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Abstract

Rapid deterioration of concrete has a major financial impact due to high mainte-
nance costs. In the thesis, we apply the multiscale concept to develop a mathe-
matical framework that can be useful in forecasting the service life of a sewer pipe
made of concrete. Our research focuses on modeling and analysis of multiscale
reaction-diffusion systems taking place in heterogeneous media.

At the pore level, the degradation processes are highly complex and hence
it is very difficult to understand and predict their behavior on macroscopic (ob-
servable) scales. Since the microstructure highly effects the processes in porous
media, we consider two different geometries that are trackable mathematically:
uniformly periodic and locally-periodic arrays of microstructures. We take into
account two different types of reaction-diffusion scenarios: (i) microscopic sys-
tems posed at the pore scale and (ii) distributed-microstructure systems which
contain information from both scales (micro and macro). We show the well-
posedness of the microscopic systems and apply both formal and rigorous ho-
mogenization techniques to derive the corresponding upscaled systems together
with explicit formulae for the effective transport and reaction constants. As a
next step, we prove convergence rates measuring the error contribution produced
while scale bridging to assess the quality of our averaging strategy.

Besides from the homogenization context, we treat the solvability of reaction-
diffusion systems in micro-macro formulation and we also perform preliminary
multiscale numerical computations. We compute numerically the pH profiles and
use them to detect the presence of free boundaries penetrating the uncorroded
concrete. We also compare numerically the influence of a large mass-transfer
Biot number Bi™ connecting in the limit Bi™ — oo two different distributed-
microstructure models.

This thesis sets up a framework which can turn out to be helpful for further
investigations of more practical nature like the estimation of corrosion rate and
the life span of the material.
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Chapter 1

Introduction

This thesis deals with the derivation and analysis of a class of multiscale models
which arises in the modeling of the chemical concrete corrosion of sewer pipes
with sulfuric acid (the sulfatation problem), see Section 2.1 for a detailed state-
ment of the engineering problem. We describe the evolution of the corrosion by
means of partly-diffusive semilinear reaction-diffusion (RD) systems. We con-
sider two different RD scenarios: (i) a microscopic model which is defined at
the pore scale and (ii) a distributed-microstructure model which incorporates
transport (diffusion) and reaction effects emerging from two separated spatial
continuum scales (microscopic and macroscopic). For both scenarios, the con-
crete is seen as a composite material with complex chemistry involving multiple
spatial scales. This fact urges the need of upscaled model derivation based on
the relevant processes taking place at the pore scale. On the modelling level, we
pay special attention to two specific features:

e non-equilibrium transfer of hydrogen sulfide (H5S) from the air to the water
phase (and vice versa);

e production of gypsum at microscopic solid-water interfaces.

We model the transfer of HoS by means of Henry’s law, while the production of
gypsum is incorporated by a non-standard non-linear reaction rate. These two
physico-chemical mechanisms couple our RD systems in a weak fashion.
Having as departure point a microscopic reaction-diffusion scenario, we con-
sider two different geometries for the microstructures: uniformly-periodic and
locally-periodic arrays of cells covering the macroscopic part of interest, see
Section 2.2.3 for a discussion on possible choices of microstructures that can
be treated by mathematical tools. After applying homogenization techniques,
the next steps are: (i) obtain convergence rates for the averaging strategy and
(ii) design efficient multiscale numerical approximations. Here we focus on (i)
and correspondingly look for corrector estimates for concentrations and their
fluxes, while we postpone the design of multiscale numerical approximations for
a later stage. Here we propose a preliminary study: we use microscopic infor-
mation [taken e.g. from a well-posed (distributed-)microstructure model] and
use it to approximate numerically macroscopic pH profiles. The hope is that
[in the region| the pH profile will decay significantly and indicate herewith the
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approximate position of the propagating sharp corrosion front. We also plan
to investigate numerically the effect of a large mass-transfer Biot number BiM
connecting in the limit Bi™ — oo two different RD scenarios: one with a micro-
macro transmission condition and the other with matched boundary condition’.

The sulfatation problem [as we consider it here| was originally proposed to
the mathematical community by M. Béhm et al. in [23] (see also the subsequent
papers [72, 73]), where the authors adopted a macroscopic moving-boundary
modeling strategy to capture the macroscopic corrosion front penetrating the
pipe. We adapt some of their modeling ideas to construct our microscopic mod-
els discussed in the forthcoming chapters. Essentially, we are interested in de-
termining the evolution of the chemical species active in the following reaction
mechanisms:

10H" 4+ SO, 2 + org. matter — HyS(aq) + 4H,0 + oxid. matter (1.1)
HyS(aq) +20, — 2H' +50;2 (1.2)

HyS(aq) = HaS(g) (1.3)

2H,0 + H' + 80,2 + CaCO3 — CaSOy - 2H,0 + HCO3 (1.4)

The practical (engineering) interest is in estimating the service life (the dura-
bility) of the material. Our interest lies more on the mathematical side of the
problem. We wish to derive reliable well-posed and computable multiscale mod-
els for the prediction of the corrosion propagation. To this end, we take the
followings steps:

1. We develop microscopic and distributed-microstructure models for (1.1) -
(1.4).

2. We derive multiscale models via formal and rigorous homogenization.
3. We ensure the well-posedness of our proposed multiscale models.

4. We address the question “How good our averaging technique is?’ and ob-
tain corrector (error) estimates.

5. Based on microscale information, we indicate using pH profiles the ap-
proximate location of the corrosion front propagating in the uncorroded
concrete.

6. We illustrate numerically the behavior of the distributed microstructure
model in the large-mass transfer Biot number limit.

By achieving the above steps, we prepare a possible framework which can be
helpful to explore further investigations of more practical nature like corrosion
rate and life span of the material. The next natural step would be to explore in-
tensively numerical multiscale techniques able to deal with our problem. Efficient
numerical multiscale methods need to be combined with parameter identification
strategies in order to bring our approach towards quantitative predictions.

IThe terminology matched boundary condition is due to R.E. Showalter (see Chapter 9 in
[67]) and micro-macro transmission condition is due to M. Neuss-Radu and A. Muntean [101]
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1.1 Synopsis of the thesis

Each chapter deals with distinct aspects of the problem. The thesis is structured
in the following fashion:

Chapter 2 is devoted to the modeling of concrete and its chemical corrosion
by sulfate attack. We describe the corrosion scenario and refer to some of the
related engineering and mathematical literature. We review the possible shapes
of microstructures that can be treated by mathematical tools. We present the
modeling of various aspects concerning sulfate corrosion needed to build micro-
scopic and distributed-microstructure models.

In Chapter 3, we apply formal asymptotic homogenization techniques to the
microscopic model proposed in Chapter 2 defined for a locally periodic array of
microstructures. As a result of this, we obtain both effective and distributed-
microstructure models depending on the precise scaling in e (the geometric pa-
rameter).

Chapter 4 is devoted to the analysis of a microscopic model and the rigor-
ous derivation of the corresponding upscaled system. The microscopic model is
defined here on a uniformly periodic domain. We use the notion of two-scale
convergence in the sense of Allaire and Nguestseng [8] to explore the homoge-
nization limit and derive upscaled equations together with explicit formulae for
the effective diffusion coefficients and reaction constants. Due to the nonlinear
ordinary differential equation (ode) defined at the solid-water pore boundary,
we need to employ periodic boundary unfolding technique to pass to the limit
e —0.

The issue regarding the quality of the upscaling is treated in Chapter 5. To
ensure a correct averaging, we estimate from above the rate of the convergence
for the averaging procedure. The main ingredient is the periodic unfolding pro-
cedure.

In Chapter 6, we show the solvability of the distributed-microstructure sys-
tem introduced in Chapter 2. We ensure the positivity and L°°—bounds on
concentrations, and then prove the global-in-time existence and uniqueness of a
suitable class of positive and bounded solutions that are stable with respect to
the two-scale data and model parameters.

In Chapter 7, we compute numerically the typical macroscopic pH profiles
and indicate with their help the position of the corrosion front penetrating
the uncorroded concrete. We also explore numerically the way in which the
macroscopic Biot number Bi™ connects two reaction-diffusion scenarios with
distributed microstructure.

In Chapter 8, we present the conclusions of the thesis and list possible future
research directions.

The chapters begin with a brief presentation of the subject matter. There we
explain how the topic relates to those in previous and subsequent chapters. The
discussion on the multiscale representation of the domain and the presentation of
the sulfate corrosion models are given in Chapter 2. All the chapters excepting
Chapter 8 end with a section entitled “Notes and comments”. This section
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includes brief comments on topics that selectively complement the chapter. The
choice of the topics is based on personal taste. This section is the place where
we collect a few research ideas, open problems and methods of analysis in simple
(often pathological) cases, rather than on pursuing each problem to its limit.
Some additional references to related matters are also added. The ”"Notes and
comments” sections are not essential for the logical understanding of the text.
References to the literature are listed at the end of the thesis. The numbering
of theorems, lemmata, formulae, etc. is made for each chapter separately. We
explicitly state when a reference is made to the current chapter or to a different
one.



Chapter 2

Modeling Concrete and its
Chemical Corrosion by Sulfate

Attack

This chapter is devoted to the formulation of the balance equations governing
sulfate corrosion processes induced by the aggressive penetration of sulfate ions
in the material and to the multiscale representation of the concrete.

This chapter is organized as follows: In Section 2.1, we describe the details
of the sulfatation problem (involved chemistry, transport processes, adsorption-
desorption mechanisms, Henry’s law, etc.) and refer to some of the relevant civil
engineering and multiscale mathematical literature. In Section 2.2, we specify
the multiscale representation of the concrete material we have in mind. In Sec-
tion 2.3, we present the modeling of the processes arising in the sulfatation of
concrete. In Section 2.5, we present our microscopic mathematical model. We
conclude the chapter with further directions and open problems concerning the
modeling part. The main results in this chapter consist of the formulation of
the microscopic system posed at the microscale and distributed-microstructure
models modeling concrete corrosion.

2.1 Description of the problem

Before going into the actual mathematical problem we are interested in, we
present the physico-chemical scenario responsible for the degradation of me-
chanical properties of concrete pipes. Here, we also review some of the relevant
engineering literature.

2.1.1 Physical Background

Among the different chemical corrosion mechanisms of concrete sewer pipes, the
most important and severe one is the biogenic sulfuric acid corrosion, a corrosion
process caused by biologically produced sulfuric acid that is able to rapidly de-
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stroy the concrete [115]. Hydrogen sulfide (H»S), originates from sulfide minerals
by natural acidification. It is released under certain conditions by the action of
the anaerobic (non-air breathing) sulfur-reducing bacteria (e.g., Desulfovibrio)
in partially saturated concrete pipes. The active micro-organisms, residing in
the biofilm coating the surface of the sewer pipes, reduce the oxidized sulfur to
hydrogen sulfide gas HoS(g) [108]. Hydrogen sulfide goes upwards the air, see

Sewer Surface

Air-Water interface
Sewer Atmosphere

Bulk wastewater Biofilm

sewer pipe

FIGURE 2.1: Cross section of a sewer pipe with dissociating HaS from wastewater

Fig. 2.1, and enters the concrete structure where it diffuses and then dissolves
in the stationary water film in the pore matrix. The back and forth transfer
of hydrogen sulfide is a repeated process, see [14]. The dissolved HaS(aq) is
catalyzed by many thiobacilli, (aerobic bacteria) such as Thiobacillus Thiooxi-
dans, Thiobacillus Neapolitanus and Thiobacillus intermedius that grow on the
concrete surfaces. The catalysation results in sulfuric acid H,SOy4. Sulfuric acid
is very aggressive and reacts quickly with calcium carbonate present in the con-
crete. The chemical mechanism gives gypsum (CaSOy - 2H50) which has a very
low structural strength. This process destroys the concrete by degrading the
mechanical properties of the material. The basic chemical mechanisms are:

10HT 4+ SOZ2 + org. matter — HyS(aq) + 4H20 + oxid. matter
HyS(aq) + 20, — 2HT + 50,2
HyS(aq) = H2S(g)
2H,0 + H' 4 80,2 + CaCO3 — CaS0, -2H,0 + HCO; .
The air-water transfer process is a crucial step largely dependent on the dissoci-

ation process because of the existence of the acid-base equilibrium of HsS. The
dissociation process highly depends on the temperature, pH, and conductivity
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[146]. In relatively hot environments, the biological activity is faster than usual.
This causes an increased utilization of oxygen and production of sulfide [74]. The
slow turbulence of the flow helps perhaps in producing the thick diffusive bound-
ray layer above biofilms which stops the transportation of the organic matter
and nutrients to the biofilm, see [70]. H2S is a weak acid having a dissociation
constant of 7.0 (at 20°C). Typically the pH of the wastewater decreases, while
the concentration of hydrogen sulfide increases in a sewer atmosphere.

2.1.2 A brief literature review

The problem of chemical corrosion of concrete is extensively studied since past
few decades. For detailed literature studies concerning the corrosion processes in
concrete, the reader is referred to the dissertation of Jensen [74] and the literature
cited therein. For the description of the corrosion in concrete generated by
bacteria, [23, 75, 141, 107] e.g. are key references. Our main reference sources for
acid attack on concrete are [94, 17, 18, 129, 81, 133, 134]. We particularly like [17]
for the clear exposition of the phenomenology [for the enumeration of the main
mechanisms influencing acid corrosion]. Standard reference works concerning
cement chemistry are the monographs [66, 131]. There is a lot of research done
in order to estimate the service life of the concrete pipes in sewer networks,
see [81, 129]. For the modeling of damages in cement materials subjected to
sulfate attack; see e.g. [133, 134]. In the corrosion process, the bacteria play an
importance role [114]. Parker reported for the first time the microbial analysis
of the concrete corrosion product, see [113, 115, 116].

From the modeling point of view, we are very much inspired by [23] [see
also the subsequent papers [72, 73]], where the authors adopted a macroscopic
moving-boundary modeling strategy to capture the macroscopic corrosion front
penetrating the pipe. We adapted some of their modeling ideas to construct the
microscopic model discussed in this chapter.

On the mathematical side, [24, 25] are concerned with the well-posedness and
uniqueness of the global weak solutions for a moving boundary problem arising
in the corrosion-modeling of concrete. At the technical level, we essentially use
formal asymptotics techniques for both the periodic and locally-periodic homog-
enization. We refer the reader to [12] for a discussion on uniform descriptions
of heterogeneous media. For the formal homogenization in uniformly periodic
medium, see, for instance, [22, 35, 39, 31, 69, 117, 120, 128]. For detailed studies
on the formal homogenization for uniformly period domain, we refer the reader
to [79, 139, 49]. Concerning the formal homogenization in locally periodic media,
we refer the reader to [19, 30, 32, 31, 84, 140].

For the rigorous passage to the homogenization limit (cf Section 4.5), there
are many techniques available for the treatment of uniformly periodic setting.
For studies concerning the two-scale convergence, see [8, 68, 69]. In particular,
[10, 36, 104] are good references to treat the boundary terms. The paper by
Marciniak et al. is closely related to our scenario [83] where they pass to a two-
scale limit in combination with a periodic boundary unfolding technique. As
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an illustration of what one can do with such a multiscale methodology, Ray et
al. in [126] perform periodic homogenization of a non-stationary Nernst-Planck-
Poisson system for various choices of scaling in e.

It is worth noting that, since it deals with the homogenization of a linear
Henry-law setting, the paper [124] is closely related to our approach. The major
novelty here compared to [124] is that now we pass to the limit also in non-
diffusive objects, namely in nonlinear ordinary differential equations posed at
the inner water-solid interfaces - the place where corrosion localizes.

The standard references for the periodic unfolding technique are [34, 36, 38,
110]. Particularly important for us are the papers by Cioranescu and Damlamian
[36, 38, 46]. Griso shows in his papers that it is possible to calculate the rate of
convergence using the periodic unfolding technique requiring at the same time
less regularity assumptions on the data; the important references are [59, 60].
Also, Onofrei presents error estimates for the periodic homogenization of elliptic
equation with non-smooth coefficients [111].

Two-scale models have grasped a lot of attention in recent years as they ap-
proximate better physical features of scale-separated systems defined in porous
media. For more information on the modeling, analysis and simulation of two-
scale scenarios, we refer the reader to [88, 87, 89, 101, 105, 140, 124, 135]. For in-
stance, in [105], the authors present the well-posedness of a two-scale model aris-
ing in the context of concrete carbonation. [136] deals with the well-posedness of
a quasilinear generalization of the matched microstructure model. In [100], the
authors prove the rate of convergence for a two-scale Galerkin scheme in the case
when both the microstructure and macroscopic domains are two-dimensional.
The proof includes two-scale interpolation-error estimates and an interpolation-
trace inequality. A semi-discrete finite difference multiscale scheme is presented
in [29] and authors prove two-scale energy and regularity estimates. Kouznetsova
et al. deal with multiscale computational homogenization, see [42, 43, 76, 58] —
a tool which fits well to computing distributed-microstructure models.

The work by Natalini and co-workers is related the restoration of national
monuments corroded by the same reaction mechanism, see [3, 41, 61, 62]. Be-
sides sulfatation, there are mechanisms that affect the durability of concrete
based materials. A prominent example is the carbonation process. [95] deals
with analysis and simulation of the free boundary problems modeling concrete
carbonation. In [121], the author derives different upscaled systems describing
concrete carbonation depending on the choice of the scale parameter. S. Meier
not only obtains distributed-microstructure models as homogenization limits,
but also emphasizes their role as stand-alone modeling technology; see [86]. For
literature treating carbonation problems mathematically, see e.g. [4, 88, 97, 98].
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2.2 Modeling concrete. Geometry. Multiscale
representation

2.2.1 What is concrete?

Concrete, a chemically-active porous medium', is a composite construction ma-
terial composed of aggregate, cement and water, see Fig. 2.2. The aggregate is
a mixture of coarse gravel or crushed rocks such as limestone, or granite, along
with a finer aggregate such as sand, see Fig. 2.3.

FIGURE 2.2: A zoomed in concrete surface exposed to sulfate corrosion showing the
ingredients of the material (aggregates, fissures,...). Courtesy of Dr. R.E. Beddoe (TU
Miinchen).

FIGURE 2.3: A magnification of inner side of concrete. Courtesy of Gordon Muir
(Institute of Technology Sligo).

LA porous medium is a material containing pores. The portion of the skeleton is often
called the “matrix”, while the pores are holes typically filled with a fluid (liquid or gas).
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Cement is a binder that sets and hardens, and is characterized as hydraulic
or non-hydraulic. Hydraulic cement (e.g. Portland cement) hardens because
of hydration reactions that occur independently of the mixture’s water content.
Non-hydraulic cements (e.g., gypsum plaster) must be kept dry in order to retain
their strength [131].

In this thesis, we are focusing on cement-like materials in which hydraulic
cement is used (their chemistry is simply easier). When the mixture is solidified,
it forms a definite porous structure. In spite of the complex structure, concrete
as well as cement paste are mechanically well-understood.

2.2.2 Basic Geometry

We consider a concrete block from a sewer pipe that is exposed to the hydrogen
sulfide gas in the sewer atmosphere. We denote this macroscopic block by €.
This is the place where corrosion processes are supposed to happen. To illustrate
such a domain 2, Fig. 2.4 points out a cross-section of sewer pipe [with hydrogen
sulfide gas moving to the crown of the pipe] and a magnification of a concrete
piece. Such a material has three phases, namely, water, air and concrete matrix.
The diameter of a sewer pipe is in the range of 8 — 144 inches and the wall
thickness is about % of the diameter. As porous material, the concrete has a

L LR
1

FIGURE 2.4: A cross-section of a concrete pipe linked to a zoomed in part. This
zoomed in part is defined here as Q.

solid matrix (pore skeleton) and voids (pore space). We denote the solid matrix
(which is initially uncorroded) and the pore space by Qg and 12, respectively.
Since the concrete in the sewer pipe is partially saturated, the void space {215 has
two further non-overlapping parts 1 and 5. Q; consists of the water-filled part
of 12, whereas Q5 is filled by air in the 2. There are two interfaces among the
different phases: I'; represents the interface between solid matrix and water,and
the interface between water-filled part and air-filled part is denoted by I'y. There
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is no interface (i.e. no contact) between g and Q5. We have
Q= Q()UQlQ, Qo = UQQ, 9109229, QOQQH:@a

Fl = 890 N an, FQ = 891 N 892

The compounds of the aggregate have different shapes defining a local porosity.
Due to the aggressiveness of the chemical reactions, the material ends up to
deviate from a constant total porosity. The important source of porosity in
concrete is the ratio of water to cement in the mix [143, 144]. Usually the
concrete has a porosity around 5-6%. The total porosity? ¢ is defined as the
ratio of the volume of the pore space, which we denote by |2;2], to the volume
|| of the whole concrete block. In the similar way, we define air-, water- and
solid- fractions

= Q12|

_ 1]
L |Q‘ I ¢1

_ ]
. |le|a ¢2

_ Q0]
. |Q]2| ¢0

= , (2.1)
€
where || is the volume of the water-filled part of the pore space, || is the
volume of the air-filled part of the pore space, while Q| denotes the volume of
the solid matrix. It holds that ¢ + ¢» = 1 and ¢p1 + ddo + ¢o = 1.
The initial porosity of concrete can be defined by

Rw Lo

(5.: c Pw
' Pc o Pc ’
R%pw—’—Rzpa—i_l

where Rx and Re denote the water-to-cement and aggregate-to-cement ratios,
whereas pq, p, and p, are aggregate, water and cement densities, respectively;
see e.g. [112]. We take the volume concentrations to be measured in unit mass
per unit volume, namely M L3, and the surface concentrations in unit mass per
unit area, i.e. ML™2.

2.2.3 Multiscale representation of concrete

The precise structure of the concrete is far too complex (see e.g. Fig. 2.2) to
be described precisely. Here, we consider two simplified microstructure models
that can be handled successfully: (i) uniformly periodic, and (ii) locally periodic.

2.2.3.1 Uniformly-periodic approximations

We assume that the geometry of the porous medium 2 consists of a system
of pores. The exterior boundary of €2 has of two disjoint, sufficiently smooth
parts: 'V - the Neumann boundary and I'” - the Dirichlet boundary. The

2Since 13 is the total pore space, regardless of whether the pores are connected, or whether
dead-end pores and fractures are present, the porosity ¢ is referred to as total porosity, see
[16].
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reference pore, say Y, has three pairwise disjoint connected domains Yy, Y7 and
Y, Wit_h sm_ooth_boundaries I'; and Ty, as shown in Fig. 2.5 (right). Moreover,
Y = YO U Yl U }/2

ﬁ <> .7 - |

ik J& Y Y1

0000“
e0o00"°’
0000°,
e000"*’

FIGURE 2.5: Left: Uniformly periodic system of pipes covering a macroscopic
concrete block €. Right: Basic pore configuration.

/
FIGURE 2.6: Left: Uniformly periodic system of micro-tube. Right: Reference
pore configuration.

%

%ﬁ

/[

Let € be a sufficiently small scaling factor denoting the ratio between the
characteristic length of the pore Y and the characteristic length of the domain
Q. This is the geometric definition of the scaling factor £ (that we assume to
be small). In Chapter 3, we will give another definition of & based on reaction
characteristic times.

Let x1 and x2 be the characteristic functions of the sets Y7 and Ya, respec-
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tively. The shifted set Y} is defined by

3
YF=Y1 4> kjej for k= (k1 ko, ks) € Z°,
j=0

where e; is the unit vector along the §t cartesian axis. By construction, Y} is
translation symmetric. The union of all shifted subsets of Y;* multiplied by &
(and confined within §2) defines the perforated domain ¢, namely

05 = |J {eVF |evf ca)
keZ3

Similarly, 5, I'f, and T'§ denote the union of the shifted subsets (of Q) Y, '},
and T4 scaled by . Furthermore, denote

vi=JWrkez?y, vy =W kez?)

Uy:= | Jr5:kez’}, T7=J{T}:kez’)

An example of uniformly periodic approximation of the domain €2 is given in
Fig. 2.6. A few more examples of uniformly periodic approximations are given
e.g. in [35, 83, 104].

2.2.3.2 Locally-periodic approximations

It is possible to stay away a bit from the periodicity assumption by considering
locally periodic examples of microstructure in porous media. In other words,
the “periodic” pattern is allowed to vary slightly from pore to pore. A domain
having locally periodic microstructure is one whose material coefficients (e.g.,
diffusion coefficient and reaction constants) vary (in space) at the microscopic
scale level. This variation is locally periodic in the sense that, around each point
of the domain, the material coefficients vary rather fast. An example of locally
periodic covering is shown in Fig. 2.7.

In the locally-periodic setting, one represents the normal vector n® to the
“oscillating” internal boundaries of the perforations in the form suggested, for
instance, in [19, 32]:

n®(x,y) == n(x,y) +en’(z,y) + O(), (2.2)
where
~ L VyP(x,y)
U Y) =15 Pl y) (23)
and
VIP($,y) V,;P(x,y),VyP(x,y)

n'(x,y) = ~, Py VyP(z,y)

IVy Pz, y)I°
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Here y = £ and the generic surface P(x,y) which describes the interfaces® I'§
and I'§, respectively. is assumed to be a l-periodic function in the variable y
and sufficiently smooth with respect to both variables x,y. The function P(z,-)
is assumed to be explicitly given for each = € €.

Note that in Fig. 2.7, the most inner part representing solid matrix is not
connected to the outer part which is the air-filled part, whereas the air-filled part
connects the neighboring pores. A 3D domain with locally-periodic covering is
shown in Fig. 2.8. Now all the phases of the material are now connected.

Q
o (o]
Lo o]
o Lo

FIGURE 2.7: Locally periodic perforations with disconnected phases.

%

® e

FIGURE 2.8: Locally periodic domain with varying microstructure.

31“? and I'§ denote the same class of objects as those defined in the periodic setting with
the same name, but now the uniformly periodicity assumption is replaced by local periodicity.
The same statement holds for Qf and 5. This notation emphasizes the strong dependence of
the geometry on the parameter x.
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We define the set ijk as the water-filled part in the unit pore Y%* 4, j, k € N.
The vertices of the scaled pore Y¥* are (£,5,£) +e(i + a1,j + az, k + a3) with
i,7,k € N fixed and a1, az, az taking values 0 or 1. The center of the cube has
coordinates e(i+1,j 41, k+1), [53]. The union of all subsets of ¥;* multiplied

by e defines the perforated domain

0= |J {7 |evF c )
i,7,kEN

Similarly, 95, I'S, and T'§ denote the union of the subsets (of Q) T/* V7% and
I'/" multiplied by . Furthermore,

V=g ke Ny, Yy = {970,k e NY
D= gk €Ny, Ty o= {04,k € N

Further examples of locally-periodic approximations are given, for instance, in
[15, 26, 125].

2.2.3.3 Two-scale approximations

We consider a uniformly homogenous (i.e. with no apparent substructure) block,
but when zoomed into a point, a certain microstructure can be seen. We intro-
duce this way a continuous distribution of cells representing the microstructures
of the medium. The precise form of the microstructure depends on the macro-
scopic position z € €. Let Y , represent the structure of the solid matrix within
a local neighborhood of that point (see Fig. 2.10). Likewise, Y7 , Y , represent
the parts of the pore space occupied by water and air. Y, splits up into three
parts

Y = ngz U YLI U ng for all z € Q,

which are disjoint except at the boundaries. In our situation, we assume that
the pore air, pore water and solid matrix are connected. Moreover, we denote by
' :=0Y1,N0Yy, and I'y 5 := Y] 5 N IY> , the interfaces between the water
phase and the solid matrix, and between the water and air phases, respectively.
The information within each cell is described independently with respect to what
happens at the macroscale. The solution of the problem posed in the cell Y, is
coupled via 0Y, to the macroscale €.

In this thesis, when talking about two-scale domain we restrict ourselves to the
case when each point x € € is zoomed and a fixed microstructure is seen. For
further examples of two-scale models, we refer the reader to [28, 86] and the
references cited therein.
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x,1

Yx,1 <

Yx,2

FIGURE 2.9: Two-scale domain with distributed microstructure.

XeQ

y-scale (micro)

x-scale (macro)

FIGURE 2.10: Left: Zoomed out cubic piece from the concrete wall. This is the scale
we refer to as macroscopic. Middle: Reference pore configuration. Right: Zoomed out
one end of the pore.
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2.3 Specific modeling aspects arising from sulfa-
tation of concrete

There are a few physico-chemiacl processes that are important for the actual
sulfatation of concrete. We wish to introduce them in our microscopic model.

2.3.1 Production of HyS by Henry’s law

As soon as HyS(g), produced in the air space of the concrete pipe, enters the
pipe wall above the waste flow, it dissolves in the water present in the concrete
block. In the corrosion process, this hydrogen sulfide transfer from sewer gas to
pore water is a crucial step. H2S molecules can move between the air-filled part
and the water-filled part the water-air interfaces [14]. We assume that such mass
transfer takes place according to the following reversible reaction mechanism

HyS(aq) = HaS(g). (2.5)

In (2.5), the transfer of HoS between air-filled parts and water-filled parts that
are in contact follows a local phase equilibrium diagram of the air-water binary
system at the pore level [47]. In other words, the amount of gaseous HaS that
dissolves in a given time and volume of liquid at a constant temperature is directly
proportional to the equilibrium partial pressure of gaseous HaS in equilibrium.
This assumption at the phase equilibrium is expressed via the linear relationship

Piis = [5(aq)], (26)

where Pp,s denotes the partial pressure of HoS in the gaseous phase of the
pore and HsS(aq) represents the molar concentration of HyS. In (2.6), the
proportionality factor is known as Henry’s constant on the molar concentration
scale. (2.6) can be re-written in terms of mass concentrations as
¢
¢¢p1[H25(aq)] = (HRT¢—)¢¢2[H28(9)], (2.7)

2

where R denotes the gas constant, T' represents the absolute temperature and
¢, b1, o2 are defined in (2.1). (2.7) is the so-called phase equilibrium condition.
Based on [124], we assume that the macroscopic mass transfer at the air-water
interface is proportional to the difference

o¢1[HaS(aq)] — Pppa[H2S(g)]

where P := HRT % The proportionality factor @ > 0 is referred to as the mass
transfer coefficient and needs to be identified. For instance, () can be determined
by means of one-film theory of diffusion in heterogenous media [11].

We can write the net production of HsS as

fHenry = Q((b(ybl [HZS(aq)} - P¢¢2[HQS(9)]) (28)

We call frenry the production term by Henry’s law. For related work on this
subject, see [95].



18 Chapter 2. Modeling Concrete and its Chemical Corrosion by Sulfate Attack

Uncorroded
concrete

Sewer

atmosphere Reaction pathways in Biofilm

2
SO7 L Intermediates
[H SO, | 450, |
b H,S(aq) 20 ﬁo;

X/

FIGURE 2.11: Reactions pathways for hydrogen sulfide, see also Fig. 4.1 in [74].

(o)

2.3.2 Modeling sulfatation reaction rate

The oxidation of hydrogen sulfide on the pipe wall surface is biologically activated
after the pH of the surface drops below approximately 8-9, [115]. In corrosion
products, HoS oxidizes rapidly by the action of the bacteria to a mix of elemental
sulfur and sulfuric acid [74]. We consider the sulfate corrosion process dominated
by the reaction of sulfuric acid. The respective reaction is

2H,0 + HT + 80,2 + CaCO3—CaS0, - 2H,0 + HCO; . (2.9)

(2.9) takes place in © when a sufficient amount of HySO, is available and pro-
duces gypsum. We assume that (2.9) does not interfere with the mechanics of
the solid parts of the domain. This is a rather strong assumption since it is
known that (2.9) can actually produce local ruptures of the solid matrix [131].
From our point of view, the following scenario is relevant:

e the reaction (2.9) is very fast and it is complete in the sense that it con-
sumes all the available calcium carbonate at the interface.

In the above situation, it is not obvious what is the correct formal expression for
the reaction rate n on the interface specially if we do not stick to the assumption
of elementary reaction for which mass-action kinetics would be applicable.

(e, B) = ksap, (2.10)

On the other hand to point out the complexity of the situation, we refer the
reader to [20] for one example where the mass-action kinetics do not work. Tt
is not at all clear how important the precise structure of n is especially if one
considers this process in the fast-reaction regime. To fix ideas, we assume that
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the reaction rate 7 takes the form

kSQP(ﬁmar - ﬁ)q lf (e Z 0;6 2 0

(2.11)
0 otherwise,

n(a, B) = {

where k3 is a reaction constant, « is the concentration of the H,SO4 and f
denotes the concentration of gypsum, whereas B4, is @ known constant and
p>1and ¢ > 1 are the partial reaction orders. The power law structure (2.11)
describing the reaction rate appears to be new in the context of sulfatation
reactions. Another way to model the reaction-rate for HoSO,4 production is

n(avﬁ) = kSR(a)Q(ﬁ)a (212)

where R, are non-linear functions and the quantities with bars denote surface
concentrations. For more examples of different types of reaction rates, see [78].
We consider (2.11) and (2.12) in the thesis.

We define

fReac =qrn.

Remark 2.3.1. In order to understand the meaning of the reaction rate, we
recall the general concept of surface chemical reactions. Consider the amount of
CaCOy produced on the surface I'y, during an arbitrary time interval S’ C S :=
[0,00) and let I'** := 9825 N O€y,. Then

pr (S x %) = /,/ erndodt := /, g fReacdodt, (2.13)

is the amount of CaCO4 produced on the interface during S’. Here cr stands for
appropriate stoichiometric coefficient of the reaction. In (2.9), we have c¢p = 1.

2.3.3 Mass balance of moisture in the corrosion process

The mass balance of the moisture which diffuses in concrete is given by
wy + diviy = fu, (214)

where f,, denotes all the sources and sinks that depend on w and j,, is a macro-
scopic flux of moisture. Adopting Bazant’s model of moisture in concrete [13],
we assume that the flux is of the form

jw=—DVuw, (2.15)
where D is the transport coefficient, see e.g. [118, 119]. For derivations of (2.14)

based on different assumptions, see e.g. [13], Section 2.2.6 in [95] and Section
2.2.2 in [130].
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2.3.4 Production of gypsum
We take 7 as in (2.11) and introduce

8,[CaS0, - 2H,0] = 1([H2804], [CaSO, - 2H,0]).

Here we consider that reaction rate 7 highly depends on the reaction of HoSO,
with the calcium carbonate and the produced gypsum does not diffuse from
the surface of the solid matrix. Different choices of n have been discussed in
Subsection 2.3.2. In the forthcoming chapters, we choose the form of 7 as it is
given in (2.11) and (2.12).

2.4 Basic assumptions

Keeping in mind the 3D configuration of a typical pore (cf Section 2.2.3), we list
the main geometry and modeling assumptions:

Assumption 2.4.1. (Assumptions on geometry)

1. Every pore has three distinct non-overlapping connected parts and all con-
stituent parts connect neighboring pores to one another (see Fig. 2.5).

2. All internal (water-air and solid-water) interfaces are sufficiently smooth
and do not touch each other. There are no solid-air interfaces.

These restrictions are needed not only to give a meaning to functions defined
across interfaces, but also to introduce later the concept of extension as given,
for instance, in [2, 39].

Assumption 2.4.2. (Modelling assumptions)

1. The reactions (1.1) — (1.4) do not interfere with the mechanics of the solid
part of the pores.

2. The produced gypsum stays at the solid boundary and does not make any
change in the local geometry.

3. Effect of bacteria and temperature are considered to be negligible.

2.5 Corrosion models

In this section, we introduce two concrete corrosion models incorporating the
sulfatation reactions (1.1) — (1.4). First we present a microscopic model which
is defined in e—dependent domain. Then we give a distributive microstruc-
ture model containing information from two separated spatial scales (micro and
macro).



2.5. Corrosion models 21

2.5.1 Microscopic model

All physical processes take place on the microscale (pore level) but the physical
phenomena that we are interested in are visible on a macroscopic level, see
Fig. 2.6 for a description of the geometry we have in mind.

The unknowns uj,uj,u5,uj, u; refer to the concentration of sulfuric acid
(H2SO0y4), hydrogen sulfide aqueous species (HaS(aq)), hydrogen sulfide gaseous
species (H2S(g)), moisture (H2O) and gypsum (CaSOy, - 2H50), respectively. We
consider the following system of mass-balance equations defined at the pore level:

s + div(—d5Vus) = —kfus +ksus, 2€Q5,t€(0,7) (2.16)
opu§ + div(—d5Vus) = k§u§ — k§us, xeQf, te€(0,T), (2.17)
Oy + div(—d§Vug) = 0, RS Qg, te(0,7) (2.18)

Opug + div(—d5Vug) = kjus, zeQ], te(0,T) (2.19)
Oyuf = n°(ug, us), T € Fi, te (0,T). (2.20)

The presence of € shows that all the functions are defined in perforated domains.
We complement the system with the initial conditions

us (x,0) = uio(z), x €N, t=0,i€{l,2,4} (2.21a)
u3(z,0) = ugo(z), reQ5,t=0 (2.21D)
us(z,0) = uso(z), xels5 t=0. (2.21c¢)

The associated boundary conditions are

—n{-d;Vui =0 xel], te(0,T) (2.22a)
—n§ - d5Vu5 =0 reTVNoQs, te(0,T) (2.22b)
—n§ - diVui = en® (uj, uz) zelite(0,T) (2.22¢)
—ng - d5Vus = —e(a®(x)ug — b°(z)uj) xelg, te(0,T) (2.22d)
—nf - d5Vu; =0 x € I‘i, te(0,T) (2.22¢)
—n§ - d5Vus =0 reTNNons, te(0,T) (2.22f)
—n§ - d5Vus =0 rel™n aszg, te (0,T) (2.22g)
ug(x,t) = ul (z,t) reTPnoqs, te(0,T) (2.22h)

—nj - d3Vug = e(a®(x)ug — b°(z)uj) x € 1"3, te(0,T) (2.22i)
—n{ - dzVug =0 z€dQf, te(0,T) (2.22))
uj =0 zeTPNons, te(0,T) (2.22k)

uj =0 reTPno0s, te(0,T). (2220

On the right-hand side of (2.16), the first and second term appear due to the
consumption and production of HoSO, in (1.1) and (1.2), respectively, by mass
action law. A similar argument holds for the right-hand side of (2.17) and the
right hand side of (2.18) is zero due to (1.3). The right hand side of (2.20) is a
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source for gypsum which is the result of fast reaction between HoSO4 and CaCos.
Here n$ denotes the outer normal to 0925,7 € {1,2} (Q5,I'5 are defined in Sub-
section 2.2.3.1). The presence of ¢ entering the right hand side of the boundary
conditions (2.22¢), (2.22d) and (2.22i) is essential to pass to the rigorous limit
in the boundary terms.

