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Abstract

Rapid deterioration of concrete has a major financial impact due to high mainte-
nance costs. In the thesis, we apply the multiscale concept to develop a mathe-
matical framework that can be useful in forecasting the service life of a sewer pipe
made of concrete. Our research focuses on modeling and analysis of multiscale
reaction-diffusion systems taking place in heterogeneous media.

At the pore level, the degradation processes are highly complex and hence
it is very difficult to understand and predict their behavior on macroscopic (ob-
servable) scales. Since the microstructure highly effects the processes in porous
media, we consider two different geometries that are trackable mathematically:
uniformly periodic and locally-periodic arrays of microstructures. We take into
account two different types of reaction-diffusion scenarios: (i) microscopic sys-
tems posed at the pore scale and (ii) distributed-microstructure systems which
contain information from both scales (micro and macro). We show the well-
posedness of the microscopic systems and apply both formal and rigorous ho-
mogenization techniques to derive the corresponding upscaled systems together
with explicit formulae for the effective transport and reaction constants. As a
next step, we prove convergence rates measuring the error contribution produced
while scale bridging to assess the quality of our averaging strategy.

Besides from the homogenization context, we treat the solvability of reaction-
diffusion systems in micro-macro formulation and we also perform preliminary
multiscale numerical computations. We compute numerically the pH profiles and
use them to detect the presence of free boundaries penetrating the uncorroded
concrete. We also compare numerically the influence of a large mass-transfer
Biot number BiM connecting in the limit BiM → ∞ two different distributed-
microstructure models.

This thesis sets up a framework which can turn out to be helpful for further
investigations of more practical nature like the estimation of corrosion rate and
the life span of the material.
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Chapter 1

Introduction

This thesis deals with the derivation and analysis of a class of multiscale models
which arises in the modeling of the chemical concrete corrosion of sewer pipes
with sulfuric acid (the sulfatation problem), see Section 2.1 for a detailed state-
ment of the engineering problem. We describe the evolution of the corrosion by
means of partly-diffusive semilinear reaction-diffusion (RD) systems. We con-
sider two different RD scenarios: (i) a microscopic model which is defined at
the pore scale and (ii) a distributed-microstructure model which incorporates
transport (diffusion) and reaction effects emerging from two separated spatial
continuum scales (microscopic and macroscopic). For both scenarios, the con-
crete is seen as a composite material with complex chemistry involving multiple
spatial scales. This fact urges the need of upscaled model derivation based on
the relevant processes taking place at the pore scale. On the modelling level, we
pay special attention to two specific features:

• non-equilibrium transfer of hydrogen sulfide (H2S) from the air to the water
phase (and vice versa);

• production of gypsum at microscopic solid-water interfaces.

We model the transfer of H2S by means of Henry’s law, while the production of
gypsum is incorporated by a non-standard non-linear reaction rate. These two
physico-chemical mechanisms couple our RD systems in a weak fashion.

Having as departure point a microscopic reaction-diffusion scenario, we con-
sider two different geometries for the microstructures: uniformly-periodic and
locally-periodic arrays of cells covering the macroscopic part of interest, see
Section 2.2.3 for a discussion on possible choices of microstructures that can
be treated by mathematical tools. After applying homogenization techniques,
the next steps are: (i) obtain convergence rates for the averaging strategy and
(ii) design efficient multiscale numerical approximations. Here we focus on (i)
and correspondingly look for corrector estimates for concentrations and their
fluxes, while we postpone the design of multiscale numerical approximations for
a later stage. Here we propose a preliminary study: we use microscopic infor-
mation [taken e.g. from a well-posed (distributed-)microstructure model] and
use it to approximate numerically macroscopic pH profiles. The hope is that
[in the region] the pH profile will decay significantly and indicate herewith the
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approximate position of the propagating sharp corrosion front. We also plan
to investigate numerically the effect of a large mass-transfer Biot number BiM

connecting in the limit BiM →∞ two different RD scenarios: one with a micro-
macro transmission condition and the other with matched boundary condition1.

The sulfatation problem [as we consider it here] was originally proposed to
the mathematical community by M. Böhm et al. in [23] (see also the subsequent
papers [72, 73]), where the authors adopted a macroscopic moving-boundary
modeling strategy to capture the macroscopic corrosion front penetrating the
pipe. We adapt some of their modeling ideas to construct our microscopic mod-
els discussed in the forthcoming chapters. Essentially, we are interested in de-
termining the evolution of the chemical species active in the following reaction
mechanisms:

10H+ + SO−2
4 + org. matter −→ H2S(aq) + 4H2O + oxid. matter (1.1)

H2S(aq) + 2O2 −→ 2H+ + SO−2
4 (1.2)

H2S(aq) 
 H2S(g) (1.3)

2H2O + H+ + SO−2
4 + CaCO3 −→ CaSO4 · 2H2O + HCO−3 (1.4)

The practical (engineering) interest is in estimating the service life (the dura-
bility) of the material. Our interest lies more on the mathematical side of the
problem. We wish to derive reliable well-posed and computable multiscale mod-
els for the prediction of the corrosion propagation. To this end, we take the
followings steps:

1. We develop microscopic and distributed-microstructure models for (1.1) -
(1.4).

2. We derive multiscale models via formal and rigorous homogenization.

3. We ensure the well-posedness of our proposed multiscale models.

4. We address the question “How good our averaging technique is?” and ob-
tain corrector (error) estimates.

5. Based on microscale information, we indicate using pH profiles the ap-
proximate location of the corrosion front propagating in the uncorroded
concrete.

6. We illustrate numerically the behavior of the distributed microstructure
model in the large-mass transfer Biot number limit.

By achieving the above steps, we prepare a possible framework which can be
helpful to explore further investigations of more practical nature like corrosion
rate and life span of the material. The next natural step would be to explore in-
tensively numerical multiscale techniques able to deal with our problem. Efficient
numerical multiscale methods need to be combined with parameter identification
strategies in order to bring our approach towards quantitative predictions.

1The terminology matched boundary condition is due to R.E. Showalter (see Chapter 9 in
[67]) and micro-macro transmission condition is due to M. Neuss-Radu and A. Muntean [101]
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1.1 Synopsis of the thesis

Each chapter deals with distinct aspects of the problem. The thesis is structured
in the following fashion:

Chapter 2 is devoted to the modeling of concrete and its chemical corrosion
by sulfate attack. We describe the corrosion scenario and refer to some of the
related engineering and mathematical literature. We review the possible shapes
of microstructures that can be treated by mathematical tools. We present the
modeling of various aspects concerning sulfate corrosion needed to build micro-
scopic and distributed-microstructure models.

In Chapter 3, we apply formal asymptotic homogenization techniques to the
microscopic model proposed in Chapter 2 defined for a locally periodic array of
microstructures. As a result of this, we obtain both effective and distributed-
microstructure models depending on the precise scaling in ε (the geometric pa-
rameter).

Chapter 4 is devoted to the analysis of a microscopic model and the rigor-
ous derivation of the corresponding upscaled system. The microscopic model is
defined here on a uniformly periodic domain. We use the notion of two-scale
convergence in the sense of Allaire and Nguestseng [8] to explore the homoge-
nization limit and derive upscaled equations together with explicit formulae for
the effective diffusion coefficients and reaction constants. Due to the nonlinear
ordinary differential equation (ode) defined at the solid-water pore boundary,
we need to employ periodic boundary unfolding technique to pass to the limit
ε→ 0.

The issue regarding the quality of the upscaling is treated in Chapter 5. To
ensure a correct averaging, we estimate from above the rate of the convergence
for the averaging procedure. The main ingredient is the periodic unfolding pro-
cedure.

In Chapter 6, we show the solvability of the distributed-microstructure sys-
tem introduced in Chapter 2. We ensure the positivity and L∞−bounds on
concentrations, and then prove the global-in-time existence and uniqueness of a
suitable class of positive and bounded solutions that are stable with respect to
the two-scale data and model parameters.

In Chapter 7, we compute numerically the typical macroscopic pH profiles
and indicate with their help the position of the corrosion front penetrating
the uncorroded concrete. We also explore numerically the way in which the
macroscopic Biot number BiM connects two reaction-diffusion scenarios with
distributed microstructure.

In Chapter 8, we present the conclusions of the thesis and list possible future
research directions.

The chapters begin with a brief presentation of the subject matter. There we
explain how the topic relates to those in previous and subsequent chapters. The
discussion on the multiscale representation of the domain and the presentation of
the sulfate corrosion models are given in Chapter 2. All the chapters excepting
Chapter 8 end with a section entitled “Notes and comments”. This section
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includes brief comments on topics that selectively complement the chapter. The
choice of the topics is based on personal taste. This section is the place where
we collect a few research ideas, open problems and methods of analysis in simple
(often pathological) cases, rather than on pursuing each problem to its limit.
Some additional references to related matters are also added. The ”Notes and
comments” sections are not essential for the logical understanding of the text.
References to the literature are listed at the end of the thesis. The numbering
of theorems, lemmata, formulae, etc. is made for each chapter separately. We
explicitly state when a reference is made to the current chapter or to a different
one.



Chapter 2

Modeling Concrete and its
Chemical Corrosion by Sulfate
Attack

This chapter is devoted to the formulation of the balance equations governing
sulfate corrosion processes induced by the aggressive penetration of sulfate ions
in the material and to the multiscale representation of the concrete.

This chapter is organized as follows: In Section 2.1, we describe the details
of the sulfatation problem (involved chemistry, transport processes, adsorption-
desorption mechanisms, Henry’s law, etc.) and refer to some of the relevant civil
engineering and multiscale mathematical literature. In Section 2.2, we specify
the multiscale representation of the concrete material we have in mind. In Sec-
tion 2.3, we present the modeling of the processes arising in the sulfatation of
concrete. In Section 2.5, we present our microscopic mathematical model. We
conclude the chapter with further directions and open problems concerning the
modeling part. The main results in this chapter consist of the formulation of
the microscopic system posed at the microscale and distributed-microstructure
models modeling concrete corrosion.

2.1 Description of the problem

Before going into the actual mathematical problem we are interested in, we
present the physico-chemical scenario responsible for the degradation of me-
chanical properties of concrete pipes. Here, we also review some of the relevant
engineering literature.

2.1.1 Physical Background

Among the different chemical corrosion mechanisms of concrete sewer pipes, the
most important and severe one is the biogenic sulfuric acid corrosion, a corrosion
process caused by biologically produced sulfuric acid that is able to rapidly de-
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stroy the concrete [115]. Hydrogen sulfide (H2S), originates from sulfide minerals
by natural acidification. It is released under certain conditions by the action of
the anaerobic (non-air breathing) sulfur-reducing bacteria (e.g., Desulfovibrio)
in partially saturated concrete pipes. The active micro-organisms, residing in
the biofilm coating the surface of the sewer pipes, reduce the oxidized sulfur to
hydrogen sulfide gas H2S(g) [108]. Hydrogen sulfide goes upwards the air, see

Figure 2.1: Cross section of a sewer pipe with dissociating H2S from wastewater

Fig. 2.1, and enters the concrete structure where it diffuses and then dissolves
in the stationary water film in the pore matrix. The back and forth transfer
of hydrogen sulfide is a repeated process, see [14]. The dissolved H2S(aq) is
catalyzed by many thiobacilli, (aerobic bacteria) such as Thiobacillus Thiooxi-
dans, Thiobacillus Neapolitanus and Thiobacillus intermedius that grow on the
concrete surfaces. The catalysation results in sulfuric acid H2SO4. Sulfuric acid
is very aggressive and reacts quickly with calcium carbonate present in the con-
crete. The chemical mechanism gives gypsum (CaSO4 · 2H2O) which has a very
low structural strength. This process destroys the concrete by degrading the
mechanical properties of the material. The basic chemical mechanisms are:

10H+ + SO−2
4 + org. matter −→ H2S(aq) + 4H2O + oxid. matter

H2S(aq) + 2O2 −→ 2H+ + SO−2
4

H2S(aq) 
 H2S(g)

2H2O +H+ + SO−2
4 + CaCO3 −→ CaSO4 · 2H2O + HCO−3 .

The air-water transfer process is a crucial step largely dependent on the dissoci-
ation process because of the existence of the acid-base equilibrium of H2S. The
dissociation process highly depends on the temperature, pH, and conductivity
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[146]. In relatively hot environments, the biological activity is faster than usual.
This causes an increased utilization of oxygen and production of sulfide [74]. The
slow turbulence of the flow helps perhaps in producing the thick diffusive bound-
ray layer above biofilms which stops the transportation of the organic matter
and nutrients to the biofilm, see [70]. H2S is a weak acid having a dissociation
constant of 7.0 (at 200C). Typically the pH of the wastewater decreases, while
the concentration of hydrogen sulfide increases in a sewer atmosphere.

2.1.2 A brief literature review

The problem of chemical corrosion of concrete is extensively studied since past
few decades. For detailed literature studies concerning the corrosion processes in
concrete, the reader is referred to the dissertation of Jensen [74] and the literature
cited therein. For the description of the corrosion in concrete generated by
bacteria, [23, 75, 141, 107] e.g. are key references. Our main reference sources for
acid attack on concrete are [94, 17, 18, 129, 81, 133, 134]. We particularly like [17]
for the clear exposition of the phenomenology [for the enumeration of the main
mechanisms influencing acid corrosion]. Standard reference works concerning
cement chemistry are the monographs [66, 131]. There is a lot of research done
in order to estimate the service life of the concrete pipes in sewer networks,
see [81, 129]. For the modeling of damages in cement materials subjected to
sulfate attack; see e.g. [133, 134]. In the corrosion process, the bacteria play an
importance role [114]. Parker reported for the first time the microbial analysis
of the concrete corrosion product, see [113, 115, 116].

From the modeling point of view, we are very much inspired by [23] [see
also the subsequent papers [72, 73]], where the authors adopted a macroscopic
moving-boundary modeling strategy to capture the macroscopic corrosion front
penetrating the pipe. We adapted some of their modeling ideas to construct the
microscopic model discussed in this chapter.

On the mathematical side, [24, 25] are concerned with the well-posedness and
uniqueness of the global weak solutions for a moving boundary problem arising
in the corrosion-modeling of concrete. At the technical level, we essentially use
formal asymptotics techniques for both the periodic and locally-periodic homog-
enization. We refer the reader to [12] for a discussion on uniform descriptions
of heterogeneous media. For the formal homogenization in uniformly periodic
medium, see, for instance, [22, 35, 39, 31, 69, 117, 120, 128]. For detailed studies
on the formal homogenization for uniformly period domain, we refer the reader
to [79, 139, 49]. Concerning the formal homogenization in locally periodic media,
we refer the reader to [19, 30, 32, 31, 84, 140].

For the rigorous passage to the homogenization limit (cf Section 4.5), there
are many techniques available for the treatment of uniformly periodic setting.
For studies concerning the two-scale convergence, see [8, 68, 69]. In particular,
[10, 36, 104] are good references to treat the boundary terms. The paper by
Marciniak et al. is closely related to our scenario [83] where they pass to a two-
scale limit in combination with a periodic boundary unfolding technique. As
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an illustration of what one can do with such a multiscale methodology, Ray et
al. in [126] perform periodic homogenization of a non-stationary Nernst-Planck-
Poisson system for various choices of scaling in ε.

It is worth noting that, since it deals with the homogenization of a linear
Henry-law setting, the paper [124] is closely related to our approach. The major
novelty here compared to [124] is that now we pass to the limit also in non-
diffusive objects, namely in nonlinear ordinary differential equations posed at
the inner water-solid interfaces - the place where corrosion localizes.

The standard references for the periodic unfolding technique are [34, 36, 38,
110]. Particularly important for us are the papers by Cioranescu and Damlamian
[36, 38, 46]. Griso shows in his papers that it is possible to calculate the rate of
convergence using the periodic unfolding technique requiring at the same time
less regularity assumptions on the data; the important references are [59, 60].
Also, Onofrei presents error estimates for the periodic homogenization of elliptic
equation with non-smooth coefficients [111].

Two-scale models have grasped a lot of attention in recent years as they ap-
proximate better physical features of scale-separated systems defined in porous
media. For more information on the modeling, analysis and simulation of two-
scale scenarios, we refer the reader to [88, 87, 89, 101, 105, 140, 124, 135]. For in-
stance, in [105], the authors present the well-posedness of a two-scale model aris-
ing in the context of concrete carbonation. [136] deals with the well-posedness of
a quasilinear generalization of the matched microstructure model. In [100], the
authors prove the rate of convergence for a two-scale Galerkin scheme in the case
when both the microstructure and macroscopic domains are two-dimensional.
The proof includes two-scale interpolation-error estimates and an interpolation-
trace inequality. A semi-discrete finite difference multiscale scheme is presented
in [29] and authors prove two-scale energy and regularity estimates. Kouznetsova
et al. deal with multiscale computational homogenization, see [42, 43, 76, 58] –
a tool which fits well to computing distributed-microstructure models.

The work by Natalini and co-workers is related the restoration of national
monuments corroded by the same reaction mechanism, see [3, 41, 61, 62]. Be-
sides sulfatation, there are mechanisms that affect the durability of concrete
based materials. A prominent example is the carbonation process. [95] deals
with analysis and simulation of the free boundary problems modeling concrete
carbonation. In [121], the author derives different upscaled systems describing
concrete carbonation depending on the choice of the scale parameter. S. Meier
not only obtains distributed-microstructure models as homogenization limits,
but also emphasizes their role as stand-alone modeling technology; see [86]. For
literature treating carbonation problems mathematically, see e.g. [4, 88, 97, 98].
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2.2 Modeling concrete. Geometry. Multiscale
representation

2.2.1 What is concrete?

Concrete, a chemically-active porous medium1, is a composite construction ma-
terial composed of aggregate, cement and water, see Fig. 2.2. The aggregate is
a mixture of coarse gravel or crushed rocks such as limestone, or granite, along
with a finer aggregate such as sand, see Fig. 2.3.

Figure 2.2: A zoomed in concrete surface exposed to sulfate corrosion showing the
ingredients of the material (aggregates, fissures,...). Courtesy of Dr. R.E. Beddoe (TU
München).

Figure 2.3: A magnification of inner side of concrete. Courtesy of Gordon Muir
(Institute of Technology Sligo).

1A porous medium is a material containing pores. The portion of the skeleton is often
called the “matrix”, while the pores are holes typically filled with a fluid (liquid or gas).
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Cement is a binder that sets and hardens, and is characterized as hydraulic
or non-hydraulic. Hydraulic cement (e.g. Portland cement) hardens because
of hydration reactions that occur independently of the mixture’s water content.
Non-hydraulic cements (e.g., gypsum plaster) must be kept dry in order to retain
their strength [131].

In this thesis, we are focusing on cement-like materials in which hydraulic
cement is used (their chemistry is simply easier). When the mixture is solidified,
it forms a definite porous structure. In spite of the complex structure, concrete
as well as cement paste are mechanically well-understood.

2.2.2 Basic Geometry

We consider a concrete block from a sewer pipe that is exposed to the hydrogen
sulfide gas in the sewer atmosphere. We denote this macroscopic block by Ω.
This is the place where corrosion processes are supposed to happen. To illustrate
such a domain Ω, Fig. 2.4 points out a cross-section of sewer pipe [with hydrogen
sulfide gas moving to the crown of the pipe] and a magnification of a concrete
piece. Such a material has three phases, namely, water, air and concrete matrix.
The diameter of a sewer pipe is in the range of 8 − 144 inches and the wall
thickness is about 1

12 of the diameter. As porous material, the concrete has a

Figure 2.4: A cross-section of a concrete pipe linked to a zoomed in part. This
zoomed in part is defined here as Ω.

solid matrix (pore skeleton) and voids (pore space). We denote the solid matrix
(which is initially uncorroded) and the pore space by Ω0 and Ω12, respectively.
Since the concrete in the sewer pipe is partially saturated, the void space Ω12 has
two further non-overlapping parts Ω1 and Ω2. Ω1 consists of the water-filled part
of Ω12, whereas Ω2 is filled by air in the Ω. There are two interfaces among the
different phases: Γ1 represents the interface between solid matrix and water,and
the interface between water-filled part and air-filled part is denoted by Γ2. There
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is no interface (i.e. no contact) between Ω0 and Ω2. We have

Ω := Ω0 ∪ Ω12, Ω12 := Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Ω0 ∩ Ω12 = ∅,

Γ1 := ∂Ω0 ∩ ∂Ω1, Γ2 := ∂Ω1 ∩ ∂Ω2.

The compounds of the aggregate have different shapes defining a local porosity.
Due to the aggressiveness of the chemical reactions, the material ends up to
deviate from a constant total porosity. The important source of porosity in
concrete is the ratio of water to cement in the mix [143, 144]. Usually the
concrete has a porosity around 5-6%. The total porosity2 φ is defined as the
ratio of the volume of the pore space, which we denote by |Ω12|, to the volume
|Ω| of the whole concrete block. In the similar way, we define air-, water- and
solid- fractions

φ :=
|Ω12|
|Ω|

, φ1 :=
|Ω1|
|Ω12|

, φ2 :=
|Ω2|
|Ω12|

and φ0 :=
|Ω0|
|Ω|

, (2.1)

where |Ω1| is the volume of the water-filled part of the pore space, |Ω2| is the
volume of the air-filled part of the pore space, while |Ω0| denotes the volume of
the solid matrix. It holds that φ1 + φ2 = 1 and φφ1 + φφ2 + φ0 = 1.

The initial porosity of concrete can be defined by

φ̃ :=
Rw

c

ρc
ρw

Rw
c

ρc
ρw

+R a
c

ρc
ρa

+ 1
,

where Rw
c

and R a
c

denote the water-to-cement and aggregate-to-cement ratios,
whereas ρa, ρw and ρc are aggregate, water and cement densities, respectively;
see e.g. [112]. We take the volume concentrations to be measured in unit mass
per unit volume, namely ML−3, and the surface concentrations in unit mass per
unit area, i.e. ML−2.

2.2.3 Multiscale representation of concrete

The precise structure of the concrete is far too complex (see e.g. Fig. 2.2) to
be described precisely. Here, we consider two simplified microstructure models
that can be handled successfully: (i) uniformly periodic, and (ii) locally periodic.

2.2.3.1 Uniformly-periodic approximations

We assume that the geometry of the porous medium Ω consists of a system
of pores. The exterior boundary of Ω has of two disjoint, sufficiently smooth
parts: ΓN - the Neumann boundary and ΓD - the Dirichlet boundary. The

2Since Ω12 is the total pore space, regardless of whether the pores are connected, or whether
dead-end pores and fractures are present, the porosity φ is referred to as total porosity, see
[16].
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reference pore, say Y , has three pairwise disjoint connected domains Y0, Y1 and
Y2 with smooth boundaries Γ1 and Γ2, as shown in Fig. 2.5 (right). Moreover,
Y := Ȳ0 ∪ Ȳ1 ∪ Ȳ2.

Figure 2.5: Left: Uniformly periodic system of pipes covering a macroscopic
concrete block Ω. Right: Basic pore configuration.

Figure 2.6: Left: Uniformly periodic system of micro-tube. Right: Reference
pore configuration.

Let ε be a sufficiently small scaling factor denoting the ratio between the
characteristic length of the pore Y and the characteristic length of the domain
Ω. This is the geometric definition of the scaling factor ε (that we assume to
be small). In Chapter 3, we will give another definition of ε based on reaction
characteristic times.

Let χ1 and χ2 be the characteristic functions of the sets Y1 and Y2, respec-
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tively. The shifted set Y k1 is defined by

Y k1 := Y1 +

3∑
j=0

kjej for k := (k1, k2, k3) ∈ Z3,

where ej is the unit vector along the jth cartesian axis. By construction, Y k1 is
translation symmetric. The union of all shifted subsets of Y k1 multiplied by ε
(and confined within Ω) defines the perforated domain Ωε, namely

Ωε1 :=
⋃
k∈Z3

{εY k1 | εY k1 ⊂ Ω}.

Similarly, Ωε2, Γε1, and Γε2 denote the union of the shifted subsets (of Ω) Y k2 , Γk1 ,
and Γk2 scaled by ε. Furthermore, denote

Y ∗1 :=
⋃
{Y k1 : k ∈ Z3}, Y ∗2 :=

⋃
{Y k2 : k ∈ Z3}

Γ∗2 :=
⋃
{Γk2 : k ∈ Z3}, Γ∗1 :=

⋃
{Γk1 : k ∈ Z3}.

An example of uniformly periodic approximation of the domain Ω is given in
Fig. 2.6. A few more examples of uniformly periodic approximations are given
e.g. in [35, 83, 104].

2.2.3.2 Locally-periodic approximations

It is possible to stay away a bit from the periodicity assumption by considering
locally periodic examples of microstructure in porous media. In other words,
the “periodic” pattern is allowed to vary slightly from pore to pore. A domain
having locally periodic microstructure is one whose material coefficients (e.g.,
diffusion coefficient and reaction constants) vary (in space) at the microscopic
scale level. This variation is locally periodic in the sense that, around each point
of the domain, the material coefficients vary rather fast. An example of locally
periodic covering is shown in Fig. 2.7.

In the locally-periodic setting, one represents the normal vector nε to the
“oscillating” internal boundaries of the perforations in the form suggested, for
instance, in [19, 32]:

nε(x, y) := ñ(x, y) + εn′(x, y) +O(ε2), (2.2)

where

ñ(x, y) :=
∇yP (x, y)

|∇yP (x, y)| (2.3)

and

n′(x, y) :=
∇xP (x, y)

|∇yP (x, y)|
− ∇yP (x, y)

∇xP (x, y),∇yP (x, y)

|∇yP (x, y)|3
. (2.4)
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Here y = x
ε and the generic surface P (x, y) which describes the interfaces3 Γε1

and Γε2, respectively. is assumed to be a 1-periodic function in the variable y
and sufficiently smooth with respect to both variables x, y. The function P (x, ·)
is assumed to be explicitly given for each x ∈ Ω.

Note that in Fig. 2.7, the most inner part representing solid matrix is not
connected to the outer part which is the air-filled part, whereas the air-filled part
connects the neighboring pores. A 3D domain with locally-periodic covering is
shown in Fig. 2.8. Now all the phases of the material are now connected.

Figure 2.7: Locally periodic perforations with disconnected phases.

Figure 2.8: Locally periodic domain with varying microstructure.

3Γε1 and Γε2 denote the same class of objects as those defined in the periodic setting with
the same name, but now the uniformly periodicity assumption is replaced by local periodicity.
The same statement holds for Ωε1 and Ωε2. This notation emphasizes the strong dependence of
the geometry on the parameter x.
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We define the set Y ijk1 as the water-filled part in the unit pore Y ijk, i, j, k ∈ N.
The vertices of the scaled pore Y ijk are ( ε2 ,

ε
2 ,

ε
2 ) + ε(i+ a1, j + a2, k + a3) with

i, j, k ∈ N fixed and a1, a2, a3 taking values 0 or 1. The center of the cube has
coordinates ε(i+ 1, j+ 1, k+ 1), [53]. The union of all subsets of Y ijk1 multiplied
by ε defines the perforated domain

Ωε1 :=
⋃

i,j,k∈N
{εY ijk1 | εY ijk1 ⊂ Ω}.

Similarly, Ωε2, Γε1, and Γε2 denote the union of the subsets (of Ω) Γijk1 , Y ijk2 , and

Γijk2 multiplied by ε. Furthermore,

Y ∗1 :=
⋃
{Y ijk1 , i, j, k ∈ N}, Y ∗2 :=

⋃
{Y ijk2 , i, j, k ∈ N}

Γ∗1 :=
⋃
{Γswijk, i, j, k ∈ N}, Γ∗2 :=

⋃
{Γwaijk, i, j, k ∈ N}.

Further examples of locally-periodic approximations are given, for instance, in
[15, 26, 125].

2.2.3.3 Two-scale approximations

We consider a uniformly homogenous (i.e. with no apparent substructure) block,
but when zoomed into a point, a certain microstructure can be seen. We intro-
duce this way a continuous distribution of cells representing the microstructures
of the medium. The precise form of the microstructure depends on the macro-
scopic position x ∈ Ω. Let Y0,x represent the structure of the solid matrix within
a local neighborhood of that point (see Fig. 2.10). Likewise, Y1,x, Y2,x represent
the parts of the pore space occupied by water and air. Yx splits up into three
parts

Y := Ȳ0,x ∪ Ȳ1,x ∪ Ȳ2,x for all x ∈ Ω,

which are disjoint except at the boundaries. In our situation, we assume that
the pore air, pore water and solid matrix are connected. Moreover, we denote by
Γ1,x := ∂Y1,x ∩ ∂Y0,x and Γ2,x := ∂Y1,x ∩ ∂Y2,x the interfaces between the water
phase and the solid matrix, and between the water and air phases, respectively.
The information within each cell is described independently with respect to what
happens at the macroscale. The solution of the problem posed in the cell Yx is
coupled via ∂Yx to the macroscale Ω.
In this thesis, when talking about two-scale domain we restrict ourselves to the
case when each point x ∈ Ω is zoomed and a fixed microstructure is seen. For
further examples of two-scale models, we refer the reader to [28, 86] and the
references cited therein.
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Figure 2.9: Two-scale domain with distributed microstructure.

Figure 2.10: Left: Zoomed out cubic piece from the concrete wall. This is the scale
we refer to as macroscopic. Middle: Reference pore configuration. Right: Zoomed out
one end of the pore.
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2.3 Specific modeling aspects arising from sulfa-
tation of concrete

There are a few physico-chemiacl processes that are important for the actual
sulfatation of concrete. We wish to introduce them in our microscopic model.

2.3.1 Production of H2S by Henry’s law

As soon as H2S(g), produced in the air space of the concrete pipe, enters the
pipe wall above the waste flow, it dissolves in the water present in the concrete
block. In the corrosion process, this hydrogen sulfide transfer from sewer gas to
pore water is a crucial step. H2S molecules can move between the air-filled part
and the water-filled part the water-air interfaces [14]. We assume that such mass
transfer takes place according to the following reversible reaction mechanism

H2S(aq) 
 H2S(g). (2.5)

In (2.5), the transfer of H2S between air-filled parts and water-filled parts that
are in contact follows a local phase equilibrium diagram of the air-water binary
system at the pore level [47]. In other words, the amount of gaseous H2S that
dissolves in a given time and volume of liquid at a constant temperature is directly
proportional to the equilibrium partial pressure of gaseous H2S in equilibrium.
This assumption at the phase equilibrium is expressed via the linear relationship

PH2S =
1

H
[H2S(aq)], (2.6)

where PH2S denotes the partial pressure of H2S in the gaseous phase of the
pore and H2S(aq) represents the molar concentration of H2S. In (2.6), the
proportionality factor is known as Henry’s constant on the molar concentration
scale. (2.6) can be re-written in terms of mass concentrations as

φφ1[H2S(aq)] = (HRT
φ1

φ2
)φφ2[H2S(g)], (2.7)

where R denotes the gas constant, T represents the absolute temperature and
φ, φ1, φ2 are defined in (2.1). (2.7) is the so-called phase equilibrium condition.
Based on [124], we assume that the macroscopic mass transfer at the air-water
interface is proportional to the difference

φφ1[H2S(aq)]− Pφφ2[H2S(g)]

where P := HRT φ1

φ2
. The proportionality factor Q > 0 is referred to as the mass

transfer coefficient and needs to be identified. For instance, Q can be determined
by means of one-film theory of diffusion in heterogenous media [11].

We can write the net production of H2S as

fHenry = Q
(
φφ1[H2S(aq)]− Pφφ2[H2S(g)]

)
. (2.8)

We call fHenry the production term by Henry’s law. For related work on this
subject, see [95].
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Figure 2.11: Reactions pathways for hydrogen sulfide, see also Fig. 4.1 in [74].

2.3.2 Modeling sulfatation reaction rate

The oxidation of hydrogen sulfide on the pipe wall surface is biologically activated
after the pH of the surface drops below approximately 8-9, [115]. In corrosion
products, H2S oxidizes rapidly by the action of the bacteria to a mix of elemental
sulfur and sulfuric acid [74]. We consider the sulfate corrosion process dominated
by the reaction of sulfuric acid. The respective reaction is

2H2O +H+ + SO−2
4 + CaCO3−→CaSO4 · 2H2O + HCO−3 . (2.9)

(2.9) takes place in Ω when a sufficient amount of H2SO4 is available and pro-
duces gypsum. We assume that (2.9) does not interfere with the mechanics of
the solid parts of the domain. This is a rather strong assumption since it is
known that (2.9) can actually produce local ruptures of the solid matrix [131].
From our point of view, the following scenario is relevant:

• the reaction (2.9) is very fast and it is complete in the sense that it con-
sumes all the available calcium carbonate at the interface.

In the above situation, it is not obvious what is the correct formal expression for
the reaction rate η on the interface specially if we do not stick to the assumption
of elementary reaction for which mass-action kinetics would be applicable.

η(α, β) = k3ᾱβ̄, (2.10)

On the other hand to point out the complexity of the situation, we refer the
reader to [20] for one example where the mass-action kinetics do not work. It
is not at all clear how important the precise structure of η is especially if one
considers this process in the fast-reaction regime. To fix ideas, we assume that
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the reaction rate η takes the form

η(α, β) =

{
k3α

p(βmax − β)
q

if α ≥ 0, β ≥ 0

0 otherwise,
(2.11)

where k3 is a reaction constant, α is the concentration of the H2SO4 and β
denotes the concentration of gypsum, whereas βmax is a known constant and
p ≥ 1 and q ≥ 1 are the partial reaction orders. The power law structure (2.11)
describing the reaction rate appears to be new in the context of sulfatation
reactions. Another way to model the reaction-rate for H2SO4 production is

η(α, β) = k3R(α)Q(β), (2.12)

where R,Q are non-linear functions and the quantities with bars denote surface
concentrations. For more examples of different types of reaction rates, see [78].
We consider (2.11) and (2.12) in the thesis.

We define

fReac := cΓη.

Remark 2.3.1. In order to understand the meaning of the reaction rate, we
recall the general concept of surface chemical reactions. Consider the amount of
CaCO4 produced on the surface Γ1, during an arbitrary time interval S′ ⊂ S :=
[0,∞) and let Γsw := ∂Ωs ∩ ∂Ωpw. Then

µΓ(S′ × Γsw) =

∫
S′

∫
Γsw

cΓηdσdt :=

∫
S′

∫
Γsw

fReacdσdt, (2.13)

is the amount of CaCO4 produced on the interface during S′. Here cΓ stands for
appropriate stoichiometric coefficient of the reaction. In (2.9), we have cΓ = 1.

2.3.3 Mass balance of moisture in the corrosion process

The mass balance of the moisture which diffuses in concrete is given by

wt + divjw = fw, (2.14)

where fw denotes all the sources and sinks that depend on w and jw is a macro-
scopic flux of moisture. Adopting Bažant’s model of moisture in concrete [13],
we assume that the flux is of the form

jw = −D∇w, (2.15)

where D is the transport coefficient, see e.g. [118, 119]. For derivations of (2.14)
based on different assumptions, see e.g. [13], Section 2.2.6 in [95] and Section
2.2.2 in [130].
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2.3.4 Production of gypsum

We take η as in (2.11) and introduce

∂t[CaSO4 · 2H2O] = η([H2SO4], [CaSO4 · 2H2O]).

Here we consider that reaction rate η highly depends on the reaction of H2SO4

with the calcium carbonate and the produced gypsum does not diffuse from
the surface of the solid matrix. Different choices of η have been discussed in
Subsection 2.3.2. In the forthcoming chapters, we choose the form of η as it is
given in (2.11) and (2.12).

2.4 Basic assumptions

Keeping in mind the 3D configuration of a typical pore (cf Section 2.2.3), we list
the main geometry and modeling assumptions:

Assumption 2.4.1. (Assumptions on geometry)

1. Every pore has three distinct non-overlapping connected parts and all con-
stituent parts connect neighboring pores to one another (see Fig. 2.5).

2. All internal (water-air and solid-water) interfaces are sufficiently smooth
and do not touch each other. There are no solid-air interfaces.

These restrictions are needed not only to give a meaning to functions defined
across interfaces, but also to introduce later the concept of extension as given,
for instance, in [2, 39].

Assumption 2.4.2. (Modelling assumptions)

1. The reactions (1.1) – (1.4) do not interfere with the mechanics of the solid
part of the pores.

2. The produced gypsum stays at the solid boundary and does not make any
change in the local geometry.

3. Effect of bacteria and temperature are considered to be negligible.

2.5 Corrosion models

In this section, we introduce two concrete corrosion models incorporating the
sulfatation reactions (1.1) – (1.4). First we present a microscopic model which
is defined in ε−dependent domain. Then we give a distributive microstruc-
ture model containing information from two separated spatial scales (micro and
macro).
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2.5.1 Microscopic model

All physical processes take place on the microscale (pore level) but the physical
phenomena that we are interested in are visible on a macroscopic level, see
Fig. 2.6 for a description of the geometry we have in mind.

