-polymer, solvent
solvent and polymer-solvent cantacts in the lattice configuration \11 and eii are 
the corresponding interaction energies. The number of cantacts can he written 
in terrus of the total number of polymer or solvent molecules and the number of 
polymer-solvent contacts. 

2nnh(\ll) = zNh - npn(\11) 

2nw(\ll) = [s(z- 2) + 2)N- nph(\11) 
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The configuration w is specified by the conformations of the N chains, denoted by 
(v11 v2, • · · , VN ), and the positions ofthe molecules rN, i.e. W {vll v2, · · · VN, rN}. 
Substituting eqs 2.51 in eq 2.25 we have 

z 1 1 
UN(w) 2NM-hh + 2[s(z- 2) + 2]N€pp + [€hp- 2(€pp + €hh)]nhp('lt) (2.52) 

In this equation only the last term depends on the configuration W of the molecules, 
the first two terms merely add a constant to the internal energy, therefore, the 

partition function can be written as 

ó.W 
QN =CL exp[-.B-

2
-nhp(w)J 

{lil} 

(2.53) 

where C is a constant that has no influence on thermadynamie mixing properties. 
As an approximation, the partition function is factorized in two independent con
tributions accounting for the conformational and translational degrees of freedom. 
More precisely, from the partition function the contribution û(rN), representing 
the different ways the molecules can be placed on the lattice taking account of 
their connectivity but not of their different conformations, is factored. This con
figurational contribution is multiplied by N sums over all possible conformations 
of a single chain (all chains are assumed to be independent). Thus, the total 
partition function QN is approximated by 

ó.W 
QN ~ û(rN)(L exp[-.B-

2
-nhp(v)])N {2.54) 

V 

where the sum is now only over all possible conformations v of a single molecule, 
irrespective of the position. 

Szleifer invoked for û(rN) the FH(S) combinatorial entropy (see eq 2.29). To 
evaluate the sums in eq 2.54 the number of cantacts that a polymer molecule 
in conformation v has with solvent molecules, nhp(v), must be known. Szleifer 
suggested the following approximation 15 

{2.55) 

where (1 - <P) is the solvent volume fraction, and ne(v) is the total number of 
neighbors the chain in conformation v has with other polymer molecules or with 
solvent molecules. Combining eqs 2.54 and 2.55 with the combinatorial entropy 
of Flory-Huggins theory, we have 

.BA <P <P 
-N = (1- <P) ln(1- <P) +-- -1nq1(<P, T) 

L S S 
(2.56) 
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where q1 is the effective internal partition function given by 

~w 
qt(t/J,T) = I::exp[-.B-

2
-ne(v)(l- 1/J)] (2.57) 

V 

The total number of neighbors of a single chain in conformation 11 can be obtained 
from a single chain Monte-Carlo simulation. 

Similarly, as we discussed for the Flory-Huggins theory, eq 2.56 can be applied 
to describe a compressible pure polymer system. The excess Helmholtz free 
energy per segment for a compressible pure s-mer is 

.B~A = 1 - y ln(1- y) +! ln y-! lnqt(Y, T) (2.58) 
sN y s s 

with qt(Y, T) = 2:vexp[-.B~ne(v)(1- y)]. 
In this theory the correction of chain conformation properties is limited in the 
energetic part of the free energy expression. For athermal conditions ( t: = 
0 or ~W = 0) the Szleifer theory reduces to the simple FH theory combina
torial entropy. 

2.5.5 The theory of Weinhold, Kumar and Szleifer 

More recently, the infl.uence of the conformational properties of polymers on the 
combinatorial entropy was considered also for athermal (t: = 0) chains.16 In 
this theory the total entropy was split in configurational and conformational 
contributions. The configurational entropy Spack was assumed to be given by a 
Huggins-Guggenheim-type combinatorial expression16 

Spack 1 - y 1 1 - w'y , 
--=---ln(1-y)--lny+ ln(1-wy) (2.59) 
kBNs y s rY 

with w' = 1- < ne(v) > jzs, < ne(v) > the average total number of neighbors 
the chain in conformation 11 has with other polymer molecules or with solvent 
molecules. 
This entropy expression is very similar to that of the Ruggins theory given in eq 
2.36, provided the intra-molecular contact fraction w' is defined. 

The conformational entropy Sconf is 

S~onf = -N2:P(v)1nP(v) 
B V 

(2.60) 
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wbere P(v) denotes tbe probability of tbe ebains being in conformation v. Tbe 
total entropy of tbe system, S = Spack + Sconf, is now maximized subject to tbe 
constraint tbat 

LP(v) = 1 (2.61) 
11 

to produce tbe final result for tbe probability of tbe chain heingin conformation 

v, 

Po(v) 
P(v) = -- exp[Xpackne(v)j 

qsc 
(2.62) 

wbere q8c is a normalization factor, P0 (v) is tbe probability of a single atbermal 
cbain in conformation v and Xpack is tbe 'interaction parameter' wbicb originates 
exclusively from entropie pacldng considerations and is given by 

1 1 
Xpack = 2 + 2w'y ln(1 w'y) (2.63) 

Again P0(v) can be obtained from a MC simulation of tbe isolated cbain. 

2.5.6 The lattice cluster theory 

a. Athermal chains Fteed and coworkers foliowed a quite different patb to 
evaluate tbe lattice configurational partition function QN, given by eq 2.26.17- 20 

Tbe condition tbat lattice sites i and j are nearest neigbbors can be presented 
by a Kronecker delta function, 6(ri, ri +au), witb ri denoting tbe position of tbe 
itb lattice site witb respect to tbe origin of coordinates and au, u = 1, ... , z, 
designating tbe veetors from a given lattice site to tbe z nearest neigbbor lattice 
sites. Tbe Q(i,j+u) = 8(ri, rj+au) function can be used to represent tbe bonding 
constraints for a set of N linear polymers witb s - 1 bonds each. For example, 
tbe first bond on tbe first cbain enters into tbe counting scbeme witb tbe factor 
of L:0'1 8( il, i~+ uf), wbere tbe superscript labels tbe cbain number, tbe subscript 

1 

labels tbe sequentia} monoroer numbering along tbe cbain. Tbe bond in question 
may be in z different possible orientation8. Tbe next bond bas tbe weigbt factor 
of L:0'1 8( i~, il + ui) witb tbe additional excluded volume constraint tbat sites 

2 

il f- il, etc. Continuing this process for all bonds and all ebains tbe partition 
function may be derived. Summarizing, tbe partition function for an athermal 
monodisperse linear polymer of cbain lengtb s may be written in terros of delta 
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functions, prohibiting bonded monomers from occupying the same lattice site 

(2.64) 

where the factor 1/2 stems from the symmetry number of each chain. The Kro

necker ó-function can be replaced by its lattice Foutier transform 

ó(i,j +u) = Nï1 L exp[iq · (ri-ri-au)] 
q 

(2.65) 

where the sum invalving q runs over the first Brillouin zone.21 The sumover all 

z possible orientations, :L~ 6( i, j + u), can be rewritten as 

L ó(i,j +u)= ~ {1 + ~ L f(q) exp[iq · (ri- ri)]} 
u L q#O 

(2.66) 

with f(q) = 2:~=1 exp( -iq ·au). The unity term at the rhs is the q = 0 contri
bution. 

Employing eq 2.65 for each Kronecker ó the partition function, QN, for N 

athermal ebains is given by 

(2.67a) 

(2.67b) 

with X1,m accounting for the corrections arising from the correlations in monomer 
positions. The leading contribution in eq 2.67a, i.e the unity terms for each land 

m, yields the Flory-Huggins mean field approximation. Thus corrections to the 

Flory-Huggins mean field theory from correlations in monomer positions are given 

byXl,m• 

b. Interacting chains The total interaction energy may be written as 

(2.68) 

where éi = f is the interaction potential between nearest neighbor segments i 
and j, Sk is the set of lattice sites occupied by segments. The total interaction 
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energy may be expanded as 

z 

exp(,B L Eij) = IJ [1 + L8(i,j + a)Jij] 

z z 

= 1 +I:: I:: 8(i,j + a)Jij + I:: I:: 8(i,j + a)8(i',j' +a') Jij Ji'j' + ... 
u=1 i>j .,.,.,-'=1 i>j#i'>j' 

(2.69) 

where Jij is the Mayer J function 

Jij= exp(,B~:ii)- 1 = exp(,Bt:)- 1 = J (2.70) 

The total partition function for interacting polymers can be obtained by multi
plying the right-hand side of eq 2.64 by the right-hand side of eq 2.69, viz. 

(2.71) 

The sum over i and j in eq 2. 71 runs over all pairs of lattice sites that are 
occupied by polymers. Therefore the summation indices in the exponent portion 
of eq 2.71 are connected to the overallones that also appear in the "configuration 
contribution" arising from eq 2.64. 

Making use of eqs 2.67a and 2.69 the partition function can be cast into an 
expansion in z-1 and ,8~:. Currently the LC expansion has been presented for the 

first-order energy contri bution through order z-2 corrections, for thesecond-order 
energy contribution through order z-1 corrections, and for the leading third- and 
fourth-order energies. The lattice cluster theory has been presented for compress
ible polymer mixtures and solutions involving structural details such as polymers 
with short chain branching, block copolymers and structured monomers.22

•
23 

2.6 Statistica} thermodynamics: Integral equa

tion theory 

2.6.1 Distribution functions 

Another successful theoretica! route to the thermodynamic properties and the 
microscopie structure of fl.uids is provided by integral equation theory. Eq 2.8 
has defined the probability to find partiele 1 in volume element dr1, partiele 2 
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in dr2 · · · and partiele N in drN. We can alsodefine the s-particle distribution 
functions p8 (r8

) as1 

p8 (r8
) = (NN_! s)! j DN(rN)drs+l ... drN (2.72) 

with normalization 

(2.73) 

The s-particle distribution function p8 (r8
) represents the probability that any 

partiele in volume element dr11 · • ·, and any partiele is in dr8 • As a special case, 
the 1-particle distribution function is J p<1l(r)dr = N, irrespective ofthe position 
of all other particles. For a homogeneons system p<1>(r) is constant throughout 
the system and equal to the overall number densities p, i.e. p<1>(r) = p = NfV. 

Now let's define s-particle correlation functions as 

(s) p(s)(rl···rs) 
g ( r1 · · · r s) = '--...:.....;:.--"-'pa (2.74) 

Combining this equation with eqs 2.9 and 2.72, the s-particle correlation functions 
is given by1•4 

g<s>(r1 · · · r 8 ) = N! j · · · j exp(-tJUN(rN))drs+l · · · drN (2.75) 
(N- s)!psQN 

Among the s-particle correlation functions, g<2>(rll r2) = g(rb r2) plays an 
important role. Physically, pg(rt. r 2) gives the number of particles in volume 
element (r2, r2 + dr2) while there is a molecule in (r11 r 1 + dr1). In an isotropie 
liquid of spherically symmetrie molecules, g(r11 r2) depends only upon the relative 
distance between molecules 1 and 2, i.e. upon r 12. we usually denote r 12 simply 
by r. Clearly, g- 0 as r- 0 since molecules become effectively 'hard' as r- 0 

and g - 1 as r - oo since the influence of the central partiele diminishes as r 

becomes large. 
The pair distribution function is of central importance in the theory of fluid 

for two reasons. First, if the potential energy of the N-body system is pair-wise 
additive, all the thermodynamic functions of the system can be written in terms 
of g(r). The following relations exist 

UN 3 p 100 

2 
NkBT=2+2kBT o u(r)g(r,p,T)4nrdr (2.76a) 

p p2 1oo 8u(r) 
- = p- -- r--g(r)4nr2dr 
kBT 6kBT o 8r 

(2.76b) 

k;T = lnpA
3 + k:T 11100 

u(r)g(r,~)4nr2dÇdr (2.76c) 
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where U N is the tot al energy of the system, p is the pressure, f.L, the chemical 
potential and Ç is a coupling parameter. The coupling parameter, varying from 0 
to 1, is chosen in order to "couple" one molecule, say molecule 1, to the stuclied 
system. Thus, a theory for the pair correlation function yields an alternative way 
to the thermodynamics of the system. Second, the static structure factor S(k), 
involving the Fourier transform of pg(r), can be directly measured in X-ray or 

neutron scattering experiments. 24 

S(k) = 1 + p J dreik·r(g(r)- 1) (2.77) 

2.6.2 Ornstein-Zernike equation 

In this study, the Ornstein-Zernike (OZ) equation is applied to facilitate the cal
culation of the 2-particle correlation function g(r). In the OZ equation the total 
correlation function, h(r12 ) = g(r12 ) - 1, between particles 1 and 2 is decoupled 
into a direct and an indirect part. The direct part is given by a function, c(r12 ), 

the direct correlation function. The indirect part is the infl.uence propagated di
rectly from molecule 1 to a molecule 3, which in turn exerts its infl.uence on 2. 
This effect is weighted by the density and averaged over all positions of molecule 

3, 

h(rb r2) = c(rb r2) + p j p(r3)c(r1, r3)c(r3, r2)dr3 

+ j p(r3)p(r4)c(r1, r3)c(r3, r4)c(r4, r2)dr3dr4 + · · · 
(2.78) 

In eq 2.78 the integrals over the repeated coordinates dri can he collected, result
ing the OZ integral equation 

(2.79) 

Eq 2. 79 is merely a convenient reformulation of the total pair correlation 
function in terros of the direct correlation function, which is shown to he of a 
much shorter spatial range. 1•4 In order to solve the OZ equation an additional 
relation between h(r12 ) and c(r12) is required. So far only approximate, so-called 
dosure relations, are available. Two well known dosure relations are the Percus
Yevick (PY) and the mean-spherical approximation (MSA) closures. 
The PY approximation is25

• 
26 

c(r) = g(r)(1- ei3u(r)) (2.80) 
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and the MSA approximation is given by27 

c(r) = -{3u(r) (2.81) 

The OZ equation has been analytically solved for hard spheres within the 
approximate PY closure25 by Wertheim28 and Thiele. 29 The OZ equation offers 
a satisfactory prediction for the corresponding simulation results.30 The MSA 
approximation has been applied to the Lennard-Jones fiuids31 and a model of 
liquid potassium.32 In each case, satisfactory results have been obtained. 

2.6.3 RISM: The reference interaction site model 

The OZ integral equation was generalized by Chandler and co-workers to molec
ular fiuids by employing a reference interaction site model (RISM) with a given 
intra-molecular structure.33 In the RISM theory, a molecule is viewed as consist
ing of a collection of spherically symmetrie interacting sites or chemical subunits 
connected by covalent honds. The total interaction potential is taken as the sum 
over all pairs of interaction sites. 

In analogy with the OZ equation of a simple fiuid, the total correlation func
tion hij(r11 r 2) between the pair of segments i and j is considered to propagate in 
a sequentia! manner by direct correlations, Cij(r1 , r 2), between segments belong
ing to different molecules and by intra-molecular correlations among segments, 
wijtr(r11 r2), belonging to the same molecule. The OZ equations for the reference 
interaction site model can he represented by an 8 x 8 matrix equation7- 10•33•34 

where p is the number density, H(rh r2), C(r11 r2) and nintr(r11 r2) are 8 x 8 

matrices with elements hij(ri, r2), Cij(ri. r 2) and wt;tr(r1, r 2) respectively. For 
instance, the 8 x 8 matrix H(r11 r2) is given by 

(2.83) 

where (r1, r2) on the rhs denotes that all elements hij depend on (rh r2). The 
direct and intra-molecular correlations are given by similar matrices C(r1 , r2) and 
nintr(rb r2)· 
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2.6.4 PRISM: The polymer-RISM 

In principle, the RISM theory can be applied to long chain molecules. However, 
for s-mers the generalized OZ s x s matrix equation, is virtually impossible to 
handle. Recently, Curro and Schweizer simplified the OZ matrix eq 2.82 con
siderably. For long chains the different correlation functions hii(r1, r2), Cij(ri, r2) 

will be almast identical for all segments, except maybe for correlations invalving 
segments located at the ends of the chains. Assuming that all correlation func
tions hii(r1, r 2) and Cij(r1, r 2) are independent of the site indices i, j the full s x s 
OZ matrix equation can be reduced to a single algebraic equation 

h(r) = J J wintr(lr- r'l)c(lr'- r"l)[wintr(r") + Psh(r")]dr'dr" (2.84) 

with Ps the segmental density and wintr the average intra-molecular correlation 
function given by 

1 s s 

wintr(r) =-; LLwjytr(r) (2.85) 
i=l j=l 

In the polymer-RISM theory, the chain conformational properties are accounted 
for by the average intra-molecular correlation function. In most applications of 
the PRISM theory it is assumed that the intra-molecular correlations are indepen
dent on the inter-molecular correlations and are suffi.ciently accurately described 
by ideal chain models.6- 10 With input of such intra-molecular correlation func
tions, the inter-molecular correlation functions can be obtained provided a dosure 
approximation is invoked. In this study we will use the approximations for simple 
fiuids, i.e. MSA and PY approximations, as shown in eqs 2.80 and 2.81. 

So far we have introduced the OZ integral equation for simple fiuids and 
PRISM theory for polymers in continuurn space. In this study, the lattice model 
is adopted. The integral equations in continuurn space can be easily transferred 
onto the lattice model by changing the J -signs to I: -signs. Each J dr1 should 
be altered to v* l::r

1 
with v* the volume of a lattice site. On the lattice the 

appropriate density variabie is the packing fraction y, which is related to Ps by 
pv* = y. 

2.7 Concluding remarks 

We have now presented a series of useful statistkal mechanica! relationships and 
a set of theories for polymer fiuids. They serve as a starting point for the devel
opment of new theoretica! results described in this thesis. 
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Chapter 3 

The Excluded volume problem in 
the integral equation theory 

3.1 Introduetion 

The interest in the thermadynamie behavior of polymers runs almast in parallel 
with the advent of polymer science. Already in the 40's Flory1 and Huggins2 

independently formulated the, by now, classic Flory-Huggins (FH) expression for 
the free enthalpy of mixing and revealed the importance of the chain like struc
ture for the phase behavior of polymer solutions. It was realized from the start 
that the FH theory was a rather crude approximation for real liquids since it is 
basedon the lattice model.3 For instance, it is known that paclcing effects typical 
of the dense fiuid state are not captured by the lattice model. However, these 
packing effects have been incorporated quite early in e.g. cell4 and hole theo
ries5·6 or, more recently, by combining the FH expression with insights gained 
from off-lattice theories for mono-atomics or simple molecules. 7 Nevertheless, 
the simple lattice model for polymers was further refined and elaborated for e.g. 
compressible lattice fiuids8 and systems invalving specific interactions.9•10 

Nowadays, many different macromolecular architectmes have been synthesized 
and in addition to simple linear homopolymers, well defined branched, comb and 
star polymers, block-copolymers, etc. are available. These more complex materi
als require a more detailed description of the thermadynamie behavior in relation 
totheir particular molecular structure. Unfortunately, such details in molecular 
architecture are not easily incorporated in a FH-like theory. An important ad
vancement in lattice theories is the Lattice Cluster (LC) theory designed by Freed 

and co-workers.11-15 The LC theory not only provided systematic improvements 
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to the primitive FH result for linear chains but also makes it feasible to study the 
infl.uence of more complicated molecular structures on the thermodynamic be
havior. The LC theory has been successfully applied to investigate the infl.uence 
of monomer structure in, e.g., mixtures of polystyrenejpolyvinylmethylether16 

and mixtures of linear and short chain branched polymers. 17 Despite the beauti
ful developments facilitated by the LC theory the major drawback of the lattice 

model is not alleviated. 
Another line of approach, relying on the integral equation theory of mono-atomie 
and simple molecular fl.uids, was investigated by Curro, Schweizer and collabo
rators. 18- 21 Integral equation theories were initially developed for simple mono
atomie fl.uids to study the microscopie structure of dense fl.uids employing cor
relation functions. The thermodynamic properties can be derived from the cor
relation functions employing exact statistkal mechanica! relationships. 22

•
23 Un

fortunately, and this is a major drawback of all integral equation theories, these 
calculations are plagued with so called thermodynamic inconsistencies which are 

related to the necessary approximations involved in the calculation of the theo
retica! correlations. 24- 30 

These liquid state theories, employing correlation functions, were extended 
to simple molecular fl.uids in the reference interaction site model (RISM) theory 
by Chandler and co-workers.31 The RISM theory makes it feasible to predict 
the inter-molecular correlations among segments or interaction sites on different 
molecules from information of the intra-molecular correlations, which are set by 

the molecular architecture, between segments of the same molecule. For sim
ple (rigid) molecules the intra-molecular correlations are known in advance and 

the RISM theory is quite successful in descrihing the subtie packing effects in 
dense liquids induced by the intra-molecular structure. It should be noted that, 
in contrast with the integral equation theory for simple mono-atomie, the RISM 
calculations are not as accurate at low densities. 24•25•32 It even can be shown that 
the RISM theory does not yield the correct ideal gas limiting behavior.33 

The application of the RISM theory to fl.exible chain molecules (Polymer-RISM or 

PRISM) was initiated by Curro and Schweizer to study the microscopie structure 
of polymer single components and mixtures. 18- 21 For fl.exible macromolecules, the 
intra-molecular structure is not a priori known and it must be expected to de

pend on the inter-molecular correlations which according to the (P)RISM theory 
are determined by the intra-molecular correlations. Hence, a complicated interde
pendenee between inter- and intra-molecular correlations exists and, in principle, 
both types of correlations must be calculated self-consistently.34- 40 The first at-
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tempts to establish this self-consistency have been publisbed only recently and 

are still a matter of further investigation.34- 40 

In the initial applications of the PRISM theory, a more simple approach was taken 
by assuming that the intra-molecular structure was a priori given.1&-21 In cer
tain instances this additional approximation tums out to he quite reasonable. In 
partienlar in the dense melt it is known from the ideality hypothesis of Flory3•41 

that the intra-molecular correlations are successfully described by anideal chain 
model. Typical fortheideal chain model is that the average squared end-to-end 
distance < r 2 > depends on the chain length s according to < r 2 >"" (s- 1)1• 

However, at low densities the screening of inter- and intra-molecular interactions 

becomes less efficient and the intra-molecular correlations evolve to those of a 
self-avoiding walk.42 In this case the average squared end-to-end distance scales 
with the chain length according to < r 2 >"" ( s - 1 )1.2• Furthermore, deviations 
from ideal chain statistica must he expected and are known to exist in polymer 

mixtures. 43
• 
44 

Nevertheless, the PRISM theory has been quite successful to predict the inter
molecular correlations starting from the intra-molecular correlations. Several 
intra-molecular correlation functions, derived from different ideal chain models 
and incorporating varying chemical details such as the Gaussian chain,18- 21 •45 the 
freely jointed chain1s-21 •45 and the rotational isometrie state model,1s-21•45 have 
been investigated. Most of these applications involved rather dense fluids and the 
correlations are mainly govemed by segmental packing effects which are equally 
active in simple molecular and mono-atomie fluids. In these circumstances the 
additional subtieties related to the chain connectivity are not that easily appre

ciated and, in order to study these effects, lower densities should be investigated. 
Unfortunately at lower densities, and irrespective of the ideality assumption nec
essary for chain like molecules, it is known that the PRISM approach becomes 
less accurate. 24,25,32,33 

In order to make a systematic study of these chain connectivity effects possible, 
previous research in our laboratory applied the (P)RISM theory to the lattice 
model. 22 At first sight this approach might seem counterintuitive or even coun
terproductive. Integral theories were precisely developed to study the intricacies 
of the continuurn that are not captured by the lattice model. However, a few 

practical advantages of the lattice model immediately become obvious. First, 
the actual calculation of lattice correlation functions is significantly easier than 
the calculation of the off-lattice correlations. 22 Second, also molecular simulation 
techniques, in partienlar Monte Carlo simulations, are much easier and more ef-
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ficient on-lattice than off-lattice.1s-22 lt is well known that molecular simulations 
provide essentially exact information for the investigated model.42 Hence, the 
more effi.cient lattice simulations can provide more information and make a more 
extensive comparison amenable. 
Apart from these practical advantages, more fundamental reasans can he thought 
of also. As already mentioned in a previous paragraph, the overwhelming off
lattice packing effects, which are very similar for mono-atomie, simple fiuids and 
polymerie fiuids, are absent on the lattice. This makes a more detailed study 
of chain connectivity effects feasible, even at high densities where the PRISM 
theory is expected to he at its best. 
Furthermore, it has already been shown that the effects of theoretica! approxi
mations can he stuclied equally well on the lattice. For instance, the problems 
found in the Percus-Yevick (PY) theory for the sticky sphere46•47 model of Baxter 
are also found on the lattice. 22 Therefore, it. may he expected that the effects of 
chain connectivity, operating on length scales larger than the lattice spacing, will 
he equally present on the lattice as in off-lattice J:!lOdels. 

As mentioned previously, most applications of PRISM theory involved ideal 
chain structure factors. All these models fail to incorporate the long range cor
relations resulting from the excluded volume present in chain molecules. 1s-21 As 
a result these intra-molecular correlation functions include unphysical overlaps 
of chain segments.I8- 21 lt is known that these intra-molecular overlaps espe
cially have a profound infiuence on the thermadynamie properties of the polymer 
:B.uid.18- 21 This has been shown on several occasions both off-lattice18- 21 as well 
as on-lattice. 22 To correct for this overlap it was suggested to correct the intra
molecular correlation function ad hoc but keeping at the same time the overall 
ideal chain behavior.1B-22 

In the present work we assume, in line with previous work on the PRISM the
ory, the intra-molecular correlation a priori given and investigate a single chain 
intra-molecular correlation function which accounts for the excluded volume. The 
present development, invoking a finite difference integral equation for the isolated 
chain, was previously investigated by Curro, Blatz and Pings for an athermal 
off-lattice polymer chain.48 This new intra-molecular correlation function is then 
injected in the PRISM theory and the infiuence on the intermolecular correlations 
and the thermadynamie properties is examined at both high and low densities. 
In the second paragraph the lattice PRISM theory and several frequently used 
intra-molecular correlation functions are discussed. In addition the new excluded 
volume intra-molecular correlation function is introduced and finally the routes 
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to the thermodynamic properties discussed in this work are presented. The the

oretica! results are compared to Monte Carlo simulation results and evaluated 

in section 4. The simulation algorithms have been extensively presented previ

ously.49 Hence, only the most important aspects are summarized in section 3. 

Finally, in the concluding section the main results are recapitulated and related 

consequences are summarized. 

3.2 Theory 

3.2.1 The molecular model 

Consider N linear s-mers each of which occupies s consecutive sites on a cubic 

lattice. The overall fraction of filled lattice sites or the segmental packing fraction, 

y, is given by 

(3.1) 

Non-covalently bonded polymer segments i and jare assigned a nearest neighbor 

interaction potential, Uij(l, m, n) = u(l, m, n) 

{ 

oo, 12 + m2 + n2 = 0 
u(l, m, n) = c, l 2 + m2 + n2 = 1 

0, otherwise 
(3.2) 

The covalent honds between consecutive segments i and i+ 1 can be represented 

by the following pair potential, Wii+I(l,m,n) = w(l,m,n) 

w(l, m, n) ---+ +oo, 

w(l, m, n) ---+ -oo, l 2 + m2 + n2 = 1 

exp( -{Jw) = 6[(12 + m2 + n2)- 1] 

(3.3a) 

(3.3b) 

(3.3c) 

where 6 is the dirac delta function and the position of the second segment relative 

to the first one is given by the lattice indices (l, m, n); each index can attain the 

values 0, ±1, ±2 .... 

3.2.2 Lattice PRISM theory 

A successful theoretica! route to the inter-molecular correlations in simple atomie 

fluids is given by the Ornstein-Zernike integral equation. The OZ integral equa

tion was generalized by Chandler and co-workers to molecular fluids with a given 
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intra-molecular structure. Here we only consider homogeneaus systems for which 
all correlation functions are translationally invariant and, hence, are only func
tions of the relative distance between segments. If the total inter-molecular pair 

correlation function, hii(l, m, n), between the pair of segments i and j is consid
ered to propagate in a sequentia! manner by direct inter-molecular correlations 
Cij(l, m, n) and intra-molecular correlations w}ytr(z, m, n), the Fourier transfarm 
of the generalized Ornstein-Zernike matrix equation on a cubic lattice can be 
written as18-21 •31•50 

where the hat denotes Fourier transformation and (k1, km, kn) are the Fourier 
variables conjugate to (l, m, n ); ÎI(kt, km, kn), ê(kt, km, kn) and O(kt. km, kn) are 
s x s matrices with elements hij(kt, km, kn), êij(kt, km, kn) and w;ytr(kt, km, kn) 
respectively (the lattice Fourier transfarm is defined in the A by eq A.l2). For 
instance, the s x s matrix ÎI(kt, km, kn) is given by 

hu h1s 
(3.5) 

The direct and intra-molecular correlations are given by similar matrices ê(kt. km, kn) 
and O(kt, km, kn)· 

For linear s-mers this matrix equation, eq 3.4, becomes virtually impossible to 
handle. Fortunately, as shown by Curro and Schweizer,51 eq 3.4 can be simplified 
substantially if one realizes that for sufficiently long chain molecules the matrix 
elements hij(kt. km, kn), êij(kt. km, kn) and w;ytr(kt, km, kn) are quite similar for 
most pairs of segments. The end effects of long linear chains were estimated by 
Curro and Schweizer51 using an optimized perturbative scheme. For long linear 
chains it was shown that the end effects can be neglected to a good approxi
mation. Hence, hij(kt, km, kn) and êii(kt. km, kn) are site index independent, i.e. 
hij(kt, km, kn) = h(kt, km, kn) and êij(kt, km, kn) = ê(kt, km, kn) and the matrix 
equation can be reduced to a single algebraic equation for the inter-molecular 
correlations. 

h(kt, km, kn) = wintr(kt, km, kn)ê(kt, km, kn)[wintr(kt, km, kn) + yh(kt, km, kn)] 
(3.6) 

where the average intra-molecular 2-segment correlation function wintr(kt, km, kn) 
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is defi.ned as 
s 8 

A intr(k k k ) 1 "'"'"'"' A intr(k k k ) W t, m, n = - L...J L...J Wij t, m, n 
8 . . 

t=l J=l 

(3.7) 

In order to solve the equation, eq 3.6, for the inter-molecular segmental cor
relations given w weneed another relation between h(l, m, n) and c(l, m, n). So 
far only approximate relations ( closures) are available and the dosure used bere 
is the MSA approximation given by52 

h(O, 0, 0) = -1 (3.8a) 

c(l,m,n) = . { 
-/3€, [2 + m2 + n2 = 1 

0, otherw1se 
(3.8b) 

For athermal conditions, the PY and MSA approximations are identical. In both 
of the closures, the condition on the inter-molecular pair correlation h(O, 0, 0) 
is exact whereas the conditions for the direct correlations are approximate. It 
is known from the study of mono-atomie particles that the PY ciosure is less 
suited for interacting systems.22•46•47 Henceforth, for systems involving attractive 
nearest neighbor interaction energies we only consider the MSA closure. 