In the non-dimensionalization procedure done in Section 3.2, € appears due
to the scaling of involved quantities. To get effective behaviors, we need to pass
to the limit as e — 0 in (2.16)-(2.221). The precise structure of the upscaled limit
equations (¢ — 0) will be derived in Chapter 4 and Chapter 5. In order to do
this, we restrict our attention to the micro-geometries described in Section 2.2.3
and periodic/locally periodic model parameters.

2.5.1.1 Periodic/locally periodic model parameters

We consider two different strategies.
Case 1: All functions d5, k5, a®, b° defined in €2, I'{ and I'; are rapidly oscil-
lating and are of one of the forms:

& (z) = d;
=a

a* ()

(2),1€{1,2,3,4}, Kk5(z) =k;(%),j € {1,2,3}, (2.23)
(2), b°(z) =b(%), ni(x) =ng(%),k € {1,2}. (2.24)

where the functions d;, k;,a,b are Y —periodic and are defined on Y7, Y5", I's,
and on I'], respectively.
Case 2: All functions given in (2.23) and (2.24) are locally-periodic if they

depend on both slow x and fast variable £. Here, we have

di (x) = di(z, 2),1€{1,2,3,4}, Kj(z) = k;(xz, £),j € {1,2,3}, (2.25)
ag(x) = a(z, %)7 bE( ) = b(z, 7)) i( ) = (E)vk € {1’2}' (2'26)

We consider case 1 in uniformly periodic domains in Chapter 4 and 5, while we
consider Case 1 for locally-periodic domains in Chapter 3.

2.5.2 Distributed-microstructure model

Usually distributed-microstructure models are known in the context of homoge-
nization limits as the scale of inhomogeneity tends to zero. This system consists
of the following set of partial differential equations coupled with an ordinary
differential equation:

8tU)1 — Vy . (dlvywl) = —kl (y)w1 + kg(y)’wg in (O,T) x 0 % Yl, (227)

3tw2 — Vy . (dgvng) = kl (y)w1 — kg(y)wz in (O,T) x 0 x Yl, (228)

dyws — V- (dsVwsz) = —a [ (Hw3 — w2)dfyy in (0,7) x Q, (2.29)
T

8#1)4 — Vy . (d4vyw4) = kl (y)w1 in (O,T) x 0 % Yl, (230)

dws = n(w1,ws) on (0,T) x Q xTy. (2.31)
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The system (2.27)- (2.31) is equipped with the initial conditions

w;(0,z,y) = w)(z,y) in QxYy,je{1,2,4} (2.32a)
w3(0, x) = wh(z) in (2.32b)
ws(0,z,y) = wl on Q x Ty (2.32¢)

while the boundary conditions are

—n(y) - di Vywit = n(wi, ws) on (0,7) x Q x Ty (2.33a)
—n(y) - diVyw; =0 on (0,7) x Q2 x (T2 U (0Y1 N9Y)) (2.33b)
—n(y) - doVywy = on (0,7)xQx (T U(QY1NIY)) (2.33c)
—n(y) - d2Vyws = a(Hws — wz) on (0,T) x Q x 'y (2.33d)

—n(z) - dsVws = on (0,7) x Ty (2.33e)

w3 = wY on (0,7) x T, (2.33f)
—n(y) - daVyws =0 on (0,7) x Q@ x Ty (2.33g)
—n(y) - daVyws =0 on (0,7T) x Q xT'y. (2.33h)

Here w; denotes the concentration of HySO,4 in Q x Y7, ws the concentration
of HyS aqueous species in ) x Y7, ws the concentration of HoS gaseous species
in , wy the concentration of the moisture and ws is the gypsum concentration
on 2 xI'1. QY Y,,Ys,T',I's are shown in Fig. 2.10. V without subscript
denotes the differentiation with respect to macroscopic variable z, while V, is
the respective differential operator with respect to the micro-variable y. The
parameter « is reaction constant which quantifies the resistance of the medium
to the exchange and H is Henry’s constant, see Section 2.3.1. The microscale
and macroscale information is connected via the right-hand side of (2.29) and
via the micro-macro transmission condition (2.33d). The information referring
to the air phase Y5 is hidden in ws. The partial differential equation for ws,
defined on macroscopic scale, is derived by averaging over Y.

2.6 Notes and comments

There are many open problems and open research directions concerning the
modeling of the concrete sulfatation. We mention here but a few:

1. Role of bacteria: Bacteria play a crucial role in the production of the hy-
drogen sulfate which is the main source of the degradation of the concrete.
The precise role of the micro-organisms in the context of sulfate attack
on concrete is quite complex and less understood. To understand their
role, we may need to study enzyme kinetics, perhaps along the line of the
Michaelis-Menten mechanism [103].

2. Ezpansion of gypsum: We assume that the production of the gypsum on
the solid-water interface does not affect the microscopic geometry (and
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therefore neither the mechanics). This is a strong assumption since it is
known that sulfatation mechanism actually produces local ruptures of the
solid matrix [131].

3. Moving boundary formulations: In practice, the macroscopic corrosion
front propagates into the uncorroded concrete. To track the precise macro-
scopic position of the front, it is perhaps more natural to consider a free
boundary formulation (as in e.g. [23]).

4. Stochastic geometry*: In stochastic representations, random microstruc-
ture can be considered. For details, see e.g. in [63, 65].

4A domain which is neither uniformly periodic nor locally periodic is closer to the actual
structure.



Chapter 3

Homogenization in
Locally-periodic Perforated
Domains

In this chapter, we derive multiscale models via the asymptotic homogenization
method for locally-periodic domains. Our goal is to obtain upscaled RD models
together with explicit formulae for the effective transport and reaction coeffi-
cients using different scalings of the diffusion coefficients. We show that the
averaged systems contain additional terms appearing due to the deviation of the
assumed geometry from a uniformly periodic distribution of perforations. We
work in two parameter regimes: (i) all diffusion coefficients are of order of O(1)
and (ii) all diffusion coefficients are of order of O(¢?) except the one for HyS(g)
which is of order of O(1). In case (i), we obtain a set of macroscopic equations
coupled with two-scale ode, while in case (i) we are led to reaction-diffusion
system with distributed-microstructure that captures the interplay between mi-
crostructural reaction effects and the macroscopic transport.

This chapter is structured as follows: In section 3.1, we present our choice of
microstructure and the setting of the equations. Section 3.2 contains the non-
dimensional form. In Section 3.3, we apply the homogenization procedure for
two relevant parameter regimes: (a) all diffusion coefficients are of order of O(1)
and (b) all diffusion coefficients are of order of O(g?) except the one for HyS(g)
which is of order of O(1). In case (a), we obtain a set of upscaled equations,
while in case (b) we are led to a distributed-microstructure system that cap-
tures the interplay between microstructural reaction effects and the macroscopic
transport.

The results given in this chapter have been reported in [54] as a joint collaboration with
N. Arab (Regensburg), E.P. Zemskov (Moscow), and A. Muntean (Eindhoven).
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3.1 Geometry. Model equations

This section contains a brief discussion of the geometry and presents the model
equations posed in the domain of interest.

3.1.1 Locally-periodic domains

We refer the reader to Subsection 2.2.3.2 where the concept of locally-periodic
microstructure has been introduced, also see Fig. 3.1. The connectedness (see
Fig. 2.8) or disconnectedness (see Fig. 2.7) of all constituent parts of the
microstructure does not matter for the analysis done in this chapter.

VWO0e 0o
feeQf o

F1GURE 3.1: Locally-periodic perforations with two disconnected and one con-
nected components.

3.1.2 Microscopic model equations

We use the microscopic model given in Subsection 2.5.1 without € on the right
hand side of the boundary conditions. In the non-dimensionalization procedure,
e will appear in the boundary conditions due to the scaling of the involved
quantities.

3.2 Non-dimensionalization

Before applying formal homogenization, we want to formulate the model equa-
tions in dimensionless form with the hope to get more insight in the meaning of
the parameter €. We introduce the characteristic length L for the space variable
such that x = L, the time variable is scaled as t = 7s, and for the concen-
trations, we use ui = Ujv7, U; = [[uf]|o for all i € {1,2,3,4,5}. k5 are scaled
as k5 = K;k5, where K; =| k¢ || for all j € {1,2,3} and d§, := Dyd;, for all

7
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k € {1,2,3,4}. We make use of two mass-transfer Biot numbers! for the two
spatial scales in question: micro and macro. The micro Biot number is defined
by

om . bresL
Bim = —g—, (3.1)
where b7 ; is a reference reaction rate acting at the water solid interface within
the microstructure and © is a reference diffusion coefficient. The macro Biot
number is defined by
BiM .— bMTfL (3.2)

where b 7 is a reference reaction rate at the water-solid interface at the macro
level. The connection between the two Biot numbers is given by

Bi™ = eBiM. (3.3)

In some sense, relation (3.3) defines our small scaling parameter £ with respect
to which we wish to homogenize. Furthermore, we introduce two other dimen-
sionless numbers: U b
Bi = ﬁ and ; 1= D—; (3.4)

B; represents the ratio of the maximum concentration of the ith species to the
maximum HSO,4 concentration, while 7; denotes the ratio of the characteristic
time of the ith diffusive aqueous species to the characteristic diffusion time of
H55(g). Consequently for a fixed ¢, the ratio ; is small, then the reactant gas
diffuse faster through the pore than the rest of the species diffusing in the liquid
phase.

We consider the RD system given in Subsection 2.5.1 without the scaling
parameter € in the boundary conditions. In terms of the newly introduced
quantities, the mass-balance equation for H2S50, takes the form

Lo 05 + B2rdiv(—d5 Vi§) = —K 1 U1k§vs + KaUsksvs, (3.5)
and hence,
B105v5 + BB div(—d; Vo) = — 0T kfof 4 Kol fsys, (3.6)

As reference time, we choose the characteristic time scale of the fastest species

. 2
(here: H2S(g)), that is 7 := 7445 = 5—3. We get

~ 1 ~ 2 -~
Br0svf + Bimdiv(—di Vi) = — T kfvf + T kGus. (3.7)

1Biot numbers are dimensionless quantities mostly used in heat and mass transfer calcula-
tions and they quantify the resistance of a surface (thin layer) to heat and/or mass transfer.
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— U
eac T J
ref

tion, where the quantity nfe jisa reference reaction rate for the corresponding
chemical reaction. With this new notation in hand, we obtain

Let us denote by 77 the characteristic time scale of the jth reac-

B10505 + Biyidiv(—d; Vos) = —®3kSvf + PIk5vS (3.8)

where <I>§, j € {1,2,3} are Thiele-like moduli. The jth Thiele modulus @? com-
pares the characteristic time of the diffusion of the fastest species and the char-
acteristic time of the jth chemical reaction. It is defined as

o = T goral je {1,2,3). (3.9)

J
Treac

For the boundary condition involving the surface reaction, we obtain

e - (—diVoi)) = — (], v5), (3.10)
and therefore,
- s P2
- (=diVog)) = —e220(vf, v5). (3.11)

71

Note that the quantity e®% plays the role of a Thiele modulus for a surface
reaction, while ®2 and ®2 are Thiele moduli for volume reactions. Similarly, the
mass-balance equation for the species HoS(aq) becomes

Badv5 + Bayadiv(—d5Vus) = ®Ik1vs — B2kav5. (3.12)

The boundary condition at the air-water interface becomes

Ae - (—d5Vv5)) = eBiM (5205 — 05). (3.13)

The mass balance equation for HyS(g) is
B30sv5 + Badiv(—d5Vu5) = 0, (3.14)

while the boundary condition at the air-water interface reads

i - (—d5V5)) = —eBiM (v5 — 22v5). (3.15)

Finally, the mass-balance equation for moisture is
B405v5 + Bayadiv(—d;Vo5) = ®Fkivf (3.16)
and the ordinary differential equation for gypsum becomes
B50sv = ®31(v§, vE). (3.17)

To simplify the notation, we drop all the tildes and keep the meaning of the
unknowns and operators as mentioned in this section.
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3.3 Asymptotic homogenization procedure

The key idea of this method is to guess the solution of the microscopic model
using the asymptotic expansion (3.18) involving the macro (slow) variable x and
the micro (fast) variable y = £. In this section, we study the asymptotic behavior
of the solutions to the microscopic model ¢ — 0 for two parameter regimes
reflecting two different types of diffusive-like transport of chemical species in
concrete: “uniform” diffusion (see Section 3.3.1) and “structured” diffusion (see

Section 3.3.2).

3.3.1 Case 1: Uniform diffusion

We consider that the diffusion speed is comparable for all concentrations, i.e.
the diffusion coefficients d5, are of order of O(1) w.r.t. ¢ for all k € {1,2,3,4}.
To derive the limit problem in a formal way, we assume that the unknown
solutions vf(x,t),i € {1,2,3,4,5} of the microscopic model admit the following
asymptotic expansions with respect to ¢

vf(m,t) = Ui()(x7y’t) + Evil(xayat) + 527}1‘2(33’9’75) + ... ) (318)

where y = £ and the functions v, (z,y,t),m = 1,2,3, ..., are Y-periodic in y.
If we define (compare [22, 35], e.g.)

U (z,1) = U(z, 2, 1),
13

then

Qb = 0¥ (y,2) 4 12V (y 7). (3.19)

We assume that df, k € {1,2,3,4} is e—periodic and
T
s (w) = (%),

where dj; is 1—periodic. We investigate the asymptotic behavior of the solution
v§(x,t) as € — 0 of the following problem posed in the domain Qf

B10sv5 + Pimadiv(—d5Vos) = —®2k5vf + P3k5v5 in QF,

n® - (~d§ Vo)) = —eZan(vf, vg) on TS, (3.20)

n® - (=djVv5)) =0 on I'§.

Using now the asymptotic expansion of the solution v$(z,t) and the expansion
of the normal vector (2.2) in (3.20) and collecting all the terms of order e=2, =1

and €°, we obtain:

onlo =0 in Y17177 (3 21)
v19 Y — periodic in 1y,
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where the operator Ay is given by

3
Ag = — Zi,j:l B?gi (d”aiyj%

where dij refers to the entry of the matrix d; in the ith row and jth column. As
next step, we get

Aguir = —Ajvip in Y,
v11 Y — periodic in y, (3.22)
(d1Vyv11,7) = —(d1Vgvi0,7) on Ty ; Ul 4,

where

3 ij 3 J
A= = S o 5) = e g (5.

Furthermore, it holds that

BimAoviz = —BiviAivin — BiyiAavio — F10sv10
k1 (y)vio + Paka(y)vao in Vi, (3.23)
v12 Y — periodic in y
(d1Vyvig,1) = —(d1Vzv11,n) — (d1Vgavie,n') — (d1Vyviq, 1)
P2
- 7577(7)107050) on I'y 4, (3.24)
(d1Vyvig,1) = —(d1Vzv11,7) — (d1Vgv10,n")
(dlvyvll,n’) on F27w, (325)

where

.f 3 a 8
Ap = =370 a_Ti(d”aT,j)-

From (3.21), we obtain that vig is independent of y. Since the elliptic equation
for vyy [with right-hand side defined in terms of v1¢] is linear, its solution can be
represented in the following form

3

Ull(x7yat) = Zw’f(z,y,t)

k=1

81]10(33, t)

t
al'k +U1(l‘, )7

where the functions w¥(z,y,t) solve the cell problem(s) and are periodic w.r.t.
y. The exact expression of v; does not matter much at this stage. Using the
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expression of v11, we obtain following cell problems in the standard manner:

Agw¥ (z,y) Z 5y Yke{1,2,3} in Y, (3.26)
L Quig, 00k
Z U10 [dﬁj&~ —d*7;) =0 on Ty,
i 9Tk 0y,
3
81}10 iz&u{ﬂ gk
Z O, [dlja—yj i —di"n;]=0 on Iy,

In (3.26)n the cell function x* inherits the z-dependence from the perforation,
and hence, instead of a standard periodic cell Y we now deal with with a z-
dependent family of cells Y7 ;.

Since the right-hand side of (3.26) integrated over Y; , is zero, this problem
has a unique solution. Note also that (3.23) is leading to

3

1)10 3w1 8 V10 ii k
A = d]
BimiAoviz = Bim[— Zk: Z 0w 6%( wr')
3 ady dv 3 - 02wk Qv 3 0wk §%v
Z 1 YY1 _ Z dz] 1 10 - Z d’L] 1 10
dy; Ox; Mryail Y 92;0y; Oxy, it L Oy Ox0x;
i 000 ) 50,00 @ ()vr0 + k()
18 O, 105710 1RF1 Y)V10 or2(Y)V20-
ik=1
Moreover, we have
3 8’[]10 60.11 CI)2 3 “61}10
ﬁ171(d1v V12,1 ) 51’)/1[ Z dllj 81’k a:L' ’fl ’an(vlo,vm))_ Z dzlj o1, n;
i,5,k=1 i,j=1 v
9?1 o i 10Uy _ 2 . Owk duqg
P — dy ; dy=—* 1. (3.27
- %:1 " Day0ay, 1 ]Z::l " g +i7$zk::1 U 9w omy, " B2

Writing down the compatibility condition (see e.g. Lemma 2.1 in [120]), we get

3 3 i
(9’[)10 8w1 3 V10 ” k: ad 8’01
/ [Bimi Z dxy, 8yl Z 036 0x ay Z 0y (’930]

1,5,k=1 i,j=1
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3 3 3
02wk Aoy Awk 9%, 0%
dzg 1 d’Lj 1 o dzg 10

+ Z ! O0x;0y; Oxy, + ) Z Y Oy Ox0x; Z ! Omjaxi}

%,7,k=1 1,5,k=1 %,7,k=1
+ 5183’010 + (I)fkl (y)’UlO — (I)2k2( )’UQ()]dy

3
61}10 (%Jl - / (I)g

= dV njdyy — — d

Bim / | Ek:1 Y o o, - n(v10, vs50)dy

IeUl2, *

1,z

3 3

+ By / Z d P v1o whn; — Z dijavlon" dry
171 1 axjaxk 1'% 1 (91'2 J Y

Iy LUy, Lidk=1 ij=1

3 3
i Ov1 i 0wk Qv
- fim / Z dv (’)xl-nj + Z 4if &1 . 1 Lo 1on/ dv, . (3.28)
.U, LBI=1 ’ ijk=1 Tk

We apply Stokes’ theorem to the terms involving 7; and, after straightforward
calculations, we obtain

1 1
ﬁlasUIO‘F(I’%UlOm / /ﬁ(y)dy—q’%vwm / ko (y)dy

Yie Y12
D*v1g &Uf ik i 0%wb D

- —dif) - dy

i Z 8:1718:161@ Uy, ) = Bim Z (di axi8y4> Oy,

ik=1 J i,7,k=1 7
(9’1}10 / kj aX
dy’n. — dU d
—fim Ek:l B \Ym\ (& i " )b
1,7, Fl’mUFQ,m
7ﬁ;?1 D310 vs0(2, Y, 1) ks (y)dyy. (3.29)
1,z

n (3.29), we have (f)y = \%I | fda for any V a subset of either Y; , or Y5, and

v
|V| is the volume of V. The latter partial differential equation can be rewritten
as

3
0 i aw i 8v10
61857}10 - Bl’Ylij;:l 8:1:1 (<d J (‘)yjl —d k> ax ) + (I) ’U10K1 — (D%/UQ()KQ
3 ov
= —Bl’}/ Z 10 f — ﬁlq)gvl()KS in Q X (O,T), (330)

k=
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33
where
1
i) = e [ mtwds. c€ 1.2, (3.31)
” Yl,z
1
Ki(z) = —— vso(,y, t)k3(y)dy,y, (3.32)
Fl,z
and

Ut (x

5k
1| S [ @i -y S,
v ’J 11—‘1 .TUF2.T

The terms UfF? are new. They occur due to the assumed deviation from a
uniformly periodic distribution of perforations

Now we apply the same procedure to the next mass-balance equation. To do
this, we consider the auxiliary cell problems

Agwh (z,y,1) Z o d”“ ,ke{1,2,3}inY,, (3.34)
23: avzo[d”a—“gﬁ» iF5; =0, on Ty
i,5,k=1 dzp 0y; z 2 7 "
23: 2”20[d§a—“?~ — dJ*i] =0, on Ta,,
ij,k=1 Tk 0y;

whose solution is x*(z, y, t). We obtain the upscaled partial differential equation

3
8 i'awk i 8’11
B20svag — PTviokt + P3v20ks — Boye 1321@::1 oz, (<dzjale — dy) 6;:)
3 U
= —Boo Z U% — BsBiMu30C + B2 BiM gy B, (3.35)
k=

holding in Q x (0,T) vog =0, on TI', where

Cx) := ia |/b y)dyy,

2In [54], we do not specify the interfaces in the integral of extra terms in the homogenized
system.

(3.36)
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H(y) := ZEy)), with y € T'g , (3.37)
B(z) = |Y1 | / b(y)dy, (3.38)
k kj 1 ij awlg /
Uj(x) = Z (dy’'n; — d n)dy,y. (3.39)
| 1 T| Oy,

b= 1F1 zUl2 o

We treat now the mass-balance equation for H3S5(g). The corresponding cell
problems are given by

Agwh(z,y,t Zay d¥(y), k=1,2,3 in Ya,,

23: Ouso Zd”aw3~» d*i] =0 on T
— a g 2,x5

Ox
J,k=1 kzl

while the macroscopic partial differential equation is

3
0 i Owk i OV
Ooso = 3 gl L~ )
igk=1"" k
0
=" Z - U§ + B3BiMv30C — B2 Bi vy B (3.40)

in Q x (0,T) with vzg = USO on I'P and vsg = 0 on T'N. Here we have

1

= B = — A1

Cw) = e / M HW)Ey, Ba) = e [ oy, G40

Uk(z) = v Z /(d’;J ;—d;a—y?’n;)dvy.. (3.42)
Li=1py | !

Same procedure leads to

3
0 owk ey OV
A _ (1)2 ki — dlj 4 dzk 40
Badsvao — PTv10kA 54’?4“%:_1 7 1(< oy, M ) 8xk)
Ovap
= —f1a Z U4 ; (3.43)
in Q x (0,T) with v4o =0 on I" and
k kj 1 U a ¥
Uk@) = | Z / (A = df G, (344

: J 11—‘1 .L‘UF2 x
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We also obtain following cell problems

3
o .
Apwh(z,y) = =) ay_czzf(y), ke {1,2,3} in Yi,, (3.45)
i=1 7
> v, ;0w ;
> 8x0[dffa—4ﬁi—dikﬁj]:0, on Ty,
igk=1 Ok Yi
3
Ovgg . ;. Owk -
Z 8;0 [d4JT4ni - diknj] = 0, on Fg,z
igh=1 Ok Y

Interestingly, the case of the ordinary differential equation for gypsum

O = ®In(v5,vE) on Ty, s€ (0,7), (3.46)
vs(2,0) = wvsg(z), (3.47)

seems to be more problematic. Let us firstly use the same homogenization ansatz
as before and employ

n(vivvg) = 7764(1’10(1‘, t),v50(x,y,t)) + 0(6)
We obtain

dsvs0(z,y,t) = ®3nd(vio(x,t), vso(z,y,t)) withy € Ty 5, (3.48)
V50 (‘T7 Y, 0) = Us0 (1’, y)7 (349)

where vso(x,y,t) is periodic w.r.t y. Note that we can not obtain an expression
for vso(x,y,t) that is independent of y. On the other hand, if we make another
ansatz for v§, say

vE (2, t) = vso(x, ) + vy (z,y, 1) + e2vs2 (@, y, t) + ..., (3.50)

then
ﬁ(vivvg) = n(])g(vlo(x’t)vv50(xvt)) + 0(5)

and we obtain an averaged ordinary differential equation independent of y as
given via

Osvs0(z,t) = ®2ng (vi0(z, 1), v50(2, 1)), (3.51)
U50(.’E, 0) = U50(£L’). (352)

The advantage of the second choice is that it leads to the averaged reaction
constant k3 = % I | ks(y)dy, which is, in practice, much nicer than (3.48).
FZ x

‘FQ,:L'

This raises the questic;n: Which of the descriptions is correct: (3.48),(3.49) or
(3.51), (3.52)7 The Chapter 4 will shed light on this issue.
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3.3.2 Case 2: Structured diffusion

In order to obtain distributed-microstructure models in the homogenized limit,
it is necessary to consider diffusion coeflicients scaled with certain power of the
scale parameter €. In this subsection, we take into account the fact that the
diffusion of HyS is much faster within the air-part of the pores than within the
pore water. Particularly, we assume that d§ is of order of O(1), while df = O(g?)
for all k € {1,2,4}. Based on the existing literature, we expect that the latter
assumption will finally lead to a distributed-microstructure model) for which
the micro- and macro-structure need to be resolved simultaneously; see e.g.
[49, 68, 87].

Assume the initial data to be given by vf(z,0) = v)(x, 2), i€{1,2,3,4,5}
with functions v{ : Q x ¥ — R being Y-periodic with respect to the second
variable y € Y. Assume also that d5 = e?dy, for k € {1,2,4} and d§ = d3. We
employ the same homogenization ansatz as before

05 (1) = wio(x,y, ) + cwir (2, y,t) + 2w (x, y,t) + ... (3.53)
for all i € {1,2,3,4,5}. Using the same strategy as in Section 3.3.1, we obtain

ﬂlaswlo(xayat) - Blfylvy : (dlvywl()(xayat))
= —ki(y)wio(z,y,t) + ka2 (y)wao(z,y, 1) (3.54)

in Q@ x Yy, x (0,T). The boundary conditions become
n(z,y) - (—d1Vywio(z,y,t)) =0 on QxTs, x (0,T), (3.55)
n(z,y) - (—d1 Vywio(z,y,t)) = —f’kg(y)wlo(x7y,t)w50(a:,y,t) (3.56)
on Q xI'y ; x (0,T). Similarly,
B20swao (2, y,t) — P22 Vy - (d2Vywao(x,y, 1))

= k1(y)wio(z,y,t) — k2(y)wao(z,y,t) in Q@ x Y1, x (0,T), (3.57)

while the corresponding boundary conditions take the form
n(z,y) - (—d2Vywao(z,y,t)) =0 on Q@ x Ty, x(0,T), (3.58)
n(z,y) - (—d2Vywao(z,y,t)) = BiMb(y)[%H(y)wso(Lt) — wao(2,y,1)] (3.59)

on 2xTIy ;% (0,T). Since we consider d§ = d3, we obtain the same macroscopic
partial differential equation as in Case 1:

3 3
0 i Owk i Owso(z,t Owsp(x,t
Oswso(,t) — Z 8x»(<d3]78y§ _d3k>M):_§:%U§
i j

i,j,k=1 oxy, it
63B7:M'U)30({,C7t) ﬁQBZM
T b(y)H(y)d'Yy - Vool b(y)wao(, y, t)d'yy
2w T2 o

(3.60)
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inzeQ,se(0,T) and
wso(x,t) = wh (v, t) on TP,
where

3

1 - L OXE

Ub@) = o D /(d’ffn; — a7 20y, (3.61)
|Y2,$| ij=1p ayz

? 2,z

Next, we have

BaOswao(w,y,t) — BavaVy.(daVywao (2, y,t)) = ki(y)wio(z,y,t),  (3.62)
on Q x Yy x (0,7), while the boundary conditions are now given by

n(z,y) - (—daVywao(z,y,t)) =0 on Q x Ty, x (0,7), (3.63)
n(z,y) - (—daVywao(z,y,t)) =0 on Q@ x Ty, x (0,T). (3.64)

The ordinary differential equation modelling gypsum growth takes finally the
form

BSastO (LL', Y, t) = _(I)%T](wl()(ma Y, t)wSO (.’L‘, Y, t)) (365)

on 2 x Iy, x(0,T).

3.4 Notes and comments

We performed the formal homogenization for locally-periodic domains and ob-
tained two different upscaled models depending on the choice of the scaling
parameter €. To treat the ordinary differential equation posed at the bound-
ary, we used two asymptotic expansions. We obtained some extra terms which
pop up due to the locally-periodic assumption on the microstructure in the do-
main. The extra terms vanish due to the fact that the operators of the original
and homogenized problem are self-adjoint and using the convergence of the cor-
responding bilinear forms, we obtain that the G-limit operator is self-adjoint,
[30]. Here all the model parameters were assumed to be periodic. In case of
the locally-periodic parameters, we expect that the same procedure is applicable
without any additional difficulty.

At this point, the main issue is to justify rigorously these asymptotic be-
haviors of the concentrations. We address closely related aspects (focusing on
uniformly periodic array of perforations) in forthcoming chapters.

At a later stage, we will need to perform extensive simulations for the
distributed-microstructure model (3.54)—(3.65) for the case of fixed geometry.
This should help understanding the long-time behavior of the concentrations for
the case of matched micro-macro transmission conditions starting from regular-
ized ones (with a large Biot number), see Chapter 7.
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The asymptotic expansion method is based on the assumption of a periodic
(or locally-periodic) structure and therefore the resulting equations may not be
valid for an arbitrary non-periodic medium. In [63], the author generalized the
asymptotic expansion from the periodic setting to stationary ergodic stochastic
geometries. We aspect that a similar (formal) approach can also be used for our
scenario.

To incorporate the concept of locally-periodic microstructures in our setting,
we are very much inspired by Chechkin et al., see [30, 31, 32] e.g. For the for-
mal derivation, the connectedness of all constitutive parts of the microstructure
does not matter much. Any periodic and locally-periodic microstructure with
connected (or disconnected) parts can be considered.

It would be interesting to consider evolving microstructures. In this spirit,
we could account for one of more of the following aspects:

1. The solid phase grows or shrinks due to precipitation or dissolution. In
general, this results in changes of the shape of liquid phase.

2. The liquid phase grows or shrinks due to condensation or evaporation.

3. The liquid phase grows due to production of water by the chemical reaction
(1.4).

4. The gypsum layer grows due to its volume expansion.
5. Different choices of scaling in € of interfacial exchange.

For the formal homogenization of these types of systems of partial differential
equations, we refer the reader to [121, 122, 123, 124] and the references cited
therein.



Chapter 4

Derivation of the Two-scale Model

This chapter is devoted to a twofold aim: (i) the analysis of the microscopic
model (2.16)—(2.221) posed on a uniformly periodic domain and (ii) the deriva-
tion of the multiscale model stated in Theorem 4.5.1 by passing rigorously to
the limit ¢ — 0 in the microscopic model (2.16) — (2.221). To deal with (ii),
we apply the method of two-scale convergence by G. Nguestseng [106] and G.
Allaire [8]. Our working technique combines the two-scale convergence method
with basic properties of the periodic unfolding operator [34].

The chapter is organized as follows: In Section 4.1, we give the notations, func-
tional spaces and the assumptions needed to perform the analysis. In Section
4.2, we show that the microscopic problem is well-posed. e-independent a priori
estimates for the solution to the microscopic problem are derived in Section 4.3.
In Section 4.4, we extend the solution to the microscopic problem to the whole
domain and introduce the central notion of two-scale convergence. In Section
4.5, we apply the procedure of two-scale convergence to derive upscaled equa-
tions together with explicit formulae for the effective diffusion coefficients and
reaction constants. We conclude the section with the strong formulation of the
upscaled system.

4.1 Geometry. Microscopic model. Notation.
Function spaces. Weak formulation

4.1.1 Geometry

We refer the reader to Chapter 2 where we discussed possible choices of mi-
crostructures (periodic and locally-periodic). Here we focus only on periodic
microstructures, see Fig 4.1. Note already at this stage that all the constituents
(solid, water and air) are connected.

This chapter is built on the results published in [55] and on Appendix 8.2.3. This is a
joint collaboration with A. Muntean (Eindhoven).
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FIGURE 4.1: Left: Uniformly periodic array of microstructures. Right: The
pore configuration.

4.1.2 Microscopic model equations

We consider the microscopic model given in Subsection 2.5.1.

4.1.3 Notation. Function spaces

Here @1 and ¢~ refer to ¢ := max{0,¢},p~ = —min{0, p}, respectively.
Note that ¢t~ = 0 and ¢+ + ¢~ = [p[. We denote by C¥(Y), HL(Y),
and H(Y)/R, the space of infinitely differentiable functions in R™ that are Y-

periodic, the completion of C'Z° (V) with respect to H*—norm, and the respective
quotient space. Furthermore, let

HLp(Q) :={uc H (Q)|u=0on TP}

The Sobolev space H?(Q) (3 is a positive number, 3 € N) as a completion of
C§° () is a Hilbert space equipped with the norm

oW
sy = el ey + / / A

and (cf. Theorem 5.7.7 in [77]) the embedding H”(Q) < L?(Q) is continuous.
Since we deal here with an evolution problem, we use standard Bochner spaces
like

L*(0,T; H'(Q)), L*(0,T; L*(R2)), L*(0, T; Hip (), and L*((0,T)xQ; Hy(Y)/R).
For the analysis of the microscopic model, we employ frequently the following

trace inequality for e—dependent hypersurfaces I'§: For ¢. € H(Q), there
exists a constant C, which is independent of ¢, such that

5||<Pe||2L2(1"5) < C(H(pc—:HQL?(QE) + 52||V%H%2(Qe))~ (4.1)
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The proof of (4.1) is given in Lemma 3 of [68] as well as in Lemma 2.7 of [91].
For a function ° € H?(QF) with 3 € (%, 1), the inequality (4.1) refines into

¢ (z) — *(y)?
e, < C Q/Mﬁdxﬂw//wdx@ L (42

Qe Q

For the proof of (4.2), see [83].

The quantities like @, a,b, k;, 5 € {1,2, 3} with superscript co are the maximum
of the Q(ug), a®,b°, k5,5 € {1,2,3}, while a, b, k;, j € {1,2} denote the minimum
of the respective quantities. Constants are generically denoted by C' and these
may depend on the data of the problem but not on the solution. We always
state explicitly whether C depends or not on the small parameter €.

4.1.4 Restrictions on the data and parameters

We consider the following restrictions on the data and model parameters:

(A1) d; € L=(Y)¥*3, (di(y)€,€) > dio|€]* for dip > 0 and every £ € R?, y €Y,
ie{1,2,3,4).

(A2) n(a, B) = ksR(«)Q(B), where R is sub-linear and locally Lipschitz func-
tion with Lipschitz constant cgr, while @ is bounded and monotonically
increasing. Furthermore, we assume

0, otherwise,

R(Oé) P pOSitiV67 lf (&7 Z 07 Q(ﬁ) o positive, lf /6 < /Bmaxa
. - 0, otherwise,

where Omax > 0 represents the maximum amount of gypsum that can
(locally) be produced.

(A3) Uig € Hl(Q) ﬂLf(Q), S {1,4}, ujo € HQ(Q) N Lf(Q),j € {2,3},
Uso € Lf(Fl)

(A4) The boundary mass transfer functions a,b € L*>(I'1),a,b > 0 are assumed
to satisfy b(y) Mz = a(y)Ms3 for a.e. y € I'y. Furthermore,

ke My by
ke My  k®

and Ms > k°crQ>°M; a.e. on I'. The constants My, Ms, M3 and Ms
mentioned here are defined in (4.3).

(A5) u¥ € H?(0,T; H (Q5)) N L((0,T) x Q5).

(A6) k3 € LY (T'1) and kj € LE(Y) for any j € {1,2}.
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We also define the following constants

M; = |lujollz=(a) j € {1,4},

My = max{||ugo|lL () [[usoll L=}

Mz = max{My, |[usol|z~ (), ||U?L,)||L°°(FD)}a

M5 = maX{HU50||Loo(F1), ﬁmax}- (43)
My, ..., M5 will play later on the role of essential supremum bounds on the

active concentrations.

4.1.5 Weak formulation of the microscopic model

We start with defining the weak formulation of our system given in Section 2.5.1,
see also Section 4.1.2.