The unknowns uε1, u
ε
2, u

ε
3, u

ε
4, u

ε
5 refer to the concentration of sulfuric acid

(H2SO4), hydrogen sulfide aqueous species (H2S(aq)), hydrogen sulfide gaseous
species (H2S(g)), moisture (H2O) and gypsum (CaSO4 · 2H2O), respectively. We
consider the following system of mass-balance equations defined at the pore level:

∂tu
ε
1 + div(−dε1∇uε1) = −kε1uε1 + kε2u

ε
2, x ∈ Ωε1, t ∈ (0, T ) (2.16)

∂tu
ε
2 + div(−dε2∇uε2) = kε1u

ε
1 − kε2uε2, x ∈ Ωε1, t ∈ (0, T ), (2.17)

∂tu
ε
3 + div(−dε3∇uε3) = 0, x ∈ Ωε2, t ∈ (0, T ) (2.18)

∂tu
ε
4 + div(−dε4∇uε4) = kε1u

ε
1, x ∈ Ωε1, t ∈ (0, T ) (2.19)

∂tu
ε
5 = ηε(uε1, u

ε
5), x ∈ Γε1, t ∈ (0, T ). (2.20)

The presence of ε shows that all the functions are defined in perforated domains.
We complement the system with the initial conditions

uεi (x, 0) = ui0(x), x ∈ Ωε1, t = 0, i ∈ {1, 2, 4} (2.21a)

uε3(x, 0) = u30(x), x ∈ Ωε2, t = 0 (2.21b)

uε5(x, 0) = u50(x), x ∈ Γε1, t = 0. (2.21c)

The associated boundary conditions are

−nε1 · dε1∇uε1 = 0 x ∈ Γε1, t ∈ (0, T ) (2.22a)

−nε1 · dε1∇uε1 = 0 x ∈ ΓN ∩ ∂Ωε1, t ∈ (0, T ) (2.22b)

−nε1 · dε1∇uε1 = εηε(uε1, u
ε
5) x ∈ Γε1 t ∈ (0, T ) (2.22c)

−nε1 · dε2∇uε2 = −ε(aε(x)uε3 − bε(x)uε2) x ∈ Γε2, t ∈ (0, T ) (2.22d)

−nε1 · dε2∇uε2 = 0 x ∈ Γε1, t ∈ (0, T ) (2.22e)

−nε1 · dε2∇uε2 = 0 x ∈ ΓN ∩ ∂Ωε1, t ∈ (0, T ) (2.22f)

−nε2 · dε3∇uε3 = 0 x ∈ ΓN ∩ ∂Ωε2, t ∈ (0, T ) (2.22g)

uε3(x, t) = uD3 (x, t) x ∈ ΓD ∩ ∂Ωε2, t ∈ (0, T ) (2.22h)

−nε2 · dε3∇uε3 = ε(aε(x)uε3 − bε(x)uε2) x ∈ Γε2, t ∈ (0, T ) (2.22i)

−nε1 · dε4∇uε4 = 0 x ∈ ∂Ωε1, t ∈ (0, T ) (2.22j)

uε1 = 0 x ∈ ΓD ∩ ∂Ωε1, t ∈ (0, T ) (2.22k)

uε2 = 0 x ∈ ΓD ∩ ∂Ωε1, t ∈ (0, T ). (2.22l)

On the right-hand side of (2.16), the first and second term appear due to the
consumption and production of H2SO4 in (1.1) and (1.2), respectively, by mass
action law. A similar argument holds for the right-hand side of (2.17) and the
right hand side of (2.18) is zero due to (1.3). The right hand side of (2.20) is a
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source for gypsum which is the result of fast reaction between H2SO4 and CaCo3.
Here nεi denotes the outer normal to ∂Ωεi , i ∈ {1, 2} (Ωεi ,Γ

ε
i are defined in Sub-

section 2.2.3.1). The presence of ε entering the right hand side of the boundary
conditions (2.22c), (2.22d) and (2.22i) is essential to pass to the rigorous limit
in the boundary terms.

In the non-dimensionalization procedure done in Section 3.2, ε appears due
to the scaling of involved quantities. To get effective behaviors, we need to pass
to the limit as ε→ 0 in (2.16)-(2.22l). The precise structure of the upscaled limit
equations (ε → 0) will be derived in Chapter 4 and Chapter 5. In order to do
this, we restrict our attention to the micro-geometries described in Section 2.2.3
and periodic/locally periodic model parameters.

2.5.1.1 Periodic/locally periodic model parameters

We consider two different strategies.
Case 1: All functions dεi , k

ε
j , a

ε, bε defined in Ω, Γε1 and Γε2 are rapidly oscil-
lating and are of one of the forms:

dεi (x) = di(
x
ε ), i ∈ {1, 2, 3, 4}, kεj (x) = kj(

x
ε ), j ∈ {1, 2, 3}, (2.23)

aε(x) = a(xε ), bε(x) = b(xε ), nεk(x) = nk(xε ), k ∈ {1, 2}. (2.24)

where the functions di, kj , a, b are Y−periodic and are defined on Y ∗1 , Y ∗2 , Γ∗2,
and on Γ∗1, respectively.
Case 2: All functions given in (2.23) and (2.24) are locally-periodic if they
depend on both slow x and fast variable x

ε . Here, we have

dεi (x) = di(x,
x
ε ), i ∈ {1, 2, 3, 4}, kεj (x) = kj(x,

x
ε ), j ∈ {1, 2, 3}, (2.25)

aε(x) = a(x, xε ), bε(x) = b(x, xε ), nεk(x) = nk(xε ), k ∈ {1, 2}. (2.26)

We consider case 1 in uniformly periodic domains in Chapter 4 and 5, while we
consider Case 1 for locally-periodic domains in Chapter 3.

2.5.2 Distributed-microstructure model

Usually distributed-microstructure models are known in the context of homoge-
nization limits as the scale of inhomogeneity tends to zero. This system consists
of the following set of partial differential equations coupled with an ordinary
differential equation:

∂tw1 −∇y · (d1∇yw1) = −k1(y)w1 + k2(y)w2 in (0, T )× Ω× Y1, (2.27)

∂tw2 −∇y · (d2∇yw2) = k1(y)w1 − k2(y)w2 in (0, T )× Ω× Y1, (2.28)

∂tw3 −∇ · (d3∇w3) = −α
∫
Γ2

(
Hw3 − w2

)
dγy in (0, T )× Ω, (2.29)

∂tw4 −∇y · (d4∇yw4) = k1(y)w1 in (0, T )× Ω× Y1, (2.30)

∂tw5 = η(w1, w5) on (0, T )× Ω× Γ1. (2.31)
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The system (2.27)- (2.31) is equipped with the initial conditions

wj(0, x, y) = w0
j (x, y) in Ω× Y1, j ∈ {1, 2, 4} (2.32a)

w3(0, x) = w0
3(x) in Ω (2.32b)

w5(0, x, y) = w0
5 on Ω× Γ1 (2.32c)

while the boundary conditions are

−n(y) · d1∇yw1t = η(w1, w5) on (0, T )× Ω× Γ1 (2.33a)

−n(y) · d1∇yw1 = 0 on (0, T )× Ω× (Γ2 ∪ (∂Y1 ∩ ∂Y )) (2.33b)

−n(y) · d2∇yw2 = 0 on (0, T )× Ω× (Γ1 ∪ (∂Y1 ∩ ∂Y )) (2.33c)

−n(y) · d2∇yw2 = α(Hw3 − w2

)
on (0, T )× Ω× Γ2 (2.33d)

−n(x) · d3∇w3 = 0 on (0, T )× ΓN (2.33e)

w3 = wD3 on (0, T )× Γ, (2.33f)

−n(y) · d4∇yw4 = 0 on (0, T )× Ω× Γ2 (2.33g)

−n(y) · d4∇yw4 = 0 on (0, T )× Ω× Γ1. (2.33h)

Here w1 denotes the concentration of H2SO4 in Ω × Y1, w2 the concentration
of H2S aqueous species in Ω × Y1, w3 the concentration of H2S gaseous species
in Ω, w4 the concentration of the moisture and w5 is the gypsum concentration
on Ω × Γ1. Ω, Y, Y1, Y2,Γ1,Γ2 are shown in Fig. 2.10. ∇ without subscript
denotes the differentiation with respect to macroscopic variable x, while ∇y is
the respective differential operator with respect to the micro-variable y. The
parameter α is reaction constant which quantifies the resistance of the medium
to the exchange and H is Henry’s constant, see Section 2.3.1. The microscale
and macroscale information is connected via the right-hand side of (2.29) and
via the micro-macro transmission condition (2.33d). The information referring
to the air phase Y2 is hidden in w3. The partial differential equation for w3,
defined on macroscopic scale, is derived by averaging over Y2.

2.6 Notes and comments

There are many open problems and open research directions concerning the
modeling of the concrete sulfatation. We mention here but a few:

1. Role of bacteria: Bacteria play a crucial role in the production of the hy-
drogen sulfate which is the main source of the degradation of the concrete.
The precise role of the micro-organisms in the context of sulfate attack
on concrete is quite complex and less understood. To understand their
role, we may need to study enzyme kinetics, perhaps along the line of the
Michaelis-Menten mechanism [103].

2. Expansion of gypsum: We assume that the production of the gypsum on
the solid-water interface does not affect the microscopic geometry (and
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therefore neither the mechanics). This is a strong assumption since it is
known that sulfatation mechanism actually produces local ruptures of the
solid matrix [131].

3. Moving boundary formulations: In practice, the macroscopic corrosion
front propagates into the uncorroded concrete. To track the precise macro-
scopic position of the front, it is perhaps more natural to consider a free
boundary formulation (as in e.g. [23]).

4. Stochastic geometry4: In stochastic representations, random microstruc-
ture can be considered. For details, see e.g. in [63, 65].

4A domain which is neither uniformly periodic nor locally periodic is closer to the actual
structure.



Chapter 3

Homogenization in
Locally-periodic Perforated
Domains

In this chapter, we derive multiscale models via the asymptotic homogenization
method for locally-periodic domains. Our goal is to obtain upscaled RD models
together with explicit formulae for the effective transport and reaction coeffi-
cients using different scalings of the diffusion coefficients. We show that the
averaged systems contain additional terms appearing due to the deviation of the
assumed geometry from a uniformly periodic distribution of perforations. We
work in two parameter regimes: (i) all diffusion coefficients are of order of O(1)
and (ii) all diffusion coefficients are of order of O(ε2) except the one for H2S(g)
which is of order of O(1). In case (i), we obtain a set of macroscopic equations
coupled with two-scale ode, while in case (ii) we are led to reaction-diffusion
system with distributed-microstructure that captures the interplay between mi-
crostructural reaction effects and the macroscopic transport.

This chapter is structured as follows: In section 3.1, we present our choice of
microstructure and the setting of the equations. Section 3.2 contains the non-
dimensional form. In Section 3.3, we apply the homogenization procedure for
two relevant parameter regimes: (a) all diffusion coefficients are of order of O(1)
and (b) all diffusion coefficients are of order of O(ε2) except the one for H2S(g)
which is of order of O(1). In case (a), we obtain a set of upscaled equations,
while in case (b) we are led to a distributed-microstructure system that cap-
tures the interplay between microstructural reaction effects and the macroscopic
transport.

The results given in this chapter have been reported in [54] as a joint collaboration with
N. Arab (Regensburg), E.P. Zemskov (Moscow), and A. Muntean (Eindhoven).
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3.1 Geometry. Model equations

This section contains a brief discussion of the geometry and presents the model
equations posed in the domain of interest.

3.1.1 Locally-periodic domains

We refer the reader to Subsection 2.2.3.2 where the concept of locally-periodic
microstructure has been introduced, also see Fig. 3.1. The connectedness (see
Fig. 2.8) or disconnectedness (see Fig. 2.7) of all constituent parts of the
microstructure does not matter for the analysis done in this chapter.

Figure 3.1: Locally-periodic perforations with two disconnected and one con-
nected components.

3.1.2 Microscopic model equations

We use the microscopic model given in Subsection 2.5.1 without ε on the right
hand side of the boundary conditions. In the non-dimensionalization procedure,
ε will appear in the boundary conditions due to the scaling of the involved
quantities.

3.2 Non-dimensionalization

Before applying formal homogenization, we want to formulate the model equa-
tions in dimensionless form with the hope to get more insight in the meaning of
the parameter ε. We introduce the characteristic length L for the space variable
such that x = Lx̃, the time variable is scaled as t = τs, and for the concen-
trations, we use uεi = Uiv

ε
i , Ui = ‖uεi‖∞ for all i ∈ {1, 2, 3, 4, 5}. kεj are scaled

as kεj = Kj k̃
ε
j , where Kj =‖ kεj ‖∞ for all j ∈ {1, 2, 3} and dεk := Dkd̃

ε
k for all
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k ∈ {1, 2, 3, 4}. We make use of two mass-transfer Biot numbers1 for the two
spatial scales in question: micro and macro. The micro Biot number is defined
by

Bim :=
bmrefL

D , (3.1)

where bmref is a reference reaction rate acting at the water solid interface within
the microstructure and D is a reference diffusion coefficient. The macro Biot
number is defined by

BiM :=
bMrefL

D , (3.2)

where bMref is a reference reaction rate at the water-solid interface at the macro
level. The connection between the two Biot numbers is given by

Bim = εBiM . (3.3)

In some sense, relation (3.3) defines our small scaling parameter ε with respect
to which we wish to homogenize. Furthermore, we introduce two other dimen-
sionless numbers:

βi :=
Ui
U1

and γi :=
Di

D3
. (3.4)

βi represents the ratio of the maximum concentration of the ith species to the
maximum H2SO4 concentration, while γi denotes the ratio of the characteristic
time of the ith diffusive aqueous species to the characteristic diffusion time of
H2S(g). Consequently for a fixed i, the ratio γi is small, then the reactant gas
diffuse faster through the pore than the rest of the species diffusing in the liquid
phase.

We consider the RD system given in Subsection 2.5.1 without the scaling
parameter ε in the boundary conditions. In terms of the newly introduced
quantities, the mass-balance equation for H2SO4 takes the form

U1

τ ∂sv
ε
1 + U1D1

L2 div(−d̃ε1∇vε1) = −K1U1k̃
ε
1v
ε
1 +K2U2k̃

ε
2v
ε
2, (3.5)

and hence,

β1∂sv
ε
1 + β1D1τ

L2 div(−d̃ε1∇vε1) = −K1U1τ
U1

k̃ε1v
ε
1 + K2U2τ

U1
k̃ε2v

ε
2. (3.6)

As reference time, we choose the characteristic time scale of the fastest species

(here: H2S(g)), that is τ := τdiff = L2

D3
. We get

β1∂sv
ε
1 + β1γ1div(−d̃ε1∇vε1) = −η

1
refτ

U1
k̃ε1v

ε
1 +

η2refτ

U1
k̃ε2v

ε
2. (3.7)

1Biot numbers are dimensionless quantities mostly used in heat and mass transfer calcula-
tions and they quantify the resistance of a surface (thin layer) to heat and/or mass transfer.
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Let us denote by τ jreac := U1

ηjref
the characteristic time scale of the jth reac-

tion, where the quantity ηjref is a reference reaction rate for the corresponding
chemical reaction. With this new notation in hand, we obtain

β1∂sv
ε
1 + β1γ1div(−d̃ε1∇vε1) = −Φ2

1k̃
ε
1v
ε
1 + Φ2

2k̃
ε
2v
ε
2

(3.8)

where Φ2
j , j ∈ {1, 2, 3} are Thiele-like moduli. The jth Thiele modulus Φ2

j com-
pares the characteristic time of the diffusion of the fastest species and the char-
acteristic time of the jth chemical reaction. It is defined as

Φ2
j :=

τdiff

τ jreac
for all j ∈ {1, 2, 3}. (3.9)

For the boundary condition involving the surface reaction, we obtain

ñε · (−d̃ε1∇vε1)) = − τdiff
γ1Lτ3

reac
η̃(vε1, v

ε
5), (3.10)

and therefore,

ñε · (−d̃ε1∇vε1)) = −εΦ2
3

γ1
η̃(vε1, v

ε
5). (3.11)

Note that the quantity εΦ2
3 plays the role of a Thiele modulus for a surface

reaction, while Φ2
1 and Φ2

2 are Thiele moduli for volume reactions. Similarly, the
mass-balance equation for the species H2S(aq) becomes

β2∂sv
ε
2 + β2γ2div(−d̃ε2∇vε2) = Φ2

1k̃1v
ε
1 − Φ2

2k̃2v
ε
2. (3.12)

The boundary condition at the air-water interface becomes

ñε · (−d̃ε2∇vε2)) = εBiM (a
εβ3

bεβ2
vε3 − vε2). (3.13)

The mass balance equation for H2S(g) is

β3∂sv
ε
3 + β3div(−d̃ε3∇vε3) = 0, (3.14)

while the boundary condition at the air-water interface reads

ñε · (−d̃ε3∇vε3)) = −εBiM (a
ε

bε v
ε
3 −

β2

β3
vε2). (3.15)

Finally, the mass-balance equation for moisture is

β4∂sv
ε
4 + β4γ4div(−d̃ε4∇vε4) = Φ2

1k̃1v
ε
1

(3.16)

and the ordinary differential equation for gypsum becomes

β5∂sv
ε
5 = Φ2

3η̃(vε1, v
ε
5). (3.17)

To simplify the notation, we drop all the tildes and keep the meaning of the
unknowns and operators as mentioned in this section.
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3.3 Asymptotic homogenization procedure

The key idea of this method is to guess the solution of the microscopic model
using the asymptotic expansion (3.18) involving the macro (slow) variable x and
the micro (fast) variable y = x

ε . In this section, we study the asymptotic behavior
of the solutions to the microscopic model ε → 0 for two parameter regimes
reflecting two different types of diffusive-like transport of chemical species in
concrete: “uniform” diffusion (see Section 3.3.1) and “structured” diffusion (see
Section 3.3.2).

3.3.1 Case 1: Uniform diffusion

We consider that the diffusion speed is comparable for all concentrations, i.e.
the diffusion coefficients dεk are of order of O(1) w.r.t. ε for all k ∈ {1, 2, 3, 4}.
To derive the limit problem in a formal way, we assume that the unknown
solutions vεi (x, t), i ∈ {1, 2, 3, 4, 5} of the microscopic model admit the following
asymptotic expansions with respect to ε

vεi (x, t) = vi0(x, y, t) + εvi1(x, y, t) + ε2vi2(x, y, t) + . . . , (3.18)

where y = x
ε and the functions vim(x, y, t),m = 1, 2, 3, ..., are Y -periodic in y.

If we define (compare [22, 35], e.g.)

Ψε(x, t) := Ψ(x,
x

ε
, t),

then

∂Ψε
∂xi

= ∂Ψ
∂xi

(x, xε ) + 1
ε
∂Ψ
∂yi

(x, xε ). (3.19)

We assume that dεk, k ∈ {1, 2, 3, 4} is ε−periodic and

dεk(x) = dk(
x

ε
),

where dk is 1−periodic. We investigate the asymptotic behavior of the solution
vε1(x, t) as ε→ 0 of the following problem posed in the domain Ωε1

β1∂sv
ε
1 + β1γ1div(−dε1∇vε1) = −Φ2

1k
ε
1v
ε
1 + Φ2

2k
ε
2v
ε
2 in Ωε1,

nε · (−dε1∇vε1)) = −εΦ2
3

γ1
η(vε1, v

ε
5) on Γε1,

nε · (−dε1∇vε1)) = 0 on Γε2.

(3.20)

Using now the asymptotic expansion of the solution vε1(x, t) and the expansion
of the normal vector (2.2) in (3.20) and collecting all the terms of order ε−2, ε−1

and ε0, we obtain: {
A0v10 = 0 in Y1,x,

v10 Y − periodic in y,
(3.21)
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where the operator A0 is given by

A0 := −
∑3
i,j=1

∂
∂yi

(dij1
∂
∂yj

),

where dij1 refers to the entry of the matrix d1 in the ith row and jth column. As
next step, we get


A0v11 = −A1v10 in Y1,x,

v11 Y − periodic in y,

(d1∇yv11, ñ) = −(d1∇xv10, ñ) on Γ1,x ∪ Γ2,x,

(3.22)

where

A1 := −
∑3
i,j=1

∂
∂xi

(dij1
∂
∂yj

)−
∑3
i,j=1

∂
∂yi

(dij1
∂
∂xj

).

Furthermore, it holds that

β1γ1A0v12 = −β1γ1A1v11 − β1γ1A2v10 − β1∂sv10

− Φ2
1k1(y)v10 + Φ2

2k2(y)v20 in Y1,x, (3.23)

v12 Y − periodic in y

(d1∇yv12, ñ) = −(d1∇xv11, ñ)− (d1∇xv10, n
′)− (d1∇yv11, n

′)

− Φ2
3

γ1
η(v10, v50) on Γ1,x, (3.24)

(d1∇yv12, ñ) = −(d1∇xv11, ñ)− (d1∇xv10, n
′)

− (d1∇yv11, n
′) on Γ2,x, (3.25)

where

A2 := −
∑3
i,j=1

∂
∂xi

(dij1
∂
∂xj

).

From (3.21), we obtain that v10 is independent of y. Since the elliptic equation
for v11 [with right-hand side defined in terms of v10] is linear, its solution can be
represented in the following form

v11(x, y, t) := −
3∑
k=1

ωk1 (x, y, t)
∂v10(x, t)

∂xk
+ v1(x, t),

where the functions ωk1 (x, y, t) solve the cell problem(s) and are periodic w.r.t.
y. The exact expression of v1 does not matter much at this stage. Using the



3.3. Asymptotic homogenization procedure 31

expression of v11, we obtain following cell problems in the standard manner:

A0ω
k
1 (x, y) = −

3∑
i=1

∂

∂yi
dik1 (y) k ∈ {1, 2, 3} in Y1,x, (3.26)

3∑
i,j,k=1

∂v10

∂xk
[dij1

∂ωk1
∂yj

ñi − djk1 ñj ] = 0 on Γ1,x,

3∑
i,j,k=1

∂v10

∂xk
[dij1

∂ωk1
∂yj

ñi − djk1 ñj ] = 0 on Γ2,x.

In (3.26)n the cell function χk inherits the x-dependence from the perforation,
and hence, instead of a standard periodic cell Y we now deal with with a x-
dependent family of cells Y1,x.

Since the right-hand side of (3.26) integrated over Y1,x is zero, this problem
has a unique solution. Note also that (3.23) is leading to

β1γ1A0v12 = β1γ1[−
3∑

i,j,k=1

∂v10

∂xk

∂

∂yi
(dij1

∂ωk1
∂xj

)−
3∑

i,j,k=1

∂2v10

∂xj∂xk

∂

∂yi
(dij1 ω

k
1 )

+

3∑
i,j=1

∂dij1
∂yi

∂v1

∂xj
−

3∑
i,j,k=1

dij1
∂2ωk1
∂xi∂yj

∂v10

∂xk
−

3∑
i,j,k=1

dij1
∂ωk1
∂yi

∂2v10

∂xk∂xi

+

3∑
i,k=1

dik1
∂2v10

∂xk∂xi
]− β1∂sv10 − Φ2

1k1(y)v10 + Φ2
2k2(y)v20.

Moreover, we have

β1γ1(d1∇yv12, ñ)=β1γ1[

3∑
i,j,k=1

dij1
∂v10

∂xk

∂ωk1
∂xi

ñj−
Φ2

3

γ1
η(v10, v50)−

3∑
i,j=1

dij1
∂v10

∂xi
n′j

+

3∑
i,j,k=1

dij1
∂2v10

∂xj∂xk
ωk1 ñj −

3∑
i,j=1

dij1
∂v1

∂xi
ñj +

3∑
i,j,k=1

dij1
∂ωk1
∂xi

∂v10

∂xk
n′j ]. (3.27)

Writing down the compatibility condition (see e.g. Lemma 2.1 in [120]), we get

∫
Y1,x

[β1γ1{
3∑

i,j,k=1

∂v10

∂xk

∂

∂yi
(dij1

∂ωk1
∂xj

) +

3∑
i,j,k=1

∂2v10

∂xj∂xk

∂

∂yi
(dij1 ω

k
1 )−

3∑
i,j=1

∂dij1
∂yi

∂v1

∂xj
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+

3∑
i,j,k=1

dij1
∂2ωk1
∂xi∂yj

∂v10

∂xk
+

3∑
i,j,k=1

dij1
∂ωk1
∂yi

∂2v10

∂xk∂xi
−

3∑
i,j,k=1

dij1
∂2v10

∂xj∂xi
}

+ β1∂sv10 + Φ2
1k1(y)v10 − Φ2

2k2(y)v20]dy

= β1γ1

∫
Γ1,x∪Γ2,x

3∑
i,j,k=1

dij1
∂v10

∂xk

∂ωk1
∂xi

ñjdγy −
∫

Γ1,x

Φ2
3

γ1
η(v10, v50)dγy

+ β1γ1

∫
Γ1,x∪Γ2,x

 3∑
i,j,k=1

dij1
∂2v10

∂xj∂xk
ωk1 ñj −

3∑
i,j=1

dij1
∂v10

∂xi
n′j

 dγy
− β1γ1

∫
Γ1,x∪Γ2,x

 3∑
i,j=1

dij1
∂v1

∂xi
ñj +

3∑
i,j,k=1

dij1
∂ωk1
∂xi

∂v10

∂xk
n′j

 dγy. (3.28)

We apply Stokes’ theorem to the terms involving ñj and, after straightforward
calculations, we obtain

β1∂sv10 + Φ2
1v10

1

|Y1,x|

∫
Y1,x

k1(y)dy − Φ2
2v20

1

|Y1,x|

∫
Y1,x

k2(y)dy

−β1γ1

3∑
i,j,k=1

∂2v10

∂xi∂xk
〈dij1

∂ωk1
∂yj
− dik1 〉 − β1γ1

3∑
i,j,k=1

〈dij1
∂2ωk1
∂xi∂yj

〉∂v10

∂xk

= −β1γ1

3∑
i,j,k=1

∂v10

∂xk

1

|Y1,x|

∫
Γ1,x∪Γ2,x

(dkj1 n
′
j − d

ij
1

∂χk

∂yi
n′j)dγy

−β1γ1

γ1
Φ2

3v10
1

|Y1,x|

∫
Γ1,x

v50(x, y, t)k3(y)dγy. (3.29)

In (3.29), we have 〈f〉V := 1
|V |
∫
V

fdx for any V a subset of either Y1,x or Y2,x and

|V | is the volume of V . The latter partial differential equation can be rewritten
as

β1∂sv10 − β1γ1

3∑
i,j,k=1

∂

∂xi
(〈dij1

∂ωk1
∂yj
− dik1 〉

∂v10

∂xk
) + Φ2

1v10K1 − Φ2
2v20K2

= −β1γ1

3∑
k=1

∂v10

∂xk
Uk1 − β1Φ2

3v10K3 in Ω× (0, T ), (3.30)
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where

K`(x) :=
1

|Y1,x|

∫
Y1,x

k`(y)dy, ` ∈ {1, 2}, (3.31)

K3(x) :=
1

|Y1,x|

∫
Γ1,x

v50(x, y, t)k3(y)dγy, (3.32)

and

Uk1 (x) :=
1

|Y1,x|

3∑
i,j=1

∫
Γ1,x∪Γ2,x

(dkj1 n
′
j − d

ij
1

∂ωk1
∂yi

n′j)dγy. (3.33)

The terms Uk1
2 are new. They occur due to the assumed deviation from a

uniformly periodic distribution of perforations.

Now we apply the same procedure to the next mass-balance equation. To do
this, we consider the auxiliary cell problems

A0ω
k
2 (x, y, t) = −

3∑
i=1

∂

∂yi
dik2 (y), k ∈ {1, 2, 3} in Y1,x, (3.34)

3∑
i,j,k=1

∂v20

∂xk
[dij2

∂ωk2
∂yj

ñi − djk2 ñj ] = 0, on Γ1,x,

3∑
i,j,k=1

∂v20

∂xk
[dij2

∂ωk2
∂yj

ñi − djk2 ñj ] = 0, on Γ2,x,

whose solution is χk(x, y, t). We obtain the upscaled partial differential equation:

β2∂sv20 − Φ2
1v10k1 + Φ2

2v20k2 − β2γ2

3∑
i,j,k=1

∂

∂xi
(〈dij2

∂ωk2
∂yj
− dik2 〉

∂v20

∂xk
)

= −β2γ2

3∑
k=1

∂v20

∂xk
Uk2 − β3Bi

Mv30C + β2Bi
Mv20B, (3.35)

holding in Ω× (0, T ) v20 = 0, on Γ, where

C(x) :=
1

|Y1,x|

∫
Γ2,x

b(y)H(y)dγy, (3.36)

2In [54], we do not specify the interfaces in the integral of extra terms in the homogenized
system.
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H(y) :=
a(y)

b(y)
, with y ∈ Γ2,x, (3.37)

B(x) :=
1

|Y1,x|

∫
Γ2,x

b(y)dγy, (3.38)

Uk2 (x) :=
1

|Y1,x|

3∑
i,j=1

∫
Γ1,x∪Γ2,x

(dkj2 n
′
j − d

ij
2

∂ωk2
∂yi

n′j)dγy. (3.39)

We treat now the mass-balance equation for H2S(g). The corresponding cell
problems are given by

A0ω
k
3 (x, y, t) = −

3∑
i=1

∂

∂yi
dik3 (y), k = 1, 2, 3 in Y2,x,

3∑
j,k=1

∂v30

∂xk
[

3∑
i=1

dij3
∂ωk3
∂yj

ñi − djk3 ñj ] = 0 on Γ2,x,

while the macroscopic partial differential equation is

∂sv30 −
3∑

i,j,k=1

∂

∂xi
(〈dij3

∂ωk3
∂yj
− dik3 〉

∂v30

∂xk
)

= −
3∑
k=1

∂v30

∂xk
Uk3 + β3Bi

Mv30C − β2Bi
Mv20B (3.40)

in Ω× (0, T ) with v30 = vD30 on ΓD and v30 = 0 on ΓN . Here we have

C(x) :=
1

|Y2,x|

∫
Γ2,x

b(y)H(y)dγy, B(x) :=
1

|Y2,x|

∫
Γ2,x

b(y)dγy (3.41)

Uk3 (x) :=
1

|Y2,x|

3∑
i,j=1

∫
Γ2,x

(dkj3 n
′
j − d

ij
3

∂ωk3
∂yi

n′j)dγy.. (3.42)

Same procedure leads to

β4∂sv40 − Φ2
1v10k1 − β4γ4

3∑
i,j,k=1

∂

∂xi
(〈dij4

∂ωk4
∂yj
− dik4 〉

∂v40

∂xk
)

= −β4γ4

3∑
k=1

∂v40

∂xk
Uk4 , (3.43)

in Ω× (0, T ) with v40 = 0 on Γ and

Uk4 (x) :=
1

|Y1,x|

3∑
i,j=1

∫
Γ1,x∪Γ2,x

(dkj4 n
′
j − d

ij
4

∂ωk4
∂yi

n′j)dγy. (3.44)
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We also obtain following cell problems

A0ω
k
4 (x, y) = −

3∑
i=1

∂

∂yi
dik4 (y), k ∈ {1, 2, 3} in Y1,x, (3.45)

3∑
i,j,k=1

∂v40

∂xk
[dij4

∂ωk4
∂yj

ñi − djk4 ñj ] = 0, on Γ1,x,

3∑
i,j,k=1

∂v40

∂xk
[dij4

∂ωk4
∂yj

ñi − djk4 ñj ] = 0, on Γ2,x.

Interestingly, the case of the ordinary differential equation for gypsum

∂sv
ε
5 = Φ2

3η(vε1, v
ε
5) on Γ1,x, s ∈ (0, T ), (3.46)

vε5(x, 0) = v5
ε
0(x), (3.47)

seems to be more problematic. Let us firstly use the same homogenization ansatz
as before and employ

η(vε1, v
ε
5) = ηA0 (v10(x, t), v50(x, y, t)) +O(ε).

We obtain

∂sv50(x, y, t) = Φ2
3η
A
0 (v10(x, t), v50(x, y, t)) with y ∈ Γ1,x, (3.48)

v50(x, y, 0) = v50(x, y), (3.49)

where v50(x, y, t) is periodic w.r.t y. Note that we can not obtain an expression
for v50(x, y, t) that is independent of y. On the other hand, if we make another
ansatz for vε5, say

vε5(x, t) = v50(x, t) + εv51(x, y, t) + ε2v52(x, y, t) + . . . , (3.50)

then

η̃(vε1, v
ε
5) = ηB0 (v10(x, t), v50(x, t)) +O(ε)

and we obtain an averaged ordinary differential equation independent of y as
given via

∂sv50(x, t) = Φ2
3η
B
0 (v10(x, t), v50(x, t)), (3.51)

v50(x, 0) = v50(x). (3.52)

The advantage of the second choice is that it leads to the averaged reaction
constant k̄3 = 1

|Γ2,x|
∫

Γ2,x

k3(y)dy, which is, in practice, much nicer than (3.48).

This raises the question: Which of the descriptions is correct: (3.48),(3.49) or
(3.51), (3.52)? The Chapter 4 will shed light on this issue.
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3.3.2 Case 2: Structured diffusion

In order to obtain distributed-microstructure models in the homogenized limit,
it is necessary to consider diffusion coefficients scaled with certain power of the
scale parameter ε. In this subsection, we take into account the fact that the
diffusion of H2S is much faster within the air-part of the pores than within the
pore water. Particularly, we assume that dε3 is of order of O(1), while dεk = O(ε2)
for all k ∈ {1, 2, 4}. Based on the existing literature, we expect that the latter
assumption will finally lead to a distributed-microstructure model) for which
the micro- and macro-structure need to be resolved simultaneously; see e.g.
[49, 68, 87].

Assume the initial data to be given by vεi (x, 0) = v0
i (x, xε ), i ∈ {1, 2, 3, 4, 5}

with functions v0
i : Ω × Y → R being Y -periodic with respect to the second

variable y ∈ Y. Assume also that dεk = ε2dk, for k ∈ {1, 2, 4} and dε3 = d3. We
employ the same homogenization ansatz as before

vεi (x, t) = wi0(x, y, t) + εwi1(x, y, t) + ε2wi2(x, y, t) + . . . (3.53)

for all i ∈ {1, 2, 3, 4, 5}. Using the same strategy as in Section 3.3.1, we obtain

β1∂sw10(x, y, t)− β1γ1∇y · (d1∇yw10(x, y, t))

= −k1(y)w10(x, y, t) + k2(y)w20(x, y, t) (3.54)

in Ω× Y1,x × (0, T ). The boundary conditions become

ñ(x, y) · (−d1∇yw10(x, y, t)) = 0 on Ω× Γ2,x × (0, T ), (3.55)

ñ(x, y) · (−d1∇yw10(x, y, t)) = −Φ2
3

γ3
k3(y)w10(x, y, t)w50(x, y, t) (3.56)

on Ω× Γ1,x × (0, T ). Similarly,

β2∂sw20(x, y, t)− β2γ2∇y · (d2∇yw20(x, y, t))

= k1(y)w10(x, y, t)− k2(y)w20(x, y, t) in Ω× Y1,x × (0, T ), (3.57)

while the corresponding boundary conditions take the form

ñ(x, y) · (−d2∇yw20(x, y, t)) = 0 on Ω× Γ1,x × (0, T ), (3.58)

ñ(x, y) · (−d2∇yw20(x, y, t)) = BiMb(y)[
β3

β2
H(y)w30(x, t)− w20(x, y, t)] (3.59)

on Ω×Γ2,x×(0, T ). Since we consider dε3 = d3, we obtain the same macroscopic
partial differential equation as in Case 1:

∂sw30(x, t)−
3∑

i,j,k=1

∂

∂xi
(〈dij3

∂ωk3
∂yj
− dik3 〉

∂w30(x, t)

∂xk
) = −

3∑
k=1

∂w30(x, t)

∂xk
Uk3

+
β3Bi

Mw30(x, t)

|Y2,x|

∫
Γ2,x

b(y)H(y)dγy −
β2Bi

M

|Y2,x|

∫
Γ2,x

b(y)w20(x, y, t)dγy

(3.60)
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in x ∈ Ω, s ∈ (0, T ) and

w30(x, t) = wD30(x, t) on ΓD,

where

Uk3 (x) :=
1

|Y2,x|

3∑
i,j=1

∫
Γ2,x

(dkj1 n
′
j − d

ij
1

∂χk

∂yi
n′j)dγy. (3.61)

Next, we have

β4∂sw40(x, y, t)− β4γ4∇y.(d4∇yw40(x, y, t)) = k1(y)w10(x, y, t), (3.62)

on Ω× Y1 × (0, T ), while the boundary conditions are now given by

ñ(x, y) · (−d4∇yw40(x, y, t)) = 0 on Ω× Γ2,x × (0, T ), (3.63)

ñ(x, y) · (−d4∇yw40(x, y, t)) = 0 on Ω× Γ1,x × (0, T ). (3.64)

The ordinary differential equation modelling gypsum growth takes finally the
form

β5∂sw50(x, y, t) = −Φ2
3η(w10(x, y, t)w50(x, y, t)) (3.65)

on Ω× Γ1,x × (0, T ).

3.4 Notes and comments

We performed the formal homogenization for locally-periodic domains and ob-
tained two different upscaled models depending on the choice of the scaling
parameter ε. To treat the ordinary differential equation posed at the bound-
ary, we used two asymptotic expansions. We obtained some extra terms which
pop up due to the locally-periodic assumption on the microstructure in the do-
main. The extra terms vanish due to the fact that the operators of the original
and homogenized problem are self-adjoint and using the convergence of the cor-
responding bilinear forms, we obtain that the G-limit operator is self-adjoint,
[30]. Here all the model parameters were assumed to be periodic. In case of
the locally-periodic parameters, we expect that the same procedure is applicable
without any additional difficulty.

At this point, the main issue is to justify rigorously these asymptotic be-
haviors of the concentrations. We address closely related aspects (focusing on
uniformly periodic array of perforations) in forthcoming chapters.

At a later stage, we will need to perform extensive simulations for the
distributed-microstructure model (3.54)–(3.65) for the case of fixed geometry.
This should help understanding the long-time behavior of the concentrations for
the case of matched micro-macro transmission conditions starting from regular-
ized ones (with a large Biot number), see Chapter 7.
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The asymptotic expansion method is based on the assumption of a periodic
(or locally-periodic) structure and therefore the resulting equations may not be
valid for an arbitrary non-periodic medium. In [63], the author generalized the
asymptotic expansion from the periodic setting to stationary ergodic stochastic
geometries. We aspect that a similar (formal) approach can also be used for our
scenario.

To incorporate the concept of locally-periodic microstructures in our setting,
we are very much inspired by Chechkin et al., see [30, 31, 32] e.g. For the for-
mal derivation, the connectedness of all constitutive parts of the microstructure
does not matter much. Any periodic and locally-periodic microstructure with
connected (or disconnected) parts can be considered.

It would be interesting to consider evolving microstructures. In this spirit,
we could account for one of more of the following aspects:

1. The solid phase grows or shrinks due to precipitation or dissolution. In
general, this results in changes of the shape of liquid phase.

2. The liquid phase grows or shrinks due to condensation or evaporation.

3. The liquid phase grows due to production of water by the chemical reaction
(1.4).

4. The gypsum layer grows due to its volume expansion.

5. Different choices of scaling in ε of interfacial exchange.

For the formal homogenization of these types of systems of partial differential
equations, we refer the reader to [121, 122, 123, 124] and the references cited
therein.



Chapter 4

Derivation of the Two-scale Model

This chapter is devoted to a twofold aim: (i) the analysis of the microscopic
model (2.16)–(2.22l) posed on a uniformly periodic domain and (ii) the deriva-
tion of the multiscale model stated in Theorem 4.5.1 by passing rigorously to
the limit ε → 0 in the microscopic model (2.16) – (2.22l). To deal with (ii),
we apply the method of two-scale convergence by G. Nguestseng [106] and G.
Allaire [8]. Our working technique combines the two-scale convergence method
with basic properties of the periodic unfolding operator [34].