In addition to the ciosure relation an expression for the intra-molecular corre
lations is required. The choices for wintr(kt, km, kn) employed in this investigation 
will be discussed in the next subsections. Combining eqs 3.6 and 3.8 and an 
expression for the intra-molecular correlations, eq 3.7, the inter-molecular corre
lations of the lattice fiuid can be calculated. 

3.2.3 Intra-molecular correlation of the freely jointed chain 
model 

For a chain molecule in its own melt we may resort to the ideality hypothesis 
put forward by Flory. It is well accepted that due to the screening of inter
and intra-molecular interactions the inter- and intra-molecular correlations of a 
chain molecule in its own melt are effectively similar to those of an ideal chain. 
Flory's idea bas been proven fundamentally correct by neutron scattering ex
periments on labeled chains53•54 and by computer simulations.55•56 Invoking the 
ideality assumption the intra-molecular correlation function can be calculated in
dependently and the results serve as input in the integral equation. Several ideal 
chain models with varying chemica! details have been tested, e.g. the Gaussian 
chain, 18- 21 the freely jointed chain, 18-21 the rotational isometrie state model, 18- 21 
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etc. The freely jointed chain has been used in previous studies22 and will serve 
here as a reference. It must be pointed out that the ideality hypothesis will be 
particularly useful in the dense state. However, at lower densities the screen
ing between inter- and intra-molecular interaction is no langer complete and the 
intra-molecular correlations of the chain molecule will tend more to those of a 
self-avoiding walk. 

The intra-molecular correlations of the ideal chain model can be described 
solely in terms of the 1-bond-jump probability r(l, m, n), on the cubic lattice, 

given by 

{ 
!, [2 + m2 + n2 = 1 

r(l m n) = 6 

' ' 0, otherwise 
(3.9) 

In the case of the freely jointed chain model the summation in eq 3.7 can be 
performed explicitly and the intra-molecular correlation function can be shown 
to be given by2o-22 

· 1 - f 2 - 1f + 1fs+l 
~ mtr(k k k ) s s 

Wid !, m• n = . (1 - f)2 (3.10) 

where f = f(kt, km, kn) = 1/J/3 and 'Ij;= [cos( u)+ cos(v) + cos(w)]. 
The intra-molecular correlation function given in eq 3.10 can be used astheinput 
to eq 3.6 of the PRISM theory. lt is analogous to its continuurn version18•57 and 
the derivation is given elsewhere.22

•
58 

In the freely jointed chain model unphysical intra-molecular overlaps are possi
ble. Thus, some thermadynamie properties of athermal and interacting polymers 
obtained from this kind of ideal chain model are expected to be inadequate or 
unphysical. In order to investigate the infiuence of the intra-molecular correlation 
function on the thermadynamie properties, an alternative single chain molecule 
model, accounting for the intra-molecular short and long range excluded volumes 
is investigated. 

3.2.4 Intra-molecular correlation of excluded volume the

ory 

For the off-lattice single chain in vacuum the excluded volume was discussed by 
Curro, Blatz and Pings (CBP) starting from the distribution function for the 
endpoints.48 Employing a diagramrnatic analysis, similar to that leading to the 
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OZ equation of a simple fluid, a (N- 1)th-order integro-differential equation for 
the end point distribution function was derived. Here we develop this metbod 
for the cubic lattice and in addition calculate the intra-molecular correlation 
function. Just as in conventionalliquid state theory of simple fluids this integro
differential equation can only be solved provided an additional dosure relation 
is introduced. Following CBP, the analogue of the PY dosure is adopted. A 
detailed description of the theoretica! considerations is given in Appendix A. 

Here we summarize the results applicable to an athermal chain with intra
molecular segmental interactions given by eqs 3.2 and 3.3 at € = 0. In particu
lar, the Fourier transform of the intra-molecular 2-segment correlation function 
wt!;-tr(k1, km, kn) of a chain consisting of s segments are given by 

wtt'(kt. km, kn) = ti;~(k(, km, ~n) - ti;(O, 0, 0) {3.1la) 
ti; 0, 0, 0 - ti;(O, 0, 0) 

1 1""1""1"" ti;(l, m, n) = ( 211Y _,.. -..r -1r fi;(kl, km, kn)cos(lu)cos(mv)cos(nw)dudvdw 

The functions iij(k~, km, kn) can be obtained from the recurrent formula 

f12(k1, km, kn) = 2'1j; 

fij(kl, km, kn) = 2'1j;[tij-l(kt, km, kn)- ti+lj(O, 0, 0)- tij-1(0, 0, 0)] 
s-2 

- L tlk(O, 0, O)[iks(kt, km, kn) tks(O, 0, 0)] 
k=3 

(3.11b) 

(3.12a) 

(3.12b) 

Thus, to calculate the terros wtrr(kL, km, kn), the corresponding ii1(k1, km, kn) are 
required. These can be calculated in sequence starting from ii1(k11 km, kn) = 

i12(kt, km, kn)· The functions tij(l, m, n) appearing in eq 3.lla are obtained from 
iij(kt, km, kn) by inverse Foutier transformation (eq 3.1lb). For short s-mers 
(s :5 6), the required factors iii(kt. km, kn) and corresponding segmental intra
molecular correlations wf;tr(k11 km, kn) are summarized in Table 3.1. Further 
explicit summa ti on according to eq 3. 7 leads to the average 2-segment intra
molecular correlation function w~~(kl! km, kn) that can be written as a polyno
mial in the variabie (2'1j;), 

s-1 

w!~~(kt, km, kn) =I: ci(2'1j;)i (3.13) 
i=O 

the coeffi.cients ei for short s-mers (s :::;; 6) are given in Table 3.2. The intra-
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i,j tij(kt, km, kn) tii(O) t,i(O) A intr(k k k ) wi.i !, m) n 

1,2 21/; 6 0 1/J/3 
1,3 (21/;)2 36 6 ((21/;)2 - 6)/30 

1,4 (21/;)3 - 241/; 144 0 ((21/;)3 12(21/;))/144 

1,5 (21/;)4
- 18(21/;)2 + 36 684 18 ((21/;)4 -18(21/;)2 + 18)/666 

1,6 (21/;)5 24(21/;)3 + 72(21/;) 3024 0 ((21/;)5- 24(21/;)3 + 72(21/;))/3024 i 

Table 3.1: The segmental intra-molecular correlations w!jtr(kz, km 1 kn) and the t,j's 

for s-mers, s ~ 6. 

s Cs 0 cj c2 Cs 3 Cs 4 eS 
2 1 1 

6 

3 13 2 2 
15 9 90 

4 4 5 1 1 
5 24 30 288 

5 2139 1 243 1 1 
2775 5 8325 180 1665 

6 3753 5508 396 117 1 1 
4995 27216 14985 27216 999 9072 

Table 3.2: The coeflicients for the average intra-molecular segmental correlation func

tion for s-mers, s ~ 6. 

molecular correlation function 3.13 can be used as. input to the PRISM integral 
theory. In the derivation of eqs 3.11 and 3.12 an approximate analogous to the 
Percus-Yevick approximation has been used. In continuurn it has been shown that 
the calculated average end-to-end distance for athermal chains are larger than 
the exact value. For example, the exact and calculated values of the mean-square 
end-to-end distances for an off-lattice athermal 4-mers are < rr4 >= 4.31l~ and 
< ri4 >= 4.5ll respectively.48 Furthermore, the sealing of the average squared 
end-to-end distance with chain length depends on the ratio of bond length and 
segment diameter and can be tuned to the sealing behavior of self-avoiding walk 
by a proper choice of this ratio. 

3.2.5 Thermadynamie properties 

Once the correlation functions are known, the thermodynamic properties can be 
calculated from exact statistkal mechanica! relations. The isothermal compress-
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ibility is defined as 

1 av 1 EJy 
KT= --(-)T N =-(-)Tv 

Vop' yop' 
(3.14) 

The isothermal compressibility can be found from the zero wave vector limit of 
the structure factor S(O, 0, 0)18- 22 and can be related to the correlations in the 
fl.uid 

KT (JS(O) (Jwintr(o, 0, 0) 
- = -- = ---;--~-;-:;--':--:---'-;-~-:-::-; 

y[1 - wintr(o, 0, O)yê(O, 0, 0)] V* y 
(3.15) 

Eq 3.15 can be rewritten in terms of the total 2-segment distribution function 
G(l, m, n) according to 

KT ~ 
v*(J = L,.[G(l,m,n) -1] 

l,m,n 

(3.16) 

with yG(l, m, n) = wintr(l, m, n)+yg(l, m, n) denotes the total density of segments 
at position (l, m, n) from a chosen particle, g(l, m, n) = h(l, m, n) + 1 is the radial 
distribution function. The equation of state can be obtained from the inverse 
isothermal compressibility by direct integration 

(3.17) 

This equation of state is hence a thermal compressibility equation of state. 
Note that the compressibility equation of state is determined by the total 2-
segment distribution function G(l, m, n). 

Other possible routes to the equation of state are, e.g. the energy equation, 
the virial equation and the wall equation of state.22- 30, 59 If the the theoretically 
calculated correlation functions were exact the equation of state obtained from 
these different routes would be identical. However, the approximate closures make 
the results depend on the chosen route. Here we use the compressibility route 
to the equation of state. It is known that the PRISM equation does not yield 
the correct limiting low density behavior and this will have its consequence for 
the integration to be conducted in eq 3.17.60 Off-lattice studies pointed out that 
the compressibility equation of state underestimates the compressibility factor 
whereas the virial equation of state results in an overestimation. 60 It was further 
shown that the wall equation of state produced results which were believed to 
be nearest to the true behavior.60 However, in a lattice study it was shown 
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that the wall equation of state was by no means in good agreement with MC 
simulation data and in this case the compressibility equation of state was in 
better agreement.60 Irrespective of which route to select, it is generally accepted 
that the calculation of thermodynamic properties, such as the equation of state 
with integral equation theory, meets always with great difficulties. 

To calculate the pressure via eq 3.17, the intra- and inter-molecular correlation 
functions, wintr(k1, km, kn) and ê(k1, km, kn), must be calculated for each y'. The 
numerical integration can altogether be prevented in some cases. For atomie 
fiuids, Baxter performed the integration analytically employing the PY closure. 
Baxter's approach can be extended to the PRISM theory and the compressibility 
equation of state for chain molecules is61 

f3pv* ='#_ + Y
2

l-2c(O, o, O) + 6c(l, o, o)(?· 0'
13
°) 2)] 

s 2 - e E 

+ ( 2~)3 1: 1:1: (ywintr(k~, km, kn)ê(k!, km, kn) (3.18) 

+ ln(l- ywintr(k,, km, kn)ê(k!, km, kn)))dudvdw 

Although, eq 3.18 was initially derived using the PY closure, it is applicable to 
athermal systems stuclied in the MSA approximation since then the MSA and 
PY closures are identical. Hence, numerical integration according to eq 3.17 is 
only necessary for systems with a non-zero nearest neighbor interaction potential 
when the MSA ciosure is used. 

In the PV-plane of a I-component fiuid three regions, i.e. a stable, a meta
stabie and an unstable region can be defined. In the stabie region, a fiuid always 
remains in the one phase and in the unstable region the fiuid will always separate 
into two phases. On the other hand, a meta-stabie fiuid is stabie with respect 
to small density fiuctuations, but large fiuctuations, i.e. the formation of critica! 
nuclei, will cause phase separation. These three regions are separated by two 
lines, i.e. the binodal and spinoclal curves. The liquid-gas bilioclal defines the 
coexistence. between a liquid and a va por phase and delineates the stabie and 
meta-stabie regions. At the spinoclal curve, separating the meta-stabie and un
stable regions, the compressibility diverges, i.e. KT ---+ oo which corresponds to 
the following condition 

wintr(~, 0, 0) - yê(O, 0, 0) = 0 (3.19) 

It is known from the study of mono-atomie particles that the PY-closure is less 
suited for interacting systems.22•46•47 Therefore, in this case only the MSA ciosure 
is discussed. 
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3.3 Monte Carlo simulation 

3.3.1 NpT-simulation 

The NpT-ensemble simulation technique used here to obtain the equation of state 

datafors = 20,30 and 60 athermal chains has been described elsewhere.49 These 

simulations are operated in the NpT ensemble. The self-avoiding lattice chains 

are placed on a cubic lattice and each site is occupied at most once. A rectangular 

section of a cubic lattice with a wall is used here with 50 sites in the l-direction, 

perpendicular to the wall, and 22 sites in the other two directions. The solid 

wall is placed at l = 1 position and 200-500 chains are put in the rectangular 

section. Periadie boundary conditions are used in the m- and n-direction. A 

finite pressure is exerted by changing the total volume. The necessary volume 

fiuctuations are created by buildingfdestroying asolid piston scanning site-by

site with respect to the solid wall. The configuration space is sampled by moving 

the polymer molecules on the lattice with reptation moves. A volume fiuctuation 

move was applied every 200 reptations. Up to 1.2 x 109 reptation moves were 

used, from which the first 0.4- 0.6 x 109 were used only for equilibration of each 

state. The partiele distribution were only obtained from the last 0.1 x 109 moves. 

Averages of 9Mc(l, m, n) and w~~(l, m, n) were collected every 5000 reptations 
from a middle section of the polymer slab, at least 7 sites away from the solid 

walland from the jagged edge of the piston. The 9Mc(l, m, n) and w~~(l, m, n) 
were only obtained for r2 = l2 + m2 + n2 ::5 16. The single chain intra-molecular 

correlation data are obtained from the same simulation algorithm at very low 

concentration of chains. 

3.3.2 Liquid-vapor coexistence curve 

The MC simulation data for the liquid-vapor binodal curve is taken from recent 

papers of Yan et al.62, 63 The phase-equilibrium coexistence curve is extracted 

from a new simulation algorithm, i.e. the configurational-bias-vaporization method, 

which is designed for studying phase equilibria for lattice polymers. A single 

simulation cell is used in this method where all polymers are introduced in the 

lower portion of the cell upon initiation. Vaporization is then carried out by 

randomly eliminating a chain followed by generating a new chain through the 

configurational-bias method.64 The compositions of coexistence phases are de

termined directly. The phase-equilibrium coexistence curves for polymer systems 

with chain length up to 200 can he obtained from this simulation. 
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3.4 Results and discussions 

In figures 3.1, 3.2 and 3.3 theoretica! and simulation results for the average intra
molecular correlation function of 16-, 30 and 60-mers are presented as a function 
of r 2 = l2 + m 2 + n2 , the radial distance between two segments. 

ê0.4 
~ 

E 
::::. 
s 0.2 

4 8 12 16 

Figure 3.1: Intra-molecular eorrelation lunetion wintr(r) lor 16-mers as lunetion of 

radial distanee r2 between two segments. MC simulations (•); F'ulllines represent the 

wintr(r) from the excluded volume theory; dasbed lines reler to the freely jointed chain 

model. 
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Figure 3.2: Caption as in ligure 3.1, but lor lor 30-mers. 

16 

The symbols ( •) are MC data and theoretica! intra-molecular correlation func
tions wintr(l, m, n) are denoted by lines: the dashed line refers to the freely jointed 
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Figure 3.3: Caption as in tigure 3.1, but for 60-mers. 

chain and the solid line depiets the excluded volume chain. To focus on the in
teresting part of the intra-molecular correlation the trivial self correlation at the 
(0, 0, 0) position is not depicted, i.e. at the origin wintr(o, 0, 0) - 1 is shown, 
whereas for all other positions, (l, m, n) i= (0, 0, 0), the complete intra-molecular 
correlation wintr (l, m, n) is presented. In agreement with the simulation data 
the theoretica! wintr(l, m, n) is only defined at lattice positions and the lines are 
merely a convenient manner to distinguish the theoretica! results from the simula
tion data. The larger value for the intra-molecular correlation function at r 2 = 4 
compared to the value at r 2 = 3 is typical for the cubic lattice. The shortest 
possible path between a central segment and a segment located at the position 
(1, 1, 1) contains three 'honds' whereas the shortest path fora segment located at 
(2, 0, 0) position is only two 'honds'. Consequently, the correlation at the r 2 = 4 
position is larger than at the r2 = 3 position. The incomplete 'radial symme
try' of the lattice also yields slightly different values for, e.g., wintr(2, 2, 1) and 
wintr(3, 0, 0), although both positions represent the sameradial distance. Hence, 
the value of wintr(9) in figures 3.1, 3.2 and 3.3 is obtained as the average involving 
the different lattice positions with the same radial distance. 

In figure 3.1 it can be observed that at short radial distances, say r 2 $ 6, the 
ideal chain intra-molecular correlations are larger than those from the excluded 
volume chain. In the ideal chain, segments can fold back and several segments can 
occupy the same lattice site making more compact conformations possible. This 
also leadstoa large residual correlation, i.e. wf:;tr(o, 0, 0) -1, is nonzero and leads 
inevitably to too high correlations at shorter distances. Since the summation of 
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the intra-molecular correlation function over all distances yields the total number 
of segments in the chain, the overestimated correlation at small distances must 
result in an underestimation of the correlations at larger distances. This is in deed 
observed in figure 3.1. On the other hand, the excluded volume chain offers quite 
accurate predictions of the MC data. For the 16-mers the theoretica! line for 
the intra-molecular correlation function from the excluded volume chain passes 
through the MC data for all presented distances except at r 2 4. Note also that 
in agreement with the MC results wintr(o, 0, 0)- 1 is identically zero. 

In figures 3.2 and 3.3 a comparison between MC simulation data and theory is 
presented for longer chain length, i.e. s = 30 and s = 60. Clearly, the predictions 
of the freely jointed chain for the intra-molecular correlations deteriorate with 
increasing chain length (compare figures 3.1, 3.2 and 3.3). The predictions ac
cording to the excluded volume chain remain good to fair for these chain lengths 
although also in this case the agreement between theory and simulation data is 
found to deteriorate with increasing chain length. 

In figure 3.4 the intra-molecular correlation functions of 30-mers for two densi
ties, y = 0.00225 and y = 0.6865 obtained from NpT MC simulations, are shown. 
The theoretica! results for the ideal and excluded volume single chain correlation 
functions arealso depicted by the dashed and solid lines respectively. 

The theoretica! correlation functions provide lower and upper bounds for the 
MC data. As already observed in figures 3.1, 3.2 and 3.3 the single chain intra
molecular correlation function at zero density is quite successfully predicted by 
the excluded volume theory. U pon increasing the density, the MC intra-molecular 
correlations for distance r 2 ~ 1 gradually shift towards the ideal chain structure 
factor, indicating that the screening between intra- and inter-molecular interac
tions indeed leads to more ideal chain behavior. However, the full ideal chain 
limit is never reached. Especially the correlations at short distances are much 
smaller in the MC data than in the ideal chain wintr -function. Although with 
increasing density the real chains tend to more ideal chain behavior, they always 
experience the short range excluded volume effects since two segments cannot 
occupy the same lattice site, i.e. w~~(O, 0, 0) - 1 = 0. From figure 3.4 one might 
conclude that the excluded volume theory offers a reasonable prediction of the 
actual intra-molecular correlation also at higher densities. Especially if one is 
interested in properties involving short distances, the predictions of the excluded 
volume theory are certainly not worse than those of the ideal chain model. 

In figures 3.5, 3.6 and 3.7 the inter-molecular correlations, calculated from 
the PRISM theory in combination with wt;tr (dashed lines) and w!~~ (solid lines) 
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Figure 3.4: Intra-molecular correlation function as a function of distance r2 for differ

ent densities y = 0.00225, (•); y = 0.6865, (•). Fullline represents excluded volume 

theory and dasbed line for freely jointed cbain. 

are compared to MC simulation data for athermal chains (E = 0) at 3 different 
densities, y = 0.00455, 0.0788 and 0.5383. 

Both theory and simulation show the well known correlation hole, inside of 
which the concentration of monomers from other chains is reduced.65 Therefore, 
at small distances the inter-molecular correlations are very low. The predicted 
limiting zero-density inter-molecular correlations are extremely poor irrespective 
of the theoretica! intra-molecular correlation function used. Similar, discrepancies 
at low densities for the inter-molecular correlations have already been found in 
off-lattice studies for short chain fluids32 and small rigid molecules24•25 and are 
related to the inexact limiting low density behavior of the (P)RISM theory.33 

Apparently, the use of a more accurate intra-molecular correlation function for 
these low densities only results in a modest improvement. Clearly, the incorrect 
low density behavior of the PRISM theory is far more important. U pon increasing 
the density, the simulation data and the theoretica! inter-molecular correlations 
are in better agreement. Surprisingly, at the highest density shown here, the 
predictions using wt:;tr are in excellent agreement at all distances. In line with 
the Flory ideality hypothesis, the ideal chain intra-molecular correlation function 
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Figure 3.5: Inter-molecular correlation function g(r) as function of distance r 2 at 
s 30, € = 0 and y = 0.00455. MC simulations (•); Fullline repre~ents the excluded 

volume theory and the dashed line depiets the results for freely jointed chains. 
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Figure 3.6: Caption as in ligure 3.5 but for y=0.0788. 

captures quite accurately the correlations at large distances. But also at the 
short distances the predictions employing wi:;tr are quite accurate and have the 
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Figure 3.7: Caption as in ligure 3.5 but for y=0.5383. 

correct behavior at (l, m, n) = 0 which is aresult of the exact dosure condition 
g(O, 0, 0) = 0. At high density, the prediction of w!:~ for the inter-molecular 
correlations are not as accurate as those of wf:Itr. The improvements found for the 
intra-molecular correlation are not refl.ected in the inter-molecular correlations. 

The compressibility equation of state can now be obtained from the inter
and intra-molecular correlations by numerical integration, presented in eq 3.16, 
or directly by eq 3.17. The latter equation only requires information about the 
final density. 

In figure 3.8 the compressibility factor (3pv*s/y is presented as a function of 
packing fraction y for athermal chains (€ = 0) with chain length s = 20 and 
s = 30. The solid circles and squares denote the MC simulation data for 20-mers 
and 30-mers respectively. The dashed lines in figure 3.8 is the result obtained 
from the lattice-PRISM theory in combination with wt:;tr and solid lines are ob
tained from w!:~. The freely jointed chain model result surely underestimates the 
compressibility factor (3pv* sjy at all packing fraction. Moreover, at full packing, 
y = 1, the compressibility factor does not tend to infinity as it must be expected 
on physical grounds. From eq 3.16, we can appreciate that both the inter- and 
intra-molecular correlations are important quantities for the EoS. At full packing 
of the lattice (y = 1) the total density of segments, given by yG(l, m, n), equals 
unity for all distances. Hence, the compressibility is equal to zero and the com-

51 



20 

~ 15 
z ....... 5: 10 

5 

S.o 0.2 0.4 0.6 0.8 1.0 

y 

Figure 3.8: Compressibility factor as function of packing fraction at e = 0. MC 

simulations s=20 (•) and s=30 (•); Fulllines repreaent the excluded volume theory 

and the dasbed lines depiet the results for freely jointed chains. 

pressibility factor tends to infinity at y = 1. However, the ideal chain model, 
allowing for non-physical intra-molecular overlap of segments, leadstoa too high 
value of w(l, m, n) at short distances. Consequently, the total density of particles 
(intra- and inter-molecular) is larger than unity even at full packing and the com
pressibility becomes non-zero. This then results in a too small compressibility 
factor upon integration according to eq 3.17 or 3.18. On the other hand, the ex
cluded volume theory, although approximate, accountsforthese intra-molecular 
excluded volume interactions and provides the correct limiting behavior at y = 1 
for G(l, m, n). This clearly results in a significantly improved agreement between 
theory and simulation and the correct limiting behavior for the compressibility 
factor at full packing is obtained. 

In figures 3.9, 3.10 and 3.11 the inter-molecular correlations for interacting 
30-mers ({JE = -0.2) are presented. In these calculations the PRISM equation 
combined with wj:;tr (dashed lines) or w!~~ (solid lines) is solved using the MSA 
closure. 

lt should be noted that the calculations for the interacting ebains carry a cer
tain inconsistency. The influence of the nearest neighbor interactions, contained 
in the dosure relations, is only incorporated in the inter-molecular correlations. 
For the intra-molecular correlation function, the segmental interactions are as-
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Figure 3.9: Inter-molecular correlation lunetion g(r) as lunetion of distance r2 at 

s = 30, € = -0.2 and y = 0.0043. MC simulations (•); Fullline represents the excluded 

volume theory and the dashed line depiets the results lor freely jointed chains. 
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Figure 3.10: Caption as in tigure 3.9, but for y = 0.294. 

sumed to be athermal. This inconsistency is not typical of the present discussion 

but is a consequence of the a priori treatment of intra-molecular interactions 
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Figure 3.11: Caption a.s in tigure 3.9, but for y = 0.5681. 

independently of the inter-molecular correlations. A self-consistent calculation of 
inter- and intra-molecular correlations should provide an adequate remedy for this 
inconsistency. Despite this inconsistency, the theoretica! variation with densities 
are quite similar to those observed for athermal chains and at low densities the 
PRISM predictions are particularly poor. However, also significant differences 
for these interacting systems are noticeable. At low and intermediate densities 
(figure 3.9 and 3.10) the intermolecular correlations derived from the ideal chain 
model first reach a maximum at rather short distauces before decreasing to the 
larger distance limiting behavior g( r --+ oo) = 1. Thus instead of a correla
tion hole a correlation maximum is predicted in qualitative disagreement with 
the MC simulation data. A correlation maximum although less pronounced is 
still present at the highest investigated density (figure 3.11). The excluded vol
ume intra-molecular correlation function w!~~ correctly prediets the existence of 
the correlation hole also in these interacting systems and the predictions using 
w!~~ are closer to the MC data at all densities. One can also observe that at 
high densities ( compare 11 and 7) the inter-molecular correlations for interacting 

and athermal systems are very similar. This is also correctly predicted by the 

PRISM/w!~~ theory. 
The equation of state for the interacting chains is depicted in figure 3.12. The 

packing fraction is shown as a function of pressure for 3 values of the reduced 
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interaction energy {3e = 0, -0.45, -0.5. 
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Figure 3.12: Density as a function of pressure for 30-mers and different interactions 

e = 0(&), -0.45(o), -0.5(•). Fulllines represent the w!~~ with MSA, dasbed lines the 

wt:;tr with MSA. 

Both in theory and simulation the density increases with pressure and reduced 
interaction energy. For the nonzero interaction parameters investigated here the 
theoretical prediction based on w::;tr (- - results in unphysical packing 
fractions larger than unity. Just as in the case of the athermal chains, the un
physically large densities are related to the intra-molecular segmental overlap still 
present in the ideal chain model. In addition, however, the inter-molecular cor
relations, presented in figure 3.11, result in an extra densification of the system. 
The theoretica! prediction based on w~~ (-) leads to a correct physical behav
ior although the predicted densities are too low for all investigated pressures and 
non-zero interactions. For w!~~'l model the observed change in density with inter
action energy is somewhat too small in comparison to the MC simulation data, 
whereas for wt:Itr it is too large. 

Finally it can be observed that both the PRISM/w!~~ and PRISMfw!:Itr the
oretica! isotherms possess a van der Waals loop for sufficiently large attractive 
energies or low temperatures at low pressures. This is indicative of the vapour
liquid coexistence in this temperature and pressure region. 
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The MC simulation data do notshow this van der Waals loop. However, it is 
also not possible to locate the V-1 coexistence gap with the NpT MC simulation 
algorithm employed in this study.49 The coexistence gap can be investigated 
employing other simulation algorithms as demonstrated by Yan et al.62

•
63 

The V-1 binodal of a 16-mers obtained by Yan et al. is depicted in figure 3.13. 
Tagether with the MC binodal data the liquid-vapor spinoclal curves calculated 
according to the PRISM theory in combination with wf;;tr 
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Figure 3.13: Liquid-vapor spinodal curves for 16-mers, Fulllines represent the ex
cluded volume theory; dasbed Jin es the freely jointed chain model, ( •) MC simulation 

for binodal curve. 

The finite size employed in the simulation makes it impossible to investigate 
the binodal curve down to lower temperature. Nevertheless, it may be anticipated 
that the binodal curve tend to y = 0 and y = 1 at OK. Spinodal& and binodal are 
plotted as reduced interaction potential /3€ versus packing fraction. The spinoclal 
curve obtained from wf;;tr is located at too high temperature and .extends to pack
ing fractions larger than unity. Again, the unphysical intra-molecular overlaps 
of the ideal chain molecules lead to densities larger than one. The combination 
w!~~I/PRISM produces an at least qualitatively correct spinoclal curve. The max
imum of the spinoclal curve is known to be the critica! state for a mono-disperse 

lattice fl.uid. The estimated critical density Yc 9:! 0.34 compares favorably to the 
critica! density Yc 9:! 0.295 estimated from the MC simulations. However, the 
total spinoclal curve is shifted towards too low temperatures. 
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3.5 Conclusions 

An intra-molecular correlation function w!:~ that accounts for the segmental over
laps related to the excluded volume of the fl.exible chain molecule has been derived 
employing diagramrnatic techniques similar to those leading to the (P)RISM 
theory for the inter-molecular correlations. Using this excluded volume intra
molecular correlation function in the lattice-PRISM theory the inter-molecular 
correlations for athermal and interacting ebains have been calculated and the 
thermodynamic properties of the dense chain fl.uid have been studied. The theo
retica! results of the combinations lattice-PRISM/w!:~ and lattice-PRISM/wi:t 
have been compared to MC simulation data for the lattice model. 

The intra-molecular excluded volume theory compares favorably to the MC 
data for the single chain. On the other hand, the freely jointed chain model over
estimates the single chain intra-molecular correlation function at short distauces 
and the quality of the predictions deteriorates with increasing chain length. U pon 
increasing the density, the MC intra-molecular correlation function w~~ moves 
towards the freely jointed chain results but, even at the highest investigated den
sities, they are actually never reached. In fact, visual inspeetion of all results 
indicates that the new intra-molecular correlation function w!:~ in eq 3.13 yields 
a better prediction, especially at smaller distances, even at the highest investi
gated density. 