Definition 4.1.1. Assume (A1) - (A6). We call the vector u® = (u§, ug, u§, uj, uf),
a weak solution to (2.16) — (2.221) if u$ € L*(0,T; H'(€5)), dus € L*((0,T) x
Q5),j € {1,2,4}, u§ € uf + L*(0,T; H{ 5 (93)), Oru§ € dyuf + L*(0,T; L*(23)),
ug € HY(0,T; L*(T%)) and the following identities hold

T T
//(Bﬂéw +diVuiVe +kfuier —kSUZcpl)dxdfz—s// n°prdy,dr(4.4)
0 Qs 0T

T
// (Ousp2 + d5VusVips + kjuips — kjusps)dadr
0 s

T
= 5//(a5u§ — b°u5)padydr (4.5)

0 T

T T
// (Owuseps + d5VusVs)dedr = —5//(a5u§ — bu5)psdydr, (4.6)
0 T3

0 Qs

T T

//(5‘tui<p4+diV’ungp4)dxdT = //kiu§<p4dxd7', (4.7
0 ff 0 Qs

T T
/ / Byupsdypdr = / / W ordyadr, (4.8)
0 1% 0 1%

for all ¢; € L2(0,T; HY(Q5)),7 € {1,2,4}, p3 € L?*(0,T; H%D(Qg)) and @5 €
L2((0,T) x T§).
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4.2 Global solvability

In this section, we show that the microscopic model (2.16) — (2.221) is well-posed.

4.2.1 Positivity and boundedness of microscopic solutions
We begin by showing the positivity of the solutions to (4.4) — (4.8).

Lemma 4.2.1. (Positivity) Assume (A1) — (A4), and let ¢ € [0, T] be arbitrarily
chosen. Then uf(t) >0, i€ {1,2,4} a.e. in Q, u§(¢t) > 0 a.e. Q5 and ui(t) >0
a.e. on I'f.

Proof. We test (4.4)-(4.7) with ¢ = (—uj~,—u3",—u§ ,—ui ,—u ) ele-
ment of the space [L?(0,T; H'(Q5))]* x L*(0,T; Hi-p (Q5)) x L*(0, T; H' (Q5)) x
L2((0,T) x I'S). We obtain the following inequality

t t t

1
5//6t|u§7|2dzdt+d10//|Vu§7|2d;1:d7'§ —kl//|uif|2dxd7

0 Qs 0 Qs 0 Q5 (4.9)

t t
g / / (w5~ ug™)dadr — / / (7 (5, ), —§ ™ e dyedr,
0 re

0 Qs

where k1 := inf(o,1)xo: |k| and kS° := sup(o,7)xq: |k5|. Note that the first term
on the r.h.s. of (4.9) is negative, while the third term is zero because of (A2).
We get

t t t
//at|u§—\2dxdT+2dm//\vui—ﬁdxdTgc//(\ul—\2+\u§—|2) dxdr.

0 Qc 0 Qs 0 Qs
(4.10)

On the other hand, (4.5) leads to

¢ t ¢
1 ke
5//3t|u27|2dxd7'+d20//|Vu27|2dxd7' < %//(|u17|2+|u27|2)d1:d7

0 Qs 0 Q5 0 Q¢
t t
+sa°°//u§7u§7d’ywd7'—ab//\u§7|2d’ywd7,
0 g 0 Is
where a™ := sup 1yxrs|a®| and b := info ryxrsb°|. By the trace inequality
(4.1), we get

t t

//@\u{\zdxdm—(2d20—6’62)//|Vu2’|2dxdt

0 Qs 0 Qf
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t

t
SC//(\ui_‘QJHuS_ 2) dxdtJrC//(|U§_|2+€2|Vu3_|2)dxdt.

0 Qs 0 Qs

(4.11)
(4.6) leads to

//5‘t\u3_ 12dadt 4 (2d3g — Ce?) //|Vu3_| dzdt < C//\ug— 2dzdt

0 Qf 0 Qf

+C’// (Jus™? + &% Vus ™ |?)dadt,
0 Qs
(4.12)
while from (4.7), we see that

t

t t
//fMui_ 2dxdt+2d40//|Vui_|2dxdt§ C//(\ul_\2+|ui_ ?) dadt.

0 Q5 0 Qs 0 Q5
(4.13)

We obtain from (4.8)

¢
//3t\u§_\2d'yxdt: —//neug_d%dt. (4.14)

0 T 0 T

Adding up inequalities (4.10) — (4.14) and simplification gives

t
//Bt(|ui_|2+|u2_|2+|ui_ //at\ug,_ 2dmdt+2d10//\Vu1_|2

0 Qf 0 Qf
+ (2dog — C?) //|Vu2 >+ (2d30 — C<?) //\Vug | +2d40//\vu4 2
0 Qs 0 O
t t
i [ [adsPandr<c [ QP v PP + / [ 105 P
0 T 0 Qs 0 Q3

Choosing ¢ conveniently such that r.h.s. of above inequality is positive. Appli-
cation of the Gronwall’s inequality implies

/ (a5 (6)™ 2 + [u§(6) 2 + [us (1) [2)dz + / / i (1) 2da

Qs 0 Q3

<c / (u5(0) ™2 + [u5(0) |2 + Ju5(0) ™ [2)dr + / / u5(0) " [2d.

Qs 0 Qs
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By the positivity of the initial data, we have the positivity of the weak solutions
to the problem.
Next, we show that solution to (4.4) — (4.8) is bounded.

Lemma 4.2.2. (Boundedness) Assume (Al) — (A4). Then there exist constants
such that u$(¢) < M;, i € {1,2}, u§(t) < Ms ae. in Q5, u§(t) < (t + 1)My ae.
in Q¢ and u§(t) < Ms a.e. on T'?® for arbitrarily ¢ € [0, T].

Proof.We consider the test function

(1,02, 03, p4) = ((u] — My) T, (u5 — Ma)t, (u§ — M) ™, (uf — (t+1)My)"),

where the constants M; are defined in (4.3). By (4.4), we obtain:

//& ulfMl) \dxdt+d10//|v ui— Ml) |dxdt+5// ulfMl) drydt

0 QF 0 I{

— (k1 My kaOMg)//(u’ffM1)+dmdt+0//|(u§7M2)+\2dxdt.

0 Qf 0 Qf

Using (A2) and (A4), we get the estimate

//at| — M)t Pdedt < C// )P+ 1(us — M2)*[*)dadt.  (4.15)

0 Qf 0 Qf

(4.5) in combination with (A4) gives that

t

t
//6t|(u§ — Mo)*Pdadt + (2da0 — cﬁ//\v@; _ Mo)*Pdzdt

0 Qf 0 Qf

<o [ [t =20 (05 - 1) Pna (4.16)

0 Qs
t
+//m@4mﬂ%ﬂW@—mﬁmm&
0 Qg

By (4.6) and (A4), we obtain

t t
//at\(ug 7M3)+|2dxdt+(2d307052)//|V(u§7M3)+\2dzdt

0 Qg 0 93

t t
< c//\(ug —M3)+|2dxdt+0//(|u§ — M) 4|V — Ma)*?)dzdL.
0 Q; 0 Qi
(4.17)
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By (4.7), we get

t t
//Bt\(ui— (t+1)M4)+|2dmdt+2d4o//|wui—(t+1)M4)+|2dxdt
0 Qs 0 Qs

) (4.18)
<c / / (1§ — M2+ (5 — (6 + 1)Ma)* )dadt.

0 Qf
Adding up (4.15) — (4.18), we get
t
/ / O (I(uf = Ma)*[* o+ ug — Ma)* | + |(uf — (¢ + 1)Ma)*?)
0 Qf
t t
+//8t|(u§7M3)+\2dxdt+(2d20 76’52)//|V(u§ — M)t dadt
0 Qf 0 Qf
t t
+(2d307052)//w(u§7M3)+|2dxdt§ C//|(u§fM3)+|2dxdt

0 Qf 0 Qf

t
e / / (15 — M) 2+ (g — Mo) 2 4+ [(u§ — (¢ + 1) Ma)* *)dadt.
0 Qf

Choosing ¢ small enough, then Gronwall’s inequality yields the following estimate
ui(t) < My, j€{1,2}a. e inQi, ui(t) < Ms, a.e.in Q5 uj < (t+1)My ae. in Qf
for all ¢ € (0,7T). Let us now point out the fact that the bound M; for uf also holds
on I'f; see Lemma 4.2.3 for this basic fact.

Claim 4.2.3. If z € H'(Q) N L>®(Q), then z € L™ (09).

Proof of the Claim'. Let z € H*(Q) N L>°(Q). Since the set of the restrictions to
Q of functions C§°(R™) is dense in H'(Q), we consider a sequence of smooth functions
{fn} C C5°(Q) such that f, — z in H'(Q) and || fn|lr=() < ||2]|r=). The trace
theorem gives f, — z in L*(09). So, there exists a subsequence {f.,} C {f.} con-
verging pointwise, i.e., fn,(z) = 2z(x) for a.e x € Q. Therefore, || frni(x)|| < [|2]| Lo @)
and thus, [|z| Lo a0) < 2]z )-

By Lemma 4.3 and Claim 4.2.3, we see that uj is bounded on the interface I':".
Now testing (4.8) with (uf — (¢t + 1)Ms)" and using the properties of R, Q, we derive

// (%at\(ug — (t+ D)Ms)? + Ms(u — (t+ 1)Ms) ") dodr

1

T
< c//Ml(ug — (t+1)Ms5)tdo,dr,
0 T%

IThanks are due to T. Aiki for showing us this proof.
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//at — (t+1)Ms)* Pdo,dr < —(Ms — CM;) // — (t+1)Ms)tdodr,

1
Where C := k5°crQ. Using (A4) and Gronwall’s inequality, we get ug < Ms a.e. in
(0,T) x I'{.
4.2.2 Uniqueness and existence of solution to (4.4) — (4.8)

This subsection treats the uniqueness and global existence of the weak solutions to the
system given in Section 2.5.1.

Proposition 4.2.4. (Uniqueness) Assume (A1)-(A6). Then there exists at most one
weak solution in the sense of Definition 4.1.5.

Proof. We assume that v/ = (u}*, uy®, u}®, u}®, ul®),j € {1,2} are two distinct weak
solutions in the sense of Definition 5.1.2 with same initial data. We set u§ := u;"® —u>*°
for all i € {1,2,3,4}. Firstly, we deal with (4.8). We obtain

// 8tu5 —8tu5 <p5d'yrd7'—// Le u} €7ur )—772’8(11?5,1;5 ))<p5dfyzd7'

(4.19)
Testing (4.19) with u® — u2’° and making use of structure of 7

t t
[ [ ot —apanar<c [ [ (uie
0 Fi 0 Fi

Gronwall’s inequality implies

2t uy® — uf)?)dyedr.

t
/\ug(t)fd% < C//|ui|2d’yxd7' for a.e. t € (0,T). (4.20)
0 re

Iy

We calculate

¢ ¢
%//at\uﬂdedT—l—dlo//\VuﬂdedT

0 Qf 0 Qf
¢ t ¢
< —k1//\u§\2dxdr+k§°//uiugdxdr—a//(nl’s — > uidy,dr.
0 0 0 re
We write
//8t|u1| dmd7‘+2d10//|Vu1| dxd7+2k1//|u1| dzdr
0 Qf 0 Qf

(4.21)

<C// [u)? + |u|? dxdT—|—€C//|u5| d’yzd7+50//|u1| dyedr.

0 Qf 0 g
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Now, inserting (4.20) in (4.21) yields

t t

t
//8t\ui|2dxdt+2dm//\VuﬂQdde—i—Zkl//\uﬂdedT
a5

0 Qf 0 0 Qf

¢ ¢ t T
< C//(|ui|2+|u§|2)dmd7+05//\uﬂzd'ysz—i—EC///|u§|2d’yzdsdr.
0% 0 0rs

0 a5
(4.22)
We estimate the last two terms in (4.22) to obtain the following inequality

t t

t
//8t|u§|2dxdt+(2dlo—052)//|Vu§|2dmd7+2k1//|u§|2dxd7
a5

0 Qf 0 0 Qf

t t T
sc//aui\?+|u§|2>+c///<\uﬂ2+52|Vui|2>dxdsdr.

0 qQf 0 0 Qf

(4.23)

Following the same line of arguments as before, we obtain from (4.5) that

t t

//8t|u§|2dxdt+(2d20—082)//|Vu§|2davd7'

0 Q¢ 0 Q¢
¢ ¢
€2 €2 €2 2 €2
SC//(\uﬂ + us| )da:dT+C//(|u3| + &7 |Vus|”)dzdr,
0 Qf 0 Qg
while from (4.6), we deduce

t t

t
//8t|u§,|2dxdt+(2d30—C€2)//|Vu§|2dxdT < C//\u§|2dxd7'
a3

0 Qf 0 0 Qf
: : (4.24)

t
+c//(|ug|2 + 22| Vas ) dadr.
0 Q5
Proceeding similarly, (4.7) yields

t

¢ ¢
//8t|ui|2dacd7'+2d4o//|Vui|2dmd7'SC//(|U§\2+|ui\2)dwd7‘, (4.25)
Qs 0 o2 0 o

0

Putting together (4.23) — (4.25) and re-arranging the terms, we get

t t

//8,5(|u§|2—|—|u§|2—|—|ui|2)d:rd7'+(2d10—052) //|Vui|2dxd7'

0 Qf 0 Qf
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t t

+(2d20—Cez)//|Vu§|2dxdT+//(8t|u§|2—|—(2d30—Cez)\Vué\Q)dxdT
0 Qf 0 Qf
t t

¢
+2d40//|Vui|2dxdT+2k1//|uf|2dxd7SC’//|u§|2dxdr

0 Qf 0 Qf 0 Qs

t t T
+c//(|ui|2+u;|2+|uz|2)dxd7+c///(|u§|2+52|vui|2)dxd7ds.
0 o 0 0o

Let us choose € such that the above inequality does not violate. Applying Gronwall’s
inequality with k1 > 0, taking supremum along ¢ € [0,7], we obtain the following
estimate

T
/(\uﬂg—l—\ug\g—l—\ui\Q)dx+C’//|Vu§|2dxd7'+/\u§\2dxg0.

Qs 0 Qf Q3

Hence, we conclude that u,® = u>°,i € {1,2,4} a.e. t € (0,T) in Q5 and uy® = u3*°
a.e. t € (0,T) in Q5. Consequently, (4.20) gives ui = ui® a.e. t € (0,7T) on I'5.

Theorem 4.2.5. (Global existence) Assume (A1) — (A6). Then there exists at least a
global-in-time weak solution in the sense of Definition 4.1.5.

Proof. For the proof of this Theorem, see Appendix 8.2.3.

4.3 c-independent estimates

Here, we derive a priori estimates for the sequence of solution to the problem (4.4) —
(4.8).

Lemma 4.3.1. (A priori estimates) Assume (A1) — (A6). Then the solution to mi-
croscopic problem (4.4) -(4.8) satisfies the following a prior: estimates

| w5 20,7200y + I VU5 20,7020 < C, for j € {1,2,4}
Il us L2 0,m:2005)) + | VU3 2010205 < C,

\@ | ug ||L°°((0,T)XF§) +\/§ I| Orus ||L2((0,T)><r§)§ C.

Proof. We test (4.4) with ¢1 = ui to get

t t t t
//@\uﬂdedT—l—Zdlo//\Vui|2dwdr < k;o//uiuédxdr—e//nauid’yxdr,
Qs 0 0 0 re

0 0f 0
t t
< C//(|u§|2+|u§|2)dxdr+80//|u§|2d’yzdr.
0 Q¢ 0 re

(4.26)
Here we have used the structure of  and the properties of R and Q.
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After applying the trace inequality (4.1) to the last term on r.h.s. of (4.26), we get

t t t
//Gt\uﬂgdxdf—&- (2d10 —052)//|vu§|2dxdT < c//(|ui|2 + |u|?)dzdr.

0 Qf 0 Qf 0 Qf

Taking @2 = u5 in (4.5), we get

//&\uﬂ dde+2d20//|Vu2| dzdr < 2k7° // lui|?® + |us|?)dzdr

0 Qf 0 Qf

—‘,—aC//uguéd’ymdr—i—aC//|u§|2d’yrd7'.
0 13 0 15

Application of (4.1) leads to

t t
//6t|u§|2dwdr—|—(2dgo—052)//\Vu§\2dxdr

0 O 0 Qe
t t
£12 £12 £12 2 £12
§C//(|u1| + g )dxdT+C’//(|u3| + 2| Vs ) dadt.
0 o3 0 o3

We choose ¢3 = u5 as a test function in (4.6) to calculate

t t
//8t|u§|2dxd7+(2d30 —CEQ)//|Vu§|2dde

0 Q3 0 Qs
t t
g2 g2 2 €2
SC//lusl dwd7+0//(|u2| + &°|Vus|?)dzdr.
0 Q3 0 Qf

Setting w4 = uj in (4.7), we are led to

t
t t
//8t|ui|2da:dT +2dao [ [ |Vui|’dzdr < C [ [ (|ui]® + |ui|?)dzdr.

£ €
5 o 0 Qf 0 Q5

Putting together (4.27) — (4.30), we obtain

(4.27)

(4.28)

(4.29)

(4.30)

¢
//8,5 |+ us) + |us] )da:d7'+//8t|u3| dadr + (2dao — Ce?) //|Vu§|2d:cd7

0 Qf 0 Qf

+(2dy0—CE® //|Vu1| dadr 4 (2d30—Ce® //\Vuﬂ dxd7'—|—2d4o//|Vu4| dzdr

0 Qf 0 Qf

(4.31)
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¢ ¢
< C//(|u§:|2 + Jus|® + |ui|2)dxdT+C//|u§|2d:pd7‘,
0 o 0 0

Choosing ¢ small enough and applying Gronwall’s inequality, we have for
jef{l,2,4}

| 4§ lzooo.rin20en< € NusllLos 0,702y < C, (4.32)
| Vi 20,2000 < Cs [IVUsIlL2 0,752 (05)) < C (4.33)

We set as a test function ¢5 = ug in (4.8)

¢ ¢
%//8t|u§|2d'yzd7' SEC//uqud’ysz,
0 e

0 TS

¢ ¢
6//3t|u§|2d'yzd7 < e:C//(\u‘ﬂ2 + [u|?)dryzdr.
0 1% 0 1%

Applying Gronwall’s inequality together with (4.1), we obtain
t
€ 2 €2 2 €2 5 2
e [P, < [ [uil + 96 )dedr + € [ Oy,
re 0 o3 re

Hence by (4.32) and (4.33), e[|u5|| Lo ((0,7)xrs) < C. We take 5 = dyus in (4.8)
as a test function

t ¢
5//|8tu§\2d7xd7§50//ui@tugd%d‘r,
0 re G
t t
e(l— C&)//|6tu§|2d'yzdr < C’//(|u§|2 + &% |Vui|?)dzdr.
G 0 Q.

For convenient ¢ and by (4.32) and (4.33), we have
e || 9eus [lL2(0.myxre) < C- (4.34)

Now we proceed with additional a priori estimates for the sequence of solutions defined
in the domain and on the boundary.

Lemma 4.3.2. Assume (A1) — (A6). The following e-independent bounds hold:

| VOrus [ L2(0,m:2(00)) + | VO:u3 ||L2(0,T;L2(Q;))§ C, (4.35)
| Ocuf 2200, 1;02(02)) + || Oeus [lL2(0,7;22(00)) < C, (4.36)

for j € {1,2,4} and C is a generic constant independent of ¢.
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Proof. Now, we focus on obtaining e—independent estimates on the time derivative of
the concentrations. Firstly, we choose p1 = d:ui. We get

t t
//&ui@tuidwdr—l—//diVuiV@tuidxdT

0 Q¢ 0 Q°f

//klulatuldde—i—//k2u28tu1dmd7—8//n Oyuidydr.

0 Q¢

(1-0C9) //\8tu1| dde+d10/|Vu1| dx<d10/|Vu1 )|?dx

0 Q°

+C// Ju§ | + |us|? dxdes//n Opuidyzdr.

0 Q¢ 0 I'§

(4.37)

The last term in (4.37) can be estimated as follows:

t t
[ [womidnar = e [ [ kRDQ@0widrdr]
0 re 0 re
|£//k38t /R VdaQ(us))dy.dr — 6//k3 /R )da)0uzQ (u5))dpuzdy,dr|,

0 FE 0 FE
t
<eC / s ()2 + O / 5 (0) 2 + C / / i 20y o
rs re 0 rs
By Claim 4.2.3, uf is bounded on I'{

t

s|//n56‘tu§d%d7| gc+csup[0,ﬂ/(|u§(t)|2+52|vui(t)|2)dm+c/(|u§(0)|2
r{ Qe Qe

+ VUi O))ds + Csupny [ (uif? + (Vi F)do +<C / / Oy P,

Qe r{

(4.38)
Combine (4.38) in (4.37) and then choose 6 > 0 conveniently. Using Lemma 4.3, and
taking supremum over the time variable, we get

T
//|atui|2dxd7+dmsup[o,ﬂ/|vui|2dx <C.

0 Q¢ Qe

Testing (4.5) with @2 = Orus gives

t
//\3tu§|2dxd7+ /|V 512da < 20/|v 0)]*dx

0 Qf
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C//|u1| dxdTJrC/ lus|? + |Vus)? d;c+C’5//|8tu2| dzdr

0 QF 0 QF

+%//(|U§|2+\VU§|2)dxdT+05//(|atu§‘2+€2‘vam§|z)dmdr

0 Qf 0 Qf

Choosing § > 0 small enough, we are led to
t t
//|8tu§|2dxd7- <O +€ / / |Voyus > dadr). (4.39)
0 Qf 0 Q¢

We consider now the Dirichlet data u$ to be extended in whole Q. Testing now (4.6)
with @3 = 94 (u§ — uf’) leads to

t
//|8tu§|2dxd7'+ dao /|v HRG R — dso /|v 0)[*dzdr

0 Qf

t
1 €
+5 [ [0l + 0wt ydaar +—// VU2 + V0P 12)dadr

0 O 0 Qs
t ¢
+ EC// (Jus|® + |u5|*) dyedr + EC// (|0eu3]? + [0eud’|*) dyedr.
0 I3 0 I3
Using (4.1), (A6), (4.32) and (4.33), we end up with
¢ t
//|8tu§|2dxdrSC(1+52//|V8tu§|2dxdT). (4.40)
0 Qf 0 O3
From (4.7), we get

t
//\atuﬂ?dxdr < C. (4.41)

0 Q°f

To estimate (4.39) and (4.40), we proceed first with differentiating the partial differ-
ential equation in (2.17) with respect to time and then testing the result with dyus3.
Consequently, we derive

/|8tu2| dm+dgo//|V8tu2 [Pde < = /|8tu2 )|*dz

0 QF

—|—C// |8us > + |Brus| )d:cd7+sC// |0ius|? + |8us|?)dy.dr.

0 Qf
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Using (4.1), it yields

/|8tu2\ dz + (doo — Ce?) //|V8tu2 [Pdzdr < = /|8tu2 )[2dz

0 QF

+C//|8tu1| deerC// |0sus|? + €2 |Vorus|? de:c+C'//\5‘tu2| drdz.

0 Qs 0 Q5

(4.42)
Differentiating now the partial differential equation (2.18) with respect to time and
then testing the result with 9;(u§ — uf), we get

/\8tu3| da:—|—d30//|V6tU3 | dzdr < = /|8tu3( )| dx—|—//8ttu38tu?, dzdr

Q7 0 Qf QF 0 Qf

//dgvatug Voius da:dT—l—sC’// |0 us® \ |Opus® \ |8tu3 \ )dvedT.
0 Qc
(4.43)
The term with second-time derivative can be estimated by

¢ t
//OttuéatU3DdxdT://8tu§8tu3Dd:vdT

0 Qs 0 Qs

t t
—//atug(())atu?,D(O)dcch—//BttugD&gugdxdT.

0 Qf 0 Qf

Using (4.1) to deal with the boundary terms and (A5), we obtain

%/|8¢U§|2d$+(d5 *CE //|V8tu3 | dzdT < Co+C//|aﬂL5 | dxdr
Q3

0 Qf
(4.44)

t
+c//(|atu;|2 + 2|Vt |?)dadr,
0 QT

where Cy contains bounded terms. The boundary data is smooth enough and regularity
assumptions in uzo and use imply that [|0:u3(0)||L2(as) and [|0:u5(0)||L2(ag) can be
estimated by H?-norm of the corresponding initial data. Adding (4.42) and (4.44),
and re-arranging the terms gives

t t
(d2 — CE?) // |Voyus® *dadr + (ds — 052)//|V(9t’u,35|2dwd7' <C.
0 o 0 05

Choosing ¢ small and taking the supremum over the time interval in question, we get

T T
//|V8tu25|2d:cd7+//|V8tu35|2da:d7§C. (4.45)

0 Qf 0 Qf
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Inserting (4.45) in (4.39) and (4.40) yields the required result.

4.4 Extension. Two-scale convergence. Com-
pactness. Cell problems

We intend to pass to the homogenization limit. We do this by following a three-steps
procedure: In Step 1, we rely on the standard extension? results from [2] to extend all
active concentrations uj (¢ € {1,...,4}) to Q. As step 2, we use the notion of two-
scale convergence and the corresponding two-scale compactness result developed by
Nguetseng and Allaire to pass to the limit in the (weak form of the) partial differential
equations. In step 3, we unfold the ordinary differential equation for ug to replace the
oscillating boundary with a fixed one, say I'1; see Section 4.5.2. The last two steps
will be detailed in the next section; here we focus more on the concept of two-scale
convergence and available compactness properties.

4.4.1 Extension step

Since the concentrations are defined in the Qf and Q5, to get macroscopic equations
we need to extend them into 2. Note that according to our assumptions Qf and Q3
are connected, standard results apply.

Remark 4.4.1. Take ©° € L?(0,T; H'(Q°)). Note that since our microscopic ge-
ometry is sufficiently regular (and phases are connected), we can speak in terms of
extensions. Recall the linearity of the extension operator

P LP0,T; H(QF)) — L*(0,T; H'(Q))
defined by P = $°. To keep notation simple, we denote the extension @° again by

£

=
Lemma 4.4.2. (Extension) Consider the geometry described in Section 4.1.1 There
exists an extension @° of u® such that

Lo 2 < C |l us 2y for i € {1,2,4},u° € L* (Y1)
2. || Va,© \|L2(Y)§ 16, || Vug ||L2(y1) for Vu® € L2(Y1)
3. || ’lZ—;s HHl(Q)S C || Uf HHI(Qi) for u® S Hl(Qi)
Similar estimates hold for the concentration living in the air phase.

Proof. For the proof of this Lemma, see Section 2 in [39] or compare Lemma 5,
p.214 in [68].

We identify u® with the extension 4°. For the extended functions, we obtain a
priori estimate by taking supremum norm of u°.

Lemma 4.4.3. For any solution of problem (4.4)-(4.7), the following estimate holds:
where C is a constant independent on u;°.

The estimate (4.46) follows from the nonnegativity of u;°.

2Since we deal here with an oscillating system posed in a perforated domain, the natural
next step is to extend all concentrations to the whole €.
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4.4.2 Two-scale convergence. Compactness. Basic conver-
gences

In this subsection, the convergence of the sequence of solutions to the microscopic

problem (4.4) — (4.8) associated with a sequence of parameters ¢ approaching to zero

is discussed. Since we deal with periodic microstructures, the most natural type of
convergence is the one presented in the next Definition:

Definition 4.4.4. Let {u®} be a sequence of functions in L*((0,T) x Q) (Q being an
open set of R™) where ¢ being a sequence of strictly positive numbers tends to zero.

{u®} is said to two-scale converge to a unique function uo € L2((0,T) x Q x Y) if and
only if for any ¢ € C5°((0,T) x Q,C (Y))?, we have

T
lin(l)//u o(t,z, = dmdt ///uo (t,z,y)d(t, z, y)dydzdt. (4.47)
e—

0

We denote (4.47) by u° 2 .

The following compactness results allow us to extract converging sequences from
the bounded sequences.

Theorem 4.4.5. (i) From each bounded sequence {u®} in L?((0,T) x Q), one can
extract a subsequence which two-scale converges to ug € L*((0,T) x Q x Y).

(ii) Let {u} be a bounded sequence in H'((0,7) x Q), then there exists @ €
L*((0,T)xQ; Hy (Y)/R) such that up to a subsequence {u®} two-scale converges

to uo € L*((0,T) x Q) and Vu® = V,ug + V.

Definition 4.4.6. A sequence of functions {u®} in L*((0,T) x T) is said to two-scale
converge to a limit ug € L*((0,T) x Q x I') if and only if for any ¥ € C§°((0,T) x
Q,C% (T)) we have

hma//ud)tx,fd'ywdt ///uotxy (t, x, y)dvy,dzdt.

Theorem 4.4.7. (i) From each bounded sequence {u®} € L*((0,T) x '), one can
extract a subsequence u® which two-scale converges to a function ug € L?((0,T')x
QxT).

(ii) If a sequence of functions {u°} is bounded in L ((0,T) x I'*), then u° two-scale

converges to a function ug € L*((0,7) x Q x I).

Proof. For the proof of (i), see [104, 10], while for the proof of (ii), see [83].
Estimates in Lemma 4.3.1 and Lemma 4.3.2 lead to the following convergence
results:

Lemma 4.4.8. (Compactness) Assume (A1) — (A6). Then for i € {1,2, 3,4}, it holds:
(a) u§ — w; weakly in L2(0,T; H*(Q),

30;0 (Y) — the space of infinitely differentiable functions in R™ that are Y-periodic.
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(b) uf = u; weakly in L°°((0,T) x Q),

(c) Opu§ — dyu; weakly in L2((0,T) x Q),

(d) u — u; strongly in L2(0,T; H?(Q)) for 1<B<l,
also /e || u§ — us lL2¢0,7yxr.)— 0 as € = 0,

() uf 2 wi, Vus 2 Vauy + Vyusn, ujn € L2((0,T) x @ Hy(Y1)/R),j € {1,2},
Vus 2 Vous + Vyusi, usi € L2((0,T) x Q; Hy(Y2)/R),

(f) uf > us, and us € L®((0,T) x Q x T'y),

(8) Drug 2 dyus, and drus € L2((0,T) x Q x Ty).

Proof. (a) and (b) are obtained as a direct consequence of the fact that uf is
bounded in L?(0,T; H*(2)) N L>((0,T) x Q); up to a subsequence (still denoted by
u$) u§ converges weakly to u; in L2(0,T; H*(Q))NL>((0,T) x Q). A similar argument
gives (c). To get (d), we use the compact embedding Hﬁ/(Q) — H?(Q), for B € (3,1)
and 0 < B < B’ < 1 (since  has Lipschitz boundary), see Proposition 5.4.4 in [132]. We
have W := {u; € L*(0,T; H'(Q)) and :u; € L*((0,T) x Q) for all i € {1,2,3,4}}. For
a fixed &, W is compactly embedded in L?(0,T; H?(2)) by the Lions-Aubin Lemma;
cf. e.g. [80]. Using the trace inequality (4.2)

Ve I u; — U HLQ((O,T)XFE) C u; — u; HL2(O,T;Hﬁ(Qf))

<
< Cllui —uill20,mm5 @)

where || ui — wi 220,718y~ 0 as € — 0. To investigate (e), (f) and (g), we use
the notion of two-scale convergence as indicated in Definition 4.4.4 and 4.4.6. Since
u$ are bounded in L?(0,T; H*(2)), up to a subsequence u$ 2y in L?((0,T) x Q),
Vus A Vauy + Vyugn, ujn € L2((0,T) x Q Hy(Y1)/R),5 € {1,2}, Vui > Vous +
Vyust, ust € L*((0,T) x Q; Hj(Y2)/R). By Theorem 4.4.7, u§ in L>((0,T) x I'f)
converges two-scale to us L™ ((0,7) x Q x I'1) and d;ug converges two-scale to dius in
L2((0,T) x Q x T'1).

4.4.3 Cell problems

To be able to formulate the limit (upscaled) equations in a compact manner, we define
two classes of cell problems (local auxiliary problems) very much in the spirit of [67].
One class of problems refers to the water-filled parts of the pores, while the second
class refers to the air-filled part of the pores.

Definition 4.4.9. The cell problems for the water-filled part are given by

—Vy(de(y)Vywf) =37, Oy deri(y) in Vi,

e (4.48)
—do(y) L = Z?:l deri(y)ns on Ty UTs,
for all k € {1,2,3},£ € {1,2,4}, wf are Y-periodic in y.
The cell problems for the air-filled part are given by
_vy~(d3(y)vy‘*’§) = Z?:l Oy, dsi(y) in Yz, (4.49)
wk ’
~ds(y) Gt = >0 dai(y)ni on Ty

for all k € {1,2,3}, w% are Y-periodic in y.
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Note that standard theory of linear elliptic problems with periodic boundary con-
ditions [35] ensures the solvability of the families of cell problems (4.48) — (4.49).

4.5 Derivation of two-scale limit equations

First we pass to the limit in the weak formulation of the partial differential equations
and in Subsection 4.5.2, we pass to the limit in ordinary differential equation (4.8). We
conclude this section with stating the strong formulation of two-scale problem.

Theorem 4.5.1. Assume (Al) — (A6). The sequences of the solutions of the weak
formulation (4.4) — (4.8) converges to the weak solution u;,¢ € {1,2,3,4} as e — 0 such
that u; € H'(0,T; L*(Q))NL*(0,T; H'(Q)),j € {1,2,4}, us € uf +L*(0,T; H.5(2)),
druz € dpuf + L(0,T; L3(Q)) and us € H*(0,T; L*(Q x T'1)). The weak formulation
of the two-scale limit equations is given by

T T

// (Orui(t, z) — Fy(u))di(t, x)dadt + //DiVui(t,x)V@-dmdt =0, (4.50)
0 0 Q
where
Fi(u) = —ku(t,z) + kauz(t,z) ﬁ/kS(y)R(ul(t 2))Q(us(t, ,y))dvy,
Fo(u) = kwui(t,x) — koua(t,z) + %&U3(t x) — bus(t, ),
F3(u) = —aus(t,z)+ Hbm(t x), Fy(u) = kyuy (¢, ),
(Dg)jk = |)/1‘ Zl/ dg ]k —+ (dg)zk8y7we)dy, for ¢ € {1 2 4} ], ke {1 2 3}
i=ly,
-
(D3)jk = |Y,2‘ Z/ d3 jk + (d3)2k8yzw3)dy, b:= W /b(y)d’yy
1N

a = y)dy, K = y)dy, m € {1,2},
|Yz\/ W |Y1|/ v, me {12}

with the initial values u;(0, ) = uio(z) for z € Q and w}, w) being solutions of the cell
problems defined in Definition 4.4.9. Furthermore, we have

/ / (Orus(t, @, y) — ks(y)R(u1(t, 2))Q(us(t, z,y))) ¢s(t, z, y)dtdady, = 0, (4.51)

QxI'y

with us(0,2,y) = uso(z,y) for © € Q, y € T1. Also p; € L*(0,T; H(Q)),5 € {1,2,4},
3 € L*(0,T; Hip () and @5 € L*((0,T) x Q x I'y).
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4.5.1 Passing to ¢ — 0 in (4.4) — (4.7)

Proof. We apply two-scale convergence techniques together with Lemma 4.4.8 to get
macroscopic equations. We take test functions incorporating the following oscillating
behavior ¢;(t,x) = @i(t,x) + ei(t,x, 2),¢; € C((0,T) x Q),¢; € C((0,T) x
Q,;CE(Y)),i € {1,2,3,4},5 € {1,2,4} and ¢35 € C5°((0,T) x Q),92 € C5°((0,T) x
Q,;Cg (Y)). Applying two-scale convergence yields for i € {1,2,4}

T

|Y1|//8tu,gzﬁz (t,z dxdt+/// ) (Veui(t, x) (4.52)

0 QY
T

+ Vyai(t,z,y))(Vadi(t, z) + Vytbi(t, z,y))dydzdt = //FZ i (t, ©)dxdt,
0

and

T
|Y2|//8tU3¢3 t x dxdt+///d3 V U3 t .CU) (4.53)
0 Q Yy

T
+ Vyus(t,z,y))(Vads(t, ) + Vyps(t, z,y))dydadt = //Fg(u)gbg(t,x)dxdt,
00

where
T T
/ / Fy(u) (t,2)dedi = lim / / (= KSui+ k5u3)(61 (¢, ) +en (1,7, &) piadl
0 Q 0 Q

e—0

T
~time [ [ ) on(t) + vt D)

0§

Using Lemma 4.4.8 and (4.8), we have

O/ Q/ P (t,z)dzdt = / / / (= ko (y)un (t, 2) + ka(y)ua(t, 2)br (¢, )dydadt

0QVYy

— hme//(?tug) d1(t,x) +e1(t, x ))d'yzdt7

0 T§

/T/Fl(u)gbl(t, z)dzdt = |Y1| /T/ ( - l::lul(t,x) +l~cgu2(t,m))¢1(t, z)dzdt

T

_ / / / Drusdu (¢, x)dry, dadt.