The chapter is organized as follows: In Section 4.1, we give the notations, func-
tional spaces and the assumptions needed to perform the analysis. In Section
4.2, we show that the microscopic problem is well-posed. ε-independent a priori
estimates for the solution to the microscopic problem are derived in Section 4.3.
In Section 4.4, we extend the solution to the microscopic problem to the whole
domain and introduce the central notion of two-scale convergence. In Section
4.5, we apply the procedure of two-scale convergence to derive upscaled equa-
tions together with explicit formulae for the effective diffusion coefficients and
reaction constants. We conclude the section with the strong formulation of the
upscaled system.

4.1 Geometry. Microscopic model. Notation.
Function spaces. Weak formulation

4.1.1 Geometry

We refer the reader to Chapter 2 where we discussed possible choices of mi-
crostructures (periodic and locally-periodic). Here we focus only on periodic
microstructures, see Fig 4.1. Note already at this stage that all the constituents
(solid, water and air) are connected.

This chapter is built on the results published in [55] and on Appendix 8.2.3. This is a
joint collaboration with A. Muntean (Eindhoven).
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Figure 4.1: Left: Uniformly periodic array of microstructures. Right: The
pore configuration.

4.1.2 Microscopic model equations

We consider the microscopic model given in Subsection 2.5.1.

4.1.3 Notation. Function spaces

Here ϕ+ and ϕ− refer to ϕ+ := max{0, ϕ}, ϕ− := −min{0, ϕ}, respectively.
Note that ϕ+ϕ− = 0 and ϕ+ + ϕ− = |ϕ|. We denote by C∞# (Y ), H1

#(Y ),

and H1
#(Y )/R, the space of infinitely differentiable functions in Rn that are Y -

periodic, the completion of C∞# (Y ) with respect to H1−norm, and the respective
quotient space. Furthermore, let

H1
ΓD (Ω) := {u ∈ H1(Ω)|u = 0 on ΓD}.

The Sobolev space Hβ(Ω) (β is a positive number, β ∈ N) as a completion of
C∞0 (Ω) is a Hilbert space equipped with the norm

‖ϕ‖Hβ(Ω) := ‖ϕ‖H[β](Ω) +

∫
Ω

∫
Ω

|ϕ(x)− ϕ(y)|2

|x− y|n+2(β−[β])
dxdy

 1
2

and (cf. Theorem 5.7.7 in [77]) the embedding Hβ(Ω) ↪→ L2(Ω) is continuous.
Since we deal here with an evolution problem, we use standard Bochner spaces
like

L2(0, T ;H1(Ω)), L2(0, T ;L2(Ω)), L2(0, T ;H1
ΓD (Ω)), and L2((0, T )×Ω;H1

#(Y )/R).

For the analysis of the microscopic model, we employ frequently the following
trace inequality for ε−dependent hypersurfaces Γε1: For ϕε ∈ H1(Ωε), there
exists a constant C, which is independent of ε, such that

ε‖ϕε‖2L2(Γε)
≤ C

(
‖ϕε‖2L2(Ωε) + ε2‖∇ϕε‖2L2(Ωε)

)
. (4.1)
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The proof of (4.1) is given in Lemma 3 of [68] as well as in Lemma 2.7 of [91].
For a function ϕε ∈ Hβ(Ωε) with β ∈

(
1
2 , 1
)
, the inequality (4.1) refines into

ε‖ϕε‖2L2(Γε)
≤ C

∫
Ωε

|ϕε|2dx+ ε2β

∫
Ωε

∫
Ωε

|ϕε(x)− ϕε(y)|2

|x− y|n+2β
dxdy

 . (4.2)

For the proof of (4.2), see [83].
The quantities like Q, a, b, kj , j ∈ {1, 2, 3} with superscript ∞ are the maximum
of the Q(uε5), aε, bε, kεj , j ∈ {1, 2, 3}, while a, b, kj , j ∈ {1, 2} denote the minimum
of the respective quantities. Constants are generically denoted by C and these
may depend on the data of the problem but not on the solution. We always
state explicitly whether C depends or not on the small parameter ε.

4.1.4 Restrictions on the data and parameters

We consider the following restrictions on the data and model parameters:

(A1) di ∈ L∞(Y )3×3, (di(y)ξ, ξ) ≥ di0|ξ|2 for di0 > 0 and every ξ ∈ R3, y ∈ Y ,
i ∈ {1, 2, 3, 4}.

(A2) η(α, β) = k3R(α)Q(β), where R is sub-linear and locally Lipschitz func-
tion with Lipschitz constant cR, while Q is bounded and monotonically
increasing. Furthermore, we assume

R(α) :=

{
positive, if α ≥ 0,

0, otherwise,
Q(β) :=

{
positive, if β < βmax,

0, otherwise,

where βmax > 0 represents the maximum amount of gypsum that can
(locally) be produced.

(A3) ui0 ∈ H1(Ω) ∩ L∞+ (Ω), i ∈ {1, 4}, uj0 ∈ H2(Ω) ∩ L∞+ (Ω), j ∈ {2, 3},
u50 ∈ L∞+ (Γ1).

(A4) The boundary mass transfer functions a, b ∈ L∞(Γ1), a, b > 0 are assumed
to satisfy b(y)M2 = a(y)M3 for a.e. y ∈ Γ1. Furthermore,

k∞1
k2

=
M2

M1
=

k1

k∞2
a.e. in Ωε1

and M5 ≥ k∞3 cRQ
∞M1 a.e. on Γε1. The constants M1, M2, M3 and M5

mentioned here are defined in (4.3).

(A5) uD3 ∈ H2(0, T ;H1(Ωε2)) ∩ L∞+ ((0, T )× Ωε2).

(A6) k3 ∈ L∞+ (Γ1) and kj ∈ L∞+ (Ȳ ) for any j ∈ {1, 2}.
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We also define the following constants

Mj := ‖uj0‖L∞(Ω) j ∈ {1, 4},
M2 := max{‖u20‖L∞(Ω), ‖u30‖L∞(Ω)},
M3 := max{M2, ‖u30‖L∞(Ω), ‖uD3 ‖L∞(ΓD)},
M5 := max{‖u50‖L∞(Γ1), βmax}. (4.3)

M1, . . . ,M5 will play later on the role of essential supremum bounds on the
active concentrations.

4.1.5 Weak formulation of the microscopic model

We start with defining the weak formulation of our system given in Section 2.5.1,
see also Section 4.1.2.

Definition 4.1.1. Assume (A1) – (A6). We call the vector uε = (uε1, u
ε
2, u

ε
3, u

ε
4, u

ε
5),

a weak solution to (2.16) – (2.22l) if uεj ∈ L2(0, T ;H1(Ωε1)), ∂tu
ε
j ∈ L2((0, T ) ×

Ωε1), j ∈ {1, 2, 4}, uε3 ∈ uD3 +L2(0, T ;H1
ΓD (Ωε2)), ∂tu

ε
3 ∈ ∂tuD3 +L2(0, T ;L2(Ωε2)),

uε5 ∈ H1(0, T ;L2(Γε1)) and the following identities hold

T∫
0

∫
Ωε1

(
∂tu

ε
1ϕ1 +dε1∇uε1∇ϕ1 +kε1u

ε
1ϕ1 − kε2uε2ϕ1

)
dxdτ =−ε

T∫
0

∫
Γε1

ηεϕ1dγxdτ,(4.4)

T∫
0

∫
Ωε1

(
∂tu

ε
2ϕ2 + dε2∇uε2∇ϕ2 + kε1u

ε
1ϕ2 − kε2uε2ϕ2

)
dxdτ

= ε

T∫
0

∫
Γε2

(aεuε3 − bεuε2)ϕ2dγxdτ (4.5)

T∫
0

∫
Ωε2

(
∂tu

ε
3ϕ3 + dε3∇uε3∇ϕ3

)
dxdτ = −ε

T∫
0

∫
Γε2

(aεuε3 − bεuε2)ϕ3dγxdτ, (4.6)

T∫
0

∫
Ωε1

(
∂tu

ε
4ϕ4 + dε4∇uε4∇ϕ4

)
dxdτ =

T∫
0

∫
Ωε1

kε1u
ε
1ϕ4dxdτ, (4.7)

T∫
0

∫
Γε1

∂tu
ε
5ϕ5dγxdτ =

T∫
0

∫
Γε1

ηεϕ1dγxdτ, (4.8)

for all ϕj ∈ L2(0, T ;H1(Ωε1)), j ∈ {1, 2, 4}, ϕ3 ∈ L2(0, T ;H1
ΓD (Ωε2)) and ϕ5 ∈

L2((0, T )× Γε1).
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4.2 Global solvability

In this section, we show that the microscopic model (2.16) – (2.22l) is well-posed.

4.2.1 Positivity and boundedness of microscopic solutions

We begin by showing the positivity of the solutions to (4.4) – (4.8).

Lemma 4.2.1. (Positivity) Assume (A1) – (A4), and let t ∈ [0, T ] be arbitrarily
chosen. Then uεi (t) ≥ 0, i ∈ {1, 2, 4} a.e. in Ωε1, uε3(t) ≥ 0 a.e. Ωε2 and uε5(t) ≥ 0
a.e. on Γε1.

Proof. We test (4.4)-(4.7) with ϕ = (−uε1−,−uε2−,−uε3−,−uε4−,−uε5−) ele-
ment of the space [L2(0, T ;H1(Ωε1))]2×L2(0, T ;H1

ΓD (Ωε2))×L2(0, T ;H1(Ωε1))×
L2((0, T )× Γε1). We obtain the following inequality

1

2

t∫
0

∫
Ωε1

∂t|uε1
−|2dxdt+ d10

t∫
0

∫
Ωε1

|∇uε1
−|2dxdτ ≤ −k1

t∫
0

∫
Ωε1

|uε1
−|2dxdτ

+ k∞2

t∫
0

∫
Ωε1

(uε1
−, uε2

−)dxdτ − ε
t∫

0

∫
Γε1

(ηε(uε1, u
ε
5),−uε1

−)Γε1
dγxdτ,

(4.9)

where k1 := inf(0,T )×Ωε1
|kε1| and k∞2 := sup(0,T )×Ωε1

|kε2|. Note that the first term
on the r.h.s. of (4.9) is negative, while the third term is zero because of (A2).
We get

t∫
0

∫
Ωε1

∂t|uε1
−|2dxdτ + 2d10

t∫
0

∫
Ωε1

|∇uε1
−|2dxdτ ≤ C

t∫
0

∫
Ωε1

(
|uε1
−|2 + |uε2

−|2
)

dxdτ.

(4.10)
On the other hand, (4.5) leads to

1

2

t∫
0

∫
Ωε1

∂t|uε2
−|2dxdτ+d20

t∫
0

∫
Ωε1

|∇uε2
−|2dxdτ ≤ k∞1

2

t∫
0

∫
Ωε1

(
|uε1
−|2 +|uε2

−|2
)
dxdτ

+ εa∞
t∫

0

∫
Γε2

uε2
−uε3

−dγxdτ − εb
t∫

0

∫
Γε2

|uε2
−|2dγxdτ,

where a∞ := sup(0,T )×Γε2
|aε| and b := inf(0,T )×Γε2

|bε|. By the trace inequality
(4.1), we get

t∫
0

∫
Ωε1

∂t|uε2
−|2dxdt+ (2d20 − Cε2)

t∫
0

∫
Ωε1

|∇uε2
−|2dxdt
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≤ C
t∫

0

∫
Ωε1

(
|uε1
−|2 + |uε2

−|2
)

dxdt+ C

t∫
0

∫
Ωε2

(
|uε3
−|2 + ε2|∇uε3

−|2
)
dxdt.

(4.11)
(4.6) leads to

t∫
0

∫
Ωε2

∂t|uε3
−|2dxdt+ (2d30 − Cε2)

t∫
0

∫
Ωε2

|∇uε3
−|2dxdt ≤ C

t∫
0

∫
Ωε2

|uε3
−|2dxdt

+ C

t∫
0

∫
Ωε1

(
|uε2
−|2 + ε2|∇uε2

−|2
)
dxdt,

(4.12)
while from (4.7), we see that

t∫
0

∫
Ωε1

∂t|uε4
−|2dxdt+ 2d40

t∫
0

∫
Ωε1

|∇uε4
−|2dxdt ≤ C

t∫
0

∫
Ωε1

(
|uε1
−|2 + |uε4

−|2
)

dxdt.

(4.13)
We obtain from (4.8) t∫

0

∫
Γε1

∂t|uε5
−|2dγxdt = −

t∫
0

∫
Γε1

ηεuε5
−dγxdt. (4.14)

Adding up inequalities (4.10) – (4.14) and simplification gives

t∫
0

∫
Ωε1

∂t(|uε1
−|2 + |uε2

−|2 + |uε4
−|2) +

t∫
0

∫
Ωε2

∂t|uε3
−|2dxdt+ 2d10

t∫
0

∫
Ωε1

|∇uε1
−|2

+ (2d20−Cε2)

t∫
0

∫
Ωε1

|∇uε2
−|2 +(2d30−Cε2)

t∫
0

∫
Ωε2

|∇uε3
−|2 +2d40

t∫
0

∫
Ωε1

|∇uε4
−|2

+

t∫
0

∫
Γε1

∂t|uε5
−|2dγxdt ≤ C

t∫
0

∫
Ωε1

(|uε1
−|2 + |uε2

−|2 + |uε4
−|2) +

t∫
0

∫
Ωε2

|uε3
−|2dxdt.

Choosing ε conveniently such that r.h.s. of above inequality is positive. Appli-
cation of the Gronwall’s inequality implies∫

Ωε1

(|uε1(t)
−|2 + |uε2(t)

−|2 + |uε4(t)
−|2)dx+

t∫
0

∫
Ωε2

|uε3(t)
−|2dx

≤ C
∫
Ωε1

(|uε1(0)
−|2 + |uε2(0)

−|2 + |uε4(0)
−|2)dx+

t∫
0

∫
Ωε2

|uε3(0)
−|2dx.
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By the positivity of the initial data, we have the positivity of the weak solutions
to the problem.

Next, we show that solution to (4.4) – (4.8) is bounded.

Lemma 4.2.2. (Boundedness) Assume (A1) – (A4). Then there exist constants
such that uεi (t) ≤ Mi, i ∈ {1, 2}, uε3(t) ≤ M3 a.e. in Ωε1, uε4(t) ≤ (t + 1)M4 a.e.
in Ωε and uε5(t) ≤M5 a.e. on Γwsε for arbitrarily t ∈ [0, T ].

Proof.We consider the test function

(ϕ1, ϕ2, ϕ3, ϕ4) = ((uε1 −M1)+, (uε2 −M2)+, (uε3 −M3)+, (uε4 − (t+ 1)M4)+),

where the constants Mi are defined in (4.3). By (4.4), we obtain:

1

2

t∫
0

∫
Ωε1

∂t|(uε1−M1)+|2dxdt+ d10

t∫
0

∫
Ωε1

|∇(uε1−M1)+|2dxdt+ ε

t∫
0

∫
Γε1

ηε(uε1−M1)+dγxdt

≤ −(k1M1 − k∞2 M2)

t∫
0

∫
Ωε1

(uε1 −M1)+dxdt+ C

t∫
0

∫
Ωε1

|(uε2 −M2)+|2dxdt.

Using (A2) and (A4), we get the estimate

t∫
0

∫
Ωε1

∂t|(uε1 −M1)+|2dxdt ≤ C

t∫
0

∫
Ωε1

(|(uε1 −M1)+|2 + |(uε2 −M2)+|2)dxdt. (4.15)

(4.5) in combination with (A4) gives that

t∫
0

∫
Ωε1

∂t|(uε2 −M2)+|2dxdt+ (2d20 − Cε2)

t∫
0

∫
Ωε1

|∇(uε2 −M2)+|2dxdt

≤C
t∫

0

∫
Ωε1

(|(uε1 −M1)+|2+|(uε2−M2)+|2dxdt

+

t∫
0

∫
Ωε2

(|(uε3−M3)+|2+ε2|∇(uε3 −M3)+|2)dxdt.

(4.16)

By (4.6) and (A4), we obtain

t∫
0

∫
Ωε2

∂t|(uε3 −M3)+|2dxdt+ (2d30 − Cε2)

t∫
0

∫
Ωε2

|∇(uε3 −M3)+|2dxdt

≤ C
t∫

0

∫
Ωε2

|(uε3 −M3)+|2dxdt+ C

t∫
0

∫
Ωε1

(|uε2 −M2)+|2 + |∇(uε2 −M2)+|2)dxdt.

(4.17)
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By (4.7), we get

t∫
0

∫
Ωε1

∂t|(uε4 − (t+ 1)M4)+|2dxdt+ 2d40

t∫
0

∫
Ωε1

|∇(uε4 − (t+ 1)M4)+|2dxdt

≤ C
t∫

0

∫
Ωε1

(|(uε1 −M1)+|2 + |(uε4 − (t+ 1)M4)+|2)dxdt.

(4.18)

Adding up (4.15) – (4.18), we get

t∫
0

∫
Ωε1

∂t
(
|(uε1 −M1)+|2 + |uε2 −M2)+|2 + |(uε4 − (t+ 1)M4)+|2

)

+

t∫
0

∫
Ωε2

∂t|(uε3 −M3)+|2dxdt+ (2d20 − Cε2)

t∫
0

∫
Ωε1

|∇(uε2 −M2)+|2dxdt

+ (2d30 − Cε2)

t∫
0

∫
Ωε2

|∇(uε3 −M3)+|2dxdt ≤ C
t∫

0

∫
Ωε2

|(uε3 −M3)+|2dxdt

+ C

t∫
0

∫
Ωε1

(|(uε1 −M1)+|2 + |(uε2 −M2)+|2 + |(uε4 − (t+ 1)M4)+|2)dxdt.

Choosing ε small enough, then Gronwall’s inequality yields the following estimate
uεj(t) ≤ Mj , j ∈ {1, 2} a. e. in Ωε1, u

ε
3(t) ≤ M3, a. e. in Ωε2 u

ε
4 ≤ (t+ 1)M4 a.e. in Ωε1

for all t ∈ (0, T ). Let us now point out the fact that the bound M1 for uε1 also holds
on Γε1; see Lemma 4.2.3 for this basic fact.

Claim 4.2.3. If z ∈ H1(Ω) ∩ L∞(Ω), then z ∈ L∞(∂Ω).

Proof of the Claim1. Let z ∈ H1(Ω) ∩ L∞(Ω). Since the set of the restrictions to
Ω of functions C∞0 (Rn) is dense in H1(Ω), we consider a sequence of smooth functions
{fn} ⊂ C∞0 (Ω) such that fn → z in H1(Ω) and ‖fn‖L∞(Ω) ≤ ‖z‖L∞(Ω). The trace
theorem gives fn → z in L2(∂Ω). So, there exists a subsequence {fni} ⊂ {fn} con-
verging pointwise, i.e., fni(x)→ z(x) for a.e x ∈ ∂Ω. Therefore, ‖fni(x)‖ ≤ ‖z‖L∞(Ω)

and thus, ‖z‖L∞(∂Ω) ≤ ‖z‖L∞(Ω).
By Lemma 4.3 and Claim 4.2.3, we see that uε1 is bounded on the interface Γswε .

Now testing (4.8) with (uε5 − (t+ 1)M5)+ and using the properties of R,Q, we derive

T∫
0

∫
Γε1

(1

2
∂t|(uε5 − (t+ 1)M5)+|2 +M5(uε5 − (t+ 1)M5)+)dσxdτ

≤ C
T∫

0

∫
Γε1

M1(uε5 − (t+ 1)M5)+dσxdτ,

1Thanks are due to T. Aiki for showing us this proof.
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T∫
0

∫
Γε1

∂t|(uε5 − (t+ 1)M5)+|2dσxdτ ≤ −(M5 − CM1)

T∫
0

∫
Γε1

(uε5 − (t+ 1)M5)+dσxdτ,

where C := k∞3 cRQ
∞. Using (A4) and Gronwall’s inequality, we get uε5 ≤ M5 a.e. in

(0, T )× Γε1.

4.2.2 Uniqueness and existence of solution to (4.4) – (4.8)

This subsection treats the uniqueness and global existence of the weak solutions to the
system given in Section 2.5.1.

Proposition 4.2.4. (Uniqueness) Assume (A1)-(A6). Then there exists at most one
weak solution in the sense of Definition 4.1.5.

Proof. We assume that uj,ε = (uj,ε1 , uj,ε2 , uj,ε3 , uj,ε4 , uj,ε5 ), j ∈ {1, 2} are two distinct weak
solutions in the sense of Definition 5.1.2 with same initial data. We set uεi := u1,ε

i −u
2,ε
i

for all i ∈ {1, 2, 3, 4}. Firstly, we deal with (4.8). We obtain

t∫
0

∫
Γε1

(∂tu
1,ε
5 − ∂tu

2,ε
5 )ϕ5dγxdτ =

t∫
0

∫
Γε1

(
η1,ε(u1,ε

1 , u1,ε
5 )− η2,ε(u2,ε

1 , u2,ε
5 )
)
ϕ5dγxdτ.

(4.19)
Testing (4.19) with u1,ε

5 − u
2,ε
5 and making use of structure of η

t∫
0

∫
Γε1

∂t|u1,ε
5 − u

2,ε
5 |

2dγxdτ ≤ C
t∫

0

∫
Γε1

(
|u1,ε

5 − u
2,ε
5 |

2 + |u1,ε
1 − u

2,ε
1 |

2)dγxdτ.

Gronwall’s inequality implies∫
Γε1

|uε5(t)|2dγx ≤ C
t∫

0

∫
Γε1

|uε1|2dγxdτ for a.e. t ∈ (0, T ). (4.20)

We calculate

1

2

t∫
0

∫
Ωε1

∂t|uε1|2dxdτ + d10

t∫
0

∫
Ωε1

|∇uε1|2dxdτ

≤ −k1

t∫
0

∫
Ωε1

|uε1|2dxdτ + k∞2

t∫
0

∫
Ωε1

uε1u
ε
2dxdτ − ε

t∫
0

∫
Γε1

(η1,ε − η2,ε)uε1dγxdτ.

We write

t∫
0

∫
Ωε1

∂t|uε1|2dxdτ + 2d10

t∫
0

∫
Ωε1

|∇uε1|2dxdτ + 2k1

t∫
0

∫
Ωε1

|uε1|2dxdτ

≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2)dxdτ + εC

t∫
0

∫
Γε1

|uε5|2dγxdτ + εC

t∫
0

∫
Γε1

|uε1|2dγxdτ.

(4.21)
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Now, inserting (4.20) in (4.21) yields

t∫
0

∫
Ωε1

∂t|uε1|2dxdt+ 2d10

t∫
0

∫
Ωε1

|∇uε1|2dxdτ + 2k1

t∫
0

∫
Ωε1

|uε1|2dxdτ

≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2)dxdτ + Cε

t∫
0

∫
Γε1

|uε1|2dγxdτ + εC

t∫
0

τ∫
0

∫
Γε1

|uε1|2dγxdsdτ.

(4.22)
We estimate the last two terms in (4.22) to obtain the following inequality

t∫
0

∫
Ωε1

∂t|uε1|2dxdt+ (2d10 − Cε2)

t∫
0

∫
Ωε1

|∇uε1|2dxdτ + 2k1

t∫
0

∫
Ωε1

|uε1|2dxdτ

≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2) + C

t∫
0

τ∫
0

∫
Ωε1

(|uε1|2 + ε2|∇uε1|2)dxdsdτ.

(4.23)

Following the same line of arguments as before, we obtain from (4.5) that

t∫
0

∫
Ωε1

∂t|uε2|2dxdt+ (2d20 − Cε2)

t∫
0

∫
Ωε1

|∇uε2|2dxdτ

≤ C
t∫

0

∫
Ωε1

(|uε1|2 + uε2|2)dxdτ + C

t∫
0

∫
Ωε2

(|uε3|2 + ε2|∇uε3|2)dxdτ,

while from (4.6), we deduce

t∫
0

∫
Ωε2

∂t|uε3|2dxdt+ (2d30 − Cε2)

t∫
0

∫
Ωε2

|∇uε3|2dxdτ ≤ C
t∫

0

∫
Ωε2

|uε3|2dxdτ

+ C

t∫
0

∫
Ωε1

(|uε2|2 + ε2|∇uε2|2)dxdτ.

(4.24)

Proceeding similarly, (4.7) yields

t∫
0

∫
Ωε1

∂t|uε4|2dxdτ + 2d40

t∫
0

∫
Ωε1

|∇uε4|2dxdτ ≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε4|2)dxdτ. (4.25)

Putting together (4.23) – (4.25) and re-arranging the terms, we get

t∫
0

∫
Ωε1

∂t
(
|uε1|2+|uε2|2+|uε4|2

)
dxdτ+(2d10−Cε2)

t∫
0

∫
Ωε1

|∇uε1|2dxdτ
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+ (2d20 − Cε2)

t∫
0

∫
Ωε1

|∇uε2|2dxdτ +

t∫
0

∫
Ωε2

(
∂t|uε3|2 + (2d30 − Cε2)|∇uε3|2

)
dxdτ

+ 2d40

t∫
0

∫
Ωε1

|∇uε4|2dxdτ + 2k1

t∫
0

∫
Ωε1

|uε1|2dxdτ ≤ C
t∫

0

∫
Ωε2

|uε3|2dxdτ

+ C

t∫
0

∫
Ωε1

(|uε1|2 + uε2|2 + |uε4|2)dxdτ + C

t∫
0

τ∫
0

∫
Ωε1

(|uε1|2 + ε2|∇uε1|2)dxdτds.

Let us choose ε such that the above inequality does not violate. Applying Gronwall’s
inequality with k1 > 0, taking supremum along t ∈ [0, T ], we obtain the following
estimate ∫

Ωε1

(
|uε1|2 + |uε2|2 + |uε4|2

)
dx+ C

T∫
0

∫
Ωε1

|∇uε1|2dxdτ +

∫
Ωε2

|uε3|2dx ≤ 0.

Hence, we conclude that u1,ε
i = u2,ε

i , i ∈ {1, 2, 4} a.e. t ∈ (0, T ) in Ωε1 and u1,ε
3 = u2,ε

3

a.e. t ∈ (0, T ) in Ωε2. Consequently, (4.20) gives u1,ε
5 = u1,ε

5 a.e. t ∈ (0, T ) on Γε1.

Theorem 4.2.5. (Global existence) Assume (A1)− (A6). Then there exists at least a
global-in-time weak solution in the sense of Definition 4.1.5.

Proof. For the proof of this Theorem, see Appendix 8.2.3.

4.3 ε-independent estimates

Here, we derive a priori estimates for the sequence of solution to the problem (4.4) –
(4.8).

Lemma 4.3.1. (A priori estimates) Assume (A1) – (A6). Then the solution to mi-
croscopic problem (4.4) -(4.8) satisfies the following a priori estimates

‖ uεj ‖L2(0,T ;L2(Ωε)) + ‖ ∇uεj ‖L2(0,T ;L2(Ωε))≤ C, for j ∈ {1, 2, 4}
‖ uε3 ‖L2(0,T ;L2(Ωε1)) + ‖ ∇uε3 ‖L2(0,T ;L2(Ωε1))≤ C,
√
ε ‖ uε5 ‖L∞((0,T )×Γε1) +

√
ε ‖ ∂tuε5 ‖L2((0,T )×Γε1)≤ C.

Proof. We test (4.4) with ϕ1 = uε1 to get
t∫

0

∫
Ωε1

∂t|uε1|2dxdτ + 2d10

t∫
0

∫
Ωε1

|∇uε1|2dxdτ ≤ k∞2

t∫
0

∫
Ωε1

uε1u
ε
2dxdτ − ε

t∫
0

∫
Γε1

ηεuε1dγxdτ,

≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2)dxdτ + εC

t∫
0

∫
Γε1

|uε1|2dγxdτ.

(4.26)
Here we have used the structure of η and the properties of R and Q.
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After applying the trace inequality (4.1) to the last term on r.h.s. of (4.26), we get

t∫
0

∫
Ωε1

∂t|uε1|2dxdτ + (2d10 − Cε2)

t∫
0

∫
Ωε1

|∇uε1|2dxdτ ≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2)dxdτ.

(4.27)
Taking ϕ2 = uε2 in (4.5), we get

t∫
0

∫
Ωε1

∂t|uε2|2dxdτ + 2d20

t∫
0

∫
Ωε1

|∇uε2|2dxdτ ≤ 2k∞1

t∫
0

∫
Ωε1

(|uε1|2 + |uε2|2)dxdτ

+ εC

t∫
0

∫
Γε2

uε3u
ε
2dγxdτ + εC

t∫
0

∫
Γε2

|uε2|2dγxdτ.

Application of (4.1) leads to

t∫
0

∫
Ωε1

∂t|uε2|2dxdτ + (2d20 − Cε2)

t∫
0

∫
Ωε1

|∇uε2|2dxdτ

≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2)dxdτ + C

t∫
0

∫
Ωε2

(|uε3|2 + ε2|∇uε2|2)dxdt.

(4.28)

We choose ϕ3 = uε3 as a test function in (4.6) to calculate

t∫
0

∫
Ωε2

∂t|uε3|2dxdτ + (2d30 − Cε2)

t∫
0

∫
Ωε2

|∇uε3|2dxdτ

≤ C
t∫

0

∫
Ωε2

|uε3|2dxdτ + C

t∫
0

∫
Ωε1

(|uε2|2 + ε2|∇uε2|2)dxdτ.

(4.29)

Setting ϕ4 = uε4 in (4.7), we are led to

t∫
0

∫
Ωε1

∂t|uε4|2dxdτ +2d40

t∫
0

∫
Ωε1

|∇uε4|2dxdτ ≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε4|2)dxdτ. (4.30)

Putting together (4.27) – (4.30), we obtain

t∫
0

∫
Ωε1

∂t
(
|uε1|2+|uε2|2+|uε4|2

)
dxdτ+

t∫
0

∫
Ωε2

∂t|uε3|2dxdτ+(2d20−Cε2)

t∫
0

∫
Ωε1

|∇uε2|2dxdτ

+(2d10−Cε2)

t∫
0

∫
Ωε1

|∇uε1|2dxdτ+(2d30−Cε2)

t∫
0

∫
Ωε2

|∇uε3|2dxdτ+2d40

t∫
0

∫
Ωε1

|∇uε4|2dxdτ

(4.31)
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≤ C
t∫

0

∫
Ωε1

(|uε1|2 + |uε2|2 + |uε4|2)dxdτ + C

t∫
0

∫
Ωε2

|uε3|2dxdτ.

Choosing ε small enough and applying Gronwall’s inequality, we have for
j ∈ {1, 2, 4}

‖ uεj ‖L∞(0,T ;L2(Ωε))≤ C, ‖uε3‖L∞(0,T ;L2(Ωε1)) ≤ C, (4.32)

‖ ∇uεj ‖L2(0,T ;L2(Ωε))≤ C, ‖∇uε3‖L2(0,T ;L2(Ωε1)) ≤ C (4.33)

We set as a test function ϕ5 = uε5 in (4.8)

ε

2

t∫
0

∫
Γε1

∂t|uε5|2dγxdτ ≤ εC
t∫

0

∫
Γε1

uε1u
ε
5dγxdτ,

ε

t∫
0

∫
Γε1

∂t|uε5|2dγxdτ ≤ εC
t∫

0

∫
Γε1

(|uε1|2 + |uε5|2)dγxdτ.

Applying Gronwall’s inequality together with (4.1), we obtain

ε

∫
Γε1

|uε5(t)|2dγx ≤ C
t∫

0

∫
Ωε1

(|uε1|2 + ε2|∇uε1|2)dxdτ + C

∫
Γε1

|uε5(0)|2dγx.

Hence by (4.32) and (4.33), ε‖uε5‖L∞((0,T )×Γε1) ≤ C. We take ϕ5 = ∂tu
ε
5 in (4.8)

as a test function

ε

t∫
0

∫
Γε1

|∂tuε5|2dγxdτ ≤ εC
t∫

0

∫
Γε1

uε1∂tu
ε
5dγxdτ,

ε(1− Cδ)
t∫

0

∫
Γε1

|∂tuε5|2dγxdτ ≤ C
t∫

0

∫
Ωε

(|uε1|2 + ε2|∇uε1|2)dxdτ.

For convenient δ and by (4.32) and (4.33), we have

ε ‖ ∂tuε5 ‖L2((0,T )×Γε1)≤ C. (4.34)

Now we proceed with additional a priori estimates for the sequence of solutions defined
in the domain and on the boundary.

Lemma 4.3.2. Assume (A1) – (A6). The following ε-independent bounds hold:

‖ ∇∂tuε2 ‖L2(0,T ;L2(Ωε)) + ‖ ∇∂tuε3 ‖L2(0,T ;L2(Ωε1))≤ C, (4.35)

‖ ∂tuεj ‖L2(0,T ;L2(Ωε)) + ‖ ∂tuε3 ‖L2(0,T ;L2(Ωε1))≤ C, (4.36)

for j ∈ {1, 2, 4} and C is a generic constant independent of ε.
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Proof. Now, we focus on obtaining ε−independent estimates on the time derivative of
the concentrations. Firstly, we choose ϕ1 = ∂tu

ε
1. We get

t∫
0

∫
Ωε

∂tu
ε
1∂tu

ε
1dxdτ +

t∫
0

∫
Ωε

dε1∇uε1∇∂tuε1dxdτ

= −
t∫

0

∫
Ωε

kε1u
ε
1∂tu

ε
1dxdτ +

t∫
0

∫
Ωε

kε2u
ε
2∂tu

ε
1dxdτ − ε

t∫
0

∫
Γε1

ηε∂tu
ε
1dγxdτ.

(1− Cδ)
t∫

0

∫
Ωε

|∂tuε1|2dxdτ + d10

∫
Ωε

|∇uε1|2dx ≤ d10

∫
Ωε

|∇uε1(0)|2dx

+ C

t∫
0

∫
Ωε

(|uε1|2 + |uε2|2)dxdτ − ε
t∫

0

∫
Γε1

ηε∂tu
ε
1dγxdτ.

(4.37)

The last term in (4.37) can be estimated as follows:

|ε
t∫

0

∫
Γε1

ηε∂tu
ε
1dγxdτ | = |ε

t∫
0

∫
Γε1

kε3R(uε1)Q(uε5)∂tu
ε
1dγxdτ |

= |ε
t∫

0

∫
Γε1

kε3∂t(

uε1∫
0

R(α)dαQ(uε5))dγxdτ−ε
t∫

0

∫
Γε1

kε3(

uε1∫
0

R(α)dα)∂uε5Q(uε5))∂tu
ε
5dγxdτ |,

≤ εC
∫
Γε1

|uε1(t)|2dγx + εC

∫
Γε1

|uε1(0)|2dγx + εC

t∫
0

∫
Γε1

|uε1|2|∂tuε5|dγxdτ

By Claim 4.2.3, uε1 is bounded on Γε1

ε|
t∫

0

∫
Γε1

ηε∂tu
ε
1dγxdτ | ≤ C + Csup[0,T ]

∫
Ωε

(|uε1(t)|2 + ε2|∇uε1(t)|2)dx+ C

∫
Ωε

(|uε1(0)|2

+ ε2|∇uε1(0)|2)dx+ Csup[0,T ]

∫
Ωε

(|uε1|2 + ε2|∇uε1|2)dx+ εC

t∫
0

∫
Γε1

|∂tuε5|2dγxdτ,

(4.38)
Combine (4.38) in (4.37) and then choose δ > 0 conveniently. Using Lemma 4.3, and
taking supremum over the time variable, we get

T∫
0

∫
Ωε

|∂tuε1|2dxdτ + d10sup[0,T ]

∫
Ωε

|∇uε1|2dx ≤ C.

Testing (4.5) with ϕ2 = ∂tu
ε
2 gives

t∫
0

∫
Ωε1

|∂tuε2|2dxdτ +
d20

2

∫
Ωε1

|∇uε2|2dx ≤ d20

2

∫
Ωε1

|∇uε2(0)|2dx



4.3. ε-independent estimates 53

+
C

δ

t∫
0

∫
Ωε1

|uε1|2dxdτ + C

∫
Ωε1

(|uε2|2 + |∇uε1|2)dx+ Cδ

t∫
0

∫
Ωε1

|∂tuε2|2dxdτ

+
C

δ

t∫
0

∫
Ωε2

(|uε3|2 + |∇uε3|2)dxdτ + Cδ

t∫
0

∫
Ωε1

(|∂tuε2|2 + ε2|∇∂tuε2|2)dxdτ.

Choosing δ > 0 small enough, we are led to

t∫
0

∫
Ωε1

|∂tuε2|2dxdτ ≤ C(1 + ε2

t∫
0

∫
Ωε1

|∇∂tuε2|2dxdτ). (4.39)

We consider now the Dirichlet data uD3 to be extended in whole Ω. Testing now (4.6)
with ϕ3 = ∂t(u

ε
3 − uD3 ) leads to

t∫
0

∫
Ωε1

|∂tuε3|2dxdτ +
d30

2

∫
Ωε1

|∇uε3|2dxdτ ≤ d30

2

∫
Ωε1

|∇uε3(0)|2dxdτ

+
1

2

t∫
0

∫
Ωε1

(|∂tuε3|2 + |∂tuD3 |2)dxdτ +
d30

2

t∫
0

∫
Ωε1

(|∇uε3|2 + |∇∂tuD3 |2)dxdτ

+ εC

t∫
0

∫
Γε2

(
|uε3|2 + |uε2|2

)
dγxdτ + εC

t∫
0

∫
Γε2

(
|∂tuε3|2 + |∂tuD3 |2

)
dγxdτ.

Using (4.1), (A6), (4.32) and (4.33), we end up with

t∫
0

∫
Ωε1

|∂tuε3|2dxdτ ≤ C(1 + ε2

t∫
0

∫
Ωε1

|∇∂tuε3|2dxdτ). (4.40)

From (4.7), we get

t∫
0

∫
Ωε

|∂tuε4|2dxdτ ≤ C. (4.41)

To estimate (4.39) and (4.40), we proceed first with differentiating the partial differ-
ential equation in (2.17) with respect to time and then testing the result with ∂tu

ε
2.