Employing the intra-molecular correlation functions w!~~ and wt;;tr the inter
molecular correlations for athermal and interacting ebains at several densities 
have been calculated according to the lattice-PRISM theory. Intimately related 
to the inexact limiting behavior at low density of the PRISM theory the predicted 
zero and low density inter-molecular correlations are particularly poor. For atber
mal chains, the freely jointed chain model produces quite excellent predictions 
of the inter-molecular correlation functions at higher density which is likely due 
tosome effective cancellation of errors in theories used to produce the inter- and 
intra-molecular correlations. For interacting ebains the excluded volume theory 
produces better predictions for the inter-molecular correlation functions for all 
investigated densities. 

The compressibility factor of the athermal lattice fl.uid is underestimated by 
the freely jointed chain model and qualitatively incorrect and unphysical results 
are obtained due to the total neglect of intra-molecular excluded volume. On 
the other hand, the combination lattice-PRISM/ w!~~ provides, at least, a qual
itatively correct description of the equation of state properties compared to the 
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MC data. From off-lattice studies it has been found that the compressibility 

route to the equation of state is not the most accurate. For instance, Yethiraj et 

al. found some indications that the wall equation of state was closer to exper
imental data than, e.g., the compressibility and free energy 'charging' routes.60 

However, irrespective of the relative successof the wall equation of state, the re
sults are far from quantitative. Furthermore, previous lattice investigations have 

shown that the the wall equation of state is not really preferabie above e.g. the 

compressibility equation of state.66 

The liquid-vapor spinoclal curve calculated for the freely jointed chain model 

is located at lower temperatures compared to the vapor-liquid coexistence curve 

obtained from MC simulations. Moreover, the spinoclal curve extends to packing 

fractions larger than unity. The excluded volume theory offers a qualitatively 
correct spinoclal curve. The maximum of the spinoclal curve is known to he the 
critica! state for a mono-disperse lattice fluid. The estimated critica! density 

Yc = 0.34 compares favorably to the critica! density Yc = 0.295 estimated from 
the MC simulation results. However, the spinoclal curve is shifted towards too 
high temperatures. 

The single chain intra-molecular correlation function w!~~ can also he used 
in a study of polymer mixtures. In this case also the liquid-liquid miscibility 

behavior becomes of interest. This will he the subject of a future research. 

58 



References 

[1] Flory, P. J., J. Chem. Phys. 10, 51, 1942. 

[2] Huggins, M. 1., Ann. N. Y. Acad. Bei 43, 1, 1942. 

[3] Flory, P. J., Principles of Polymer Chemistry. Cornell University Press, 
Ithaca, 1953. 

[4] Prigogine, I., Bellemans, A., Mathot, V., The Molecular Theory of Solutions. 
North-Holland Publishing Co, Amsterdam, 1957. 

[5] Simha, R., Somcynsky, T., Macromolecules 2, 341, 1969. 

[6] Nies, E., Stroeks, A., Macromolecules 23, 4092, 1990. 

[7] Dickman, R., Hall, C. K., J. Chem. Phys. 89, 3168, 1988. 

[8] Sanchez, I. C., Lacombe, R. H., J. Phys. Chem. 80, 2352, 1976. 

[9] ten Brinke, G., Karasz, F. E., Macromolecules 17, 815, 1984. 

[10] Sanchez, I. C., Balazes, A. C., Macromolecules 22, 2325, 1989. 

[11] Freed, K. F., J. Phys. A 18, 871, 1985. 

[12] Bawendi, M. G., Freed, K. F., Mohanty, U., J. Chem. Phys. 84, 7036, 1986. 

[13] Bawendi, M. G., Freed, K. F., J. Chem. Phys. 88, 2741, 1988. 

[14] Pesci, A. I., Freed, K. F., J. Chem. Phys. 90, 2003, 1989. 

[15] Nemirovsky, A.M., Bawendi, M.G., Freed, K. F., J. Chem. Phys. 87, 7272, 

1987. 

[16] Freed, K. F., Dudowicz, J., J. Chem. Phys. 97, 2105, 1992. 

59 



[17] Dudowicz, J., Freed, K. F., Macromolecules 24, 5112, 1991. 

[18] Curro, J. G., Schweizer, K. S., Macromolecules 20, 1928, 1987. 

[19] Schweizer, K. S., Curro, J. G., J. Chem. Phys. 89, 3350, 1988. 

[20] Schweizer, K. S., Curro, J. G., Macromolecules 21, 3070, 1988. 

[21] Curro, J. G., Schweizer, K. S., Macromolecules 24, 6736, 1991. 

[22] Janssen, R. H. C., PhD - thesis. Eindhoven University ofTechnology, The 
Netherlands, 1996. 

[23] McQuarrie, D. A., Statistica[ Mechanics. Harper and Row Publishers, New 
Vork, 1976. 

[24] Lowden, L. J., Chandler, D., J. Chem. Phys. 59, 6587, 1973. 

[25] Lowden, L. J., Chandler, D., J. Chem. Phys. 62, 4246, 1975. 

[26] Freasier, B. C., Chem. Phys. Lett. 95, 280, 1975. 

[27] Jolly, D., Freasier, B. C., Beannan, R. J., Chem. Phys. Lett. 46, 75, 1977. 

[28] Freasier, B. C., Jolly, D., Bearman, R. J., Mol. Phys. 91, 255, 1976. 

[29] Tildesley, D. J., Street, W. B., Mol. Phys. 41, 85, 1980. 

[30] Aviram, I., Tildesley, D. J., Mol. Phys. 94, 881, 1977. 

[31] Chandler, D., Andersen, H. C., J. Chem. Phys. 57, 1930, 1972. 

[32] Yethiraj, A., Hall, C. K., Honnell, K. G., J. Chem. Phys. 99, 4453, 1990. 

[33] Chandler, D., J. Chem. Phys. 59, 2742, 1973. 

[34] Hsu, C. S., Pratt, L. R., Chandler, D., J. Chem. Phys. 68, 4213, 1978. 

[35] Pratt, L. R., Hsu, C. S., Chandler, D., J. Chem. Phys. 68, 4213, 1978. 

[36] Grayce, C. J., Schweizer, K. S., J. Chem. Phys. 100, 6846, 1994. 

[37] Grayce, C. J., Yethiraj, A., Schweizer, K. S., J. Chem. Phys. 100, 6857, 
1994. 

60 



[38] Schweizer, K. S., Honnell, K. G., Curro, J. G., J. Ghem. Phys. 96, 3211, 

1992. 

[39] Melenkevitz, J., Schweizer, K. S., Curro, J. G., Macromolecules 26, 6190, 

1993. 

[40] Melenkevitz, J., Curro, J. G., Schweizer, K. S., J. Ghem. Phys. 99, 5571, 

1993. 

[41] Flory, P. J., Statistica[ Mechanics of Ghain Molecules. Ranser Publishers, 
New York, 1989. 

[42] Frenkel, D., Smit, B., Understanding Molecular Simulation from Algorithm 
to Applications. Academie Press, Inc., San Diego, 1996. 

[43] Cifra, P., Karasz, F. E., Macknight, W. J., Macromolecules 25, 4895, 1992. 

[44] Cifra, P., Karasz, F. E., Macknight, W. J., Macromolecules 25, 192, 1992. 

[45] The Gaussian chain consists of segments connected by honds having a Gaus
sian distribution of bond length. In the freely jointed chain the segments are 

connected by constant bond lengths. The rotational isometrie state model 

introduces some additional chemical details by allowing for rotational po
tentials. 

[46] Baxter, R. J., J. Ghem. Phys. 49, 2770, 1968. 

[47] Lomba, E., in E. Kiran, J. M. H. L. Sengers (eds.), Supercritical Fluids. 

Kluwer Academie Publishers, The Netherlands, 1928-1931. 

[48] Curro, J. G., Blatz, P. J., Pings, C. J., J. Ghem. Phys. 50, 2199, 1969. 

[49] Nies, E., Cifra, P., Macromolecules 27, 6033, 1994. 

[50] Chandler, D., in E. W. Montroll, J. L. Lebowitz (eds.), Studies in Statistica[ 
Mechanics VIII, p. 275. North- Holland, Amsterdam, 1982. 

[51] Curro, J. G., Schweizer, K. S., J. Ghem. Phys. 87, 1842, 1987. 

[52] Lebowitz, J. L., Percus, J. K., Phys.Rev. 144, 251, 1966. 

[53] Ballard, D. G., Schelten, J., Wignall, G. D., Eur. Polym. J. 9, 965, 1973. 

61 



[54] Cotton, J. P., Decker, D., Benoit, H., Farnoux, B., Huggins, J., Jannik, G., 
Ober, R., Picot, C., des Cloizeaux, J., Macromolecules 7, 863, 1974. 

[55] Vacetello, M., Avitabile, G., Corradini, P., Tuzi, A., J. Chem. Phys. 73, 543, 

1980. 

[56] Weber, T. A., Helfand, E., J. Chem. Phys. 71, 4760, 1979. 

[57] Koyama, R., J. Phys. Soc. Jpn. 34, 1092, 1973. 

[58] Chandrasekhar, S., Rev. Mod. Phys. 15, 1, 1943. 

[59] Prigogine, I., Defay, R., Chemical Thermodynamics. Longmans Green and 
Co., London, 1954. 

[60] Yethiraj, A., Curro, J. G~, Schweizer, K. S., McCoy, J. D., J. Chem. Phys. 

98, 1635, 1993. 

[61] Janssen, R. H. C., Nies, E., Cifra, P., Macromolecules, submitted 1997. 

[62] Yan, Q., Liu, H., Hu, Y., Macromolecules 29, 4066, 1996. 

[63] Yan, Q., Jian, J., Liu, H., Hu, Y., J. Chem. lnd. Eng. (China) 46, 517, 1995. 

[64] Allen, M. P., Tildesley, D. J., Computer Simulation of Liquids. Clarendon, 
Oxford, 1987. 

[65] de Gennes, G., Sealing Concepts in Polymer Physics. Cornell University 
Press Ltd., London, 1979. 

[66] Janssen, R. H. C., Nies, E., Cifra, P., Langmuir 13, 2784, 1997. 

62 



Chapter 4 

A theory for compressible binary 
lattice polymers: In:fluence of 
chain conformational properties 

4.1 Introduetion 

The interest in the lattice model in polymer science can be retraced to Flory 
and Ruggins more than half a century ago. Their independent works resulted in 
the celebrated theoretica! Flory Ruggins (FR) expression for the free enthalpy of 
mixing of a polymer solution.1- 4 At the same time Flory pointed to the inade
quacies of the lattice model for the real off-lattice fluid state, thereby relativizing 
the importance of refinements to the pr~mitive FR result which carry details of 
the modeV Although the limits of the lattice model for understanding the liq
uid state have over the years been unravelled in more detail, it has persistently 
attracted attention. Especially the advent of molecular simulation techniques, 
becoming feasible with modern computer facilities, renewed the interest in the 
lattice model. In the framework of statistica! mechanics and properly account
ing for finite size effects simulations essentially provide the exact properties of 
a model.5, 6 Thus by comparing theory and simulations it is possible to study 
the approximations invoked in theoretica! investigations. From these compar
ative studies it is now clear that the different refinements of the primitive FR 
theory indeed lead to improved predictions of the thermodynamic properties of 
the lattice model.7- 12 

One of the first systematic studies of the lattice model by Monte Carlo (MC) 
computer simulations was pursued by Sariban and Binder who investigated sym-
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metric binary polymer mixtures on a cubic lattice with a constant fraction of 
vacancies.9- 12 A variety of properties was investigated in these simulations. Of 
interest to the present contribution we report the study of liquid-liquid coexis
tence as a function of chain length, temperature and vacancy fraction. In addition 
to this sheer thermodynamic data also the average number of the different types 
of contacts in the mixture was collected in the simulations. The simulation results 
were compared to the FR and Guggenheim expressions for the lattice model. 2

•
4

•13 

The FR free enthalpy density equals the sum of the internal energy, given 
by a van Laar-Rildebrand expression, and the combinatorial entropy derived for 
the athermal systems. Thus, the infl.uence of the interactions on the entropy is 
completely ignored and a random mixing of all segments is assumed. In addition 
the chain connectivity is fully ignored and the FR expression is given in terms of 
the occupied site or volume fraction. It should he mentioned that Ruggins already 
predicted an entropy correction to the FR result, including the influence of the 
nearest neighbor covalent honds of each segment. The Ruggins correction is most 
naturally formulated employing the external contact fraction, so excluding the 
covalent honds making up the linear chains from participating in inter-segmental 
contacts. 

A next important theoretical advancement was established by Guggenheim. 
Employing his quasi-chemical approximation, Guggenheim incorporated the in
fl.uence of the segmental interactions on the free enthalpy, thus removing the 
random mixing assumption adopted by Flory and Ruggins. Sariban and Binder 
clearly showed that the Guggenheim expression is substantially better than the 
simple FR theory. At the same time they exposed the main shortcomings of 
the investigated theories. For the relatively short chain lengths studied in the 
simulations the real (simulated) coexistence curves clearly have a non-parabolic 
shape due to a non-classical critical sealing behavior.9 In contrast, the theoret
ica! coexistence curves have a parabolk shape associated with their mean-field 
characterP A second deficiency of the FR and Guggenheim theories was found 
for the different types of segmental contacts. In the simulation a significant num
ber of intra-molecular or self-contacts was found; such contacts are completely 
ignored in the theories. Further detailed studies of the equation of state and 
miscibility behavior of compressible symmetrie binary mixtures in combination 
with the segmental contacts demonstrated the infl.uence of the intra-molecular 
contacts on the thermodynamic results and it was anticipated that a theory in
corporating the intra-molecular contacts might further improve the agreement 
with MC simulation. 14 
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An important theoretical ad vancement for the lattice model is provided by the 

Lattice Cluster (LC) Theory of Freed and co-workers.15· 16 These authors moulded 
the lattice partition function in a double expansion in terms of the inverse lattice 

coordination number and inverse temperature. The zeroth order term in this 
expansion is the simple FH result and the higher order contributions constitute 
systematic corrections over the simple FH result. Several applications of the LC 

theory, e.g. to mixtures of chemically different polymers17 and mixtures of linear 

and branched chain molecules/8 have indicated the relevanee of these theoretica! 

refinements. In the case of athermallinear chains the LC theory provides slightly 

better predictions of the compressibility factor than the Guggenheim approxi
mation7•8 (for athermal chains the Guggenheim theory reduces to the Huggins 
combinatorial entropy expression). For the chain lengths actually investigated 
the difference between the Guggenheim and LC theory was only minor but was 
anticipated to increase in favor of the latter for longer chain lengths.8 Despite 

the importance of the LC theory also some drawbacks should be mentioned. For 

instance, as a function of chain length, peculiar critica! behavior was found in the 
isomorphic conditions of liquid-liquid eoeristenee of an incompressible polymer 

solution and the vapor-liquid coexistence of a compressible pure component. 8· 19
• 
20 

Further, as the LC theory relies on a truncated expansion in the inverse lattice 
coordination number and inverse temperature it is unable to fully account for 
the long range consequences of the excluded volume effects typical of chain like 
fl.uids. 

Another line of approach, i.e. the integral equation theory of polymers fl.uids, 

was investigated by Curro, Schweizer and collaborators.21 •22 Integral equation 

theories were initially developed for simple mono-atomie fl.uids to study the mi
croscopie structure of fl.uids. 23 These liquid state theories, employing correlation 
functions, were extended to simple molecular fl.uids in the reference interaction 

site model (RISM) theory by Chandler and co-workers.24•25 The RISM theory 
makes it feasible to predict the inter-molecular correlations among segments or 
interaction sites on different molecules from information of the intra-molecular 

correlations, which are set by the molecular architecture, between segments of the 

same moleculé. The application of the RISM theory to fl.exible chain molecules 
(Polymer-RISM or PRISM) was initiated by Curro and Schweizer to study the 

microscopie structure of polymer single components and mixtures. 21 •22 For fl.ex
ible macromolecules, the intra-molecular structure is not a priori known and it 
must be expected to depend on the inter-molecular correlations which accord

ing to the {P)RISM theory are determined by the intra-molecular correlations. 
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Hence, a complicated interdependence between inter- and intra-molecular cor
relations exists and, in principle, both types of correlations must be calculated 

self-consistently. The first attempts to establish this self-consistency have been 

publisbed only recently and are still a matter of further investigation. 26-29 Based 
on the detailed information concerning the correlations in the fl.uid, the ther

modynamic propertiescan be derived employing exact statistica! mechanica! re

lationships.23·25·30 Unfortunately, and this is a major drawback of all integral 

equation theories, these calculations are plagued with so called thermodynamic 
inconsistencies which are related to the necessary approximations involved in the 

calculation of the theoretica! correlations. 23 

Another interesting approach incorporating the conformational degrees of 

freedom of the chain molecules in the thermodynamics is due to Szleifer.31 He 

considered the chain molecule as a whole in the environment made up by the 

total system. Note that in the usual FH theory, the infl.uence of the environment 
is only considered on the segmental level. In evaluating the expression for the 

partition function, the conformation and translational or configurational degrees 

of freedom are decoupled. The translational part is assumed to be given by the 
Flory-Huggins combinatorial entropy and the infl.uence of the conformational de
grees of freedom is limited to the internal energy.31 Hence for athermal chains 

the simple FH combinatorial entropy is recovered. 

In a more recent theoretica! development, Weinhold, Kumar and Szleifer 

achieved a coupling between translational and conformational degrees of freedom 

for athermal lattice chains.32 They derived the total entropy in combinatorial 
and conformational contributions. For the combinational e,ntropy a Huggins
Guggenheim like expression was used, depending on the average number of intra
molecular contact which is determined by the conformational degree offreedom.32 

The authors found chain dimensions and chemica! potentials calculated with this 

new theory in reasonable agreement with MC simulation data.32 

In this chapter the infl.uence of the excluded volume of the chain molecule is 
also investigated. We also start from the notion of intra-molecular self-contacts 

and use this concept to formulate a new theory for athermal and interacting sys

tems. It will be shown that the intra-molecular contacts require the introduetion 

of a new composition variabie excluding such contacts and hence fundamentally 

change the functional dependenee of the combinatorial entropy and free energy 
expressions as formulated by GuggenheimP In section 4.2 the new theory and 

expressions for several thermodynamic properties are derived and placed in re

lation to other existing theories. In section 4.3 the employed MC simulation 
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algorithms are discussed. In section 4.4 the results for athermal and interading 
pure components as well as mixtures are discussed. Finally, section 4.5 sum
marises the important results and gives directions for future investigations based 
on the new theory. 

4.2 Theory 

4.2.1 Partition functions, insertion probabilities and ther
modynamics 

The present discussion considers the thermal properties of a binary mixture con
taining NA sA-mers, N8 s8 -mers. Thus each A(B) molecule is modeled as a 
linear sequence of sA(ss) consecutive sites on the lattice. For the following gen
eral discussion of thermodynamics and statistica! mechanics it is convenient to 
define the following variables 

Total number of molecules N 

Number average chain length s 

Chemical composition </>s(= 1 <!>A) 

N= NA +Ns 
s = (sANA + ssNs)fN 
<!>A= sANA/sN, 4>s = ssNsfsN 

The partition function QN of the binary mixture is defined by23•33 

with AN is an allowed configuration of the N chain molecules on the lattice; 
UN(AN) is the internal energy of the system in configuration AN; the sum runs 
over all allowed configurations. The factorials in eq 4.1 correct for the indistin
guishability of the molecules of components A and B. The normal kinetic con
tributions to the partition function are not shown since they do not contribute 
to the density and composition dependenee of the thermal properties discussed 
in this chapter. 
A configuration AN is specified by the positions of all segments on the lattice 
which agree with the constraints of i) at most single occupancy of lattice sites 
and ü) the connectivity of the segmentsineach chain molecule. In lattice theories, 
it is customary to consider only nearest neighbor interactions and the internal 
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energy of the configuration AN can be written as 

with .Mi(AN) the number of contact pairs of the type ij in the configuration 
AN carrying a corresponding contact energy All cantacts invalving empty 
lattice sites are assigned a zero contact energy. 
The partition function Q N offers a direct route to the Helmholtz free energy23

•33 

(4.3) 

An alternative route is provided by the insertion probabilities of both components, 
PA(NA, NB, NL, T) and PB( NA, NB, NL, T), which are defined by the following 
ratios of partition functions13·34,35 

(4.4a) 

(4.4b) 

The last equalities in Eqs 4.4 are obtained if one realizes that the partition func
tions of a single chain on the lattice can be written as the product of an intra
molecular contribution ZA(ZB) and the total number of lattice sites NL. More 
specifically, for a single A chain 

Z(l, 0, NL, T) = L exp[-,6Ut(At)] = NL L exp[-,6Ut(Att)] = NLZA (4.5) 
{~} ~~ 

with A11 the allowed configurations of the chain with the first segment fixed. 
The summation appearing in the second equality is the intra-molecular partition 
function of the chain. The first segment can be positioned on each lattice site 
and NL identical terms ZA are obtained. 
Eqs 4.4 are called chain insertion probabilities. This interpretation sterns from 
the possibility to rearrange eqs 4.4 as ensemble averages over all configurations of 
a single srmer, the Ni+ lth molecule, in the mixture of all other molecules.5•36 

The insertion probabilities were originally introduced by Guggenheim in the study 
of incompressible lattice mixtures. 13 More recently, Hall and cbworkers employed 
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the insertion probabilities to derive continuurn space analogs of the Flory and the 
Flory-Huggins lattice theories, the so called generalized Flory and Flory-dimer 

theories.34
•
35 

Clearly the chemica! potentials of both components are related to the intrinsic 
insertion probabilities according to 

fJf.LA(NA,NB,NL,T) = {J(A(NA + 1,NB,NL,T)- A(NA,NB,NL,T)) 

=-ln[ ZN+l(NA+1,NB,NL,T) j (4.6a) 
ZN(NA, NB, NL, T)(NA + 1) 

= -ln[ZAPA(NA,NB,NL, T)NL/(NA + 1)] 

fJf.LB(NA,NB,NL,T) = {J(A(NA,NB + 1,NL,T)- A(NA,NB,NL,T)) 

=-In[ ZN+l(NA,NB+l,NL,T)] (4.6b) 
ZN(NA, NB, NL, T)(NB + 1) 

= -ln[ZBPB(NA, NB, NL, T)NL/(NB + 1)] 

In the thermodynamic limit, i.e. NL,NA,NB -+ oo and sN/NL = y and 
BBNB/sN = tPB, the chemical potentials and all other intensive thermodynamic 
functions of state are independent of the extension of the system and depend 
only on the intensive variables y, tPB and T. Hence, in this limit also the right 
hand sides of eqs 4.6 can only be functions of these intrinsic variables and one 
can define limiting chain insertion probabilities according to 

(4.7a) 

(4.7b) 

Consequently, in the thermodynamic limit, the expressions for the chemical po
tentials become 

fJf.LA (y, tPB, T) = -ln[BAPA(y, tPB, T)ZA/(tPAY)] 

fJJ.tB(y, tPB, T) = -ln[sBPB(y, tPB, T)ZB/(tPBY)] 

(4.8a) 

(4.8b) 

Furthermore, the chain insertion probabilities can be used to determine the 
Helmholtz free energy. Applying the definitions of the insertion probabilities, eqs 
4.4, recursively to eq 4.1, the partition function can be written as a product of 
chain insertion probabilities, i.e. the mixture is built up by inserting the chain 
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molecules one at a time. For example, if the NA molecules are inserted before 

the N 8 molecules, one finds 

On the other hand, if the order of insertion is reversed one obtains 

Unfortunately, the approximate nature of available theoretica! expressions for 
the insertion probabilities (such as the Huggins approximation discussed in the 
sequel) may make the partition function dependent on the partienlar order of 
insertion. 35 The thermodynamic functions, being state functions, must he inde
pendent of this order. A possible way to prevent this problem is to average over 
all distinct ways of constructing the mixture. However, this is a formidable task 
as, in total, there are N!/NA!NB! distinct ways of inserting the chains. A prac
tically useful way, to assure that the intensive thermodynamic. functions depend 
only on the intensive variables, is to insert the molecules at constant chemica! 
composition, ifJB· In this case, the density of the mixture is increased to the final 
density by inserting A and B molecules in the order that attains the mixture 

composition fixed at the macroscopie composition ifJB· The relation between the 
partition function and the chain insertion probability factors then becomes (to 
illustrate, the mixture composition is set to cp8 = 1/3, hence, for each B molecule 
two A molecules must he inserted) 

QN(NA,NB,NL,T) = X 
NA!NB! 

.......... {PA(l + 1, m, NL, T)PB(l + 1, m + 1, NL, T)PA(l + 2, m + 1, NL, T)} ....... 

(4.11) 

where only a typical sequence of insertion factors is shown. The number of 

insertion factors in a typical sequence depends of course on the composition. 
In the thermodynatnic limit, the chain insertion probabilities are only functions 
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of the intrinsic variahles, as defined in eqs 4.7, and the typical sequence hecomes 

... {PA(l + 1, m, NL, T)P8 (l + 1, m + 1, NL, T)PA(l + 2, m + 1, NL, T)} ... = 

... {pA(y'(i), QJB, T)pB(y'(i + 1), QJB, T)pA(y'(i + 2), QJB, T)} ... 
(4.12) 

with y'(i) the density, of the mixture under construction, at the insertion of 
molecule i (either A or B). In the thermadynamie limit, the density does not 
change in the typical sequence and the insertion factors of A and B molecules 
can he collected, i.e . 

... {pA(y'(l), QJB, T)pB(y'(m + 1), QJB, T)pA(y'(l + 2), QJB, T)} ... 

= ... {pA(y'( i), QJB, T)pB(Y1 (i), QJB, T)pA(Y1 (i), QJB, T)} ... 
= ... {[pA(y'( i), QJB, T)NA/N PB(y'( i), QJB, T)Ns/N]Number of molecules in typical sequence} ... 

= ... {[pA(y'(i), QJB, T) 8 <1>A/SAPB(Y'(i), QJB, T)s<l>s/ss]Number of molecuJes in typical sequence} ... 

= ... {[pe(Y'( i) 
1 

QJB, T)]Number of molecules in typkal sequence} ... 

(4.13) 

with y'(i) the density of the mixture upon introducing the typical sequence. The 
last identity can he thought of as the chain insertion prohahility, Pe(Y, (jJ8 , T), 
of a molecule of an effective component, determined hy the composition of the 
mixture. 
Using the insertion factor of the e:ffective component, defined in eq 4.13, the 
partition function, eq 4.11, can he written as 

Comhining eqs 4.3 and 4.14, and making use of the Stirling approximation, N! = 
(N / e )N, the Helmholtz free energy can he written as 

N-1 

{JA =NA 1n(4JAY) +NB ln(4JBY)- 'L)ni.Pe(y'(i), QJB, NL, T)] 
i=l (4.15) 

The last two terros in eqs 4.15 are linear in composition and do not contrihute to 
the thermadynamie properties discussed in the following and are therefore omit
ted in the sequel. 
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Consiclering the intensive Relmholtz free energy per segment, and replacing the 
summation by an integral, we arrive at the following expressions 

f]AjsN = (f!JA/sA) ln(f!JA) + (fiJB/sB) ln(f!JB) + 

(1/s)ln(y)- (NL/s2N) 1N-1

ln[Pe(Y1(i),f/JB,NL,T)]d(si/NL) 

f]AjsN = (f!JA/sA) ln(f!JA) + (f!JB/sB) ln(f/JB) +(Ijs) ln(y) 

- (1/sy) 1Y ln[Pe(Y1,f/JB,T)]dv 

(4.16a) 

(4.16b) 

Finally the equation of state can be derived from eq 4.16 by direct differen
tiation with respect to the volume at constant temperature and composition, or 
by making use of the thermodynamic identity 

( 4.17) 

Both routes lead to the same result, i.e. 

f]pV/ sN = f]pv* fy = (I -ln(pe))/ s + (1/ sy) 1Y ln[Pe(Y1
, f!JB, T)]dy1 (4.18) 

Equations 4.8, 4.16 and 4.18 provide relations between the insertion proba
hilities and the thermodynamic properties considered in this work. 

4.2.2 Theoretica! expressions for the insertion probabili
ties of athermal ebains 

Further progress depends on the development of accurate expressions for the in
sertion probabilities. It was already mentioned that the limiting chain insertion 
probabilities as defined in eqs 4. 7 are a measure for the success of introducing 
a test chain in the mixture. For athermal chains, i.e. fAA = e88 = fAB = 0, 
each allowed configuration of the test chain is equally probable and the insertion 
probability is independent of temperature. 
To illustrate the concept, the insertion probabilities typical for the well known 
Flory and Ruggins approximations will be derived. In partienlar the Ruggins 
approximation will serve as a reference to obtain a more accurate approximation 
for the insertion probabilities. Both Flory and Ruggins derived independently 
expressions for the entropy of mixing polymer and solvent on a fully occupied 
lattice. 2•4 The equivalence of the incompressible polymer solution and the com
pressible polymer melt was exploited to discuss the equation of state and its 
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influence on miscibility of compressible polymer systems.7
•14 In this contribution 

the Flory and Huggins approximations will be discussed fora compressible binary 
polymer mixture. 
In the Flory approximation it is assumed that each segment can be inserted in
dependently of the other segments in the chain.13• 34 Consequently, the chain 
insertion probability can be written as the product of these segmental contri
butions. The insertion factor of an independent segment (which is the ensemble 
average over all confi.gurations of the mixture and the test segment) is equal to the 
fraction of free lattice sites, (1- y), and the insertion probabilities of a complete 
j-chain (j = a or b) 

(4.19) 

The chain insertion probability depends only on density and chain length whereas 
the effective chain insertion probability depends on composition only through the 
number average chain length s. 
In eq 4.19 the insertion problem is oversimplifi.ed by completely ignoring the chain 
connectivity. In particular, for a middle segment two of its z contact positions 
are taken by covalent honds. For an end segment one contact position partici
pates in a covalent bond. In fact, the contact positions of a segment involved in 
covalent honds are unavailable for contacts with other segments and it is useful 
to distinguish between covalent and other ( external) contacts of a molecule. This 
distinction leads to the defi.nition of extemal contact fractions 7• 13• 14 

(4.20a) 

(4.20b) 

(4.20c) 

with Nh the number of vacancies on the lattice, a the number of covalent contacts 

per segment, a= aA1>A+aB1>B, ai= 1'(1-1/si) (j =A orB} and 'Y = 2/z. The 
numerator of eq 4.20a denotes the number of inter-segmental contact positions 
of the NA chains of type a and the denominator is the total number of contact 
positions of chain molecules and vacancies. A similar expression, eq 4.20b, is 
valid for type B molecules. The fraction of inter-segmental contacts, irrespective 
of being of type A or B, is given by eq 4.20c. 
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Ruggins derived an expression for the entropy of mixing of an incompressible 
lattice polymer solution, based on the difference between covalent and external 
contact positions.4 The chain insertion probability according to Ruggins is also 
obtained by sequentially inserting the chain segments. As in the Flory approxi
mation, the probability to insert the first segment is equal to the fraction of free 
lattice sites, (1- y ). To insert the second segment it su:ffices to find a free contact 
place, on the first segment. The average probability that a contact position of the 
first segment is already involved in an external contact pair with other segments 
in the mixture is equal to the external contact fraction q. The averaged is over 
all configurations of the molecules already inserted and all configurations of the 
segment. This estimate of the average probabilities implicitly assumes that the 
contact positions on each segment can farm independently of each other contact 
pairs; this is called non-interference of pairs. Rence, the probability that a chosen 
contact position is free equals (1- q). The insertion of the third and subsequent 
segments is treated in a similar manner; also for these segments it is assumed 
that the probability to find a free contact place is equal to (1- q). Thus, the ex
cluded volume of the chain, resulting from connectivity effects propagated along 
the chain, is nat accounted for. These approximations result in the following 
expressions for the insertion probabilities 

(1- y)s 
(1 o:y )s-1 

(4.21) 

In addition to the density and chain length dependenee already observed in the 
Flory approximation, the insertion probabilities acquire an extra composition de
pendence by virtue of the parameter a:. 