0 QI
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T T
[ [ Bwestt,a)dede=tim / / (Kius — k50) (9a(t, ) +evalt, 2, 2 dadt
0 Q

+hm5// a“uj — b°u3) (¢2(t, ) + ea(t, @, = ))dfyzdt

Passage to the limits € — 0 gives

T

//Fg(u)qbz(t,m)dxdt |/T/ kiui (t, x) — kaua(t, x)) do(t, x)dadt
0 Q

0 Q

+0/ / y)us(t, x) — b(y)ua(t, z))d2(t, z)dzdydt,

Q I'y

T
// k:1u1 t,x +k2uz(t m))qbg(t,x)dxdt
0

T
+// Yalaus(t, @) — [¥i[Bus(t, ) éa(t, 2)dadr.
0 Q
‘We also obtain

T

T
//F3 V3 (t, z)dxdt = // |Ya|aus(t, ) — |Yi|bua(t, z))¢s(t, x)dadt,
0O

0
T

T
//F4 Ya(t, z)dzdt = // 1(t, ) Pa(t, z)dxdt.
0 Q

0

We set ¢; = 0,7 € {1,2,3,4} in (4.52) to calculate the expression of the unknown
function @1 and obtain

T

/// VY(Vaui(t,x) + Vyts(t, z,y)) Vytbi(t, z, y)dydzdt = 0, for all ;.

0 QY

Since u; depends linearly on V,u;, it can be defined as

3

~ J

Ui 1= E azjuiwi,
=1

where the function w’ are the unique solutions of the cell problems defined in Definition
4.4.9. Similarly, we have u3 := Z?:l Oz ;uss; where ¢; are the unique solutions of the
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cell problems defined in Definition 4.4.9. Setting ¢; = 0 in (4.52), we get

T

3 3
/ / / > dije () Oupui(t,2) + > Oy e,y uilt, ©))u; b (¢, ) dydadt

0 Qv Jk=1
A 3
— W // S (D2)5100y it 2)0s, (1, ),
0 Q
Hence, the coefficients (entering the effective diffusion tensor in water) are given by
3
1 ; .
(Di)jk = m Z/((dz)]k + (di)gkawwi )dy, for ¢ € {172,4}.
e
Similarly, we obtain the following effective diffusion coefficient of H2.S5(g)
1< -
(Ds)jk == V| Z/((ds)jk + (ds) er Oy, w3 ) dy.
=1y,

These tensors are symmetric and positive definite, see [35].

4.5.2 Passing to the limit ¢ — 0 in (4.8)

It is not yet possible to pass to the limit € — 0 in the ordinary differential equation
(4.8) with the compactness results stated in Lemma 4.4.8. To overcome this difficulty,
we use the notion of periodic boundary unfolding. It is worth mentioning that there
is an intimate link between the two-scale convergence and weak convergence of the
unfolded sequences; see [34, 83]. The key idea is to obtain strong convergence for the
unfolded sequence of us instead of getting strong convergence for ug.

Definition 4.5.2. (Boundary unfolding operator) For € > 0, the boundary unfolding
of a measurable function ¢ posed on oscillating surface I'{ is defined by

T oz, y) = ¢ley +€k), y T,z €Q,

where k := [£] denotes the unique integer combination $3_,k;e; of the periods such
that 2 —[Z] belongs to Y. Note that the oscillations due to the perforations are shifted
into a second variable y which belongs to the fixed surface I';.

Lemma 4.5.3. If . converges two-scale to ¢ and Tr5, . converges weakly to " in
L*((0,T) x ©Q; L% (T1)), then ¢ = ¢* a.e. in (0,T) x Q x I'y.

Proof. The proof details for this statement can be found in Lemma 4.6 of [83].

Lemma 4.5.4. If ¢ € L*((0,T) x T§), then the following identity holds

1
m‘|7f€1@|\L2((o,T)xnxrl) = \/5H80||L2((0,T)xr§)-

Proof. See [83, 38, 36] for the proof details.

Lemma 4.5.5. If ¢ € L*(Q), then T, ¢ — ¢ as € — 0 strongly in L*(Q x T'1).
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Proof. See e.g. [36, 38] for the details of the proof.
Lemma 4.5.6. If ¢ € L*(T'1), then T, ¢ — ¢ as € — 0 strongly in L*(Q x T'1).

Proof. The proof goes on the same line as the proof of Lemma 4.5.5; see also
Proposition 2.11(f) in [46].

Using the boundary unfolding operator 7r,, we unfold the ordinary differential
equation (4.8). Changing then the variable, x = ey + ¢k (for z € I') to the fixed
domain (0,7") x Q x I'1, we have

O T, us (b, x,y) = n° (T, ui(t, x,y), Tr, us (b, %, y)). (4.54)

In the remainder of this section, we prove that 7; us converges strongly to us in
L?((0,T) x Q2 xT4). From the two-scale convergence of u§, we obtain weak convergence
of TCu§ to us in L*((0,T) x ;L% (T'1)). We start with showing that {77, u§} is a
Cauchy sequence in L*((0,T) x € x T'1). We choose m,n € N with n > m arbitrary.
Writing down (4.54) for the two different choices of € (i.e. €; = &, and €; = &), we
obtain after subtracting the corresponding equations that

o [ 1T - T Py de
QxI'q

= [ IsO)RE a)QUT ) — k() RO QT )
QxI'y

E’IL E‘VL E‘"‘L 67”
X (7}1 Us™ — Jp, Us )dyydz,

IN

c / T ug™ = T ug™ [P dy, dz+C / T ug™ — T ug™ 2 dyy da(4.55)
QxTI'y QxI'y

To get (4.55), we have used the uniform boundedness of 7" u;" and properties of R
and Q. Since ui converges strongly to u; in L*((0,T) x T'{) by Lemma 4.4.8 (d), we
get by Lemma 4.5.4 that

/ T . — T [Py dae = 5/ (= s [Pdra < Ce. (4.56)
s

QxIq

Since u1 is constant w.r.t. y, we have that 7i¥, u1 — w1 strongly in L*((0,7) x Q@ x I'1)
as € — 0. Combining (4.56) and the strong convergence of Ty, u1 to u1 to get

A e At
Qxry re re
b [ 0T =l T ) dy,da,
QxI'y
< Clen +m),

while (4.55) becomes

2 2
O / [Trlus™ — Trus™ |“dryyde < C'/ [T ug™ — T ug™ | dyyde + Clen + em)-
QxT'q QxI'y
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Applying Gronwall’s inequality, we obtain:

/ T use (1) — T ug (1) Py da

QxIy
< / | en en() Tem Em( )|2d’yyd$+0(5n+5m)
QxI'y
¢ [ itenmnfinies [ en sl oo
QxI'y QxI'y

Using Lemma 6.25, we get
” ﬁ;ugn - ﬁrugm ||L2((O,T)><Q><1"1)—> 0 as €n,em — 0. (4'57)

By (4.57), {7, us} is a Cauchy sequence and hence converges strongly. Thus, Q(7r, u§) —
Q(us) strongly in (0,7) x Q x I'1 as ¢ — 0. Now, we take the two-scale limit in the
ordinary differential equation (4.54) to get

T

hms/ / 0Tt us s (¢, x, y)dady,dr

e—0
0 QxI'y
T

= hms/ / N (Tr, ui, Try us)és (¢, ¢, y)dedy,dr. (4.58)

e—0
0 QxTy

Consequently, we have

/ / Orus s (t, x, y)dady,dt

0 OxI'y
T
= dime [ [ TERRCR w)QU st 2, Ddady,dt,
0 QxI'y
T
= hm{-:/ / 7}‘1U1)Q(’UJ5)¢5(157$,E)dl}d’yydt
e—0 £
0 QxI'y

e—=0

+ lims/ / ks(y) R(Tr, ui)(Q(TT, us) — Q(us))ds(t, =, g)dxd’yydt (4.59)

0 QxI'y

By (A2) and the strong convergence of uf, the first term on the right hand side of
(4.59) converges two-scale to

T

///kS(t’y)R(ul)Q(%)%(t,w,y)dvydxdt,

0 QI
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while the second integral of (4.59)

(W) R(TE,uS) QT u5) = Q(us))os (1,2, 7 )dady, d

O~
—
F

QxI'y
T 2
< o[ [ )RR w00, DR dsdra
0 QxI'y
1
2
X / / QT us) — (u5)|2dwd’yydt — 0 as ¢ = 0.
0 Qxry

At this point, we have used again (A2) in combination with the strong convergence of
Tr, u5. So, as result of passing to the limit £ — 0 in (4.58), we get (4.51).

Since our positivity and L°°-bounds are independent of the choice of €, these prop-
erties hold true also for the weak solutions to the limit problem (4.50)-(4.51). Having
these bounds available, the proof of the uniqueness follows very much in the same spirit
as for the microscopic problem.

4.5.3 Strong formulation of the two-scale limit equations

Lemma 4.5.7. Assume the hypothesis of Lemma 4.4.8 to hold. Then the strong
formulation of the two-scale limit equations (for all ¢ € (0,7)) reads
Orur (t,x) + V- (=D1Vui(t,z)) = 71%1U1(t,$) + l%qu(t,x)
- / ka(y) Rl (£ 2)Qus (1, 2, 1))y, @ € ©
! (4.60)

n-(—=DiVui(t,z)) =0, z e TP UTY,
u1(0,z) = u1o(z), = € Q,

Arua(t,z) + V - (=DaVus(t, x)) = kiui (t, ) — kaua(t, )

V2| 7
+ ——aus(t,z) — bua(t,xz), x € Q,
vy s (6o ) — bua(ty ) (4.61)
n-(—DaVus(t,z)) =0, z e TP uTY

u2(0,z) = u20(z), = € Q,

Owus(t,x) + V- (=DsVus(t,z)) = —aus(t,z) + :YJ bus(t,z), z € Q,
u3 (0, z) = uso(z), xGQ (4.62)
uz(t, z) = ( ), x
n-(—DsVus(t,z)) =0, z €

’LL4(0 xT) = U4()( ), T € Q (463)

v
at’LL4(t, .’L‘) + V- ( D4VU4(2‘/ x)) = ]ﬂ1U1(t x) T € Q,
)=
n - (—DsVua(t,z)) =0, zerPury
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8tu5(t,x,y) = k3(y)R(U1(t,$))Q(U5(t,1},’y)), T Q7y S Fh
us(0,z,y) = uso(z,y) z € Q,y € Ty,

where D;,i € {1,2,3,4}, a,b and iﬂj,j € {1,2} are defined in Theorem 4.5.1.

(4.64)

4.6 Notes and comments

We applied the concept of two-scale convergence together with the periodic boundary
unfolding to obtain the desired upscaled model equations?. In this way, we were able to
provide a rigorous justification of the formal two-scale asymptotic expansion performed
in Section 3.3 for the particular case of periodically-distributed microstructures.

We answer the question raised in Chapter 3 regarding the use of two different
asymptotic expansions (3.18) and (3.50) for treating an ordinary differential equation
posed on an oscillating boundary and justify rigorously the use of (3.18) in handling
the ordinary differential equation.

There are some limitations of the two-scale convergence technique. The most im-
portant refer to:

1. In general, most of the microstructures are not periodic;
2. Boundary layers often arise inside microstructures;
3. Time-evolving microstructures.

The notion of stochastic homogenization was developed to deal with non-periodic struc-
tures. Zhikov and Pyatnitskii in [148] introduced a two-scale convergence method for
stationary, ergodic cases on a compact probability space to homogenize a system posed
for non-periodic structures of a certain class. This method was recently extended in
[64] e.g. (also see [65]) to capture the effect of random geometries.

In many real world applications, boundary layers often arise at various length scales;
see e.g., [71, 82]. They are induced by the presence of Dirichlet data or of especially
e—scaled geometries, see e.g. [6, 9, 21]. This averaging is cumbersome especially if one
wants to capture information from the boundary layer.

Averaging scenarios with free and/or moving interfaces have been studied formally,
for instance, in [79, 127]. Most such problems are hard to analyze mathematically and
even basic solvability results may not hold. Here, we preferred to dwell on a class of
z-dependent microstructures often named locally-periodic structures.

Local periodicity is included in the model equations in two ways: either the equa-
tions are defined in the locally-periodic domain or the transport coefficient and reaction
rates are space-dependent in a non-monotonic way, see Remark 2.5.1.1 and [22].

We close this chapter by pointing out two multiscale convergence notions that
possibly can treat some of the locally-periodic geometries. R. Alexandre introduced in
[7] the notion of # — 2 convergence:

Definition 4.6.1. Let u° be a bounded sequence of functions in L*(Q). u° is said to

converge 6 — 2 to ug € L?(€; LQ#G) % as € — 0 if and only if for any ¢ € D(; 0%09)67\7\76

4The rigorous justification of the distributed-microstructure model derived in Subsection
3.3.2 of Chapter 3 for uniformly periodic and locally periodic domains is still to be done.

5L2(Q; L;Lg)— the set of functions (-, z) which are L? in z € Q for all z € Y(z) (Y(z) is
defined in (4.66)) and for each x € €, the function ¢(z,-) is L? and Y (z)—periodic.

5D Cgp)— the set of test functions (-, z) which are C'*° in € Q for all z € Y (z) and
for each z € Q, the function ¢(z,-) is C*° and Y (z)—periodic.
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have 1
lim [ u®yg(z)dz :/ / ug(z, 2)p(x, z)dzdz, 4.65

e—0
Y (z)

where ¢y is defined by

g () := p(x,ap(z)), while,
aj(e) = VO[O~ (2 - [T

and Y(z) ={z,2= V00 '(z)a,a € Y} forz € Q. (4.66)

] if z € 0(Pf), keZn,

0 : R" — R" is a C? diffeomorphism such that §~' has 1/2 as Lipschitz constant.
Recently, M. Ptashnyk introduced in [125] yet another extension of the two-scale con-
vergence.

Definition 4.6.2. Let u° be a bounded sequence of functions in L*(Q). u? is said to
converge locally-periodic two-scale to a unique function uo € L*(€2; L?(Y%)) as € — 0
if and only if for any ¢ € C§(Q; CF (Ya))

: € €) n z 1
lim [ w (x)EN( ) (z, g)xgi(m)dm = VA //uo(uw,y)@(t,w,y)dydw, (4.67)

e—0 n=1
Q Q Y,

where ¢™ is the locally-periodic approximation of ¢ and Xxqe (x) are characteristic func-
tions of Q.

Both notions of convergence are applicable to our partial differential equations but
are not applicable to the nonlinear ordinary differential equation. In order to pass to
the limit in the ordinary differential equation, a boundary unfolding operator designed
for locally-periodic media would be needed. Note that the two concepts of locally-
periodic two-scale convergence are somewhat similar. However they apply to different
classes of microstructures [the notion by Alexandre is restricted to ball-like geometries,
whereas the one by Ptashnyk seems more general]. We refer the reader to Theorem
2.2 in [7] and Theorem 6 in [125] for the corresponding compactness results.



Chapter 5

Corrector Estimates

Corrector estimates are useful tools to assess the quality of an averaging method.
Basically, they emphasize the convergence rates measuring the error contribution
produced while approximating macroscopic solutions by microscopic ones. The
goal of this chapter is to obtain corrector estimates for our problem. We stress
here on the fact that the corrector estimates obtained in this chapter require
minimal regularity of the data and of the solutions to the cell problems, but
work only for periodic microstructures.

The chapter is organized in the following fashion: In Section 5.1, we present
a modified version of the microscopic model given in Chapter 2. We list the
assumptions on the parameters and data involved in the model and give the
definition of weak solutions. Section 5.2 is devoted to the analysis of the micro-
scopic model. We introduce in Section 5.3 the notion of the periodic unfolding
technique (introduced by Cioranescu et al. in [34]) as well as its basic proper-
ties. This section also includes the derivation of homogenized limit equations,
this time using the unfolding idea. Section 5.4 contains the proofs of both cor-
rector estimates and related technical lemmas. The main result of this chapter
is Theorem 5.4.11 which basically states convergence results.

5.1 Geometry. Microscopic model. Assump-
tions
5.1.1 Geometry

We refer to the uniformly periodic geometry discussed in Chapter 2, Subsection
2.2.3.1; see also Fig. 5.1.

The results stated in this chapter have been reported in [57] as a joint collaboration with
A. Muntean(Eindhoven) and M. Ptashnyk (Dundee).



68 Chapter 5. Corrector Estimates

FiGURE 5.1: Left: Uniformly periodic system of connected ”tubes”. Right:
Reference pore configuration.

5.1.2 Microscopic model

We modify the model equations described in Subsection 2.5.1 by replacing the
linear reaction rates in the balance equations of for HoSO, and HsS(aq) by
non-linear reaction rates. To simplify the calculations, we neglect the partial
differential equation for moisture. We consider here the following model equa-
tions:

O + div(—=d5Vu§) = — f(u§, uj) z e, te(0,T) (5.1)
Opu§ + div(—d5Vus) = f(u3, us) xe i, te(0,7) (5.2)
B + div(—d5Vus) = 0 veQs, te(0,T)  (5.3)
Opug = n° (u§, ug), x ey, te(0,T). (5.4)

The system is completed with the initial conditions

ui(x,0) = wu(x) xeQf,t=0,i€{1,2} (5.5)
uz(x,0) = ugo(z) x€N5,t=0 (5.6)
ug(2,0) = usp(z) relf,t=0. (5.7)

The associated boundary conditions are

—diVu§ -n® = en(ui, uf) xeTlf,te(0,T) (5.8)
—diVui-n® =0 xeTl5,te(0,T) (5.9)
—dzVu3-n® =0 z el te(0,T) (5.10)
—d5Vug-n® = —¢e(a®(z)u§ —b°(x)u) =z el5,te(0,T) (5.11)
—d5Vus -n® =e(a®(z)u§ —b°(x)u§) xels5,te(0,T) (5.12)
uj,u; =0 x€dNNIN, te (0,T) (5.13)

ug =0 x€dNNINS, te (0,T).(5.14)

Assumption 5.1.1. We assume the following restriction on the data and model
parameters:
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(A1) dg, Oudy, € L°°(07T;L°#°(Y))3X3, k e {1,2,3}, (dip(t,z)&, &) > d2|§|2 for
d) >0, for every £ € R® and a.e. (t,z) € (0,T) x Y.

(A2) k3 € L3 (T'1) is nonnegative and n(a,B) = ks(y)R(a)Q(B), where R :
R — Ry, @ : R — R, are sublinear and locally Lipschitz continuous.
Furthermore, R(a) = 0 for @ < 0 and Q(8) = 0 for 8 > Bimaz, with some
ﬁmaw > 0

(A3) f € C'(R?) is sublinear and globally Lipschitz continuous in both vari-

ables, ie. |f(a,B)] < Cr(1+|al+18]), |f(a1,B1) — f(az, B2)| < Cr(lag —
as| + |81 — Ba2]) for some Cr,Cy > 0, and f(a,3) =0 for « <0 or § <0.

(A4) a,b € LE(T2), a(y) and b(y) are positive for a.e. y € 'y and there exist
My, Mj such that b(y) My = a(y)Ms for a.e. y € T's.

(A5) Imitial data (u1(0),u2(0),u3(0),us(0)) € [H2(Q) N HL(Q) N L>®(Q)]® x
L35, (T'y) are nonnegative and uz(0) < My, uz(0) < Ms a.e. in Q.

The oscillating coefficients are periodic and are defined in Subsection 2.5.1.1.
Furthermore, we define the space

Hjo(Q) :={ue H(Q):u=00n 00NN}, i=1,2.
Definition 5.1.2. We call (u§,uj,u§, u§) a weak solution of (6.1) — (6.8) if

S us € L2(0, T; Hbg (Q5))NH (0, T; L2(95)), u§ € L(0, T; Hbo(25))NH(0, T
L2(Q5)), ug € H*(0,T; L*(I'5)) and the following equations are satisfied:

T T
/ (6tui¢1+d§Vu§V¢1+f(ui, u§)¢1)dxdt = —5// n(uf, ug)p1dy.dt, (5.15)

0Qs 0T

T T
/ (OruS a5 Vs Vo f (u 15) b2 dalt=e / / (0% u5—b°u5) dady,dt, (5.16)

0 Qf 0rs
// Gtu3¢3+d€Vu§V¢)3 dxdt 75// a® u§— d)gd’ymdt (5.17)
005 0TS
T T
{—://&ugqﬁg)dfywdt :5// n(ug, ug)psdyydt (5.18)
0T: 0T

for all 9 € L2(0, T Hjg (04)), j € {1,2}, 65 € L(0,T; Hyo(%5)), 05 € L*(0,7) x
I'5) and w5 (t) — w10, u(t) — ug in L2(Q5), u 5(t) = ugp in L2(9Q5), u £(t) — uso
in L2(T5) as t — 0.
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5.2 Analysis of the microscopic model

This section is devoted to the well-posedness of the microscopic model (5.1) —
(5.14).

Lemma 5.2.1. (a priori estimates) Under the Assumption 5.1.1, solutions to
the problem (5.15) — (5.18) satisfy the following a priori estimates:

uillLos 0,122 (00)) + [IVUill L2 (0,7)x02)

||u;||L°°(O,T;L2(Q§)) + ||VU’;HL2((O7T)><Q§) (519)
u§ll Lo (0,722 (05)) + [IVU§I L2 ((0,7)x25)

£1/2

QQAQqQ

IAIN CIA A

[ug || oo 0,722 (re)) + €22 (100w || 20,7y xT5)
where the constant C' is independent of ¢.

Proof. First, we consider as test functions ¢; = u§ in (5.15), ¢o = u§ in
(5.16), ¢3 = u§ in (5.17) and use Assumption 5.1.1, Young’s inequality, and the
trace inequality to get

t
t
6//u§u§d%d7' <C [ [(lug)* + €| Vu§|*)dvdr
0 05
0 I's 2

¢
+C [ [ (|u]? + €%|Vus|*)dy,dr.
0 Qs

Then, adding the obtained inequalities, choosing € conveniently and applying
Gronwall’s inequality imply the first three estimates in Lemma.

Taking ¢5 = uf as a test function in (5.18) and using (A2) from Assumption
5.1.1 and the estimates for uj, yield the estimate for ui. The choice of test
function ¢5 = d;uf in (5.18), the sublinearity of R, the boundedness of @ and
the estimates for u§ imply the boundedness of 61/2||6tu§||L2((07T)XF§).

Lemma 5.2.2. (Positivity and boundedness) Let Assumption 5.1.1 be fulfilled.
Then the following estimates hold:

(i) u§(t),us(t) > 0 a.e. in QF, u§(t) > 0 a.e. in Q5 and u§(¢),us(t) > 0 a.e.
on I'5, for a.e. t € (0,7).

(ii) w§(t) < Myet, u§(t) < Mae®2t ae. in QF , u§(t) < Mzedst ae. in Qf,
and u§(t) < Myedtt, ug(t) < Mse?st a.e. on I'§, for a.e. t € (0,T), with
some positive numbers A;, M;, where j = 1,2,3,5.

Proof. (i) To show the positivity of a weak solution we consider —u§~ as
test function in (5.15), —u§™ in (5.16), —u§~ in (5.17) , and —uf~ in (5.18).
The integrals involving f(u5,u§)us ™, f(u§, us)us~ and n(u§, uf)us~ are zero by
Assumption 5.1.1. In the integrals over I'§ we use the positivity of a and b and
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the estimate —u§u§~ = —(u5™ — u§ ™ )u§™ < w5 w5 . Due to the positivity of
7, the right hand side in the equation for ug, with the test function ¢5 = —ug™,

is nonpositive. Adding the obtained inequalities, applying both Young’s and the
trace inequalities, considering e sufficiently small, we obtain, due to positivity
of the initial data and using Gronwall’s inequality, that

Hui_(t)HL?(Qi) + Hug_(t)HLz(Qf) + Hu§_(t)||L2(Q§) + ||UE_(t)||L2(F§) <0,

for a.e. t € (0,T). Thus, negative parts of the involved concentrations are equal
zero a.e. in (0,T) x Q5,i=1,2, or in (0,7T") x I'§, respectively.

(ii) To show the boundedness of solutions, we consider U = (u§ — et M)+
as a test function in (5.15), U5 = (u§ —eA2* M) T in (5.16) U5 = (u§ — et M3)*
n (5.17), where (¢ — M)T = max{0,¢p — M} and M;, i = 1,2,3, are positive
numbers, such that uig(z) < My, uge(x) < Ma, uso(x) < Mz a.e in Q, also
As = Az and My, Ms are given by (A4) in Assumption 5.1.1. Addition of the
obtained equations combined with Assumption 5.1.1 yields

/ /at (S + U5) + IVUS + VU5 Pde + [ @UFI? + VU3 Pz ) de
QE

<C/ / AltMl(Cf—Al)+Cf€A2tM2)U1€+|U1€|2+|U2€|2+62|VU2€|2

+(CreM M, + et My (C — Mg))UQE)daz +/ (|U§|2 + 52|VU§|2)dx} dt
05

Choosing Ay, M; such that C et My+CpeA2t My—Aje1t My < 0and Crert M+
Cref2t My — Age?2t My < 0 for ae. t € (0,7), and ¢ sufficiently small, Gron-
wall’s inequality implies the estimates for uj, uj, uj, stated in Lemma 5.2.2.
Lemma 4.2.3 in Chapter 4 and H'-estimates for u§ in Lemma 5.2.1 imply
u5(t) > 0 and ui(t) < eM*M; ae on I'§ for ae. t € (0,7). The assump-
tion on 7 and equation (5.18) with the test function (uf — e?s*Mj5)*, where
uso(z) < M5 a.e. on I'y, yield

// at £ — eMUM5) T2 + Ase My (ug feA5tM5)+)d%dt:

// n(uf, ug)(ug — eA5tM5)+d'yzdt§C,](Al,Ml)g//(ug—eA5tM5)+d%dt.

0 T

This, for convenient A5 and Ms such that C) < AsMze?st, implies the bound-
edness of uf on I'§ for a.e. ¢ € (0,7).
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Lemma 5.2.3. Under Assumption 5.1.1, we obtain the following estimates in-
dependent of e:

||(9tui||L2((o,T)xQ§) + ||8tu§HL2(0,T;H1(Q§)) + HatUEHL’-’(O,T;Hl(QS)) <C

Proof We test (5.15) with ¢; = J:u5, and using the structure of 7, the
regularity assumptions on R, () and the boundedness of uj and ug on I'{, we
estimate the boundary integral by

5]/n(u§,u§)8tu5d%dt
0 I
—= [ [ 15 (0 (RuDQE) - REHQ (15)0105 ) v,
0 I

< c/ (IS (P + 2V ()2 + furo | + €2 Veuro|? ) de
Q5

+ca/T/ (1 + 1o )y,

0rs

where R(a) = [ R(£)d¢. Then, Assumption 5.1.1, the estimates in Lemma 5.2.1
0

and the fact that di/2 — 2 > 0 for appropriate ¢, imply the estimate for d;us.

In order to estimate O,u5 and O;uj, we differentiate the corresponding equa-
tions with respect to the time variable and then test the resulting partial differ-
ential equations with O;u$ and O;u$§, respectively. Due to assumptions on f and
using the trace inequality, we obtain

/|8tu§\2da:+0//|V6‘tu§|2d;z:dt§ C’//(|8tu§\2+€2|V6tu§\2)dxdt
Q5

05 06
+C// (|8tu§|2+|8tu§\2+|Vu§|2)dxdt+/|8tu§(0)|2dx, (5.20)
06 Qs

and

/|8tu§\2dx+0//|V8tu§|2dxdt < C//(\@tu§|2+ Va5 ?) dadt

Qs 00 005

+/|8tu§(0)|2dx—|—0// (|0wus|? + 2|V Ous|?) dzdt. (5.21)
Qs 0Qs
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The regularity assumptions imply that ||0;u5(0)[|L2(qs) and [|0;u5(0)(|L2(as) can
be estimated by the H?-norm of ugy and uzg. Adding (5.20) and (5.21), making
use of estimates for 0;uf, Vuj and Vug, and applying Gronwall’s lemma, give
the desired estimates.

Theorem 5.2.4. (Existence and uniqueness) Let Assumption 5.1.1 be fulfilled.
Then there exists a unique global-in-time weak solution in the sense of Definition
5.1.2.

Proof. The Lipschitz continuity of f, local Lipschitz continuity of 1 and the
boundedness of uj and ug on I'] ensure the uniqueness result. The existence of
weak solutions follows by a standard Galerkin approach given in [80] by using
the a priori estimates in Lemmas 5.2.1, 5.2.2 and 5.2.3.

5.3 Upscaled model

We begin with introducing the unfolding operator and describe some of its prop-
erties. For more properties and proofs, we refer to [34, 36, 37, 110]. First we
present the unfolding operators defined for perforated domains and then we de-
fine boundary unfolding operators for e—dependent hypersurfaces. The notion
of unfolding provides a way to connect the unfolded sequence defined on the
fixed domain to the sequences defined in e—dependent domain. We define

R")" = R*N{e(Yi+¢),£ €2},

el n\t . s

S}i = {zx e R")" :dist(x, Q) < l\/ne},
Qo = {z e R":dist(x,Q) < lv/ne},
Q’f’ﬂt = Int(Ukeza {EW, EYk C Q}),

for { = 1,2, and 5, = Upezs {eTF,eV* C Q}, where i = 1,2.

Definition 5.3.1. (Domain and boundary unfolding operator)

1. For any function ¢ which is Lebesgue-measurable on the perforated domain
27, the unfolding operators Ty : Qf — Q x Y;, i = 1,2, are defined

d)(e[f]y +ey) ae for yeYi, xeQs,,

0 ae. for yeV;, zeQ\Q

nt?

Ty, (9)(z,y) =

where k := [Z] is the unique integer combination, such that 2 —[£] belongs
to Y;. We note that for w € H'(Q) it holds that T¢ (wla:) = T¢ (w)|axy, -

2. For any function ¢ which is Lebesgue-measurable on the oscillating bound-
ary I';, the boundary unfolding operators 7z : I'; — Q x I';, i = 1,2 are
defined by

o(e[2], +ey) ae for yeli, ze Q.
0 a.e. for y eIy, x € Q\

wnt*

Tr, (9)(z,y) =
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In the following lemma, we state some important properties of the unfolding
operator which will be used frequently in the next sections.

Lemma 5.3.2. (Some properties of the unfolding operator)
L. Let v € LL(Y;) and v*(x) = v(%), then Ty, (v°)(z,y) = v(y).

2. Forv,w € LP(QF) and ¢, € LP(I5), it holds that Ty (vw) = Ty, (v) Ty, (w)
and 7¢, () = T, (9)Tr, (¥)-

3. For w € LP(QE) for p € [1,00), we have

1755 wllis vy = TPl s,y < VTP ol o)

4. For w € LP(T5), p € [1,0), we have

75, wllLe@xr,) = 61/p|Y|1/p||w||Lp(f;7 ) S EVPIY TP ul Loy

5. Ifw e LP(2), p € [1,00), then Ty w — w strongly in LP(2 x Y;) as e — 0.
6. For w € WHP(Q5), 1 < p < +o0,
(75, wl Lrxry) < Cllwlles) + el Vwll Lesyn).
7. Forw € W'(Q5), it holds that T (w) € LP(Q, WP(Y;)) and V, 7§ (w) =
Ty, (Vw).

For proofs and details, see [33].
Now we state two important results which are needed in order to get strong
convergence on the boundary.

Theorem 5.3.3. Let p € (1,00) and ¢ = 1, 2.

L. For any {¢.} C W'P(Q5) that satisfies [¢c[lwrrs)y < C, there exists

a subsequence of {¢.} (still denoted by ¢.), and ¢ € WLP(Q), ¢ €
LP(; W P(Y;)), such that

Ty ¢ — ¢ strongly in L} (€ WP (Y;)),

7'3% ¢ — ¢  weakly in LP(% lep(yi))’
v, (V) = Vo + Vyds weakly in  LP(Q x Y;).

2. For {¢.} C WyP(QF), such that ||¢5||W5,p(m) < C, there exists a subse-
quence of {¢} (still denoted by ¢.) and ¢ € Wy (Q), ¢ € LP(Q; WP (V7))
such that

v, ¢ — ¢ strongly in  LP(€; Whe(y;)),
T (Vo) = Vo +Vyp  weaklyin - LP(Q x Y;).
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3. For {¢.} C LP(T%) such that £'/7||¢. |Lr(rs) < C there exists a subsequence
of {¢.} and ¢ € LP(2 x T';) such that

TE (¢e) = ¢ weakly in  LP(Q2 x I'y).

For proofs and details, see [33].

Lemma 5.3.4. (Compactness) Under Assumption 5.1.1, there exist uy, ug, us €
L2(0,T; Hy(Q) N HY0,T; L*()), w1, 2 € L*((0,T) x Q; Hy(Y1)), a3 €
L*((0,T) x Q4 H(Y2)), and us € H'(0,T,L*(Q x I'1)) such that (up to a
subsequence) for ¢ — 0

Ty, (u§) = w1, Ty (u3) — ug in L2((0,T) x Q; H(Y1))
0Ty, (ug) — Opur, 0; Ty, (u5) — Oruz in L2((0,T) x 2 x Y1),
Ty, (ug) — uz, 0Ty, (u5) — Opus in L2((0,T) x ; HY(Y>)),
v, (Vug) — Vuy + Vyiy in L2((0,T) x Q x Y1),
v, (Vus) = Vuy + Vi in L2((0,T) x Q x Y1),
v, (Vug) = Vug + Vi3 in L2((0,T) x Q x Ya),
(5.22)

and

r (ug) — us, Oy Tr, (ug) — Opus, Tr, (u§) = wp in L2((0,T) x Q x I'y),
T, (u5) = ug, T, (u§) — us in L2((0,T) x Q x T'y).

Proof. Applying the Convergence Theorems in [34, 37] and Theorem 5.3.3 to
the estimates stated in Lemmas 5.2.1 and 5.2.3 we obtain convergence for uj, u3,
u3 in (5.22). The strong convergence of ug is achieved by showing that 7% (ug)
is a Cauchy sequence in L2((0,T) x €2 x I'y). For the proof see Subsection 4.5.2
or [55] and a similar proof can be found in [83]. The a priori estimate for dyug
and the convergence properties of 7 given in [38] imply the convergence of
Oy T, (ug). To show the other results in (5.23), we make use of the trace theorem
stated in [52], and of the strong convergence of Ty (uj)

(755, (u) — wall 20,1y xaxry) < Cl Ty, (u) — uill2 o0y x:m (v1)) — 0

as € — 0.

Theorem 5.3.5. (Unfolded limit equations) Under the Assumption 5.1.1, the
sequences of weak solutions of the problem (5.1)-(5.14) converges as ¢ — 0
to a weak solution (uj,us,us,us) of a macroscopic model, i.e. wuy,us,uz €
L2(0,T; HY(Q)) N HY0,T; L*(Q)), us € H*(0,T; L2(2 x 1)) and uy, ug, u3, us
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satisfy the macroscopic equations

/ / Orur 1 + di(t,y) (Vm + Z 8U1 yw1)(v¢1 + Vy¢1)

OQXY1

+f(u1,u2)prdydzdt = —/ / n(u1, us)prdy,dedt,
0Q><F1

/ / Opuapa + da(t,y (Vuz + Z 8u2 %)(V@ +Vyo1)

0QxY;

T
—f(u1, uz)p2dydzdt :/ / (a(y)us — b(y)ug)pady,dadt, (5.24)
0

2

xIo

/ / Ortis s + da(t,y) (Vug + Z 8“3 V) (Vs + Vybs)dydadt

OQ><Y2

/ | @~ bwuaondy, ot

OQXFZ
T
/ / Oyuspsdry,dadt :/ n(u1, us)psdy,dadt,
0QxT 0QxT

for ¢1, ¢2, 65 € L*(0,T; Hy (), b1, 62 € L*((0, T)x; Hy (Y1), é3 € L*((0,T)
Q; Hy,(Y2)) and ¢5 € L*((0,T) x Q x '), where wi, wj and wy, for j =1,...,n,
are solutions of the correspondent unit cell problems

—Vy(dg(t,y)vng) =2k aykd (t y) in Y1, (=1,2, (5.25)
—dc(t,y)VwZ 7 =>r dlz (t,y)vg on T3 UTy, (5.26)
wé is Y -periodic, Yfl wé(y)dy =0,
—Vy(ds(t, y)Vng) =2 he aykdgj(t’ y) in Ya, (5.27)
—ds(t,y)Vw] - v =S d¥ (4, ) on T, (5.28)
w} is Y -periodic, [ w}(y)dy = 0.
Y>

Proof. Due to considered geometry of ] and €25, we have

/T/u%dmt:/T / Ti (u)T5s (¢)dydadt, i=1,2.

0 QF 0 QxY;
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Applying the unfolding operator to (5.15)-(5.18), using Ty. d;(t, T) = di(t,y),7 €
{1,2} and Ty, ds(t, 2) = ds(t,y), considering the limit as e — 0 and the con-
vergence results stated in Theorem 5.3.4, we obtain the unfolded limit problem.
The functions 1, s, 43 are defined in terms of uy, ug, u3z and solutions w, wj, w}
of unit cell problems (5.25) and (5.27), see [55, 83].

In a similar way, using local Lipschitz continuity of the functions n and f, and
boundedness of macroscopic solutions, which follows directly from the bounded-
ness of microscopic solutions, we can show the uniqueness of a solution of the
macroscopic model. Thus, the whole sequence of microscopic solutions converges
to a solution of the limit problem.

5.4  Definitions. Basis estimates. Periodicity
defect. Error estimates

First of all, we introduce the definition of local average and averaging operators.
Then we show some technical estimates needed in the following sections.