Consequently, we derive

1

2

∫
Ωε1

|∂tuε2|2dx+ d20

t∫
0

∫
Ωε1

|∇∂tu2
ε|2dx ≤ 1

2

∫
Ωε1

|∂tuε2(0)|2dx

+ C

t∫
0

∫
Ωε1

(|∂tuε1|2 + |∂tuε2|2)dxdτ + εC

t∫
0

∫
Γε2

(|∂tuε2|2 + |∂tuε3|2)dγxdτ.
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Using (4.1), it yields

1

2

∫
Ωε1

|∂tuε2|2dx+ (d20 − Cε2)

t∫
0

∫
Ωε1

|∇∂tu2
ε|2dxdτ ≤ 1

2

∫
Ωε1

|∂tuε2(0)|2dx

+ C

t∫
0

∫
Ωε1

|∂tuε1|2dτdx+ C

t∫
0

∫
Ωε2

(|∂tuε3|2 + ε2|∇∂tuε3|2)dτdx+ C

t∫
0

∫
Ωε1

|∂tuε2|2dτdx.

(4.42)
Differentiating now the partial differential equation (2.18) with respect to time and
then testing the result with ∂t(u

ε
3 − uD3 ), we get

1

2

∫
Ωε1

|∂tuε3|2dx+ d30

t∫
0

∫
Ωε1

|∇∂tu3
ε|2dxdτ ≤ 1

2

∫
Ωε1

|∂tuε3(0)|2dx+

t∫
0

∫
Ωε1

∂ttu
ε
3∂tu3

Ddxdτ

+

t∫
0

∫
Ωε1

dε3∇∂tu3
ε∇∂tu3

Ddxdτ + εC

t∫
0

∫
Γε2

(|∂tu2
ε|2 + |∂tu3

ε|2 + |∂tu3
D|2)dγxdτ.

(4.43)
The term with second-time derivative can be estimated by

t∫
0

∫
Ωε1

∂ttu
ε
3∂tu3

Ddxdτ =

t∫
0

∫
Ωε1

∂tu
ε
3∂tu3

Ddxdτ

−
t∫

0

∫
Ωε1

∂tu
ε
3(0)∂tu3

D(0)dxdτ −
t∫

0

∫
Ωε1

∂ttu3
D∂tu

ε
3dxdτ.

Using (4.1) to deal with the boundary terms and (A5), we obtain

1

2

∫
Ωε2

|∂tuε3|2dx+ (d3 − Cε2)

t∫
0

∫
Ωε2

|∇∂tu3
ε|2dxdτ ≤ C0 + C

t∫
0

∫
Ωε2

|∂tu3
ε|2dxdτ

+ C

t∫
0

∫
Ωε1

(|∂tu2
ε|2 + ε2|∇∂tu2

ε|2)dxdτ,

(4.44)

where C0 contains bounded terms. The boundary data is smooth enough and regularity
assumptions in u20 and u30 imply that ‖∂tuε2(0)‖L2(Ωε1) and ‖∂tuε3(0)‖L2(Ωε2) can be

estimated by H2-norm of the corresponding initial data. Adding (4.42) and (4.44),
and re-arranging the terms gives

(d2 − Cε2)

t∫
0

∫
Ωε1

|∇∂tu2
ε|2dxdτ + (d3 − Cε2)

t∫
0

∫
Ωε2

|∇∂tu3
ε|2dxdτ ≤ C.

Choosing ε small and taking the supremum over the time interval in question, we get

T∫
0

∫
Ωε1

|∇∂tu2
ε|2dxdτ +

T∫
0

∫
Ωε2

|∇∂tu3
ε|2dxdτ ≤ C. (4.45)
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Inserting (4.45) in (4.39) and (4.40) yields the required result.

4.4 Extension. Two-scale convergence. Com-
pactness. Cell problems

We intend to pass to the homogenization limit. We do this by following a three-steps
procedure: In Step 1, we rely on the standard extension2 results from [2] to extend all
active concentrations uε` (` ∈ {1, . . . , 4}) to Ω. As step 2, we use the notion of two-
scale convergence and the corresponding two-scale compactness result developed by
Nguetseng and Allaire to pass to the limit in the (weak form of the) partial differential
equations. In step 3, we unfold the ordinary differential equation for uε5 to replace the
oscillating boundary with a fixed one, say Γ1; see Section 4.5.2. The last two steps
will be detailed in the next section; here we focus more on the concept of two-scale
convergence and available compactness properties.

4.4.1 Extension step

Since the concentrations are defined in the Ωε1 and Ωε2, to get macroscopic equations
we need to extend them into Ω. Note that according to our assumptions Ωε1 and Ωε2
are connected, standard results apply.

Remark 4.4.1. Take ϕε ∈ L2(0, T ;H1(Ωε)). Note that since our microscopic ge-
ometry is sufficiently regular (and phases are connected), we can speak in terms of
extensions. Recall the linearity of the extension operator

Pε : L2(0, T ;H1(Ωε))→ L2(0, T ;H1(Ω))

defined by Pεϕε = ϕ̃ε. To keep notation simple, we denote the extension ϕ̃ε again by
ϕε.

Lemma 4.4.2. (Extension) Consider the geometry described in Section 4.1.1 There
exists an extension ũε of uε such that

1. ‖ ũiε ‖L2(Y )≤ Ĉ ‖ uεi ‖L2(Y1) for i ∈ {1, 2, 4}, uε ∈ L2(Y1)

2. ‖ ∇ũiε ‖L2(Y )≤ Ĉ ‖ ∇uεi ‖L2(Y1) for ∇uε ∈ L2(Y1)

3. ‖ ũiε ‖H1(Ω)≤ Ĉ ‖ uεi ‖H1(Ωε1) for uε ∈ H1(Ωε1)

Similar estimates hold for the concentration living in the air phase.

Proof. For the proof of this Lemma, see Section 2 in [39] or compare Lemma 5,
p.214 in [68].

We identify uε with the extension ũε. For the extended functions, we obtain a
priori estimate by taking supremum norm of uε.

Lemma 4.4.3. For any solution of problem (4.4)-(4.7), the following estimate holds:

‖ uiε ‖L∞(Ω)≤ C i ∈ {1, 2, 3, 4}, (4.46)

where C is a constant independent on ui
ε.

The estimate (4.46) follows from the nonnegativity of ui
ε.

2Since we deal here with an oscillating system posed in a perforated domain, the natural
next step is to extend all concentrations to the whole Ω.
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4.4.2 Two-scale convergence. Compactness. Basic conver-
gences

In this subsection, the convergence of the sequence of solutions to the microscopic
problem (4.4) – (4.8) associated with a sequence of parameters ε approaching to zero
is discussed. Since we deal with periodic microstructures, the most natural type of
convergence is the one presented in the next Definition:

Definition 4.4.4. Let {uε} be a sequence of functions in L2((0, T )× Ω) (Ω being an
open set of Rn) where ε being a sequence of strictly positive numbers tends to zero.
{uε} is said to two-scale converge to a unique function u0 ∈ L2((0, T )×Ω× Y ) if and
only if for any φ ∈ C∞0 ((0, T )× Ω, C∞# (Y ))3, we have

lim
ε→0

T∫
0

∫
Ω

uεφ(t, x,
x

ε
)dxdt =

T∫
0

∫
Ω

∫
Y

u0(t, x, y)φ(t, x, y)dydxdt. (4.47)

We denote (4.47) by uε
2
⇀ u0.

The following compactness results allow us to extract converging sequences from
the bounded sequences.

Theorem 4.4.5. (i) From each bounded sequence {uε} in L2((0, T )×Ω), one can
extract a subsequence which two-scale converges to u0 ∈ L2((0, T )× Ω× Y ).

(ii) Let {uε} be a bounded sequence in H1((0, T ) × Ω), then there exists ũ ∈
L2((0, T )×Ω;H1

#(Y )/R) such that up to a subsequence {uε} two-scale converges

to u0 ∈ L2((0, T )× Ω) and ∇uε 2
⇀ ∇xu0 +∇yũ.

Definition 4.4.6. A sequence of functions {uε} in L2((0, T )×Γε) is said to two-scale
converge to a limit u0 ∈ L2((0, T ) × Ω × Γ) if and only if for any ψ ∈ C∞0 ((0, T ) ×
Ω, C∞# (Γ)) we have

lim
ε→0

ε

T∫
0

∫
Γε

uεφ(t, x,
x

ε
)dγxdt =

T∫
0

∫
Ω

∫
Γ

u0(t, x, y)φ(t, x, y)dγydxdt.

Theorem 4.4.7. (i) From each bounded sequence {uε} ∈ L2((0, T )×Γε), one can
extract a subsequence uε which two-scale converges to a function u0 ∈ L2((0, T )×
Ω× Γ).

(ii) If a sequence of functions {uε} is bounded in L∞((0, T )×Γε), then uε two-scale
converges to a function u0 ∈ L∞((0, T )× Ω× Γ).

Proof. For the proof of (i), see [104, 10], while for the proof of (ii), see [83].
Estimates in Lemma 4.3.1 and Lemma 4.3.2 lead to the following convergence

results:

Lemma 4.4.8. (Compactness) Assume (A1) – (A6). Then for i ∈ {1, 2, 3, 4}, it holds:

(a) uεi ⇀ ui weakly in L2(0, T ;H1(Ω),

3C∞# (Y ) – the space of infinitely differentiable functions in Rn that are Y -periodic.
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(b) uεi
∗
⇀ ui weakly in L∞((0, T )× Ω),

(c) ∂tu
ε
i ⇀ ∂tui weakly in L2((0, T )× Ω),

(d) uεi → ui strongly in L2(0, T ;Hβ(Ω)) for 1
2
< β < 1,

also
√
ε ‖ uεi − ui ‖L2((0,T )×Γε)→ 0 as ε→ 0,

(e) uεi
2
⇀ ui,∇uεj

2
⇀ ∇xuj + ∇yuj1, uj1 ∈ L2((0, T ) × Ω;H1

#(Y1)/R), j ∈ {1, 2},
∇uε3

2
⇀ ∇xu3 +∇yu31, u31 ∈ L2((0, T )× Ω;H1

#(Y2)/R),

(f) uε5
2
⇀ u5, and u5 ∈ L∞((0, T )× Ω× Γ1),

(g) ∂tu
ε
5

2
⇀ ∂tu5, and ∂tu5 ∈ L2((0, T )× Ω× Γ1).

Proof. (a) and (b) are obtained as a direct consequence of the fact that uεi is
bounded in L2(0, T ;H1(Ω)) ∩ L∞((0, T ) × Ω); up to a subsequence (still denoted by
uεi ) u

ε
i converges weakly to ui in L2(0, T ;H1(Ω))∩L∞((0, T )×Ω). A similar argument

gives (c). To get (d), we use the compact embedding Hβ′(Ω) ↪→ Hβ(Ω), for β ∈ ( 1
2
, 1)

and 0 < β < β′ ≤ 1 (since Ω has Lipschitz boundary), see Proposition 5.4.4 in [132]. We
have W := {ui ∈ L2(0, T ;H1(Ω)) and ∂tui ∈ L2((0, T )×Ω) for all i ∈ {1, 2, 3, 4}}. For
a fixed ε, W is compactly embedded in L2(0, T ;Hβ(Ω)) by the Lions-Aubin Lemma;
cf. e.g. [80]. Using the trace inequality (4.2)

√
ε ‖ uεi − ui ‖L2((0,T )×Γε) ≤ C ‖ uεi − ui ‖L2(0,T ;Hβ(Ωε))

≤ C ‖ uεi − ui ‖L2(0,T ;Hβ(Ω))

where ‖ uεi − ui ‖L2(0,T ;Hβ(Ω))→ 0 as ε → 0. To investigate (e), (f) and (g), we use
the notion of two-scale convergence as indicated in Definition 4.4.4 and 4.4.6. Since

uεi are bounded in L2(0, T ;H1(Ω)), up to a subsequence uεi
2
⇀ ui in L2((0, T ) × Ω),

∇uεj
2
⇀ ∇xuj + ∇yuj1, uj1 ∈ L2((0, T ) × Ω;H1

#(Y1)/R), j ∈ {1, 2}, ∇uε3
2
⇀ ∇xu3 +

∇yu31, u31 ∈ L2((0, T ) × Ω;H1
#(Y2)/R). By Theorem 4.4.7, uε5 in L∞((0, T ) × Γε1)

converges two-scale to u5 L
∞((0, T )×Ω×Γ1) and ∂tu

ε
5 converges two-scale to ∂tu5 in

L2((0, T )× Ω× Γ1).

4.4.3 Cell problems

To be able to formulate the limit (upscaled) equations in a compact manner, we define
two classes of cell problems (local auxiliary problems) very much in the spirit of [67].
One class of problems refers to the water-filled parts of the pores, while the second
class refers to the air-filled part of the pores.

Definition 4.4.9. The cell problems for the water-filled part are given by−∇y.(d`(y)∇yωk` ) =
∑3
i=1 ∂ykd`ki(y) in Y1,

−d`(y)
∂ωk`
∂n

=
∑3
i=1 d`ki(y)ni on Γ1 ∪ Γ2,

(4.48)

for all k ∈ {1, 2, 3}, ` ∈ {1, 2, 4}, ωk` are Y -periodic in y.
The cell problems for the air-filled part are given by−∇y.(d3(y)∇yωk3 ) =

∑3
i=1 ∂ykd3ki(y) in Y2,

−d3(y)
∂ωk3
∂n

=
∑3
i=1 d3ki(y)ni on Γ1

(4.49)

for all k ∈ {1, 2, 3}, ωk3 are Y -periodic in y.
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Note that standard theory of linear elliptic problems with periodic boundary con-
ditions [35] ensures the solvability of the families of cell problems (4.48) – (4.49).

4.5 Derivation of two-scale limit equations

First we pass to the limit in the weak formulation of the partial differential equations
and in Subsection 4.5.2, we pass to the limit in ordinary differential equation (4.8). We
conclude this section with stating the strong formulation of two-scale problem.

Theorem 4.5.1. Assume (A1) – (A6). The sequences of the solutions of the weak
formulation (4.4) – (4.8) converges to the weak solution ui, i ∈ {1, 2, 3, 4} as ε→ 0 such
that uj ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)), j ∈ {1, 2, 4}, u3 ∈ uD3 +L2(0, T ;H1

ΓD (Ω)),
∂tu3 ∈ ∂tuD3 + L2(0, T ;L2(Ω)) and u5 ∈ H1(0, T ;L2(Ω × Γ1)). The weak formulation
of the two-scale limit equations is given by

T∫
0

∫
Ω

(∂tui(t, x)− Fi(u))φi(t, x)dxdt +

T∫
0

∫
Ω

Di∇ui(t, x)∇φidxdt = 0, (4.50)

where

F1(u) := −k̃1u1(t, x) + k̃2u2(t, x)− 1

|Y1|

∫
Γ1

k3(y)R(u1(t, x))Q(u5(t, x, y))dγy,

F2(u) := k̃1u1(t, x)− k̃2u2(t, x) +
|Y2|
|Y1|

ãu3(t, x)− b̃u2(t, x),

F3(u) := −ãu3(t, x) +
|Y1|
|Y2|

b̃u2(t, x), F4(u) := k̃1u1(t, x),

(D`)jk :=
1

|Y1|

3∑
i=1

∫
Y1

((d`)jk + (d`)ik∂yiω
j
` )dy, for ` ∈ {1, 2, 4}, j, k ∈ {1, 2, 3}

(D3)jk :=
1

|Y2|

3∑
`=1

∫
Y2

((d3)jk + (d3)`k∂y`ω
j
3)dy, b̃ :=

1

|Y1|

∫
Γ1

b(y)dγy

ã :=
1

|Y2|

∫
Γ1

a(y)dγy, k̃m :=
1

|Y1|

∫
Y1

km(y)dy, m ∈ {1, 2},

with the initial values ui(0, x) = ui0(x) for x ∈ Ω and ωj` , ω
j
3 being solutions of the cell

problems defined in Definition 4.4.9. Furthermore, we have

T∫
0

∫
Ω×Γ1

(
∂tu5(t, x, y)− k3(y)R(u1(t, x))Q(u5(t, x, y))

)
φ5(t, x, y)dtdxdγy = 0, (4.51)

with u5(0, x, y) = u50(x, y) for x ∈ Ω, y ∈ Γ1. Also ϕj ∈ L2(0, T ;H1(Ω)), j ∈ {1, 2, 4},
ϕ3 ∈ L2(0, T ;H1

ΓD (Ω)) and ϕ5 ∈ L2((0, T )× Ω× Γ1).



4.5. Derivation of two-scale limit equations 59

4.5.1 Passing to ε→ 0 in (4.4) – (4.7)

Proof. We apply two-scale convergence techniques together with Lemma 4.4.8 to get
macroscopic equations. We take test functions incorporating the following oscillating
behavior ϕi(t, x) = φi(t, x) + εψi(t, x,

x
ε
), φj ∈ C∞((0, T ) × Ω), ψj ∈ C∞((0, T ) ×

Ω, ;C∞# (Y )), i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 4} and φ3 ∈ C∞0 ((0, T ) × Ω), ψ2 ∈ C∞0 ((0, T ) ×
Ω, ;C∞# (Y )). Applying two-scale convergence yields for i ∈ {1, 2, 4}

|Y1|
T∫

0

∫
Ω

∂tuiφi(t, x)dxdt+

T∫
0

∫
Ω

∫
Y1

di(y)(∇xui(t, x) (4.52)

+ ∇yũi(t, x, y))(∇xφi(t, x) +∇yψi(t, x, y))dydxdt =

T∫
0

∫
Ω

Fi(u)φi(t, x)dxdt,

and

|Y2|
T∫

0

∫
Ω

∂tu3φ3(t, x)dxdt+

T∫
0

∫
Ω

∫
Y2

d3(y)(∇xu3(t, x) (4.53)

+ ∇yũ3(t, x, y))(∇xφ3(t, x) +∇yψ3(t, x, y))dydxdt =

T∫
0

∫
Ω

F3(u)φ3(t, x)dxdt,

where

T∫
0

∫
Ω

F1(u)φ1(t, x)dxdt= lim
ε→0

T∫
0

∫
Ω

(
− kε1uε1+ kε2u

ε
2

)
(φ1(t, x)+εψ1(t, x,

x

ε
))dxdt

− lim
ε→0

ε

T∫
0

∫
Γε1

ηε(uε1, u
ε
5)(φ1(t, x) + εψ1(t, x,

x

ε
))dγxdt.

Using Lemma 4.4.8 and (4.8), we have

T∫
0

∫
Ω

F1(u)φ1(t, x)dxdt =

T∫
0

∫
Ω

∫
Y1

(
− k1(y)u1(t, x)+ k2(y)u2(t, x)

)
φ1(t, x)dydxdt

− lim
ε→0

ε

T∫
0

∫
Γε1

∂tu
ε
5(φ1(t, x) + εψ1(t, x,

x

ε
))dγxdt,

T∫
0

∫
Ω

F1(u)φ1(t, x)dxdt = |Y1|
T∫

0

∫
Ω

(
− k̃1u1(t, x) + k̃2u2(t, x)

)
φ1(t, x)dxdt

−
T∫

0

∫
Ω

∫
Γ1

∂tu5φ1(t, x)dγydxdt.
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T∫
0

∫
Ω

F2(u)φ2(t, x)dxdt= lim
ε→0

T∫
0

∫
Ω

(
kε1u

ε
1 − kε2uε2

)
(φ2(t, x)+εψ2(t, x,

x

ε
))dxdt

+ lim
ε→0

ε

T∫
0

∫
Γε2

(
aεuε3 − bεuε2

)
(φ2(t, x) + εψ2(t, x,

x

ε
))dγxdt.

Passage to the limits ε→ 0 gives

T∫
0

∫
Ω

F2(u)φ2(t, x)dxdt = |Y1|
T∫

0

∫
Ω

(
k̃1u1(t, x)− k̃2u2(t, x)

)
φ2(t, x)dxdt

+

T∫
0

∫
Ω

∫
Γ2

(
a(y)u3(t, x)− b(y)u2(t, x)

)
φ2(t, x)dxdydt,

= |Y1|
T∫

0

∫
Ω

(
− k̃1u1(t, x) + k̃2u2(t, x)

)
φ2(t, x)dxdt

+

T∫
0

∫
Ω

(
|Y2|ãu3(t, x)− |Y1|b̃u2(t, x)

)
φ2(t, x)dxdt.

We also obtain

T∫
0

∫
Ω

F3(u)φ3(t, x)dxdt = −
T∫

0

∫
Ω

(
|Y2|ãu3(t, x)− |Y1|b̃u2(t, x)

)
φ3(t, x)dxdt,

T∫
0

∫
Ω

F4(u)φ4(t, x)dxdt = |Y1|
T∫

0

∫
Ω

k̃1u1(t, x)φ4(t, x)dxdt.

We set φi = 0, i ∈ {1, 2, 3, 4} in (4.52) to calculate the expression of the unknown
function ũ1 and obtain

T∫
0

∫
Ω

∫
Y1

di(y)(∇xui(t, x) +∇yũi(t, x, y))∇yψi(t, x, y)dydxdt = 0, for all ψi.

Since ũi depends linearly on ∇xui, it can be defined as

ũi :=

3∑
j=1

∂xjuiω
j
i ,

where the function ωj are the unique solutions of the cell problems defined in Definition
4.4.9. Similarly, we have ũ3 :=

∑3
j=1 ∂xju3ςj where ςj are the unique solutions of the
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cell problems defined in Definition 4.4.9. Setting ψi = 0 in (4.52), we get

T∫
0

∫
Ω

∫
Y1

3∑
j,k=1

dijk(y)(∂xkui(t, x) +

3∑
m=1

∂ykωm∂xmui(t, x))∂xjφi(t, x)dydxdt

= |Y1|
T∫

0

∫
Ω

3∑
j,k=1

(Di)jk∂xkui(t, x)∂xjφi(t, x)dxdt.

Hence, the coefficients (entering the effective diffusion tensor in water) are given by

(Di)jk :=
1

|Y1|

3∑
`=1

∫
Y1

((di)jk + (di)`k∂y`ω
j
i )dy, for i ∈ {1, 2, 4}.

Similarly, we obtain the following effective diffusion coefficient of H2S(g)

(D3)jk :=
1

|Y2|

3∑
`=1

∫
Y2

((d3)jk + (d3)`k∂y`ω
j
3)dy.

These tensors are symmetric and positive definite, see [35].

4.5.2 Passing to the limit ε→ 0 in (4.8)

It is not yet possible to pass to the limit ε → 0 in the ordinary differential equation
(4.8) with the compactness results stated in Lemma 4.4.8. To overcome this difficulty,
we use the notion of periodic boundary unfolding. It is worth mentioning that there
is an intimate link between the two-scale convergence and weak convergence of the
unfolded sequences; see [34, 83]. The key idea is to obtain strong convergence for the
unfolded sequence of uε5 instead of getting strong convergence for uε5.

Definition 4.5.2. (Boundary unfolding operator) For ε > 0, the boundary unfolding
of a measurable function φ posed on oscillating surface Γε1 is defined by

T εΓ1
φ(x, y) = φ(εy + εk), y ∈ Γ1, x ∈ Ω,

where k := [x
ε
] denotes the unique integer combination Σ3

j=1kjej of the periods such
that x− [x

ε
] belongs to Y. Note that the oscillations due to the perforations are shifted

into a second variable y which belongs to the fixed surface Γ1.

Lemma 4.5.3. If ϕε converges two-scale to ϕ and T εΓ1
ϕε converges weakly to ϕ∗ in

L2((0, T )× Ω;L2
#(Γ1)), then ϕ = ϕ∗ a.e. in (0, T )× Ω× Γ1.

Proof. The proof details for this statement can be found in Lemma 4.6 of [83].

Lemma 4.5.4. If ϕ ∈ L2((0, T )× Γε1), then the following identity holds

1

|Y | ‖T
ε

Γ1
ϕ‖L2((0,T )×Ω×Γ1) =

√
ε‖ϕ‖L2((0,T )×Γε1).

Proof. See [83, 38, 36] for the proof details.

Lemma 4.5.5. If ϕ ∈ L2(Ω), then T εΓ1
ϕ→ ϕ as ε→ 0 strongly in L2(Ω× Γ1).
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Proof. See e.g. [36, 38] for the details of the proof.

Lemma 4.5.6. If ϕ ∈ L2(Γ1), then T εΓ1
ϕ→ ϕ as ε→ 0 strongly in L2(Ω× Γ1).

Proof. The proof goes on the same line as the proof of Lemma 4.5.5; see also
Proposition 2.11(f) in [46].

Using the boundary unfolding operator T εΓ1
, we unfold the ordinary differential

equation (4.8). Changing then the variable, x = εy + εk (for x ∈ Γε1) to the fixed
domain (0, T )× Ω× Γ1, we have

∂tT εΓ1
uε5(t, x, y) = ηε(T εΓ1

uε1(t, x, y), T εΓ1
uε5(t, x, y)). (4.54)

In the remainder of this section, we prove that T εΓ1
uε5 converges strongly to u5 in

L2((0, T )×Ω×Γ1). From the two-scale convergence of uε5, we obtain weak convergence
of T εuε5 to u5 in L2((0, T ) × Ω;L2

#(Γ1)). We start with showing that {T εΓ1
uε5} is a

Cauchy sequence in L2((0, T ) × Ω × Γ1). We choose m,n ∈ N with n > m arbitrary.
Writing down (4.54) for the two different choices of ε (i.e. εi = εn and εi = εm), we
obtain after subtracting the corresponding equations that

∂t

∫
Ω×Γ1

|T εnΓ1
uεn5 − T

εm
Γ1

uεm5 |
2dγydx

=

∫
Ω×Γ1

[k3(y)R(T εnΓ1
uεn1 )Q(T εnΓ1

uεn5 )− k3(y)R(T εmΓ1
uεm1 )Q(T εmΓ1

uεm5 ))

× (T εnΓ1
uεn5 − T

εm
Γ1

uεm5 )dγydx,

≤ C

∫
Ω×Γ1

|T εnΓ1
uεn5 −T

εm
Γ1

uεm5 |
2dγydx+C

∫
Ω×Γ1

|T εnΓ1
uεn1 −T

εm
Γ1

uεm1 |
2dγydx.(4.55)

To get (4.55), we have used the uniform boundedness of T εnΓ1
uεn1 and properties of R

and Q. Since uε1 converges strongly to u1 in L2((0, T ) × Γε1) by Lemma 4.4.8 (d), we
get by Lemma 4.5.4 that∫

Ω×Γ1

|T εΓ1
uε1 − T εΓ1

u1|2dγydx = ε

∫
Γε1

|uε1 − u1|2dγx ≤ Cε. (4.56)

Since u1 is constant w.r.t. y, we have that T εΓ1
u1 → u1 strongly in L2((0, T )×Ω×Γ1)

as ε→ 0. Combining (4.56) and the strong convergence of T εΓ1
u1 to u1 to get∫

Ω×Γ1

|T εnΓ1
uεn1 − T

εm
Γ1

uεm1 |
2dγydx ≤ εn

∫
Γε1

|uεn1 − u1|2dγx + εm

∫
Γε1

|uεm1 − u1|2dγx

+

∫
Ω×Γ1

(
|T εnΓ1

u1 − u1|2 + |T εmΓ1
u1 − u1|2

)
dγydx,

≤ C(εn + εm),

while (4.55) becomes

∂t

∫
Ω×Γ1

|T εnΓ1
uεn5 − T

εm
Γ1

uεm5 |
2dγydx ≤ C

∫
Ω×Γ1

|T εnΓ1
uεn5 − T

εm
Γ1

uεm5 |
2dγydx+ C(εn + εm).
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Applying Gronwall’s inequality, we obtain:∫
Ω×Γ1

|T εnΓ1
uεn5 (t)− T εmΓ1

uεm5 (t)|2dγydx

≤
∫

Ω×Γ1

|T εnΓ1
uεn5 (0)− T εmΓ1

uεm5 (0)|2dγydx+ C(εn + εm)

≤
∫

Ω×Γ1

|T εnΓ1
u50 − u50|2dγydx+

∫
Ω×Γ1

|T εmΓ1
u50 − u50|2dγydx+ C(εn + εm).

Using Lemma 6.25, we get

‖ T εnΓ1
uεn5 − T

εm
Γ1

uεm5 ‖L2((0,T )×Ω×Γ1)−→ 0 as εn, εm → 0. (4.57)

By (4.57), {T εΓ1
uε5} is a Cauchy sequence and hence converges strongly. Thus, Q(T εΓ1

uε5)→
Q(u5) strongly in (0, T ) × Ω × Γ1 as ε → 0. Now, we take the two-scale limit in the
ordinary differential equation (4.54) to get

lim
ε→0

ε

T∫
0

∫
Ω×Γ1

∂tT εΓ1
uε5φ5(t, x, y)dxdγydτ

= lim
ε→0

ε

T∫
0

∫
Ω×Γ1

ηε(T εΓ1
uε1, T εΓ1

uε5)φ5(t, x, y)dxdγydτ. (4.58)

Consequently, we have

T∫
0

∫
Ω×Γ1

∂tu5φ5(t, x, y)dxdγydt

= lim
ε→0

ε

T∫
0

∫
Ω×Γ1

T εΓ1
kε3R(T εΓ1

uε1)Q(T εΓ1
uε5)φ5(t, x,

x

ε
)dxdγydt,

= lim
ε→0

ε

T∫
0

∫
Ω×Γ1

k3(y)R(T εΓ1
uε1)Q(u5)φ5(t, x,

x

ε
)dxdγydt

+ lim
ε→0

ε

T∫
0

∫
Ω×Γ1

k3(y)R(T εΓ1
uε1)(Q(T εΓ1

uε5)−Q(u5))φ5(t, x,
x

ε
)dxdγydt. (4.59)

By (A2) and the strong convergence of uε1, the first term on the right hand side of
(4.59) converges two-scale to

T∫
0

∫
Ω

∫
Γ1

k3(t, y)R(u1)Q(u5)φ5(t, x, y)dγydxdt,
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while the second integral of (4.59)

ε

T∫
0

∫
Ω×Γ1

k3(y)R(T εΓ1
uε1)(Q(T εΓ1

uε5)−Q(u5))φ5(t, x,
x

ε
)dxdγydt

≤ ε

 T∫
0

∫
Ω×Γ1

|k3(y)R(T εΓ1
uε1)φ5(t, x,

x

ε
)|2dxdγydt


1
2

×

 T∫
0

∫
Ω×Γ1

|Q(T εΓ1
uε5)−Q(u5)|2dxdγydt


1
2

−→ 0 as ε→ 0.

At this point, we have used again (A2) in combination with the strong convergence of
T εΓ1

uε5. So, as result of passing to the limit ε→ 0 in (4.58), we get (4.51).
Since our positivity and L∞-bounds are independent of the choice of ε, these prop-

erties hold true also for the weak solutions to the limit problem (4.50)-(4.51). Having
these bounds available, the proof of the uniqueness follows very much in the same spirit
as for the microscopic problem.

4.5.3 Strong formulation of the two-scale limit equations

Lemma 4.5.7. Assume the hypothesis of Lemma 4.4.8 to hold. Then the strong
formulation of the two-scale limit equations (for all t ∈ (0, T )) reads

∂tu1(t, x) +∇ · (−D1∇u1(t, x)) = −k̃1u1(t, x) + k̃2u2(t, x)

− 1

|Y1|

∫
Γ1

k3(y)R(u1(t, x))Q(u5(t, x, y))dγy, x ∈ Ω

n · (−D1∇u1(t, x)) = 0, x ∈ ΓD ∪ ΓN ,

u1(0, x) = u10(x), x ∈ Ω̄,

(4.60)

∂tu2(t, x) +∇ · (−D2∇u2(t, x)) = k̃1u1(t, x)− k̃2u2(t, x)

+
|Y2|
|Y1|

ãu3(t, x)− b̃u2(t, x), x ∈ Ω,

n · (−D2∇u2(t, x)) = 0, x ∈ ΓD ∪ ΓN ,

u2(0, x) = u20(x), x ∈ Ω̄,

(4.61)

∂tu3(t, x) +∇ · (−D3∇u3(t, x)) = −ãu3(t, x) +
|Y1|
|Y2|

b̃u2(t, x), x ∈ Ω,

u3(0, x) = u30(x), x ∈ Ω̄,

u3(t, x) = uD3 (x), x ∈ ΓD,

n · (−D3∇u3(t, x)) = 0, x ∈ ΓN ,

(4.62)

∂tu4(t, x) +∇ · (−D4∇u4(t, x)) = k̃1u1(t, x), x ∈ Ω,

u4(0, x) = u40(x), x ∈ Ω̄,

n · (−D4∇u4(t, x)) = 0, x ∈ ΓD ∪ ΓN ,

(4.63)
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∂tu5(t, x, y) = k3(y)R(u1(t, x))Q(u5(t, x, y)), x ∈ Ω, y ∈ Γ1,

u5(0, x, y) = u50(x, y) x ∈ Ω̄, y ∈ Γ1,
(4.64)

where Di, i ∈ {1, 2, 3, 4}, ã, b̃ and k̃j , j ∈ {1, 2} are defined in Theorem 4.5.1.

4.6 Notes and comments

We applied the concept of two-scale convergence together with the periodic boundary
unfolding to obtain the desired upscaled model equations4. In this way, we were able to
provide a rigorous justification of the formal two-scale asymptotic expansion performed
in Section 3.3 for the particular case of periodically-distributed microstructures.

We answer the question raised in Chapter 3 regarding the use of two different
asymptotic expansions (3.18) and (3.50) for treating an ordinary differential equation
posed on an oscillating boundary and justify rigorously the use of (3.18) in handling
the ordinary differential equation.

There are some limitations of the two-scale convergence technique. The most im-
portant refer to:

1. In general, most of the microstructures are not periodic;

2. Boundary layers often arise inside microstructures;

3. Time-evolving microstructures.

The notion of stochastic homogenization was developed to deal with non-periodic struc-
tures. Zhikov and Pyatnitskii in [148] introduced a two-scale convergence method for
stationary, ergodic cases on a compact probability space to homogenize a system posed
for non-periodic structures of a certain class. This method was recently extended in
[64] e.g. (also see [65]) to capture the effect of random geometries.

In many real world applications, boundary layers often arise at various length scales;
see e.g., [71, 82]. They are induced by the presence of Dirichlet data or of especially
ε−scaled geometries, see e.g. [6, 9, 21]. This averaging is cumbersome especially if one
wants to capture information from the boundary layer.

Averaging scenarios with free and/or moving interfaces have been studied formally,
for instance, in [79, 127]. Most such problems are hard to analyze mathematically and
even basic solvability results may not hold. Here, we preferred to dwell on a class of
x-dependent microstructures often named locally-periodic structures.

Local periodicity is included in the model equations in two ways: either the equa-
tions are defined in the locally-periodic domain or the transport coefficient and reaction
rates are space-dependent in a non-monotonic way, see Remark 2.5.1.1 and [22].

We close this chapter by pointing out two multiscale convergence notions that
possibly can treat some of the locally-periodic geometries. R. Alexandre introduced in
[7] the notion of θ − 2 convergence:

Definition 4.6.1. Let uε be a bounded sequence of functions in L2(Ω). uε is said to
converge θ− 2 to uθ ∈ L2(Ω;L2

#θ)
5 as ε→ 0 if and only if for any ϕ ∈ D(Ω;C∞#θ)

6,we

4The rigorous justification of the distributed-microstructure model derived in Subsection
3.3.2 of Chapter 3 for uniformly periodic and locally periodic domains is still to be done.

5L2(Ω;L2
#θ)− the set of functions ϕ(·, z) which are L2 in x ∈ Ω for all z ∈ Y (x) (Y (x) is

defined in (4.66)) and for each x ∈ Ω, the function ϕ(x, ·) is L2 and Y (x)−periodic.
6D(Ω;C∞#θ)− the set of test functions ϕ(·, z) which are C∞ in x ∈ Ω for all z ∈ Y (x) and

for each x ∈ Ω, the function ϕ(x, ·) is C∞ and Y (x)−periodic.
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have

lim
ε→0

∫
Ω

uεϕεθ(x)dx =

∫
Ω

1

|Y (x)|

∫
Y (x)

uθ(x, z)ϕ(x, z)dzdx, (4.65)

where ϕεθ is defined by

ϕεθ(x) := ϕ(x, αεθ(x)), while ,

αεθ(x) := ∇θ(θ−1(x)) ·
[θ−1(x)− εk

ε

]
if x ∈ θ(P εk ), k ∈ Zn,

and Y (x) ≡ {z, z = ∇θ(θ−1(x))α, α ∈ Y } for x ∈ Ω. (4.66)

θ : Rn → Rn is a C2 diffeomorphism such that θ−1 has 1/2 as Lipschitz constant.
Recently, M. Ptashnyk introduced in [125] yet another extension of the two-scale con-
vergence.

Definition 4.6.2. Let uε be a bounded sequence of functions in L2(Ω). uε is said to
converge locally-periodic two-scale to a unique function u0 ∈ L2(Ω;L2(Yx)) as ε → 0
if and only if for any ϕ ∈ C1

0 (Ω;C∞# (Yx))

lim
ε→0

∫
Ω

uε(x)Σ
N(ε)
n=1 ϕ

n(x,
x

ε
)χΩεn(x)dx =

1

|Yx|

∫
Ω

∫
Yx

u0(t, x, y)ϕ(t, x, y)dydx, (4.67)

where ϕn is the locally-periodic approximation of ϕ and χΩεn(x) are characteristic func-
tions of Ωεn.

Both notions of convergence are applicable to our partial differential equations but

are not applicable to the nonlinear ordinary differential equation. In order to pass to

the limit in the ordinary differential equation, a boundary unfolding operator designed

for locally-periodic media would be needed. Note that the two concepts of locally-

periodic two-scale convergence are somewhat similar. However they apply to different

classes of microstructures [the notion by Alexandre is restricted to ball-like geometries,

whereas the one by Ptashnyk seems more general]. We refer the reader to Theorem

2.2 in [7] and Theorem 6 in [125] for the corresponding compactness results.



Chapter 5

Corrector Estimates

Corrector estimates are useful tools to assess the quality of an averaging method.
Basically, they emphasize the convergence rates measuring the error contribution
produced while approximating macroscopic solutions by microscopic ones. The
goal of this chapter is to obtain corrector estimates for our problem. We stress
here on the fact that the corrector estimates obtained in this chapter require
minimal regularity of the data and of the solutions to the cell problems, but
work only for periodic microstructures.

The chapter is organized in the following fashion: In Section 5.1, we present
a modified version of the microscopic model given in Chapter 2. We list the
assumptions on the parameters and data involved in the model and give the
definition of weak solutions. Section 5.2 is devoted to the analysis of the micro-
scopic model. We introduce in Section 5.3 the notion of the periodic unfolding
technique (introduced by Cioranescu et al. in [34]) as well as its basic proper-
ties. This section also includes the derivation of homogenized limit equations,
this time using the unfolding idea. Section 5.4 contains the proofs of both cor-
rector estimates and related technical lemmas. The main result of this chapter
is Theorem 5.4.11 which basically states convergence results.