More recently, Bawendi, Freed and Mohanty developed the Lattice Cluster (LC) 
theory offering systematic corrections to the Flory result.15, 16 Although the Rug
gins correction is nat a combination of those systematic corrections, it provides 
a substantial impravement over the Flory result. For instance, the equation of 
state of athermallattice polymers obtained from Monte Carlo (MC) simulations, 
is predicted more accurately by the Ruggins approximation than by the Flory 
expression.7 For moderate chain lengths both the LC theory and the Ruggins ap
proximation are virtually indistinguishable. Rowever, the quality of the Ruggins 
prediction deteriorates with increasing chain length and the higher order Lattice 
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Cluster theory offers room for further systematic improvement.8 Nevertheless, 
the Ruggins expression can be considered to be an effective and rather accurate 
expression which was confirmed in further investigations, including interacting 

lattice polymers and binary polymer mixtures.7•14 

The interpretation of the Ruggins approximation, given in the derivation of 
eq 4.21, provides also an opportunity to define an improved insertion probability. 
Reeall the parameter a introduced with the definition of the external contact 
fraction. The quantity zai is the number of covalent cantacts of a segment, 
averaged over all si segments in the chain. Rence, the quantity z(l - ai) is 
the average number of free contact positions of a segment. It was shown that a 
drawback of the Ruggins expression is the ignorance of self contacts, intrinsically 
related to the excluded volume of the chain.9-12•14 It should be mentioned that 
also in the Guggenheim free enthalpy expression, the external contact fractions 
are used and, hence, the samedrawbacks apply to this theory. In addition to the 
covalent contacts, a chain molecule possesses also intra-molecular cantacts which 
are not able to participate in intermolecular contacts. For the moment, suppose 
that the average number of intra-molecular cantacts (covalent and non-covalent) 
of a segment in an srmer is given by ZWj (the average is over all configurations 
of the mixture and the complete Sj-mer and as befare (j = a or b)). It is then 
possible to define intermolecular contact fractions 

( 4.22) 

with W =WA</> A+ WB<f>B· 

It is now possible to formulate chain insertion probabilities, which account for 
the accurance of intra-molecular contacts, irrespective of the covalent or non
covalent character. Again, the probability to insert the first segment is equal to 
(1 - y). The next segment can only be added at a free contact place of the first 
segment. The probability that a contact place in the mixture is involved in an 
intermolecular contact pair is(}, Rence, the probability that a contact position is 
free equals (1 - (}). Taking the same reasoning for the subsequent segments the 
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following chain insertion probabilities are obtained 

- (1 )(1 fJ)SA-l- (1- y)SA 
PA- - Y - - (1- wy)sA-l 

- (1 - )(1 - fJyB-l = (1 y)SB 
PB - Y (1 _ wy)sB-1 ( 4.23) 

(1- y)s 
Pe = (1- wy)s-1 

In eqs 4.23, the effect of the chain excluded volume on the nearest neighbor 
surrounding of the segment is accounted for, provided that the parameter Wj is 
known. This is a di:fficult problem by itself as Wj depends on density and chain 
length. In the following theoretica! analysis we will also use the probability distri
bution of wi, denoted by Pw1(ncon, y); the probability that, on average, a segment 
of the srmer has zncon intra-molecular contact positions. It is easily seen that 
Wj can be obtained from Pwi(ncon, y) 

Lncon nconPw;(ncon,y) 
Wj = " P (n ) L.-Ocon Wj con, Y 

(4.24) 

For the single chain, i.e. (y = 0), the probability distribution Pw1(ncon, y = 0) is 
easily extracted from a lattice simulation. It su:ffices to generate a proper sam
ple of the allowed self avoiding walks (SAW's) of the srmer and to inspeet each 
chain configuration for the total number of intra-molecular contacts. From this, 
the intra-molecular contacts per segment are then easily calculated. For higher 
chain lengths, it may be necessary to use sophisticated simulation schemes, such 
as the biased MC algorithm.37 For the chain lengths considered in this chapter, 
the chain configurations can be produced by straightforward generation of a suf
ficient number of SA W's on the lattice. For 30- and 16-mers Pwi (neon, y = 0) is 
shown in figure 4.1 ( simulation details are found in the sectionon simulations). 
The distri bution Pw1 (neon• y) at density y can also be obtained from a simula
tion. Moreover, if such a simulation is available, other properties of the system 
are easily extracted. Therefore, we seek an approximate expression to predict the 
density dependenee of Wj· The zero-density probabilities, Pw;(ncon' y = 0), re
fl.ect the distri bution of the allowed single chain configurations according to their 
intra-molecular surroundings zncon· The relative importance of these different 
intra-molecular surroundings is altered by the density. An estimate of the infl.u
ence of the density is accomplished along the following lines. The insertion prob
ability Pi refers to the absorption of a chain in a mixture quantified by its density 
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y and the average number of intra-molecular segmental contacts zw. Of course, 
once assimilated, the test chain acquires these mixture characteristics. From eq 
4.23, the Flory contribution (1-y) 8i can be isolated which permits an alternative 
interpretation for Pj· Eqs 4.23 can be viewed as the Flory insertion of indepen
dent segments (irrespective of their intra-molecular con:figuration) and the factor 
1/(1- wy)<sJ-1) which constitutes a measure for the conditional probability that 
the segments are present with the correct average intra-molecular organization. 
To this last factor, each segment contributes a factor 1/(1- wy)«si-1)/si). In
voking the non-intederenee of pairs, one can push the interpretation even further 
and de:fine the contribution of a single intra-molecular contact position 

1 [ ]
.~ 

(4.25) 

Recapitulating, eq 4.25 is a measure for the conditional probability to :find an 
intra-molecular contact position in the mixture speci:fied by w and y. On the 
other hand, Pwi(Ocon, y) is the conditional probability that a chain-segment in 
the mixture possesses zOcon intra-molecular contact positions. A measure for the 
probability that a chain has the surrounding zOcon, in the mixture speci:fied by w 
and y, can be calculated from eq 4.25. Each of the zOcon intra-molecular contacts 
of a segment carries a factor, given by eq 4.25. The conditional probability 
for a complete chain is obtained by subsequent insertion of the Sj independent 
segments. Putting everything together gives 

( 

ill.:tm ) s j ... 
1 

(•rt> 
[(1-wy) 'i l ( 4.26) 

Eq 4.26 provides a measure for the influence of density on the probability of 
a chain to have zOcon intra-molecular contacts per segment. The probability 
distribution Pw;(Ocon, y) canthen be calculated according to 

(4.27) 

where we have introduced a normalization factor hN which need not to be known 
as it cancels in the calculation of Wj by means of eq 4.24. 
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The average segmental surrounding of a segment at any density can now be 
calculated from the simulation data of the single chain, eq 4.27 and eq 4.24. Note 
that the wj's are also present at the rhs of eq 4.27 and the wj's are obtained 
iteratively. The predictions for wi are compared to simulation data in figure 4.2 
and are discussed in 4.4. 

Eqs 4.23 and 4.27 are the main theoretica! results for athermal chains. The 
probability distri bution Pw; (Ocon, y) can be calculated via eq 4.27 from the dis
tribution Pw; (Ocon, y = 0), obtained from the single chain simulation. Combined 
with the available relations between the insertion probabilities and thermady
namie properties (eqs 4.8, 4.16 and 4.18) a complete theory for athermallattice 
chains is provided. For instance, the Helmholtz free energy of the athermal mix
ture becomes 

(3AjsN =(<PA/sA)ln(<PA) + (<PB/sB)ln(<PB) 

+(1/ s) ln(y) - (1/ sy) 1Y ln[(1 - y') 8 j(l - wy') 8
-

1]dy' 
(4.28) 

The equation of state is given by 

(3pVjsN = (3pv*jy = (1-ln(pe))/s+ (1/sy) 1Y ln[(1- y') 8 j(l- wy')s-l]dy' 

(4.29) 

with w defined by eqs 4.27 and 4.24 
The complicated density dependenee of the insertion probabilities prevents 

further analytica! formulation of the integrals. A detailed comparison to simu
lation results for pure components and mixtures is postponed to a later section. 
We will first extend the new theory to mixtures of chains with nearest neighbor 
segmental interactions. 

4.2.3 Theory of interacting chains 

For athermal chains, the full microscopie picture entailed in AN (specifying all 

positions of the segments on the lattice) was reduced toa representation described 
by the density y and the average number of intra-molecular cantacts of a segment 
zw. In this representation, the precise type of intermolecular cantacts was not 
relevant. However, assigning contact energies, fAA, fBB and fAB, to the different 
segmental contacts, configurations with different numbers of AA, BB and AB 

' 
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inter and intra-molecular contact pairs give rise toa different value of the internal 
energy UN(.AN ), which can he appreciated from eq 4.2. Hence, the different 
configurations must he weighted by their appropriate Boltzmann factors and the 
evaluation of the insertion probability becomes more complicated. 

Therefore, to handle interactions, we resort to the quasi-chemical approach 
which has been shown to he quite successful.7•13•14 The segmental interaction 
energies infiuence the formation of segmental contacts and lead to deviations from 
random mixing. The different types of intermolecular contact pairs nij(i, j = 
AA, BB, AB, Ah, Bh, hh) in a binary compressible mixture can he expressed in 
terms of the contact site fractions, ()i and three extra microscopie parameters, 
XAB, XAh and XBh, according to 

nAB = TxAB 

nAh = TxAh 

nAA = T(OA- XAB XAh) 

nBB = T(OB- XAB- X Bh) 

nBh = TxBh nhh = T(Oh- XAh- XBh) 

(4.30) 

with T = (NAsAz(1-wA)+NBsBz(1-wB) +Nhz)/2 = Ns(1-w)f('y8) the total 
number of intermolecular contact pairs in the mixture. In eqs 4.30 and further 
on, the argument, .1\.N, on these contact pairs is omitted. 

The internal energy can he written as a function of the inter and intra
molecular contacts 

UN(NA,NB,NL,T,XAA,XBB,XAB) = 

Ns(1 w) 
"(() (EAA((JA- XAB- XAh) + €BB((JB- XAB- XBh) + 2EABXAB) 

Ns 
- -(€AA(WA- O'A)cPA + €BB(Wb- aB)cPB) 

'Y 
(4.31) 

with the inter and intra-molecular contributions given by the first and second 
line respectively of the rhs. 

According to eq 4.1, the configurational partition function Z(NA, NB, NL, T) 
is defined as a sum over allowed configurations. Alternatively, by virtue of the 
explicit relation of the internal energy to the number of segmental contact pairs 
which, in turn, are uniquely determined by the parameters XAB, XAh and XBh, it 
is possible to collect all configurations with the same val u es of x AB, x Ah and x Bh 
and sumover all possible values of these parameters13 

(4.32) 
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with e(NA, NB, NL, T, XAB, X Ah, X Bh) the so called configurational factor denoting 
the number of configurations with the prescribed values of NA, NB, NL, T, XAB, X Ah 

and XBh· 

If we denote the values of Xij (ij = ab, ah, bh) which maximize the partition 
sum by Xij and we replace the complete sum by this maximum term, we have 

ZN(NA,NB,NL,T) = e(NA,NB,NL, T,XAB,XAh,XBh) 

exp[-.BUN(NA, NB, NL, T,XAB,XAh,XBh)] 

where Xij are determined by 

Following Guggenheim, the configurational factor is taken to be13 

( 4.33) 

(4.34) 

(4.35) 

where the starred quantities ni; specify the statewithall inter-molecular contact 
pairs equivalent. The ni; 's are obtained from eq 4.30 by inserting the values for 
Xij = xi;· The first factor, denoted by the eins, represents the configurational 
contri bution which arises from the insertion of the chain molecules on the lattice 
without consiclering the precise types of contact pairs. 

Eq 4.35 was derived by Guggenheim based on the non-interference of pairs 
which yields the observed factorization. Without going into the detailed argu
mentsof Guggenheim, the following remarks are important for öur purpose. The 
second contribution in eq 4.35, given by the factor in brackets, accounts for the 
distribution of the intermolecular contact pairs over the lattice. It is explicitly 
assumed that the contact pairs do not interfere. Hence, they can he indepen
dently distributed, regardless of the constraints imposed on the molecules by the 
first configurational factor, eins· 
In the case of athermal mixtures, all contact pairs are equivalent and the con

tact pair numbers ni; acquire the values ni;· The parameters xi;, necessary to 
calculate the ni; by eq 4.30, are given by the random mixing result, i.e. 

( 4.36) 
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Moreover, the internal energy is zero and the partition function reduces to the 
configurational part eins· Combining eqs 4.1, 4.3 and 4.33 and comparing this to 
eq 4.28 provides the following assignment for eins 

-ln[eins(NA, NB, NL)j(NA!NB!)] =(cPA/sA) ln(ifJA) + (ifJB/sB) ln(ifJB) 

+(1/s)ln(y)-(1/sy) 1Yln[(1-y')8 /(1 wy')'-1]dy1 
(4.37) 

For mixtures involving segmental interactions, the insertion factor eins as given 
by eq 4.37 stands for the insertion of the chain molecules with given density, 
composition and average segmental intra-molecular environment. Although, it 
must be expected that the intra-molecular surroundings of the chain segments 
depend not only on density but also on temperature as brought about by the 
interactions, the parameter w will be uniquely determined (for given composition 
density and specified distribution of contact pairs) by the parameters Xij· Thus, 
eq 4.37 is equally valid for interacting systems with specified composition, den
sity and Xi/S (Note however, eins is also dependent on temperature. This is an 
important difference with the original Guggenheim theory where eins is explicitly 
independent of temperature for athermal as well as interacting systems). If the 
anticipated density and temperature dependenee of Wj is known, combination of 
eqs 4.1, 4.3,4.30,4.31, 4.33, 4.35, 4.37 and employing the Stirling approximation 
for the factorials, the following expression for the Helmholtz free energy is found 

(JAjsN = (ifJA/sA)ln(ifJA) + (ifJB/sB)ln(ifJB) + (1/s)ln(y) 

- (1/sy) 1Y ln[pe(y', cPB, T)]dy'- ( 1(;0~) [20A ln(OA) + 28B In( OB)+ 28h ln(Oh) 

- 2XAB ln(XAB)- 2XAh ln(XAh)- 2XBh ln(XBh) 

- (8A- XAB- XAh) ln(OA- XAB- XAh) 

-(OB- XAB- X Bh) ln(8B- XAB- X Bh) 

-(Oh- X Ah- X Bh) ln(8h- X Ah- X Bh)] 

- (3(
1 

;OW) [fAA(8A- XAB- X Ah)+ fBB(8B- XAB- X Bh)+ 2fABXAB] 

1 
- -[fAA(WA - O:A)cPA + €BB(Wb- O:B)cPB] 

/ 

Pe(y, cPB, T) = (1- YY /(1- w(y, cPB 1 T)y)s-l 
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The parameters Xij are obtained from eq 4.38 and the general minimization con
ditions, eqs 4.34. Combining eqs 4.34 and the general thermodynamic relation 

for the equation of state, p = -(oAfoV)T,NA,NB results in 

-p = =~ IT,NA,Ns = =~ L.NA,N8 ,>;; + ~ ::.JNA,Ns,V,z.,".; ~: IT.NA.Ns 
(4.39) 

where the individual terms in the sum on the rhs equal zero by virtue of the 
minimization conditions, eqs 4.34. Explicit expressions for the minimization con
ditions and the equation of state are quite lengthy and are not presented here. 
Computer code to calculate these quantities is available u pon request. 38 

Finally, the dependenee of w on density and temperature must be determined. 
The influence of density on the intra-molecular conformations, specified by Ocon, 
was discussed in the previous paragraph. It was shown that the density imposed 
by the other molecules in the mixture altered the occurance of the different single 
chain conformations (at zero density). On their turn, the interactions perturb the 
relative importance of the different chain conformations. This can be accounted 
for by weighting the different conformations with their respective Boltzmann 
factor, hearing the energy of the chain in that conformation. An A(B) chain in 
a conformation having zOcon intra-molecular contacts per segment possesses an 
internal energy u A (u B) 

SA(1- Slcon) [((} _ _ ) _ J 
UA=- () A- XAB- XAk €AA + 2XAB€AB 

"( A 

Eqs 4.40 are quite similar to the internal energy of the total mixture. For the 
single chain, we only look at the total number of inter-molecular contact pairs 
the chain can make in the conformation with sizOcon intra-molecular contacts. 
The average environment of a j-chain, determined by wil is obtained from 

Wj = L:ncon SlconPwi (Ocon 1 y, f/JB, T) ( 4.41a) 
En • .,,. Pwi (Ocon, y, 4JB, T) 

1 
Pw; (Ocon! y, 4JB, T) = PWj (neon, y = 0)( (1 - wy)fleon/W )s;-l exp[ -/3ujJ ( 4.41b) 
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The intra-molecular contactsper segment of a chain, at given density, composition 
and temperature, can thus be obtained from the athermal single chain simulation 
results at zero density. A comparison of Wj obtained from eq 4.41 with MC 
simulation datafora 30-mer is shown in figure 4.2. Further detailed comparisons 
are presented and discussed in section 4.4. 

The present theory reduces for specified conditions to previously discussed the
ories. First of all, the athermal situation is of course recovered. Furthermore, the 
quasi-chemica! theory for binary compressible mixture presented and discussed 
in an earlier paper is obtained if the complete intra-molecular environment Wj 

of a chain is approximated by the covalent honds, i.e. Wj = ai.1•14 Alsoother 
simplifications, such as the Flory approximation employed in Sanchez-Lacombe 
theory, are then easily retrieved.39

•
40 It were precisely the limitations of these 

earlier theories which have led us to introduce this new theory. We are now in 
a position to compare the theoretica! results to MC simulation data which have 
been collected to support earlier comparison. The new theory also inspired us 
to extract from the simulation data a new set of properties. The MC simulation 
techniques and evaluation methods to extract the (exact) results for the model 
are discussed in the subsequent section. 

4.3 Monte Carlo simulations 

To verify the proposed theoretica! approach we performed Monte Carlo (MC) 
simulations on a cubic lattice providing thus independent results for the same 
molecular model as used in the theoretica! development. Simulations for homo
geneous systems of chain lengths s = 20,30 and 60 were performed in the NpT 
ensemble and the results on the liquid-liquid phase coexistence were obtained in 
the isobaric-isothermal semi-grand canonkal ensemble.9-12•14 For the latter sim
ulations the chain lengths of both components were set equal to sA = sB = 30. 
Since these simulations are described in detail in a previous pubHeation we only 
point out the differences related to the evaluation of the intra-molecular con
tacts. 7• 14 All details such as the number of chains in the systems, the size of the 
lattice etc. are the sameasin previous publications.7•14 To evaluate the effect of 
chain connectivity we did not analyze the total spatial pair distribution function 
in the coils but concentrated on nearest neighbor contacts. Specifically, we distin
guished in the simulations between intra- and inter-molecular self-contacts. This 
is the route to obtain the parameter w, expressing the average intra-molecular 
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surroundings of a segment, introduced in the theoretica! section. 
In addition to the multi-chain simulations mentioned ahove we performed 

also single chain simulations. Theoretica! considerations presented in previous 
sections rely on the knowledge of the connectivity in the athermal single chain, 
from which the valnes for higher concentrations and non-zero interactions can he 
predicted. We performed single chain simulation for athermal and interacting seg
ments hy two methods and ohtained the desired factor w and its distrihution. In 
the first method, growing the relatively short chains, we created configurations 
with no chain overlap. In the case of interacting chains each non-overlapping 
configuration was weighted hy its proper Boltzmann factor carrying the interac
tion energy from nearest neighhor contacts. Secondly, we also used the dynamic 
Monte Carlo methad employed in the multi-chain systems, where different self 
avoiding configurations are created hy configurational moves from a previous 
chain configuration. Bath methods yielded identical results for the parameter w 

and the distrihution Pw(ncon. y = 0) indicating the correctness of the simulation 
algorithms. 

4.4 Results and discussion 

4.4.1 Pure components 

In figure 4.1 the prohahility distrihution Pw;(ncon, y = 0), the prohahility at zero 
density that on average a segment in an athermal s-mer has zncon intra-molecular 
cantacts (either covalent honds or intra-molecular contacts), is depicted fora 16-
mer (•), a 30-mer (•) and a 60-mer (._). These MC simulation data, collected 
as explained in section 4.3, are required to calculate the average numher of intra
molecular cantacts of a chain at any thermadynamie state according to eq 4.27 
forathermals and eq 4.41 for interacting chains. 
The distrihutions presented in Figure 4.1 are hounded from ahove and helow, 
the minimum numher of intra-molecular cantacts equals the numher of covalent 
honds, i.e. ncon,min = Uj = 1'(1-1/s), and the maximum value 6f neon evidently 
equals 1. Clearly, this upper hound is very unlikely to occur and is natsampledat 
all in the finite simulation runs invalving 106 distinct conformations. The lower 
hound may suhstantially contrihute to the distrihution although the importance 
of this state decreases with chain length. Furthermore, it can be ohserved that 
the most prohahle value for neon shifts to larger valnes with increasing chain 
length. Earlier theories, such as the NRM theory,7 only operated with this lower 
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Figure 4.1: Zero-density probability distribution Pwi (Ocon, y = 0) for an athermal 
16-mer (•), a 30-mer (•) and a 60-mer (A). Line pieces are drawn for convenience. 

limiting value f2con,min in the calculations. As will become clear in the subsequent 
discussion, this is an important factor for the remaining discrepancies between 
theory and simulation observed for the NRM and similar theóries. 
The simulation data collected for the athermal single ebains can immediately be 
put to use in the calculation of the intra-molecular contacts of athermal ebains 
at any density in the melt, see eqs 4.24 and 4.27. These theoretica! predictions 
(solid lines) are shown in figure 4.2 and compared to MC simulation data for 16-
mers ( •) and 30-mers (•). At zero density (y = 0) the calculated and MC results 
are, by de:finition, in exact agreement since in this case we are merely calculating 
the average value of w according to eq 4.24 over the zero-density distribution 
Pwi(zf2con• y = 0). Despite the simple arguments leading to eq 4.27, it is also 
clear from figure 4.2 that the predicted non-zero density results are in excellent 
agreement with the MC simulation data. Both theory and simulation show that 
the fraction of intra-molecular contacts increases with density. Naturally, this 
increase is intimately connected, although not expressed quantitatively, to the 
contraction of the average chain dimensions with density. As conjectured in the 
Flory ideality hypothesis,41 and quantified in e.g. renormalization group theories, 
the dimensions of the single chain will change from a self-avoiding walk at low 
density to a Gaussian random walk at high densities.42 These conformational 
changes are a result of the more e:fficient screening of intra- and inter-molecular 
interactions with density and are accompanied by a decrease in the coil dimen-
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Figure 4.2: Average intra-molecular contacts per segment for athermal16-mers ( • ), 

athermal 30-mers (•) and interacting 30-mers ( o) ( e = 0.2) as a lunetion of density y. 

Solid lines indicated the predictions according to eq 4.27, the dasbed line the prediction 
according to eq 4.41. The dotted lines indicate the value of w used in the NRM theory. 

The dash-dotted line is the prediction for athermal30-mers according to the theory of 

Weinhold, Kumar and Szleifer. 

sions. 
As a reminder the value of w employed in the NRM theory, i.e. w = a, is shown 

in figure 4.2 by the dotted lines (a increases with chain length). It becomes clear 
that the number of covalent bonds is a poor ( under )estimate for the total number 
of intra-molecular contacts. Furthermore, since a is independent of density and 
segmental interactions it is unable to capture the subtie changes with density and 
interactions found for the true w. One may anticipate that properties depending 
directly or indirectly on the intra-molecular contacts will be poorly predicted by 
the NRM theory. In the sequel, several examples of this will be presented. 

At this point a comparison with the recent theory of Weinhold, Kumar and 
Szleifer is at place. 32 These authors presented a theoretical derivation of the 
total entropy of an athermal polymer solution, composed of combinatorial and 
conformational parts. Also in their theory a coupling between conformational 
and translational degree of freedoms is established. Thus coupling results in a 
concentration dependenee of the intra-molecular contactsof the chain molecule, 
which are directly connected to its conformational properties. Making use of the 
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similarity between an athermal incompressible polymer solution and an athermal 
compressible pure component the density dependenee of the number of intra
molecular contacts for athermal 30-mers according to their theory is depicted 
by the dash-dotted line in figure 4.2. Clearly, the predicted density dependenee 
of this theory is too weak. This is in agreement with their results on the vari
ation of the radius of gyration and the solvent chemical potential in athermal 
incompressible solutions.32 

Similar calculations, but now based on eq 4.41, can be done for interacting 
chains. The results for 30-mers interacting with a nearest neighbor contact energy 
e = E/ k8 T = 0.2 are also presented in figure 4.2 (MC data ( o ), theory ( dasbed 
line)). 
Although at intermediate densities the predictions are not as accurate as for the 
athermals, theory and simulations still agree reasonably well for these interact
ing chains. Another interesting point in figure 4.2 is the convergence at higher 
densities to the same value of w for athermal and interacting chains. Again this 
may be viewed as a consequence of Flory's ideality assumption, i.e. the effective 
screening of intra- and inter-molecular interactions at these high densities. It is 
important to realize that we are not invoking the ideality hypothesis; the theory 
prediets that effective screening indeed occurs! However, judging from the MC 
simulation results, the screening already appears to be quite effective starting at 
densities y "' 0.75. In the theory, this cancelling of inter- and intra-molecular 
interactions is only complete at full packing. But also at intermediate densities 
the incomplete screening is properly accounted for by the theory. It should be 
appreciated that these results for the interacting ebains can only be obtained 
from the simultaneous set of equations given by the minimization condition, eq 
4.34, and the equation of state, eq 4.39 (in eq 4.41 the interaction energies of 
the chains, defined by eqs 4.40, enter. These interaction energies depend on the 
microscopie parameters Xij which can only be determined by solving the equation 
of state and the minimization condition). 

In figure 4.3 the compressibility factor pV/Nk8 T for athermal s-mers is plot
ted as a function of density. The theoretica! predictions of the new theory (solid 
lines) are compared to MC simulation data (symbols). 

In addition, the NRM theory, presented in previous publications, serves as a 
reference.7 As already discussed insome detail and confirmed in figure 4.3, the 
NRM theory gives a quantitative prediction of the compressibility factor of 20-
mers ( •) and 30-mers (•). However, it was already anticipated that the accuracy 
of the prediction should deteriorate with increasing chain length.8 Therefore, we 
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present additional simulation data for athermal 60-mers (T). In figure 4.3 it can 
indeed be observed that the NRM predictions overestimates these new MC re
sults. On the other hand, the predictions according to the new theory (solid lines) 
are in excellent agreement with the MC data for all investigated chain lengths. 
Actually, for all chain lengtbs the new predictions are systematically lower than 
the NRM predictions. Hence, for a given temperature, pressure. and chain length 
the new theory prediets in all cases a slightly higher density. For these athermals 
the physical explanation is quite clear. The insertion probability depends on the 

average number of intra-molecular contacts of the chain molecules according to 
eq 4.23. At a given density and chain length the insertion of a molecule in an 
environment with a higher number of intra-molecular contacts is easier than in 
an environment with a smaller number of intra-molecular contacts. Whence, in 
order to reach a certain density a lower pressure is required or, alternatively, at a 
given pressure the density can become higher if the molecules have a larger num
ber of intra-molecular contacts. In the new theory the number of intra-molecular 
contacts of chain segments exceed the number of covalent honds, i.e. the minimal 
number of intra-molecular contacts used in the NRM theory. This higher value 

of w leads to a higher insertion probability and hence to a higher density at a 
selected pressure and temperature. 

In figures 4.4-4.5 some results are shown for interacting 30-mers. In figure 4.4 
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the density at zero pressure is shown as a function of reduced interaction energy 
e = €jk8 T. Both theoretica! results for the NRM theory (dashed lines) and the 
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Figure 4.4: Packing fraction y vs inter-segmental interaction e at p = 0 lor s = 30. 
MC results ( • ). Fullline represents the w-theory prediction and dashed line the NRM 

theory. 

new theory (solid lines) are shown. At high densities, obtained at the higher 
values of the interactionat energies, the difference between both theories is only 
minor. However, at the lower interactionat energies the new theory quantitatively 
prediets the MC simulation results whereas the NRM theory systematically gives 
a too high density. Previously, it was argued but not proven that this deficiency 
was related to the improper modeling of the intra-molecular contacts in the NRM 
theory.7 This is corroborated by the predictions of the new theory. 

In figure 4.5 the corresponding segment-vacancy and segment-segment con
tacts are plotted as a function of density. Once more the new theory provides a 
quantitative prediction of both types of contacts. In contrast, the NRM theory 
shows deviations at the low density side. These deviations, closely connected to 
the observed overestimate of the density in figure 4.4, are nicely remedied by the 
new theory. 
Although not explicitly shown, the pressure dependenee of the equation of state 
is predicted accurately with the new theory. The differences with the NRM the
ory are not very pronounced although also in this case the new theory provides 
a consistently better prediction of the lower density states. 
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4.4.2 Mixtures 

The deficiencies related to the use of a homogeneons segment distribution in the 
NRM theory are most clearly demonstrated for mixtures. (The deficiencies of 
theories operating with a homogeneons density assumption become clear in the 
prediction of the different type of contacts. In such theories, the number of intra
molecular self-contacts, due to the chain connectivity, are ignored, which results 
in an underestimation of the total number of self-contacts and an accompanying 
overestimation of the cross-contacts.) 