5.4.1 Some averaging operators

Definition 5.4.1. 1. For any ¢ € LP(Q5), p € [1,00] and i = 1,2, we define
the local average operator (mean in the cells) M5, : LP(27) — LP(9)

S )y = —— )d Q.
M |Y|/TY ay Y= €n|Y‘ / ¢ Y, T €
e[Z]+eYs

2. The operator Q5. : LP(Q5%) — W(Q), for p € [1,00] and i = 1,2, is
defined as @Q;-interpolation of M5, (¢), i.e. Q5. (#)(e€) = M5, (¢)(g€) for
&eZ™ and

Q5. (P)(x)= > O5.(¢)(cbtek)Tt ...z forx € e(Y+E), £€Z
ke{0,1}n

where for k = (ki,...,k,) € {0,1}" points a‘:f‘ are given by

)R it k=1,

— € ’

1— 2= f fy = 0.

3. The operator Q5 : W'P(Q5) — Wh>(Q), p € [1,00] and @ = 1,2, is
defined by Q5 (¢) = Q3. (P(¢))|a:, where QF. is given above. and

PWEP(Q5) — WEP((R™))
is an extension operator such that

[P@)lwre@myny < Cllollwrras)-



78 Chapter 5. Corrector Estimates

Note that Ty o M5, (¢) = M5, (¢) for ¢ € LP(25) and M5, (¢)(x)
= My, (Ty. (¢))(x), where My, is the mean value over Y;, additionally

ke{0,1}"
See more details in [34, 59].

Definition 5.4.2. 1. For p € [1 4+ oo] and ¢ = 1,2, the averaging operator
Uy, : LP(2 x Y;) — LP(Q5) is defined as

i,ant?

T z z, 1% dz forae.x e Qe
L[i(@)(w): |Y|{[¢)(€|:E:|Y+E {E}Y) =

0 for a.e.z € Q5 \

i,ant*

2. Uf, : LP(Q x T;) — LP(T%) is defined as

ﬁ}[@(e [%]Y + ez, {%}Y)dz for a.e.x € f‘f,intv

Ur, (®)(z) =
0 for a.e.x € s \ T

i,ant*
The above definition can be seen in [37, 33].
For w' € Hy(Y;), due to Vywi(y) = V, T (W' (2)) = Ty, (Vaw' (2)) and

Uz, (V' () = U, (T3, (Vo' (2))) = eVaw'(2) = V' (2),

we have that Uy, (Vywi(y)) = Vywi(g)'

€

Proposition 5.4.3. 1. The operator Uy, is formal adjoint and left inverse of
v, 1.e for ¢ € LP(€), where p € [1,00),

T e. for € Q.
L{)s,L( 12(¢))($): ¢() a.e. for € i,5nt?

0 a.e. for € Q5 \ Q8

i,ant*

2. For ¢ € LP(Q x Y;), it holds that (U5, (¢)[|Lras) < [Y[7/P[10]l Lo @xyy)-

5.4.2 Basic unfolding estimates

In this subsection, we prove some technical estimates which will be used in the
derivation of corrector estimates.

Proposition 5.4.4. For ¢; € L?(0,T; H'(Q)) and ¢2 € L*(0,T; H*(5)), we
have
[¢1 — M5, (1)l 12((0,7)x) < €CIVd1llr2((0,1)%0):

(5.29)
|2 — M5, (92)llL2(0,1)x2) < CIVh2|lL2((0.1)x022)-
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Proof. This proof goes on the lines as proved in [59]. For ¢y € L2(0,T; H*(Q))

we can write
T = G1leery)(®) — M, (61)(e€) € L*(0,T; H' (e +€Y)) with (£ +Y) C Q.

Using Y; C Y and applying Poincaré’s inequality, we obtain

/ [ 10105, 00) () Paai= / [ leren-g [ ontestas <napar

0 e(¢+Y) 0 ¢4Y £+Y;

< Cem /T / IV, ¢1 (ey)|2dydt = C=2 /T / V21 (x)2dadt.

0 ¢+Y 0 e(¢+Y)

Then, we add up all inequalities for £ € Z", such that (£ +Y) C 2, and obtain
the first estimate in (5.29). The second estimate follows from the decomposi-
tion of Q2 into Ugezne(§ +Y;) and Poincaré’s inequality similar to the previous
estimate.

Lemma 5.4.5. For ¢ € L2(0,T; H2(Q52)), ¢y € L2(0,T; HY(Q?)) and w €
H;& (Y;), with ¢ = 1,2, we have the following estimates

Vo — M%(V‘ﬁ)HL‘z((o,T)XQ) < eC|| bl 2 (0,1;m2(02)

||(M§’(8m¢)_Q§/ (3xi¢))vyW’|L2((o,T)ng) < 50||¢||L2(0,T;H2(§zs,2))||VWHL2(Y7~,)7
|9 (¢2) — M5, (¢2) < eClIVall 20, xas?)

HQ%W) - ¢HL2((0,T)xQ) S EC”V‘b”L"’((O,T)XQ“)’

|95, (¢2) — ¢2HL2((0,T)xQ§) < eClIVoall 20y xas) (5.30)
16 = TE (D] L2 0.1y werxrsy < ECIVOlL20.1)x0) + €CIVl L2 0,7y %926
Va5, ( ¢2 ||L2((O xa) < ClIVo2ll L2 0, ryxs2:2)

[ My (w wHL2 vy < ClIVywliza,

H Qm $2)) vi(¢2) HL?((O,T)xme = ECHV¢2HL2((O,T)><Q?2)'

Proof. The first inequality follows directly from the first estimate in (5.29)
applied to V¢. To show the second estimate, we use the definition of the operator

¥, and the equality Zke{o 1}n ¥ .. zF» =1, and obtain

Q5. (9)(z) — M5, (d) () = > (Q5.(d)(e€ + k) — M5, (9)(e€)) " ... ke,

ke{0,1}"
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Then, it follows that

[ 1950w - M @)@ 9 (5) [t

e(§+Yi)

<2 Y |5 (6)(eE + 2k — 05 (6)(c) < / V,0(y)? dy.
Y;

ke{0,1}n
For any ¢ € WhP(Int(Y; U (Y; + €;))), the following estimate holds
My, te;(¢) = My, (0)] = My, (6(- +¢;) — ¢())]
< llo(- +¢5) = o()]
Thus, by the definition of QF. (¢) and by a scaling argument this implies
193, (@) (e€ + k) — Q3. (9)(e€)] < eCIV ol L2 (g 4viyve(erhviy-  (5:31)

We sum over £ € Z™ with e(§+Y;) C Qf and obtain the desired estimate. Using
(5.31), we obtain also that

/IQ%(ch) — M5, (¢2)|*da
Q

Lr(v;) < C||v¢||LP(YiU(Yi+ej))'

<eC Y Y IVeliaeeryuserniv)
e(e+Y;)cOst  ke{o1}n

§520/|V¢2\2dx.
as?

In the same way, using the estimates stated in Proposition 5.4.4, the fourth and
fifth estimates in (5.30) follow from:

9%, (02) — 2llL2((0,7)x02)
<195, (¢2) = M3, (02)llL2((0,1)x) + M5, ($2) — b2l L2((0.7)x )
< €C||V¢2||L2((O,T)><Qf'2)'

For ¢ € H'(Q), applying the trace theorem to a function in L?(T;) yields

[ lo-Te@Pandr< [ (16 M5 @F + IM5,(0) - T (@) )dvyda

QxI'y QxT;

< Cn| [ IVoPdaic [ (IM5(0)-T5: ()P +17, (M5, (6)-T5, (6) ) dudo
Q

QxY;

<cny| [IVoPdo+ 0 [ IM5,(0) - oPdo+ [ 19,75(0) Pdyds
Q Qe

s QxY;
SEQC(/|V¢|2dx+/|V¢|2dx).

Q Qs
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To obtain an estimate for the gradient of Q5. (¢2) where ¢o € L*(0, T HY(QF)),
We define ];j = (kl, ey k’jfl, kj+17 ey kn>, /%{ = (/{1, ey kj,l, 1, k‘j+1, ey kn),
k) = (k1,...,kj—1,0,kj11,...,k,) and calculate

T— - 1 ...xjil...l'j+1$n.
J i

095, (¢2)  — 95,(2)(e + eki) — Q5 (¢2) (€ + fffé)jkl P

Now, by applying (5.31) we obtain the estimates for VO, (¢2) in L*((0,T)) x Q).
The estimate for M3, (w) —w follows directly by applying the Poincaré’s inequal-
ity. To derive the last estimate, we consider

75,095, (62)) — 95, (62Dl o

< [ 75.(95, (62)) =M, (D5, (62)) | 12 ey HIMT: (D5 (62)) =95 (62) | 12 0w
< O]/ @8,(92) — M5, (95, (02 gy + CIMS (D5,(62) ~ @5 (82)] 20

< ECHVQ§6(¢2)||L2(Q) < €C||v¢2||L2(Qf‘2)'

Theorem 5.4.6. For any ¢ € WP(Y;), with i = 1,2 and p € (1,00], there
exists a function ¢ € W;’p(Y;) such that

16 = dllwrrvy < CY NSl rys = byl i

1 .
pP(y?)’
j=1 ‘

where Yf ={y€Y;|y; =0}, for j=1,...,n, and C depends only on n.

Lemma 5.4.7. For any ¢ € WLP(Y;), where p € (1,00], i = 1,2, and for
k € {1,...,n}, there exists ¢, € Wi = {¢p € W'P(Y}),¢(-) = ¢(- +¢;),j €
{1,...,k}}, where as Wy = W1P(Y;), such that

k
||¢ - ‘z)k”leP(Yf;) < CZ ||¢’|ej+yij - ¢|Y£j ||W1—1/p(yij)~

j=1
The constant C' is independent of n.
Theorem 5.4.8. For any ¢ € H'(Y;, X) and X a separable Hilbert space, there
exists a unique ¢ € H(Y;, X), i = 1,2 such that ¢ — ¢ € (Hj(V;, X)) and

Nl vi,x) < @l (vi,x)s

16 = Ol vy < C DNl ys = Blyillznreys -

j=1

Lemma 5.4.7, Theorems 5.4.6 and 5.4.8 follow directly from the corresponding
Lemma 2.2, Theorem 2.1, and Theorem 2.3 in [59], replacing Y by Y7 and Ys.
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5.4.3 Periodicity defect

In the derivation of error estimates, we have to test the equations with the
gradient of the concentration to get the estimates for the gradient. Therefore
we need to have a generalization of Theorem 3.4 (for the domain without holes)
proved in [59] to the functions defined in a perforated domain.!

Proposition 5.4.9. For ¢ € H'(Q) there exists a unique 1° € L2(£; H(Y3)),
such that

||7ﬁs||L2(Q;H1(1@)) < ClIlle2 sy + el Vol L2 syn ),
175.(0) = Vel @m vy < Cellldllzz(as) + el Vol2ias)n)-

Proof.-We consider

A

K; =Tnt(Y; U (Y; 4 ¢;)) and e(K; + [z/e]y,) € Q52 for x € QF,
where ka are introduced in Subsection 5.3. Then for all ¢ € L*(Q5'%), we define
T (9)(z,y) = ¢ (m,a [g] + Ey) for x € Q and a.e.y € K.
: Y

For a.e. ¢ € H}(Q) and y € Y;, extended by zero to R™ \ €2, we obtain

[T @@= [ T 0@ - )
Q

Q-+eey
Notice, that
’T}fj(gb)(m,quej) :¢(1177€[*]Y +€y+5ej)
T+ ce;
= o(a,e[TT59) 1 ey)

=Ty (9)(x + 2ej,y)

for z € Q and y € K and Té’j((b)lgxyi = Ty.(¢). Thus

/ (T3 (6) (- y + e5)— To 7 () (o)) v da— / T2 (@) () (V(-—eej) —p)da
Q Q

< CIT(9) ) L2 ey [l 20\ (e )

where Q5 := {2 € R™, dist(Q, ) < key/n}. The Lipschitz continuity of dQ and
¢ € Hg(Q) imply, for j =1,...,n,

[l 2@\ (@ 4ee;)) < CellVYlLzyn, 190(-—ees) = Yllr2q) < Cell0n, ¥l L2(0)-

IThe terminology ”periodicity defect” is due to G. Griso, see [59].
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Due to Lipschitz continuity of €25, a function ¢ € H 1(Qf) can be extended into
H'Y(Q?), such that

P22 < C(ll¢ll2 sy + el Vol L2asyn)

and
IVP@)l2ap2yn < CIVllzacare

Hence for ¢ € H'(Q5) and ¢ € HJ (), it follows for a.e. y € Y;
<T§2’j(¢)('a “t+ej) — T)Z’j(¢)('7 )s ¢>H*1(Q),H§(Q)
— [T @6+ e) - T @) )wds

Q
< Cel| VY[ r2(a)n

Té’j(¢)('»y)||m(fzs,1)~
The last estimate, the definition of T}i’j and the extension properties yield
1757 (@) +e5) = T2 (@) Ml -1 @iz viy) < Cell T ()| 2@ vy
< Cel|oll L2 ge2) < Ce(|16ll L2 ey + ellVPllL2@s)) < eClIVElL2(as)-
Using Vy’T;i’j () = sTé’j(V¢), we obtain the following estimate in H'(Y;)
||7-yi’j(¢)(" tej) — 7';1}3'((;5)(.7 M1 (011 (v2))
< Ce(lloll2as) + €l Vollzzar) < eClVE| L2 (as)-
This implies also the following estimate for the traces of y — Ty (¢) on Yij and
€; + Yvij
1757 (9) (- + e5) = T (D) M vz vy < Ce(Idllzcan) +ell Vel L2 as))-
Using Theorem 5.4.8, we decompose Ty, (¢) = e +¢°, where )¢ € L2(Q; H;& (7))
and ¢° € (LQ(Q;H#(YZ»)))J— such that
6%\l 22 11 (v2)) + ||1/}€||L2(Q;H1(Yi)) < C ([I9ll2(0s) + el Vel L2 as)) »

16 1@ vy < C Y ITE G+ €)= To G Mlsiamz vy

j=1

Theorem 5.4.10. For any ¢ € Hl(Qf)7 i = 1,2, there exists 1&5 c LZ(Q; H;&(i/l))
satisfying

”JJEHL?(Q;HI(Yi)) S C”v¢”L2(Qf)n,

I175.(V§) = V6 — Vi<l a1 0:r2vi) < Cell Vo L2 (yn-
Here ¢° = Qf,i (9).



84 Chapter 5. Corrector Estimates

Proof. The proof is similar to that of Theorem 3.4 in [59]. For ¢ € H'(Qg),
we consider ¢ = ¢° + ¢, where ¢ = QF, (¢) and ¢ = (- Q§,(¢)) Then, it
follows that

Vo<l Lzs) + 19l L2(as) + ellVEllLe(as) < CIVPl L2(s). (5.32)
For ¢ € H'(), it follows from Proposition 5.4.9 and (5.32) that there exists
) € L*(Q; HL(Y;)) such that
ITE(8) = V¥l -1 (02 (va)) < CellVllr2ae). (5.33)
9% ]| L2 vy < ClIVOllL2(qs).- (5.34)

Using the definition and properties of M3, and Q. , it implies

102;0° — M5, (02,6 -1(0) < CellV®|[L20)n < Cel|V]|L2(05)n.  (5.35)
For ¢ € H}(Q) we have that
(Ty,(02;0%) — MY, (02,6%)), ) m-1(0), 12 ()
= [ (70,6 = M5, (0,67 e

Q
— [ (75:02,6)c0) - M5, (02,6°))) A5, (0}
Q

Then, due to the definition of Ty, (0., Q5,(¢)), it follows in the same way as in
[59],

(752,02, 6),9) = M5, (02,6°) ) M5, ()

R—

oy MELO)EE +e6s) — M (0)e6)

€
3

S (M, ()6 — k) — oy S0 M5, ()€ — <) )
ki ki

where i(v}j = (k‘l,...,k’j,hk’jJrl,...,]{,‘n), ];J{ = (k’l,...,k]j,l,l,k‘j+1,...,k}n>,

];}(]) = (kl, ceey kj_l,(), /{Jj+1, ey kn), gj = gfl s gfiillgff?ll s gﬁ" This together

with the estimates for M3, (see Section 5.4) implies, for every y € Y;, the
inequality

(T3, (0, 6°) (-, y) — M3, (82;6%), ) 1.0y, 11 () < CelF NIVl L2e)n [V 2y

Moreover, the following holds:

175, (02,6%) = M5, (02, 0°) | -1 (0iL2(v1)) < Cel[ Vol L2(as)-
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Using the last estimate together with (5.33) — (5.35) and V¢ = V¢© 4 eV¢©,
yield

175 (V) — V£ — Vyif | g-1(a.r2(vi))
175 (V%) = Vo« u-1 ez viy) + IV (T3 (8°)) — Vi | -1 (0 r2(vi))
Ce||[Vl L2(as).

INIA

5.4.4 Corrector estimates

Under additional regularity assumptions on the solution of the macroscopic prob-
lem, we obtain a set of error estimates. We emphasize here again that only H!-
regularity for the solutions to the microscopic model and to the cell problems is
required.

The main result of this chapter is:

Theorem 5.4.11. Suppose (ug, u§, u3, ug) are solutions of the microscopic prob-
lem (6.1) — (6.8) and uy, uz, uz € L*(0,T; H*(Q))NH((0,T)xQ)), us € H*(0, T}
L?(Q2xT)) are nonnegative and bounded solutions of the macroscopic equations
(??). Then we have the following corrector estimates:

n

1 1

[uf = w2 0.1y xs) + VU] = Vur = > Q5 (0, u1) V! 7207y sy < Ce2,
j=1

n

i 1

[ — w2l 2 0.1y x2e) + (Vs = Vg = > Q5 (9, u2) Vo | 20,7y xas) < Ce2,
j=1

n
1 1
lug = usllL2(0.)x5) + VU = Vug — Z 9y, (3zju3)vyw§||2L2((0,T)x§z;) < Ce?,
j=1
1 1
e |lug — Ur, (us)l|L2((0,1yxrs) < Ce2. (5.36)

5.4.5 Proof of Theorem 5.4.11

We define the distance function p(z) = dist(z, ), and the domains QF . =

p,in
{r € Q,p(x) < e} as well as Qf = {z € O5,p(z) < e}, and p°(:) :=

ipiin

inf{@, 1}. The definition of p® yields

Vol (@ = 1Vl e, yn =€ (5.37)
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Then, for ® € H?(Q) and w € H*(Y;), where i = 1,2, we obtain the following
estimates in the same way as in [59],

1990 2 e+ 195 (T paae e+ IME (VO (e 1o < O |01,

o M,y 19 G
e/llra@s, L) e/ llra@s, ,0m

1
(1 = pe)Va®| L2y < ”vx(I)Hm(Qi’m)n < Cez ||| g2, (5.38)

S C€§ ||vaJ||L2(yi)n,

[Va(p0z,; @) L2()n < Cle™2 + || @] 2 ()
50,0 )

HEpaazi Qy, (0, P)w (E)’

<C€% D|| g2 2(Y.),
L2gas) = (@1 1220 lwll £2(v7)

L2(0s) < Cef| @l llwllz2viy

Note that for a bounded Lipschitz domain €2, there exists an extension of ® from
Q into Q%2 such that

IP(@)] 1262y < C(I®ll2() + e VRIlL2()n)

and
[VP(®)l p2(e.2yn < CIIVP|L2(0)n-

Now, for ¢1 € L*(0,T; H:,(92)) given by

¢1(x) = u5 (z) — u(z) — ep™( Zgylaﬁu wi(5),

3

we consider an extension @5 of ¢; from (0,T) x € into (0,T) x , such that

|\¢~5§HL2((0,T)xQ) < Cllo1llLz(0,1)x0s)

and

IVillzz(o.m)x0) < ClIVéLllzz(o,mxas)-
Due to the presence of zero boundary conditions and since all phases are con-
nected, standard extension results apply, see [40]. We consider ¢5 € L?(0,T; Hi())

and 5 € L2((0,T) x , H}(Y1)) given by Theorem 5.4.10 applied to ¢1, as test
functions in the macroscopic equation (??) for w;:

/ / Byu1ds + da (y (Vul n Z ywl) (V5 + V0% ) dydadt

0 QXYl
T

+/ / f(ul,w)aﬁdydde/ / (w1, us)d5dy,dzdt = 0.

0 QxYy 0 OxI'y
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In the first term and in the last two integrals, we replace (;55 by M5 (é1), q@“i‘
(¢1) and u; by TY (u1). As next step, we introduce p° in front of Vuy

and 8 ;u1, and replace V5 by VOS5 . (¢1). Notice that Q5. (9;,u1) and Vu, are
in L2(0 T; H'(€2)), but not in L2(0 T H}(€2)). Now, usmg Theorem 5.4. 10, we

replace Vo5 + Vywe by Ty, (Vé1), where ¢7 = QF. (¢1), and obtain

/ / 0y Ty, (u1) M5, (¢1) 4 di(y (Vul + Z Ous ywl) 5 (Vor)dydadt

0 QXYl

+ / / T (Flur, un)) M, <¢1>dydxdt+/ / n(un, us) T, (1) dyydadt = RY,

0 QxYy 0 QxI'y

where

T

Ri= [ [ [otur = T3, (0)M5, 60) + 0 (55 - M, (00)

0 QxYy

n a ~ R
7 (Vurt Y 59 ,0) (V (95, (61)-00)HT5, (V1) -V 61—V, 45)
j=1

"o ) - R -
+(p° = Dy (Vur + Y 5 V,0]) (VO] + V,89) + fur,us) (M5, (61) — 65)
i—1 7

HT() = DM, 0] dudade + [ [ n(un,us) (75, (60) - 7).

0 QXFl

Then we remove p%, replace Vu; by M3, (Vuy), O, u1 by M5, (0x;u1) and, using
3, (¢) = Ty, 0o M5, (¢), we apply the inverse unfolding

1

/ / (atu1M§1(¢1)+d§< s (V) +ZMY1 (O, u1)V ywl( ))ngl)dxdt

1
0 Q° i=

T

+ / / Fluy, 1) M5 (1)t + / / (s, us)TE, (61)dvydadt = RY + B2,

0 O 0 QxIy
where

= [ [ 0= n (3 0,m9,mw) T (Vo) +

0 QXYl

dl(y)< G (Vur) = Vg + 3 (M5, (0a,u1) — Bayu) Vi (y ))Tyl (wl)} dydzdt.

Jj=1
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If we introduce p® in front of M5, (0,;u1) and replace M3, (¢1) by ¢1, M§. (Vuy)
by Vuy, M3, (9,,u1) by QF, (a%ul) we obtain

// Orur¢1 + dj (VU1 +ZP Q5 (0, u1) V] (= ))V¢>1 +f(U17U2)¢1}d$dt
0 Q¢ J=1

T

:_/ / n(ur, us) Ty, (¢1)dyydadt + R} + R} + R}, (5.39)
0 QXFl
where
= [ [ [(0anr) 6 = M5 0001085 30 M 0y V() ¥
0 QE J=1

+d5(Vu1 — M, (Vuy +Z P (95, (D, ur)—M5, (92,11)) Y, wl( ))wl}dxdt

j=1

Now, we subtract (5.39) from (5.15) for uf and obtain for the test function
d1=uf —ur —ep® 37 ) Q5 (0x,ur)wi the equality

// at 1 —u)(uf —ur —ep ZQYL O, ur)w]) +

0 Qs
di (V(ui—uy) — p° Z 9y, (&cjul)vyw{) (V(ui—u1)—c Z V. (p° 95, (aa.jul)w{))
Jj=1 j=1
—|—(f(ui, ug) — f(ug, uz)) (ui —uy —ep° Z Q;i(axjul)w{)} dodt +
j=1

/ / (0T, 5, T )=, us) ) TE, (= —ep® 3 Q5 (B, ur o)y vl
0 QxI'y j=1
=Ry, where Ry = Ry + Ri + R?.

We consider ¢° := T ug — us as a test function in the equations for us in (?7?)
and T (u5) obtained from (5.18) by applying the unfolding operator. Using the
local Lipschitz continuity of n and the boundedness of u§, w1, ug, and us, we
obtain

//8t|7}51u§fU5|2d7ydxdt§C’/ / (|75, ug—us |* + | T5,u§ — wa|?)dy,dzdt.

0QxI'y 0QxI'y
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Applying Gronwall’s inequality and considering 7 (ug)(z,y) = uso(y) yields

(75, (u5) — us) (B)l|720xry)

< T (ui) — u1||2L?((O,7—)><Q><F1) + i (u50) — u50||2L2(Q><F1)

< C(||7I“€1 (ui — u1)||%2((0,7—)><§2><1“1) + 175, (w1) — UlH%Z((o,T)xerl))-

Then, for the boundary integral, it follows from the estimate stated in Lemma
5.4.5 that

T

/ / (n(TE, (ug), T, (u5)) — n(r, ) T, (é1)dryydadt <

0 QxI'y

C (75, (u)—us| L2(0,r) x s HITE, (§)—ua [l L2 ((0.ryxxr) )€ 101l 2 ((0,m) xr5)
< C(Jluf = uallL2(o,r) xas) + €l V(] = w122 (0,1 x0s) + €l VullL2o,r)xa)) X
(lo1ll 20,7y x5y + eVl L2 (0,1 x025)) - (5.40)

The ellipticity assumption, Lipschitz continuity of f, the estimate (5.40), and
Young’s inequality imply

// (8t|a§—sp8 Z Q5 (g, ul)w{|2+|Vﬁ§—ps Z 95, (&cjul)vyw{ |2)da:dt
0 Qs J=1

j=1

=C / / (li5=2p" 3" Q5 (0, un )] [*+a—2p" Y- Q% (B, uz)esh|” ) daat
0 Qs Jj=1 i=1

2 2 €
+Ce ||V’UJ1||L2((07T)><Q) + Rl + Cl?
where 4f = uf — uy, 45 := u5 — ug, and

ci =0 [ |3 (195, 00, u)lP + (1 + )]V Q5 (0, m )]
0 Qs I=1

+1Q5 (9, ur)e] P + Q5 (9 uz)ed P+ Q55 (0 ul)VyW{IQ)dwdt

+C/ / Z|Q§l(8mju1)w{|2dxdt
0 g I=1

< 0(52||U1||%2(0,T;H2(Q)) + €2HU1H%11((0,T)><Q) + 5||U1||2L2(0,T;H2(Q))) ”le%Il(Yl)"

+C€2HU2H2L2(O,T;H1(Q)) [ ||2L2(Y1)"'
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Here we used that
2 / IV (0 Q5 (80 u1) )] Pda < &2 / V.05 (0, ur ! [2da

+ / 195, (0, u1 )wi [*dz.
Qipzn

The estimates of the error terms in the Subsection 5.4.6 imply

|Ri| = |R{ + R} + R}| < 51/20(1 + [t |z 0,7y <) + [t llz2 0,102 ()

+lluzll 20,1 @) + lusll L2 (o, xoxr)) 161l L2 0,755 02) -

Then, applying Young’s inequality, we obtain

// O¢lai—ep® ZQY a%ul)wﬂ + Vi pEZQifl(@mjul)Vywﬂz)dxdt

0 Qs J=1

< C’// |4]—ep® ZQYl 8xju1)w1| +|as — ep® ZQYI 8xju2)w2| ) dadt
0 Qs J=t
+C(e+€*)(1+ ||U1H?L11((07T)><Q) + Hu1||2L2(o,T;H2(Q)))(1 + ||W1H?L11(y1)n)

+C52||U2H%Q(O,T;H1(Q)(1 + ||w2||%11(Y1)"> + 52||U5H%°°((O,T)><Q><F1)'

n .
Analogously, the estimates for u —ug — ¢ Y 93, (9, v2)w) and
j=1
n .
uz —uz — €y Q3 (0y,u3)wy are obtained. The only difference is the bound-
j=1

ary term. Applying the trace theorem and the estimates in Lemma 5.4.5, the
boundary term can be estimated by

[ ((@tw)us = by)uz)5 (@) TE, (ws) ~ b TF, (u2)) 5 (02) )y o

QXFQ

<C [ (=T )|+ s T, ) T, (62) + () 5045, (02)

QXFQ
+(U3+u2)|M§q(¢2)*7}€2(¢2)|)d7yd17 < 6C(||U2||H1(Q)H\U:’,HHl(Q)) P2l 1 (as)
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n .
— /€ € € J “ NE — 4€ NE —
where ¢z = uj — uz —ep® ) 1 95, (0r;u2)wy. Thus, for 45 = u5 — up and 45 =
j=
u5 — u3 we have

/T/(at a5

n a ) A . n 8 a )
—ep° Z 9%, (3ij)w§ |2+{Vu2—/3 Z 9y, (TZj)Vywé ‘2)dxdt
j=1 j=1

0 Q3
6u1 ] 2, 5’U2 j
—gp Z le wl —Ep Z Q )dl‘dt—I—
0 Qs
3U3 2 8U3 g\ [2
C’// |a5—ep® ZQ 9z, 3| +e*|Vig—p ZQYz ) Vywd)| )dxdt
Lj
0 Q3

+C(e + ) (1 + lluall20 7.2y + 1u2ll (0,m)x0)) (1 + llwallFrev)n)
+C(€2||U1||2L2(0,T;H1(Q)) + 52”“3”2LQ(O7T;H1(Q)) +C5),

and
/ [ (a5 ZQ APV ZQ (2529 )zt
00
GE 6u2 2 8u2
<C// Us—ep ZQYI 2| +e |V —p ZQ V w2| )dxdt
008
au3 9 - au3 512
—l—C// ‘u3—sp ZQ 9z, 3| +e ‘V - ZQYz 3’ )dscdt
0Q5 J=1

+C(e + ) (1 + sl oz + sl o.myxay) (1 + w2l viyn)
+CO(2|luzl 220 zp sy + C5)

where
0? 0 ;
2 (3o s )12 7 05, (G2)eh {05 (Gt
0qs =1 T
+1Q5 (G2)edl + 105 (G2 Vi Jaaat + / 196 (G2
Ly

005,
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< 0(52”“2”%2(0,T;H2(Q)) + 52|\“2H12Hl(((>,T)xQ) + €||U2||2L2(0,T;H2(Q))) ”W?H%P(Yl)"

+52C(||U1||2L2(0,T;H1(Q))||W1H2Lz(yl)n + ||u3||%2(O,T;H1(Q))||W3||§{1(Y2)")'

For C3, we have the same expression as for Cs, with uy replaced by us, w2 by
w}, QF by Q5, and without the term Q5 (amjul)wlP Thus, we can estimate

Cs < 520““?“%2(0,7“;1{1(9))HW2||§{1(Y1)7L + C(5||U3||2L2(0,T;H2(Q))

+€2||U3H%2(0,T;H2(Q)) + 52||u3||§-[1((0,T)><Q)) ||w3||§11(y2)n~

For sufficiently small e, adding all estimates, removing p° by using the estimates
(5.38), applying Gronwall’s inequality and noting that by definition u5(0) = w1,
u5(0) = ugp, u5(0) = uzp, we obtain the estimates for u§, u§, u§, stated in the
theorem.

To obtain the estimate for ug — Uf (us), we consider the equations for 7T ug
obtained from (5.18) by applying the unfolding operator and the equation for
us in (?7?7) with the test function 777 ug — us. Using the properties of Uf , the
local Lipschitz continuity of n, and Gronwall’s inequality, yields

e [t v w)Pare <€ [ 175 ) — s Py
rg QxI'y

< C’/ / 9 — | dry,dzdt + / |7, (us0) — uso? dry,dz

0 OQxI'y QxTy

< / (177 00) = 25, ) M5, (1) = )y

0 QXFl

+C// sz 05, (0, w1 )| + 2| Vs fZQ;(aTjul)vyw{P

0 Q¢ j=1

+¢? Z (1985 (@, u )] "+ T Q5 (0, w1 )] [*+| Q3 (B, un) Wy |*) | dt
j=1

<Cle+¢€) (HU1H%2(0,T;H2(Q)) + ||U1H§11((0,T)x9) + Hu2”%2(0,T;H2(Q))

+||U2||§11((07T)x9)+||us||2L2(07T;H2(Q))+||U3||§11((0,T)xﬂ)+||U5||2Lao((o7T)xerl))~

5.4.6 Estimates of the error terms

Now, we proceed to estimate the error terms Ri, R? and R3. Using the definition
of p°, the extension properties of ¢S, Theorem 5.4.10, and the estimates (5.38)
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we obtain

/T / ’dl(y)(pe —1) (Vu1 + i gz;vyw{) (V5 + Vo5 | dydadt
j=1

0 QxY;

< ClIVurll Lz o,y x 0y i) (1+Z |1V ] ||L2(Y1)) (1Y 1 220,y ) HI VS 22 (2, xv1) )

j=1

< Ce'?|lur| L2 0. mr2 ) (1 +y ||vyw{||L2(Y1)) IV 1]l 22 ((0,m)x02)- (5.41)

j=1
Theorem 5.4.10 and the estimates (5.37) and (5.38) imply

T

[ ] vt (e + 3 0 me) (5 (961) - Vo5 - 905 )apaaar

0 QxY; j=1

< C(e24e) un 2o msmey (143 IV yllizaen) ) 1991 z2o.myos) 5:42)

j=1

We notice M3, (¢5) = M5, (¢1) and using estimates (5.37) and (5.38),

Lemma 5.4.5. the fact that g?)i is an extension of ¢; from Qf into 2 and ¢, = (;31
a.e in (0,7 x 5, implies

T

n 6 . .
[ ran(Tu 30 Gl V(95 (60) - )y
= O0x;

0 QxY;

e omeamers 195 (8D) = Billzorpxen

< HV(pECh (Vul + Jil ggvwa))‘

V2us | L2) (14 V] L2 vi) IV 5 22 (0.m) <)

j=1

< 05(6_1 Vg ||L2((0,T)Xf21,p,i+)

n

< 0(51/2 + g)HUHLQ(O,T;HZ(Q)) (1 + Z ||Vyw{||L2(y1)) ||V(b1 ||L2(((],T)><Q§)- (5.43)

j=1

Applying the estimates in Lemma 5.4.5, yields

T

/ / (at (u1 = T, (u1) ) M5, (61) + Dyus (éi - ;1(¢1)))dydxdt

0 QXYl
< Ce([10:Vurll L2 911l 20,1 x5y + 100un [l L2y [V 11 2 ((0,7) x26) )(5.44)
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Due to Lipschitz continuity of f, we can estimate

/ | (00 = ) M5, (60) + ) (M5 (60) = ) )y
0 QXYl

< eC(IVurllzo,myx) + IVuzll L2 @) 611l L2 ((0,7) x26)

+eC (1 + Jurll L2 o0,my <) + luzll2@m) Vo1l L2 ((0,r) x09) - (5.45)

For the boundary integral, we have

/ / (s, us)(TE, (61) — 65))dyydedt < n(us, us) |20y xcrxrs) X

0 axry
(H 5 (01) = M5, (@)l 2207y xxry) + M5, (61) — éi)Hl@((O,T)XQxFl))
< C (1w || 2 (@yHlus | oo (0,m) x 2xra)) 1755 (01)-MS, (011 L2 (0,7 x 211 (v1))
+C (14 Jlutll 20,1y <) + [usl oo 0,1y xaxT) ) IMS (81) — 65) [l L2 ((0,m) x )
= 66(1 + ||u1||L2((07T)XQ) + Hu5||L°°((O,T)><Q><F1))Hv¢1||L2((077—)><Q§). (5.46)
Thus, collecting all estimates (5.43) — (5.46) we obtain for Rj:

IRY| < C(e® + &) lurll 20,120 (HZ Hvyw{HLz(Yl)) V1l L2(0.r)x00)
j=1

+Ce(lurllm o,myx) + luzllLzo,mmr @) 1011 20,7511 (025)) -

Using the estimates (5.38) implies

T

//( dEZMY (Og,u1)V ywl( )quldxdt
0 Qf j=1
7t ()]

Z M5, (azjul)”m((o )% Qe
j_
<eC Y 2o I Vywl L2 v V1l 22 0.y x26) - (5.47)
j=1

[VérllL2(0,7)x0s)

1,p, wl L2(§Z'§ p.i'n.)

Thus, (5.47) together with (5.30) and (5.38) yields
|R%| S ||vu1||L2((077—)><Qip’m)(1 + ||Vyw1HL2(Y1)7LXn)

Ty, (Vo) 22((0,7) xxv1)

+Cellur]| L2072 () (1 + Vg [l 2wy ) 1T, (V1) L2((0.1) x 211
< (€2 + &) Cllua || 20,1222y (1 + IVl [ L2 vy x )V D12 (0,7 w20 -

Due to estimates in (5.38) and in Lemma 5.4.5 we obtain also
|R}| < EC(Hatul||L2((0,T)><Q§)+||fHL2((O,T)><Q§)+||u1||L2(O,T;H2(Q§))||Vyw1HL2(Y1)"X"

V2| L2 0,1y x25) + ||V2U1||L2((0,T)x9§)IIVywlllm(Yl)wn) [Vérllz2(0,7)xs)-
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In the similar way, we show the estimates for the error terms in the equations
for us and wus:

1
|Ra| < Ceb (14 Juallao romaqony + w2l o< + Izl 2o roars o)
+||u3||L2(O,T;H1(Q))> P2l L2 (0,rs 11 (025)) (5.48)

|R3| < Ce? (1+ |[uall 202 () + |[uall it
+lluzll 20,1 (@))) 1931 L2 (0,751 (25)) - (5.49)

5.5 Notes and comments

In this chapter, we obtained the desired convergence rates as indicated in (5.36).
Hence, we now have a confidence measure for our averaging results. The main
ideas of the methodology we used here were presented in [59, 60] for linear elliptic
equations with oscillating coefficients, posed in a fixed domain. We applied the
same methodology to derive corrector estimates in perforated media.