5.1 Geometry. Microscopic model. Assump-
tions

5.1.1 Geometry

We refer to the uniformly periodic geometry discussed in Chapter 2, Subsection
2.2.3.1; see also Fig. 5.1.

The results stated in this chapter have been reported in [57] as a joint collaboration with
A. Muntean(Eindhoven) and M. Ptashnyk (Dundee).
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Figure 5.1: Left: Uniformly periodic system of connected ”tubes”. Right:
Reference pore configuration.

5.1.2 Microscopic model

We modify the model equations described in Subsection 2.5.1 by replacing the
linear reaction rates in the balance equations of for H2SO4 and H2S(aq) by
non-linear reaction rates. To simplify the calculations, we neglect the partial
differential equation for moisture. We consider here the following model equa-
tions:

∂tu
ε
1 + div(−dε1∇uε1) = −f(uε1, u

ε
2) x ∈ Ωε1, t ∈ (0, T ) (5.1)

∂tu
ε
2 + div(−dε2∇uε2) = f(uε1, u

ε
2) x ∈ Ωε1, t ∈ (0, T ) (5.2)

∂tu
ε
3 + div(−dε3∇uε3) = 0 x ∈ Ωε2, t ∈ (0, T ) (5.3)

∂tu
ε
5 = ηε(uε1, u

ε
5), x ∈ Γε1, t ∈ (0, T ). (5.4)

The system is completed with the initial conditions

uεi (x, 0) = ui0(x) x ∈ Ωε1, t = 0, i ∈ {1, 2} (5.5)

uε3(x, 0) = u30(x) x ∈ Ωε2, t = 0 (5.6)

uε5(x, 0) = u50(x) x ∈ Γε1, t = 0. (5.7)

The associated boundary conditions are

−dε1∇uε1 · nε = εη(uε1, u
ε
5) x ∈ Γε1, t ∈ (0, T ) (5.8)

−dε1∇uε1 · nε = 0 x ∈ Γε2, t ∈ (0, T ) (5.9)

−dε2∇uε2 · nε = 0 x ∈ Γε1, t ∈ (0, T ) (5.10)

−dε2∇uε2 · nε = −ε(aε(x)uε3 − bε(x)uε2) x ∈ Γε2, t ∈ (0, T ) (5.11)

−dε3∇uε3 · nε = ε(aε(x)uε3 − bε(x)uε2) x ∈ Γε2, t ∈ (0, T ) (5.12)

uε1, u
ε
2 = 0 x ∈ ∂Ω ∩ ∂Ωε1, t ∈ (0, T ) (5.13)

uε3 = 0 x ∈ ∂Ω ∩ ∂Ωε2, t ∈ (0, T ). (5.14)

Assumption 5.1.1. We assume the following restriction on the data and model
parameters:
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(A1) dk, ∂tdk ∈ L∞(0, T ;L∞# (Y ))3×3, k ∈ {1, 2, 3}, (dk(t, x)ξ, ξ) ≥ d0
k|ξ|2 for

d0
k > 0, for every ξ ∈ R3 and a.e. (t, x) ∈ (0, T )× Y .

(A2) k3 ∈ L∞# (Γ1) is nonnegative and η(α, β) = k3(y)R(α)Q(β), where R :
R → R+, Q : R → R+ are sublinear and locally Lipschitz continuous.
Furthermore, R(α) = 0 for α < 0 and Q(β) = 0 for β ≥ βmax, with some
βmax > 0.

(A3) f ∈ C1(R2) is sublinear and globally Lipschitz continuous in both vari-
ables, i.e. |f(α, β)| ≤ Cf (1 + |α|+ |β|), |f(α1, β1)− f(α2, β2)| ≤ CL(|α1 −
α2|+ |β1 − β2|) for some CL, Cf > 0, and f(α, β) = 0 for α < 0 or β < 0.

(A4) a, b ∈ L∞# (Γ2), a(y) and b(y) are positive for a.e. y ∈ Γ2 and there exist
M2, M3 such that b(y)M2 = a(y)M3 for a.e. y ∈ Γ2.

(A5) Initial data (u1(0), u2(0), u3(0), u5(0)) ∈ [H2(Ω) ∩ H1
0 (Ω) ∩ L∞(Ω)]3 ×

L∞per(Γ1) are nonnegative and u2(0) ≤M2, u3(0) ≤M3 a.e. in Ω.

The oscillating coefficients are periodic and are defined in Subsection 2.5.1.1.
Furthermore, we define the space

H1
∂Ω(Ωεi ) := {u ∈ H1(Ωεi ) : u = 0 on ∂Ω ∩ ∂Ωεi}, i = 1, 2.

Definition 5.1.2. We call (uε1, u
ε
2, u

ε
3, u

ε
5) a weak solution of (6.1) – (6.8) if

uε1, u
ε
2 ∈ L2(0, T ;H1

∂Ω(Ωε2))∩H1(0, T ;L2(Ωε2)), uε3 ∈ L2(0, T ;H1
∂Ω(Ωε2))∩H1(0, T ;

L2(Ωε2)), uε5 ∈ H1(0, T ;L2(Γε1)) and the following equations are satisfied:

T∫
0

∫
Ωε1

(
∂tu

ε
1φ1+d

ε
1∇uε1∇φ1+f(uε1, u

ε
2)φ1

)
dxdt = −ε

T∫
0

∫
Γε1

η(uε1, u
ε
5)φ1dγxdt,(5.15)

T∫
0

∫
Ωε1

(
∂tu

ε
2φ2+d

ε
2∇uε2∇φ2−f(uε1,u

ε
2)φ2

)
dxdt=ε

T∫
0

∫
Γε2

(
aεuε3−bεuε2

)
φ2dγxdt,(5.16)

T∫
0

∫
Ωε2

(
∂tu

ε
3φ3 + dε3∇uε3∇φ3

)
dxdt = −ε

T∫
0

∫
Γε2

(
aε uε3−bε uε2

)
φ3dγxdt, (5.17)

ε

T∫
0

∫
Γε1

∂tu
ε
5φ5dγxdt = ε

T∫
0

∫
Γε1

η(uε1, u
ε
5)φ5dγxdt (5.18)

for all φj ∈ L2(0, T ;H1
∂Ω(Ωε1)), j ∈ {1, 2}, φ3 ∈ L2(0, T ;H1

∂Ω(Ωε2)), φ5 ∈ L2((0, T )×
Γε1) and uε1(t)→ u10, uε2(t)→ u20 in L2(Ωε1), uε3(t)→ u30 in L2(Ωε2), uε5(t)→ u50

in L2(Γε1) as t→ 0.
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5.2 Analysis of the microscopic model

This section is devoted to the well-posedness of the microscopic model (5.1) –
(5.14).

Lemma 5.2.1. (a priori estimates) Under the Assumption 5.1.1, solutions to
the problem (5.15) – (5.18) satisfy the following a priori estimates:

‖uε1‖L∞(0,T ;L2(Ωε1)) + ‖∇uε1‖L2((0,T )×Ωε1) ≤ C

‖uε2‖L∞(0,T ;L2(Ωε1)) + ‖∇uε2‖L2((0,T )×Ωε1) ≤ C,

‖uε3‖L∞(0,T ;L2(Ωε2)) + ‖∇uε3‖L2((0,T )×Ωε2) ≤ C,

ε1/2‖uε5‖L∞(0,T ;L2(Γε1)) + ε1/2‖∂tuε5‖L2((0,T )×Γε1) ≤ C,

(5.19)

where the constant C is independent of ε.

Proof. First, we consider as test functions φ1 = uε1 in (5.15), φ2 = uε2 in
(5.16), φ3 = uε3 in (5.17) and use Assumption 5.1.1, Young’s inequality, and the
trace inequality to get

ε

t∫
0

∫
Γε2

uε3u
ε
2dγxdτ ≤ C

t∫
0

∫
Ωε2

(|uε3|2 + ε2|∇uε3|2)dγxdτ

+C
t∫

0

∫
Ωε1

(|uε2|2 + ε2|∇uε2|2)dγxdτ.

Then, adding the obtained inequalities, choosing ε conveniently and applying
Gronwall’s inequality imply the first three estimates in Lemma.
Taking φ5 = uε5 as a test function in (5.18) and using (A2) from Assumption
5.1.1 and the estimates for uε1, yield the estimate for uε5. The choice of test
function φ5 = ∂tu

ε
5 in (5.18), the sublinearity of R, the boundedness of Q and

the estimates for uε1 imply the boundedness of ε1/2‖∂tuε5‖L2((0,T )×Γε1).

Lemma 5.2.2. (Positivity and boundedness) Let Assumption 5.1.1 be fulfilled.
Then the following estimates hold:

(i) uε1(t), uε2(t) ≥ 0 a.e. in Ωε1, uε3(t) ≥ 0 a.e. in Ωε2 and uε1(t), uε5(t) ≥ 0 a.e.
on Γε1, for a.e. t ∈ (0, T ).

(ii) uε1(t) ≤ M1e
A1t, uε2(t) ≤ M2e

A2t a.e. in Ωε1 , uε3(t) ≤ M3e
A3t a.e. in Ωε2,

and uε1(t) ≤ M1e
A1t, uε5(t) ≤ M5e

A5t a.e. on Γε1, for a.e. t ∈ (0, T ), with
some positive numbers Aj , Mj , where j = 1, 2, 3, 5.

Proof. (i) To show the positivity of a weak solution we consider −uε1− as
test function in (5.15), −uε2− in (5.16), −uε3− in (5.17) , and −uε5− in (5.18).
The integrals involving f(uε1, u

ε
2)uε1

−, f(uε1, u
ε
2)uε2

−and η(uε1, u
ε
5)uε1

− are zero by
Assumption 5.1.1. In the integrals over Γε2 we use the positivity of a and b and
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the estimate −uε2uε3− = −(uε2
+ − uε2−)uε3

− ≤ uε2
−uε3

−. Due to the positivity of
η, the right hand side in the equation for uε5, with the test function φ5 = −uε5−,
is nonpositive. Adding the obtained inequalities, applying both Young’s and the
trace inequalities, considering ε sufficiently small, we obtain, due to positivity
of the initial data and using Gronwall’s inequality, that

‖uε1
−(t)‖L2(Ωε1) + ‖uε2

−(t)‖L2(Ωε1) + ‖uε3
−(t)‖L2(Ωε2) + ‖uε5

−(t)‖L2(Γε1) ≤ 0,

for a.e. t ∈ (0, T ). Thus, negative parts of the involved concentrations are equal
zero a.e. in (0, T )× Ωεi , i = 1, 2, or in (0, T )× Γε1, respectively.

(ii) To show the boundedness of solutions, we consider Uε1 = (uε1− eA1tM1)+

as a test function in (5.15), Uε2 = (uε2−eA2tM2)+ in (5.16) Uε3 = (uε3−eA3tM3)+

in (5.17), where (φ −M)+ = max{0, φ −M} and Mi, i = 1, 2, 3, are positive
numbers, such that u10(x) ≤ M1, u20(x) ≤ M2, u30(x) ≤ M3 a.e in Ω, also
A2 = A3 and M2, M3 are given by (A4) in Assumption 5.1.1. Addition of the
obtained equations combined with Assumption 5.1.1 yields

τ∫
0

(∫
Ωε1

∂t(|Uε1 |2 + |Uε2 |2) + |∇Uε1 |2 + |∇Uε2 |2dx+

∫
Ωε2

∂t|Uε3 |2 + |∇Uε3 |2dx
)

dt

≤ C
τ∫

0

[ ∫
Ωε1

((
eA1tM1(Cf −A1) + Cfe

A2tM2

)
Uε1 + |Uε1 |2 + |Uε2 |2 + ε2|∇Uε2 |2

+
(
Cfe

A1tM1 + eA2tM2(Cf −M2)
)
Uε2

)
dx+

∫
Ωε2

(
|Uε3 |2 + ε2|∇Uε3 |2

)
dx
]
dt.

ChoosingA1, M1 such that Cfe
A1tM1+Cfe

A2tM2−A1e
A1tM1 ≤ 0 and Cfe

A1tM1+
Cfe

A2tM2 − A2e
A2tM2 ≤ 0 for a.e. t ∈ (0, T ), and ε sufficiently small, Gron-

wall’s inequality implies the estimates for uε1, uε2, uε3, stated in Lemma 5.2.2.
Lemma 4.2.3 in Chapter 4 and H1-estimates for uε1 in Lemma 5.2.1 imply
uε1(t) ≥ 0 and uε1(t) ≤ eA1tM1 a.e on Γε1 for a.e. t ∈ (0, T ). The assump-
tion on η and equation (5.18) with the test function (uε5 − eA5tM5)+, where
u50(x) ≤M5 a.e. on Γ1, yield

ε

τ∫
0

∫
Γε1

(1

2
∂t|(uε5 − eA5tM5)+|2 +A5e

A5tM5(uε5 − eA5tM5)+
)

dγxdt =

ε

τ∫
0

∫
Γε1

η(uε1, u
ε
5)(uε5 − eA5tM5)+dγxdt ≤ Cη(A1,M1)ε

τ∫
0

∫
Γε1

(uε5 − eA5tM5)+dγxdt.

This, for convenient A5 and M5 such that Cη ≤ A5M5e
A5t, implies the bound-

edness of uε5 on Γε1 for a.e. t ∈ (0, T ).
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Lemma 5.2.3. Under Assumption 5.1.1, we obtain the following estimates in-
dependent of ε:

‖∂tuε1‖L2((0,T )×Ωε1) + ‖∂tuε2‖L2(0,T ;H1(Ωε1)) + ‖∂tuε3‖L2(0,T ;H1(Ωε2)) ≤ C.

Proof We test (5.15) with φ1 = ∂tu
ε
1, and using the structure of η, the

regularity assumptions on R, Q and the boundedness of uε1 and uε5 on Γε1, we
estimate the boundary integral by

ε

τ∫
0

∫
Γε1

η(uε1, u
ε
5)∂tu

εdγxdt

= ε

τ∫
0

∫
Γε1

kε3

(
∂t
(
R(uε1)Q(uε5)

)
−R(uε1)Q′(uε5)∂tu

ε
5

)
dγxdt

≤ C
∫
Ωε1

(
|uε1(τ)|2 + ε2|∇uε1(τ)|2 + |u10|2 + ε2|∇u10|2

)
dx

+Cε

τ∫
0

∫
Γε1

(
1 + |∂tuε5|2

)
dγxdt,

where R(α) =
α∫
0

R(ξ)dξ. Then, Assumption 5.1.1, the estimates in Lemma 5.2.1

and the fact that d0
1/2− ε2 ≥ 0 for appropriate ε, imply the estimate for ∂tu

ε
1.

In order to estimate ∂tu
ε
2 and ∂tu

ε
3, we differentiate the corresponding equa-

tions with respect to the time variable and then test the resulting partial differ-
ential equations with ∂tu

ε
2 and ∂tu

ε
3, respectively. Due to assumptions on f and

using the trace inequality, we obtain∫
Ωε1

|∂tuε2|2dx+ C

τ∫
0

∫
Ωε1

|∇∂tuε2|2dxdt ≤ C
τ∫

0

∫
Ωε2

(
|∂tuε3|2 + ε2|∇∂tuε3|2

)
dxdt

+C

τ∫
0

∫
Ωε1

(
|∂tuε1|2 + |∂tuε2|2 + |∇uε2|2

)
dxdt+

∫
Ωε1

|∂tuε2(0)|2dx, (5.20)

and ∫
Ωε2

|∂tuε3|2dx+ C

τ∫
0

∫
Ωε2

|∇∂tuε3|2dxdt ≤ C
τ∫

0

∫
Ωε2

(
|∂tuε3|2 + |∇uε3|2

)
dxdt

+

∫
Ωε2

|∂tuε3(0)|2dx+ C

τ∫
0

∫
Ωε1

(
|∂tuε2|2 + ε2|∇∂tuε2|2

)
dxdt. (5.21)
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The regularity assumptions imply that ‖∂tuε2(0)‖L2(Ωε1) and ‖∂tuε3(0)‖L2(Ωε2) can

be estimated by the H2-norm of u20 and u30. Adding (5.20) and (5.21), making
use of estimates for ∂tu

ε
1, ∇uε2 and ∇uε3, and applying Gronwall’s lemma, give

the desired estimates.

Theorem 5.2.4. (Existence and uniqueness) Let Assumption 5.1.1 be fulfilled.
Then there exists a unique global-in-time weak solution in the sense of Definition
5.1.2.

Proof. The Lipschitz continuity of f , local Lipschitz continuity of η and the
boundedness of uε1 and uε5 on Γε1 ensure the uniqueness result. The existence of
weak solutions follows by a standard Galerkin approach given in [80] by using
the a priori estimates in Lemmas 5.2.1, 5.2.2 and 5.2.3.

5.3 Upscaled model

We begin with introducing the unfolding operator and describe some of its prop-
erties. For more properties and proofs, we refer to [34, 36, 37, 110]. First we
present the unfolding operators defined for perforated domains and then we de-
fine boundary unfolding operators for ε−dependent hypersurfaces. The notion
of unfolding provides a way to connect the unfolded sequence defined on the
fixed domain to the sequences defined in ε−dependent domain. We define

(Rn)i = Rn ∩ {ε(Yi + ξ), ξ ∈ Zn},
Ω̃ε,li = {x ∈ (Rn)i : dist(x,Ωεi ) < l

√
nε},

Ω̃ε,l = {x ∈ Rn : dist(x,Ω) < l
√
nε},

Ω̃εint = Int(∪k∈Z3{εY k, εY k ⊂ Ω}),

for l = 1, 2, and Γ̃εi,int = ∪k∈Z3{εΓki , εY k ⊂ Ω}, where i = 1, 2.

Definition 5.3.1. (Domain and boundary unfolding operator)

1. For any function φ which is Lebesgue-measurable on the perforated domain
Ωεi , the unfolding operators T εYi : Ωεi → Ω× Yi, i = 1, 2, are defined

T εYi(φ)(x, y) =

φ(ε
[
x
ε

]
Y

+ εy) a.e. for y ∈ Yi, x ∈ Ω̃εint,

0 a.e. for y ∈ Yi, x ∈ Ω \ Ω̃εint,

where k := [xε ] is the unique integer combination, such that x− [xε ] belongs
to Yi. We note that for w ∈ H1(Ω) it holds that T εYi(w|Ωεi ) = T εYi(w)|Ω×Yi .

2. For any function φ which is Lebesgue-measurable on the oscillating bound-
ary Γεi , the boundary unfolding operators T εΓi : Γεi → Ω × Γi, i = 1, 2 are
defined by

T εΓi(φ)(x, y) =

φ(ε
[
x
ε

]
Y

+ εy) a.e. for y ∈ Γi, x ∈ Ω̃εint,

0 a.e. for y ∈ Γi, x ∈ Ω \ Ω̃εint.
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In the following lemma, we state some important properties of the unfolding
operator which will be used frequently in the next sections.

Lemma 5.3.2. (Some properties of the unfolding operator)

1. Let v ∈ Lp#(Yi) and vε(x) = v(xε ), then T εYi(v
ε)(x, y) = v(y).

2. For v, w ∈ Lp(Ωεi ) and φ, ψ ∈ Lp(Γεi ), it holds that T εYi(v w) = T εYi(v)T εYi(w)
and T εΓi(φψ) = T εΓi(φ)T εΓi(ψ).

3. For w ∈ Lp(Ωεi ) for p ∈ [1,∞), we have

‖T εYiw‖Lp(Ω×Yi) = |Y |1/p‖w‖Lp(Ω̃εi,int)
≤ |Y |1/p‖w‖Lp(Ωεi )

.

4. For w ∈ Lp(Γεi ), p ∈ [1,∞), we have

‖T εΓiw‖Lp(Ω×Γi) = ε1/p|Y |1/p‖w‖Lp(Γ̃εi,int)
≤ ε1/p|Y |1/p‖u‖Lp(Γεi )

.

5. If w ∈ Lp(Ω), p ∈ [1,∞), then T εYiw → w strongly in Lp(Ω× Yi) as ε→ 0.

6. For w ∈W 1,p(Ωεi ), 1 < p < +∞,

‖T εΓiw‖Lp(Ω×Γi) ≤ C
(
‖w‖Lp(Ωεi )

+ ε‖∇w‖Lp(Ωεi )
n

)
.

7. For w ∈W 1,p(Ωεi ), it holds that T εYi(w) ∈ Lp(Ω,W 1,p(Yi)) and∇yT εYi(w) =
εT εYi(∇w).

For proofs and details, see [33].
Now we state two important results which are needed in order to get strong

convergence on the boundary.

Theorem 5.3.3. Let p ∈ (1,∞) and i = 1, 2.

1. For any {φε} ⊂ W 1,p(Ωεi ) that satisfies ‖φε‖W 1,p(Ωεi )
≤ C, there exists

a subsequence of {φε} (still denoted by φε), and φ ∈ W 1,p(Ω), φ̂ ∈
Lp(Ω;W 1,p

# (Yi)), such that

T εY1
φε → φ strongly in Lploc(Ω;W 1,p(Yi)),

T εY1
φε ⇀ φ weakly in Lp(Ω;W 1,p(Yi)),

T εY1
(∇φε) ⇀ ∇φ+∇yφ̂ weakly in Lp(Ω× Yi).

2. For {φε} ⊂ W 1,p
0 (Ωεi ), such that ‖φε‖W 1,p

0 (Ωεi )
≤ C, there exists a subse-

quence of {φε} (still denoted by φε) and φ ∈W 1,p
0 (Ω), φ̂ ∈ Lp(Ω;W 1,p

# (Yi)),
such that

T εYiφε → φ strongly in Lp(Ω;W 1,p(Yi)),

T εYi(∇φε) ⇀ ∇φ+∇yφ̂ weakly in Lp(Ω× Yi).
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3. For {φε} ⊂ Lp(Γεi ) such that ε1/p‖φε‖Lp(Γεi )
≤ C there exists a subsequence

of {φε} and φ ∈ Lp(Ω× Γi) such that

T εΓi(φε) ⇀ φ weakly in Lp(Ω× Γi).

For proofs and details, see [33].

Lemma 5.3.4. (Compactness) Under Assumption 5.1.1, there exist u1, u2, u3 ∈
L2(0, T ;H1

0 (Ω)) ∩ H1(0, T ;L2(Ω)), ũ1, ũ2 ∈ L2((0, T ) × Ω;H1
#(Y1)), ũ3 ∈

L2((0, T ) × Ω;H1
#(Y2)), and u5 ∈ H1(0, T, L2(Ω × Γ1)) such that (up to a

subsequence) for ε→ 0

T εY1
(uε1)→ u1, T εY1

(uε2)→ u2 in L2((0, T )× Ω;H1(Y1)),

∂tT εY1
(uε1) ⇀ ∂tu1, ∂tT εY1

(uε2) ⇀ ∂tu2 in L2((0, T )× Ω× Y1),

T εY2
(uε3)→ u3, ∂tT εY2

(uε3) ⇀ ∂tu3 in L2((0, T )× Ω;H1(Y2)),

T εY1
(∇uε1) ⇀ ∇u1 +∇yũ1 in L2((0, T )× Ω× Y1),

T εY1
(∇uε2) ⇀ ∇u2 +∇yũ2 in L2((0, T )× Ω× Y1),

T εY2
(∇uε3) ⇀ ∇u3 +∇yũ3 in L2((0, T )× Ω× Y2),

(5.22)
and

T εΓ1
(uε5)→ u5, ∂tT εΓ1

(uε5) ⇀ ∂tu5, T εΓ1
(uε1)→ u1 in L2((0, T )× Ω× Γ1),

T εΓ2
(uε2)→ u2, T εΓ2

(uε3)→ u3 in L2((0, T )× Ω× Γ2).
(5.23)

Proof. Applying the Convergence Theorems in [34, 37] and Theorem 5.3.3 to
the estimates stated in Lemmas 5.2.1 and 5.2.3 we obtain convergence for uε1, uε2,
uε3 in (5.22). The strong convergence of uε5 is achieved by showing that T εΓ1

(uε5)
is a Cauchy sequence in L2((0, T )×Ω× Γ1). For the proof see Subsection 4.5.2
or [55] and a similar proof can be found in [83]. The a priori estimate for ∂tu

ε
5

and the convergence properties of T εΓ1
given in [38] imply the convergence of

∂tT εΓ1
(uε5). To show the other results in (5.23), we make use of the trace theorem

stated in [52], and of the strong convergence of T εY1
(uε1)

‖T εΓ1
(uε1)− u1‖L2((0,T )×Ω×Γ1) ≤ C‖T εY1

(uε1)− u1‖L2((0,T )×Ω;H1(Y1)) → 0

as ε→ 0.

Theorem 5.3.5. (Unfolded limit equations) Under the Assumption 5.1.1, the
sequences of weak solutions of the problem (5.1)-(5.14) converges as ε → 0
to a weak solution (u1, u2, u3, u5) of a macroscopic model, i.e. u1, u2, u3 ∈
L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)), u5 ∈ H1(0, T ;L2(Ω× Γ1)) and u1, u2, u3, u5
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satisfy the macroscopic equations

T∫
0

∫
Ω×Y1

∂tu1φ1 + d1(t, y)
(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

)
(∇φ1 +∇yφ̃1)

+f(u1, u2)φ1dydxdt = −
T∫

0

∫
Ω×Γ1

η(u1, u5)φ1dγydxdt,

T∫
0

∫
Ω×Y1

∂tu2φ2 + d2(t, y)
(
∇u2 +

n∑
j=1

∂u2

∂xj
∇yωj2

)
(∇φ2 +∇yφ̃1)

−f(u1, u2)φ2dydxdt =

T∫
0

∫
Ω×Γ2

(a(y)u3 − b(y)u2)φ2dγydxdt, (5.24)

T∫
0

∫
Ω×Y2

∂tu3φ3 + d3(t, y)
(
∇u3 +

n∑
j=1

∂u3

∂xj
∇yωj3

)
(∇φ3 +∇yφ̃3)dydxdt

= −
T∫

0

∫
Ω×Γ2

(a(y)u3 − b(y)u2)φ3dγydxdt,

T∫
0

∫
Ω×Γ1

∂tu5φ5dγydxdt =

T∫
0

∫
Ω×Γ1

η(u1, u5)φ5dγydxdt,

for φ1, φ2, φ3 ∈ L2(0, T ;H1
0 (Ω)), φ̃1, φ̃2 ∈ L2((0, T )×Ω;H1

#(Y1)), φ̃3 ∈ L2((0, T )×
Ω;H1

#(Y2)) and φ5 ∈ L2((0, T )×Ω×Γ1), where ωj1, ωj2 and ωj3, for j = 1, . . . , n,
are solutions of the correspondent unit cell problems

−∇y(dζ(t, y)∇yωjζ) =
∑n
k=1 ∂ykd

kj
ζ (t, y) in Y1, ζ = 1, 2, (5.25)

−dζ(t, y)∇ωjζ · ν =
∑n
k=1 d

kj
ζ (t, y)νk on Γ1 ∪ Γ2, (5.26)

ωjζ is Y -periodic,
∫
Y1

ωjζ(y)dy = 0,

−∇y(d3(t, y)∇yωj3) =
∑n
k=1 ∂ykd

kj
3 (t, y) in Y2, (5.27)

−d3(t, y)∇ωj3 · ν =
∑n
k=1 d

kj
3 (t, y)νk on Γ2, (5.28)

ωj3 is Y -periodic,
∫
Y2

ωj3(y)dy = 0.

Proof. Due to considered geometry of Ωε1 and Ωε2, we have

T∫
0

∫
Ωεi

uεφdxdt =

T∫
0

∫
Ω×Yi

T εYi(u
ε)T εYi(φ)dydxdt, i = 1, 2.
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Applying the unfolding operator to (5.15)-(5.18), using T εY1
di(t,

x
ε ) = di(t, y), i ∈

{1, 2} and T εY2
d3(t, xε ) = d3(t, y), considering the limit as ε → 0 and the con-

vergence results stated in Theorem 5.3.4, we obtain the unfolded limit problem.
The functions ũ1, ũ2, ũ3 are defined in terms of u1, u2, u3 and solutions ωj1, ω

j
2, ω

j
3

of unit cell problems (5.25) and (5.27), see [55, 83].
In a similar way, using local Lipschitz continuity of the functions η and f , and
boundedness of macroscopic solutions, which follows directly from the bounded-
ness of microscopic solutions, we can show the uniqueness of a solution of the
macroscopic model. Thus, the whole sequence of microscopic solutions converges
to a solution of the limit problem.

5.4 Definitions. Basis estimates. Periodicity
defect. Error estimates

First of all, we introduce the definition of local average and averaging operators.
Then we show some technical estimates needed in the following sections.

5.4.1 Some averaging operators

Definition 5.4.1. 1. For any φ ∈ Lp(Ωεi ), p ∈ [1,∞] and i = 1, 2, we define
the local average operator (mean in the cells) Mε

Yi
: Lp(Ωεi )→ Lp(Ω)

Mε
Yi(φ)(x) =

1

|Yi|

∫
Yi

T εYi(φ)(x, y)dy =
1

εn|Yi|

∫
ε[ xε ]+εYi

φ(y)dy, x ∈ Ω.

2. The operator QεYi : Lp(Ω̃ε,2i ) → W 1,∞(Ω), for p ∈ [1,∞] and i = 1, 2, is
defined as Q1-interpolation of Mε

Yi
(φ), i.e. QεYi(φ)(εξ) = Mε

Yi
(φ)(εξ) for

ξ ∈ Zn and

QεYi(φ)(x) =
∑

k∈{0,1}n
QεYi(φ)(εξ+εk)x̄k11 . . . x̄knn for x ∈ ε(Y+ξ), ξ ∈ Zn,

where for k = (k1, . . . , kn) ∈ {0, 1}n points x̄kll are given by

x̄kll =

xl−εξl
ε , if kl = 1,

1− xl−εξl
ε , if kl = 0.

3. The operator QεYi : W 1,p(Ωεi ) → W 1,∞(Ω), p ∈ [1,∞] and i = 1, 2, is
defined by QεYi(φ) = QεYi(P(φ))|Ωεi , where QεYi is given above. and

P : W 1,p(Ωεi )→W 1,p((Rn)i)

is an extension operator such that

‖P(φ)‖W 1,p((Rn)i) ≤ C‖φ‖W 1,p(Ωεi )
.
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Note that T εYi ◦M
ε
Yi

(φ) =Mε
Yi

(φ) for φ ∈ Lp(Ωεi ) and Mε
Yi

(φ)(x)
=MYi(T εYi(φ))(x), where MYi is the mean value over Yi, additionally∑

k∈{0,1}n
x̄k11 . . . x̄knn = 1.

See more details in [34, 59].

Definition 5.4.2. 1. For p ∈ [1 +∞] and i = 1, 2, the averaging operator
UεYi : Lp(Ω× Yi)→ Lp(Ωεi ) is defined as

UεYi(Φ)(x) =


1
|Y |
∫
Y

Φ(ε
[
x
ε

]
Y

+ εz,
{
x
ε

}
Y

)dz for a.e.x ∈ Ω̃εi,int,

0 for a.e.x ∈ Ωεi \ Ω̃εi,int.

2. UεΓi : Lp(Ω× Γi)→ Lp(Γεi ) is defined as

UεΓi(Φ)(x) =


1
|Y |
∫
Y

Φ(ε
[
x
ε

]
Y

+ εz,
{
x
ε

}
Y

)dz for a.e.x ∈ Γ̃εi,int,

0 for a.e.x ∈ Γεi \ Γ̃εi,int.

The above definition can be seen in [37, 33].
For ωi ∈ H1

#(Yi), due to ∇yωi(y) = ∇yT εYi
(
ωi
(
x
ε

))
= εT εYi

(
∇xωi

(
x
ε

))
and

UεYi(∇yω
i(y)) = εUεYi

(
T εYi
(
∇xωi

(x
ε

)))
= ε∇xωi(

x

ε
) = ∇yωi

(x
ε

)
,

we have that UεYi(∇yω
i(y)) = ∇yωi

(
x
ε

)
.

Proposition 5.4.3. 1. The operator UεYi is formal adjoint and left inverse of
T εYi , i.e for φ ∈ Lp(Ωεi ), where p ∈ [1,∞),

UεYi(T
ε
Yi(φ))(x) =

φ(x) a.e. for ∈ Ω̃εi,int,

0 a.e. for ∈ Ωεi \ Ω̃εi,int.

2. For φ ∈ Lp(Ω× Yi), it holds that ‖UεYi(φ)‖Lp(Ωεi )
≤ |Y |−1/p‖φ‖Lp(Ω×Yi).

5.4.2 Basic unfolding estimates

In this subsection, we prove some technical estimates which will be used in the
derivation of corrector estimates.

Proposition 5.4.4. For φ1 ∈ L2(0, T ;H1(Ω)) and φ2 ∈ L2(0, T ;H1(Ωεi )), we
have

‖φ1 −Mε
Yi

(φ1)‖L2((0,T )×Ω) ≤ εC‖∇φ1‖L2((0,T )×Ω),

‖φ2 −Mε
Yi

(φ2)‖L2((0,T )×Ωεi )
≤ εC‖∇φ2‖L2((0,T )×Ωεi )

.
(5.29)
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Proof. This proof goes on the lines as proved in [59]. For φ1 ∈ L2(0, T ;H1(Ω))
we can write

x→ φ1|ε(ξ+Y )(x)−Mε
Yi(φ1)(εξ) ∈ L2(0, T ;H1(εξ + εY )) with ε(ξ + Y ) ⊂ Ω.

Using Yi ⊂ Y and applying Poincaré’s inequality, we obtain

T∫
0

∫
ε(ξ+Y )

|φ1−Mε
Yi(φ1)(εξ)|2dxdt=

T∫
0

∫
ξ+Y

∣∣∣φ1(εy)− 1

|Yi|

∫
ξ+Yi

φ1(εz)dz
∣∣∣2εndydt

≤ Cεn
T∫

0

∫
ξ+Y

|∇yφ1(εy)|2dydt = Cε2

T∫
0

∫
ε(ξ+Y )

|∇xφ1(x)|2dxdt.

Then, we add up all inequalities for ξ ∈ Zn, such that ε(ξ+ Y ) ⊂ Ω, and obtain
the first estimate in (5.29). The second estimate follows from the decomposi-
tion of Ωεi into ∪ξ∈Znε(ξ + Yi) and Poincaré’s inequality similar to the previous
estimate.

Lemma 5.4.5. For φ ∈ L2(0, T ;H2(Ω̃ε,2)), φ2 ∈ L2(0, T ;H1(Ω̃ε,2i )) and ω ∈
H1

#(Yi), with i = 1, 2, we have the following estimates

∥∥∇φ−Mε
Yi(∇φ)

∥∥
L2((0,T )×Ω)

≤ εC‖φ‖L2(0,T ;H2(Ω),∥∥(Mε
Yi(∂xiφ)−QεYi(∂xiφ))∇yω

∥∥
L2((0,T )×Ωεi )

≤ εC‖φ‖L2(0,T ;H2(Ω̃ε,2))‖∇ω‖L2(Yi),∥∥QεYi(φ2)−Mε
Yi(φ2)

∥∥
L2((0,T )×Ω)

≤ εC‖∇φ2‖L2((0,T )×Ω̃ε,2i ),∥∥QεYi(φ)− φ
∥∥
L2((0,T )×Ω)

≤ εC‖∇φ‖L2((0,T )×Ω̃ε,2),∥∥QεYi(φ2)− φ2

∥∥
L2((0,T )×Ωεi )

≤ εC‖∇φ2‖L2((0,T )×Ω̃ε,2i ), (5.30)∥∥φ− T εΓi(φ)
∥∥
L2((0,T )×Ω×Γi)

≤ εC‖∇φ‖L2((0,T )×Ω) + εC‖∇φ‖L2((0,T )×Ωεi )
,∥∥∇QεYi(φ2)

∥∥
L2((0,T )×Ω)

≤ C‖∇φ2‖L2((0,T )×Ω̃ε,2i ),∥∥MYi(ω)− ω
∥∥
L2(Yi)

≤ C‖∇yω‖L2(Yi),∥∥T εYi(QεYi(φ2))−QεYi(φ2)
∥∥
L2((0,T )×Ω×Yi) ≤ εC‖∇φ2‖L2((0,T )×Ω̃ε,2i ).

Proof. The first inequality follows directly from the first estimate in (5.29)
applied to∇φ. To show the second estimate, we use the definition of the operator
QεYi and the equality

∑
k∈{0,1}n x̄

k1
1 . . . x̄knn = 1, and obtain

QεYi(φ)(x)−Mε
Yi(φ)(x) =

∑
k∈{0,1}n

(
QεYi(φ)(εξ + εk)−Mε

Yi(φ)(εξ)
)
x̄k11 . . . x̄knn .
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Then, it follows that∫
ε(ξ+Yi)

∣∣QεYi(φ)(x)−Mε
Yi(φ)(x)

∣∣2∣∣∣∇yω(x
ε

)∣∣∣2dx

≤ 2n
∑

k∈{0,1}n

∣∣QεYi(φ)(εξ + εk)−QεYi(φ)(εξ)
∣∣2εn ∫

Yi

|∇yω(y)|2 dy.

For any φ ∈W 1,p(Int(Yi ∪ (Yi + ej))), the following estimate holds

|MYi+ej (φ)−MYi(φ)| = |MYi(φ(·+ ej)− φ(·))|
≤ ‖φ(·+ ej)− φ(·)‖Lp(Yi) ≤ C‖∇φ‖Lp(Yi∪(Yi+ej)).

Thus, by the definition of QεYi(φ) and by a scaling argument this implies

|QεYi(φ)(εξ + εk)−QεYi(φ)(εξ)| ≤ εC‖∇φ‖L2(ε(ξ+Yi)∪ε(ξ+k+Yi)). (5.31)

We sum over ξ ∈ Zn with ε(ξ+Yi) ⊂ Ω̃εi and obtain the desired estimate. Using
(5.31), we obtain also that∫

Ω

|QεYi(φ2)−Mε
Yi(φ2)|2dx

≤ ε2C
∑

ε(ξ+Yi)⊂Ω̃ε,1i

εn
∑

k∈{0,1}n
‖∇φ2‖2L2(ε(ξ+Yi)∪ε(ξ+k+Yi))

≤ ε2C

∫
Ω̃ε,2i

|∇φ2|2dx.