A simple but nevertheless very illustrative example is provided by a (hypo
thetical) binary mixture in the athermallimit (eAA = e88 = eAB = 0) where 
both components have equal chain lengths. In the case of equal chain lengths, 
chosen here to he SA = s8 = s = 30, the equation of state is truly independent 
of composition (A and B are indistinguishable) and identical to that of a single 
component with the same chain length. In figure 4.3 it is demonstrated that 
the athermal equation of state is accurately predicted by the new as well as the 
NRM theory.7 However, a detailed comparison of the different contacts in the 
mixture clearly reveals the deficiencies of the NRM theory. In Figure 4.6 the 
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different types of contacts of A segments are shown as a function of the mix
ture composition given by ci>B· The NRM predictions at a reduced pressure p 
= pv* /kBT = 0.16 are depicted by the dashed lines. The number of contacts 
involving vacancies (Y) is predicted quite accurately, in agreement with the qual
ity of prediction of overall density. However, the situation is different for the 
contacts involving other segments. For instance, the number of (AA) contacts 
(•) is predicted to decrease with c/>8 and in (nearly) pure B the number of (AA) 
contacts equals zero. However, the simulation shows a decreasein (AA) contacts 
toa limiting value at ci>B = 1, which is due to the chain connectivity. Even at infi
nite dilution, A segments remain surrounded by intra-molecular A segments that 
result in a non-zero number of (AA) contacts in (almost) pure B. The number 
of (AB) contacts ( •), starting in pure A from zero, is predicted to increase with 
c/>8 . The simulation shows the same limiting behavior since (AB) contacts only 
involve intermolecular contacts that vanish if one of the components is infinitely 
diluted. The value of (AB) contacts with increasing c/>8 is overestimated, which 
is a direct consequence of the inaccurate limiting behavior of the (AA) contacts 
and the constraint on the total number of contacts a type A segment can make. 
The latter is fora 30-mer, SA= 30, given by 

AA+ AB+ Ah= (sA(z- 2) + 2)/sA = z(1- aA) = 4.06667 (4.42) 
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Figure 4.6 applies equally well to B contacts if the following changes are made 

<PB ------ <PA, (AA) ------ (BB), (AB) ------ (BA) and (Ah) ------ (Bh). From this 
comparison it is clear that the assumption of a homogeneons segment distribution 
is not really fulfilled. 

Turning our attention to the new theory, it can be observed that all types 
of contacts are accurately predicted. For contacts involving different molecules, 
i.e. AB and Ah contacts, the predictions are quite similar for both the NRM 
and the new theory. It might appear that the NRM theory provides a somewhat 
better prediction of the Ah contacts. However, both predictions are well within 
the accuracy of the MC simulation data and the slightly worse result for the new 
theory may be attributed to this 'experimental' uncertainty. The new theory 
clearly performs better than the NRM theory in the prediction of the AA contacts, 
involving both intra- and intermolecular contributions. Evidently, the new theory 
correctly accounts for the limiting behavior of the AA contacts in pure B. This 
limiting behavior is completely due to the intra-molecular contacts which are 
taken care of by the parameter w in the theory. Clearly, the improved prediction 
of the AA contacts also leads to an improved prediction of the AB contacts as 
the total number of contacts (excluding covalent bonds) remains fixed by the 
constrained, eq 4.42. 

Further evidence of the importance of the intra-molecular self-contacts can be 
found in the equation of state of interacting mixtures. The density as a function 
of composition or effective interaction parameter < e >= <P~eAA + <P~eBB + 
2</JA<PBeAB is shown in Figure 4.7. The contact energies are set to the following 
values eAA = 0.5, eBB = 0. 7 and eAB = 0.6. The cross-interaction parameter is 
set such that the Flory-Huggins exchange energy parameter ~W = -(2cAB

c AA - e BB) equals zero. Both NRM and the new theory give fair predictions of 
the equation of state behavior of these mixtures although the accuracy is not as 
high as for pure components. These differences have been discussed in a previous 
pubHeation and the conclusions presented there remain valid.14 

Additional interesting information is obtained from the different types of con
tacts. In Figure 4.8 the contacts of A segments are shown as a function of 
composition and effective interaction parameter. Just as in the athermal mix
tures, the number of segment-vacancy contacts (T) is accurately predicted over 
the whole composition and/or interaction range. However, (AA) contacts and 
(AB)contacts show deviations with varying composition. For the (AA) contacts 
(•) the number of contacts is predicted well at small concentrations of component 
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Figure 4. 7: Density y as a function of the effective interaction parameter < e > 
(bottom axis) and blend composition (top axis) for polymer blends (eAA = 0.5, eBB = 
0.7, eAB = 0.6). MC simulation results (8) and theoretical predictions according to 

the new theory (solid lines) and the NRM theory ( dasbed lines). 

B, but the predietions deteriorate with increasing B content. Again, the NRM 
result approaches zero in pure B wherea.s the simulation results show a finite 
number of (AA) contacts. These remaining contacts are of intra-molecular origin 
caused by chain connectivity. For the number of (AB) cantacts ( •) a similar ob
servation is made. In pure A both theory and simulation show no hetero-contacts, 
wherea.s approaching pure B too many contacts are predicted. The rea.son for 
these differences ha.s already been addressed in the discussion of Figure 4.6. Due 
to chain connectivity, B segments experience more B contacts, relative to the 
overall blend composition, than predicted in the mean field theory. Taking into 

account the constraint, eq 4.42, the (AB) contacts are over-predicted. 
Once again, proper theoretica! modeling of the intra-molecular self-contacts 

leads to very accurate predictions (solid lines) of the different types of contactsas 
can he appreciated in figure 4.8. Similar rea.soning applies to the contacts made 
viewed from an B segment, but this is not repeated here. 

Another important aspect of the thermadynamie properties of chain molecule 
mixtures is found in the liquid-liquid (L- L) miscibility behavior. As discussed 
previously, the NRM theory so far provided the best prediction of the upper 

critieal miscibility (UCST) behavior found in the symmetrie binary mixture 

(sA = SB = 30, EAA = EBB = 200K and EAB = 188.77542K).14 In figure 4.9 
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Figure 4. 7. MC results for AA contacts (•), AB contacts ( • ), and Ah contacts ("')· 

Fulllines represent the w-theory prediction a,nd da,shed lines the NRM theory. 

the MC simulation dataforthese symmetrie mixtures are shown and are com

pared to the predictions according the NRM ( dashed lines) and the new theory 
(solid lines). The energetically driven UCST miscibility gap found in this system 

is due the unfavorable cross-interactions. Previously, it was demonstrated that, 
taking the simple incompressible Flory-Huggins-Staverman theory as a reference, 

the introduetion of vacancies on the lattice resulted in a dramatic lowering and 
broadening of the predicted UCST miscibility gap.14 A further significant reduc

tion of the predicted UCST critical temperature and corresponding L-L binodal 

was obtained for the NRM theory. This further enlargement of the homoge

neons one-phase region could be ascribed to the preferenee in the NRM theory of 

self-contacts over cross-contacts.14 By avoiding the unfavorable cross-coutacts the 
miscibility gap is substantially lowered in comparison with theories which assume 
a random mixing of contacts, i.e. proportional to the overall composition. 

Nevertheless, substantial deviations between theory and MC simulation data 

remained. The NRM miscibility gap was stillsome 60-80 K too high in temper

ature. It was already anticipated that an important cause for these deviations 

might be the ignorance of the intra-molecular contactsin the theoretica! consid
erations.14 This is indeed confirmed in this study. In figure 4.11 the effect of the 
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Figure 4.9: Binodal tempent-ture as a lunetion of composition at p = 0 bar (•),p = 10 
bar (0) and p = 30 bar (•). Fulllines represent the w-theory prediction and dasbed 

lines the NRM theory at 10 bar and 30 bar. 

intra-molecular cantacts on the L-L phase behavior is clearly demonstrated. The 
new theory provides a prediction which is in accurate agreement with the simu
lation data. Nevertheless, the predicted binodal is somewhat narrower than the 
MC binodal. For the relatively short chains considered here, Sariban and Binder 
showed that the coexistence curve in the critical region has not the parabalie 
shape predicted by the mean field theories but is significantly flatter as a conse
quence of non-classic critical behavior characterized by the Ising critica! exponent 
{3 = 0.325 opposed to the classic mean field value {3 = 0.5.9 They argued that 
this flattened critica! region could also lead to a substantial broadening of the 
complete coexistence curve even far away from the critica! region.9 

In figure 4.10 we also show the density along the binodal curve. The predicted 
composition dependenee of the density is somewhat too steep, corresponding to 
the narrow binodal found in figure 4.9. Apart form this, the quality of the 
prediction of the density along the binodal is similar to that of the equation of 
state of homogeneaus mixtures with similar interactions. 

In figure 4.11 the different types of A cantacts along the binodal are shown. 
Here also the differences between the NRM ( dashed lines) and the new theory 
(solid lines) can he clearly observed. The number of Ah cantacts (Y) is accurately 
predicted. On the other hand the predictions of the number of AA cantacts (•) 
is only reasonable for compositions rich in A. The agreement between the NRM 
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(•) and Ah contacts (T). Fulllines represent tbew-tbeory prediction and dasbed lines 

tbe NRM tbeory. 

theory and the MC simulation data deteriorates with increasing B content of the 
mixture. In agreement with the discussions presented above, the NRM theory 
prediets a decreasing number of AA cantacts effectively becoming zero in pure 
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B. The MC simulation data also show a decrease in AA contacts but in pure 

B a finite fraction of AA contacts remains. This finite fraction is of course a 
consequence of the chain connectivity making the number of AA contacts higher 
than the overall blend composition. The underestimation of the AA contacts 
leads also here to an inevitable overestimate of the AB contacts ( • ), as the 
total number of contacts is fixed by the constrained, eq 4.42. This overestimate 
increases with <f>B· This should be contrasted with the predictions of the new 
theory. Again, the predictions of NRM and the new theory are virtually identical 
for the number of Ah contacts (Y). However, for the number of AA contacts (•) 
a very accurate prediction is provided, including the limiting behavior at <f>B = 1. 

Furthermore, an accurate prediction of the number of AB contacts ( •) is also 
given. 

Finally, some microscopie information about the mean square end-to-end dis
tanee < r 2 > of both components along the binodal is given in figure 4.12. For 
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Figure 4.12: Mean square end-to-end djstance < r 2 > of component A (•, o) and B 

(•, D) along the coexjstence curve at p=O bar (•, •J and 10 bar (o, D), shown in 

Figure 4.9, as a lunetion of the cornposition of the coexjsting phase. 

asymmetrie compositions, the ebains of the minority component have smaller di
mensions. This is due to the unfavorable environment provided by the majority 
component. On the other hand the ebains of the majority component do not 

significantly change coil dimensions and behave practically as in its own melt. A 
slight decrease with pressure of the coil dimensions can be observed related to 
the higher density. 
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Evidently, a decrease in chain dimensions as given by the end-to-end distance 
< r2 > will be accompanied by an increase in the number of intra-molecular con
tacts and vice versa. Therefore, we present in figure 4.13 for the same conditions 
as in figure 4.12 the variation with pressure and mixture composition of the frac
tion of intra-molecular contactsas entailed in WA (wB)· Although figure 4.12 and 

0.44,-----------------

A B 

3 0.45 

0.4~.0 0.2 0.4 0.6 0.8 1.0 

Segment Fraction B 

Figure 4.13: Average number of intra-molecular contacts w of component A and B 

along the coexistence curve at p=O bar (dashed line) and p=lO bar (solid line), shown 

in Figure 4.9, as a lunetion of the composition of the coexisting phase. 

4.13 cannot be compared directly, obvious similarities are observed. For asym
metrie compositions, the chains of the minority component have a larger number 
of intra-molecular contacts indicating a smaller end-to-end distance. Also in the 
theory this change in w is caused by the unfavorable environment provided by the 
other component. Consequently, the chains of the minority component 'react' to 
this by making more intra-molecular contacts. On the other hand, the majority 
component behaves practically as in its own melt only leading toa small variation 
if the number of intra-molecular contacts. 
The small variations in < r 2 > found with pressure in the MC simulation data 
are not refl.ected in the variation of the number of intra-molecular contacts w. 

The subtie balance between density and interactions governing the variations in 
< r 2 > and w is not reproduced by the theory. 

98 



4.5 Conclusions 

Starting from the definition of the insertion probabilities a new theory for com
pressible binary mixtures was defined. Due to the approximate nature of the
oretica! expressions for the insertion probability the partition function and the 
thermodynamic state functions may depend on the particular order of insertion. 
We therefore define a practically useful insertion order which assures that the 
intensive thermodynamic state functions are functions of the appropriate ther
modynamic variables, i.e. density, temperature and composition. Subsequently, 
theoretica! expressions for the insertion probabilities were derived which depend 
on the presence of intra-molecular self..:contacts related to the long range excluded 
volume of the chain molecules. These theoretica! developments automatically re
sulted in a dependenee on density, i.e. the environment of the chain molecule, of 
the intra-molecular contacts. Eqs 4.23 and 4.27 are the main theoretica! results 
for athermal chains. From eq 4.27, the infiuence of density on the distribution 
Pwi (neon, y) can be obtained. Employing eq 4.24 the average molecular environ
ment, expressed in Wj, can be computed. The insertion probability at any density 
can be found by employing Wj in eq 4.23. The Helmholtz free energy and the 
equation of state can be calculated by inserting Pe(Y) in eqs 4.16 and 4.18 respec
tively. For the interacting chains, the infiuence of the density and interaction on 
the distri bution Pwi (neon, y, <PB, T) and the average environment w1 is given by 
eq 4.41. The insertion probability at a given density and given values of EiJ and 
Xii is then easily calculated from eq 4.38b. The equation of state and the max
imized parameters Xïj are obtained by simultaneously solving eqs 4.34 and 4.39 
at a given density and temperature. The Helmholtz free energy at any density 
and temperature can be obtained invoking eq 4.38. 

Employing the new theory, predictions for the equation of state of pure com
ponents and binary mixtures as well as the liquid-liquid coexistence as a function 
of pressure were provided and compared to MC simulation results. Furthermore, 
detailed microscopie information on the different types on segmental contacts 
were collected in the MC simulations and compared to the theoretica! predic
tions. It was found that the new theory successfully prediets all presented data. 
For example, the compressibility factor of athermal ebains is accurately predicted 
even for the highest investigated chain lengtbs ( s = 60). The prediction of the 
new theory were systematically better than those of the NRM theory and are 
even better than those provided by the LC theory for linear chains. An exten
sive comparison of the new theory to the LC theory and some other theoretica! 
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approaches will be the subject of chapter 5. 
The effects of the intra-molecular self-contacts is most clearly demonstrated 

for mixtures. The most clarifying example is provided by the predicted non-zero 
number of intra-molecular cantacts even for the most asymmetrie mixture com
positions. It was further observed that the incorporation of the intra-molecular 
cantacts also resulted in an almast quantitative prediction of the liquid-liquid 
miscibility behavior. The remaining deviations being most likely due to the non
classica! cri tical sealing behavior. 9 

In conclusion, the present theory has been shown to be very accurate in com
parison with MC simulation data. The new theory also opens the way to the 
thermodynamics of more complex chain architectures such as branched chains 
etc. Furthermore, the theory is equally applicable to compressible polymers so
lutions by assigning a chain length of unity to one of the chain molecules. 
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Chapter 5 

Thermodynamic properties of 
compressible lattice polymers: 
A comparison of MC simulation 
data and theories. Pure 
components 

5.1 Introduetion 

Since the independent works of Flory and Huggins, more than half a century ago, 

on the thermodynamics of (incompressible) polymer solutions a great number of 

theories are available to predict and describe the thermadynamie behavior of in
compressible and compressible polymer solutions and polymer blends. In most 

cases the improvements on the classic Flory-Huggins (FH) theory set forth in a 

new theory are clearly illuminated. However, a detailed comparison of different 

improved theories is much scarcer, while, we believe, it could be of interest to 

investigators in polymer thermodynamics, in need of an improved theory to de

scribe or interpret some of their experimental data. At least partly, we would 

like to fill this gap and make a comparison of a number of improved theories to 

'experimental' data obtained from Monte Carlo (MC) simulation studies on the 

same molecular model. 

Clearly it is impossible to consider all theories and it is necessary to make some 

selection. Here we chose theories based on the lattice model and in partienlar we 

will discuss the Lattice Cluster (LC) theory of Freed and coworkers, the confor-
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mational theory of Szleifer, the recent theory of Weinhold, Kumar and Szleifer 
(WKS) for athermal polymers, the w-theory developed in our laboratory and the 
non-random mixing (NRM) theory based on the quasi-chemica! approximation 
of Guggenheim. 

Since all the suggested theories are based on the lattice model a direct com
parison to experimental data for real polymer systems will not be attempted. 
It has been demonstrated quite convincingly that the accuracy of any theory is 
much easier to verify in a comparison to thermodynamic data of the molecular 
model used in the theoretica! developments. With the advent of computer simu
lations, it has now become possible to obtain the exact thermodynamic data for 
any molecular modeL Hence, we will compare the theoretica! results to Monte 
Carlo simulation results for the lattice model. Here, we will limit us to the 
equation of state behavior, including the vapor-liquid coexistence region, of pure 
compressible lattice chain fl.uids. The technologically more important polymer 
solutions and blends will be discussed in a forthcoming contribution. However, 
also for these solutions and blends the equation of state properties of the pure 
components are of interest as they are known to control the behavior of the mix
tures. As a reminder, it should be mentioned that the lattice model is not an 
adequate model for the liquid state. In effect, these inadequacies can be nicely 
demonstrated by confronting off-lattice simulations with the theoretica! predie
tions of the lattice model. Subsequently, hybrid theories, combining lattice and 
off-lattice aspects, were proposed to allevia te the deficiencies of the originallattice 
model.l-4 It should he pointed out that these deficiencies were already recognized 
much earlier and were also removed along different lines in cell theories5•6 and in 
hole theories.7- 12 

The organization of the rest of this chapter is as follows: in section 2 we intro
duce the different theories and present briefl.y the relations amongst them, if any, 
and the relation to the Flory-Huggins theory. In section 3 the thermodynamic 
conditions that will he discussed are introduced. In section 4, the theoretica! 
predictions for the thermodynamic properties are compared to MC simulation 
data. Finally, section 5 presents the conclusions and some remarks. 
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5.2 Modeland theories 

5.2.1 The lattice model for a compressible pure compo
nent 

Consider N linear s-mers each occupying s consecutive sites on a cubic lattice of 
N L sites. The lattice coordination number is denoted by z. The overall fraction 
of filled lattice sites or the segmental packing fraction y = sN / N L with N L = 
sN + Nh and Nh the number of vacant lattice sites. The total volume is given 
by V NLv* with v* the lattice site volume. Non-covalently bonded polymer 
segments are assigned a nearest neighbor interaction potential ,-e, (e 2: 0). 

The lattice model has been, and still is, frequently used to discuss the ther
modynamic properties of chain fluids. Consequently, a great number of theories 
has been presented. In the following subsections we summarize the different the
ories that will be discussed in this chapter and give the theoretica! expressions 
for Helmholtz free energy. Moreover, the EoS is given whenever, a simple explicit 
expression can be deri ved. 

5.2.2 The Flory-Huggins theory 

The Flory-Huggins mean field theory13- 19 represents a convenient reference point 
in the history of polymer theory and plays an important role in the understanding 
and development of the statistica} thermodynamics of polymers. However, in this 
simple theory the influence of the long range chain connectivity is completely 
ignored. Nevertheless, the FH theory at least qualitatively explains a number 
of features of the thermodynamic properties of polymers, such as the influence 
of chain length on the location and shape of the liquid-liquid miscibility gap 
of polymer solutions.13 The FH expression for the Helmholtz free energy of a 
compressible pure component reads 

(JA 1- y 1 
= --ln(l- y) + ln y- -y(Jey 

sN y s 
(5.1) 

with 'Y = 2/ z. The equation of state of the system can be obtained from the 
Helmholtz free energy, A, according to 

aAl 
p= -av N,T 

(5.2) 
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and the equation of state of FR theory is given by 

{JpV = _ln(1- y) _ (1 _ ! ) _ 'YZ{JEy 
sN y 8 

(5.3) 

where pis the pressure, {J = 1/(kBT) is the redprocal of the temperature multi
plied by the constant of Boltzmann and z is the coordination number. 

5.2.3 The Huggins theory 

Already in the original publication Ruggins derived an approximate correlation 
for the chain connectivity up to nearest neighbors. The Ruggins theory provides 
a substantial improvement over the FR theory. For instance, the equation of state 
(EoS) of athermallattice polymers predicted by the Ruggins theory is much more 
accurate than the FR result. The Ruggins Relmholtz free energy is given by 

{JA= 1 - y ln(1- y) + !lny- 1 ay ln(1- ay)- 2{3/1 - a)
2
y (5.4) 

sN y 8 'YY (1-ay) 

where the first two terros on the rhs of eq 5.4 represent the FR entropy, also found 
in eq 5.1, a= 'Y(1-1/s) is the probability that a nearest neighbor lattice site is 
taken by the next segment in the 8-mers. The equation of state of the Ruggins 
theory reads 

sN 
ln(1 y) _ (1 - !) + ~ + ln(l- ay) _ 2{JE(l- a)2y 

Y s 'Y 'YY (1-ay)2 (5.5) 
{JpV 

= 

The FR theory can be recovered by formally assuming an infinite coordination 
number, i.e. z --+ oo. Then, a = 0 and the inter-segroental contact fraction q 
reduces to the occupied site fraction, i.e. q = y. 

5.2.4 The NRM theory 

Both Flory and Ruggins assumed that nearest neighbor contacts are made at 
random. The effects of the interactions on the formation of the different seg
mental contacts can be accounted for by the quasi-chemical approximation of 
Guggenheim. 20 The NRM theory for compressible chain molecules, discussed in 
previous publications, is the compressible analogue of the Guggenheim theory 
for incompressible polymer solutions.21•22 The interactions influence the mixing 
of molecules at the segmental level and lead to deviations from random mixing. 
The different types of contacts in a compressible pure component are uniquely 
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determined in terms of the contact site fractions and extra microscopie param
eter x. The NRM theory provides accurate predictions of the equation of state 
behavior of pure components as well as the liquid-liquid miscibility behavior of 
polymer blends.21, 22 The NRM equation for the free energy of interacting pure 
component is given by21 

Ns 

1 1 1- ay 
ln(1- y) +-In y- ln(1- ay) 

y 8 ~y 

1 a 
+ --[2qln(q) + 2(1- q)ln(1- q) 

~q 

(q x) ln(q x) 2xln(x)- (1- q- x) ln(1- q- x)] 

- /3€ (1 a)(q x) 
~q 

where q is the inter-segmental contact fraction defined as 

(1- a)y 
q = ..,..----'--:-

(1- ay) 

and x is obtained by minimization of the Helmholtz free energy 

The minimization condition eq 5.8 can be solved for x 

The equation of state is given by 

{3pV ln(1- y) (
1 

1) a ln(1 - ay) 
sN = - y - ; + ;- + ~y 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(/3€)~ +..!..[(x 1) ln(1- x- q) + xln(q- x) (5.10) 
~ y ~y 

- 2xln(x) + 2ln(1 - q)] 

The non-random mixing in eqs 5.6 and 5.10 effects the terms between square 
brackets and energetic term. For athermal system the NRM theory is identical 
to the Huggins result. Moreover, if random mixing is enforced, x = q(1 - q), 
the Huggins theory is also obtained. The predictions of the NRM theory have 
extensively been compared to MC simulation data in previous publications and 
will serve as a reference in the current comparisons.21, 22 
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5.2.5 The w-theory 

In the theoriesof Flory-Huggins, Huggins and NRM, the intra-molecular correla
tions are either completely ignored or, at best, approximately accounted for up to 
nearest neighbors. In order to include the long range intra-molecular correlations, 
we recently formulated a theory employing the information of a single chain. 23 

Expressions for the partition function, the Helmholtz free energy and other 
thermadynamie properties of athermal and interacting compressible lattice poly
mers are derived from the definition of the insertion probability. The insertion 
probability approach was initially introduced by Guggenheim. 20 More recently, 
Halland co-workers also employed the insertion probabilities to derive continuurn 
space analogs of the Flory-Huggins and the Ruggins lattice theories, the so-called 
Flory and Flory-dimer theories.1•24 In the w-theory the Helmholtz free energy A 
and EoS for athermal components are given by 

f3A/ sN = (1/ s) ln(y) - (1/ sy) 1Y ln[(1 - y')' /(1 - wy')'-1]dy' 

f3pVjsN =f3pv• jy (1 -ln[(1- y1
)

8 /(1- wy1
)

8
-

1)js 

+(1/ sy) 1Y ln[(1- y')' /(1- wy')'-1]dy' 

(5.11) 

(5.12) 

where w accounts for the occurrence of intra-molecular cantacts that a chain can 
make, irrespective of the covalent or non-covalent character. The average number 
of intra-molecular cantacts (covalent and non-covalent) of a segment in an s-mer 
is given by zw and can be calculated from 

L:ncon ÜconPw;(Ücon 1 Y) 
Wj = " P (n ) 

,L.,f!con Wj C<ln! Y 
(5.13) 

with Pw;(ilcm., y) the probability that, averagedover all conformations, a segment 
of the s-mer has zilcon intra-molecular contact positions. For the single chain, 
i.e. y = 0, the probability distribution Pw; (neon, y = 0) is easily extracted from a 
single chain simulation. Details are given in chapter 4. Explicit expressions for 
the density dependenee are given by eqs 24, 27 in chapter 4. 

The evaluation of the partition function for interacting chains is performed 
invoking the quasi-chemical approximation. The final result for the Helmholtz 
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free energy of interacting polymers is given by23 

{JA/sN= (1/s) ln(y)- (1fsy) 1Y ln[pe(y', T)]dy' 

(1-w) 
- ( 'YO) [20 ln( 0) + 2(1 - 0) ln(1 - 0) - 2x ln(x) 

-(0 x) ln(O- x)- (1- 0- x) ln(1- 0- x)] 
{3€ {3€ 

- -(1 w)(O x)- -(w- a) 
"(0 "( 

Pe(Y, T) = (1- Y) 8 /{1- wy)s-l 

(5.14a) 

(5.14b) 

where Pe(Y, T) is the chain insertion probability and 0 is the inter-molecular 
contact fraction defined as 

0 
= (1-w)y 

(1- wy) 
(5.15) 

The last two terms in eq 5.14a stem from the internal energy. The parameter 
x is obtained by minimization of the Helmholtz free energy according to eq 5.8. 
Explicit expressions for the minimum condition and the equation of state are 
quite lengthy and are not presented here. 25 For interacting chains, the average 
number of intra-molecular contacts, w, is a function of density and temperature 
given by eq 41b of chapter 4. There is a subtie difference between the inter
molecular contact fraction 0 and the inter-segmental contact fraction q ( compare 
eq 5.7 and eq 5.15). In eq 5.7 only the contacts occupied by covalent honds are 
excluded from inter-segmental contacts. In the inter-molecular contact fraction 0 
also the contact positions of a segment taken by segments of the same chain (i.e. 
long range effects of chain connectivity) are excluded in counting the number of 
intermolecular contacts. 

From the w-theory all previously discussed theoriescan be obtained as limiting 
cases. For example, if the complete intra-molecular environment w is approxi
mated by the covalent honds only, i.e. w = a, the NRM theory is obtained. 
Ftuther reduction to the Buggins and Flory-Huggins theories has been discussed 
in the previous subsection. 

5.2.6 The conformational theory of Szleifer 

Szleifer presented a new mean field theory for polymer solutions that explicitly ac
counts for the conformational degrees of freedom of the chain molecules. 26 This is 
established by consirlering the chain molecule in the environment made up by the 
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total system. Note that in the usual mean field theory of Flory and Ruggins the 
infl.uence of the environment is only considered on the segmentallevel. In evaluat
ing the partition function the conformational and translation al degrees of freedom 
are decoupled. The translational part of the partition function is assumed to be 
given by the Flory-Huggins combinatorial entropy. The internal energy contri
bution of the partition function is expressed in the internal partilion function of 
the polymer molecules q1(y, T), which depends on the conformational properties 
of the chain. Combining both contributions the reduced excess Helmholtz free 
energy per segment for a compressible pure s-mer was shown to be 

{1D.A = 1 - y ln(1- y) +!In y-! ln q,(y, T) (5.16) 
sN y s s 

with q1(y, T) given by 

(5.17) 

ne(v) is the total number of external contactsof a chain in conformation v and 
the sum runs over all possible conformations. 

From the Helmholtz free energy the equation of state can be derived and is 
given by 

{1pV 1 1 y 
- = --ln(1- y)- (1--)- -/1€ < ne > 
sN y s s 

(5.18) 

where < ne > is the average number of external contacts of a chain 

l:v ne(v) exp[-/1~ne(v)(1- y)] 
< ne >= " [ L..v exp -/1ine(v)(1 - y)] 

(5.19) 

The first two termsin the Helmholtz free energy equation, eq 5.16, are the Flory
Huggins combinational entropy of mixing polymer segments and vacancies. If a 
polymer molecule is viewed as s unconnected segments, ne(v) = sz, the Flory
Huggins theory is recovered. The same simpli:fication is obtained if athermal 
condition (E = 0) is explored. Therefore, the internat partition function or the 
external contact number of neighbors of a chain is an important factor in the 
Szleifer theory. As soon as the single chain probability distribution ne(v) is 
obtained, q1(y, T) and other thermodynamic properties can be computed. Just 
as in the w-theory this number of contactsis obtained employing a single chain 
Monte-Carlo simulation. In fact ne(v) and P..,i(ncon, y = 0) can be related. The 
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number of external cantacts ne(v) in a particular conformation vis related to the 

number of intra-molecular cantacts Slcon(v) in that conformation by 

ne(v) = sz(1- Ûcon(v)) (5.20) 

The chain conformations can be grouped according to their number of exter

nal cantacts or equivalently to their number of intra-molecular cantacts and a 

probability distri bution Pn. ( ne, y = 0) related to Pw; (Slcon, y 0) can be defined 

(5.21) 

Thus, eq 5.17 and hence eqs 5.18 and 5.19 can be written in termsof the intra

molecular contact probability Pw:1 (Slcon, y = 0). 