It is worth noting that often in the context of real-world applications it is
not sufficient to consider only leading-order terms in the derivation of corrector
estimates. They simply do not capture enough information from the physics
of the problem. This is the case when ¢ is necessarily not very small. To face
such situation, it is necessary to obtain higher-order correctors to capture the
information at not-very-small scales (requiring also much more regularity). To
see an example of first-order correctors, we refer the reader, for instance, to [90],
where Taylor dispersion formulae are derived.

We believe that further research can go on here at least in three different direc-
tions:

1. Driving corrector estimates for locally-periodic domains (see e.g., the pre-
liminary result in [102]);

2. Driving goal-oriented a posteriori error estimates for perforated domains
(see e.g., [137, 138] for the general philosophy of goal-oriented a posteriori
estimates);

3. For the extended system containing the mobility of the water, error esti-
mates can be proved using first-order asymptotic expansions in energy-like
estimates, see [147].



96

Chapter 5. Corrector Estimates




Chapter 6

Solvability of a Parabolic System
with Distributed-microstructure

This chapter deals with the solvability of a semilinear parabolic system that
incorporates transport (diffusion) and reaction effects emerging from two sepa-
rated spatial scales: x - macro and y - micro. Our motivation originates from the
fact that often problems in material science involve multiple spatial scales and,
in addition, several processes occur at highly different time scales. To capture
information at separated spatial scales, distributed-microstructure models are
the right tool to use.

The chapter is organized in the following fashion: Section 6.1 includes the ge-
ometry, functional setting and assumptions on the data as well as on the model
parameters. We present the main results of the chapter at the end of the sec-
tion. In Section 6.2, we introduce axillary problems and treat them in Section
6.3. Existence and uniqueness of solutions to (6.1) — (6.15) is ensured in Section
6.4 together with the needed positivity and L* bounds. The main ingredients
to prove existence of solutions include fixed-point arguments and convergent
two-scale Galerkin approximations.

6.1 Geometry. Model equations. Functional set-
ting and assumptions

In this section, we present our two-scale geometry, the setting of model equations,
the assumptions on the model parameters and data needed to define our concept
of solution to perform the mathematical analysis.

6.1.1 Geometry

We consider here a two-scale geometry where to each macroscopic point = € 2,
we associate the constant microstructure Y, see Fig. 6.1. The microstructure Y

The results in this chapter have been reported in [56] as a joint collaboration with A.
Muntean (Eindhoven) and T. Aiki (Tokyo).
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XeQ

y-scale (micro) F2

x-scale (macro)

FIGURE 6.1: Left: Zoomed out cubic piece from the concrete wall. This is the scale
we refer to as macroscopic. Middle: Reference pore (microscopic) configuration. Right:
Zoomed out one end of the pore.

contains three disjoint parts, Yy, Y7 and Y5 representing the solid part, water-
filled part and air-filled part of the pore, respectively. I'; denotes the interface
between solid and water-filled parts whereas I', the interface between water and
air-filled parts. We refer to Subsection 2.2.3.3 for details.

6.1.2 Distributed-microstructure system

The distributed-microstructure system, we deal here, is obtained from the system
given in Subsection 2.5.2 by replacing the linear reaction rates by nonlinear ones.
Our system consists of the following set of partial differential equations coupled
with an ordinary differential equation:

Oywy — Vy . (dlvywl) = —fl(’w1) + fg(’LUz) in (O,T) x 0 % Yl,(ﬁ.l)

8,511]2 — Vy . (d2vyw2) = f1 (’Ll)l) — f2<11]2) in (O,T) x ) X Yl,(6.2)

dws — V- (dzVws) = —a [ (Hws — ws)dy, in (0,7) x Q, (6.3)
Ty

Orws = n(wy, ws) on (0,7) x Q x I'1(6.4)
The system (6.1)-(6.4) is equipped with two-scale initial conditions
w;(0,2,y) = wi(z,y), j€{1,2} in 0 x Y1, (6.5)

w3(0,7) = wi(z) in Q, .
w5(07$7y) = wg($7y) on € x Fla (67)
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while the boundary conditions are

—n(y) - diVywr = n(w,ws) on (0,T) x Q x I'y, (6.8)
—n(y) - diVyw = on (0,T) x Q x 'y, (6.9)
—n(y) - diVywr =0 on (0,7) x Q x (Y, NJY), (6.10)
—n(y) - doVywy = on (0,T) x Q x T'y, (6.11)
—n(y) - daVyws =0 on (0,7) x Q x (9Y1 N 9Y), (6.12)
—n(y) - doVyws = —a(Hws —wz) on (0,T) x Q x Ty, (6.13)
—n(x)-dsVws =0 on (0,7) x 'y, (6.14)
wy = wd on (0,T)xT'p (6.15)

Here w; denotes the concentration of H3S0, in 2 X Y7, wy the concentration
of H5S aqueous species in 2 X Y7, w3 the concentration of HyS gaseous species
in Q and ws of gypsum concentration on 2 x I'y. V without subscript denotes
the differentiation w.r.t. macroscopic variable z, while V,, is the respective dif-
ferential operators w.r.t. the micro-variable y. « is the mass-transfer coefficient
for the reaction taking place on the interface I'; and H is the Henry’s constant.
The microscale information is connected to the macroscale via the right-hand
side of (6.3) and the micro-macro transmission condition (6.13).

6.1.3 Functional setting. Assumptions

In this subsection, we enumerate the assumptions on the model parameters and
data needed to perform the analysis of the system of (6.1)-(6.15). We also
discuss our concept of solutions. We give the main results of the chapter at the
end of this section. To keep notation simple, we set

X:={zc H(Q)]z=00nTp}.

Assumption 6.1.1. (Al) dx € L®(Q x Y1),k € {1,2} and d3 € L>(Q)) such
that (di(z,y)&, &) > dR[€|? for df > 0 for every £ € R3, a.e. (z,y) € QxY;
and (d3(z)&, &) > dJ¢|? for dI > 0 for every € € R? and a.e. z € .

(A2) The functions f;,4 € {1,2}, are increasing and locally Lipschitz continuous
with f;(a) =0 for @ <0 and f;(a) > 0 for a > 0, i € {1, 2}. Furthermore,
R(f1) = R(f2), where R(f) denotes the range of the function f. Moreover,
for My, My > 0 there exist positive constants M, M4 > 0 such that

f1(M7]) = fo(My), M{ > My and Mj > M.

(A3) n(a, B) = R(a)Q(B), where R and @ are locally Lipschitz continuous
functions such that R’ > 0 and Q' <0 a.e. on R and

R(a) :=

{ positive, if a >0, Q(B) =

0, otherwise,

{ positive, if 8 < Bmaz,

0, otherwise,
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where Bqz 1S a positive constant Also, we denote by R the primitive of

R with R(0) = 0, i.e. R(r fR )d¢ for r € R.

(A4) wio € LZ(Q’HI(Yl)) n LOO(Q X Yl) Wop € LQ(Q Hl(Yl)) N LOO(Q X Yl),
wsp € HI(Q) ﬂLOJrO(Q) w3 — W3 (O7 ) e X, w3 S L2(0 T; H2(Q))
HY(0,T;L*(2)) NLL((0,T) x Q) with Vw? -n=0o0n (0,T) x L', wso €
Lf(Q X Fl).

n (A4) we define L(Q') := L>() N {ulu > 0 on '} for a domain .

6.1.4 Definition of solutions
Next, we give the definition of a suitable concept of solution to our problem:

Definition 6.1.2. We call the multiplet (w1, w2, ws, ws) a solution to the prob-
lem (6.1) — (6.8) if (S1) — (S5) hold:

(S].) wi, Wy € Hl(O,T; L2(Q X Yl)) N LOO(O,T,
Qx Y1), wy € HY(0,T; L2(Q)) N L2((0, T
ws € HY(0,T; L2(Q x T1)) N L((0,T) x

(S2) It holds that

2(8 Hl(Yl))) N L>((0,T) x
Q), ws —w3 € L>(0,T; X),
I

) X
QO xTy).

/ Opwr (wy — vy)dady + / d1Vyw - Vy(wy —v1)dady

QxYy QXY
+ [ Qs R Reu)dad, < [ (= Filwn) ) —on)dody
QxTy QxY;

for v; € L*(Q; H'(Y1)) with R(vy) € L (Q x T'y) a.e. on [0, T].

(S3) It holds that

/ Oywovodady + / d2Vyws - Vyvadazdy — o / (Hws — wa)vedzdry,

QxYr QXY QxTy
= / (f1(wr) — fa(ws))vedady  for ve € LQ(Q;Hl(Yl)) a.e. on [0,T].
QxYy

(S4) It holds that

/ Otwgvgdx+/d3V ws - Vuzdzdy = —« / (Hws — wa)vsdady,
QXYl QXFQ

for v3 € X a.e. on [0,T].

(S5) (6.4) holds a.e. on (0,7) x Q x I'y.
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Note that we have introduced a variational inequality in the above definition.
The idea of inclusion of the variational inequality is due to the absence of the
Laplacian term with respect to x—variable. It is not easy to show that the
boundary condition for w; holds, since the boundary condition is nonlinear.
Variational inequality helps in proving the existence and uniqueness of solutions,
see Section 6.3. To get the inequality, we use the convexity of R and positivity
of @ such that

QAR(@)(a - §) > QA)(R(a) — R(8)) for any a,6 € R.

6.1.5 Statement of the main result

Theorem 6.1.3. Assume (A1) — (A4), then there exists a solution (w1, we, w3, ws)
of the problem (6.1) — (6.8). Moreover, it holds that

(1) wi(t),ws(t) > 0 ae. in Q x Yy, ws(t) > 0 a.e. in  and ws(t) > 0 a.e. on
Q x Iy for a.a. t € 0,77

(11) wl(t) < Ml, ’wg(t) < MQ a.e. in Q x Yl s ’wg(t) < M3 a.e. in Q and
ws(t) < Ms a.e. on QxTI'q fora.a. t € [0,T], where My, My, M3 and Ms are
positive constants satisfying M1 > [|wiol| L (axyy), M2 > |lwaollL=(xv1),
Mz > max{[|wso| (o), |8 || L= @xvi)}s fi(Mi) = fo(Mz) and My =
HMj3 and Ms = max{Bmaz, |Waoll L xry) }-

Proof. The proof is contained in Section 6.4.

Theorem 6.1.4. Assume (A1) — (A4), then there exists at most one solution
in the sense of Definition 5.1.2.

Proof. For the proof, see Subsection 6.4.1.

6.2 Auxiliary problems

In order to prove the existence of solutions, we first introduce the following
auxiliary problems:

Problem Py(g,h)

Ow1 —Vy - (diVyw) =g in (0,T) x Q x Y7,

d1Vyw; -n(y) = —hR(wi) on (0,7) x Q x I'y,

diVywi -n(y) =0 on (0,7) x @ x Ty and (0,7T) x Q x (Y1 N9Y),
w1(0) =wyg  on Q x Y.

We solve this in Lemma 6.3.1 for given functions g and h.
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Problem P5(g)

Next, for a given function g on (0,7) x Q x Y7, we consider the following problem
P3(9):

Oiwi — Vy - (diVywi) =g in (0,T) x Q x Y7,

d1Vywr -n(y) = —n(wy,ws) on (0,T) x Q x Ty,

diVywi -n(y) =0 on (0,7) x Q@ x Ty and (0,T) x Q x (Y1 N9Y),
Oyws = n(wy,ws) a.e. on (0,T) x Q x I'y,

wl(()) = Wip ON Q x Y1 and w4(0) = W40 ON Q x Fl.

We solve this problem in Lemma 6.3.2 for given functions g.

Problem P;(g)

As a third step of the proof, we show the existence of a solution of the following
problem Pj3(g) for a given function g on (0,7) x Q x Yi:

Orwa — Vy - (d2Vywe) =g in (0,T) x Q x Y7,
Oyws — V - (dsVws) = —a/ (Hw3 - wg)dvy in (0,7) x Q,

T2
doVywy-n=0 on (0,T) x 2 xTy and (0,T) x Q x (9Y1 NJY),
doVywy -n = a(Hws —wsz) on (0,T) x Q x Ty,
dsVws -n(z) =0 on (0,7) x 'y,
w3 =wy on (0,T) xT'p,
w2 (0) = wsg on Q X Y] and w3(0) = wzg on Q.

See Lemma 6.3.3 for solution.

6.3 Proof of the technical lemmas
This section contains the solvability of the lemmas given in Section 6.2.

Lemma 6.3.1. Assume (A1), (A3), (A4), h € H*(0,T; L*(QxI'1))NLL((0, T) x
QxTy)and g € L2((0,T) x Q x 7). If R is Lipschitz continuous and bounded
on R, then there exists a solution w; of P1(g,h) in the following sense: w; €
HY(0,T; L*(Q x Y1)) N L>=(0,T; L*(Q; H(Y1))) satisfying

/ Opwr (wy — vy )dady + / d1Vywy - Vy(wr — vq)dady
QxYy QxYy
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+ / h(R(w1) — R(v1))dzdy,
QXFl
< / glwy —vy)dady  for vy € L*(Q; H' (Y1) a.e. on [0,T],(6.16)
QxY;
w1(0)2w10 OHQXYVL

Proof. Let {¢;} be a Schauder basis of L*(Q; H'(Y1)). More precisely, {¢;}
is an orthonormal system of a Hilbert space L?(£2 x Y1) and is a fundamental of
L2(Q; HY(Y1)), i.e., for any z € L?(Q x Y7), we can take a sequence {2"} such
that 2" = Z;V L JCJ and 2" — z in L*(Q; H'(Y1)) as n — oo, where a7 € R.
Then there exists a sequence {w},} such that wf, := Zjvz"l ajoCj and wiy — wig
in L2(Q; HY(Y1)) as n — oo.

Here, we are interested in the finite-dimensional approximations of the func-
tion w; that is of the form

wi (t, z,y) Za” x,y) for (t,z,y) € (0,T) x Q x Y7, (6.17)

where the coefficients af, j = 1,2,..., Ny, are determined by the following
relations: For each n

/ (Ol (t) 1 + di Vywi (t)Vy¢r )dady + / hR(wf (t))¢p1dady,
QXY QxI'y
= / g(t)prdady  for ¢ € span{¢; :i=1,2,..,N,} and ¢ € (0,71],(6.18)
QxYy
aj(0) =aj, forj=1,2,..Ny. (6.19)

Consider ¢1 = (j, j = 1,2,...N,,, as a test functions in (6.18). This yields a
system of ordinary differential equations for ¢ € (0,7

Ny,
Oy (t) + Z(Ai)ja?(t) + P (ta™(t) = J;(t)  forte (0,T]j=1,2,...,Ny,
=1

(6.20)
where

N,
(1) = (o} (1), 0% (1), FN(t,a") = / MORCY a7G)Gided,

QxI'y

(Az)] = / dlva . VyCJd:Edy, Jj (t) = / g(t)CJdIdy for ¢ S (O,T]

QXY QxYy
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Now we show that Fj" is globally Lipschitz continuous due to the assumptions
given in the statement of the lemma.

N»

Fr(t,a™) — Fr(t,a") = / hOR(S (a2 — a2)¢)¢dady,
QXFl i=1
Ny,
<c / RS (af — a6 |¢ldwdy,
QXFl i=1
Ny,
<c / (0 — a2)G| 16 ldedy,
QXFl i=1
N’Vl
<03 |ar —ar| / Gl [¢5]dzdn,
i=1 QxT,

)

Nn,
< Cmaz{c;;} Z o — ay
i=1

where the coefficient ¢;; is given by

According to the standard existence theory for ordinary differential equations,
there exists a unique solution af, j = 1,2, .., Ny, satisfying (8.9)for0 <t <T
and (6.19). Thus the solution w} defined in (8.1) solves (6.18) — (6.19).

Next, we show uniform estimates for solutions w} with respect to N. We
take ¢1 = w? in (6.18) to obtain

/ dpwy (t)wy (t)dedy+ / |V w (t) P dedy+ / h(t)R(wf (t))w} (t)dzdy,
QxY; QxY; QxT'y

— / g(H)wi(t)dzdy  for t € (0,T).

QxYy

Since R(r)r > 0 for any r € R, we see that

1d
s | lwr@Pdsdy +df [ [9,uf(0dsdy
QXYl QXYI
1 1
< B / \g(t)\Qd:cderi / |w? (t)|?dzdy  for t € (0,T).

QxY; QxY;
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Applying Gronwall’s inequality, we have

t
/ lw (t)[2dedy + d(l)/ / |V, wi(t))?dzdy < C for t € (0,T],
QxY; 0 OxY;

where C' is a positive constant independent of n.

To obtain bounds on the time-derivative, we take ¢y = Jyw? as test function
in (6.18). We see that

1d
[ lowr@Pdsty+ 55 [ aiv,ur@Pdedy+ [ nooRWE 0)dedy,

QxY QxYy QxTy
= | sowi(tsdy
QxY;
1 2 1 n 2
< 5 / jo(0)dady + / Ol (#)2dady  for ae. ¢ € (0,T].
OxYy QxY;

Accordingly, we have

1 1d d
B / |8tw?|2dxdy+§& / d1|Vyw?\2dxdy+dt / hR(w?)dzdry,

QxYy QAxYy QxT'y

1
< 3 / lg|*dady + / OhR(w?)dzdy, a.e. on € (0,T].
QxY; QxI'y

By integrating the latter equation, we have

T

1 d9
3 / / |8tw]’\2d:rdydt+51 / |V wi (7)|*dedy + / h(t)R(w} (7))dzdy,
0 QOxY; QOxY;

QxI'y
1
<5 [ @iVt Py [ ORI,
QxYy QxI'y
1 T T
+§/ / |g|2dxdydt+/ / OhR(wi)dady,dt  for 7 € (0,77
0 OxY; 0 QxI'y
Note that
T T
/ / IR(w})|?dedy,dt < C / / |w}|?dzdy,dt
0 QxI'y 0 OQxI'y
T
S

c/ / (IVywi? + |wl|?*)dadydt.
0

QXY
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Here, we have used the trace inequality. Hence, we observe that {w] } is bounded
in H'(0,T; L*(2 x Y7)) and L*(0,T;L?(2; H'(Y1)). From these estimates,
we can choose a subsequence {n;} of {n} such that wi’® — w; weakly in
HY(0,T; L*(Q x Y1)) and weakly* in L>°(0,T; L?(2 x Y1)) and L>(0, T

L2(Q; HY(Y7))). Also, the above convergence results imply that w(" (T') — w1 (T)
weakly in L?(Q x Y7).

Now, to show that (6.16) holds, let v € L?(0,T; L2(; H'(Y1))). We take a
sequence {v*} such that v*(t) := Z;”kl )\f( )¢; and v® — v in L2(0,T; L2 ($);
H'(Y1))) as k — oo, where \F € C([0,T]) for i =1,2,...,my and k = 1,2,....
For each k and ¢ with N,,, > my, it follows from (6.18) that

T
/ / ot (wi — vf)dadydt + / di Vit -V, (w} — vf)dadydt
0 QxYy QOxY;
T T
—I—/ / hR(w}) (w} — v¥)dady,dt g/ / g(w —v¥)dadydt.
0 OxTI'y 0 OxY;

By the lower semi-continuity of the norm and the convex function R, we have

T
lim inf / / (0T (Wl — o)+ dy V™ - V(0! — o) bdadydt
11— 00
0 QXYI
T
+/ / hR(w)(w} — vf)dzdy,dt
0 QxTy
T
> / / Opwr (wy — vl)dxdydt + / d1Vywr - Vy(wr — v’f)dxdydt
0 OxY; QxYy

+ / / h(R(wy) — R(v}))dady,dt  for each k.
0 Q

xI'y

Then we show that (6.16) holds for each v*. Moreover, by letting k — oo we
obtain the conclusion of this lemma.

Next, we deal with the problem Py (g).

Lemma 6.3.2. Assume (A1) — (A3) and (A4), and g € L?((0,T) x Q x Y7).
If R and @ are Lipschitz continuous and bounded on R, then there exists a
solution (wy,ws) of Pa(g) in the following sense: wy; € H(0,T; L3(2 x Y1)) N
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L*(0,T; L2(; HY(Y71))) and ws € H(0,T; L*(Q2 x I'y)) satisfying

/ Opwy (wy — vy )dady + / d1Vywr - Vy(wr —v1)dady

QxY; QxY;
[ Qus)(Rw) - RE)dady,
QxI'y
< / g(wy —vy)dzdy  for vy € L*(; HY(Y1)) a.e. on [0,T],(6.21)
QxY;y
Oyws = n(wy,ws)  on (0,T) x Q x T, (6.22)

w1(0) =wig  on Q@ x Yy and ws(0) =wsep  on Q x Iy.

Proof. Let ws € V :={z € HY(0,T; L>(Q x I'1)) : 2(0) = wso}-
Since Q(ws) € H'(0, T; L*(2 x T'1)) N LF((0, T) x 2 x Ty), Lemma 6.3.1 implies
that the problem P;(g, Q(ws)) has a solution w; in the sense stated in Lemma
6.3.1. Also, we put

¢
ws () 1= /n(wl (1), ws(7))dT + w59  on Q x Ty for ¢ € [0, 7).
0

Accordingly, we can define an operator Ay : V' — V by Ap(ws) = ws. Now, we
show that Ar is a contraction mapping for sufficiently small 7' > 0. Let wi €
HY(0,T; L*(Q xT'1)) and wt be a solution to P1(g, Q(ws)) and w = Ar(w) for
i=1,2, and w1 = w} — w?, ws = wi — w and w5 = W — W3.

First, from (6.16) with v; = w? we see that

/ opwi (wi — wi)dedy + / d1Vywi -V, (wi —wi)dady

QXYl QXYI
+ [ a@h®Rwh - R@h)dsdy,
QXFl

< / g(wi —wi)dazdy a.e. on [0,T).
QXYl

Similarly, we have

/ dywi(w? — wi)dady + / d1Vywi -V, (wi — wi)dzdy

QxYy QxY;
+ / Q(@2)(R(w?) — R(w}))dzdy,
QxIy

< / g(w? —wi)dazdy a.e. on [0,T].
QxYr
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By subtracting these inequalities, for any € > 0 we obtain

1d
>q / |wi|*dady + / d1|Vyws [*dzdy
QXY QxYy
< - [ @) - Q) ®R(w?) - R(w})dsdy, (6:23
QxIy
< Ce / |5 |*dady, + & / Jwi [2dady,
QxTy QxI'y
< C; / |ws|?dzdy, + Cy,e / (Vw1 > + Jwy[*)dzdy  a.e. on [0, 7],

QXFI QXYI

where Cy, is a positive constant depending only on Y;. Here, by taking € > 0
with Cy, e = %d? and using Gronwall’s inequality we see that

t

1 d?
- / |w1(t)|2dxdy+51// |V yw: |*dzdydr

2
QxY: 0 QxY;

¢
< eCt/ / |ws|?dzdy,dr  for t € [0,T]. (6.24)
0 QXF1

Next, on account of the definition of ws, we that

i / fws (£) Fdady
QxI'y
= %/(‘n(w%(t)»w%(t))—U(w%(t%@g(t)w—k|w5(t)\2)dxd7y
QxI'y
= ¢ / (lwr (O + [w5(8)[* + [ws(1)|*)dadry,  for ae. t €[0,T).
QxI'y

Gronwall’s inequality, viewed in the context of (6.24), implies that

[ s oy,

QXFl
t t

< CeCt(/ / \w5|2dxd'yyd7'+/ /(|Vyw1|2+|w1|2)dxdyd7)

0 QxI'y 0 QxY;
t

< CeCt/ / |ws|2dxdy,dr  for t € [0,T].

0 OQxI'y
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Hence, we obtain

Hatw5HL2(O,T;L2(Q><F1)) < ||n(w1, w5) — n(w%7wg)HLQ(QT;L?(QXFl))

< C(leHL?(O,T;L?(Q;HI(Yl)) + Hw5||L2(O,T;L2(Q><F1)))

< CHw5HL2(O,T;L2(QXF1))

< CTUQHat%HLz(o,T;LZ’(QxFl))’

and

HAT(IE%) - AT(wg) HHl(O,T;LZ(QxFl))

< Hw5||L2(O,T;L2(Q><F1)) + Hatw5||L2(0,T;L2(Q><F1))
< CT1/2H1D5

H(0,T;L?(QxTy))’

This concludes that there exists 0 < Ty < T such that A, is a contraction
mapping. Here, we note that the choice of Ty is independent of initial values.
Therefore, by applying Banach’s fixed point theorem we have proved this lemma.

As third step, we treat the auxiliary problem P3(g).
Lemma 6.3.3. Assume (A1), (A3), (A4), and g € L*((0,T) x Q2 x ;7). Then

there exists a pair (wq,w3) such that wy € H(0,T; L?(Q x Y1)) N L*(0,T;
L*(Q;H' (Y1), ws € H'(0,T; L*(Q)) N L*(0, T3 H(Q)),

/ Orwovodxdy + / doVyws - Vyvodady — a / (Hws — wa)vadadry,

QxYy QxY; [95°4
= / guadady  for vy € L2(Q; H' (V1)) a.e. on [0,T]. (6.25)
QXYl
and (S4).

Proof. Let {(;} be the same set of bases functions as in the proof of Lemma
6.3.1 and {y;} be an orthonormal system of the Hilbert space L?*(Q2) and a
fundamental of X. Then we can take sequences {w},} and {W34} such that
why — wao in L2(; HY(Y7)) and W3 — wzg — wd(0) in X as n — oc.

We approximate wy and W3 := w3 — wl by functions wh and W3 of the
forms
N, Ny,
wp(t) =) BrOG, Wit = 7w forn, (6.26)
j=1 j=1

where the coeflicients 5" and 77", j = 1,2,..., N,, are determined in the following
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relations: For each n , we have

/ Orwy podady + / doVywy - Vypodady — o / (HW3 — wy)podadry,
QXYl

QXYl

QXYl QXFQ

B35 (0) = B

/ goodady + « / Hw?@dxdfyy

QXFQ

(6.27)

for ¢ € span{(;:i=1,..,N,},t € (0,7
for 5 =1,2, ..,

Q

Q

Q

W}L(O) = W’;‘LO
Consider ¢o =

- / (Opwd — Vdz(Vwd))pzdady — a / HuwY ¢pzdady,

for ¢3 € span{u; :i=1,2
forj=1,2,..,

QxTo

(6.28)
QXFQ

e Nt € (0,7,

¢ and ¢3 = pj, j =1,2,.., Ny, as a test functions in (6.27) and

(6.28), respectively, these yield a system of ordinary differential equations

Nn

QY () + D (B
1]\71

n

O} (1) + > (Ci) i

=1

fort € (0,7] and 5 =1,2,..., N, and
(Bi); =

/ dgvyCZ . Vijdxd%

QxY;

(Ci)j = /dgvm.v,ujdx—l—aH / piprydadyy,

Q

QXFQ

(Ci)j = —a / piGdadyy,  Ja;(t) ==

QXFQ

J35(t) :=

QxYq

Z ]77, ]2(t)
Z ]3(t)

(B); == / iy,

QxTo

/ 9(t)¢dady,

QxY:

/ (Oyw? — V(Vw?))¢dedy + aH / wd ¢;dady, for t € (0,T]

QxTa

Clearly, this linear system of ordinary differential equations has a solution
B; and 7} 3 i

Thus the solutions w} and W3 defined in (6.26) solve (6.27) and
(6.28), respectively.
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Next, we shall obtain some uniform estimates for wy and Wi'. We take
@2 = wh and ¢3 = W in (6.27) and (6.28), respectively, to have

n « n
2dt / lwg (t)[*dedy + / d2|Vyw2(t)|2dzdy+Z / lwy ()[2dzdy,

QxYy QXYl QxTy
< 7H|F2\/|W3 |dx+f / lg(t)|?dady
QXY
1
+3 / lwy (t)|*dady + aH? / |w? (t)|?dazdy  for a.e. t € [0,T),
QxY; QxIy
and
1d
icT/ W )| dx+/d3|VW3()| dx+aH|F2|/|W3 ) [2dady,

IN
—

Q
1] BOPdsdy,  (@2Iral+ ) [ 150
QxI'y Q

+%/|gD(t)\2dfc for a.e. £ € [0,T],

where |T2| := [ dv,, and gP = dyw? — V(Vwl) + aH|2|wd. By adding these
r

inequalities, we get

1d
o5 [ lsOPdsdy s [ 19,u50Pdsdy
QXY QxYy

1d
+§&/|W§L(t)\2dx+dg/|VW§’(t)|2dx
Q

1 « 1
< (@I0s] 4 3 + SHID) / WioPde+ 5 [ lo(oPdsdy
QxYy

/ |wy (t)|2dzdy + = /|g t)]2dz  for a.e. t €[0,T).
Q><Y1

Consequently, Gronwall’s inequality implies that for some positive constant C

/ |w (¢ |dxdy+/|W” t)|?de < C  for t € [0,T] and n, (6.29)

QOxYy
T

T
/ / |V wy [*dzdydt + / / |V (t)[2dedt < C for n. (6.30)
0 Q

0 QxY;
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Now we obtain a uniform estimate for the time derivative by taking ¢, =
Opwd in (6.27), we observe that

1d
[l @Pdody+ 55 [ a2l 0)Pdedy

QXYl QXYI
—a / (H(WP(t) + wP () — w} (1)) Dyl () dadry,
QXFQ
= / g(t)oyws (t)dzdy  for a.e. t € [0,T]. (6.31)
QxYy

Here, we denote the third term in the left hand side of (6.31) by J(t) and see
that

1d
) = —ag [ HOPE+ 0P @) @dedy +ag G [ lupoPddy,
QXFQ QXF2

+aH / (Wi (t) + wd (t))wy (t)dxdy, for ae. t € [0,T).

Then we have

1d ad
Q><Y1 Q><Y1 QXTI

1 d " n
<s / o)Pdody +age [ OV () + wf ()0 (0)dody,
QxY; QxTy

+aH|F2|1/2/I3t(W§(t) +wy ()] |ws ()| 2y dz for ace. ¢ € [16132)

Considering the last term in (6.32) and by Young’s inequality, we have

aH|T2I1/2/|3 (W3 () +wg’ () wg ()| 20y d

IN

QH[Ta 3 0 12r / UACEREIOIE

IN

aHllel/QHwS(t)llwrz)/(Iat(W:?(t)le?(t))l)dw
Q

aH |Ta[V2IQM2 w3 ()] 2 s (10 (W (8)l] 2 + w5 (D) ] z2(ra))

1 N 3 N 1
210V D220, + 5o B2 Tal|Qflws (O 2y + 5 w8 O 22(rs))

IN

IN
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Similarly, by taking ¢3 = 0;W$ in (6.28) we have

/|atW3<>| Qo+ /d3|vwg<>| dz

Q

=-a / (H (W3 (t)+wd (t)—ws ()0 W (t)dadry,~ / 9" (£)0 W3 (t)dx

QxI'y Q

d
< —aH|F2|a/|W§L(t)|2dm+2a2H2|F2\2/|w§7(t)|2dx
Q Q

1
#2070a] [ up(oPdedy, + 5 [1W5@Pds+ [ 1670 Pds
QxTy Q Q
for a.e. t € [0,T7.

From these inequalities, it follows that

1d d
/ |0,wh (1)]? dxdy—i—zd d2|Vyw§(t)|2dxdy+§& / lwy (t)|2dazdy,
Q><Y1 QxYy QXFZ

/|atw3 )2z + 2dt/d3|VW3()| Ao+ aH T & /\W3 ) 2da

1
=5 / lg(t)|*dzdy + = / H(W2(t) +w? (1) wh (t)dzdy,
QxYy QxTy
+(2|T| 4 2a2|Ty|) / |wy (t)|*dzdry, + /|g t)2dz  for a.e. t €[0,7).

QXFQ
Here, we use Gronwall’s inequality to have

t1
1 1 1
7/ / |3tw§|2dxdydt+§ / d2|Vyw§(t1)|2dwdy+§ / lwy (t1)]2dzdy,

2
0 OxY; QxYy QxTo

//|atw3\ dedt + = /dg\VW3 (t1)]?de + H|Ts)| / W2 () 2

0 Q QxT'y
ty

/ / lg] dxdy+/|gD|2dx dt

0 ><Y1
tl d

4L Cn / o—Ct a / HW3 + wP)whdady, | dt
0 QxTy

IN
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t1
< [ [ labasy [l Panata [ OV @ 00)ug s,
0 OxYp Q QxI'y
4 el / HWE(0) + wP (0))w} (0)dady,
QXFQ

t1
+ aeCtl/ / H(W3 +wf)whdady,dt  for 1 € [0,T].
0 QXFZ

This inequality together with (6.29) and (6.30) lead to

/ IV, w () Pdady + / VWI($)2dz < C for ¢ € [0,T] and n, (6.33)

QXYl Q

T T

/ / |0pwy | dedydt + // |0, W3 2dxdt < C for n. (6.34)
0 Qxv; 0 Q

By (6.29) - (6.34), there exists a subsequence {n; } such that w3y — wo weakly
in H1(0,T; L*(Q x Y1)), weakly* in L>°(0,T; L?(Q; H'(Y1)) and W3 — W3
weakly in H'(0,T; L*(Q)), weakly* in L>(0,T; H'(2)) as i — oo. Clearly,
wh' — we weakly in L2((0,T) x 2 x I'y) as i — co. Here, we put ws = W3 +w?.

Since the problem P3(g) is linear, similarly to the last part of the proof of
Lemma 6.3.1, we can show (6.25) and (S4).

6.4 Proof of Theorem 6.1.3 (main results)

First, we consider our problem (6.1) — (6.8) in the case when f1, fo, R and Q
are Lipschitz continuous and bounded on R.

Proposition 6.4.1. If (Al)- (A4) hold and fi, fo, R and @ are Lipschitz
continuous and bounded on R, then there exists one and only one multiplet
(w1, wa, w3, ws) satisfying
(S)
wi,we € HY(0,T; L2(2 x Y1)) N L>(0,T; L?(; HY(Y1))),
wy € HY(0,T; L3(Q)), w3 — wP € L=((0,T; X),ws € H*(0,T; L*(2 x T'y)),
(S2) holds for any vy € L*(Q; H(Y1)), and (S3), (S4) and (S5) hold.

Proof. Let (wy,ws) € L?((0,T) x Q x Y1)2. Then, by Lemmas 6.3.2 and
6.3.3, there exist solutions (wq,ws) of Pa(—f1(w1) + fa(we)) and (wa,w3) of
P3(f1(w;) — fa2(ws)), respectively. Accordingly, we can define an operator Ar
from L2((0,T) x Q x Y7)? into itself. Henceforth, we show that Az is contraction
for small T'. To do so, let (w,w}) € L2((0,T) x Q@ x Y1)?, (wi, wi) and (wh, w})
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be solutions of Po(—f1 () + f2(w5)) and P (f1(wh) — f2(ws)), respectively, for
i=1,2, and put w; = Wi — W, Wy = Wi — W3, wj = wjl- —w?, 71=1,2,3,5.

Similarly to (6.23), we see that

1d
% / lwy|?dady + / d1 |V yw [*dady
QxY QXY
S—f/XQ@bewﬁﬂRWQ*RWDMM%
QxI'y
——/(h@b—ﬁ@bMﬂMy+/thb—hw%MﬂMy
QOxY: aOxYq
dtl) 2 2 2
< ) / |V wi|*dedy + C / |wy|*dady + C / |ws|“dzdy,
QxY; QAxYy QxI'y
+C / (@12 + |@2]?)dedy  ace. on [0,T). (6.35)
QXYl

Next, we test (6.25) by ws. Consequently, by elementary calculations, we
obtain

1d
% / lwo|?dady + d9 / |V wa|?dady + / |wo|?dxdy,
QXY QXY QxT'a
< [ (@b - f@dusdedy— [ (fi(0d) - (@) wadody
QxYy QXY
+a / Hwswydzdy,
QxI'y
o o
< C / (\w1|+|w2\)|w2|dxdy+§ / |w2|2dxd’yy+§H2‘I‘2\/\w3|2dx
QxYy QxTy Q
and
1d 2 0 2 a 2
BT |wa|“dady + dy |Vywo|*dedy + 3 |wa|“dzdy{6.36)

QxY; QxYy QxTy

< C / (|1IJ1\2+\w2|2+|w2|2)dxdy+C/|w3|2dx a.e. on [0,T].
Q

QxY;
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It follows form (S4) that

/|w3| dx—i—do/|Vw3|2dx—|—ozH / lws|*dzdy,  (6.37)

2dt
QXFQ
< Z / \w2‘2dxd7y+a|F2\/|w3|2dx a.e. on [0,T].
(9572

Moreover, by using the trace inequality and (6.22), we see that for € > 0 we
can write

1d
2dt / s [*dz < / |n(w}’w%)_n(w%»wg)||w5|dxd'yy

QxTy QxI'y
< ¢ [ (uilluws] + fusP)dsdn, (639
QxI'y
< Cye / (IVywi]* + w1 ?)dzdy + C / |ws|*dzdy, a.e. on [0,T].
Qxvi Qxry

Here, we take € with Cy,e = dzcl) and add (6.35) — (6.38). Then it holds that

1d
2dt / |w1\2dxdy+— / |V, wi|? da:dy—i—th / lws|?da

QxY; QxY; QxT'y
1d 2 0 2 o 2
+§& |wa|“dzdy + dy |V ywo|*“dzdy + 1 |wa|*dazdy,
QxYr QxYy QxI'y
2dt/|w3| dx+d0/|Vw3| dz + aH / |ws|*dzdy,
QXFQ
< ¢ [ (wf+lasP)dody+C [ (ol + fwaf)dedy
QXYl QXYI
+C’/|w3| dz+C / lws|*dzdy  a.e. on [0,T].
QXFl

Hence, Gronwall’s inequality implies that

/ (s (D] + [ws(8) P)dady + / s (8) da + / s (1) Pzl

QxY; Q QxI'y
t

SeCt/ / (|@1|? + |wo|?)dzdydr  for t € [0,T).
0 QxY;
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This leads to

HAT w17w2) AT(w1’w2 HLZ(((),T)xQxYl)

< ||wl||L2 0T)><Q><Y1) + [Jlwall L2((0,7) x2x 1)

< / c / [ 001 sy + 102(0) B Y
0 QxY;

< CemT”QH (@1, @3) = (@5, D3)| 20 7y x v

Therefore, there exists a positive number T, such that Az, is a contraction
mapping for 0 < Ty < T'. Since the choice of Tj is independent of initial values,
by Banach’s fixed point theorem we conclude that the problem (6.1)—(6.8) has
a solution in the sense of (S).