In the same way, using the estimates stated in Proposition 5.4.4, the fourth and
fifth estimates in (5.30) follow from:

‖QεYi(φ2)− φ2‖L2((0,T )×Ωεi )

≤ ‖QεYi(φ2)−Mε
Yi(φ2)‖L2((0,T )×Ω) + ‖Mε

Yi(φ2)− φ2‖L2((0,T )×Ωεi )

≤ εC‖∇φ2‖L2((0,T )×Ω̃ε,2i ).

For φ ∈ H1(Ω), applying the trace theorem to a function in L2(Γi) yields∫
Ω×Γi

|φ− T εΓi(φ)|2dγydx ≤
∫

Ω×Γi

(
|φ−Mε

Yi(φ)|2 + |Mε
Yi(φ)− T εΓi(φ)|2

)
dγydx

≤ Cε2|Γi|
∫
Ω

|∇φ|2dx+C

∫
Ω×Yi

(
|Mε

Yi(φ)−T εYi(φ)|2+|∇y(Mε
Yi(φ)−T εYi(φ))|2

)
dydx

≤ Cε2|Γi|
∫
Ω

|∇φ|2dx+ C

∫
Ωεi

|Mε
Yi(φ)− φ|2dx+

∫
Ω×Yi

|∇yT εYi(φ))|2dydx

≤ ε2C
(∫

Ω

|∇φ|2dx+

∫
Ωεi

|∇φ|2dx
)
.
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To obtain an estimate for the gradient of QεYi(φ2) where φ2 ∈ L2(0, T ;H1(Ω̃ε)),

we define k̃j = (k1, . . . , kj−1, kj+1, . . . , kn), k̃j1 = (k1, . . . , kj−1, 1, kj+1, . . . , kn),

k̃j0 = (k1, . . . , kj−1, 0, kj+1, . . . , kn) and calculate

∂QεYi(φ2)

∂xj
=
∑
k̃j

QεYi(φ2)(εξ + εk̃j1)−QεYi(φ2)(εξ + εk̃j0)

ε
x̄k11 . . . x̄

kj−1

j−1 . . . x̄
kj+1

j+1 x̄
kn
n .

Now, by applying (5.31) we obtain the estimates for ∇QεYi(φ2) in L2((0, T )×Ω).
The estimate forMε

Yi
(ω)−ω follows directly by applying the Poincaré’s inequal-

ity. To derive the last estimate, we consider∥∥T εYi(QεYi(φ2))−QεYi(φ2))
∥∥
L2(Ω×Yi)

≤
∥∥T εYi(QεYi(φ2))−Mε

Yi(Q
ε
Yi(φ2))

∥∥
L2(Ω×Yi)+

∥∥Mε
Yi(Q

ε
Yi(φ2))−QεYi(φ2)

∥∥
L2(Ω×Yi)

≤ C
∥∥QεYi(φ2)−Mε

Yi(Q
ε
Yi(φ2))

∥∥
L2(Ωεi )

+ C
∥∥Mε

Yi(Q
ε
Yi(φ2))−QεYi(φ2)

∥∥
L2(Ω)

≤ εC
∥∥∇QεYi(φ2)

∥∥
L2(Ω)

≤ εC
∥∥∇φ2

∥∥
L2(Ω̃ε,2i )

.

Theorem 5.4.6. For any φ ∈ W 1,p(Yi), with i = 1, 2 and p ∈ (1,∞], there

exists a function φ̂ ∈W 1,p
# (Yi) such that

‖φ− φ̂‖W 1,p(Yi) ≤ C
n∑
j=1

‖φ|ej+Y ji − φY ji ‖W 1− 1
p
,p

(Y ji )
,

where Y ji = {y ∈ Ȳi | yj = 0}, for j = 1, . . . , n, and C depends only on n.

Lemma 5.4.7. For any φ ∈ W 1,p(Yi), where p ∈ (1,∞], i = 1, 2, and for

k ∈ {1, . . . , n}, there exists φ̂k ∈ Wk = {φ ∈ W 1,p(Yi), φ(·) = φ(· + ej), j ∈
{1, . . . , k}}, where as W0 = W 1,p(Yi), such that

‖φ− φ̂k‖W 1,p(Yi) ≤ C
k∑
j=1

‖φ|ej+Y ji − φ|Y ji ‖W 1−1/p(Y ji ).

The constant C is independent of n.

Theorem 5.4.8. For any φ ∈ H1(Yi, X) and X a separable Hilbert space, there

exists a unique φ̂ ∈ H1
#(Yi, X), i = 1, 2 such that φ− φ̂ ∈ (H1

#(Yi, X))⊥ and

‖φ̂‖H1(Yi,X) ≤ ‖φ‖H1(Yi,X),

‖φ− φ̂‖H1(Yi,X) ≤ C
n∑
j=1

‖φ|ej+Y ji − φ|Y ji ‖H1/2(Y ji ,X).

Lemma 5.4.7, Theorems 5.4.6 and 5.4.8 follow directly from the corresponding
Lemma 2.2, Theorem 2.1, and Theorem 2.3 in [59], replacing Y by Y1 and Y2.
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5.4.3 Periodicity defect

In the derivation of error estimates, we have to test the equations with the
gradient of the concentration to get the estimates for the gradient. Therefore
we need to have a generalization of Theorem 3.4 (for the domain without holes)
proved in [59] to the functions defined in a perforated domain.1

Proposition 5.4.9. For φ ∈ H1(Ωεi ) there exists a unique ψ̂ε ∈ L2(Ω;H1
#(Yi)),

such that

‖ψ̂ε‖L2(Ω;H1(Yi)) ≤ C
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )
n

)
,

‖T εYi(φ)− ψ̂ε‖H−1(Ω;H1(Yi)) ≤ Cε
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )
n

)
.

Proof.We consider

Kj = Int(Yi ∪ (Yi + ej)) and ε(Ki + [x/ε]Yi) ⊂ Ω̃ε,2i for x ∈ Ωεi ,

where Ω̃ε,ki are introduced in Subsection 5.3. Then for all φ ∈ L2(Ω̃ε,2i ), we define

T ε,jYi
(φ)(x, y) = φ

(
x, ε

[x
ε

]
Y

+ εy
)

for x ∈ Ω and a.e. y ∈ Kj .

For a.e. φ ∈ H1
0 (Ω) and y ∈ Yi, extended by zero to Rn \ Ω, we obtain∫

Ω

T ε,jYi
(φ)(x, y + ej)ψ(x)dx =

∫
Ω+εej

T ε,jYi
(φ)(x, y)ψ(x− εej)dx.

Notice, that

T ε,jYi
(φ)(x, y + ej) = φ

(
x, ε[

x

ε
]Y + εy + εej

)
= φ

(
x, ε
[x+ εej

ε

]
Y

+ εy
)

= T ε,jYi
(φ)(x+ εej , y)

for x ∈ Ω and y ∈ Kj and T ε,jYi
(φ)|Ω×Yi = T εYi(φ). Thus∣∣∣∣∣∣

∫
Ω

(
T ε,jYi

(φ)(·, y + ej)− T ε,jYi
(φ)(·, y)

)
ψ dx−

∫
Ω

T ε,jYi
(φ)(·, y)

(
ψ(·−εej)−ψ

)
dx

∣∣∣∣∣∣
≤ C‖T ε,jYi

(φ)(·, y))‖L2(Ω̃ε,1)‖ψ‖L2(Ω\(Ω+εej)),

where Ω̃ε,k := {x ∈ Rn,dist(Ω, x) < kε
√
n}. The Lipschitz continuity of ∂Ω and

ψ ∈ H1
0 (Ω) imply, for j = 1, . . . , n,

‖ψ‖L2(Ω\(Ω+εej)) ≤ Cε‖∇ψ‖L2(Ω)n , ‖ψ(· − εej)− ψ‖L2(Ω) ≤ Cε‖∂xjψ‖L2(Ω).

1The terminology ”periodicity defect” is due to G. Griso, see [59].
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Due to Lipschitz continuity of ∂Ωεi , a function φ ∈ H1(Ωεi ) can be extended into
H1(Ω̃ε,2i ), such that

‖P(φ)‖L2(Ω̃ε,2i ) ≤ C
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )
n

)
and

‖∇P(φ)‖L2(Ω̃ε,2i )n ≤ C‖∇φ‖L2(Ωεi )
n .

Hence for φ ∈ H1(Ωεi ) and ψ ∈ H1
0 (Ω), it follows for a.e. y ∈ Yi

〈T ε,jYi
(φ)(·, ·+ ej)− T ε,jYi

(φ)(·, ·), ψ〉H−1(Ω),H1
0 (Ω)

=

∫
Ω

(T ε,jYi
(φ)(·, y + ej)− T ε,jYi

(φ)(·, y))ψ dx

≤ Cε‖∇ψ‖L2(Ω)n‖T ε,jYi
(φ)(·, y)‖L2(Ω̃ε,1).

The last estimate, the definition of T ε,jYi
and the extension properties yield

‖T ε,jYi
(φ)(·, ·+ ej)− T ε,jYi

(φ)(·, ·)‖H−1(Ω;L2(Yi)) ≤ Cε‖T
ε,j
Yi

(φ)‖L2(Ω̃ε,1×Yi)

≤ Cε‖φ‖L2(Ω̃ε,2i ) ≤ Cε
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )

)
≤ εC‖∇φ‖L2(Ωεi )

.

Using ∇yT ε,jYi
(φ) = εT ε,jYi

(∇φ), we obtain the following estimate in H1(Yi)

‖T ε,jYi
(φ)(·, ·+ ej)− T ε,jYi

(φ)(·, ·)‖H−1(Ω;H1(Yi))

≤ Cε
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )

)
≤ εC‖∇φ‖L2(Ωεi )

.

This implies also the following estimate for the traces of y → T εYi(φ) on Y ji and

ej + Y ji

‖T ε,jYi
(φ)(·, ·+ ej)− T ε,jYi

(φ)(·, ·)‖H−1(Ω;H1/2(Y ji )) ≤ Cε
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )

)
.

Using Theorem 5.4.8, we decompose T εYi(φ) = ψ̂ε+φ̄ε, where ψ̂ε ∈ L2(Ω;H1
#(Yi))

and φ̄ε ∈ (L2(Ω;H1
#(Yi)))

⊥ such that

‖φ̄ε‖L2(Ω;H1(Yi)) + ‖ψ̂ε‖L2(Ω;H1(Yi)) ≤ C
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )

)
,

‖φ̄ε‖H−1(Ω;H1(Yi)) ≤ C
n∑
j=1

‖T εYi(·, ·+ ej)− T εYi(·, ·)‖H−1(Ω;H1/2(Y ji ))

≤ Cε
(
‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )

)
.

Theorem 5.4.10. For any φ ∈ H1(Ωεi ), i = 1, 2, there exists ψ̂ε ∈ L2(Ω;H1
#(Yi))

satisfying

‖ψ̂ε‖L2(Ω;H1(Yi)) ≤ C‖∇φ‖L2(Ωεi )
n ,

‖T εYi(∇φ)−∇φε −∇yψ̂ε‖H−1(Ω;L2(Yi)) ≤ Cε‖∇φ‖L2(Ωεi )
n .

Here φε = QεYi(φ).
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Proof. The proof is similar to that of Theorem 3.4 in [59]. For φ ∈ H1(Ωεi ),
we consider φ = φε + εφ, where φε = QεYi(φ) and φ = 1

ε

(
φ−QεYi(φ)

)
. Then, it

follows that

‖∇φε‖L2(Ωεi )
+ ‖φ‖L2(Ωεi )

+ ε‖∇φ‖L2(Ωεi )
≤ C‖∇φ‖L2(Ωεi )

. (5.32)

For φ ∈ H1(Ωεi ), it follows from Proposition 5.4.9 and (5.32) that there exists

ψ̂ε ∈ L2(Ω;H1
#(Yi)) such that

‖T εYi(φ)− ψ̂ε‖H−1(Ω;H1(Yi)) ≤ Cε‖∇φ‖L2(Ωεi )
, (5.33)

‖ψ̂ε‖L2(Ω;H1(Yi)) ≤ C‖∇φ‖L2(Ωεi )
. (5.34)

Using the definition and properties of Mε
Yi

and QεYi , it implies

‖∂xjφε −Mε
Yi(∂xjφ

ε)‖H−1(Ω) ≤ Cε‖∇φε‖L2(Ω)n ≤ Cε‖∇φ‖L2(Ωεi )
n . (5.35)

For ψ ∈ H1
0 (Ω) we have that

〈T εYi(∂xjφ
ε)−Mε

Yi(∂xjφ
ε)), ψ〉H−1(Ω),H1

0 (Ω)

=

∫
Ω

(
T εYi(∂xjφ

ε))−Mε
Yi(∂xjφ

ε)
)
ψdx

=

∫
Ω

(
T εYi(∂xjφ

ε)(·, y)−Mε
Yi(∂xjφ

ε))
)
Mε

Yi(ψ)dx.

Then, due to the definition of T εYi(∂xjQ
ε
Yi

(φ)), it follows in the same way as in
[59], ∫

Ω

(
T εYi(∂xjφ

ε)(·, y)−Mε
Yi(∂xjφ

ε)
)
Mε

Yi(ψ)dx

= εn
∑
ξ

Mε
Yi

(φ)(εξ + εej)−Mε
Yi

(φ)(εξ)

ε
×

∑
k̃j

(
Mε

Yi(ψ)(εξ − εk̃j0)− 1

2n−1

∑
k̃j

Mε
Yi(ψ)(εξ − εk̃j0)

)
ȳj ,

where k̃j = (k1, . . . , kj−1, kj+1, . . . , kn), k̃j1 = (k1, . . . , kj−1, 1, kj+1, . . . , kn),

k̃j0 = (k1, . . . , kj−1, 0, kj+1, . . . , kn), ȳj = ȳk11 · · · ȳ
kj−1

j−1 ȳ
kj+1

j+1 · · · ȳknn . This together
with the estimates for Mε

Yi
(see Section 5.4) implies, for every y ∈ Yi, the

inequality

〈T εYi(∂xjφ
ε)(·, y)−Mε

Yi(∂xjφ
ε), ψ〉H−1(Ω),H1

0 (Ω) ≤ Cε|ȳj |‖∇φ‖L2(Ωεi )
n‖∇ψ‖L2(Ω)n .

Moreover, the following holds:

‖T εYi(∂xjφ
ε)−Mε

Yi(∂xjφ
ε)‖H−1(Ω;L2(Yi)) ≤ Cε‖∇φ‖L2(Ωεi )

.
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Using the last estimate together with (5.33) – (5.35) and ∇φ = ∇φε + ε∇φε,
yield

‖T εYi(∇φ)−∇φε −∇yψ̂ε‖H−1(Ω;L2(Yi))

≤ ‖T εYi(∇φ
ε)−∇φε‖H−1(Ω;L2(Yi)) + ‖∇y(T εYi(φ

ε))−∇yψ̂ε‖H−1(Ω;L2(Yi))

≤ Cε‖∇φ‖L2(Ωεi ).

5.4.4 Corrector estimates

Under additional regularity assumptions on the solution of the macroscopic prob-
lem, we obtain a set of error estimates. We emphasize here again that only H1-
regularity for the solutions to the microscopic model and to the cell problems is
required.
The main result of this chapter is:

Theorem 5.4.11. Suppose (uε1, u
ε
2, u

ε
3, u

ε
5) are solutions of the microscopic prob-

lem (6.1) – (6.8) and u1, u2, u3 ∈ L2(0, T ;H2(Ω))∩H1((0, T )×Ω)), u5 ∈ H1(0, T ;
L2(Ω×Γ1)) are nonnegative and bounded solutions of the macroscopic equations
(??). Then we have the following corrector estimates:

‖uε1 − u1‖L2((0,T )×Ωε1) + ‖∇uε1 −∇u1 −
n∑
j=1

QεY1
(∂xju1)∇yωj1‖2L2((0,T )×Ωε1) ≤ Cε

1
2 ,

‖uε2 − u2‖L2((0,T )×Ωε1) + ‖∇uε2 −∇u2 −
n∑
j=1

QεY1
(∂xju2)∇yωj2‖2L2((0,T )×Ωε1) ≤ Cε

1
2 ,

‖uε3 − u3‖L2((0,T )×Ωε2) + ‖∇uε3 −∇u3 −
n∑
j=1

QεY2
(∂xju3)∇yωj3‖2L2((0,T )×Ωε2) ≤ Cε

1
2 ,

ε
1
2 ‖uε5 − UεΓ1

(u5)‖L2((0,T )×Γε1) ≤ Cε
1
2 . (5.36)

5.4.5 Proof of Theorem 5.4.11

We define the distance function ρ(x) = dist(x, ∂Ω), and the domains Ω̂ερ,in :=

{x ∈ Ω, ρ(x) < ε} as well as Ω̂εi,ρ,in := {x ∈ Ωεi , ρ(x) < ε}, and ρε(·) :=

inf{ρ(·)ε , 1}. The definition of ρε yields

‖∇ρε‖L∞(Ω)n = ‖∇ρε‖L∞(Ω̂ερ,in)n = ε−1. (5.37)
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Then, for Φ ∈ H2(Ω) and ω ∈ H1(Yi), where i = 1, 2, we obtain the following
estimates in the same way as in [59],

‖∇Φ‖L2(Ω̂ερ,in)n + ‖QεYi(∇Φ)‖L2(Ω̂ερ,in)n + ‖Mε
Yi(∇Φ)‖L2(Ω̂ερ,in)n ≤ Cε

1
2 ‖Φ‖H2(Ω),∥∥∥ω ( ·

ε

)∥∥∥
L2(Ω̂εi,ρ,in)

+
∥∥∥∇ω ( ·

ε

)∥∥∥
L2(Ω̂εi,ρ,in)n

≤ Cε 1
2 ‖∇yω‖L2(Yi)n ,

‖(1− ρε)∇xΦ‖L2(Ω)n ≤ ‖∇xΦ‖L2(Ω̂ερ,in)n ≤ Cε
1
2 ‖Φ‖H2(Ω), (5.38)

‖∇x(ρε∂xjΦ)‖L2(Ω)n ≤ C(ε−
1
2 + 1)‖Φ‖H2(Ω),∥∥∥ε∂xiρεQεYi(∂xjΦ)ω

( ·
ε

)∥∥∥
L2(Ωεi )

≤ Cε 1
2 ‖Φ‖H2(Ω)‖ω‖L2(Yi),∥∥∥ερε∂xiQεYi(∂xjΦ)ω

( ·
ε

)∥∥∥
L2(Ωεi )

≤ Cε‖Φ‖H2(Ω)‖ω‖L2(Yi).

Note that for a bounded Lipschitz domain Ω, there exists an extension of Φ from
Ω into Ωε,2 such that

‖P(Φ)‖L2(Ω̃ε,2) ≤ C
(
‖Φ‖L2(Ω) + ε‖∇Φ‖L2(Ω)n

)
and

‖∇P(Φ)‖L2(Ω̃ε,2)n ≤ C‖∇Φ‖L2(Ω)n .

Now, for φ1 ∈ L2(0, T ;H1
∂Ω(Ωε1)) given by

φ1(x) = uε1(x)− u(x)− ερε(x)

n∑
j=1

QεY1
(∂xju)(x)ωj1

(x
ε

)
,

we consider an extension φ̃ε1 of φ1 from (0, T )× Ωε1 into (0, T )× Ω, such that

‖φ̃ε1‖L2((0,T )×Ω) ≤ C‖φ1‖L2((0,T )×Ωε1)

and

‖∇φ̃ε1‖L2((0,T )×Ω) ≤ C‖∇φ1‖L2((0,T )×Ωε1).

Due to the presence of zero boundary conditions and since all phases are con-
nected, standard extension results apply, see [40]. We consider φ̃ε1 ∈ L2(0, T ;H1

0 (Ω))

and ψ̂ε1 ∈ L2((0, T )×Ω, H1
#(Y1)) given by Theorem 5.4.10 applied to φ1, as test

functions in the macroscopic equation (??) for u1:

τ∫
0

∫
Ω×Y1

∂tu1φ̃
ε
1 + d1(y)

(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

)(
∇φ̃ε1 +∇yψ̂ε1

)
dydxdt

+

τ∫
0

∫
Ω×Y1

f(u1, u2)φ̃ε1dydxdt+

τ∫
0

∫
Ω×Γ1

η(u1, u5)φ̃ε1dγydxdt = 0.
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In the first term and in the last two integrals, we replace φ̃ε1 by Mε
Y1

(φ1), φ̃ε1
by T εΓ1

(φ1), and u1 by T εY1
(u1). As next step, we introduce ρε in front of ∇u1

and ∂xju1, and replace ∇φ̃ε1 by ∇QεY1
(φ1). Notice that QεYi(∂xju1) and ∇u1 are

in L2(0, T ;H1(Ω)), but not in L2(0, T ;H1
0 (Ω)). Now, using Theorem 5.4.10, we

replace ∇φε1 +∇yψ̂ε1 by T εY1
(∇φ1), where φε1 = QεY1

(φ1), and obtain

τ∫
0

∫
Ω×Y1

∂tT εY1
(u1)Mε

Y1
(φ1) + d1(y)ρε

(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

)
T εY1

(∇φ1)dydxdt

+

τ∫
0

∫
Ω×Y1

T εY1
(f(u1, u2))Mε

Y1
(φ1)dydxdt+

τ∫
0

∫
Ω×Γ1

η(u1, u5)T εΓ1
(φ1)dγydxdt= R1

1,

where

R1
1 =

τ∫
0

∫
Ω×Y1

[
∂t(u1 − T εY1

(u1))Mε
Y1

(φ1) + ∂tu1(φ̃ε1 −Mε
Y1

(φ1))

+ρεd1

(
∇u1+

n∑
j=1

∂u1

∂xj
∇yωj1

)(
∇(QεYi(φ1)−φ̃ε1)+(T εY1

(∇φ1)−∇φε1−∇yψ̂ε1
))

+(ρε − 1)d1

(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

)
(∇φ̃ε1 +∇yψ̂ε1) + f(u1, u5)(Mε

Y1
(φ1)− φ̃ε1)

+(T εY1
(f)− f)Mε

Y1
(φ1)

]
dydxdt+

τ∫
0

∫
Ω×Γ1

η(u1, u5)(T εΓ1
(φ1)− φ̃ε1)dγydxdt.

Then we remove ρε, replace∇u1 byMε
Y1

(∇u1), ∂xju1 byMε
Y1

(∂xju1) and, using
Mε

Y1
(φ) = T εY1

◦Mε
Y1

(φ), we apply the inverse unfolding

τ∫
0

∫
Ωε1

(
∂tu1Mε

Y1
(φ1) + dε1

(
Mε

Y1
(∇u1) +

n∑
j=1

Mε
Y1

(∂xju1)∇yωj1
(x
ε

))
∇φ1

)
dxdt

+

τ∫
0

∫
Ωε1

f(u1, u2)Mε
Y1

(φ1)dxdt+

τ∫
0

∫
Ω×Γ1

η(u1, u5)T εΓ1
(φ1)dγydxdt = R1

1 +R2
1,

where

R2
1 =

τ∫
0

∫
Ω×Y1

[
(1− ρε)d1(y)

(
∇u1 +

n∑
j=1

∂xju1∇yωj1(y)
)
T εY1

(∇φ1) +

d1(y)
(
Mε

Y1
(∇u1)−∇u1 +

n∑
j=1

(
Mε

Y1
(∂xju1)− ∂xju1

)
∇yωj1(y)

)
T εY1

(∇φ1)
]
dydxdt.
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If we introduce ρε in front ofMε
Yi

(∂xju1) and replaceMε
Y1

(φ1) by φ1,Mε
Y1

(∇u1)
by ∇u1, Mε

Y1
(∂xju1) by QεY1

(∂xju1), we obtain

τ∫
0

∫
Ωε1

[
∂tu1φ1 + dε1

(
∇u1 +

n∑
j=1

ρεQεY1
(∂xju1)∇yωj1

(x
ε

))
∇φ1 + f(u1, u2)φ1

]
dxdt

= −
τ∫

0

∫
Ω×Γ1

η(u1, u5)T εY1
(φ1)dγydxdt+R1

1 +R2
1 +R3

1, (5.39)

where

R3
1 =

τ∫
0

∫
Ωε1

[(
∂tu1+f

)
(φ1 −Mε

Y1
(φ1))+(ρε−1)dε1

n∑
j=1

Mε
Yi(∂xju1)∇yωj1

(x
ε

)
∇φ1

+dε1

(
∇u1−Mε

Y1
(∇u1)+

n∑
j=1

ρε
(
QεY1

(∂xju1)−Mε
Y1

(∂xju1)
)
∇yωj1

(x
ε

))
∇φ1

]
dxdt.

Now, we subtract (5.39) from (5.15) for uε1 and obtain for the test function
φ1 = uε1 − u1 − ερε

∑n
j=1QεY1

(∂xju1)ωj1 the equality

τ∫
0

∫
Ωε1

[
∂t(u

ε
1 − u1)(uε1 − u1 − ερε

n∑
j=1

QεYi(∂xju1)ωj1) +

dε1
(
∇(uε1−u1)− ρε

n∑
j=1

QεYi
(
∂xju1

)
∇yωj1

)(
∇(uε1−u1)−ε

n∑
j=1

∇x
(
ρεQεYi

(
∂xju1

)
ωj1
))

+
(
f(uε1, u

ε
2)− f(u1, u2)

)(
uε1 − u1 − ερε

n∑
j=1

QεYi(∂xju1)ωj1
)]

dxdt+

τ∫
0

∫
Ω×Γ1

(
η(T εΓ1

uε1, T εΓ1
uε5)−η(u1, u5)

)
T εΓ1

(
uε1−u1−ερε

n∑
j=1

QεYi(∂xju1)ωj1
)
dγydxdt

= R1, where R1 = R1
1 +R2

1 +R3
1.

We consider ψε := T εΓ1
uε5 − u5 as a test function in the equations for u5 in (??)

and T εΓ1
(uε5) obtained from (5.18) by applying the unfolding operator. Using the

local Lipschitz continuity of η and the boundedness of uε1, u1, uε5, and u5, we
obtain

τ∫
0

∫
Ω×Γ1

∂t|T εΓ1
uε5−u5|2dγydxdt ≤ C

τ∫
0

∫
Ω×Γ1

(
|T εΓ1

uε5−u5|2 + |T εΓ1
uε1 − u1|2

)
dγydxdt.
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Applying Gronwall’s inequality and considering T εΓ1
(uε50)(x, y) = u50(y) yields

‖(T εΓ1
(uε5)− u5)(t)‖2L2(Ω×Γ1)

≤ C‖T εΓ1
(uε1)− u1‖2L2((0,τ)×Ω×Γ1) + ‖T εΓ1

(uε50)− u50‖2L2(Ω×Γ1)

≤ C
(
‖T εΓ1

(uε1 − u1)‖2L2((0,τ)×Ω×Γ1) + ‖T εΓ1
(u1)− u1‖2L2((0,τ)×Ω×Γ1)

)
.

Then, for the boundary integral, it follows from the estimate stated in Lemma
5.4.5 that

τ∫
0

∫
Ω×Γ1

(
η(T εΓ1

(uε5), T εΓ1
(uε1))− η(r, u)

)
T εΓ1

(φ1)dγydxdt ≤

C
(
‖T εΓ1

(uε5)−u5‖L2((0,τ)×Ω×Γ1)+‖T εΓ1
(uε1)−u1‖L2((0,τ)×Ω×Γ1)

)
ε

1
2 ‖φ1‖L2((0,τ)×Γε1)

≤ C
(
‖uε1 − u1‖L2((0,τ)×Ωε1) + ε‖∇(uε1 − u1)‖L2((0,τ)×Ωε1) + ε‖∇u1‖L2((0,τ)×Ω)

)
×(

‖φ1‖L2((0,τ)×Ωε1) + ε‖∇φ1‖L2((0,τ)×Ωε1)

)
. (5.40)

The ellipticity assumption, Lipschitz continuity of f , the estimate (5.40), and
Young’s inequality imply

τ∫
0

∫
Ωε1

(
∂t
∣∣ûε1−ερε n∑

j=1

QεY1
(∂xju1)ωj1

∣∣2+∣∣∇ûε1−ρε n∑
j=1

QεY1
(∂xju1)∇yωj1

∣∣2)dxdt

≤ C
τ∫

0

∫
Ωε1

(∣∣ûε1−ερε n∑
j=1

QεY1
(∂xju1)ωj1

∣∣2+∣∣ûε2−ερε n∑
j=1

QεY1
(∂xju2)ωj2

∣∣2)dxdt

+Cε2‖∇u1‖2L2((0,T )×Ω) +R1 + Cε1 ,

where ûε1 := uε1 − u1, ûε2 := uε2 − u2, and

Cε1 :=Cε2

τ∫
0

∫
Ωε1

n∑
j=1

(
|QεY1

(∂t∂xju1)ωj1|2 + (1 + ε2)|∇QεY1
(∂xju1)ωj1|2

+|QεY1
(∂xju1)ωj1|2 + |QεY1

(∂xju2)ωj2|2+|QεY1
(∂xju1)∇yωj1|2

)
dxdt

+C

τ∫
0

∫
Ω̂ε1,ρ,in

n∑
j=1

∣∣QεY1
(∂xju1)ωj1

∣∣2dxdt

≤ C
(
ε2‖u1‖2L2(0,T ;H2(Ω)) + ε2‖u1‖2H1((0,T )×Ω) + ε‖u1‖2L2(0,T ;H2(Ω))

)
‖ω1‖2H1(Y1)n

+Cε2‖u2‖2L2(0,T ;H1(Ω))‖ω1‖2L2(Y1)n .
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Here we used that

ε2

∫
Ωε1

|∇
(
ρεQεY1

(∂xju1)
)
ωj1|2dx ≤ ε2

∫
Ωε1

|∇QεY1
(∂xju1)ωj1|2dx

+

∫
Ω̂ε1,ρ,in

|QεY1
(∂xju1)ωj1|2dx.

The estimates of the error terms in the Subsection 5.4.6 imply

|R1| = |R1
1 +R2

1 +R3
1| ≤ ε1/2C

(
1 + ‖u1‖H1((0,T )×Ω) + ‖u1‖L2(0,T ;H2(Ω))

+‖u2‖L2(0,T ;H1(Ω)) + ‖u5‖L2((0,T )×Ω×Γ1)

)
‖φ1‖L2(0,T ;H1(Ωε1).

Then, applying Young’s inequality, we obtain

τ∫
0

∫
Ωε1

(
∂t|ûε1−ερε

n∑
j=1

QεYi(∂xju1)ωj1|2+|∇ûε1−ρε
n∑
j=1

QεY1
(∂xju1)∇yωj1|2

)
dxdt

≤ C
τ∫

0

∫
Ωε1

(
|ûε1−ερε

n∑
j=1

QεY1
(∂xju1)ωj1|2+|ûε2 − ερε

n∑
j=1

QεY1
(∂xju2)ωj2|2

)
dxdt

+C(ε+ ε2)(1 + ‖u1‖2H1((0,T )×Ω) + ‖u1‖2L2(0,T ;H2(Ω)))
(
1 + ‖ω1‖2H1(Y1)n

)
+Cε2‖u2‖2L2(0,T ;H1(Ω)

(
1 + ‖ω2‖2H1(Y1)n

)
+ ε2‖u5‖2L∞((0,T )×Ω×Γ1).

Analogously, the estimates for uε2 − u2 − ε
n∑
j=1

QεY1
(∂xjv2)ωj2 and

uε3 − u3 − ε
n∑
j=1

QεY2
(∂xju3)ωj3 are obtained. The only difference is the bound-

ary term. Applying the trace theorem and the estimates in Lemma 5.4.5, the
boundary term can be estimated by

∫
Ω×Γ2

(
(a(y)u3 − b(y)u2)φ̃ε2 − (a(y)T εΓ2

(u3)− b(y)T εΓ2
(u2))T εΓ2

(φ2)
)

dγydx

≤ C
∫

Ω×Γ2

(
|u3−T εΓ2

(u3)|+ |u2−T εΓ2
(u2)|

)
T εΓ2

(φ2) + (u3+u2)|φ̃ε2−Mε
Y1

(φ2)|

+(u3+u2)|Mε
Y1

(φ2)−T εΓ2
(φ2)|

)
dγydx ≤ εC

(
‖u2‖H1(Ω)+‖u3‖H1(Ω)

)
‖φ2‖H1(Ωε2),
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where φ2 = uε2 − u2 − ερε
n∑
j=1

QεY1
(∂xju2)ωj2. Thus, for ûε2 = uε2 − u2 and ûε3 =

uε3 − u3 we have

τ∫
0

∫
Ωε1

(
∂t
∣∣ûε2−ερε n∑

j=1

QεY1

(∂u2

∂xj

)
ωj2
∣∣2+∣∣∇ûε2−ρε n∑

j=1

QεY1

(∂u2

∂xj

)
∇yωj2

∣∣2)dxdt

≤ C
τ∫

0

∫
Ωε1

(∣∣ûε1−ερε n∑
j=1

QεY1

(∂u1

∂xj

)
ωj1
∣∣2+∣∣ûε2−ερε n∑

j=1

QεY1

(∂u2

∂xj

)
ωj2
∣∣2)dxdt+

C

τ∫
0

∫
Ωε2

(∣∣ûε3−ερε n∑
j=1

QεY2

(∂u3

∂xj

)
ωj3
∣∣2+ε2

∣∣∇ûε3−ρε n∑
j=1

QεY2

(∂u3

∂xj

)
∇yωj3)

∣∣2)dxdt

+C(ε+ ε2)
(
1 + ‖u2‖2L2(0,T ;H2(Ω)) + ‖u2‖2H1((0,T )×Ω)

)(
1 + ‖ω2‖2H1(Y1)n

)
+C
(
ε2‖u1‖2L2(0,T ;H1(Ω)) + ε2‖u3‖2L2(0,T ;H1(Ω)) + Cε2

)
,

and

τ∫
0

∫
Ωε2

(
∂t
∣∣ûε3−ερε n∑

j=1

QεY2

(∂u3

∂xj

)
ωj3
∣∣2+∣∣∇ûε3−ρε n∑

i=j

QεY2

(∂u3

∂xj

)
∇yωj3

∣∣2)dxdt

≤ C
τ∫

0

∫
Ωε1

(∣∣ûε2−ερε n∑
j=1

QεY1

(∂u2

∂xj

)
ωj2
∣∣2+ε2

∣∣∇ûε2 − ρε n∑
j=1

QεY1

(∂u2

∂xj

)
∇yωj2

∣∣2)dxdt

+C

τ∫
0

∫
Ωε2

(∣∣ûε3 − ερε n∑
i=1

QεY2

(∂u3

∂xj

)
ωj3
∣∣2 + ε2

∣∣∇ûε3 − ρε n∑
j=1

QεY2

(∂u3

∂xj

)
∇yωj3

∣∣2)dxdt

+C(ε+ ε2)
(
1 + ‖u3‖2L2(0,T ;H2(Ω)) + ‖u3‖2H1((0,T )×Ω)

)(
1 + ‖ω2‖2H1(Y1)n

)
+C
(
ε2‖u2‖2L2(0,T ;H1(Ω) + Cε3

)
,

where

C2 := ε2

τ∫
0

∫
Ωε1

n∑
j=1

(∣∣QεY1

( ∂2u2

∂t∂xj

)
ωj2)
∣∣2+(1+ε2)

∣∣∇QεY1

(∂u2

∂xj

)
ωj2
∣∣2+∣∣QεY1

(∂u1

∂xj

)
ωj1
∣∣2

+
∣∣QεY1

(∂u2

∂xj

)
ωj2
∣∣2 +

∣∣QεY1

(∂u2

∂xj

)
∇yωj2

∣∣2)dxdt+

τ∫
0

∫
Ω̂ε1,ρ,in

∣∣QεY1

(∂u2

∂xj

)
ωj2
∣∣2dxdt

+ε2

τ∫
0

∫
Ωε2

n∑
i=1

(∣∣QεY2

(∂u3

∂xj

)
ωj3
∣∣2 +

∣∣QεY2

(∂u3

∂xj

)
∇yωj3

∣∣2)dxdt
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≤ C
(
ε2‖u2‖2L2(0,T ;H2(Ω)) + ε2‖u2‖2H1((0,T )×Ω) + ε‖u2‖2L2(0,T ;H2(Ω))

)
‖ω2‖2H1(Y1)n

+ε2C
(
‖u1‖2L2(0,T ;H1(Ω))‖ω1‖2L2(Y1)n + ‖u3‖2L2(0,T ;H1(Ω))‖ω3‖2H1(Y2)n

)
.

For C3, we have the same expression as for C2, with u2 replaced by u3, ωj2 by

ωj3, Ωε1 by Ωε2, and without the term |QεY1
(∂xju1)ωj1|2. Thus, we can estimate

C3 ≤ ε2C‖u2‖2L2(0,T ;H1(Ω))‖ω2‖2H1(Y1)n + C
(
ε‖u3‖2L2(0,T ;H2(Ω))

+ε2‖u3‖2L2(0,T ;H2(Ω)) + ε2‖u3‖2H1((0,T )×Ω)

)
‖ω3‖2H1(Y2)n .

For sufficiently small ε, adding all estimates, removing ρε by using the estimates
(5.38), applying Gronwall’s inequality and noting that by definition uε1(0) = u10,
uε2(0) = u20, uε3(0) = u30, we obtain the estimates for uε1, uε2, uε3, stated in the
theorem.
To obtain the estimate for uε5 − UεΓ1

(u5), we consider the equations for T εΓ1
uε5

obtained from (5.18) by applying the unfolding operator and the equation for
u5 in (??) with the test function T εΓ1

uε5 − u5. Using the properties of UεΓ1
, the

local Lipschitz continuity of η, and Gronwall’s inequality, yields

ε

∫
Γε1

|uε5 − UεΓ1
(u5)|2dγx ≤ C

∫
Ω×Γ1

|T εΓ1
(uε5)− u5|2dγydx

≤ C
τ∫

0

∫
Ω×Γ1

|T εΓ1
(uε1)− u1|2dγydxdt+

∫
Ω×Γ1

|T εΓ1
(u50)− u50|2dγydx

≤
τ∫

0

∫
Ω×Γ1

(
|T εΓ1

(u1)−Mε
Y1

(u1)|2 + |Mε
Y1

(u1)− u1|2
)

dγydxdt

+C

τ∫
0

∫
Ωε1

[∣∣ûε1 − ε n∑
j=1

QεY1
(∂xju1)ωj1

∣∣2 + ε2
∣∣∇ûε1 − n∑

j=1

QεY1
(∂xju1)∇yωj1

∣∣2
+ε2

n∑
j=1

(∣∣QεY1
(∂xju1)ωj1

∣∣2+ε2
∣∣∇QεY1

(∂xju1)ωj1
∣∣2+∣∣QεY1

(∂xju1)∇yωj1
∣∣2)]dxdt

≤ C(ε+ ε2)
(
‖u1‖2L2(0,T ;H2(Ω)) + ‖u1‖2H1((0,T )×Ω) + ‖u2‖2L2(0,T ;H2(Ω))

+‖u2‖2H1((0,T )×Ω)+‖u3‖2L2(0,T ;H2(Ω))+‖u3‖2H1((0,T )×Ω)+‖u5‖2L∞((0,T )×Ω×Γ1)

)
.