5.2.7 The theory of Weinhold, Kumar and Szleifer 

As already mentioned in the previous paragraph, for athermal conditions ( € = 

0) the Szleifer theory reduces to the simple FH theory combinatorial entropy. 
Clearly this is a consequence of the imposed decoupling of configurational and 

conformational contributions to the partition function. To remedy this shortcom

ing, Weinhold, Kumar and Szleifer proposed another mean field theory so far only 
applied to athermal systems. 27 The total entropy was split in configurational and 
conformational contributions. The configurational entropy Spack was assumed to 

be given by a Huggins-Guggenheim-type combinatorial expression27 

1- y lny 1- w'y 
--ln(1- y)-- + ln(1 

Y s 7Y 
1 

w'y) +-Ins 
s 

(5.22) 

with w' = 1- < ne (v) > I zs = 1 - q' Is and q' is also an extern al contact fraction 
as defined by Weinhold et.a1.27 The conformational entropy Sconf is 

S~onf = -NLP(v)lnP(v) 
B V 

(5.23) 

where the P(v) denotes the probability of the ebains being in conformation v. 
The total entropy of the system, S = Spack + Sconf, is now maximized subject to 
the constraint that 

LP(v) = 1 (5.24) 
V 
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to produce the final result for the probability of the chain being in conformation 

v, 

Po(v) 
P(v) = -h- exp[Xpad:ne(v)] 

SC 

(5.25) 

where hsc is a normalization factor, P0(v) is the probability of a single athermal 
chain in conformation v and Xpack is the 'interaction parameter' which originates 
exclusively from entropie pacldng considerations and is given by 

1 1 ( 1 ) 
X k =-+--ln 1-wy 

pac 2 2wty (5.26) 

For the athermal chain fiuid the entropy equals to the Helmholtz free energy and 
only in this case the EoS can be obtained. 

5.2.8 The lattice cluster theory 

Freed and co-workers developed the lattice cluster theory yielding a formally ex
act solution of the lattice model. Initially, the LC theory was derived employing 
mathematica! methods used in field theory and partiele physics. 28

• 
29 Later an 

algebraic derivation of the LC theory, more transparent to polymer scientists, 
bas been presented.30 The LC theory not only offers an exact solution of the 
lattice model but also provides systematic corrections to the Flory-Huggins the
ory when the formal solution is expanded in terros of the inverse of the lattice 
coordination number 1/ zand the reduced energy {Je. However, the lattice cluster 
expansion must be truncated at a certain order. Therefore, in actual application 
the LC theory is also an approximate theory, but at least a formal route to device 
systematic improvements is provided. Recently, Dudowicz and Freed extended 
the LC theory to compressible multi-component polymer blends allowing for an 
internal structure of, monoroer and solvent. 31 The excess Helmholtz free energy 
AA of mixing per segment is given by31 

4 4 4 AS 
{3AA/sN=(l:Ai+ L:Bi+ z=eï)(1-y)- k N 

~1 ~1 ~1 BB 

(5.27) 

where Ai, Bi and ei are known parameters containing the energetic corrections 
defined with cluster expansion: Ai corresponds to the zei contributions, Bi to the 
efz terros and ei to the e2 terms. Further, AS is the non-combinatorial athermal 
limit of entropy of mixingfora polymer-vacancy system (s > 2). For linear ebains 
discussed bere the coefficients A.il Bi and ei and the entropy of mixing AS are 
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,B.!lAm _ "'4 A. "'4 B· "'4 C· _ s 
Ns(l-y) - L..ri=l t + L..ri=l t + L..ri=l t kNs(l-y) 

~~{:_"'u> = I:i=l iA + I:i=l Bi + 2 I:i=l Ci 

A _ ez 
1-2 

Az = _e~zy(1- y) 

A3= _e:{y(1- y)(1- 2y)2 

A4= _e;;y(1- y)(1- 6y(1- y)(3y2 - 3y + 2)) 

Bl = -es~l (1- y) 

Bz = ;(1- y)e~s) 

B 2e s-1 ( 1 ) (3-s) 
3 = --;-8-y - y 8 

B4 =- ~ecs~l )3y2(1- y) 

cl= -~ 8~ 1 (1- y)(1- 2y)2 

c2 = -e28~2(1- y)2 

c3 = -e2 CS~1 
) 2y(1- y)2(1- 3y) 

c4 = -~5~3s(l- y)3 

e = f/kBT in this table. 

Table 5.1: Free energy of mixing and internaJ energy of mixing lor a polymer-void 

(solvent) system. 

taken from a paper of Dudowicz and Freed31 and are summarized in Tables 5.1 

and 5.2. 

The LC expansion is quite different from the theories described above which 

are allbasedon a direct, although approximate, evaluation of the partition func

tion. Some details are presented in the chapter 2. Eq 5.27 can also be applied to 

pure compressible polymer systems by invoking the similarity between polymer

void system and compressible pure polymer. The EoS of the system can directly 
be obtained from the excess free energy, ~A, according to the eq 5.2 

In the subsequent comparison of the average number of external nearest neigh

bor contacts will be discussed. Note that in the NRM theory the external contact 

number is calculated from the external contact fraction q and in the w-theory 
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-.O.S-;h lny-(1-y) ln(l-y) 
kNs(l-y) 

= ~Ai + ;2 [2:~=2 Ai+ Y 2::!10 Ai + Y2 A1a] 

Al= s-1 
s 

Aa = Hs:l )3 
A __ 

2
(s-l)(s-3) 

4- 8 2 

As = CS:2)2 
A __ 

2
(s-1)(10-4s) 

6- 8 2 

A1 = 2(s:l )4 

As= !CS:1 
)

2(5- 3s) 

A9=0 

AlO= Hs:l)3 

Au = 2( s:l )4 

Al2 = 2(s-1)2~5-3s) 
s 

Table 5.2: Non-combinatorial atbermallimit of entropy of mixing lor a polymer-void 

(solvent) system. 

from (J and w. For the LC theory the average number of external contacts can 
be computed from the internal energy E of the compressible pure polymer. For 
the nearest neighbor pair potentials considered here the internal energy can be 
written without approximation as 

(5.28) 

with Css the number of contact positions neighboring a segment occupied by 
other non-covalently bonded segments. 
The excess internal energy of mixing polymer-void can he derived from the excess 
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Helmholtz free energy according to 

-sNT2 o(jj,.AjsNT) I 
aT N,y 

jj,.E = E - Es - Eh 

(5.29a) 

(5.29b) 

where E8 = Nsz/2(1- a)€ is the internal energy of pure polymer without holes 
and Eh= 0 is the internal energy of pure holes. Combining eqs 5.28 and 5.29 the 
number of external segment-segment contacts, C88 , and the number of segment
hole contacts, Csh, are obtained 

2/j,.E 

N 
+ z(l- a) 

S€ 
(5.30a) 

(5.30b) 

where Ctot is the total number of non-covalent contact sites available for a seg
ment, fora 30-mer Ctot = z(l- a)= 4.0666 · · ·. 

5.3 Thermadynamie properties 

Quite generally, pure components may exhibit liquid-vapor coexistence although 
in practice these thermodynamic conditions are not always attainable for long 
chains. In the pV-piane of a pure component, a stabie, a meta-stabie and an 
unstabie region can be defined. In the stabie region the fluid remains in one phase. 
Whereas in the unstable and meta-stabie regions, a fluid will ultimately phase 
separate into two phases. These three regions are separated by the binodal and 
spinorlal curves. The liquid-gas binodal curve defines the coexistence between 
a liquid and a vapor phase and delineates the stabie and meta-stabie regions. 
Coexisting liquid and vapor phases obey the thermodynamic equilibrium criteria 
for chemical potential, pressure and temperature 

f.ll = f.lv 

Pl = Pv 

Ti= Tv 

(5.31a) 

(5.31b) 

(5.31c) 

In the next section the theoretica! predictions of the equation of state of pure 
lattice chain fluids in the homogeneous region as wellas vapor-liquid coexistence 
will be compared to MC data of the lattice model. 
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5.4 Results and discussions 

5.4.1 Equation of state behavior 

a. Athermal chains. 
In figures 5.1 and 5.2 the compressibility factor pVjNkeT versus packing frac
tion y, calculated from different theories, is compared to Monte-Carlo simulation 
results for athermal chains with chain length s = 20,60 (figure 5.1) and 30 (figure 
5.2). The Monte Carlo simulation results are denoted by the symbols and the 

35~------------------~~~----~~ 
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.... 25 
~ 20 
;; 15 
CL 