Proof of Theorem 6.1.3. First, for m > 0 we define f;,,, i = 1,2, R,, and
Qm by

Fom(r) = { film)  for r >m, Ro(r) = { R(m) for r>m,

fi(r)  otherwise, R(r)  otherwise.

Q(m) for r>m,
Qm(r) == Q(r)  for |r] <m,
Q(—m) for r<-—m.

Then, by Proposition 6.4.1 for each m > 0, the problem (6.1)—(6.8) with f; =
fims fo = fom, R = Ry, and Q = @, has a solution (w1, Wam, Wam, Wsy) in
the sense of (S).

Now, for each m we shall prove
(1) Wim, wam(t) > 0 a.e. on (0,7) x Q x Y7, wsy, > 0 ae. on (0,7) x Q and
Wsm > 0 a.e. on (0,7) x Q x T'y.
In order to prove (i) we test (S2) by wip, +wy,,, where ¢~ := — min{0, ¢} with
¢T¢~ = 0. Then we see that

2dt / |w1m\ dxdy + / dl\Vywl_m\dedy

QxYy QxYy
n / Qo (105) (R (w10) — R (w1 + w7y
QXFl
< /(flm(wlm)—fgm(wzm»w;mdxdy ac. on 0,7,
QxY;

where R, is the primitive of R,, with R,,(0) = 0. Note that

Rm(wlm,) —Rm (wlm + wl_m) =0
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and (f1m(w1m) — fom(wWam))wi,, <0, since fa,, > 0 on R. Clearly,

2dt / lwy,, [Pdzdy + / dq|Vwy,,|*dzdy <0 a.e. on [0,7]
QxY; QxYy

so that wy,;, > 0 a.e. on (0,7) x Q x Y7.
Next, because —[ws,,]~ € X, we can test (S3) by —wan, ™~ and (54) by —ws,,
to obtain

s [ sty + & [ 195, Pledyra [, P,

QxYy QxYy QxTo

< - / (Fim(@im) — fom(wam))wg,dedy — o / Huwgpwg,, dady,
QxYy QxTy

< S / wg P drdey, + S 2T / wy, Pdz ae. on [0,7],  (6.39)
QAxTy

2dt/|w | dx+d0/|Vw Pdz = « / (Hwsp, — wam )ws,,dzdy,
QxTy
< / |wa,, [|ws,, |dzdy, a.e. on [0,T]. (6.40)
QxTo

Adding (6.39) and (6.40) and then applying Young’s inequality, we get

1d
st [ o Pdedy s [lug o)+ df [ 1905, Pdndy (60
QxY; Q QxYy
+dg/|ngm|2dx < (%H2|F2|+Q|F2|)/|w§m|2dx a.e. on [0,7].
Q Q

The application of Gronwall’s inequality and the positivity of initial data give
Wap, > 0 ae. on (0,7) x Q x Y7 and ws,, > 0 a.e. on (0,7) x €.
Since n > 0, it is easy to see that

th / |wg,,|dzdy, <0 a.e. on [0,T].
QXFl

Hence, we see that ws,, > 0 a.e. on (0,7) x  x I'y. Thus (i) is true.

Next, we shall show upper bounds of solutions. By (A1) we can take M; and
M2 such that M1 > H’wloHLoo(QXyl),

My > HI&X{szoHLw(QxYl),H|\w30||L°°(Q)7H||w3],j||Loo(QxY1)}
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and f1(My) = fo(Ma). Also, we put Mz = 22 My = max{Bmaz,||wso|| L= (xT) }
and My = max{M;, Ma, M3, M5}. Then it holds:

(ii) For any m > My we have wipy,(t) < My, won,(t) < My a.e. in Q X Y7,
wam (t) < M3 a.e. in Q and ws,, (t) < Ms a.e. on Q x I'y for a.e. ¢t € [0,T].

In fact, let m > My and consider w1y, — (wim — M1)T, (way, — Ma)t and
(w3m — M3)T as test functions in (S2) - (S4). Then we observe that

= / (w1 — M)+ Peady + df / IV, (w1 — My)*[2dady

QxYy QxY;
+ / Qo (Wsm) (R (W1m) — Rom (w1 — (w1 — My)*))dadry,
QxI'y
< [ i) + fom(wzn))wrn — M) dad, (6.42)
QxY;

1d
2dt / |(wam — M2)+|2dxdy + dg / |Vy(w2m - M2)+\2dxdy

2 dt

QXY QxY;

< /(flm(wlm) — fom(wam)) (Wam — M) dady (6.43)
QxYy
+a ﬁHWSm - w2m)(w2m - M2)+dxd7y7
QXFQ
1d )t 0 +
§d7 ’U)3m M3 | dzx +d |V W3 — Mg) ‘ )
Q

< —a /(ngm — wom) (Wam —M3)+dzd7y a.e. on [0,7T]. (6.44)

Q'

Here, note that Ry, (wim) — R (Wim — (wim —M1)T) > 0. Adding (6.42)—(6.44),
we get

1d
5& / (|(1U17'L7M1)+|2+|(1U2m7M2)+|2)dzdy+/|(w3m—M3)+|2dx
xY; 2

+ / (A9 V (w1 —M1) T |P+d3|V (wam—Mo) t|?) dedy+d) / |V (w3 —M3)T|?dz

QXY
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S / (_flm(wlm) + f2m(w2m))((w1m - M1)+ - (’LUQm — M2)+)d.’£dy(645)
QOxY;

+a / (Hwspm — wam ) (wam — M) + (way, — Hwsy) (wam — M3)T)dzdy,
QxTs
a.e. on [0,T].

We estimate the first term on the r.h.s of (6.45) by making use of f1,,(M1) =
fom(M2) and the Lipschitz continuity of fi,, i = 1,2, as follows: We have

/ (= Fim (Wrm) + Fiom (M) = fom (M) + Fom (w3)) (w1 — My)*dady

QxYy
+ / (frm1(Wim) — fim(M1) + fam(M2) — fom (w2))(w2m — Ma)Tdady
QAxYy
< [ Gamlwzn) = fom(Ma)) s, — M) dady
QxYy
b [ i) = fum (V) — )y
QAxYy
< C / (| (wam — MQ)JF|2 + |(wym — M1)+|2)d9:dy a.e. on [0,T].
QxYy

We estimate the second term on the r.h.s in (6.45) as follows:

« / (Hw3m — HMs3 + My — wgm)(wgm — M2)+d$d’yy
QXFQ

ta / (o — Mo + H(Ms — wspn)) (s — Ms)*dady,

QXFz
< aH / (W3 — M3)(way, — M2)+d1'd’}/y —« / [(wa, — M2)+|2dxd’yy
QXFQ QXF2
+a / (wam — Ma)(wsm — M) *dady, — aH / |(wm — Ms) " [*dzdy,
QXFz Q><I_‘2
< (aH?+a) / |(w3m — M3)*2dazdy, a.e. on [0,T).

QxI'y
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Now, (6.45) becomes

1d

3t | () Pl o) )y gm0t
XY3 J

QXY

+d§/\V(w3m — M3)T|?dz
Q

< [ (= 2P+ [(win — 3)* ) dody
QXYl

—|—C/|(w3m — M3)*|?dz  a.e. on [0,7].
)

Applying Gronwall’s inequality, we get for ¢t >0
[ (0= 32)* Pt ()~ M) Phady+ [ (wa(6) - Ma)* P < 0
QXYl Q

Hence, w1, < My, wa, < My a.e. in Q x Y7 and ws,, < M3 a.e. in Q for t €
(0,T). To show that ws,, is bounded on Q x 'y, we test (6.4) with (ws,, — Ms)™"

1d
sai [ lwsn = M) Pdads,
QXFl
= / Ron (W1 Qon (Wam ) (W — Ms)Tdady,  a.e. on [0,T]. (6.46)
QXFI

We show that r.h.s of (6.46) is less or equal to zero.
If ws,, < Ms, it is clear that

Rm (w17n)Q’m(w5m)(w5’m - M5)+ =0. (647)

If wy—Ms > 0, w5y, > My > Bmae. By our assumption, Q(8) = 0 for 8 > B
Thus, (6.47) holds.
This shows that ws,;, < M; a.e on (0,T) x @ x I'y. Thus we have (ii).
Accordingly, (Wim, Wam, W3m, Wsm ) satisfies the conditions (S1) -(S4) for m >
My by (i) and (ii). Thus we have proved this theorem.

6.4.1 Proof of Theorem 6.1.4

Let (w1j,ws;,ws;, ws;), 5 = 1,2, be solutions (6.1)-(6.8) satisfying (S1) - (S4).
Since all w;j;, 1 = 1,2,3,5, j = 1,2, are bounded, (w1;,ws;, ws;, ws;) is also a
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solution of (6.1)-(6.8) with f1 = fim, fo = fom, R = R,, and Q = @, for some
positive constant m. Then Proposition 6.4.1 guarantees the uniqueness. This
proves the conclusion of Theorem 6.1.4.

Remark 6.4.2. Having in view the proof of Theorem 6.1.4 and the working
techniques in Theorem 3, pp. 520-521 in [48] as well as in Theorem 4.1 in [96],
we expect that the solution in the sense of the Definition 6.1.2 is stable to changes
with respect to the initial data, boundary data, and model parameters.

6.5 Notes and Comments

We presented in this chapter the analysis of the distributed-microstructure model
without including any balance equation for moisture. We combined fixed-point
arguments together with a Galerkin’s scheme to prove the existence of solutions.

Since the processes in porous media are highly influenced by the geometry of
the microstructure, it is a difficult to understand and predict their behavior on a
macroscopic scale. The distributed-microstructure models are designed to bridge
the information on different spatial scales. From the theory of periodic homog-
enization, it is known for certain situations that the distributed-microstructure
model is a good approximation of the (exact) microscopic model provided that
the periodicity a is small. Note however that the distributed-microstructure
modeling methodology is applicable away from the context of homogenization
(periodicity), provided the well-posedness of the involved systems.

Distributed-microstructure models are usually seen in the context of homog-
enization limit as the scale of inhomogeneity tends to zero. The convergence
of the solution of the well-posed microscopic problem provides a proof of exis-
tence of solutions to the distributed-microstructure model, see e.g. Chapter 9
in [67]. Here we view the distributed-microstructure model independent of the
homogenization context. Our setting is quite general and includes rather general
geometries that may arise in applications.

The reaction rate « (entering in (6.3) and (6.13)) can be chosen other than
a constant. It can be taken as a monotone graph which is a sub-gradient op-
erator [67]. A similar approach to [45] could be used to prove the existence
of the solutions. If we explore the limit o« — oo, the system we consider here
converges to the system with boundary condition (6.13) replaced by the corre-
sponding "matched boundary condition”. We investigate this limit numerically
in Chapter 7, where we refer to as Bi™ — 0 (large mass-transfer Biot number).

There are other techniques to prove existence of these models: Treutler em-
ployed the semi-group methods in [135] and Meier applied Banach fixed point
arguments in [86].

Numerical experiments show that these systems are not only easy-to-work
and but also they do approximate microscopic models very well, see e.g. [50, 86,
88].



Chapter 7

Multiscale Numerical Simulations

In this chapter, we consider the distributed-microstructure system (7.1)—(7.17)
derived in Subsection 3.3.2 and present its numerical simulation. This system is
posed on two different spatially separated scales. Due to the multiscale nature of
the model, we perform computations at macroscopic length scales while taking
into account simultaneously also the transport and reactions occurring at small
length scales. We perform all the simulations in a one-dimensional two-scale
setting. Our main objective is threefold:

e (Calculate macroscopic pH profiles and detect the presence of sudden pH
drops.

e Approximate the position of the macroscopic corrosion front! from gypsum
concentration profiles.

e Explore the way in which the macroscopic Biot number? Bi™ connects the
two reaction-diffusion scenarios: the matched microstructure model and
the one with non-equilibrium transfer at water-air interfaces.

This chapter is structured as follows: In Section 7.1, we shed some light on the
motivation behind the simulations we perform in this chapter. Section 7.2 con-
tains the one-dimensional two-scale geometry and the two-scale model equations.
In Section 7.3, we approximate numerically the profiles of the concentration of
hydrogen sulfide gaseous and gypsum. We make use of profiles of gypsum and
H»S(g) to approximate the corrosion front location separating the corroded and
the uncorroded parts of concrete and the macroscopic pH, respectively. Section
7.4 is devoted to understanding the role of macroscopic Biot number. We present
a two-scale finite difference numerical scheme and guarantee its convergence. We
illustrate numerically the behavior of all concentrations profiles and indicate the
expected penetration depth versus time curve.

IThis is a sharp front separating the corroded and uncorroded parts of the concrete.
2Biot numbers are dimensionless quantities mostly used in heat and mass transfer calcula-
tions. They quantify the resistance of a surface (thin layer) to heat and/or mass transfer.
The results exhibited in this chapter have been presented in [27, 28]. This work has
been carried out in collaboration with V. Chalupecky (Fukuoka), J. Kruschwitz (Kiel) and A.
Muntean (Eindhoven). Thanks are due to V. Chalupecky for producing the C-code behind
the plots.
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7.1 Motivation

The biophysics of the corrosion problem is coupled to the mechanics of the
concrete material. In order to be able to tackle these at a later stage (e.g. by
including the solid-phase transformations and the evolving ecology of bacteria)
and to capture the macroscopic fracture initiation, we focus here on a much
simpler setting describing the multiscale transport and reaction of the active
chemical species involved in the sulfatation process. The multiscale nature of
the model allows us to perform computations at macroscopic length scales that
are relevant to practical applications while capturing effects of the processes
occurring at a microscopic scale.

All cement-based materials (including concrete) involve a combination of
heterogeneous multi-phase material, multiscale chemistry, multiscale transport
(flow, diffusion, ionic fluxes, etc.), and multiscale mechanics. Having in view this
complexity, such materials are very difficult to describe, to analyze mathemati-
cally, and to deal with numerically in an efficient and sufficiently accurate way.
We expect that only when the multiscale aspects of such materials are handled
properly, a good prediction of the large-time behavior may be obtained. We
are interested in simulating numerically the influence of microstructural effects
on macroscopic quantities. To achieve our goal, we numerically approximate
macroscopic pH profiles using the profiles of H,SO4 and the position of the cor-
rosion front using gypsum profiles, and delineate the role of the macroscopic
mass-transfer Biot number.

The strength of the chemical attack depends on the ability of the acid to
dissociate and on the solubility of its calcium salt. Owur interest in the pH
scale is due to the fact that high pH and low temperature reduce the release of
hydrogen sulfide to the sewer atmosphere as it corresponds to the low growth
rate of the Acidithiobacillus thiooxidans [74]. Tt is well-known that the pH of
a concrete is approximately 12, and sulfate-producing bacteria can not grow in
such a alkaline environment. Experiments show that the drop in pH from 9 to
8 corresponds to the the presence of HyS(aq) and further reduction to pH< 3
corresponds to situations when the reaction (1.4) has already occurred, see e.g.
[93, 145]. In spite of the fact that we do not include all the responsible species in
the sulfatation process, we are able to capture numerically a drop in pH which
is in the experimental range [93].

The main focus of the Section 7.4 is on the role of two micro-macro trans-
mission conditions. We explore numerically the way in which the macroscopic
Biot number Bi™ connects the two reaction-diffusion scenarios. We indicate
connections between the solution of the distributed-microstructure system (with
moderate size of Bi’) and the solution to the matched-microstructure system
(with blowing up size of Bi’), where Henry’s law plays the role of the micro-
macro transmission condition. This should give us hints on the intermediate and
large-time behavior of the concentrations in particular as well as on the corrosion
process in general.
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7.2 Geometry. Model equations

First we describe our geometry in which the physical processes are observed and
then we present our distributed-microstructure model.

7.2.1 One-dimensional two-scale geometry

Focusing on the already damaged part of the concrete, we consider a homoge-
neous macroscopic domain 2 := (0, L) (with L > 0) representing the concrete
sample in the region where corrosion initiates. The boundary of 2, say T, is

rL

F1GURE 7.1: Cross-section of a concrete pipe and two-scale domain pointing out
microstructure at each point.

composed of two disjoint parts '’ := {0} (the inner surface of the pipe) and
I'N := {L}, the Dirichlet and the Neumann boundaries, respectively. At each
point in €, we can zoom into a typical microstructure Y := (0,1) (with [ > 0).
Usually, cells (pores) in concrete contain a stationary water film, air and solid
fractions in different ratios depending on the local porosity. Generally, we ex-
pect that the choice of the microstructure depends on the macroscopic position
x € Q. Here we assume that the medium 2 is made by periodically repeating
the same microstructure Y, see Fig. 7.1. Since at the microscopic level, the
involved reaction and diffusion processes take place in the pore water, we denote
by Y1 := (0,¢),¢ <l < L the wet part of the pore and completely neglect the air
part of the pores.

7.2.2 Distributed-microstructure model equations

We consider the distributed-microstructure system derived in Subsection 3.3.2,
see (3.54)—(3.65). Let (0,7T") (with T > 0) be the time interval during which we
observe the corrosion processes. Here w; denotes the concentration of HoSO, in
Q) x Y7, we the concentration of HoS aqueous species in §2 x Y7, w3 the concentra-
tion of HyS gaseous species in {2, wy the concentration of the moisture and ws is
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the gypsum concentration on Qx{y = £}. The system contains information from
two scales — we expressed this by using the slow variable  (macro) and the fast
variable y (micro). 9, denotes the partial derivatives only with respect to the
variable y € Y7, while 0, represents the Laplacian referring only to the partial
derivatives with respect to the variable x € 2. Our distributed-microstructure
system reads as follows:

B10yw — Blfyldlﬁywl = —@%klwl + ¢§k2w2 in 2xY x (O,T), (7 1)
528{(1)2 — 62’}’2d28yw2 = @%klwl — (I)%kQ’U)Q in Q x Y1 X (O,T), (7 2)
3tw3 — d38EU)3 = —BiM (H'LU3 - %wﬂy:o) in ) x (O,T), (73)
548,5’[04 — 5474d48yw4 = k1w1 in © x Y1 X (O,T), (7 4)
B50pws= ®3n(wy, ws) in Qx{y=£}x(0,T). (7.5)

The reaction rate n takes the form

7’](0{76) _ k3ap[(6ma:c - /B)q]+7 lf @ 2 07 /8 2 07 (76)

0, otherwise,

with p,q = 1. The above system is supplemented with the following initial and
boundary conditions

wi(z,9,0) = w(z,y) on Q@ x Yy x{t=0}ke{1,2,4}(7.7)
ws(x,0) = w)(x) on Q x {t = 0}, (7.8)
ws(z,y,0) = w(x,y) on Q x {y =/} x {t =0}, (7.9)
—di0yw; =0 on Q x {y=0}x(0,T), (7.10)
—d10yw; = ®in(wy, ws) on Q x {y =14} x(0,T), (7.11)
—da0ywy = —BiM(E2ws —wy)  on Qx {y =0} x(0,7), (7.12)
—dyOywe = on Q x {y =14} x(0,T), (7.13)
w3 = wd on T'? x (0,7T), (7.14)
—d3d,w3 =0 on TV x (0,7T), (7.15)
—dsOywy =0 on Q x {y=+4}x(0,T), (7.16)
—dsOyws = on Q x {y=0}x(0,T), (7.17)

where d,, > 0, m € {1,2,3,4}, are the diffusion coefficients and k;, 4 € {1, 2, 3},
are functions modeling the rate constants. ®7 i € {1,2,3} are Thiele-like mod-
uli corresponding to three distinct chemical mechanisms (reactions). They are
dimensionless numbers that compare the characteristic time of the fastest trans-
port mechanism (here: the diffusion of HsS in the gas phase) to the characteristic
timescale of the ¢-th chemical reaction (defined in (3.9) and also see Table 7.2).
Bi™ denotes the dimensionless macroscopic Biot number which quantifies the
resistance of the interface to mass transfer (defined in (3.2) and also see Ta-
ble 7.2). B;,7 € {1,2,4,5} represents the ratio of the maximum concentration
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of the jth species to the maximum bulk HsS(g) concentration. We take here
B =1,j € {1,2,4,5}. Note that all involved parameters (except for the Henry
constant H, diffusion coefficient? for HyS(g) d3 and Biot number Bi*) contain
microscopic information. The coefficients d3 and Bi are effective ones (see Sec-
tion 3.2 for the rule to calculating them), while H can be read off from existing
macroscopic experimental data. Note that the information at the microscale is
connected to the macroscale situation via the right-hand side of (7.3) and via
the micro-macro transmission condition (7.12). This coupling is a consequence
of the different scaling of the diffusion coefficients in formal homogenization pro-
cedure, see Subsection 3.3.2 for details.

For pH computations, we decide to leave out the partial differential equation for
moisture by assuming that €2 is uniformly wet.

7.3 Capturing changes in macroscopic pH

We use a logarithmic expression to compute the values of a macroscopic pH
based on the volume averaged concentration of the sulfuric acid w;, which is
obtained by numerically resolving the distributed-microstructure system defined
on two spatial scales. To point out corrosion effects, we evaluate the content of
the main sulfatation reaction product (gypsum) inside 2 and numerically show
the presence of a kink in the gypsum’s concentration profile. The presence of
the kink (i.e. loss of regularity) and definition (7.6) make us believe that the
reaction front localizes close to kink’s position.

7.3.1 Simulations on HyS(g) and gypsum

First we simulate the profiles of HoS(g) and gypsum. To extract the position of
the corrosion front, we use gypsum profiles. To obtain macroscale pH profiles, we
use the concentration of sulfuric acid HoSO4 at the microscale. Our numerical
scheme is essentially based on the method of lines.

We use a two-scale finite difference discretization in space while in time we
employ an implicit higher-order time integrator to find the solution of the non-
linear ordinary differential equation system (see (7.21)—(7.23) and (7.24)—(7.26)
in Section 7.4). In Table 7.1, we summarize the values of our set of model

ds dy,2 k1 ky ks @7, @5 BiM H e wd L £ 124

s

0.864 0.00864 1.48 0.0084 10 1 10® 86.4 0.3 1 0.011 30 1 1

TABLE 7.1: Parameter values used in the numerical simulations in Section 7.3.

parameters used in the simulations described in this section whereas Table 7.2
contains the definition of the dimensionless parameters. For more details on the
dimensional analysis, see Chapter 3.

3In general, d3 includes the porosity information. In our case, the porosity is constant.
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<M 2 1,2,3 )
Bi Vi dipza ks Piog Toal  Tdifs

b:;fL D; J1,2,3,4 751,2,3 Tdiff Uy Lf2
Tef Tef 1,2,3 ref
eb Ds Di5 34 K53 Treae 1,2,3 Ds

TABLE 7.2: Definition of the dimensionless parameters.

Parameter Units
d12,3,4 meday_1
w:? q mm 3
H dimensionless
Uy gmm™3
Brnac gmm~2
k1,2 day "
ks mm?2Pta—1) gl=r—aqay~!

TABLE 7.3: Quantities with units.

001 f HzSlo— 001 P Hasle — |
0.008 | 0.008 |
0.006 0.006 -
0.004 | 0.004 |
0.002 | 0002 |
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X
0.01 HaSlo— 001 HaSlo— |
0.008 | 0.008 |-
0.006 | 0.006 |-
0.004 | 0.004 |
0.002 | 0002 |
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X
0.01 HaSlo— 001 | HaSlo—
0.008 | 0.008 |-
0.006 | 0.006 |-
0.004 | 0004 |-
0.002 | 0002 |
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

FIGURE 7.2: Time evolution of the concentration of HaS(g) [g/mm?] vs. pene-
tration depth = [mm] shown at ¢ € {2000, 4000, 8000, 12000, 16000, 20000} [days]
in left-right and top-bottom order.
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7.3.2 Localization of the free boundary

Fig. 7.2 and Fig. 7.3 show the evolution of HoS(g) (ws(x,t)) and gypsum (ws(x, t))
in time, respectively. The Dirichlet boundary condition w3(0,¢) = wf models
a constant inflow of HoS(g) at « = 0. As the gas diffuses through the porous
structure, it enters the water film in the pores, where it undergoes biogenic oxi-
dation to sulfuric acid. Consequently, its concentration decreases with increasing
depth. As the system becomes saturated with sulfuric acid and the sulfatation
reaction (1.4) converts available CaCOs into gypsum, the total concentration of

H>S(g) starts to increase (see Fig. 7.2).

1 gypsum 1 gypsum
0.8 08 |
£ 06 £ 06
5 E
2 3
& 2
5 04 5 04
02 02t
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X
1 gypsum 1 gypsum
0.8 08 |
£ 06 £ 06}
5 5
2 3
2 2
5 04 & o4t
0.2 02|
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X
1 gypsum 1 gypsum
0.8 0.8 |
£ 06 £ 06
5 5
2 3
S s
3 04 > 04l
0.2 02|
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

FIGURE 7.3: Time evolution of gypsum [g/mm?] vs. penetration depth z [mm)]
shown at ¢ € {2000, 4000, 8000, 12000, 16000, 20000} [days] in left-right and top-
bottom order.

Sulfuric acid reacts at y = £ and converts the cement paste into gypsum.
The concentration profile of gypsum is shown in Fig. 7.3. Although the behav-
ior of ws is purely diffusive, we note that a macroscopic gypsum layer is formed
around ¢t = 1500 and grows in time. Fig. 7.4 indicates that there are two distinct
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regions separated by a slowly moving intermediate layer. The left region is the
place where the gypsum production has reached saturation (a fixed threshold
Bmaz appears cf. (7.6)), while the right region is the place of the ongoing sulfa-
tation reaction (1.4) where the gypsum production has not reached the natural
threshold.

14 o
corrosion front p(t) ——

12 + f

10 1

0 L L L
0 5000 10000 15000 20000

FIGURE 7.4: Position of the corrosion front p(t) [mm] vs. time [day]. In about
15 years, we get p(t) =5 mm.

The kink in the gypsum profiles indicates that there is something going on
there. Note that the precise position of the front is a priori unknown and to
capture it simultaneously with the computation of the concentration profiles
would require a moving-boundary formulation similar to the one reported in
[23]. To avoid a moving-boundary formulation, we extract what happens by
plotting the quantity p(¢), which we define as

p(t) :=A{z € (0, L) | ws(z,t) = Prmaz — 0}

Here 6 € [0, Binaz] is a small parameter and [3,,4, is the maximum concentration
of gypsum produced at the solid-water boundary. Fig. 7.4 shows the graph of
p(t), which is our approzimate position of the corrosion front. We note that as the
corroding front advances into the concrete specimen, its rate of growth decreases.
This is in agreement with the experimental data, since the hydrogen sulfide gas
supplied from the outside environment has to be transported (via diffusion) over
larger distances. Having in min the large-time behavior of solutions to two-phase
Stefan-like problems (see e.g. [5]), we may think that p(t) is of order of O(v/1)
for sufficiently large times t. This behavior seems to not hold here for our set of
reference parameters. In Fig. 7.4, we see a a(t — 2000)%—111{6 behavior for the
position of the penetrating front, where a = 0.065 and b = 1.3. In Fig. 7.5, the
plot for p(¢) is shown. It indicates that the rate of change in p(¢) is high in the
beginning and slows down gradually as expected.
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FIGURE 7.5: Plot of the speed p(t) [mm/day] of the approximate free boundary
position vs. time [days].

7.3.3 Macroscopic pH

Now we compute the macroscopic values of pH from the available micro-scale
data. This can be viewed as a sort of post-processing of the solution to (7.1)—
(7.3) and (7.5)—(7.15).

Typically, the concentration of hydronium ions not bound in water is propor-
tional to the concentration of sulfuric acid. Having this in mind, we extract the
macroscale concentration of sulfuric acid at each x by taking the volume average
of wy over Y7 and use the following expression for computing macroscopic pH:

pHoee(,8) = —log g / wi(z, g )dy, zEOte o T)|, (7.18)

Y1

L
V1]

where k, is the activity of hydronium ions and ty > 0 is the time needed for
H5S04 to form. Note that we do not know ¢y a priori. (7.18) is an ad hoc
logarithmic expression to approximate numerically macroscopic pH profiles. If
we have in mind the expected regularity of wq, formula (7.18) is well-defined.
Note that (in general, the situation is complex) sulfuric acid is a diprotic acid*
(with a dissociation constant of 7.0 (at 20°C)) with two stages of dissociation,
where the first stage occurs completely while the dissociation in the second stage
can be neglected. The pH of the wastewater is therefore of importance when
evaluating the potential hydrogen sulfide emission. After the hydrogen sulfide
arrives at the pipe’s inner crown and diffuses into the concrete, the oxidation

4A diprotic acid is an acid that contains within its molecular structure two hydrogen atoms
per molecule capable of dissociating (i.e. ionizable) in water.
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of hydrogen sulfide becomes biologically-driven as soon as the pH has dropped
below approximately 8-9 [115].

pH

pH

pH

FIGURE 7.6: Time evolution of macro-scale pH profiles computed from micro-
scale information shown at ¢ € {2000, 4000, 8000, 12000, 16000, 20000} [days] in
left-right and top-bottom order.

The macroscopic pH profile is shown in Fig. 7.6. We can see that in the
beginning of the simulation (first graph) with increasing depth, the pH also
increases from acidic to more basic values (as expected). Once all the available
cement is consumed and converted into gypsum (this happens for the first time
at x = 0 between the first and second graph in Fig. 7.6 around ¢ = 1500), the
pH drops rapidly across the corrosion front. This is due to the fact that behind
the corrosion front the sulfuric acid is no longer neutralized by the sulfatation
reaction (1.4).
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7.4 Connecting two multiscale models via Biot
numbers

Because of the multiscale nature of the distributed-microstructure model, a natu-
ral question arises as to how can one connect the micro and macro information?
We numerically explore the way in which the macroscopic Biot number BiM
(given in Table 7.2) connects two reaction-diffusion scenarios involving at the
water-air interface: (i) micro-macro transmission conditions and (ii) matched
boundary conditions. We perform computations at macroscopic length scales
that are relevant to practical applications.

We aim to understanding the behavior of the solution to the distributed-
microstructure model as the macroscopic mass-transfer Biot number Bi™ (in-
troduced in (3.2)) tends to infinity. We achieve this by comparing the numerical
solutions of two systems: one having a matched boundary condition and the other
having Bi™ — oc.

Let us refer to the system (7.1)—(7.17) as problem (P).

Matched-microstructure model

The problem (P) becomes the matched-distributed model if the boundary con-
dition (7.12) is replaced by

wy = Hws on Q x {y =0} x (0,7). (7.19)

Actually (7.19) is the well-known Henry’s law [47]. This is precisely what we
call matched boundary condition; see the terminology of Chapter 9 in [67].

We refer to the distributed-microstructure system (7.1)—(7.17) excluding (7.12)
and instead including (7.19) as problem P.

We show numerically that the solution (wj,ws, w3, ws, ws) to problem (P)
converges to the solution to the problem (P) as

1

7.4.1 Numerical scheme for problem (P)

Now we describe a semi-discrete numerical scheme for the problem (P) based on
finite-difference discretization in space.

Let hy := L/N, and hy := /N, be the spatial step sizes, where N, and N,
are positive integers. Let Q, := {x; :=ih, € Qi =0,...,N,} and Y}, := {y; :==
jhy € Y|j = 0,...,N,} be uniform grids of nodes on © and Y, respectively.
Also, let wy, := Qp, x Y, and wy, := Qp, x {yn, }. We define sets of grid functions
on Qp,, wy, and w) as Gy == {uplup : U — R}, G¥ = {vp|vp, : wp, — R} and
g;;’ = {vp vy, : wj, = R}, respectively, such that u; := up(x;), up, € Q,?UQ,‘*;/ and
vij = vp(@i, y;), vn € Gy Finally, we define the discrete Laplacian operators as
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Apu; = (ui—1 — 2u; +uipq1)/h2, for uy, € g,ﬂ% and as Aypv;j = (Vi -1 — 2035 +
’Ui)j+1)/h§, for vy, € Qﬁ

A quintuple {wf|k = 1,...,5} with w} € CL([0,T],G6%), k € {1,2,4},
w} e CY([0,T],G8), wy € CY([0,T],G") is called a semi-discrete solution of
the problem (P), if it satisfies the following system of ordinary differential equa-
tions

1
dw;;

b1 el Brdi Aypw}; — @Tkw}; + P3kaw?, (7.21)
i=0,...,Ns, j=0,...,Ny,
dwfj 2 2 1 2 2
ﬁg 0t = ﬁgdszhwij + ‘I)lk‘lwij — @216271]2»]», (7.22)
i=0,...,Ny, j=0,...,Ny,
W A — BiM (Hw? — w?) (7.23)
P i i,0) :
i=1,...,N,
dw?j 4 1
B e BadsAypwy; + kywij, (7.24)
i=0,...,Ng, j=0,...,N,,
dw? 2 1 5\
Bs 7 :¢377(wi’Ny,wi),ZzO,...,Nw, (7.25)

for t > 0, together with the initial conditions
wi(0) = PFwyg, k=1,...,5, (7.26)

where Pf’f denotes projection operators that project continuous functions wyy on
the corresponding grids.

The values of grid functions on the nodes outside the grids arising in (7.21)-
(7.26) are eliminated using centeral difference approximations of the boundary
conditions (7.10)-(7.17). Thus, for these values and for the Dirichlet boundary
condition we obtain the following relations for ¢t > 0

w_, =w},, i=0,...,N, (7.27)
2h, ®2 .

wz{NyH zwi{Ny_l - =4 377(wi17Ny,w2-5), 1=0,...,N,, (7.28)
h, BiM .

wi_l =wi, + Q/Tl(wa —w}y), 1=0,...,N,, (7.29)

Wi N, 41 =wiN, 1 i=0,...,N,, (7.30)

wy =wb, (7.31)

WR, +1 =wi, 1, (7.32)

w4 = w},, i=0,...,N, (7.33)

Wi N, 41 =wly 1, i=0,...,N,. (7.34)
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k1 ko ks d1,2,4 ds Bmaa o ‘I’? L ¢

084 72 10 0.00864 084 09 25 1 10 1 1

TABLE 7.4: Reference set of parameter values used in all numerical experiments
presented in Section 7.4.

7.4.2 Numerical results

In this section we present numerical results illustrating the behavior of solutions
to the problem (P). The numerical results for the problem (P) were obtained
by integrating the initial value problem (7.21)—(7.34) in time by means of the
toolbox CVODE [44].

To fix ideas, we consider Q = (0,10) and Y7 = (0,1). The computational
grid is chosen so that N, = N, = 128. The relative and absolute tolerance for
the CVODE solver is set to the value of 107, We assume zero constant initial
conditions for wf(0), k = 2,4, 5, while w} (0) = 0.01. The value of w} (0) is chosen
to be compatible with the Dirichlet boundary condition wf = 0.011g/cm3.
The values of the remaining parameters which are common to all numerical
experiments presented in this section are summarized in Table 7.4. We compute
the solution until 7" = 800.

7.4.2.1 Rate of convergence of the scheme (7.21)—(7.34) for h — 0

Here we present results of measuring the experimental order of convergence of the
scheme (7.21)—(7.34) as the spatial size of the computational mesh decreases to
zero. As there is no analytical solution available with which we can compare the
approximate solution, we use a so-called double-mesh principle: we consider a
set of gradually refined meshes whose number of mesh nodes NV, IV, is chosen so
that N, = N, = 2N where N = 5,...,9. Then we measure the convergence by
comparing the error of approximate solutions obtained on two successive meshes,
i.e., meshes with the spatial step sizes h := (hg, hy) and h/2 := (hy /2, hy/2).

We define the discrete error at time 7" as a grid function ef in the following
way:

(eh)i = (wi)i(T) = (w 5)2i(T), (7.35)
for k € {3,5} and

(eh)ij == (wh)ij (T) = (W j3) 21,25 (T), (7.36)

for k € {1,2,4}.