5.4.6 Estimates of the error terms

Now, we proceed to estimate the error termsR1
1, R2

1, andR3
1. Using the definition

of ρε, the extension properties of φ̃ε1, Theorem 5.4.10, and the estimates (5.38)
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we obtain

τ∫
0

∫
Ω×Y1

∣∣∣d1(y)(ρε − 1)
(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

)(
∇φ̃ε1 +∇ψ̂ε1

)∣∣∣dydxdt

≤ C‖∇u1‖L2((0,T )×Ω̂1,ρ,in)

(
1+

n∑
j=1

‖∇yωj1‖L2(Y1)

)(
‖∇φ̃ε1‖L2((0,τ)×Ω)+‖∇ψ̂ε1‖L2(Ωτ×Y1)

)
≤ Cε1/2‖u1‖L2(0,T ;H2(Ω))

(
1 +

n∑
j=1

‖∇yωj1‖L2(Y1)

)
‖∇φ1‖L2((0,τ)×Ωε1). (5.41)

Theorem 5.4.10 and the estimates (5.37) and (5.38) imply

τ∫
0

∫
Ω×Y1

ρεd1(y)
(
∇u1 +

n∑
j=1

∂xju1∇yωj1
)(
T εY1

(∇φ1)−∇φε1 −∇yψ̂ε1
)

dydxdt

≤ C(ε1/2+ε)‖u1‖L2(0,T ;H2(Ω))

(
1+

n∑
j=1

‖∇yωj1‖L2(Y1)

)
‖∇φ1‖L2((0,T )×Ωε2).(5.42)

We notice Mε
Y1

(φ̃ε1) =Mε
Y1

(φ1) and using estimates (5.37) and (5.38),

Lemma 5.4.5. the fact that φ̃ε1 is an extension of φ1 from Ωε1 into Ω and φ1 = φ̃1

a.e in (0, T )× Ωε1, implies

τ∫
0

∫
Ω×Y1

ρεd1

(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

)
∇
(
QεYi(φ1)− φ̃ε1

)
dydxdt

≤
∥∥∥∇(ρεd1

(
∇u1 +

n∑
j=1

∂u1

∂xj
∇yωj1

))∥∥∥
L2((0,τ)×Ω×Y1)

‖QεYi(φ̃
ε
1)− φ̃ε1‖L2((0,τ)×Ω)

≤ Cε
(
ε−1‖∇u1‖L2((0,T )×Ω̂1,ρ,in)+‖∇2u1‖L2

)(
1+

n∑
j=1

‖∇ωj1‖L2(Y1)

)
‖∇φ̃ε1‖L2((0,τ)×Ω)

≤ C(ε1/2 + ε)‖u‖L2(0,T ;H2(Ω))

(
1 +

n∑
j=1

‖∇yωj1‖L2(Y1)

)
‖∇φ1‖L2((0,τ)×Ωε2). (5.43)

Applying the estimates in Lemma 5.4.5, yields

τ∫
0

∫
Ω×Y1

(
∂t
(
u1 − T εY1

(u1)
)
Mε

Y1
(φ1) + ∂tu1

(
φ̃ε1 −Mε

Y1
(φ1)

))
dydxdt

≤ Cε
(
‖∂t∇u1‖L2(ΩT )‖φ1‖L2(0,τ)×Ωε1) + ‖∂tu1‖L2(ΩT )‖∇φ1‖L2((0,τ)×Ωε1)

)
.(5.44)



94 Chapter 5. Corrector Estimates

Due to Lipschitz continuity of f , we can estimate
τ∫

0

∫
Ω×Y1

((
T εY1

(f)− f(u1, u2)
)
Mε

Y1
(φ1) + f(u1, u2)

(
Mε

Y1
(φ1)− φ̃ε1

))
dydxdt

≤ εC
(
‖∇u1‖L2((0,T )×Ω) + ‖∇u2‖L2(ΩT )

)
‖φ1‖L2((0,τ)×Ωε1)

+εC
(
1 + ‖u1‖L2((0,T )×Ω) + ‖u2‖L2(ΩT )

)
‖∇φ1‖L2((0,τ)×Ωε1). (5.45)

For the boundary integral, we have
τ∫

0

∫
Ω×Γ1

η(u1, u5)(T εΓ1
(φ1)− φ̃ε1))dγydxdt ≤ ‖η(u1, u5)‖L2((0,τ)×Ω×Γ1) ×

(
‖T εΓ1

(φ1)−Mε
Y1

(φ1)‖L2((0,τ)×Ω×Γ1) + ‖Mε
Y1

(φ1)− φ̃ε1)‖L2((0,τ)×Ω×Γ1)

)
≤ C

(
1+‖u1‖L2(ΩT )+‖u5‖L∞((0,T )×Ω×Γ1)

)
‖T εY1

(φ1)−Mε
Y1

(φ1)‖L2((0,τ)×Ω;H1(Y1))

+C
(
1 + ‖u1‖L2((0,T )×Ω) + ‖u5‖L∞((0,T )×Ω×Γ1)

)
‖Mε

Y1
(φ1)− φ̃ε1)‖L2((0,τ)×Ω)

≤ εC
(
1 + ‖u1‖L2((0,T )×Ω) + ‖u5‖L∞((0,T )×Ω×Γ1)

)
‖∇φ1‖L2((0,τ)×Ωε1). (5.46)

Thus, collecting all estimates (5.43) – (5.46) we obtain for R1
1:

|R1
1| ≤ C(ε

1
2 + ε)‖u1‖L2(0,T ;H2(Ω))

(
1+

n∑
j=1

‖∇yωj1‖L2(Y1)

)
‖∇φ1‖L2((0,τ)×Ωεi )

+Cε
(
‖u1‖H1((0,T )×Ω) + ‖u2‖L2(0,T ;H1(Ω))

)
‖φ1‖L2(0,τ ;H1(Ωε1)).

Using the estimates (5.38) implies

τ∫
0

∫
Ωε1

(1− ρε)dε1
n∑
j=1

Mε
Yi(∂xju1)∇yωj1

(x
ε

)
∇φ1dxdt

≤
n∑
j=1

‖Mε
Yi(∂xju1)‖L2((0,τ)×Ω̂ε1,ρ,in)

∥∥∥∇yωj1(xε)∥∥∥L2(Ω̂ε1,ρ,in)
‖∇φ1‖L2((0,τ)×Ωε1)

≤ εC
n∑
j=1

‖u1‖L2(0,T ;H2(Ωε1))‖∇yωj1‖L2(Y1)‖∇φ1‖L2((0,τ)×Ωε1). (5.47)

Thus, (5.47) together with (5.30) and (5.38) yields

|R2
1| ≤ ‖∇u1‖L2((0,τ)×Ω̂ε1,ρ,in)(1 + ‖∇yω1‖L2(Y1)n×n)‖T εY1

(∇φ1)‖L2((0,τ)×Ω×Y1)

+Cε‖u1‖L2(0,τ ;H2(Ω))(1 + ‖∇yωj1‖L2(Y1)n×n)‖T εY1
(∇φ1)‖L2((0,τ)×Ω×Y1)

≤ (ε1/2 + ε)C‖u1‖L2(0,T ;H2(Ω))(1 + ‖∇yωj1‖L2(Y1)n×n)‖∇φ1‖L2((0,τ)×Ωε1).

Due to estimates in (5.38) and in Lemma 5.4.5 we obtain also

|R3
1| ≤ εC

(
‖∂tu1‖L2((0,T )×Ωε1)+‖f‖L2((0,T )×Ωε1)+‖u1‖L2(0,T ;H2(Ωε1))‖∇yω1‖L2(Y1)n×n

+‖∇2u1‖L2((0,T )×Ωε1) + ‖∇2u1‖L2((0,T )×Ωε1)‖∇yω1‖L2(Y1)n×n

)
‖∇φ1‖L2((0,τ)×Ωε1).
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In the similar way, we show the estimates for the error terms in the equations
for u2 and u3:

|R2| ≤ Cε
1
2

(
1 + ‖u2‖L2(0,T ;H2(Ω)) + ‖u2‖H1((0,T )×Ω) + ‖u2‖L2(0,T ;H1(Ω))

+‖u3‖L2(0,T ;H1(Ω))

)
‖φ2‖L2(0,τ ;H1(Ωε2)), (5.48)

|R3| ≤ Cε
1
2

(
1 + ‖u3‖L2(0,T ;H2(Ω)) + ‖u3‖H1(ΩT )

+‖u2‖L2(0,T ;H1(Ω))

)
‖φ3‖L2(0,τ ;H1(Ωε2)). (5.49)

5.5 Notes and comments

In this chapter, we obtained the desired convergence rates as indicated in (5.36).
Hence, we now have a confidence measure for our averaging results. The main
ideas of the methodology we used here were presented in [59, 60] for linear elliptic
equations with oscillating coefficients, posed in a fixed domain. We applied the
same methodology to derive corrector estimates in perforated media.

It is worth noting that often in the context of real-world applications it is
not sufficient to consider only leading-order terms in the derivation of corrector
estimates. They simply do not capture enough information from the physics
of the problem. This is the case when ε is necessarily not very small. To face
such situation, it is necessary to obtain higher-order correctors to capture the
information at not-very-small scales (requiring also much more regularity). To
see an example of first-order correctors, we refer the reader, for instance, to [90],
where Taylor dispersion formulae are derived.

We believe that further research can go on here at least in three different direc-
tions:

1. Driving corrector estimates for locally-periodic domains (see e.g., the pre-
liminary result in [102]);

2. Driving goal-oriented a posteriori error estimates for perforated domains
(see e.g., [137, 138] for the general philosophy of goal-oriented a posteriori
estimates);

3. For the extended system containing the mobility of the water, error esti-
mates can be proved using first-order asymptotic expansions in energy-like
estimates, see [147].
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Chapter 6

Solvability of a Parabolic System
with Distributed-microstructure

This chapter deals with the solvability of a semilinear parabolic system that
incorporates transport (diffusion) and reaction effects emerging from two sepa-
rated spatial scales: x - macro and y - micro. Our motivation originates from the
fact that often problems in material science involve multiple spatial scales and,
in addition, several processes occur at highly different time scales. To capture
information at separated spatial scales, distributed-microstructure models are
the right tool to use.

The chapter is organized in the following fashion: Section 6.1 includes the ge-
ometry, functional setting and assumptions on the data as well as on the model
parameters. We present the main results of the chapter at the end of the sec-
tion. In Section 6.2, we introduce axillary problems and treat them in Section
6.3. Existence and uniqueness of solutions to (6.1) – (6.15) is ensured in Section
6.4 together with the needed positivity and L∞ bounds. The main ingredients
to prove existence of solutions include fixed-point arguments and convergent
two-scale Galerkin approximations.

6.1 Geometry. Model equations. Functional set-
ting and assumptions

In this section, we present our two-scale geometry, the setting of model equations,
the assumptions on the model parameters and data needed to define our concept
of solution to perform the mathematical analysis.

6.1.1 Geometry

We consider here a two-scale geometry where to each macroscopic point x ∈ Ω,
we associate the constant microstructure Y , see Fig. 6.1. The microstructure Y

The results in this chapter have been reported in [56] as a joint collaboration with A.
Muntean (Eindhoven) and T. Aiki (Tokyo).
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Figure 6.1: Left: Zoomed out cubic piece from the concrete wall. This is the scale
we refer to as macroscopic. Middle: Reference pore (microscopic) configuration. Right:
Zoomed out one end of the pore.

contains three disjoint parts, Y0, Y1 and Y2 representing the solid part, water-
filled part and air-filled part of the pore, respectively. Γ1 denotes the interface
between solid and water-filled parts whereas Γ2, the interface between water and
air-filled parts. We refer to Subsection 2.2.3.3 for details.

6.1.2 Distributed-microstructure system

The distributed-microstructure system, we deal here, is obtained from the system
given in Subsection 2.5.2 by replacing the linear reaction rates by nonlinear ones.
Our system consists of the following set of partial differential equations coupled
with an ordinary differential equation:

∂tw1 −∇y · (d1∇yw1) = −f1(w1) + f2(w2) in (0, T )× Ω× Y1,(6.1)

∂tw2 −∇y · (d2∇yw2) = f1(w1)− f2(w2) in (0, T )× Ω× Y1,(6.2)

∂tw3 −∇ · (d3∇w3) = −α
∫
Γ2

(
Hw3 − w2

)
dγy in (0, T )× Ω, (6.3)

∂tw5 = η(w1, w5) on (0, T )× Ω× Γ1.(6.4)

The system (6.1)-(6.4) is equipped with two-scale initial conditions

wj(0, x, y) = w0
j (x, y), j ∈ {1, 2} in Ω× Y1, (6.5)

w3(0, x) = w0
3(x) in Ω, (6.6)

w5(0, x, y) = w0
5(x, y) on Ω× Γ1, (6.7)



6.1. Geometry. Model equations. Functional setting and assumptions 99

while the boundary conditions are

−n(y) · d1∇yw1 = η(w1, w5) on (0, T )× Ω× Γ1, (6.8)

−n(y) · d1∇yw1 = 0 on (0, T )× Ω× Γ2, (6.9)

−n(y) · d1∇yw1 = 0 on (0, T )× Ω× (∂Y1 ∩ ∂Y ), (6.10)

−n(y) · d2∇yw2 = 0 on (0, T )× Ω× Γ1, (6.11)

−n(y) · d2∇yw2 = 0 on (0, T )× Ω× (∂Y1 ∩ ∂Y ), (6.12)

−n(y) · d2∇yw2 = −α(Hw3 − w2

)
on (0, T )× Ω× Γ2, (6.13)

−n(x) · d3∇w3 = 0 on (0, T )× ΓN , (6.14)

w3 = wD3 on (0, T )× ΓD. (6.15)

Here w1 denotes the concentration of H2SO4 in Ω × Y1, w2 the concentration
of H2S aqueous species in Ω× Y1, w3 the concentration of H2S gaseous species
in Ω and w5 of gypsum concentration on Ω × Γ1. ∇ without subscript denotes
the differentiation w.r.t. macroscopic variable x, while ∇y is the respective dif-
ferential operators w.r.t. the micro-variable y. α is the mass-transfer coefficient
for the reaction taking place on the interface Γ2 and H is the Henry’s constant.
The microscale information is connected to the macroscale via the right-hand
side of (6.3) and the micro-macro transmission condition (6.13).

6.1.3 Functional setting. Assumptions

In this subsection, we enumerate the assumptions on the model parameters and
data needed to perform the analysis of the system of (6.1)–(6.15). We also
discuss our concept of solutions. We give the main results of the chapter at the
end of this section. To keep notation simple, we set

X := {z ∈ H1(Ω)|z = 0 on ΓD}.

Assumption 6.1.1. (A1) dk ∈ L∞(Ω × Y1), k ∈ {1, 2} and d3 ∈ L∞(Ω) such
that (dk(x, y)ξ, ξ) ≥ d0

k|ξ|2 for d0
k > 0 for every ξ ∈ R3, a.e. (x, y) ∈ Ω×Y1

and (d3(x)ξ, ξ) ≥ d0
3|ξ|2 for d0

3 > 0 for every ξ ∈ R3 and a.e. x ∈ Ω.

(A2) The functions fi, i ∈ {1, 2}, are increasing and locally Lipschitz continuous
with fi(α) = 0 for α ≤ 0 and fi(α) > 0 for α > 0, i ∈ {1, 2}. Furthermore,
R(f1) = R(f2), whereR(f) denotes the range of the function f . Moreover,
for M1,M2 > 0 there exist positive constants M ′1,M

′
2 > 0 such that

f1(M ′1) = f2(M ′2),M ′1 ≥M1 and M ′2 ≥M2.

(A3) η(α, β) := R(α)Q(β), where R and Q are locally Lipschitz continuous
functions such that R′ ≥ 0 and Q′ ≤ 0 a.e. on R and

R(α) :=

{
positive, if α > 0,

0, otherwise,
Q(β) :=

{
positive, if β < βmax,

0, otherwise,
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where βmax is a positive constant. Also, we denote by R the primitive of

R with R(0) = 0, i.e. R(r) =
r∫
0

R(ξ)dξ for r ∈ R.

(A4) w10 ∈ L2(Ω;H1(Y1)) ∩ L∞+ (Ω× Y1), w20 ∈ L2(Ω;H1(Y1)) ∩ L∞+ (Ω× Y1),
w30 ∈ H1(Ω) ∩ L∞+ (Ω), w30 − wD3 (0, ·) ∈ X, wD3 ∈ L2(0, T ;H2(Ω)) ∩
H1(0, T ;L2(Ω))∩L∞+ ((0, T )×Ω) with ∇wD3 · n = 0 on (0, T )×ΓN , w50 ∈
L∞+ (Ω× Γ1).

In (A4) we define L∞+ (Ω′) := L∞(Ω′) ∩ {u|u ≥ 0 on Ω′} for a domain Ω′.

6.1.4 Definition of solutions

Next, we give the definition of a suitable concept of solution to our problem:

Definition 6.1.2. We call the multiplet (w1, w2, w3, w5) a solution to the prob-
lem (6.1) – (6.8) if (S1) – (S5) hold:

(S1) w1, w2 ∈ H1(0, T ;L2(Ω × Y1)) ∩ L∞(0, T ;L2(Ω;H1(Y1))) ∩ L∞((0, T ) ×
Ω× Y1), w3 ∈ H1(0, T ;L2(Ω)) ∩ L∞((0, T )×Ω), w3 −wD3 ∈ L∞(0, T ;X),
w5 ∈ H1(0, T ;L2(Ω× Γ1)) ∩ L∞((0, T )× Ω× Γ1).

(S2) It holds that∫
Ω×Y1

∂tw1(w1 − v1)dxdy +

∫
Ω×Y1

d1∇yw1 · ∇y(w1 − v1)dxdy

+

∫
Ω×Γ1

Q(w5)(R(w1)−R(v1))dxdγy ≤
∫

Ω×Y1

(−f1(w1)+f2(w2))(w1−v1)dxdy

for v1 ∈ L2(Ω;H1(Y1)) with R(v1) ∈ L1(Ω× Γ1) a.e. on [0, T ].

(S3) It holds that∫
Ω×Y1

∂tw2v2dxdy +

∫
Ω×Y1

d2∇yw2 · ∇yv2dxdy − α
∫

Ω×Γ2

(Hw3 − w2)v2dxdγy

=

∫
Ω×Y1

(f1(w1)− f2(w2))v2dxdy for v2 ∈ L2(Ω;H1(Y1)) a.e. on [0, T ].

(S4) It holds that∫
Ω×Y1

∂tw3v3dx+

∫
Ω

d3∇yw3 · ∇v3dxdy = −α
∫

Ω×Γ2

(Hw3 − w2)v3dxdγy

for v3 ∈ X a.e. on [0, T ].

(S5) (6.4) holds a.e. on (0, T )× Ω× Γ1.
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Note that we have introduced a variational inequality in the above definition.
The idea of inclusion of the variational inequality is due to the absence of the
Laplacian term with respect to x−variable. It is not easy to show that the
boundary condition for w1 holds, since the boundary condition is nonlinear.
Variational inequality helps in proving the existence and uniqueness of solutions,
see Section 6.3. To get the inequality, we use the convexity of R and positivity
of Q such that

Q(β)R(α)(α− δ) ≥ Q(β)(R(α)−R(δ)) for any α, δ ∈ R.

6.1.5 Statement of the main result

Theorem 6.1.3. Assume (A1) – (A4), then there exists a solution (w1, w2, w3, w5)
of the problem (6.1) – (6.8). Moreover, it holds that

(i) w1(t), w2(t) ≥ 0 a.e. in Ω× Y1, w3(t) ≥ 0 a.e. in Ω and w5(t) ≥ 0 a.e. on
Ω× Γ1 for a.a. t ∈ [0, T ].

(ii) w1(t) ≤ M1, w2(t) ≤ M2 a.e. in Ω× Y1 , w3(t) ≤ M3 a.e. in Ω and
w5(t) ≤M5 a.e. on Ω×Γ1 for a.a. t ∈ [0, T ], whereM1, M2, M3 andM5 are
positive constants satisfying M1 ≥ ‖w10‖L∞(Ω×Y1), M2 ≥ ‖w20‖L∞(Ω×Y1),
M3 ≥ max{‖w30‖L∞(Ω), ‖wD3 ‖L∞(Ω×Y1)}, f1(M1) = f2(M2) and M2 =
HM3 and M5 = max{βmax, ‖w40‖L∞(Ω×Γ1)}.

Proof. The proof is contained in Section 6.4.

Theorem 6.1.4. Assume (A1) – (A4), then there exists at most one solution
in the sense of Definition 5.1.2.

Proof. For the proof, see Subsection 6.4.1.

6.2 Auxiliary problems

In order to prove the existence of solutions, we first introduce the following
auxiliary problems:

Problem P1(g, h)

∂tw1 −∇y · (d1∇yw1) = g in (0, T )× Ω× Y1,

d1∇yw1 · n(y) = −hR(w1) on (0, T )× Ω× Γ1,

d1∇yw1 · n(y) = 0 on (0, T )× Ω× Γ2 and (0, T )× Ω× (∂Y1 ∩ ∂Y ),

w1(0) = w10 on Ω× Y1.

We solve this in Lemma 6.3.1 for given functions g and h.
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Problem P2(g)

Next, for a given function g on (0, T )×Ω×Y1, we consider the following problem
P2(g):

∂tw1 −∇y · (d1∇yw1) = g in (0, T )× Ω× Y1,

d1∇yw1 · n(y) = −η(w1, w5) on (0, T )× Ω× Γ1,

d1∇yw1 · n(y) = 0 on (0, T )× Ω× Γ2 and (0, T )× Ω× (∂Y1 ∩ ∂Y ),

∂tw5 = η(w1, w5) a.e. on (0, T )× Ω× Γ1,

w1(0) = w10 on Ω× Y1 and w4(0) = w40 on Ω× Γ1.

We solve this problem in Lemma 6.3.2 for given functions g.

Problem P3(g)

As a third step of the proof, we show the existence of a solution of the following
problem P3(g) for a given function g on (0, T )× Ω× Y1:

∂tw2 −∇y · (d2∇yw2) = g in (0, T )× Ω× Y1,

∂tw3 −∇ · (d3∇w3) = −α
∫
Γ2

(
Hw3 − w2

)
dγy in (0, T )× Ω,

d2∇yw2 · n = 0 on (0, T )× Ω× Γ1 and (0, T )× Ω× (∂Y1 ∩ ∂Y ),

d2∇yw2 · n = α(Hw3 − w2) on (0, T )× Ω× Γ2,

d3∇w3 · n(x) = 0 on (0, T )× ΓN ,

w3 = wD3 on (0, T )× ΓD,

w2(0) = w20 on Ω× Y1 and w3(0) = w30 on Ω.

See Lemma 6.3.3 for solution.

6.3 Proof of the technical lemmas

This section contains the solvability of the lemmas given in Section 6.2.

Lemma 6.3.1. Assume (A1), (A3), (A4), h ∈ H1(0, T ;L2(Ω×Γ1))∩L∞+ ((0, T )×
Ω× Γ1) and g ∈ L2((0, T )× Ω× Y1). If R is Lipschitz continuous and bounded
on R, then there exists a solution w1 of P1(g, h) in the following sense: w1 ∈
H1(0, T ;L2(Ω× Y1)) ∩ L∞(0, T ;L2(Ω;H1(Y1))) satisfying∫

Ω×Y1

∂tw1(w1 − v1)dxdy +

∫
Ω×Y1

d1∇yw1 · ∇y(w1 − v1)dxdy
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+

∫
Ω×Γ1

h(R(w1)−R(v1))dxdγy

≤
∫

Ω×Y1

g(w1 − v1)dxdy for v1 ∈ L2(Ω;H1(Y1)) a.e. on [0, T ], (6.16)

w1(0) = w10 on Ω× Y1.

Proof. Let {ζj} be a Schauder basis of L2(Ω;H1(Y1)). More precisely, {ζj}
is an orthonormal system of a Hilbert space L2(Ω× Y1) and is a fundamental of
L2(Ω;H1(Y1)), i.e., for any z ∈ L2(Ω × Y1), we can take a sequence {zn} such

that zn =
∑Nn
j=1 a

n
j ζj and zn → z in L2(Ω;H1(Y1)) as n → ∞, where anj ∈ R.

Then there exists a sequence {wn10} such that wn10 :=
∑Nn
j=1 α

n
j0ζj and wn10 → w10

in L2(Ω;H1(Y1)) as n→∞.
Here, we are interested in the finite-dimensional approximations of the func-

tion w1 that is of the form

wn1 (t, x, y) :=

Nn∑
j=1

αnj (t)ζ(x, y) for (t, x, y) ∈ (0, T )× Ω× Y1, (6.17)

where the coefficients αnj , j = 1, 2, . . . , Nn, are determined by the following
relations: For each n

∫
Ω×Y1

(∂tw
n
1 (t)φ1 + d1∇ywn1 (t)∇yφ1)dxdy +

∫
Ω×Γ1

hR(wn1 (t))φ1dxdγy

=

∫
Ω×Y1

g(t)φ1dxdy for φ1 ∈ span{ζi : i = 1, 2, .., Nn} and t ∈ (0, T ],(6.18)

αnj (0) = αnj0 for j = 1, 2, ...Nn. (6.19)

Consider φ1 = ζj , j = 1, 2, ...Nn, as a test functions in (6.18). This yields a
system of ordinary differential equations for t ∈ (0, T ]

∂tα
n
j (t) +

Nn∑
i=1

(Ai)jα
n
i (t) + Fnj (t, αn(t)) = Jj(t) for t ∈ (0, T ]j = 1, 2, . . . , Nn,

(6.20)
where

αn(t) := (αn1 (t), . . . , αnNn(t)), Fnj (t, αn) :=

∫
Ω×Γ1

h(t)R(

Nn∑
i=1

αni ζi)ζjdxdγy

(Ai)j :=

∫
Ω×Y1

d1∇yζi · ∇yζjdxdy, Jj(t) :=

∫
Ω×Y1

g(t)ζjdxdy for t ∈ (0, T ].
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Now we show that Fnj is globally Lipschitz continuous due to the assumptions
given in the statement of the lemma.

Fnj (t, αn)− Fnj (t, α̃n) =

∫
Ω×Γ1

h(t)R(

Nn∑
i=1

(αni − α̃ni )ζi)ζjdxdγy

≤ C
∫

Ω×Γ1

|R(

Nn∑
i=1

(αni − α̃ni )ζi)| |ζj |dxdγy

≤ C
∫

Ω×Γ1

Nn∑
i=1

∣∣(αni − α̃ni )ζi
∣∣ |ζj |dxdγy

≤ C
Nn∑
i=1

∣∣αni − α̃ni ∣∣ ∫
Ω×Γ1

|ζi| |ζj |dxdγy

≤ Cmax{cij}
Nn∑
i=1

∣∣αni − α̃ni ∣∣,
where the coefficient cij is given by

cij :=

∫
Ω×Γ1

|ζi| |ζj |dxdγy.

According to the standard existence theory for ordinary differential equations,
there exists a unique solution αnj , j = 1, 2, .., Nn, satisfying (8.9) for 0 ≤ t ≤ T
and (6.19). Thus the solution wn1 defined in (8.1) solves (6.18) – (6.19).

Next, we show uniform estimates for solutions wn1 with respect to N . We
take φ1 = wn1 in (6.18) to obtain∫

Ω×Y1

∂tw
n
1 (t)wn1 (t)dxdy+

∫
Ω×Y1

d1|∇ywn1 (t)|2dxdy+

∫
Ω×Γ1

h(t)R(wn1 (t))wn1 (t)dxdγy

=

∫
Ω×Y1

g(t)wn1 (t)dxdy for t ∈ (0, T ].

Since R(r)r ≥ 0 for any r ∈ R, we see that

1

2

d

dt

∫
Ω×Y1

|wn1 (t)|2dxdy + d0
1

∫
Ω×Y1

|∇ywn1 (t)|2dxdy

≤ 1

2

∫
Ω×Y1

|g(t)|2dxdy +
1

2

∫
Ω×Y1

|wn1 (t)|2dxdy for t ∈ (0, T ].
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Applying Gronwall’s inequality, we have∫
Ω×Y1

|wn1 (t)|2dxdy + d0
1

t∫
0

∫
Ω×Y1

|∇ywn1 (t)|2dxdy ≤ C for t ∈ (0, T ],

where C is a positive constant independent of n.
To obtain bounds on the time-derivative, we take φ1 = ∂tw

n
1 as test function

in (6.18). We see that∫
Ω×Y1

|∂twn1 (t)|2dxdy +
1

2

d

dt

∫
Ω×Y1

d1|∇ywn1 (t)|2dxdy +

∫
Ω×Γ1

h(t)∂tR(wn1 (t))dxdγy

=

∫
Ω×Y1

g(t)∂tw
n
1 (t)dxdy

≤ 1

2

∫
Ω×Y1

|g(t)|2dxdy +
1

2

∫
Ω×Y1

|∂twn1 (t)|2dxdy for a.e. t ∈ (0, T ].

Accordingly, we have

1

2

∫
Ω×Y1

|∂twn1 |2dxdy +
1

2

d

dt

∫
Ω×Y1

d1|∇ywn1 |2dxdy +
d

dt

∫
Ω×Γ1

hR(wn1 )dxdγy

≤ 1

2

∫
Ω×Y1

|g|2dxdy +

∫
Ω×Γ1

∂thR(wn1 )dxdγy a.e. on ∈ (0, T ].

By integrating the latter equation, we have

1

2

τ∫
0

∫
Ω×Y1

|∂twn1 |2dxdydt+
d0

1

2

∫
Ω×Y1

|∇ywn1 (τ)|2dxdy +

∫
Ω×Γ1

h(t)R(wn1 (τ))dxdγy

≤ 1

2

∫
Ω×Y1

d1|∇ywn1 (0)|2dxdy +

∫
Ω×Γ1

h(0)R(wn1 (0))dxdγy

+
1

2

τ∫
0

∫
Ω×Y1

|g|2dxdydt+

τ∫
0

∫
Ω×Γ1

∂thR(wn1 )dxdγydt for τ ∈ (0, T ].

Note that

T∫
0

∫
Ω×Γ1

|R(wn1 )|2dxdγydt ≤ C

T∫
0

∫
Ω×Γ1

|wn1 |2dxdγydt

≤ C

T∫
0

∫
Ω×Y1

(|∇ywn1 |2 + |wn1 |2)dxdydt.
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Here, we have used the trace inequality. Hence, we observe that {wn1 } is bounded
in H1(0, T ;L2(Ω × Y1)) and L∞(0, T ;L2(Ω;H1(Y1)). From these estimates,
we can choose a subsequence {ni} of {n} such that wni1 → w1 weakly in
H1(0, T ;L2(Ω× Y1)) and weakly* in L∞(0, T ;L2(Ω× Y1)) and L∞(0, T ;
L2(Ω;H1(Y1))). Also, the above convergence results imply that wni1 (T )→ w1(T )
weakly in L2(Ω× Y1).

Now, to show that (6.16) holds, let v ∈ L2(0, T ;L2(Ω;H1(Y1))). We take a
sequence {vk} such that vk(t) :=

∑mk
j=1 λ

k
j (t)ζj and vk → v in L2(0, T ;L2(Ω;

H1(Y1))) as k → ∞, where λki ∈ C([0, T ]) for i = 1, 2, . . . ,mk and k = 1, 2, . . ..
For each k and i with Nni ≥ mk, it follows from (6.18) that

T∫
0

∫
Ω×Y1

∂tw
ni
1 (wni1 − vk1 )dxdydt+

∫
Ω×Y1

d1∇ywni1 · ∇y(wni1 − vk1 )dxdydt

+

T∫
0

∫
Ω×Γ1

hR(wni1 )(wni1 − vk1 )dxdγydt ≤
T∫

0

∫
Ω×Y1

g(wni1 − vk1 )dxdydt.

By the lower semi-continuity of the norm and the convex function R, we have

lim inf
i→∞

 T∫
0

∫
Ω×Y1

{∂twni1 (wni1 − vk1 ) + d1∇ywni1 · ∇y(wni1 − vk1 )}dxdydt

+

T∫
0

∫
Ω×Γ1

hR(wni1 )(wni1 − vk1 )dxdγydt


≥

T∫
0

∫
Ω×Y1

∂tw1(w1 − vk1 )dxdydt+

∫
Ω×Y1

d1∇yw1 · ∇y(w1 − vk1 )dxdydt

+

T∫
0

∫
Ω×Γ1

h(R(w1)−R(vk1 ))dxdγydt for each k.

Then we show that (6.16) holds for each vk. Moreover, by letting k → ∞ we
obtain the conclusion of this lemma.

Next, we deal with the problem P2(g).

Lemma 6.3.2. Assume (A1) – (A3) and (A4), and g ∈ L2((0, T ) × Ω × Y1).
If R and Q are Lipschitz continuous and bounded on R, then there exists a
solution (w1, w5) of P2(g) in the following sense: w1 ∈ H1(0, T ;L2(Ω × Y1)) ∩
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L∞(0, T ;L2(Ω;H1(Y1))) and w5 ∈ H1(0, T ;L2(Ω× Γ1)) satisfying∫
Ω×Y1

∂tw1(w1 − v1)dxdy +

∫
Ω×Y1

d1∇yw1 · ∇y(w1 − v1)dxdy

+

∫
Ω×Γ1

Q(w5)(R(w1)−R(v1))dxdγy

≤
∫

Ω×Y1

g(w1 − v1)dxdy for v1 ∈ L2(Ω;H1(Y1)) a.e. on [0, T ], (6.21)

∂tw5 = η(w1, w5) on (0, T )× Ω× Γ, (6.22)

w1(0) = w10 on Ω× Y1 and w5(0) = w50 on Ω× Γ1.

Proof. Let w̄5 ∈ V := {z ∈ H1(0, T ;L2(Ω× Γ1)) : z(0) = w50}.
Since Q(w̄5) ∈ H1(0, T ;L2(Ω×Γ1))∩L∞+ ((0, T )×Ω×Γ1), Lemma 6.3.1 implies
that the problem P1(g,Q(w̄5)) has a solution w1 in the sense stated in Lemma
6.3.1. Also, we put

w5(t) :=

t∫
0

η(w1(τ), w̄5(τ))dτ + w50 on Ω× Γ1 for t ∈ [0, T ].

Accordingly, we can define an operator ΛT : V → V by ΛT (w̄5) = w5. Now, we
show that ΛT is a contraction mapping for sufficiently small T > 0. Let w̄i5 ∈
H1(0, T ;L2(Ω×Γ1)) and wi1 be a solution to P1(g,Q(w̄i5)) and wi5 = ΛT (w̄i5) for
i = 1, 2, and w1 = w1

1 − w2
1, w5 = w1

5 − w2
5 and w̄5 = w̄1

5 − w̄2
5.

First, from (6.16) with v1 = w2
1 we see that∫

Ω×Y1

∂tw
1
1(w1

1 − w2
1)dxdy +

∫
Ω×Y1

d1∇yw1
1 · ∇y(w1

1 − w2
1)dxdy

+

∫
Ω×Γ1

Q(w̄1
5)(R(w1

1)−R(w2
1))dxdγy

≤
∫

Ω×Y1

g(w1
1 − w2

1)dxdy a.e. on [0, T ].

Similarly, we have∫
Ω×Y1

∂tw
2
1(w2

1 − w1
1)dxdy +

∫
Ω×Y1

d1∇yw2
1 · ∇y(w2

1 − w1
1)dxdy

+

∫
Ω×Γ1

Q(w̄2
5)(R(w2

1)−R(w1
1))dxdγy

≤
∫

Ω×Y1

g(w2
1 − w1

1)dxdy a.e. on [0, T ].
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By subtracting these inequalities, for any ε > 0 we obtain

1

2

d

dt

∫
Ω×Y1

|w1|2dxdy +

∫
Ω×Y1

d1|∇yw1|2dxdy

≤ −
∫

Ω×Γ1

(Q(w̄1
5)−Q(w̄2

5))(R(w2
1)−R(w1

1))dxdγy (6.23)

≤ Cε

∫
Ω×Γ1

|w̄5|2dxdγy + ε

∫
Ω×Γ1

|w1|2dxdγy

≤ Cε

∫
Ω×Γ1

|w̄5|2dxdγy + CY1ε

∫
Ω×Y1

(|∇yw1|2 + |w1|2)dxdy a.e. on [0, T ],

where CY1
is a positive constant depending only on Y1. Here, by taking ε > 0

with CY1
ε = 1

2d
0
1 and using Gronwall’s inequality we see that

1

2

∫
Ω×Y1

|w1(t)|2dxdy +
d0

1

2

t∫
0

∫
Ω×Y1

|∇yw1|2dxdydτ

≤ eCt
t∫

0

∫
Ω×Γ1

|w̄5|2dxdγydτ for t ∈ [0, T ]. (6.24)

Next, on account of the definition of w5, we that

1

2

d

dt

∫
Ω×Γ1

|w5(t)|2dxdγy

≤ 1

2

∫
Ω×Γ1

(|η(w1
1(t), w̄1

5(t))− η(w2
1(t), w̄2

5(t))|2 + |w5(t)|2)dxdγy

≤ C

∫
Ω×Γ1

(|w1(t)|2 + |w̄5(t)|2 + |w5(t)|2)dxdγy for a.e. t ∈ [0, T ].