10 

5 
~~~---

8.o 0.2 0.4 0.6 0.8 1.0 

y 

Figure 5.1: CompreSBibility factor of athermal ebains a.s a lunetion ofpacking fraction 

y. s=20 (•), s=60 ('Y); Fulllines represent the w-theory; dotted lines the LC theory; 

long da.shed lines the NRM theory and dot-dot-da.shed lines the Szleifer theory. 

theoretica! results are depicted by the lines. The simulation data, employing a 
NpT MC simulation algorithm, were collected in a previous contribution.21 Al
though we have not calculated the 'experimental' uncertainties on the simulation 
data they are thought to be small (about the size of the symbol). 
Clearly the Szleifer theory (- - - - - -) overestimates the compressibility factor 
in the whole density range. In fact, the influence of the conformational properties 
on the thermodynamic behavior is limited to the contribution involving the inter
actional energy € (see eqs 5.16 and 5.18 and compare to eqs 5.1 and 5.3). Hence, 
the Szleifer theory reduces to the Flory-Huggins theory for athèrmal chains and 
provides no improvement on the simple FH result. 
In the case of athermal chains the NRM theory reduces to the Ruggins result 
for the entropy of mixing segments and holes.21 In figures 5.1 and 5.2, it can 

117 



35 
30 

1-
25 

~ 20 z ...... 
15 > 

Q 
10 

5 

8.o 0.2 0.4 0.6 0.8 1.0 

y 

Figure 5.2: Caption as in ligure 5.1 for s=30. 

be observed that the NRM theory (- - - - - -) provides a good but slightly too 
high prediction of the compressibility factor. The discrepancy between theory 
and simulation worsens with increasing chain length. 

In the high density range the NRM result is practically indistinguishable from 
the predictions of the LC theory ( · · · · · · ) . In the low density range the LC theory 
is systematically lower and closer to the MC simulation result. This difference 
between LC and NRM theory becomes more pronounced with increasing chain 
length. Although the LC theory is in better agreement with MC simulation data; 
the predicted compressibility factor remains systematically too high especially at 
intermediate and high densities. Also in the case of the LC theory the deviations 
between theory and simulation increase with chain length. Although formally 
the lattice cluster theory incorporates the effect of all correlations, the necessary 
truncation of the cluster expansion implies that only local correlations are ac
countèd for. Since long range correlation effects become more important with 
increasing chain length, the predictions of the LC theory also deteriorate with 
chain length. 
Finally, both the WKS theory (--- -)27 and the w-theory (--) give an ac
curate prediction of the compressibility factor for all investigated chain lengths 

and can be considered to be the best theories of the investigated set available 
for the equation of state behavior of athermal linear chains. Apparently, the 
long range correlations are, although approximate, quite effectively incorporated 
in both theories. Both theories start from a single chain simulation, monitoring 
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the number of intra-molecular contacts over the different conformational states. 
Although, it has already been shown in the previous chapter that the predicted 
density dependenee of the intra-molecular contacts is quite different,23 the pre
dicted equation of state behavior is almost identicaL 
b. Interacting chains. 
Unfortunately, the WKS theory is not (yet) applicable to interacting systems 
and hence cannot be considered in the discussion of interacting systems. In 
figures 5.3 and 5.4 the MC equation of state data21 of interacting 30-mers are 
presented and compared to theoretical predictions. The densities at zero pressure 
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0 ·7o~45 0.50 0.55 0.60 0.65 0.70 
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Figure 5.3: Pa.cking fraction y vs inter-segmental interaction e for s = 30 a.nd p=O. 
MC results ( • ); Notation is tbe same as ligure 5.1. 

as a function of reduced interaction potential e = F.jk8 T are shown in figure 
5.3. The densities versus reduced pressure, p= (pv*)/(F.hk8 T), at given reduced 
interaction potential are shown in figure 5.4. It should be noted that the reduced 
interaction energy e can also be interpreted as an inverse reduced temperature. 

In both figures it can be observed that the Szleifer theory -----) prediets 
extremely low densities at all investigated values of the interaction potentials 
and pressures. In the theoretica! section it was discussed that the Szleifer theory 
reduces to the FH result if the polymer molecules are viewed as unconnected 
segments. It has previously been shown that the simple FH theory systematically 
prediets too high densities for all investigated interaction energies and pressures. 21 

From an energetica! point of view this can be understood as follows: although the 
contact positions involved in covalent honds are effectively excluded from inter-
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Figure 5.4: Density as a. function of reduced pressure for different intera.ctions: e = 
0.45(6), 0.5 ( • ), 0.55 (T). Fulllines represent tbe w-tbeory predictiqn; Dotted lines tbe 

LC tbeory; dasbed lines tbe NRM tbeory a.nd dot-dot-dasbed lines tbe Szleifer tbeory. 

segmental interactions, in the FH approximation the difference in covalent and 
inter-segmental contact positions is ignored and all z contact positions of a chain 
segment contribute to the internal energy. Consequently, the internal energy is 
predicted to be too high, leading to a too high density at a given interaction 
energy in the FH theory. As can beseen from eq 5.18 the correction suggested by 
Szleifer operates on the internal energy and evidently results in an over-correction 
towards lower densities. Clearly, the combination of the FH entropy contri bution 
( derived from the unconnected segments) and a more accurate estimate of the 
internal energy (excluding the intra-molecular contacts) produces an in-balance 
between both contributions in the equation of state. Accordingly, the predictions 
of the Szleifer theory are in fact worse than those of the original FH theory it 
sets out to improve. 

Turning now to the LC ( · · · · · · ) and NRM (- - - - -) theories in figures 5.3 
and 5.4, it can beseen that they show good agreement with MC data in the high 
density range. However, at low densities the LC theory prediets densities slightly 
higher than the NRM theory and further away from the MC data. Apparently, 
to reach results similar or even better than these provided by the NRM theory 
the cluster expansion in the LC theory should be pushed even further to higher 
order contributions. Again, the w-theory produces accurate predictions for the 
equation of state behavior of interacting polymer chains in the whole investigated 
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range of temperatures and pressures. Especially at low densities, the w-theory 
yields substantial improvement over the NRM and LC theories. It is in this low 
density range where an inhomogeneons segment density exists that the infiuence 
of the chain connectivity is most noticeable. One might agree that this is almost 
trivia! since information on the athermal single chain is introduced in the theory. 
However, the samesingle chain information is introduced in the conformational 
theory of Szleifer for which improvement is not observed. 

In figure 5.5 more detailed information on the different type of contacts is 
depicted for the equation of state data presented in figure 5.3. Here, the numbers 
of segment-hole and segment-segment contacts are presented as a function of 
density. From figures 5.3 and 5.4 it is evident that the Szleifer theory needs a 
significantly larger reduced inter-segmental energy e to reach a given density. In 
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Figure 5.5: Segmental cantacts vs pa.cking fraction y corresponding to interactions e 

in Figure 2 and a.t p = 0. (•) segment-segment conta.cts; ( •) segment-hole conta.cts. 

Full lines represent the w-theory prediction; Dotted lines the LC theory and dashed 

lines the NRM theory. 

figure 5.5 it can be perceived that a larger value of e also lead to a significantly 
larger number of segment-segment contacts and of course a smaller number of 
segment-vacancy contacts. 
The same argument appears to apply to the NRM and the LC theory to obtain 
a low density, e.g. y = 0.75, a lower value of reduced interaction energies is 
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required (see figure 5.3). Whence, a smaller number of segment-segment contacts 
and a larger number of segment-hole contacts is produced. In condusion it can 
beseen in figure 5.5 that only the w-theory provides a correct prediction of both 
equation of state data (figure 5.3) and the number of contacts (figure 5.5). 

In tigure 5.3 we noticed that the difference between the different theories was 
most noticeable at low densities. Hence in figure 5.6 the equation of state and 
the number of segment-hole contact at even lower densities than in figures 5.3 
and 5.4 are investigated. This can only be accomplished by employing smaller 
valnes of the reduced interactional energy e. In figure 5.6 the e is fixed at e 0.3 
and variations in density are brought about by changing pressure. In figure 5.6 
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Figure 5.6: Segmental-hole cantacts (•) and density y( •) vs pressure for e = 0.3. Full 

lines represent the w-theory prediction, dotted lines the LC theory, dashed lines the 

NRM theory and dot-dot-dashed lines the Szleifer theory. 

it can be observed that the LC theory, the NRM theory and the w-theory all 
provide satisfactory predictions of the variation in density with pressure. It can 
also be observed that the LC theory is, especially at low and high densities, 
closer to the w-theory than to the NRM theory. At the smaller value of the 
reduced energy, e = 0.3, compared to the valnes shown in figure 5.3 and 5.4, the 
truncated cluster expansion is much more adequate and the LC theory also yields 
better results. The same can be seen for the number of segment-hole contacts. 
Especially at higher densities the three theories produce acceptable results. At 
low densities both the w- and NRM theories are in good agreement with MC 
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data. Whereas the LC theory tends to overestimate the number of segment-hole 

contacts. As already mentioned, at these low densities the full chain connectivity 
becomes important in determining the number of segment-hole contacts. Due to 
the truncation in the LC theory only local correlations are accounted for leading 
toa too high number of segment-hole contacts. 

In agreement with the previous result, it can be observed that the Szleifer 
theory yields a poor prediction of the equation of state as well as the number of 
segment-hole contacts. 

5.4.2 The liquid-vapor coexistence 

The prediction of coexistence curves is a sensitive test for all theories, since an 
accurate prediction of the chemica! potentials and the equation of state behav
ior of the polymer in both phases is required. In figures 5.7, 5.4.2, 5.9 and 5.10 
the liquid-vapor binodal curves for chain length s = 1,2, 4, 8, 16, 32, 64,100, calcu
lated for the different theories, are presented in comparison with the Monte-Carlo 
simulation data taken from the paper of Yan et.a1.32
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Figure 5.7: liquid-vapor coexistence binodal curves for s=l (•) and 16 (Y). Fulllines 

represent tbe w-tbeory prediction, dotted lines tbe LC tbeory, dasbed lines tbe NRM 

tbeory and dot-dot-dasbed lines tbe Szleifer tbeory. 
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Figure 5.9: Caption is the same as ligure 5.7, but for s=4 (•) and 64 (T). 
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Figure 5.10: Gaption is the sa.me as ligure 5.7, but for s=B (•) and 100 ('f). 

The liquid-vapor binodals calculated from eqs 5.31, 5.16 and 5.18 for the 
Szleifer theory (- - - - - -) are the narrowest of all theories although they are 
wider than those of the Flory theory as shown by Szleifer.26 The figures also 
show that the predicted coexistence curves are located at too high temperatures 
for short chains whereas for higher chain lengths the opposite can be observed. 
The chain conformational correction, embodied in the internal partition func
tion q1(y, T), becomes more important with increasing chain length. In fact, 
for monomers, the Szleifer theory reduces to the Flory theory and the predicted 
coexistence curve is located at too high temperatures. 20 With increasing chain 
length the internal partition function q1(y, T) gains in importance and the pre
dicted coexistence curve shifts to lower temperatures in comparison to the Flory 
predictions. However, increasing the chain length further the infl.uences of the 
internal partition function becomes too strong and already for moderate chain 
lengths, s ~ 16, the predicted coexistence curves shift below the MC simulation 
data. 

In figures 5.12 and 5.11 the density and inverse ofthe reduced critical temper
ature areplottedas a function of chain length. The reduced critical temperature, 
kBT/E = e-1, is plotted versus s-112 + (2s)-1. 

If the FH theory were exact this plot should result in a straight line. Clearly, 
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Figure 5.12: Critica] composition vs cbain lengtb. Notation is tbe same as ligure 5.11. 

all theories and the simulation data show some curvature in this representation. 
In agreement with the discussion on the coexistence curve it can · be observed that 
the Szleifer theory provides too high critical temperatures at small chain lengtbs 
and too low temperatures at large chain length. Consequently the overall slope 
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of the redprocal critica! temperature versus chain length is too small. The chain 
length dependenee of the critical density is shown in figure 5.12. For the monomer, 
all theories predict a critica! density Yc = 0.5 which is a direct consequence of 
the particle-vacancy symmetry on the lattice.20 However, with increasing chain 
length the critica! density is predicted to be too low according to the Szleifer 
theory. 

The predicted liquid-vapor coexistence curves according to the LC theory 
( · · · · · · ) and NRM theory (- - - - -) are quite broad and are located for all chain 
lengtbs at higher temperatures than the MC data. For the smallest chain lengtbs 
(s = 1, 2) the LC theory, eq 5.27, is not applicable and the L-V coexistence curve 
cannot be calculated. Fortheshort chain lengtbs (s = 4, 8) the predictions of the 
LC theory and the NRM theory are somewhat different at the low density side but 
the high density branches coincide. For the larger chain lengths, the differences 
between the LC and the NRM theories become more pronounced. Although 
the two theories still tend to similar results at high densities the differences at 
low densities are quite significant. The LC predictions are closer to the MC 
data than the NRM theory. However, the overall shape of the LC theory is 
quite peculiar, the more so, at higher chain lengths. In figure reffig:criticaltem it 
can be observed the predicted critica! temperature of NRM and LC theories are 
practically identical at smaller chain lengtbs but at higher chain lengtbs the LC 
theory is closer to the MC data. Consiclering the critica! densities as a function 
of chain length (figure 5.12) the NRM theory performs somewhat better than 
the Szleifer theory but the densities remain too smalt. On the other hand the 
critica! densities of LC theory are systematically higher than the MC results. 
Furthermore, a peculiar sudden drop below the MC data occurs for chain lengtbs 
s ;::: 100. For even higher chain lengtbs the predictions of LC theory even drop 
below the Szleifer results. The unconventional behavior of the LC theory (peculiar 
shape of the coexistence curve and the unusual chain length dependenee of the 
critica! densities) has been observed previously and has been attributed to the 
truncated cluster expansion but is not really understood.32 

Finally the w-theory predictions are presented by the full lines. Especially 
for small and intermediate ebains length s ::; 32 the results of the w-theory are 
better than those obtained from the LC theory. For higher chain lengtbs the 
coexistence curves predicted by the w-theory are at somewhat too high temper
atures. However, the broadness of the curves is close to the MC data and no 
peculiar shape as for the LC theory can be observed. Furthermore, the predicted 
critica! temperatures according to the w-theory are similar to those of the LC 
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theory as can be observed in figure 5.11. In figure 5.12 it can be observed that 
the predicted critical densities are in quite satisfactory agreement with the MC 
simulation results. 

5.5 Conclusions 

a. Equation of state 
The equation of state and vapor-liquid coexistence of compressible pure compo
nents have been investigated employing a number of recently published lattice 
theories. The theoretica! results are compared to Monte-Carlo simulation data 
for the lattice model. 

The w-theory accurately prediets the equation of state for all investigated 
densities and pressures. This demonstrates the successful incorporation of the 
chain connectivity in the w-theory. At high densities the LC theory, truncated at 
a certain order, and the NRM theory also give fair predictions of equation of state 
behavior of interacting polymers. At low densities the LC theory and the NRM 
theory show some deviation from the MC simulation data. These deviation can 
be attributed to the limited account of the chain connectivities in bath the NRM 
theory and the LC theory. However, in principle the LC theory can he pushed to 
higher order approximation, thus, providing a route to systematic improvements. 
The Szleifer theory results in poor predictions of the equation of state, certainly in 
comparison with the other theories. It was made plausible that the poor results 
of the Szleifer theory are mainly due to an impraper balance between entropy 
and energy. The theory of Weinhold, Kumar and Szleifer, which incorporates 
the in:fl.uence of the conformational properties also in the combinatorial entropy, 
gives an accurate prediction of the equation of state properties of athermal chains 
virtually indistinguishable from the w-theory. At present the theory is nat yet 
extended to interacting systems. 
b. The Liquid-vapor coexistence 

The Szleifer theory produces narrow binodal curves. The critical density pre
dicted by the Szleifer theory is lower than the MC data and the critical tempera
tures do nat agree with the MC data either. Again the main reason is due to an 

in-balance between entropy and energy. The NRM theory produces toa high crit
ical temperatures and the deviation becomes worse with increasing chain length. 
The critical densities of the NRM theory arealso lower than the MC data but are 
better than those of the Szleifer theory. The LC theory gives an accurate predic
tion for the critical temperature, but produces a peculiar shape of the coexistence 
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curves and an incorrect course of the critica! densities versus chain length. The 
w-theory yields acceptable critical temperatures but not quantitative agreement 
with the MC simulation data. Nevertheless, consiclering the shape of the coex
istence curve and the chain length dependenee of both critica! temperature and 
density, the w-theory provides the best agreement of all theories considered. 
Of course all theories predict classica! critica! exponents and should not be used 
if one is especially interested in the critica! phenomena. However, away from 
the critica! region, thiOl w-theory has proven to be quite successful in prediction 
both the equation of state behavior of homogeneous system as well as the liquid
vapor coexistence. In a subsequent chapter, we will study the equation of state 
and liquid-liquid demixing phase separation of polymer blends via the theories 
stuclied here. 

129 



References 

[1] Dickman, R., Hall, C. K., J. Chem. Phys. 85, 4108, 1986. 

[2] Dickman, R., Hall, C. K., J. Chem. Phys. 89, 3168, 1988. · 

[3] Honnell, K. G., Hall, C. K., J. Chem. Phys. 90, 1841, 1988. 

[4] Yethiraj, A., Hall, C. K., J. Chem. Phys. 95, 8494, 1991. 

[5] Lennard-Jones, J. E., Devonshire, A. F., Proc. Roy. Soc., A 163, 63, 1937. 

[6] Prigogine, I., Bellemans, A., Mathot, V., The Molecular Theory of Solutions. 
North-Holland Publishing Co, Amsterdam, 1957. 

[7] Simha, R., Somcynsky, T., Macromolecules 2, 341, 1969. 

[8] Simha, R., Carri, G., J. Polymer Sci, Polym. Phys. 32, 2645, 1994. 

[9] Nies, E., Stroeks, A., Macromolecules 23, 4092, 1990. 

[10] Nies, E., Xie, H., Macromolecules 26, 1683, 1993. 

[11] Stroeks, A., Nies, E., Macromolecules 23, 4088, 1990. 

[12] Xie, H., Nies, E., Macromolecules 26, 1689, 1993. 

[13] Flory, P. J., Principles of Polymer Chemistry. Cornell University Press, 

Ithaca, 1953. 

[14] Flory, P. J., J. Chem. Phys. 9, 660, 1941. 

[15] Flory, P. J., J. Chem. Phys. 10, 51, 1942. 

[16] Flory, P. J., Proc. R. Soc. London, A 234, 60, 1956. 

[17] Flory, P. J., Proc. Natl. Acad. Sci. U. S. A. 79, 4510, 1941. 

130 



[18] Huggins, M. L., Ann. N. Y. Acad. Sci 43, 1, 1942. 

[19] Huggins, M.L., J. Chem. Phys. 9, 440, 1941. 

[20] Guggenheim, E. A., Mixtures. Oxford University Press, London, 1952. 

[21] Nies, E., Cifra, P., Macromolecules 27, 6033, 1994. 

[22] Cifra, P., Nies, E., Broersma, J., Macromolecules 29, 6634, 1996. 

[23] Wang, S., PhD- thesis, Chapter 4. Eindhoven University of Technology, The 

Netherlands, 1997. 

[24] Honell, K. G., Hall, C. K., J. Chem. Phys. 95, 4481, 1991. 

[25] Computer codes can be requested from Erik Nies by e
mail( tgpken@chem. tue.nl). 

[26] Szleifer, I., J. Chem. Phys. 92, 6940, 1990. 

[27] Weinhold, J. D., Kumar, S. K., Szleifer, I., Europhysics Letters 35, 695, 1996. 

[28] Freed, K. F., J. Phys. A 18, 871, 1985. 

[29] Bawendi, M. G., Freed, K. F., Mohanty, U., J. Chem. Phys. 84, 7036, 1986. 

[30] Freed, K. F., Bawendi, M. G., J. Phys. Chem. 93, 2194, 1989. 

[31] Dudowicz, J., Freed, K. F., Madden, W.G., Macromolecules 23, 4830, 1990. 

[32] Yan, Q., Liu, H., Hu, Y., Macromolecules 29, 4066, 1996. 

[33] Yan, Q., Jian, J., Liu, H., Hu, Y., J. Chem. Ind. Eng. (China) 46, 517, 1995. 

131 



Chapter 6 

Thermodynamic properties of 
compressible lattice polymers: 
A comparison of MC simulation 
data and theories. Polymer 
blends 

6.1 Introduetion 

In the previous chapter we investigated in more detail the predictions of sev
eral theories concerning the thermodynamic behavior of pure components. In 
this chapter the theoretical predictions involving binary mixtures of lattice chain 
molecules are discussed. It should he a matter of course to review the theories that 
have been studied for the pure components. Unfortunately, notall these theories 
have been worked out for mixtures and the extensions to mixtures require fur
ther assumptions which we prefer to leave to the designers of the pure component 
theories. In fact, from the theories considered in the previous chapter only the 
FH and Ruggins theories, the lattice cluster (LC) theory, the non-random mixing 
(NRM) theory and the w-theory have been expanded for mixtures. Hence, in the 
following discussion we are limited to this smaller set of theories. 

We are not only restricted in the number of theories but also in the information 
that can he studied. For the NRM theory and the w-theory we have information 
on the different types of contacts present in the system. For pure components 
the number of different segment contacts in the LC theory could easily he worked 
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out from the internal energy. However, for mixtures the internal energy does not 
suffice to reveal the contributions of the different types of contacts. Hence, in this 
comparison we will also limit the comparison to sheer thermadynamie properties, 
i.e. the equation of state and the liquid-liquid miscibility behavior. Despite these 
strong limitations in theories and in experimental data we feel it is still useful to 
present this comparison. 

The rest of this chapter is organized as follows. In Section 2 we introduce the 
different theories. In Section 3 the thermadynamie conditions are introduced. 
The results for equation of state and the liquid-liquid demixing phase diagram 
are presented in Section 4. Concluding remarks are drawn in Section 5. 

6.2 Modeland theories 

6.2.1 The lattice modelfora compressible polymer blend 

Consider a binary mixture of linear chains, which contains NA sA-mers and N 8 
s8 -mers on a lattice of NL sites, each of volume v•. Thus each A(B) molecule oc
cupies sA(s8 ) consecutive sites on the lattice. The non-covalent nearest neighbors 
are assigned attractive interaction potentials, i.e. -fAA, -eAB and -e88 (eiJ > 0, 
i, j is A or B). The effective interactional parameter < e > and exchange energy 
a W are defined as 

< f >= fAA<f>~ + fBB<f>~ + 2fAB<f>A<f>B 

aW = fAA + fBB- 2fAB 

(6.1a) 

(6.1b) 

The exchange energy a W and the effective interaction < f > are not independent 
but are related according to 

(6.2) 

6.2.2 The Flory-Huggins theory 

The original Flory-Huggins (FH) mean field theory, obtained for the incompress
ible lattice model, provided a rationalization for the frequently occurring UCST 
miscibility behavior in polymer solutions. Later the FH theory was extended to 
compressible systems thus providing a molecular explanation for the occurrence 
of LCST miscibility behavior in polymer solutions and blends. It was found that 
a possible cause for the LCST miscibility is a difference in the compressibility of 
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the mixture constituents.1 

The FH expression for the Helmholtz free energy of a binary polymer mixtures 

reads 

{JNA = (<f>A/sA) ln(<f>A) + (<f>B/sB) ln(<f>B) + 1 - ln(1 y) 
s y (6.3) 

z + (1/s) ln(y)- 2(3 < € > y 

And the equation of state is given by 

(JpV = -~ln(1- y)- (1- ~)- ~(J < € > y 
sN y s 2 

(6.4) 

The Flory-Huggins theory was, and still is, frequently employed to study the 
thermal behavior of polymer solutions and blends. However, in the FH theory 
random mixing on a segmental level is assumed and the long range correlations 
caused by chain connectivity are completely ignored. According to the FH theory 
the equation of state of a binary mixture is identical to that of a single equivalent 
component with an effective chain length, s = (sANA+sANB)/N, and an effective 
interaction parameter < € >. Note that in the case of compressible mixture 
< € > is the appropriate effective energy parameter and not ~ W. It was shown 
by Madden that the latter is the only energy parameter necessary to describe 
an incompressible binary lattice mixture with nearest neighbor contact energies.2 

For compressible mixture the pure component interaction constant fAA and fBB 
are also important. 

6.2.3 The NRM theory 

The NRM theory bas been suggested3, 4 to improve u pon the simple Flory-Huggins 
theory. In essence this theory is the compressible analogue of the quasi-chemical 
theory of Guggenheim for incompressible systems. It was shown that the NRM 
theory indeed gives better agreement with the simulation data for the equation 
of state and liquid-liquid coexistence conditions. 
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The Helmholtz free energy of a binary blend is given by4 

{JA/sN= (ifJA/sA) ln(ifJA) + (ifJB/sB) ln(ifJB) + (1 - y) ln(1- y) + (1/s) ln(y) 
y 

- (
1

- ay) ln(1 ay) (
1
( ~) [2qA ln(qA) + 2qB ln(qB) + 2qh ln(qh) 

~y ~q 

- 2XAB1n(XAB)- 2XAhln(XAh)- 2XBhln(XBh) 

- (qA- XAB- X Ah) ln(qA- XAB- X Ah)- (qB- XAB- X Bh) ln(qB- XAB- X Bh) 

- (qh X Ah X Bh) ln(qh- X Ah- X Bh)] 

- {3(
1

- ay) [éAA(qAfY- XAB- X Ah)+ éBB(qBfY- XAB- X Bh)+ 2éABXAB] 
~y 

(6.5) 

where qi is the external contact fraction (excluding covalent honds) of component 

j, qi = (1-aj)ifJjy/(1-ay) and q = qA+qB, qh = 1-q and a= aAifJA+aBifJB, ai= 
2/ z(1-1/ Sj) is the fraction of intra-molecular cantacts of a segment in an srmer. 

The segmental interaction energies influence the formation of segmental con
tacts and lead to deviations from random mixing. The different types of cantacts 

in a binary compressible mixture are uniquely determined in terms of the con

tact site fractions, qj, and three extra microscopie parameters, XAB, x Ah and X Bh· 
These microscopie parameters are obtained by minimizing the Helmholtz free 

energy, according to 

(6.6) 

The equation of state can be obtained by a straightforward differentiation yielding 

{Jpv* = ln(1- y) _ 
1 
+! + ln(1- ay) 

Y Y s 1Y 
a 1 +- + -[2qA In(qA) + 2qB In(qB) + 2qh ln(qh) 
~ ~ 

- (qA- XAB- X Ah) ln(qA- XAB- X Ah) 

- (qB- XAB- X Bh) ln(qB- XAB- X Bh) 

- (qh- X Ah- X Bh) ln(qh- X Ah- X Bh)- 2XAB1n(xAB) 

- 2XAhln(XAh)- 2XBhln(xBh)] 

- l._[é- (éAA(qAA/Y) 2 + éBB(qBB/Y)2)q] 
~y 

(6.7) 

The NRM theory is quite successful in the prediction of the equation of state 

and phase behavior of pure components3 and polymer blends.4 The residual 
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deviations from MC data that were shown to exist are likely related to the chain 

connectivity and critica! behavior.4 

6.2.4 The w-theory 

The w-theory5 was recently formulated in an effort to introduce the complete 
effect of chain connectivity. As explained in detail in chapter 4, the special 
status of the non-covalently bonded intra-molecular cantacts of a segment and 
the infl.uence of the density and interaction on them was recognized. In w-theory 
the Helmholtz free energy A of a binary mixture is given by5 

f3A/sN = (4>A/sA) ln(4>A) + (4>s/ss) ln(4>s) + (1/s) ln(y) 

- (1/sy) 1Y ln[pe(y', 4>s, T)]dy'- ( 1(~e~) [28A ln(OA) + 28s ln(Os) + 28h ln(Oh) 

- 2XAB ln(XAB)- 2XAh ln(XAh)- 2Xsh ln(Xsh) 

- (OA- XAB- X Ah) ln(OA- XAB- XAh)- (Os- XAB- Xsh) ln(Os- XAB- Xsh) 

(Oh- X Ah- Xsh) ln(Oh- X Ah Xsh)] 

- {3(
1 ~(1 w) [EAA(OA- XAB- X Ah)+ Ess(Os- XAB- X Ah)+ 2fABXAB] 

Ns 
-[«=AA(WA- O!A)cf>A + fBB(Wb- as)cf>s] 

"' 
Pe(Y, cf>B, T) = (1 Y) 8 /(1- w(y, cf>B, T)y)s-l· 

(6.8a) 

(6.8b) 

where w = wA4>A + wscf>B and the external contact fraction Bi is defined as 

1). _ c/>j{1- Wj)y 
1 - (1- wy) 

Oh = 1 - (1 A (1 B 1 - y 
(1- wy) 

(6.9a) 

(6.9b) 

The microscopie parameters, Xij, are obtained by minimizing the Helmholtz free 
energy according to eq 6.6. The equation of state (EoS) of the binary mixture 
can be obtained from the Helmholtz free energy by differentiation with respect 
to volume. Because explicit expressions for the minimization condition and the 
equation of state are quite lengthy they are nat repeated here. 6 The average 
number of intra-molecular cantacts ( covalent and other) of a segment is given by 
zwi. The average is over allsegmentsin the chain and all the conformations that 

136 



the chain may have in the mixture. The Wj for a single athermal chain can be 
extracted from a single chain simulation. From the Wj of a single chain, the intra
molecular contacts ZWJ at certain density and temperature can be calculated. 5 

The exact procedure is outlined in chapter 4 . 

6.2.5 The lattice cluster theory 

The lattice cluster theory formulated by Freed and co-workers7
- 10 is an important 

achievement in the development of the lattice polymer theory. The LC theory 
not only offers a formally exact theory for the lattice model in terms of a double 
expansion intheinverse temperature and the inverse lattice coordination number, 
but also makes it possible to predict the thermadynamie properties of polymers 
with different structures. 

In the first theoretical discussions and practical applications Bawendi and 
Freed limited the cluster expansion to so-called first-order corrections.11 More 
recently, Freed and co-workers defined a second generation LC theory by including 
higher order corrections in the cluster expansion. This second generation LC 
theory was employed for pure components, dealt with in the previous chapter. 
Unfortunately, we have not been able to apply this higher order theory to binary 
mixtures and are forced to adopt the first order LC theory of Bawendi and Freed 12 

In this version of the LC theory, the free energy of mixing is given by 

{JAjNs = <f>A ln(<f>AY) + </>B ln(<f>BY) + 1 - y ln(1- y) 
SA SB Y (6.10) 
+ 901(1- y)<f>A + 902(1- y)<f>B + 912<f>A<f>BY 

where 9ob 9o2 and 912 are known functions of fij and 1/ z, tabulated in Appendix 
B. 

From the Helmholtz free energy the equation of state can be derived 

(JPVjsN = (3Pv* jy = _! 1n(1- y) (1-!) +<!>A 0901 y(1- y) 
y s 8y 

0902 0912 2 
- <f>AY901 + <f>B 8y y(1- Y)- <f>BY9o2 + oy <f>A<f>BY + 912<f>A</>BY 

6.3 Thermodynamic properties 

(6.11) 

The equation of state can directly be put to use in the comparison with MC 
data of homogeneons mixtures. The binary mixture may also possess, for certain 
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condition, a liquid-liquid miscibility gap. The liquid-liquid coexistence curve 
obeys the equilibrium conditions 

Hl - Hll 
~""A -,..A 

Hl - Hll 
I""B -,...B 

pl=p" 

T1 = T" 

(6.12a) 

(6.12b) 

(6.12c) 

(6.12d) 

For the binary mixture the chemieal potential J.ti may be calculated from the 
Gibbs free energy G(= A+ pV) 

8(G/sN) 
J.tA/sA = (GjsN)- cPB acjJB lp,T (6.13a) 

8(GjsN) 
J.tB/sB = (GjsN) + cPA acjJB lp,T (6.13b) 

Eqs 6.12 are completely general; for the symmetrie chain mixtures considered 
in the miscibility study (sA = sB = 30, iAA = iBB) the coexlstence condition 
p,j = p,'j (j =A, B) is also given by 

8(GjsN) I -0 (6.14a) 
84JA p,T-

8(GjsN) I - 0 (6.14b) 
84JB p,T-

In the present calculations we used the simpler conditions, eqs 6.14, insteadof the 
more general equilibrium conditions, eqs 6.12a and 6.12b. For a binary mixture, 
the critieal state is located at the top of the binodal curve and obeys the following 
set of conditions 

(6.15a) 

(6.15b) 

For the symmetrie systems considered here a perfectly symmetrical binodal curve 
is obtained and the critical composition is cPb 0.5. 

6.4 Results and discussions 

Defi.nitely, the mixture theories are applicable to all possible combinations of 
chain lengths. However, so far the available simulation results have been limited 
to one particular combination of chain lengths, i.e. sA = sB = 30. Hence, the 
comparison is also restricted to this particular system. 
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6.4.1 Homogeneaus mixtures. 

In the portrayal of the results we will make use of the effective reduced interaction 
parameter < e > defined by 

(6.16) 

with eii = €ij/kBT. 

The definition of effective reduced interactions, eq 6.16, sterns from the Flory
Huggins theory. According to the FH theory the equation of state of a binary 
mixture is identical to that of a single equivalent component with an effective 
chain length, s = (sANA + sANB)/N, and an effective reduced interaction pa
rameter < e >. 

Deviations from this principle of an effective component have already been 
found in previous studies both in MC simulations and in the NRM theory. For 
instance, it has been demonstrated that the equation of state of the mixture 
explicitly depends on the different interaction constants €AA• €BB• €AB and on the 
mixture composition.4 Also in the present comparison these explicit dependendes 
will become apparent. 

In a first set of calculations we analyze mixtures with a zero exchange energy 
6.W, i.e. 6.W = €AA + €BB- 2€AB = 0. For such mixtures the exchange of AA 
and BB cantacts for AB cantacts is not accompanied by a change in interaction 
energy for the specific contacts. Consequently, for an incompressible system 
there is also no change in internal energy. However, a compressible mixture is 
not only marked by an exchange of cantacts upon mixing but also by a change 
in density, hence, yielding a change in internal energy. The variation in density 
with composition, mainly caused by the pure component interaction parameters 
€AA and €BB. in mixtures having 6.W = 0 are shown in figures 6.1 and 6.2. 
The density is shown as a function of the composition of the mixture (top x
axis) and as a function of the effective interaction parameter (bottom x-axis) 
defined by eq 6.16. The actual values of the individual interaction constants are 
€AA = 0.5, €BB = 0.9 and €AB = 0.7 (figure 6.1) and €AA = 0.5, €BB = 0.7 
and €AB = 0.6 (figure 6.2). The MC simulation data for the mixtures (•) and 
for the pure component ( o) with the same value of the interaction parameter 
are compared to the theoretica! results for the pure component (thin lines) and 
mixtures (thick lines) of the NRM (- - -), the w-theory (--) and the LC 
theory (---- -). If the principle of the effective component would be valid the 
densities as shown in figures 6.1 and 6.2 should he independent of the details of the 
interaction constants and should coincide for mixtures and the pure component. 
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Segment Fraction B 

1.o8·0 0.2 0.4 0.6 0.8 1.0 

0.95 

>- 0.90 

0.85 

0.6 0.7 0.8 0.9 

<e> 

Figure 6.1: Density y as a function of the effective interaction parameter < e > 
(bottom axis) or composition cfJB (top axis) for polymer blends (•) for €AA = 0.5, €BB 

0.9, €AB = 0. 7. For comparison also the density of a pure component ( o) as a function 

of interaction energy e =< e > is presented. The theoretica] predictions for the pure 

component and the mixtures are depicted by thin and thick lines respectively: w-theory 

(solid lines); LC theory (dotted lines) and NRM theory (dashed lines). 

Segment Fraction B 

0.2 0.4 0.6 0.8 1.0 

0.90 

0.85 

0·88.5o 0.55 0.60 0.65 0.70 

<e> 

Figure 6.2: Caption as in ligure 6.1 for eAA = 0.5, eBB = 0.7, eAB = 0.6. 
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Clearly, small but systematic deviations from the effective component principle 
are observed both in the simulations and in the theories. Although we have 
not calculated the 'experimental' uncertainties on the simulation data they are 
thought to be small (about the size of the symbol) and the difference between 
mixtures and pure component are expected to be significant. It can be seen 
that the densities of the mixtures are systematically lower than those of the pure 
component. This is confirmed by all the theories although the effects are much 
smaller. Both NRM and w-theories are much alike in their prediction and are 
dosest to the MC simulation data. The LC theory shows the largest deviations 
from the MC simulation data. 

In figure 6.3 a mixture of fixed composition (<PB~ 0.5) and fixed pure compo
nent interaction constants €AA = €BB = 0.5 is presented. The effective interaction 
parameter is varied in this case by varying the cross interaction parameter in the 
interval [0.5 ~ €AB ~ 1]. 

0.96r-----------------------------------------~ 

0.91 

0.86 

0·8a.5o 0.55 0.60 0.65 0.70 0.75 

<e> 

Figure 6.3: Density y as a function of the etfective interaction parameter < e > for 

polymer blends at tixed components <PB !::: 0.5. The interaction constants eAA = eBB = 

0.5 and eAB(0.5 :::; eAB :::; 1). Fbr comparison also the density of a pure component 

{ o) as a function of interaction energy e =< e > is presented. The theoretical predie

tions for the pure component and the mixtures are depicted by thin and thick lines 

respectively: w-theory (solid lines); LC theory (dotted lines) and NRM theory ( dasbed 

lines). 

In this mixture, the pure component densities are lower than the mixture den
sities. This qualitative trend is nicely confirmed by the NRM theory and the LC 
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theory, although the quantitative agreement for the latter is poor. Surprisingly, 
the w-theory prediets virtually the same density for this pure component and the 
mixtures. At present, it is thought that this is attributed to an improper depen
denee of the intra-molecular contacts with composition and interactions in these 
mixtures. To gain more insight in this discrepancy a further and more detailed 
study is required. 

6.4.2 Liquid-liquid coexistence 

It bas been ascertained that coexistence conditions are quite susceptible to small 
variations in theories and constitute a rather sensitive test for a theory. For in
stance, the critical conditions obey second and third order derivatives of the free 
enthalpy with composition. Hence small differences in the composition depen
denee of the Gibbs free energy may become important in determining the exact 
location of the critical state and hence the complete binodal curve. 

In figure 6.4 the binodal temperatures of the binary mixtures are shown as 
a function of composition at 0 and 30 bar. The critical temperature and hence 

600~------------------------~ 

500 

-~400 .... 
300 

0.2 0.4 0.6 0.8 1.0 

segment fraction B 

Figure 6.4: Binodal temperatures as a lunetion of composition at p = 0 bar ( •) and 

p = 30 bar (•). Prediction according to the w-theory (solid lines), the NRM theory 

( dasbed lines) and the LC theory (dotted lines). 

complete binodals of the LC theory (· · · · · ·) are located approximately lOOK 
too high and the pressure dependenee is obviously too large. The zero pressure 
binodal curve possesses an extremely flat shape and is definitely too broad in 
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comparison with the MC data. The shape of the 30 bar binodal is much closer 
to the correct shape. However, these qualitative changes in binodal shape with 
pressure are not confirmed by the 'experimental' binodal curves. For the MC data 
the application of these moderate pressures only results in a shift of the binodal 
to higher temperatures. Furthermore, both LCT binodals show an almost abrupt 
change in slope at the extremes of the composition scale not in agreement with 
the smoother variation in shape shown by the MC data. Although the zero 
pressure binodal is extremely fiat, it still has the typical mean field parabolle 
shape reminiscent of classic critica! sealing behavior.13- 16 

The binodals according to the w-theory (--) are in excellent agreement with 
the simulation data. Both the predicted temperature location as well as the pres
sure dependenee are in excellent agreement. Nevertheless, the binodal curves are 
still somewhat too narrow and, just as in the case of the LC theory, a typical 
parabolic shape is found in the critical region, the fingerprint of classic critica! 
sealing behavior. For these relatively small chain lengtbs the critical behavior is 
typified by a non classic critica! behavior and the true binodal curves have a more 
cubic shape.13- 16 It was suggested by Sariban and Binder that the extra fl.atten
ing in the critica! region, although the extent of this region was not quantified, 
might also lead to a broadening of the complete binodal curves.13-16 Another, 
or additional, cause for the slightly too narrow binodals is the existence of fl.uc
tuations in the local densities or composition, related to the chain connectivity, 
in the extreme composition regions. It has been shown that such fl.uctuations 
represent an extra destabilization in solutions and blends possibly resulting in a 
broader binodal curve.17-I9 

The results of the NRM theory (-- -) are very similar to the result of the 
w-theory if one is concerned with the shape of the binodal curves. However, the 
critica! temperature and hence the complete binodal curve are located approxi
mately 60 K too high. This higher (critical) temperature leadstoa lower density, 