To quantify the error, we define the discrete L?-norms and maximum norms
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by
B Nl
lexlls = f D> (R + (eh)?), (7.37)
i=0
! — k
ekl = ma |k, (7.38)
for k € {3,5} and
k|2 hehy = k\2 Eoy2 Eoy2
lenlz = 1 ((eij) + (e541,5)" + (€ 41)
i=0  i=0
+(ef+1,j+1) )a 7.39)
) (7.40)
zi;€G)
for k € {1,2,4}.
N 32 64 128 256

lel]lo || 0.01929 0.00533 0.00137 0.00034
EOCY || 1.85569 1.96049 1.98988
lle2]l2 || 0.00216 0.00060 0.00015 0.00004
EOC? || 1.85466 1.96036 1.98986
lle3]l2 || 0.00009 0.00003 0.00001 0.00000
EOC3 || 1.80801 1.94844 1.98686
led]l2 || 0.98538 0.27633 0.07125 0.01795
EOC% || 1.83429 1.95547 1.98865
lle2]l2 || 0.01368 0.00399 0.00104 0.00026
EOC || 177918 1.94165 1.98519

TABLE 7.5: Results of our convergence rate study (measured in the discrete
L?-norm).

Finally, we define the experimental order of convergence EOC’;f of wk as

k
EOCY :=1log, ”Zth . (7.41)
||eh/2||p

Using these expressions for discrete error and experimental order of conver-
gence, we performed the analysis of the rate of convergence for wa’, k=1,...,5.
We set L, = L, =1 to obtain equal spatial step sizes in both directions and we
evolved the solution until T' = 80.
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Also, to minimize the influence of the truncation error from the time inte-
gration, we set the relative and absolute tolerance to a stringent value of 10713,
The Biot number Bi™ was set equal to 86.4 and the values of the remaining
parameters are given in Table 7.4. The results of the EOC computations are
given in Table 7.5 where the error is measured in L2-norms defined in (7.37) and
(7.39), and in Table 7.6 where the error is measured in maximum norms (7.38)
and (7.40). In the first row the number of mesh nodes N in one direction is
shown (the corresponding spatial step size is thus h, = hy, =1/ 2N). In the fol-
lowing rows, we show the norm of the error function for each wf, k € {1,...,5}
together with the EOC.

N 32 64 128 256
el || 0.04280 0.01078 0.00269  0.00067
EOCL, || 1.98990 2.00096 2.00047

€2 ]loe || 0.00417 0.00105 0.00026 0.00007
EOCZ, || 1.99067 2.00400 2.00091

le? [l || 0.00012 0.00003 0.00001 0.00000
EOC3, || 1.80827 1.94850 1.98687

ledloo || 1.27092  0.35626 0.09185 0.02314
EOCY, || 1.83487 1.95564 1.98869

e loe || 0.01411 0.00408 0.00106  0.00027
FOCS, || 1.79127 1.94369 1.98563

TABLE 7.6: Results of our convergence rate study (measured in the discrete
maximum norm).

From the obtained results we can conclude that, with very high probability,
the scheme converges with second-order accuracy.

7.4.2.2 TIllustration of concentration profiles for ¢ > 0

We present several computations to demonstrate the behavior of the system (P)
for various values of the parameter e defined by (7.20).

In Fig. 7.8, Fig. 7.7 and Fig. 7.9, the columns show the time evolution of
wi, k € {1,2,3,4,5} and each row corresponds to one time moment with the top
row showing the initial conditions. We plot the functions wy, k € {1,2,4}, as
functions of y for four fixed values of z € X :={1,3,5,9}. The position of these
values of x is shown in the third and fifth column as colored vertical dotted lines
and the color of each dotted line matches the color of the graph of the functions
wi(x,-), k € {1,2,4}, x € X, in the first, second and fourth column.



138 Chapter 7. Multiscale Numerical Simulations

=
] ] 7 7 2
H H 4 4 - —
H H 4 4 - —
o 5| | ] ] |
[ STTTPRPPIRS R | SEEEITRTRRO, F feeeeemeeneeeenes e | R B [ SRR, B | ZETRITIIISRINS I 4 s
H - — — — — <
H - — — — — =~
P I £ T N 1= AN IS T 5 TN PO B I N A R
I 9 =) =) )
= S = S <
-
- - g e
] ] ] =
J J 3 e
] ] ] =
x J J 3 17 s
3 s s 1 >
- - - 4=
] ] ] =
J 3 a
] ] =
P R s 1 P e 1 LIl -
< o o n om0 0~ 0 © w o » . 0
S S a % <+ 9 F W = 5o
; 0 3 S N
o «
=
TN 0] ~ ~ :
— — — — R
— — — — —
o 1 ] ] §
[ P | IX SEITREES B S5 SIEITEIPPIL | 2 SECRIPPSPRSRE () XF SECRPPSNRR e X SERETRE 4 s
- - - — <
- - 4 - — =~
Lovoai iy Lo b B b B L Lo 3 il il o
— ) o = 0 o =~ ) S = 0 S = 0 ) =)
S < S < S S < S S <
=) = = = =
-
3 3 J J 3 =
] ] ] ] ] =
3 3 J J 3 e
] ] ] ] il =
a - - — — - 4 =
B >
3 3 J J 3 =
] ] ] ] il =
3 3 J J 3 a
] ] ] ] il =t
P I S e F I P P A F I FI R B | P
« o oo < » o -~ o - o ® o o o ® o - o ® o o o
R 2 o 2 =] S o 2 S o 2 S o ©
> < g8 38 8 3 g & § 8 8 8 g 8 8
s o o 5] s o o S o o s S o
-
3 3 J J 3 =
] ] ] ] il =
3 3 J J 3 ]
] ] ] ] il I
] 7 7 7 B 7 1.7
I I A A I =
] ] ] ] il =
3 3 J J 3 a
] ] ] ] il S
P N N P | L1 1 | I R | I I | I | I Y .
<+ o oa ~ o o o — o o — =) ™ — o o — =)
S o S o < < < < et e < < et e
] = = = = = = = = = =
o = =) = = o
2 x % 3 S
Il — ™ <+ © o
- Il I Il Il Il
- - - - -

FIGURE 7.7: Plots of the time evolution of the semi-discrete solution to problem
(P) computed with the scheme (7.21)-(7.25) for Bi™ = 0.000864. The profiles
of wy,ws, w3, wy [g/mm?3] and ws [g/mm?] are plotted vs. x,y [mm] at ¢t €
{0,160, 320, 480, 800} [days].
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FI1cURE 7.8: Plots of the time evolution of the semi-discrete solution to problem
(P) computed with the scheme (7.21)—(7.25) for Bi™ = 0.00864. The profiles
of wy,we, w3, ws [g/mm?3] and ws [g/mm?] are plotted vs. x,y [mm] at t €
{0,160, 320, 480, 800} [days].
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FIGURE 7.9: Plots of the time evolution of the semi-discrete solution to prob-
lem (P) computed with the scheme (7.21)-(7.25) for Bi = 864. The pro-
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t € {0,160, 320, 480, 800} [days).
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The result of the first computation is shown in Fig. 7.8, where Bi™ = 0.00864
(e = 115.741). Starting with the middle column displaying the evolution of
ws, we see that the initially constant concentration of HoS(g) decreases rapidly
as it enters through the water-air interface into the water phase at each pore
unsaturated by HyS. After entering into the water phase, HyS diffuses and
undergoes reaction that converts it into HoSOy4. This evolution is depicted in
the second column. wq attains higher values at lower x position (closer to the
inner surface of the pipe) similar to the profile of w3 at y = 0.

The concentration of HoSO,4 is plotted in the first column. At first, w; has
a nearly linear profile for each fixed x decreasing to almost zero at y = ¢. This
conversion of concrete into gypsum can be seen in the fifth column. At the
beginning, the concrete is fresh and ws = 0. Increased concentration of w; at
y = £ results in growing concentration of ws. ws continues to grow until it
reaches a critical value f3,,4. = 0.9.

Once ws reaches B4z, w1 does not react with the solid matrix anymore and
the boundary condition at y = ¢ changes into no-flux condition. At ¢ = 640, this
change has already taken place at x = 1 and is about to take place at = = 3.
As a consequence, w; starts to grow at = 1 gradually approaching a constant
value over all Y;. At ¢t = 800, the corrosion front has nearly arrived at x = 5:
the profiles of w; corresponding to x = 1 and z = 3 have already grown and the
one corresponding to x = 5 is now starting to grow. The growth of w; results
in the growth of wy which in turn results in a slow growth of ws. Finally, the
fourth column shows the evolution of ws (moisture) as a product of reaction
decomposing HoSOy4. As time increases, the corrosion tends to be complete and
the system wants to reach a constant steady state.

In Fig. 7.7, we show a computation with a Biot number much lower than
in the previous numerical experiment. Consequently, the coupling between the
equations for ws and wy becomes weaker. As a result, ws does not decrease as
much as in the previous experiment due to a barrier for HoS in the air hindering
its entrance into the water phase. Hence ws and w; attain lower values and their
profiles tend to be uniform along the z-axis. Eventually, this leads to a gradual
corrosion of the pipe wall simultaneously along the whole domain and we do not
observe the same progress of the corroding front as in the previous case (there
is nearly no motion of the corrosion front).

Fig. 7.9 shows a computation with a much larger Biot number compared
to both previous experiments. Here we used Bi™ = 864 (¢ ~ 0.00116), which
means that the boundary condition for wy at y = 0 is essentially a Dirichlet
one. We observe that, in this case, the concentrations of ws and ws are higher
than in the previous numerical experiments. Additionally, the corrosion process
seems to be much faster exhibiting a prominent corroding front (observable in
the fifth column) advancing into the concrete.
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7.4.2.3 Illustration of the convergence scenario as ¢ — (

Now we are concerned with the behavior of solutions to (P) as € — 0. The main
result here is that we show numerically that

| Hws — wa|y=o|lr2(0) — 0 as € = 0,

i.e., as BiM — oco. We show this by simply measuring the experimental order
of convergence. We proceed as follows: We compute solutions of (7.21)—(7.34)
at T = 800 for gradually increasing values of Bi* = 4% i € {1,...,6}. For each
choice of €, we measure the quantity E. := |[Hw}; (T) — wi(T)|q, |2 in terms of
the discrete L2-norm; see (7.37). Finally, we define the experimental order of
convergence of F, as

1Og(E€1) - log(Eez)
E = .
OCE = Togler) ~log(ea)

(7.42)

The results shown in Table 7.7 indicate that E. behaves as O(e).

log, Bi*  ||Hw} — wi|a, , FEOCE,
-2 6.95208 - 1072 0.98907
-1 1.76455 - 102 0.98806

0 4.48495-107%  0.99612
1 1.12728 1072 0.99896
2 2.82225-107%  0.99973
3 7.05819-107°  0.99993
4 1.76471-107°  0.99998
5 4.41187-10%  0.99999
6 1.10297 - 106

TABLE 7.7: Experimental order of convergence of E. as € — 0.

7.4.3 Convergence of the two-scale finite difference scheme
(7.21)—(7.34) as h —» 0

To close the chapter, we list the results obtained by V. Chalupecky and A.
Muntean in [29], proving that the two-scale finite difference scheme (7.21)—(7.34)
converges to the weak solution of (7.1)—(7.3) and (7.5)—(7.15).

Assumption 7.4.1. 1. d; > 0,i € {1,2,3}, Bi™ H,wP > 0 are constants.
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2. We assume that n(«, 8) := kR(a)Q(B) is positive for a, 8 > 0 and zero
otherwise. In addition, n is globally Lipschitz in both arguments. Further-
more, R is taken to be sublinear, i.e., R(a) < Ca for « € Riand @Q is
bounded above by the threshold £,,,4, > 0.

3. Wy, Woq € {LQ(Q,HI(}G)) ﬂLf(Q X Yl)}Q, wso € HQ(Q) n LiO(Q)7 Wso €
HY(Q) N L2(Q).

Under the Assumption 7.4.1, the semi-discrete solution to problem (P) was
defined as follows:

Definition 7.4.2. We call (w', w?, w3, w®) with
wh, wi, € C1((0,T): G5), wit € C*([0,T}; G§)) and wj; € C*([0,T}; G)

a semi-discrete solution to problem (P), if it satisfies the system of ordinary
differential equations given in (7.21)- (7.23) and (7.25) together with the initial
and boundary conditions (7.26)—(7.32).

Proposition 7.4.3. Consider Assumption 7.4.1. There exists a unique semi-
discrete solution

wh,wi € CH([0,T];G¢),wi € C*([0,T);G5) and w), € C*([0,T];G5)
in the sense of Problem 7.4.2.
For the proof of Proposition 7.4.3, see Proposition 3 in [29].

Theorem 7.4.4. Consider Assumption 7.4.1, there exists a semi-discrete solu-
tion

{w},w? wi, w} for any time T > 0 whose interpolate {1}, w7, w3, w7} con-
verges in L2(Q x Y), L2(Qx Y), L2(Qx Y), L?(Q x Y) respectively, as |h| — 0
to a weak solution (w1, ws, ws, ws) to problem (P) in the sense of Definition 7.4.2.

For the proof of the statement, see Theorem 15 in [29].

For the complete implementation details in C of the numerical scheme (7.21)-
(7.32), we refer the reader to Chapter 7 in [99].

7.5 Notes and comments

In this chapter, we illustrated numerically the macroscopic pH and gypsum
profiles which point out approximate position of the corrosion front. We also
showed the behavior of the solution for the distributed-microstructure model for
large mass transfer Biot number Bi?.

Although our model does not include all the responsible species in the sulfa-
tation reaction (e.g. bacteria are missing), yet our pH profiles are in the range
seen in the experimental data published in [93, 109]. For instance in [109], it is
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stated that the pH of the heavily corroded gypsum layer that is exposed to the
H,S is within the range 2.6 to 2.7. To meet this, it is necessary to incorporate
in the model other species involved in the sulfatation of concrete. We expect
that the size of the drop of pH will become comparable to the one seen in [109]
as soon as the effects of nonlinear moisture transport, bacteria motility, and
temperature effects are taken into account in the model equations. The main
message here is that we are able to detect and compute a macroscopic pH drop,
once the right micro-information is available.

The calculation time is rather long: e.g. to estimate 10 years of corrosion
takes a bit more than 2 hours. We expect this to happen due to our choice of the
reference parameters in Table 7.1. More numerical studies are needed to check
the stability of the solution with respect to initial data and parameters.

We see in Fig. 7.4 penetration of the corrosion front of about 5mm in 15
years. The speed of the front seems to be rather slow compared to what is seen
experimentally (i.e. 10-15 mm in about 15 years, see e.g. [92]). In this chapter,
we performed simulations for a fixed geometry. In the case of x—dependent
(locally-periodic) microstructures, efficient direct computations as well as the
corresponding error analysis are generally open problems.

A practical question regarding the large-time behavior of the penetrating
front p(t) arises at this point. We have seen in Fig. 7.4 that p(t) is of order of
O(a(t — to)?). It is worth checking how do a,p and t, depend on the solution
and on the choice of parameters (e.g. cement, porosity, transport and reaction
coefficients).

It is worth mentioning that there are many multiscale numerical techniques
available that could be used to tackle RD systems of the type treated here. We
mention here three such approaches:

1. The multiscale finite element method (FEM) developed by Babuska at el,
see the monograph [51] for more references.

2. Computations on two-scale FEM spaces [85] / two-scale Galerkin approx-
imations [100, 101]. Kouznetsova et al. deal with multiscale computa-
tional homogenization — a tool which fits well to computing distributed-
microstructure models, see [42, 43, 58, 76].

3. Heterogeneous multiscale methods (HMM) [1, 142]. Since the concrete is
highly saturated in the sewerage, it is possible to extend the model by con-
sidering the mobility of the water. In this case, convective effects appear
and most likely the two-scale finite element scheme based on homogeniza-
tion provided in [147]/HMM become applicable.



Chapter 8

Conclusions and Outlook

8.1 Conclusions

In the thesis, we use multiscale reaction-diffusion systems to describe corrosion
processes induced by the presence of aggressive chemical reactions. We focus here
on the concrete sulfatation. The goal was to identify reliable and easy-to-use
upscaled models able to forecast the penetration of sulfuric acid into sewer pipes
walls estimating in this way the durability of the material. We paid attention
to the following aspects:

(i) Modeling of reaction-induced corrosion [with focus on concrete sulfatation];
(ii) Multiscale mathematical analysis;
(iii) Multiscale simulation.

The role of (i)-(iii) is to prepare a multiscale methodology to proceed towards
comparison with experiments. For modeling of corrosion processes, we took into
account balance equations expressing physical processes taking place in the mi-
crostructures of partially saturated concrete pipes. We considered two different
types of models: On one hand, we looked at pore scale reaction-diffusion sys-
tems describing corrosion propagation and applied averaging (homogenization)
techniques to scale out the oscillations occurring in space. On other hand, we
considered a distributed-microstructure reaction-diffusion system containing in-
formation from two scales (micro and macro). The models we discussed in the
thesis underline two important features:

e non-equilibrium exchange of HsS from water to the air phase (and vice
versa);

e production of gypsum at microscopic solid-water interfaces.

We modeled the transfer of HyS by means of Henry’s law, while the production
of gypsum was incorporated into a non-standard non-linear reaction rate. Our
proposed models consist of coupled semilinear partly diffusive reaction-diffusion
system posed in a spatially heterogeneous domain. The presence of the spatial
heterogeneities urged the need of averaging techniques to approximate the overall
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behavior of the microscopic equations with oscillating coefficients. We dwelt on
the following mathematical issues:

1. Formal derivation of multiscale corrosion models for locally-periodic do-
mains for two special scalings of the diffusion coefficients;

2. Rigorous derivation of the upscaling of one of the reaction-diffusion models;
3. Construction of corrector estimates for concentrations and their fluxes;

4. Solvability of a distributed-microstructure system incorporating a varia-
tional inequality.

We tried as much as possible to deviate from the uniform periodicity assump-
tion by accounting for a class of locally-periodic microstructures. In the latter
framework, we considered two particular scalings of the diffusion coefficients.
As a next step, we used two-scale asymptotic expansions to expand the solution
in powers of the scaling parameter . As a result of the two scalings, we ob-
tained two different types of upscaled models (both two-scale or with distributed-
microstructure). For the rigorous derivation of the multiscale models posed in
uniformly periodic domains, we ensured the well-posedness of the microscopic
system of partial differential equations, and then, we obtained e-independent
energy estimates needed to achieve the necessary compactness for subsequences
— an essential ingredient to pass to the limit in the microscopic system. The
nonlinearity posed at the oscillating boundary made the rigorous averaging pro-
cedure challenging. To cope with this difficulty, we combined two averaging
techniques: two-scale convergence in the sense of Nguestseng and Allaire and
periodic boundary unfolding. Consequently, we derived upscaled equations to-
gether with explicit formulae for the effective diffusion coefficients and reaction
constants. In order to understand the quality of the upscaling, we asked our-
selves: How good our averaging strategy is? We addressed this question in terms
of corrector estimates for concentrations and their fluxes. We obtained error
(corrector) estimates under minimal regularity assumptions on the solutions to
the microscopic and macroscopic systems and to the corresponding auxiliary cell
problems.

Apart from the homogenization context, we considered a distributed-microst-
ructure reaction-diffusion system. For this, we ensured basic estimates like pos-
itivity and L°°—bounds on the concentrations to the system. Then we proved
the global in time existence and uniqueness of a suitable class of positive and
bounded solutions. The main ingredients in the proof of the existence part in-
cluded fixed-point arguments and convergent two-scale Galerkin approximations.

To address practical questions especially concerning the presence of the cor-
rosion front and the large-time behavior of the overall system, we used an ad
hoc logarithmic expression to approximate numerically macroscopic pH profiles
dropping down with the onset of corrosion. We extracted from the gypsum
profiles the approximate position of the corrosion front. At this point, our pH
results are only of qualitative nature, specially because we have not included
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in our models the evolution of bacteria. To get insight into air-liquid mass
transfer processes, we studied the role of BiM — the macroscopic mass transfer
Biot number (quantifying the mass-transfer of HaS(g) at air-liquid interface).
We illustrated numerically that Bi™ naturally connects two multiscale reaction-
diffusion scenarios, i.e., as BiM — oo the solution of the two-scale system having
the Henry law acting as micro-macro transmission condition converges to the
solution of the matched two-scale system (matched-microstructure system).

Due to the complexity of the subject, several modeling, analytical and simula-
tion questions remain open for further investigation. We enumerated selectively
a few of them within the frame of the section Notes and comments at the end of
each chapter of this thesis.

8.2 Open issues

There are a few modeling and mathematical issues that would need further
investigation.

8.2.1 Open issues (at the modelling level)

1. To get realistic estimation of corrosion, the presence of bacteria needs to be
included in the model, see section 2.1.1 in chapter 2. Perhaps, a Michaelis-
Menten type mass-action kinetics could be used to address this issue.

2. Our numerical experiments indicate the presence of a free boundary pene-
trating the concrete. Having this in mind, it is perhaps possible to consider
a free boundary formulation of the corrosion model in a similar way as it
was done in [23]. The main difficult question is: What are the correct free-
boundary conditions at the corrosion front? Such approach would provide
direct information on the location of the corrosion front.

8.2.2 Open issues (at the mathematical level)

1. Rigorous derivation of upscaled systems with locally-periodic distribution
of pores is not fully solved. Useful tools are available in the literature,
see notes and comments in chapter 4, some others [e.g., a good concept of
unfolding operator valid for non-period geometries] are still missing;

2. It would be interesting to study large-time behavior of the concentrations
in distributed-microstructure model;

3. The identification of convergence rates (corrector estimates) of microscopic
solutions in locally-periodic domains is difficult to handle;

4. Singular limits (fast reaction limit, slow diffusion limit, etc.) may become
involved in the context of homogenization [see e.g. [87] by Meier and
Muntean]. This topic intuitively connects to the occurrence of boundary
layers and is mathematically not fully understood;
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5. Relating to point 2 in subsection 8.2.1: The well-posedness of multiscale
moving-boundary problems is generally not understood.

8.2.3 Open issues (regarding the validation against dura-
bility tests)

Regarding the numerics and the validation of the models presented in the thesis
versus experiments we mention the following aspects:

1. Efficient multiscale numerical methods for problems involving locally pe-
riodic microstructure are needed. In particular, (a priori and a posteriori
control on the multiscale approximations need to be constructed);

2. There is need for two-scale experiments for the calibration of the model
and identification of the parameters (like transport coefficient, reaction
rates, etc.);

3. Multiscale goal-oriented adaptivity can play a role in the above mentioned
issues.



Appendix

Proof of Theorem 4.2.5

In this Appendix, we prove the existence of solutions to problem (4.4)—(4.8). For
this, we use a Galerkin approximation and show its convergence in appropriate
function spaces. For the sake of simplicity, we drop the superscript ¢ from the
notation of the concentrations and of the domains. We consider a Schauder
basis of the form {(i}ren, where {(x}ren is a basis of HY(2) with {Cx}ren
constituting an orthonormal system with respect to L?(Q)-norm. We define the
projection operator on the finite dimensional subspaces P associated with the
bases {(x }ren. Projections of ¢ are defined by

N
(PNo) (@) =) arle(@).
k=1

The choice of the bases {(x}ren is made in such a way that the projection oper-
ator PV is stable with respect to the L2-norm and H'-norm. Here we are inter-
ested in the finite-dimensional approximations of the functions wuy, us, Uz, ug4, us,
where Us := ug — u3D which are of the form

uy (t,x) == ZakN(t)Ck(m), uy (t,x,y) = Z B (t)Ck (),
k ig=1
Us' (t,2) =) ()Ce(),  ui'(t,2) = Zfz]cv(t)Ck(x)

2

Il
=

()i Cu(x), with

:MZ

ud (t,z) ==
1

?,

lim wup (0,2) = weo(z) € L*(Q1), €€ {1,2,4},

N — oo

lim U3 (0,z) = Up(z) € L*(Q2)  lim wuf (0,2) = wao(z) € L*(T1) (8.1)
N — o0 N—o0

<
1

where the coefficients af , BN, v, &N, ul, k = 1,2, ..., N are determined by the fol-
lowing relations:

/ ((‘%u{v )1 + diVul () Vo1 + kyud (t)p1 — koud (75)@51)01m

1231
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S / n( (£), ud (£)) $rdva, (8.2)

N1

/ (atugv (t)pa + daVus (£)Vyda — kruy (£)da + koud (t)¢2)dm

= [ @@ + uB)®) — b (1) pude, (3)
/ O,UY (1) badz + / dsVUN (1)V sda = / @2 (1) — ds Al (1)) psder
Q Qo Q
~ [ @ + )0 - b3 ©) adre, (8.4)
/ (0 (s + sV (1) Vs — K (1)) = 0. (8.5)
1951

[ ol 00sdr = [ (a0, @)ssdre, (.6)

for all ¢; € span{(x(z): k € {1,2,..., N}},i € {1,2,3,4,5} with

o (0) := [ uioCrde, B (0) == /qudex, (8.7)
o o

Y (0) == [ (uso — u3 (0))Crdar, & (0) == /w4odemdy (8.8)
Q9 J

pi (0) := [ wsoCrdady,,.
I

Consider ¢; = (g, k € {1,2,...,N},i € {1,2,3,4,5} as a test functions in (8.2)—(8.6),
this yields the system of ordinary differential equations

dea (8) + D (Aj)kar (8) = Flak (), B¢ (1) + eF(ak (1), i (1), (8.9)

B (1) + 3 _(Bi)eBR (1) = Flax! (1), B (1) + eG(B (1), 7 (1), (8:.10)
Dyt (1) + 3 (G (8) = —eG(BY (1), 7 (1), (8.11)
&R (1) + D (D)t (£) = (ol (1), B (1) (8.12)
Ok (8) = F(a (1), 1’ (1)), (8.13)
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where all 5,k =1,..., N, we have

(Aj)k = f d1VCJVdeCIZ’, (Bj)k :/dQVCJVdeCE,
Q g,

(Ci)k == [ dsVV(;Vikde, (D) = /d4VVC]-Vdex,
Q1 S,

o= [ (= kaud (6) + koud' () Gud, Fy = /n(wiv(t),wév(t))@d%
Q 2
Gri=a [ ((a(UgN +ul)(t) - buév(t)))qkd%, B = /klwév(t)gkd%.
To &

Note that F, F,G and F are globally Lipschitz continuous functions. According to
the standard existence theory for ordinary differential equations, there exists a unique
continuous solution (ay , B, V&, &n, un ), k € {1,2,..., N} satisfying (8.7)—(8.13) for
a.e. 0 <t <T. Thus the solution (uf,ud,Us",uf,ud’) defined in (8.1) solves (8.2)—
(8.6).

Lemma 8.2.1. Assume (A1)-(A4). There exists sequences such that

ul ud ud = ur, uo, ua strongly in L>®(0,T; L?(S1)) and L*(0,T; H' (1)),
U — Us strongly in L°°(0,T; L*(Q2)) and L*(0,T; Hg (Q)),

us’ — us strongly in L>(0,T; L*(T1)),

deuy , Opud, Bpuy — Bpur, yuz, Dyus weakly in L ((0,T) x Q1),

U3 — 8,Us weakly in L*((0,T) x Qa),

dyus — dyus strongly in L*((0,T) x Q x T'y).

Proof. We show that the sequences ul,ud, UYN, ul, ud are Cauchy sequences in
spaces given in statement and hence converge strongly. From (8.2), it follows for
N1 < N2

/(atu{“ — Oyl ?)prdx + /d1V(u11Vl —u)?)Verde = 7/(k1uf'1 — kiul?) ¢ dx

Q1 Q1 Q
+ / (kauy — kauy?)grde — & / (n(ur™ ug) = n(uy?, ug®)) $rdve.

Q1 Iy

We take ¢ = u'* — ul'? to obtain
1
§8t/|uf’1 —ul?|Pdx + /d1|V(ui\’1 —ul?)|?de = —/k1(uf[1 —ul?) (Ul —u)?)dx
Q1 Q4 Q1

b= ) =)o - ef () < ud)) - o) arufs.19)
Q1 N1
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Similarly, (8.3) leads to (¢2 = ul* — ul?)

Bt/|uévl —uév2|2dac+/d2|V(uéV1 —uév2)|2dm
Q1

Q1

= [ - 1) s - / Fa(udt — )l — ud?)da

—&-a/a(ué\’l —ul®) (W) —u)?)dy, — e / bludt — ud?|Pdady,. (8.15)

T2 QxI'y

v (8.4), we have

fﬁt/|u )| dﬂc+/d3|v —ud?)Pdx
Qg
= —5/a|u3 —ul?| d%Jrs/b( 2 —uy?)(udt —ud?)dy..  (8.16)
Iy o
1
8,5/|u4 —up?| dm—l—/d4|V(u4 —up?)Pdx /kl L) (= ulY?)dg8.17)
Q1 Q1

From (8.6), we obtain

50 [ 1t =P, = [ al) — ol ) @~ ul)dv (.19

'y Iy

Adding up (8.14)—(8.18) and re-arranging terms, we obtain

SOE(0)+ [ @IV — ) + BV - ) + BT ) da

—|—d(3)/\V(u3 —ud?)| da:+€/b|u2 — ud?| d’ymdx%—e/a\ug —ud?Pd,
Q

'y T2

g(krws")/(u?lfué”)(ui“ful >dx+s/ a(ud —u?) (" — ud?)dy,

Q1 'y

e / (@ a2ty — g, ud®)) (' — u2)dv,

Ty

te / bl — ud?)(udt — ud?)dy + / Bt — ) (" — ul®)da
Ty Q1

te / () — 2, ud)) (W — ud)drs, (8.19)

Iy
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where

Eo(t) :Z/\u1 —u12|dx+/|u —u22|d1’+/|u —uy?[dx
@

1
—|—/\ufl —uiv2|2dx—|—€/|u5 —u5 22 dy,.
Q1 1Y

Using Assumption (4.1.4) to the terms on r.h.s. of (8.19). First term on r.h.s leads to
(7 + 45 [ —ud) (@l — ul)do < O / = ™+ — ),
Q1

while second and fourth terms are estimated by using (4.1) as follows:

[t - o)) - o )d7z<60/ ¥t — w2 [P 4 — w2 2)d,
< c/(|u§1 — a2 4 2Vl - ul?)?)da
+C/(|uév1 —uév2|2+52|V(u3 —uév2)| )dm.

We estimate fifth term by
[ =) - oo < c/ 't — a2 4 [l =l ?) da
1951

Third term can be estimated as

e / (2 ut) — g, ud2)) (@ — ud)dv,
ry

sa/(R(u{“) — R(u1®)) Q(ui™) (u — uy?)dxdry,

IS

+e [ R (@) - Qi) @l — ul)dad.

ry
Using (A3) in Assumption 4.1.4

e / () — ¥, ud2)) (@ — u)dy,

'y

SEC/|u1 —u12| d’yy+EC/|u —u52| Az

SO/(\ui“—uiVﬂ%e?W(ul — )| )d%+80/|u w2y,

Q1
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and similarly

e / () — (el ) (w2 — w2y
sc/(\u% W2 4 2T — ) )d%+sC/|u — w2 2y,

(8.19) becomes

%&Eo(t)—i—Elt <C’/\u —u12|dm+0/|u —up?|*dx

+C/|u3 —ul?| d;t+C/|u uiv2|2d$+50/|u5 —ud?Pdy,

< CE(t),

where

Eq(t) = (d(l)—azC)/|Vy(u1 —u?)Pdz + (ds — £°C) /|V Y ud?)Pda
+(dg—520)/\vy(u§f1 — ) Rda 4 (d) - 2C) /\v )Py

+/b|u2 w2y, + /b|u — ul? P
T

Applying Gronwall’s inequality, we have

Eo( /E1 t)dr < e Eo(0) < /|u ¥2(0))*da

+ / a1 (0) — ™ (0) [2dz + / a1 (0) — 2 (0) [2dz + / 1 (0) — w2 (0)2da
Q1 Qo Q

+e / lup™ (0) — ul®(0)] d’yl) — 0 as N, N2 — 0.

QxYy

For the estimates on the time-derivative of the concentrations, we follow the procedure
in the proof of Lemma 4.3.2.

Now, we return to the actual proof of the Theorem 4.2.5. We pass to the limit in
(8.2)—(8.6) for N — oo using the convergence results obtained in Lemma 8.2.1. For
the non-linear function 7, we use the Lipschitz continuity and strong convergence to
obtain the system (4.4)—(4.8).

It remains to show that u;(0) = uio,¢ € {1,2,4,5}. The initial data can be recov-
ered following the same lines given in [52], see page 357.
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Summary

Multiscale Reaction-Diffusion System Describing
Concrete Corrosion: Modeling and Analysis

This thesis deals with the modeling and multiscale analysis of reaction-
diffusion systems describing concrete corrosion processes due to the aggressive
chemical reactions occurring in concrete. We develop a mathematical framework
that can be useful in forecasting the service life of sewer pipes. We aim at identi-
fying reliable and easy-to-use multiscale models able to forecast the penetration
of sulfuric acid into sewer pipes walls.

For modeling of corrosion processes, we take into account balance equations
expressing physico-chemical processes that take place in the microstructures
(pores) of the partially saturated concrete. We consider two different model-
ing strategies: (1) we propose microscopic reaction-diffusion systems to delin-
eate the corrosion processes at the pore level and (2) we consider a distributed-
microstructure model containing information from two separated spatial scales
(micro and macro). All systems of differential equations are semi-linear, weakly
coupled, and partially diffusive. Since the precise microstructure of the material
is far too complex to be described accurately, we consider two approximations,
namely uniformly-periodic and locally-periodic array of microstructures, which
are tractable by using averaging mathematical tools.

We use different homogenization techniques to obtain the effective behavior of
the microscopically oscillating quantities. For the formal derivation of our mul-
tiscale models, we apply the asymptotic expansion method to the microscopic
reaction-diffusion systems defined in locally-periodic domains for two special
choices of scaling in € of the diffusion coefficients. We end up with (i) upscaled
systems and (ii) distributed-microstructure systems. As far as rigorous deriva-
tions are concerned, we apply the notion of two-scale convergence to the PDE
system defined in the uniformly periodic domain. To deal with the non-diffusive
object, i.e. the ordinary differential equation tracking the damage-by-reaction,
we combine the two-scale convergence idea with the periodic-boundary-unfolding
technique.

Additionally, we use the periodic unfolding techniques to obtain corrector
estimates assessing the quality of the averaging method. These estimates are
convergence rates measuring the error contribution produced while approximat-
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ing macroscopic solutions by microscopic ones. We derive these estimates under
minimal regularity assumptions on the solutions to the microscopic and macro-
scopic systems, microstructure boundaries, and to the corresponding auxiliary
cell problems.

‘We prove the well-posedness of a distributed-microstructure reaction-diffusion
system which includes transport (diffusion) and reaction effects emerging from
two separated spatial scales. We perform this analysis by incorporating a vari-
ational inequality requiring minimal regularity assumptions on the initial data.
We ensure basic estimates like positivity and L*°—bounds on the solution to the
system. Then we prove the global-in-time existence and uniqueness of a suitable
class of positive and bounded solutions.

To predict the position of the corrosion front penetrating the concrete, we
use our distributed-microstructure model to perform simulations at macroscopic
length scales while taking into account transport and reactions occurring at
small length scales. Using an ad hoc logarithmic expression, we approximate
numerically macroscopic pH profiles dropping down with the onset of corro-
sion. We extract from the gypsum profiles the approximate position of the
corrosion front penetrating the uncorroded concrete. We illustrate numerically
that as the macroscopic mass-transfer Biot number BiM — oo, BiM naturally
connects two different multiscale reaction-diffusion scenarios: the solution of the
distributed-microstructure system having the Henry’s law acting as micro-macro
transmission condition converges to the solution of the matched distributed-
microstructure system.



Nomenclature

x,y,t macro (slow), micro (fast) and time variable , respectively

Q Global domain in three dimensional setting

Y Single pore in

Y1 Water-filled part of the pore

Yo Air-filled part of the pore

r Boundary of Q2

Iy Solid-water interface in €2

I's Water-air interface in Q2

€ Small scaling parameter

Q4 Union of all water-filled parts within

Qo Union of all air-filled parts within
§ Union of all water-filled parts scaled by e within 2
5 Union of all air-filled parts scaled by & within Q
H Union of all solid-water interfaces between 27 and solid matrix
5 Union of all air-water interfaces between Q5 and Qf

k1,2 inf(o,ryxas | kil

kT sup(o,1)x s | kal

a,b info,ryxacla], info,ryxae b

a®™,b>  supo,ryxac|at], supo,ryxa- |b°|

ui Concentration of H2SO4 in Qf

us Concentration of H2S(aq) in Qf

us3 Concentration of H2S(g) in Q5

ug Concentration of H20 in Q5

ug Concentration of gypsum on I'{

w1 Concentration of H»SO4 in Q x Y

wa Concentration of H2S5(aq) in Q x Y3

w3 Concentration of H2S(g) in Q5

Wy Concentration of H2O in Q x Y3

ws Concentration of gypsum on 2 x I'y
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Nomenclature

BiM

k12,3

Mi23.45

Mass-transfer number at the interface
reaction constants

Thiele modulus

Solution of the cell functions

Positive part of the function ¢
Negative part of the function ¢
reaction rates in the bulk

Reaction rate on the surface

Space of bounded functions on 2 which are positive as well
Unfolding operator

Boundary unfolding operator

Test functions

Primitive of R

Local average operator

Q1 —interpolation of M5,

Averaging operator

Extension operator

Contraction operator

A generic constant independent of ¢

Supremum bounds on the concentrations
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