a higher compressibility and thus a larger pressure dependence. Nevertheless 
compared to the LC theory a gratifying preilietion of the liquid-liquid coexis
tence is obtained. However, in comparison with the w-predictions the agreement 
is rather poor. 

6.5 Conclusions 

The equation of state behavior of homogeneaus mixtures has been investigated 
employing theory and MC simulations. Deviations from the principle of the ef-
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fective component and the effective interaction parameter < e >, valid in the 
Flory-Huggins theory, are found for alltheoriesin agreement with the MC sim
ulation results. 

The LC theory systematically prediets too high densities for all investigated 
mixtures, the more so at smaller values of the interactional parameter < e >. 
The changes in density with variations in composition and in actual values of the 
interaction constants EAA, EBB and EAB are in qualitative agreement with the MC 
simulation results. 
Overall, the NRM theory provides the best agreement with the MC simulation 
data. Both the changes in density with variations in composition and interac
tional constants as well as the absolute values of the densities are in gratifying 
agreement with the MC data. The w-theory is also in good agreement with the 
simulation results for the mixtures with zero exchange energy ilW. In the situa
tion that the interactions favor the formation of cross contacts, the w-theory fails 
to correctly capture the changes in density. It is suggested that this is caused 
by an interplay between the variations in the intra-molecular cantacts due to the 
mixture environment, embodied in w, and the non-random formation of self- and 
hetero-cantacts utilized in the quasi-chemica! approximation. 

The liquid-liquid phase behavior is very accurately predicted by the w-theory. 
The predicted temperature location of the binodal curves and the influence of 
pressure on the liquid-liquid coexistence curve are in excellent agreement with 
MC results. The theoretica! binodal curves are somewhat too narrow at the 
extremes of the composition interval. 

The NRM predictions are qualitatively similar to those of the w-theory but 
are located approximately 60K too high in temperature. Concomitantly, this 
high temperature results in a lower density, a higher compressibility and hence 
a slightly too large pressure dependence. The LC theory binodals and critica! 
temperatures are ca. lOOK too high and hence are very sensitive to pressure. 
Furthermore, the qualitative changes with pressure in binodal shape are not in 
agreement with the MC simulation results. 

To summarize, the w-theory provides excellent predictions of the liquid-liquid 
miscibility behavior and the equation of state behavior of mixtures possessing a 
zero exchange energy ilW. The density of mixtures with favorable cross interac
tions, i.e. Ll W < 0, are not accurately predicted. The cause for this discrepancy 
is most likely related to an interplay between the quasi-chemica! approximation, 
represented by the microscopie parameters Xïj and the chain environment, repre
sented by w. A further and more detailed study of this discrepancy is necessary. 

144 



References 

[1] Lacombe, R. H., Sanchez, I.C., J. Phys. Chem. 80, 2568, 1976. 

[2] Madden, W. G., Pesci, A. I., Freed, K. F., Macromolecules 23, 1181, 1990. 

[3] Nies, E., Cifra, P., Macromolecules 27, 6033, 1994. 

[4] Cifra, P., Nies, E., Broersma, J., Macromolecules 29, 6634, 1996. 

[5] Wang, S., PhD- thesis, Chapter 4. Eindhoven University of Technology, The 
Netherlands, 1997. 

[6] Computer codes can be requested from Erik Nies by e-
mail(tgpken@chem.tue.nl). 

[7] Freed, K. F., J. Phys. A 18, 871, 1985. 

[8] Bawendi, M.G., Freed, K. F., Mohanty, U., J. Chem. Phys. 84, 7036, 1986. 

[9] Freed, K. F., Bawendi, M. G., J. Phys. Chem. 93, 2194, 1989. 

[10] Dudowicz, J., Freed, K. F., Madden, W.G., Macromolecules 23, 4830, 1990. 

[11] Bawendi, M. G., Freed, K. F., J. Chem. Phys. 88, 2741, 1988. 

[12] The second generation LC theory was introduced by Jacek Dudowicz and 
Karl F. Freed. The equations in that paper do not yield the correct thermo
dynamic behavior and do not reduce u pon simplification to the first order LC 
theory. We have discussed these problems with Prof. Karl F. Freed and dr. 
Jacek Dudowicz and have already been able to correct some typing errors in 
the theoretica! expressions given in the original publication. However, includ
ing these corrections the predictions are still not correct. Currently, we are 
still in discussion with dr. Dudowicz about possible problems in the theory. 

[13] Sariban, A., Binder, K., Colloid Polym. Sci. 266, 389, 1988. 

145 



[14] Sariban, A., Binder, K., Macromolecules 21, 711, 1988. 

[15] Sariban, A., Binder, K., Macromol. Chem. 189, 2537, 1988. 

[16] Sariban, A., Binder, K., J. Chem. Phys. 86, 5859, 1987. 

[17] Muthukumar, M., J. Chem. Phys. 85, 4722, 1986. 

[18] Koningsveld, R., Stockmayer, W. H., Kennedy, J. W., Kleintjens, L. A., 

Macromolecules 7, 73, 1974. 

[19] Bates, F. S., Muthukumar, M., Wignall, G. D., Fetters, L. J., J. Chem. 
Phys. 89, 535, 1988. 

146 



Chapter 7 

Outlook: Possible extensions and 
applications 

7.1 PRISM applications 

In the previous chapters we have discussed the influence of the chain connectivity, 
found in flexible linear chain molecules, on the structure and thermodynamics of 
pure and mixed fluids. As a first contribution, a new intra-molecular correlation 
function w!~~ for the isolated chain has been derived. The correlation function 
w!~~ has been inserted in the (lattice)-PRISM theory to obtain the intermolecular 
correlations and the thermadynamie properties of the chain fluid. It was demon
strated that w!~~ and the combination w!~~/PRISM yield predictions closer to 
MC simulation data than the results acquired from anideal chain intra-molecular 
correlation function. However, the suggested approach does not come to meet 
the fundamental problem that for flexible molecules intra- and inter-molecular 
correlations should be determined self-consistently. Such an approach does not 
only require extensive mathematica! manipulations but also important approxi
mations. Only recently, a self-consistent PRISM calculation has been put forward 
and the accuracy of this is a matter of current investigations. 

As an application, the new single chain intra-molecular correlation function 
can be invoked in the PRISM theory to study properties of polymers blends 
and solutions. For these systems the liquid-liquid miscibility behavior can be 
explored. However, in these applications one may anticipate that the mutual 
influence of intra- and inter-molecular correlations will become quite significant 
and a self-consistent PRISM theory is more appropriate. 

Possible further applications of the (P)RISM theory in combination with a 
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predetermined intra-molecular correlation function can be envisioned when the 
intra-molecular architecture is chiefl.y responsible for the observed physical behav
ior. For instance, it may be profitable to investigate in the PRISM concept the 
qualitatively different solution behavior of dendrimers and linear chain molecules 
built of the same chemica! units. 1 Other applications may be found in the ther
modynamics of branched and linear chain molecules and their mixtures. Further
more, the integral equation approach is also very suited to study the behavior 
of chain fl.uids at surfaces. The interfacial predictions of the PRISM theory in 
combination with anideal chain intra-molecular correlation function were shown 
to be quite interesting, although, also in this case, the ideal chain intra-molecular 

correlations limited the quantitative success. With the new correlation function 
w!~~ the study of interfacial problems could yield more quantitative insights. 
Evidently, with some additional computational effects all PRISM development 
presented in this thesis can he extended to off-lattice systems. 

7.2 w-theory 

The other approach that was pursued in this thesis employed insertion proba
hilities to establish the effects of the chain connectivity on the thermodynamics 
and the nearest neighbor structure of polymer :fl.uids. All activity was focused 
on linear :fl.exible polymers and mixtures thereof. A self-consistent prediction of 
inter and intra-molecular contacts was accomplished and the predicted thermo
dynamic properties were found to be in excellent to good agreement with MC 
simulation results. Although, it should be mentioned that the equation of state 
of mixtures with favorable cross interactions were not accurately predicted. Pos
sibly, this is related to a less fortunate 'interaction' between the quasi-chemica! 
approximation and the varlation in the intra-molecular contacts, represented by 
w in the theory. A further and more detailed study of this problem is required. 

Nevertheless, the suggested approach is believed to he sufficiently versatile 
for further applications. As a possible extension mixtures of linear and short 
chain branched polymers, mentioned in the General Introduction, comes to mind. 
Clearly, the insertion probability will depend on the structure of the chain molecule. 
As a first intuitive but, as it turns out, too naive procedure one can collect the 
distribution of the number of intra-molecular contacts in a single branched chain 
simulation and inject this information into the main equations of the w-theory 
presented in chapter 4, eqs 4.41. However, a feasibility study revealed that this 
approach is too simple and the predicted effect of branching on the equation 
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of state of the pure component is opposite to that found in MC simulations. 
It should be appreciated that the different segments in the backbone and in the 
branches of the chain molecule have different 'flexibilities' and a different response 
to density and composition. A more consistent view is to conceive the branched 
polymer as a copolymer of different types of segments. 

This brings us to the more general problem of the thermodynamic properties 
of (random) copolymers. In order to treat such systems the theory must be 
extended to copolymers. In a first step one has to define the insertion probability 
of a copolymer and establish the relation of this insertion probability to the 
chemical composition (distribution). Once this more general frame for copolymers 
is established, branched polymers can be treated in the copolymer theory. 

As an application, the w-theory can be used to predict the thermodynamics 
of polymer solution. Clearly, in this case the chain length of one component of 
polymer blends can be assigned unity. 

The study of interfacial problems is another possible choice. Szleifer outlined 
the procedures to extend his (bulk) conformational theory to interfacial prob
lems.2 Considerations along similar lines can be applied to the w-theory. In this 
way one can investigate the shape, orientation of the molecules and their influ
ence on e.g. the interfacial tension and the width of the interface. Alternatively, 
the present theory could perhaps be of use in the self-consistent field scheme as 
devised by Scheutjens and Fleer.3 Along this path a wide rang of applications, 
paved by these authors, can be explored. Also the w-theory can be extended to 
off-lattice polymer systems. For instance, this can be established by defining the 
off-lattice insertion probability following the work of Dickman, Hall and cowork
ers.4 These authors combined FH-like combinatorial argument with off-lattice 
results for hard sphere or hard dumbbells and derived the so-called Generalized 
Flory theory and dimer equations of state for off-lattice fluids. Similar argument 
can be employed to derive an off-lattice w-theory. Another possible approach to 
off-lattice system is to extend w-theory to the celland holetheoriesas developed 
by Lennard-Jones, Devonshire,5 Prigogine,6 Simha7 and others.8 
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Appendix A 

The tij 's calculated from cluster 
• expans1on 

Curro, Blatz and Pings have derived an approximation for the end point dis

tribution function of an athermal chain in continuons space. Here, we use this 
distribution function to calculate the intra-molecular correlation function of an 
athermal chain on a cubic lattice. For an athermal chain the interaction potential 
of covalently and non-covalently bonded segments are given by eqs 3.2 and 3.3 
with Uattr = 0. The total potential energy e(l, m, n) can be written as the sum of 

pair potentials between covalent honds ( Wii+ I) and non-covalent honds ( Uij) 

s-1 s-2 s 

e(l, m, n) = L Wii+l(l, m, n) + L L Uij(l, m, n) (A.1) 
i=l i=l j=i+2 

The end point (1- s) distribution function on the cubic latticeis given by: 

Zts(l, m, n) = L L L exp(e(l,;;: n)) (A.2) 
l2 ... s-l m2 ... s-l n2 ... s-l 

Making use of eqs 3.2 and 3.3 the distribution function of an athermal polymer 
chain can be written as 

s-1 s-2 s rr c5(rii+l- 1) rr rr (1- hij) (A.3) 
i=l j=i+2 

with hij = 1 - exp( -{3Uij)· The Z1s(r1s) can be presentedas a graph expansion 
with an expansion parameter À. After some manipulation the following expression 
is obtained 

•-3 
-2 

Z~s(rlsi À) = (1 + Àhts) L Çi(rls)Ài 
i=O 
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There are two types of graphs in Z1.(r18 ; >.), i.e. nodal and elementary graphs. 
The function Z1.(r1.; >.) can be written as the sum of the nodal graphs N1.(r1s; >.) 
and the elementary graphs E1s(r1si >.), viz. 

Zls(rtsi >.) = Nts(rts; >.) + E1s(r1s; >.) 
( •;1) 

N1s(r1si >.) = L vi(rt 8 )Ài 
i=O 

( •;1) 

E1s(r1s; >.) = L Ei( ris)>.' 
i=l 

(A.5a) 

(A.5b) 

(A.5c) 

In the theory of fluids an integral relation exists between the nodal and el
ementary graphs given by the well-known Ornstein-Zernike equation. Similarly, 
for the single chain excluded volume problem a (s-1)th-order integro-differential 
equation exists 

la-l,ms-1 1na-1 

s-2 

+ L L Eli(rli; >.)Zis(Tisî >.) 

(A.6) 

As in the integral equation theory of simple fluids, given another (approximate) 
relation between N18 and E 18 , eq A.6 can be solved and the distribution func
tion Z1s can be obtained. An approximation analogous to the Percus-Yevick 
approximation is invoked 

Ei(rls) ~ hlsÇi-l(r~s), 
Eo(rls) = Ço(ris), 
Eo(rls) = 0, 

i 2: 1, 

s 2, 
s 2: 3. 

(A.7) 

Combining eqs A.4, A.5 and A. 7 and putting À = -1 the following equation 
results: 

(A.8) 

where H1s = 1 hls· 
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Substitution of eqs A.8 and A.5 into eq A.6 leads to 

Eq A.9 can be rearranged to 

t1s(r1s) = L ó(r12- 1)tas(r2s)H2s(ras) 

(A.10) 

s-2 
- L L hlitli(rli)Histis(ris) 

i=3 l, ,mi ,ni 

with 

Uij Zij(Tij) 
t,i(rij) = exp(kT)Zij(rij) = Hij (A.ll) 

Eq A.lO is conveniently solved in Fourier space. For a homogeneous system, the 
lattice Fourier transfarm and its inverse are defined as 

](kt, km, kn) = L f(l, m, n)cos(lu)cos(mv)cos(nw) (A.12a) 
l,m,n 

1 111' 111' 111' f(l, m, n) = (
211

Y -1r -1r -11' f(k,, km, kn)cos(lu)cos(mv)cos(nw)dudvdw 

(A.12b) 

Taking the Foutier transfarm of eq A.10, an algebraic recurrent equation is ob
tained. 

iij(k" km, kn) = 2-tJI[tij-l(kt, km, kn)- ti+lj(O, 0, 0)- tij-1(0, 0, 0)] 
s-2 

- L tlk(O, 0, O)[tks(kh km, kn) - tks(O, 0, 0)] 
(A.13) 

k=3 

where -tP =cos( u)+ cos(v) + cos(w). 
Successive applications of eqs A.13 and A.lllead to the following results. 

(A.14) 
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Because the functions tij(l, m, n) depend only on the difference in index of seg
ments i and j, the tij(l,m,n) can he written as tl(l+i-J)(l,m,n). For nearest 
neighhor segments land l + 1, the function tu+l(r1l+1) and the Fourier transform 
are given hy 

iu+l(kl, km, kn) = 2[cos(u) + cos(v) + cos(w)] = 27/J 

1 17f 11f 11f tll+l (0) = (27r )3 -1r -1r -1r 27/Jdudvdw = 0 

For next nearest neighhors l and l + 2 we find 

ill+2(kl, km, kn) = t13(kz, km, kn) = 27/J[t23- t23(0) - t12(0)] 

= 27/J[t( kt, km, kn) - 2tl (0)] = 27/J[27/J- 0 - 0] (27/J )2 

For two segments l and l + 3 separated hy 3 honds the results are 

iu+3(kl, km, kn) = t14(k1, km, kn) 

= 27/J[t24(kl, km, kn)- t24(0)- t13(0)] = (27/J)3- 247/J 

For two segments separated hy 4 honds the t-function are 
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(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20} 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 



(A.26) 

(A.27) 

For two segments separated by 5 honds we obtain 

(A.28) 

(A.29) 

(A.30) 

155 



Appendix B 

The parameters for the Freed 
theory 

The Helmholtz free energy in the LC theory of Bawendi and Freed is given by 

{3AjNs =!.____!ln(1- y) + if>A 1n(if>AY) + if>B 1n(if>BY) 
Y SA SB (B.1) 

+ 901(1- y)if>A + 9o2(1- y)if>B + 9t2if>A4>BY 

The 901, 9o2 and 912 are known functions of eii and 1/ z and de:lîned as 

(B.2) 

Where I.~ is a mean field energetic contributions, Iï} is an energetic contribu
tion due to corrections to the mean field approximation and sii is an entropie 
contribution also arising from corrections to the mean field approximation. The 
expression for I,~, Ii} and sii are given in the Table below 
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f81(y) = z[~- ~y(1- y) + o(e~A)J 

f82(y) = z[~- =?-y(1- y) + o(e~B)J 

( 
2 e2 e2 ) ( 3e2 e2 ) 2 + -eBB - ~+eBBe AB+~ YB+ ~ + ~ - eAAeAB YA 

( 3e1a e
2 

) 2 (3e~A 34a ~ 2 ) ( 3 )] 
4 + ~- eBBeAB YB+ 4 + 4 - 2 - eAB YAYB + o eii 

JJ1 (y) = -eAA( 8
:

1 )(1- y) + o(e~A• eAA/z) 

JJ2(y) = -eBB( s:l )(1- y) + o(etB, eBB/z) 

fl2(YA, YB)= -2eAAC~: 1 )- 2eBBC~;1 ) + 2eABCA;1 + 8~; 1 ) 

+YA[2eAAC!:1
)- eAAC~;1 ) + eBB( s~; 1 )- 2eABC!:1 

)] 

+ YB[2eBBC~;1 )- eBBC~:1 ) + eAAC~:1 )- 2eABC~;1 
)] + o(z-1eii• eti) 

- -1 cs-1)2 1 5(s-1}4+2(s-1)3 -12(s-1)2-12(s-1)+3 
S01 = So2 - 7 - 8- - 3z2 8 4 

_ y -4(s-1)4+2(s-1)3 +12(s-1}2 
_ ~(s-1)4 + o(z-3) 

3z2 ~ ~ s 

Si2(YA, YB)= [(sA-
1]i;ia-l)J2 { -~ + z\[-10 + 

8
}

88 
[(18(sA -1)(sB -1) 

+3i(sA- 1) + 1~(sB -1))YA + (18(SA -1)(sB- 1) + 3i(sA- 1) 

+ 1
3°(sB- 1))YB] -ri[(12(sA- 1)2(sB- 1)2 +16(SA- 1)2(sB- 1) 

sA SB 

+8(sA- 1)(sB 1)2 + 6(sA- 1)2 + 4(sA- 1)(sB- 1) + 2(sB- 1)2)yi 

+(12(sA- 1)2(sB- 1)2 +16(sA- 1)(sB- 1)2 + 8(sA- 1)2(sB- 1) 
+6(sB- 1)2 +4(sA- 1)(sB- 1) + 2(sA- 1)2)y1 + 6(2(sA- 1)(sB- 1) 

+(sA- 1) + (sB- 1))2YAYB]]} 

eii = €ij/kT, Yi = <PiY in this table. 

Table B.1: The energy and entropy correcting parameters of Freed theory for a 
polymer-polymer-void system. 
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Summary 

The infl.uence of chain connectivity on the thermadynamie and structural prop
erties of compressible lattice polymers bas been studied using the lattice polymer 
reference interaction site model (Iattice-PRlSM) and partition function theories. 
The theoretica! results for pure components and mixtures have been compared 
with Monte Carlo simulation data for the same lattice model and with existing 
theories. 

Intra-molecular correlations and PRISM theory 

Ideal intra-molecular correlations 

The application of the lattice-PRlSM theory requires the definition of an 
intra-molecular correlation function for polymer chains. A frequently adopted 
intra-molecular correlation function is based on the ideal freely jointed chain 
model. The established theoretica! results are in rather poor agreement with the 
Monte Carlo simulation data. In particular, the intra-molecular correlations at 
short distauces are overestimated. But, the problems associated with the freely 
jointed chain model become most noticeable in the predicted thermodynamic 
properties. For instance, the compressibility factor of the lattice fl.uid is severely 
underestimated and qualitatively incorrect and unphysical results are obtained 
Furthermore, the calculated liquid-vapor spinoclal curve is located at too low 
temperatures and extends to unphysical packing fractions larger than unity. 

Excluded volume and intra-molecular correlations 

All these discrepancies can be related to the inadequate repre$entation of the ex
cluded volume by the freely jointed intra-molecular correlation function. There
fore, an intra-molecular correlation function w:~ for an athermal chain, that ac
counts for the excluded volume, has been derived, built upon an Ornstein-Zernike 
type of finite difference integral equation. The results of the intra-molecular ex
cluded volume theory compare favorably to the MC data for the single chain. 
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Upon increasing the density, the MC intra-molecular correlations tend towards 
those of the freely jointed chain but, even at the highest investigated densities 
the latter are never reached. Notably, at short distances the correlations remain 
at all densities closer to the w!:~ results. 

The inter-molecular correlations for athermal and interacting ebains at sev
eral densities have been calculated from the combination w!:~/lattice-PRISM. 
For athermal ebains the new results are similar to the predictions based on the 
freely jointed chain model. For interacting ebains the excluded volume theory 
produces better predictions at all investigated densities. The benefits of the new 
intra-molecular correlation function w!~~ are most discernible in the thermody
namic behavior. For instance, a semi-quantitative prediction, void of unphysical 
artifacts, of the MC equation of state data is found. Furthermore, a qualitatively 
correct spinoclal curve is obtained. The estimated critical density compares favor
ably to the critical density estimated from the MC simulation results. However, 
the estimated critica! temperature is shifted upwards. 

Intra-molecular correlations and the partition 
function theories 

The Flory-Huggins theory, derived from the canonkal partition function, is the 
earliest and probably most widely used theory. In this mean field theory the 
excluded volume effect due to the chain connectivity is completely ignored. In 
the present study a new theory, coined w-theory, was developed starting from the 
definition of the insertion probabilities, i.e. the probability to insert a segment of 
the s-mer. The approximate nature of theoretica! insertion probabilities makes 
the partition function and the thermodynamic state functions dependent on the 
particular order of insertion. We therefore define a practically useful insertion 
order which assures that the intensive thermodynamic state functions are func
tions of the appropriate thermodynamic variables, i.e. density, temperature and 
composition. Subsequently, theoretica! insertion probabilities were derived that 
depend on the presence of intra-molecular or self-contacts related to the long 
range excluded volume of the chain molecules. These theoretica! developments 
automatically resulted in a dependenee on density and composition of the number 
of self-contacts. 

Employing the new theory, predictions for compressible pure components 
(equation of state and liquid-vapor coexistence) and compressible binary mix
tures (equation of state and liquid-liquid miscibility behavior) were provided. 
These results were compared to MC simulation results and a number of recently 
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publisbed lattice theories ( conformational theories of Szleifer, of Weinhold, Ku
mar and Szleifer and the Lattice Cluster (LC) theory of Freed and collaborators 
and the Non Random Mixing (NRM) theory). 

Pure components 

Equation of state The w-theory accurately prediets the equation of state for 
all investigated interactions, temperatures and pressures. Also the variation in 
the number of intra-molecular cantacts with chain length, density, temperature 
and/or pressure are successfully predicted. This demonstrates the effective in
corporation of the chain connectivity in the w-theory. Although the NRM and 
LC theories give fair predictions of the equation of state behavior of interacting 
polymers, deviations from the MC simulation data are noticeable at lower den
sities. These deviations can be attributed to the restricted account of the chain 
connectivity in bath the NRM theory and the LC theory. The results of the 
conformational theory of Szleifer, that considers the influence of the chain con
formations on the internal energy, yields rather poor predictions of the equation 
of state. It was made plausible that this is mainly due to an impraper balance 
between entropy and energy. The theory ofWeinhold, Kumar and Szleifer, which 
incorporates the influence of the conformational properties also in the entropy, 
gives an accurate prediction of the equation of state properties of athermal chains, 
virtually indistinguishable from the w-theory. However, the precise dependenee 
of the intra-molecular cantacts on density and chain length are more accurately 
predicted by the w-theory. 

Liquid-vapor coexistence For all investigated chain lengths the Szleifer the
ory produces toa narrow binodal curves with critica! densities and temperatures 
nat in agreement with MC data. Again the main reason is an imbalance be
tween entropy and energy. Better but far from quantitative agreement with MC 
data is provided by the NRM theory. The predicted critica! temperatures and 
densities are systematically toa high and toa small, the more so with increasing 
chain length. The LC theory gives a good prediction for the critica! temperature, 
although for large chain lengtbs a peculiar shape of the coexistence curves and an 
incorrect course of the critical densities versus chain length are calculated. Also 
the w-theory yields good critica! temperatures. Combining information regard
ing the shape of the coexistence curve and the chain length dependenee of bath 
critical temperature and density, the w-theory provides the best agreement of all 
theories discussed. 
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Binary mixtures 

Equation of state The equation of state behavior of homogeneons mixtures 
A/ B show deviations from the principle that a mixture may be modeled by an 
effective, single component with effective interaction parameter< e >= 4>AeAA + 
4>BeBB-4>A4>B~WfkBTwith ~W = fAA+fBB-2fAB· This principle established 
in the Flory-Huggins theory, is not quantitatively confirmed by MC simulations 
or other investigated theories. 

The LC theory systematically prediets too high densities for all investigated 
mixtures, the more so at smaller valnes of the interactional parameter < e >. 
The changes in density with variations in composition and in the valnes of the 
interaction constauts fAA, fBB and fAB are in qualitative agreement with the MC 
simulation results. 
Overall, the NRM theory provides the best agreement with the MC simulation 
data. Both the changes in density with variations in composition and interac
tional constauts as well as the absolute valnes of the densities are in gratifying 
agreement with the MC data. The w-theory yields excellent predictions for mix
tures with zero exchange energy ~W. In the situation that the interactions 
favor the formation of cross contacts, the w-theory fails to correctly capture the 
variations in density. Likely, this is caused by an incorrect balance between the 
variations in the intra-molecular cantacts due to the mixture environment, em
bodied in w, and the non-random formation of self- and hetero-cantacts utilized 
in the quasi-chemical approximation. 

Liquid-liquid coexistence The liquid-liquid phase behavior is accurately pre
dicted by the w-theory. The predicted critica! temperatures and compositions and 
the infl.uence of pressure on the liquid-liquid coexistence curve are in excellent 
agreement with MC results. The NRM predictions are qualitatively similar to 
those of the w-theory but the critical temperatures are located approximately 
60K too high, also yielding a slightly too large pressure dependence. The LC 
critica! temperatures are ca. lOOK too high and are very sensitive to pressure. 
Furthermore, the predicted qualitative changes in binodal shape with pressure 
are not in agreement with the MC simulation results. 
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Samenvatting 

De invloed van de ketenconnectiviteit op de thermodynamische eigenschappen 
en de microscopische structuur van compressiehele polymeren zijn bestudeerd 
met het rooster-'reference interaction site' model en met partitiefunctie theo
rieën. De theoretische resultaten voor pure componenten en binaire mengsels 
zijn vergeleken met Monte Carlo simulatie data voor hetzelfde roostermodeL 

Intramoleculaire correlaties en de PRISM 
theorie 

Ideale intramoleculaire correlaties 

De rooster-PRISM theorie vereist de definitie van een intramoleculaire cor
relatie functie voor de geïsoleerde polymeermolecule. Een zeer gebruikelijke in
tramoleculaire correlatie functie is gebaseerd op het ideale model van de vrij
draaibare keten. De theoretische resultaten, verkregen met dit ideale model, zijn 
niet in overeenstemming met de Monte Carlo simulaties. In het bijzonder de korte 
afstand intramoleculaire correlaties worden overschat. De problemen met de vrij
draaibare keten komen echter vooral tot uiting in de voorspelde thermodynamis
che eigenschappen. Zo wordt de compressiebiliteitsfactor van de rooster-vloeistof 
sterk onderschat en worden zelfs fysisch zinloze dichtheden verkregen. 

Uitgesloten volume en intramoleculaire correlaties 

Alle voorgaande verschillen tussen theorie en simulaties komen voort uit de 
onvolledige representatie van het uitgesloten volume bij het ideale vrij-draaibare 
keten model. Een intramoleculaire correlatie functie w!:~, gebaseerd op een 
Ornstein-Zernike integraal vergelijking, is afgeleid. De resultaten van deze in
tramoleculaire uitgesloten volume theorie zijn in goede overeenstemming met de 
Monte Carlo resultaten voor de geïsoleerde keten. In de gecondenseerde toestand 
evolueren de MC intramoleculaire correlaties met toenemende dichtheid naar die 
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van de ideale keten. De ideale correlaties worden echter nooit bereikt en zeker 
voor korte afstanden zijn de MC-correlaties steeds dichter bij de w!:~-resultaten. 
De intermoleculaire correlaties zijn als een functie van de dichtheid en de tem
peratuur berekend door middel van de theoretische combinatie w!~~/rooster
PRlSM. Voor athermische ketens zijn de nieuwe resultaten gelijk aan de voor
spellingen gebaseerd op het vrij-draaibare ketenmodeL Voor ketens die inter
acties ondervinden is de uitgesloten volume theorie beter voor alle onderzochte 
dichtheden. De voordelen van de nieuwe intramoleculaire correlatie functie zijn 
het best waarneembaar bij het thermodynamische gedrag. Zo wordt bijvoorbeeld 
een semi-kwantitatieve voorspelling van de Monte Carlo simulatie resultaten ge
realiseerd. 

Intra-moleculaire correlaties en partitiefunctie 
theorieën 

In de veel gebruikte Flory-Huggins theorie wordt het uitgesloten volume, 
veroorzaakt door de keten-connectiviteit, volledig verwaarloosd. In dit onderzoek 
is, vertrekkende van de definitie van de insertiewaarschijnlijkheid, de zogenoemde 
w-theorie ontwikkeld. Het benaderend karakter van de theoretische uitdrukkin
gen voor de insertiewaarschijnlijkheid heeft tot gevolg dat de partiefunctie en de 
thermodynamische toestandfuncties afhankelijk zijn van de gedetailleerde inser
tievolgorde. Daarom is een practische insertievolgorde gedefinieerd die er voor 
zorgt dat de thermodynamische toestandfuncties uitsluitend afhankelijk zijn van 
de geschikte thermodynamische variabelen zoals dichtheid, temperatuur en con
centratie. Vervolgens werd een nieuwe theoretische uitdrukking voor de inser
tiewaarschijnlijkheid afgeleid die afhankelijk is van het uitgesloten volume via 
de intramoleculaire of 'eigen'-contacten. Deze theoretische ontwikkelingen resul
teren in een dichtheid en samenstellingsafhankelijkheid van het aantal 'eigen'
contacten. Met de w-theorie zijn voorspellingen gedaan voor zuivere componen
ten (toestandsvergelijking en gas-vloeistof evenwicht) en compressiehele binaire 
mengsels ( toestandsvergelijking en vloeistof-vloeistof ontmenggedrag). De resul
taten zijn vergeleken met Monte Carlo simulaties en verschillende recente roost
ertheorieën (de theorie van Szleifer, de theorie van Weinhold, Kumar en Szleifer, 
de 'Lattic Cluster' (LC) theorie van Freed en medewerkers en de 'Non Random 
Mixing' (NRM) theorie). 
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Zuivere componenten 

Toestandsvergelijking De w-theorie geeft een nauwkeurige voorspelling van 
de toestandsvergelijking voor alle onderzochte waarden van interacties, temper
atuur en druk. Ook de variatie in het aantal intramoleculaire contacten met de 
ketenlengte, dichtheid, temperatuur enjof druk worden goed voorspeld. Hoewel 
de NRM en LC theorie redelijke voorspellingen geven van de toestandsvergeli
jking van polymeren zijn er bij lagere dichtheden systematische afwijkingen van 
de MC simulatie data. Deze afwijkingen kunnen worden toegeschreven aan de 
beperkte bijdrage van het uitgesloten volume in deze theorieën. De theorie van 
Szleifer, die de invloed van ketenconnectiviteit meeneemt op de inwendige energie, 
geeft slechte voorspellingen van de toestandsvergelijking. Dit is toe te schrijven 
aan een overcorrectie van de inwendige energie ten opzichte van de entropie. De 
theorie van Weinhold, Kumar en Szleifer, die ook de invloed van de ketenconfor
maties op de entropie in rekening brengt, geeft een nauwkeurige voorspelling van 
athermische ketens die niet te onderscheiden is van de w-theorie. De afhankeli
jkheid van de intramoleculaire contacten van de dichtheid en ketenlengte wordt 
echter beter voorspeld door de w-theorie. 

Gas-vloeistof evenwicht Voor alle onderzochte ketenlengtes geeft de Szleifer 
theorie te smalle binodale curven en kritische temperaturen: en dichtheden die 
niet in overeenstemming zijn met de Monte Carlo data. Dit wordt wederom 
veroorzaakt door de onvoldoende uitgebalanceerde verhouding tussen entropie
en energiebijdragen. Een betere maar ver van kwantitatieve overeenstemming 
wordt gegeven door de NRM theorie. De voorspelde kritische temperaturen en 
dichtheden zijn systematisch te hoog en dit wordt slechter naarmate de keten
lengte groter wordt. De LC theorie geeft goede voorspellingen voor de kritische 
temperatuur hoewel voor grotere ketenlengtes een onverwachte vorm van de co
existentie curve en een incorrecte kritische dichtheid wordt berekend. Ook de 
w-theorie geeft goede kritische temperaturen. Indien de resultaten betreffende de 
vorm van de coexistentie curve en de ketenlengte-afhankelijkheid van de kritische 
dichtheid en temperatuur worden vergeleken, is de w-theorie de beste keus van 
alle onderzochte theorieën. 

Binaire mengsels 

Toestandsvergelijking De toestandsvergelijking van homogene mengsels ver
tonen afwijkingen van het principe dat een mengsel gemodelleerd kan worden als 
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een effectieve zuivere component met een effectieve interactie parameter < e >= 

</>AeAA + </>BeBB- </>A</>B!:::.W/kBT met !:::.W = fAA + fBB- 2€AB· Dit principe, 
afgeleid uit de Flory-Huggins theorie, wordt noch door de MC simulatie data, 
noch door de andere theorieën kwantitatief bevestigd. De LC theorie voorspelt 
systematisch te hoge dichtheden voor alle onderzochte mengsels. De resultaten 
worden slechter naarmate de effectieve interactie parameter< e >kleiner wordt. 
De veranderingen in dichtheid met variaties in samenstelling en variaties in de 
waarden van de interactieconstanten eAA, eBBen eAB zijn in qualitatieve overeen
stemming met MC simulatie resultaten. In het algemeen komt de NRM theorie 
het beste overeen met de MC simulaties. De absolute waarden van de dichtheid 
alsook de verandering in dichtheid met samenstelling en interactieconstanten zijn 
in goede overeenstemming met de MC data. De w-theorie geeft uitstekende voor
spellingen voor mengsels waarvoor geldt !:::. W = 0. In de gevallen dat de inter
acties de vorming van AB contacten stimuleren is de w-theorie niet in staat de 
variaties in dichtheid correct weer te geven. Waarschijnlijk wordt dit veroorzaakt 
door de incorrecte balans tussen de variaties in intramoleculaire contacten en de 
preferentiële vorming van AA, BB en AB contacten. 

Vloeistof-Vloeistof coexistentie De vloeistof-vloeistof fase-evenwichten wor
den nauwkeurig voorspeld door de w-theorie. De voorspelde kritische tempera
turen en samenstellingen en de invloed van druk op de vloeistof-vloeistof coexis
tentiecurve zijn in uitstekende overeenstemming met de MC resultaten. De NRM 
voorspellingen gelijken kwalitatief op de w-resultaten maar de kritische tempera
turen zijn ongeveer 60K te hoog en vertonen een iets te grote drukafhankelijkheid. 
De LC kritische temperaturen zijn circa lOOK te hoog en zeer gevoelig voor druk. 
Verder zijn de gevonden qualitatieve verandering in de vorm van de binodale 

curve met druk niet in overeenstemming met de simulatieresultaten. 
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Notation 

Symbols 

A 

c(r12) 
cii(r1,r2) 

C(r11r2) 

ê(kz, km, kn) 

Ci; 
C(NA, NB, NL, T, XAB, X Ah, X Bh) 
Gins( NA, NB, NL, T) 

ei; 

<e> 
Es 
Eh 
Jii 
gs(rs) 

g(rll r2) 
G(l,m,n) 
G 
h 

hN 
hsc 

veetors from a given lattice site to the z 
nearest neighbor lattice sites 
Helmholtz free energy 
direct correlation function 
direct correlation function 

between segments i and j 
s x s matrix with elements Cïj ( r 1, r2) 
Fourier transform of C(r2, r2) 

with elements ê(kz, km, kn) 
numbers of contact of a segment 
configurational factor 
configurational contribution which arises 
from the insertion of the chain molecules 
on the lattice 

configurational probability density function 

Eïj/kBT, reduced interaction energy 
effective interaction parameter 
internal energy of pure s-mer 
internal energy of pure holes 
Mayer function 

s-particle correlation functions 
pair distribution function 
total 2-segment distribution function 

Gibbs free energy 
Planck constant 
normalization factor in w-theory 
normalization factor in WKS theory 
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h(r12) 
hi;(rt,r2) 
H(r11 r2) 
H(k1, km, kn) 

'JiN 
kB 
lb 
(l, m, n) 

(kt, km, kn) 
m 

ni;(\11) 

Pi 
p 

f> 
Pi 

Po(v) 
P(1J) 

Pw; ( n;,con, y) 
q 

normalizing factor in the Guggenheim 
expression 
total correlation function 
total correlation function between segments i and j 
s x s matrix with elements hi;(rh r2) 
Fourier transfarm of H(r11 r2) with 
elements h(k~, km, kn) 
Hamiltonian 
Boltzmann constant 
length of a bond 
lattice indices 
Fourier variables conjugate to (l, m, n) 
mass of a partiele 
number of contact pairs of species i and j 
in the lattice contiguration \11 
number of cantacts of an s-mer with solvent molecules 
in conformation v 

total number of neighbors that a chain has with other chains 
or with solvent molecules. 
value of ni; in the case of athermal mixtures 
number of particles or number of chains 
number of particles i or the number of s-mers of component i 
number of solvent molecules or holes 
number of lattice sites 
number of configurations 
momenturn of partiele i 
pressure 
reduced pressure 
chain insertion probability depending on the intensive 
variables of the system 
insertion probability of an effective component 
chain insertion probability depending on the extensive 
variables of the system 
probability of a single athermal chain in conformation IJ 

probability of chains in conformation IJ 

probability distribution of Wj 

inter-segroental contact fraction 
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q,(r/l,T) 
qt 

q 

QN 
rN 

ri 
< r2 > 
s 
Sj 

s 
sh 
Sv 
Spack 

Sconf 

sk 
S(k) 
tij(l, m, n) 
T 
T 
u(ri, rj) 
u(l, m, n) 
UN(rN) 

UN,ext 
v* 

Wii+I(l, m, n) 

LlW 
W(l) 
dWN(rN,pN) 

* x ij 
x 
X(rN) 

<X> 
Xv,m 

external contact fraction of component i obtained from 
NRM theory 
internal partition function 
total number of segmental contact pairs 
wave vector 
configurational partition function 
positions of the centers of mass of the N particles 
position of the ith lattice site or position of the ith partiele 
average squared end-to-end distance 
chain length 
chain length of component j 
entropy 
entropy of pure solvent ( or pure holes) 
entropy of pure s-mer 
configurational entropy 
conformational entropy 
denoting the set of lattice sites occupied by segments 
Fourier transfarm of static structure factor 
auxiliary function in the excluded volume theory 
absolute temperature 
total number of inter-molecular contact pairs 
pair interaction potential between particles i and j 
pair interaction potential on the lattice 
total interaction potential energy 
external field 
lattice site volume 
pair potential between covalently bonded consecutive 
segments i and i + 1 
the Flory-Huggins exchange energy parameter 
probability of choosing a configuration l 
probability to find N particles in phase space volume df N 

value of Xij in the case of athermal mixtures 
value of x that minimizes the Helmholtz free energy 
any function of the coordinates 
average of the configurational function X 

function accounting for the corrections 
arising from the correlations in monomer positions 
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y paclting fraction 
Yc paclting fraction at critical state 
z lattice coordination number 
zaJ average number of covalent contacts of a segment 

in an s-mer 
ZWJ average number of intra-molecular contactsof a segment 

in an s-mer 
zw1 average number of intra-molecular contacts of a segment 

in an s-mer defined by Weinhold at al. 
zOcon intra-molecular contact positions of a segment of an srmer 
zqc number of non-bonded contacts of an s-mer 
zx numbers of contact of AB pairs or the number of contacts 

of segment-vacancy pairs for pure polymers 
canonkal partition function 
intra-molecular contribution to the partition function 
of a single chain 

f3 f3 = 1/kBT 

-y -y=2/z 
df N an element of the phase space volume 
6(ri, rj +a".) Kronecker delta function 

J.Li 
{ 

p 

Ps 
ps(rs) 

(]' = 1, ... 'z 
T 

<Pi 

X pack 

nearest neighbor interaction energy between segments i and j 
intermolecular contact fraction of component i obtained from 
w theory 
compressibility 
de Broglie thermal wavelength 
chemical potential of component i 
a coupling parameter 
number density 
segmental density 
s-particle distribution function 
index for z nearest neighbors 
1-bond-jump probability 
chemical composition of component i 
'interaction parameter' originating exclusively 
from entropie paclting considerations in WKS theory 

't/J =cos( u)+ cos(v) + cos(w) 
a lattice configuration of the chain molecules 
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wintr(k1, km, kn) Fourier transform of the average intra-molecular 

2-segment correlation function 
wintr average intra-molecular correlation function 

wf:ttr intra-molecular correlation function in Fourier space 
obtained from ideal chain model 

w!~~ intra-molecular correlation function in Fourier space 
obtained from excluded volume theory 

w}:;~ intra-molecular correlation function obtained from 
MC simulation 

nintr(rb rz) 

Ö,intr(kt, km, kn) 

Abbreviations 

CBP 
EoS 
FH 
LC 
LCST 
MC 
MSA 
NRM 
oz 
PRISM 
py 

RISM 
UCST 
WKS 

intra-molecular correlation function between 
segments i and j 
matrix with elements wfjtr(rb r2) 

s x s matrices in Fourier transform of Qintr(rbr2) 

with elements wfytr(kt, km, kn) 
total number of allowed lattice configurations 

Curro, Blatz and Pings 
equation of state 
Flory-Huggins 
lattice cluster 
lower critical solution temperature 
Monte Carlo 
mean-spherical approximation 
nonrandom mixing 
Ornstein-Zernike 
polymer reference interaction site model 
Percus Yevick 
reference interaction site model 
upper critical solution temperature 
Weinhold, Kumar and Szleifer 
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