Gronwall’s inequality, viewed in the context of (6.24), implies that∫
Ω×Γ1

|w5(t)|2dxdγy

≤ CeCt(

t∫
0

∫
Ω×Γ1

|w̄5|2dxdγydτ +

t∫
0

∫
Ω×Y1

(|∇yw1|2 + |w1|2)dxdydτ)

≤ CeCt
t∫

0

∫
Ω×Γ1

|w̄5|2dxdγydτ for t ∈ [0, T ].
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Hence, we obtain∥∥∂tw5

∥∥
L2(0,T ;L2(Ω×Γ1))

≤
∥∥η(w1

1, w̄
1
5)− η(w2

1, w̄
2
5)
∥∥
L2(0,T ;L2(Ω×Γ1))

≤ C
(∥∥w1

∥∥
L2(0,T ;L2(Ω;H1(Y1))

+
∥∥w̄5

∥∥
L2(0,T ;L2(Ω×Γ1))

)
≤ C

∥∥w̄5

∥∥
L2(0,T ;L2(Ω×Γ1))

≤ CT 1/2
∥∥∂tw̄5

∥∥
L2(0,T ;L2(Ω×Γ1))

,

and ∥∥ΛT (w̄1
5)− ΛT (w̄2

5)
∥∥
H1(0,T ;L2(Ω×Γ1))

≤
∥∥w5

∥∥
L2(0,T ;L2(Ω×Γ1))

+
∥∥∂tw5

∥∥
L2(0,T ;L2(Ω×Γ1))

≤ CT 1/2
∥∥w̄5

∥∥
H1(0,T ;L2(Ω×Γ1))

.

This concludes that there exists 0 < T0 ≤ T such that ΛT0
is a contraction

mapping. Here, we note that the choice of T0 is independent of initial values.
Therefore, by applying Banach’s fixed point theorem we have proved this lemma.

As third step, we treat the auxiliary problem P3(g).

Lemma 6.3.3. Assume (A1), (A3), (A4), and g ∈ L2((0, T ) × Ω × Y1). Then
there exists a pair (w2, w3) such that w2 ∈ H1(0, T ;L2(Ω× Y1)) ∩ L∞(0, T ;
L2(Ω;H1(Y1))), w3 ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)),∫

Ω×Y1

∂tw2v2dxdy +

∫
Ω×Y1

d2∇yw2 · ∇yv2dxdy − α
∫

Ω×Γ2

(Hw3 − w2)v2dxdγy

=

∫
Ω×Y1

gv2dxdy for v2 ∈ L2(Ω;H1(Y1)) a.e. on [0, T ]. (6.25)

and (S4).

Proof. Let {ζj} be the same set of bases functions as in the proof of Lemma
6.3.1 and {µj} be an orthonormal system of the Hilbert space L2(Ω) and a
fundamental of X. Then we can take sequences {wn20} and {Wn

30} such that
wn20 → w20 in L2(Ω;H1(Y1)) and Wn

30 → w30 − wD3 (0) in X as n→∞.

We approximate w2 and W3 := w3 − wD3 by functions wn2 and Wn
3 of the

forms

wn2 (t) =

Nn∑
j=1

βnj (t)ζj , Wn
3 (t) =

Nn∑
j=1

γnj (t)µj for n, (6.26)

where the coefficients βnj and γnj , j = 1, 2, . . . , Nn are determined in the following
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relations: For each n , we have∫
Ω×Y1

∂tw
n
2φ2dxdy +

∫
Ω×Y1

d2∇ywn2 · ∇yφ2dxdy − α
∫

Ω×Γ2

(HWn
3 − wn2 )φ2dxdγy

=

∫
Ω×Y1

gφ2dxdy + α

∫
Ω×Γ2

HwD3 φ2dxdγy (6.27)

for φ2 ∈ span{ζi : i = 1, .., Nn}, t ∈ (0, T ],

βnj (0) = βnj0 for j = 1, 2, .., Nn,

∫
Ω

∂tW
n
3 φ3dx+

∫
Ω

d3∇Wn
3 · ∇φ3dx+ α

∫
Ω×Γ2

(HWn
3 − wn2 )φ3dxdγy

= −
∫
Ω

(∂tw
D
3 −∇d3(∇wD3 ))φ3dxdy − α

∫
Ω×Γ2

HwD3 φ3dxdγy (6.28)

for φ3 ∈ span{µi : i = 1, 2, ..., Nn}, t ∈ (0, T ],

γnj (0) = γnj0 for j = 1, 2, .., Nn.

Consider φ2 = ζj and φ3 = µj , j = 1, 2, .., Nn, as a test functions in (6.27) and
(6.28), respectively, these yield a system of ordinary differential equations

∂tβ
n
j (t) +

Nn∑
i=1

(Bi)jβ
n
i (t) +

Nn∑
i=1

(B̃i)jγ
n
i (t) = Jj2(t),

∂tγ
n
j (t) +

Nn∑
i=1

(Ci)jγ
n
i (t) +

Nn∑
i=1

(C̃i)jβ
n
i (t) = Jj3(t),

for t ∈ (0, T ] and j = 1, 2, . . . , Nn and

(Bi)j :=

∫
Ω×Y1

d2∇yζi · ∇yζjdxdy, (B̃i)j :=

∫
Ω×Γ2

µiζjdxdγy,

(Ci)j :=

∫
Ω

d3∇µi · ∇µjdx+ αH

∫
Ω×Γ2

µiµjdxdγy,

(C̃i)j := −α
∫

Ω×Γ2

µjζidxdγy, J2j(t) :=

∫
Ω×Y1

g(t)ζjdxdy,

J3j(t) :=

∫
Ω×Y1

(∂tw
D
3 −∇(∇wD3 ))ζjdxdy + αH

∫
Ω×Γ2

wD3 ζjdxdγy for t ∈ (0, T ].

Clearly, this linear system of ordinary differential equations has a solution
βnj and γnj . Thus the solutions wn2 and Wn

3 defined in (6.26) solve (6.27) and
(6.28), respectively.
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Next, we shall obtain some uniform estimates for wn2 and WN
3 . We take

φ2 = wn2 and φ3 = Wn
3 in (6.27) and (6.28), respectively, to have

1

2

d

dt

∫
Ω×Y1

|wn2 (t)|2dxdy +

∫
Ω×Y1

d2|∇ywn2 (t)|2dxdy +
α

4

∫
Ω×Γ2

|wn2 (t)|2dxdγy

≤ α

2
H|Γ2|

∫
Ω

|Wn
3 (t)|2dx+

1

2

∫
Ω×Y1

|g(t)|2dxdy

+
1

2

∫
Ω×Y1

|wn2 (t)|2dxdy + αH2

∫
Ω×Γ2

|wD3 (t)|2dxdy for a.e. t ∈ [0, T ],

and

1

2

d

dt

∫
Ω

|Wn
3 (t)|2dx+

∫
Ω

d3|∇Wn
3 (t)|2dx+ αH|Γ2|

∫
Ω

|Wn
3 (t)|2dxdγy

≤ 1

4

∫
Ω×Γ2

|wn2 (t)|2dxdγy + (α2|Γ2|+
1

2
)

∫
Ω

|Wn
3 (t)|2dx

+
1

2

∫
Ω

|gD(t)|2dx for a.e. t ∈ [0, T ],

where |Γ2| :=
∫
Γ2

dγy, and gD := ∂tw
D
3 −∇(∇wD3 )+αH|Γ2|wD3 . By adding these

inequalities, we get

1

2

d

dt

∫
Ω×Y1

|wn2 (t)|2dxdy + d0
2

∫
Ω×Y1

|∇ywn2 (t)|2dxdy

+
1

2

d

dt

∫
Ω

|Wn
3 (t)|2dx+ d0

3

∫
Ω

|∇Wn
3 (t)|2dx

≤ (α2|Γ2|+
1

2
+
α

2
H|Γ2|)

∫
Ω

|Wn
3 (t)|2dx+

1

2

∫
Ω×Y1

|g(t)|2dxdy

+
3

4

∫
Ω×Y1

|wn2 (t)|2dxdy +
1

2

∫
Ω

|gD(t)|2dx for a.e. t ∈ [0, T ].

Consequently, Gronwall’s inequality implies that for some positive constant C∫
Ω×Y1

|wn2 (t)|2dxdy +

∫
Ω

|Wn
3 (t)|2dx ≤ C for t ∈ [0, T ] and n, (6.29)

T∫
0

∫
Ω×Y1

|∇ywn2 |2dxdydt+

T∫
0

∫
Ω

|∇Wn
3 (t)|2dxdt ≤ C for n. (6.30)
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Now we obtain a uniform estimate for the time derivative by taking φ2 =
∂tw

n
2 in (6.27), we observe that∫

Ω×Y1

|∂twn2 (t)|2dxdy +
1

2

d

dt

∫
Ω×Y1

d2|∇ywn2 (t)|2dxdy

−α
∫

Ω×Γ2

(H(Wn
3 (t) + wD3 (t))− wn2 (t))∂tw

n
2 (t)dxdγy

=

∫
Ω×Y1

g(t)∂tw
n
2 (t)dxdy for a.e. t ∈ [0, T ]. (6.31)

Here, we denote the third term in the left hand side of (6.31) by J(t) and see
that

J(t) := −α d
dt

∫
Ω×Γ2

H(Wn
3 (t) + wD3 (t))wn2 (t)dxdγy + α

1

2

d

dt

∫
Ω×Γ2

|wn2 (t)|2dxdγy

+αH

∫
Ω×Γ2

∂t(W
n
3 (t) + wD3 (t))wn2 (t)dxdγy for a.e. t ∈ [0, T ].

Then we have

1

2

∫
Ω×Y1

|∂twn2 (t)|2dxdy+
1

2

d

dt

∫
Ω×Y1

d2|∇ywn2 (t)|2dxdy+
α

2

d

dt

∫
Ω×Γ2

|wn2 (t)|2dxdγy

≤ 1

2

∫
Ω×Y1

|g(t)|2dxdy + α
d

dt

∫
Ω×Γ2

H(Wn
3 (t) + wD3 (t))wn2 (t)dxdγy

+αH|Γ2|1/2
∫
Ω

|∂t(Wn
3 (t) + wD3 (t))| ‖wn2 (t)‖L2(Γ2)dx for a.e. t ∈ [0, T ].(6.32)

Considering the last term in (6.32) and by Young’s inequality, we have

αH|Γ2|1/2
∫
Ω

|∂t(Wn
3 (t) + wD3 (t))| ‖wn2 (t)‖L2(Γ2)dx

≤ αH|Γ2|1/2‖wn2 (t)‖L2(Γ2)

∫
Ω

|∂t(Wn
3 (t) + wD3 (t))|dx

≤ αH|Γ2|1/2‖wn2 (t)‖L2(Γ2)

∫
Ω

(
|∂t(Wn

3 (t)|+ |wD3 (t))|
)
dx

≤ αH|Γ2|1/2|Ω|1/2‖wn2 (t)‖L2(Γ2)

(
‖∂t(Wn

3 (t)‖L2(Γ2) + ‖wD3 (t))‖L2(Γ2)

)
≤ 1

4
‖∂t(Wn

3 (t)‖2L2(Γ2) +
3

2
α2H2|Γ2||Ω|‖wn2 (t)‖2L2(Γ2) +

1

2
‖wD3 (t))‖2L2(Γ2)

)
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Similarly, by taking φ3 = ∂tW
n
3 in (6.28) we have∫

Ω

|∂tWn
3 (t)|2dx+

1

2

d

dt

∫
Ω

d3|∇Wn
3 (t)|2dx

= −α
∫

Ω×Γ2

(H(Wn
3 (t)+wD3 (t))−wn2 (t))∂tW

n
3 (t)dxdγy−

∫
Ω

gD(t)∂tW
n
3 (t)dx

≤ −αH|Γ2|
d

dt

∫
Ω

|Wn
3 (t)|2dx+ 2α2H2|Γ2|2

∫
Ω

|wD3 (t)|2dx

+2α2|Γ2|
∫

Ω×Γ2

|wn2 (t)|2dxdγy +
1

2

∫
Ω

|∂tWn
3 (t)|2dx+

∫
Ω

|gD(t)|2dx

for a.e. t ∈ [0, T ].

From these inequalities, it follows that

1

2

∫
Ω×Y1

|∂twn2 (t)|2dxdy+
1

2

d

dt

∫
Ω×Y1

d2|∇ywn2 (t)|2dxdy+
1

2

d

dt

∫
Ω×Γ2

|wn2 (t)|2dxdγy

+
1

8

∫
Ω

|∂tWn
3 (t)|2dx+

1

2

d

dt

∫
Ω

d3|∇Wn
3 (t)|2dx+ αH|Γ2|

d

dt

∫
Ω

|Wn
3 (t)|2dx

≤ 1

2

∫
Ω×Y1

|g(t)|2dxdy +
d

dt

∫
Ω×Γ2

H(Wn
3 (t) + wD3 (t))wn2 (t)dxdγy

+(2|Γ2|+ 2α2|Γ2|)
∫

Ω×Γ2

|wn2 (t)|2dxdγy +

∫
Ω

|gD(t)|2dx for a.e. t ∈ [0, T ].

Here, we use Gronwall’s inequality to have

1

2

t1∫
0

∫
Ω×Y1

|∂twn2 |2dxdydt+
1

2

∫
Ω×Y1

d2|∇ywn2 (t1)|2dxdy+
1

2

∫
Ω×Γ2

|wn2 (t1)|2dxdγy

+
1

8

t1∫
0

∫
Ω

|∂tWn
3 |2dxdt+

1

2

∫
Ω

d3|∇Wn
3 (t1)|2dx+ αH|Γ2|

∫
Ω×Γ2

|Wn
3 (t1)|2dx

≤ eCt1

t1∫
0

 ∫
Ω×Y1

|g|2dxdy +

∫
Ω

|gD|2dx

 dt

+ eCt1

t1∫
0

e−Ct

α d
dt

∫
Ω×Γ2

H(Wn
3 + wD3 )wn2 dxdγy

dt
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≤ eCt1

t1∫
0

( ∫
Ω×Y1

|g|2dxdy+

∫
Ω

|gD|2dx
)
dt+α

∫
Ω×Γ2

H
(
Wn

3 (t1)+wD3 (t1)
)
wn2 (t1)dxdγy

+ αeCt1
∣∣∣ ∫
Ω×Γ2

H(Wn
3 (0) + wD3 (0))wn2 (0)dxdγy

∣∣∣
+ αeCt1

t1∫
0

∫
Ω×Γ2

H
(
Wn

3 + wD3
)
wn2 dxdγydt for t1 ∈ [0, T ].

This inequality together with (6.29) and (6.30) lead to∫
Ω×Y1

|∇ywn2 (t)|2dxdy +

∫
Ω

|∇Wn
3 (t)|2dx ≤ C for t ∈ [0, T ] and n, (6.33)

T∫
0

∫
Ω×Y1

|∂twn2 |2dxdydt+

T∫
0

∫
Ω

|∂tWn
3 |2dxdt ≤ C for n. (6.34)

By (6.29) - (6.34), there exists a subsequence {ni} such that wni2 → w2 weakly
in H1(0, T ;L2(Ω × Y1)), weakly* in L∞(0, T ;L2(Ω;H1(Y1)) and Wni

3 → W3

weakly in H1(0, T ;L2(Ω)), weakly* in L∞(0, T ;H1(Ω)) as i → ∞. Clearly,
wni2 → w2 weakly in L2((0, T )×Ω×Γ2) as i→∞. Here, we put w3 = W3 +wD3 .

Since the problem P3(g) is linear, similarly to the last part of the proof of
Lemma 6.3.1, we can show (6.25) and (S4).

6.4 Proof of Theorem 6.1.3 (main results)

First, we consider our problem (6.1) – (6.8) in the case when f1, f2, R and Q
are Lipschitz continuous and bounded on R.

Proposition 6.4.1. If (A1)– (A4) hold and f1, f2, R and Q are Lipschitz
continuous and bounded on R, then there exists one and only one multiplet
(w1, w2, w3, w5) satisfying
(S)

w1, w2 ∈ H1(0, T ;L2(Ω× Y1)) ∩ L∞(0, T ;L2(Ω;H1(Y1))),

w3 ∈ H1(0, T ;L2(Ω)), w3 − wD3 ∈ L∞((0, T ;X), w5 ∈ H1(0, T ;L2(Ω× Γ1)),

(S2) holds for any v1 ∈ L2(Ω;H1(Y1)), and (S3), (S4) and (S5) hold.

Proof. Let (w̄1, w̄2) ∈ L2((0, T ) × Ω × Y1)2. Then, by Lemmas 6.3.2 and
6.3.3, there exist solutions (w1, w5) of P2(−f1(w̄1) + f2(w̄2)) and (w2, w3) of
P3(f1(w̄1) − f2(w̄2)), respectively. Accordingly, we can define an operator Λ̄T
from L2((0, T )×Ω×Y1)2 into itself. Henceforth, we show that Λ̄T is contraction
for small T . To do so, let (w̄i1, w̄

i
2) ∈ L2((0, T )×Ω×Y1)2, (wi1, w

i
5) and (wi2, w

i
3)
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be solutions of P2(−f1(w̄i1) + f2(w̄i2)) and P3(f1(w̄i1)− f2(w̄i2)), respectively, for
i = 1, 2, and put w̄1 = w̄1

1 − w̄2
1, w̄2 = w̄1

2 − w̄2
2, wj = w1

j − w2
j , j = 1, 2, 3, 5.

Similarly to (6.23), we see that

1

2

d

dt

∫
Ω×Y1

|w1|2dxdy +

∫
Ω×Y1

d1|∇yw1|2dxdy

≤ −
∫

Ω×Γ1

(Q(w̄1
5)−Q(w̄2

5))(R(w2
1)−R(w1

1))dxdγy

−
∫

Ω×Y1

(f1(w̄1
1)− f1(w̄2

1))w1dxdy +

∫
Ω×Y1

(f2(w̄1
1)− f2(w̄2

1))w1dxdy

≤ d0
1

2

∫
Ω×Y1

|∇yw1|2dxdy + C

∫
Ω×Y1

|w1|2dxdy + C

∫
Ω×Γ1

|w5|2dxdγy

+C

∫
Ω×Y1

(|w̄1|2 + |w̄2|2)dxdy a.e. on [0, T ]. (6.35)

Next, we test (6.25) by w2. Consequently, by elementary calculations, we
obtain

1

2

d

dt

∫
Ω×Y1

|w2|2dxdy + d0
2

∫
Ω×Y1

|∇yw2|2dxdy + α

∫
Ω×Γ2

|w2|2dxdγy

≤
∫

Ω×Y1

(f1(w̄1
1)− f1(w̄2

1))w2dxdy −
∫

Ω×Y1

(f1(w̄1
2)− f1(w̄2

2))w2dxdy

+α

∫
Ω×Γ2

Hw3w2dxdγy

≤ C

∫
Ω×Y1

(
|w̄1|+ |w̄2|

)
|w2|dxdy+

α

2

∫
Ω×Γ2

|w2|2dxdγy+
α

2
H2|Γ2|

∫
Ω

|w3|2dx

and

1

2

d

dt

∫
Ω×Y1

|w2|2dxdy + d0
2

∫
Ω×Y1

|∇yw2|2dxdy +
α

2

∫
Ω×Γ2

|w2|2dxdγy(6.36)

≤ C

∫
Ω×Y1

(|w̄1|2 + |w̄2|2 + |w2|2)dxdy + C

∫
Ω

|w3|2dx a.e. on [0, T ].
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It follows form (S4) that

1

2

d

dt

∫
Ω

|w3|2dx+ d0
3

∫
Ω

|∇w3|2dx+ αH

∫
Ω×Γ2

|w3|2dxdγy (6.37)

≤ α

4

∫
Ω×Γ2

|w2|2dxdγy + α|Γ2|
∫
Ω

|w3|2dx a.e. on [0, T ].

Moreover, by using the trace inequality and (6.22), we see that for ε > 0 we
can write

1

2

d

dt

∫
Ω×Γ1

|w5|2dx ≤
∫

Ω×Γ1

∣∣η(w1
1, w

1
5)− η(w2

1, w
2
5)
∣∣ ∣∣w5

∣∣dxdγy

≤ C

∫
Ω×Γ1

(
|w1| |w5|+ |w5|2

)
dxdγy (6.38)

≤ CY1
ε

∫
Ω×Y1

(
|∇yw1|2 + |w1|2

)
dxdy + C

∫
Ω×Γ1

|w5|2dxdγy a.e. on [0, T ].

Here, we take ε with CY1ε =
d01
4 and add (6.35) – (6.38). Then it holds that

1

2

d

dt

∫
Ω×Y1

|w1|2dxdy +
d0

1

4

∫
Ω×Y1

|∇yw1|2dxdy +
1

2

d

dt

∫
Ω×Γ1

|w5|2dx

+
1

2

d

dt

∫
Ω×Y1

|w2|2dxdy + d0
2

∫
Ω×Y1

|∇yw2|2dxdy +
α

4

∫
Ω×Γ2

|w2|2dxdγy

+
1

2

d

dt

∫
Ω

|w3|2dx+ d0
3

∫
Ω

|∇w3|2dx+ αH

∫
Ω×Γ2

|w3|2dxdγy

≤ C

∫
Ω×Y1

(|w̄1|2 + |w̄2|2)dxdy + C

∫
Ω×Y1

(|w1|2 + |w2|2)dxdy

+C

∫
Ω

|w3|2dx+ C

∫
Ω×Γ1

|w5|2dxdy a.e. on [0, T ].

Hence, Gronwall’s inequality implies that∫
Ω×Y1

(|w1(t)|2 + |w2(t)|2)dxdy +

∫
Ω

|w3(t)|2dx+

∫
Ω×Γ1

|w5(t)|2dxdγy

≤ eCt
t∫

0

∫
Ω×Y1

(|w̄1|2 + |w̄2|2)dxdydτ for t ∈ [0, T ].
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This leads to∥∥Λ̄T (w̄1
1, w̄

1
2)− Λ̄T (w̄2

1, w̄
2
2)
∥∥
L2((0,T )×Ω×Y1)

≤ ‖w1‖L2((0,T )×Ω×Y1) + ‖w2‖L2((0,T )×Ω×Y1)

≤ 2
( T0∫

0

eCt
t∫

0

∫
Ω×Y1

(|w̄1(τ)|2L2(Ω×Y1) + |w̄2(τ)|2L2(Ω×Y1))dxdτdt
)

≤ CeCtT 1/2
∥∥(w̄1

1, w̄
1
2)− (w̄2

1, w̄
2
2)
∥∥
L2((0,T )×Ω×Y1)

Therefore, there exists a positive number T0 such that Λ̄T0 is a contraction
mapping for 0 < T0 ≤ T . Since the choice of T0 is independent of initial values,
by Banach’s fixed point theorem we conclude that the problem (6.1)–(6.8) has
a solution in the sense of (S).

Proof of Theorem 6.1.3. First, for m > 0 we define fim, i = 1, 2, Rm and
Qm by

fim(r) :=

{
fi(m) for r > m,

fi(r) otherwise,
Rm(r) :=

{
R(m) for r > m,

R(r) otherwise.

Qm(r) :=


Q(m) for r > m,

Q(r) for |r| ≤ m,
Q(−m) for r < −m.

Then, by Proposition 6.4.1 for each m > 0, the problem (6.1)–(6.8) with f1 =
f1m, f2 = f2m, R = Rm and Q = Qm has a solution (w1m, w2m, w3m, w5m) in
the sense of (S).

Now, for each m we shall prove
(i) w1m, w2m(t) ≥ 0 a.e. on (0, T ) × Ω× Y1, w3m ≥ 0 a.e. on (0, T ) × Ω and
w5m ≥ 0 a.e. on (0, T )× Ω× Γ1.
In order to prove (i) we test (S2) by w1m +w−1m, where φ− := −min{0, φ} with
φ+φ− = 0. Then we see that

1

2

d

dt

∫
Ω×Y1

|w−1m|2dxdy +

∫
Ω×Y1

d1|∇yw−1m|2dxdy

+

∫
Ω×Γ1

Qm(w5)(Rm(w1m)−Rm(w1m + w−1m))dxdγy

≤
∫

Ω×Y1

(f1m(w1m)− f2m(w2m))w−1mdxdy a.e. on [0, T ],

where Rm is the primitive of Rm with Rm(0) = 0. Note that

Rm(w1m)−Rm(w1m + w−1m) = 0
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and (f1m(w1m)− f2m(w2m))w−1m ≤ 0, since f2m ≥ 0 on R. Clearly,

1

2

d

dt

∫
Ω×Y1

|w−1m|2dxdy +

∫
Ω×Y1

d1|∇yw−1m|2dxdy ≤ 0 a.e. on [0, T ]

so that w1m ≥ 0 a.e. on (0, T )× Ω× Y1.
Next, because −[w3m]− ∈ X, we can test (S3) by −w2m

− and (S4) by −w−3m
to obtain

1

2

d

dt

∫
Ω×Y1

|w−2m|2dxdy + d0
2

∫
Ω×Y1

|∇yw−2m|2dxdy + α

∫
Ω×Γ2

|w−2m|2dxdγy

≤ −
∫

Ω×Y1

(f1m(w1m)− f2m(w2m))w−2mdxdy − α
∫

Ω×Γ2

Hw3mw
−
2mdxdγy

≤ α

2

∫
Ω×Γ2

|w−2m|2dxdγy +
α

2
H2|Γ2|

∫
Ω

|w−3m|2dx a.e. on [0, T ], (6.39)

and

1

2

d

dt

∫
Ω

|w−3m|2dx+ d0
3

∫
Ω

|∇w−3m|2dx = α

∫
Ω×Γ2

(Hw3m − w2m)w−3mdxdγy

≤ α
∫

Ω×Γ2

|w−2m||w
−
3m|dxdγy a.e. on [0, T ]. (6.40)

Adding (6.39) and (6.40) and then applying Young’s inequality, we get

1

2

d

dt
(

∫
Ω×Y1

|w−2m|2dxdy +

∫
Ω

|w−3m|2dx) + d0
2

∫
Ω×Y1

|∇yw−2m|2dxdy (6.41)

+d0
3

∫
Ω

|∇w−3m|2dx ≤ (
α

2
H2|Γ2|+ α|Γ2|)

∫
Ω

|w−3m|2dx a.e. on [0, T ].

The application of Gronwall’s inequality and the positivity of initial data give
w2m ≥ 0 a.e. on (0, T )× Ω× Y1 and w3m ≥ 0 a.e. on (0, T )× Ω.

Since η ≥ 0, it is easy to see that

1

2

d

dt

∫
Ω×Γ1

|w−5m|dxdγy ≤ 0 a.e. on [0, T ].

Hence, we see that w5m ≥ 0 a.e. on (0, T )× Ω× Γ1. Thus (i) is true.

Next, we shall show upper bounds of solutions. By (A1) we can take M1 and
M2 such that M1 ≥ ‖w10‖L∞(Ω×Y1),

M2 ≥ max{‖w20‖L∞(Ω×Y1), H‖w30‖L∞(Ω), H‖wD3 ‖L∞(Ω×Y1)}



6.4. Proof of Theorem 6.1.3 (main results) 119

and f1(M1) = f2(M2). Also, we putM3 = M2

H , M5 = max{βmax,‖w50‖L∞(Ω×Γ1)}
and M0 = max{M1,M2,M3,M5}. Then it holds:

(ii) For any m ≥ M0 we have w1m(t) ≤ M1, w2m(t) ≤ M2 a.e. in Ω× Y1,
w3m(t) ≤M3 a.e. in Ω and w5m(t) ≤M5 a.e. on Ω× Γ1 for a.e. t ∈ [0, T ].

In fact, let m ≥ M0 and consider w1m − (w1m −M1)+, (w2m −M2)+ and
(w3m −M3)+ as test functions in (S2) - (S4). Then we observe that

1

2

d

dt

∫
Ω×Y1

|(w1m −M1)+|2dxdy + d0
1

∫
Ω×Y1

|∇y(w1m −M1)+|2dxdy

+

∫
Ω×Γ1

Qm(w5m)(Rm(w1m)−Rm(w1m − (w1m −M1)+))dxdγy

≤
∫

Ω×Y1

(−f1m(w1m) + f2m(w2m))(w1m −M1)+dxdy, (6.42)

1

2

d

dt

∫
Ω×Y1

|(w2m −M2)+|2dxdy + d0
2

∫
Ω×Y1

|∇y(w2m −M2)+|2dxdy

≤
∫

Ω×Y1

(f1m(w1m)− f2m(w2m))(w2m −M2)+dxdy (6.43)

+α

∫
Ω×Γ2

(Hw3m − w2m)(w2m −M2)+dxdγy,

1

2

d

dt

∫
Ω

|(w3m −M3)+|2dx+ d0
3

∫
Ω

|∇(w3m −M3)+|2)dx

≤ −α
∫

ΩΓ2

(Hw3m − w2m)(w3m −M3)+dxdγy a.e. on [0, T ]. (6.44)

Here, note that Rm(w1m)−Rm(w1m−(w1m−M1)+) ≥ 0. Adding (6.42)–(6.44),
we get

1

2

d

dt

 ∫
Ω×Y1

(|(w1m −M1)+|2+|(w2m −M2)+|2)dxdy+

∫
Ω

|(w3m −M3)+|2dx


+

∫
Ω×Y1

(
d0

1|∇(w1m−M1)+|2+d0
2|∇(w2m−M2)+|2

)
dxdy+d0

3

∫
Ω

|∇(w3m−M3)+|2dx
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≤
∫

Ω×Y1

(−f1m(w1m) + f2m(w2m))((w1m −M1)+ − (w2m −M2)+)dxdy(6.45)

+α

∫
Ω×Γ2

((Hw3m − w2m)(w2m −M2)+ + (w2m −Hw3m)(w3m −M3)+)dxdγy

a.e. on [0, T ].

We estimate the first term on the r.h.s of (6.45) by making use of f1m(M1) =
f2m(M2) and the Lipschitz continuity of fim, i = 1, 2, as follows: We have

∫
Ω×Y1

(−f1m(w1m) + f1m(M1)− f2m(M2) + f2m(w2m))(w1m −M1)+dxdy

+

∫
Ω×Y1

(fm1(w1m)− f1m(M1) + f2m(M2)− f2m(w2))(w2m −M2)+dxdy

≤
∫

Ω×Y1

(f2m(w2m)− f2m(M2))(w1m −M1)+dxdy

+

∫
Ω×Y1

(f1m(w1m)− f1m(M1))(w2m −M2)+dxdy

≤ C

∫
Ω×Y1

(|(w2m −M2)+|2 + |(w1m −M1)+|2)dxdy a.e. on [0, T ].

We estimate the second term on the r.h.s in (6.45) as follows:

α

∫
Ω×Γ2

(Hw3m −HM3 +M2 − w2m)(w2m −M2)+dxdγy

+α

∫
Ω×Γ2

(w2m −M2 +H(M3 − w3m))(w3m −M3)+dxdγy

≤ αH

∫
Ω×Γ2

(wm3 −M3)(w2m −M2)+dxdγy − α
∫

Ω×Γ2

|(w2m −M2)+|2dxdγy

+α

∫
Ω×Γ2

(w2m −M2)(w3m −M3)+dxdγy − αH
∫

Ω×Γ2

|(w3m −M3)+|2dxdγy

≤ (αH2 + α)

∫
Ω×Γ2

|(w3m −M3)+|2dxdγy a.e. on [0, T ].
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Now, (6.45) becomes

1

2

d

dt

 ∫
Ω×Y1

(
|(w1m−M1)+|2+|(w2m−M2)+|2

)
dxdy+

∫
Ω

|(w3m−M3)+|2dx


+

∫
Ω×Y1

(
d0

1|∇(w1m −M1)+|2 + d0
2|∇(w2m −M2)+|2

)
dxdy

+d0
3

∫
Ω

|∇(w3m −M3)+|2dx

≤ C

∫
Ω×Y1

(
|(w2m −M2)+|2 + |(w1m −M1)+|2

)
dxdy

+C

∫
Ω

|(w3m −M3)+|2dx a.e. on [0, T ].

Applying Gronwall’s inequality, we get for t ≥ 0∫
Ω×Y1

(|(w1m(t)−M1)+|2+|(w2m(t)−M2)+|2)dxdy+

∫
Ω

|(w3m(t)−M3)+|2dx ≤ 0.

Hence, w1m ≤ M1, w2m ≤ M2 a.e. in Ω × Y1 and w3m ≤ M3 a.e. in Ω for t ∈
(0, T ). To show that w5m is bounded on Ω×Γ1, we test (6.4) with (w5m−M5)+

1

2

d

dt

∫
Ω×Γ1

|(w5m −M5)+|2dxdγy

=

∫
Ω×Γ1

Rm(w1m)Qm(w5m)(w5m −M5)+dxdγy a.e. on [0, T ]. (6.46)

We show that r.h.s of (6.46) is less or equal to zero.
If w5m < M5, it is clear that

Rm(w1m)Qm(w5m)(w5m −M5)+ = 0. (6.47)

If w5m−M5 ≥ 0, w5m ≥M5 ≥ βmax. By our assumption, Q(β) = 0 for β ≥ βmax.
Thus, (6.47) holds.

This shows that w5m ≤M5 a.e on (0, T )× Ω× Γ1. Thus we have (ii).
Accordingly, (w1m, w2m, w3m, w5m) satisfies the conditions (S1) -(S4) form ≥

M0 by (i) and (ii). Thus we have proved this theorem.

6.4.1 Proof of Theorem 6.1.4

Let (w1j , w2j , w3j , w5j), j = 1, 2, be solutions (6.1)-(6.8) satisfying (S1) - (S4).
Since all wij , i = 1, 2, 3, 5, j = 1, 2, are bounded, (w1j , w2j , w3j , w4j) is also a
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solution of (6.1)-(6.8) with f1 = f1m, f2 = f2m, R = Rm and Q = Qm for some
positive constant m. Then Proposition 6.4.1 guarantees the uniqueness. This
proves the conclusion of Theorem 6.1.4.

Remark 6.4.2. Having in view the proof of Theorem 6.1.4 and the working
techniques in Theorem 3, pp. 520-521 in [48] as well as in Theorem 4.1 in [96],
we expect that the solution in the sense of the Definition 6.1.2 is stable to changes
with respect to the initial data, boundary data, and model parameters.

6.5 Notes and Comments

We presented in this chapter the analysis of the distributed-microstructure model
without including any balance equation for moisture. We combined fixed-point
arguments together with a Galerkin’s scheme to prove the existence of solutions.

Since the processes in porous media are highly influenced by the geometry of
the microstructure, it is a difficult to understand and predict their behavior on a
macroscopic scale. The distributed-microstructure models are designed to bridge
the information on different spatial scales. From the theory of periodic homog-
enization, it is known for certain situations that the distributed-microstructure
model is a good approximation of the (exact) microscopic model provided that
the periodicity a is small. Note however that the distributed-microstructure
modeling methodology is applicable away from the context of homogenization
(periodicity), provided the well-posedness of the involved systems.

Distributed-microstructure models are usually seen in the context of homog-
enization limit as the scale of inhomogeneity tends to zero. The convergence
of the solution of the well-posed microscopic problem provides a proof of exis-
tence of solutions to the distributed-microstructure model, see e.g. Chapter 9
in [67]. Here we view the distributed-microstructure model independent of the
homogenization context. Our setting is quite general and includes rather general
geometries that may arise in applications.

The reaction rate α (entering in (6.3) and (6.13)) can be chosen other than
a constant. It can be taken as a monotone graph which is a sub-gradient op-
erator [67]. A similar approach to [45] could be used to prove the existence
of the solutions. If we explore the limit α → ∞, the system we consider here
converges to the system with boundary condition (6.13) replaced by the corre-
sponding ”matched boundary condition”. We investigate this limit numerically
in Chapter 7, where we refer to as BiM → 0 (large mass-transfer Biot number).

There are other techniques to prove existence of these models: Treutler em-
ployed the semi-group methods in [135] and Meier applied Banach fixed point
arguments in [86].

Numerical experiments show that these systems are not only easy-to-work
and but also they do approximate microscopic models very well, see e.g. [50, 86,
88].



Chapter 7

Multiscale Numerical Simulations

In this chapter, we consider the distributed-microstructure system (7.1)–(7.17)
derived in Subsection 3.3.2 and present its numerical simulation. This system is
posed on two different spatially separated scales. Due to the multiscale nature of
the model, we perform computations at macroscopic length scales while taking
into account simultaneously also the transport and reactions occurring at small
length scales. We perform all the simulations in a one-dimensional two-scale
setting. Our main objective is threefold:

• Calculate macroscopic pH profiles and detect the presence of sudden pH
drops.

• Approximate the position of the macroscopic corrosion front1 from gypsum
concentration profiles.

• Explore the way in which the macroscopic Biot number2 BiM connects the
two reaction-diffusion scenarios: the matched microstructure model and
the one with non-equilibrium transfer at water-air interfaces.

This chapter is structured as follows: In Section 7.1, we shed some light on the
motivation behind the simulations we perform in this chapter. Section 7.2 con-
tains the one-dimensional two-scale geometry and the two-scale model equations.
In Section 7.3, we approximate numerically the profiles of the concentration of
hydrogen sulfide gaseous and gypsum. We make use of profiles of gypsum and
H2S(g) to approximate the corrosion front location separating the corroded and
the uncorroded parts of concrete and the macroscopic pH, respectively. Section
7.4 is devoted to understanding the role of macroscopic Biot number. We present
a two-scale finite difference numerical scheme and guarantee its convergence. We
illustrate numerically the behavior of all concentrations profiles and indicate the
expected penetration depth versus time curve.

1This is a sharp front separating the corroded and uncorroded parts of the concrete.
2Biot numbers are dimensionless quantities mostly used in heat and mass transfer calcula-

tions. They quantify the resistance of a surface (thin layer) to heat and/or mass transfer.
The results exhibited in this chapter have been presented in [27, 28]. This work has

been carried out in collaboration with V. Chalupecký (Fukuoka), J. Kruschwitz (Kiel) and A.
Muntean (Eindhoven). Thanks are due to V. Chalupecký for producing the C-code behind
the plots.
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7.1 Motivation

The biophysics of the corrosion problem is coupled to the mechanics of the
concrete material. In order to be able to tackle these at a later stage (e.g. by
including the solid-phase transformations and the evolving ecology of bacteria)
and to capture the macroscopic fracture initiation, we focus here on a much
simpler setting describing the multiscale transport and reaction of the active
chemical species involved in the sulfatation process. The multiscale nature of
the model allows us to perform computations at macroscopic length scales that
are relevant to practical applications while capturing effects of the processes
occurring at a microscopic scale.

All cement-based materials (including concrete) involve a combination of
heterogeneous multi-phase material, multiscale chemistry, multiscale transport
(flow, diffusion, ionic fluxes, etc.), and multiscale mechanics. Having in view this
complexity, such materials are very difficult to describe, to analyze mathemati-
cally, and to deal with numerically in an efficient and sufficiently accurate way.
We expect that only when the multiscale aspects of such materials are handled
properly, a good prediction of the large-time behavior may be obtained. We
are interested in simulating numerically the influence of microstructural effects
on macroscopic quantities. To achieve our goal, we numerically approximate
macroscopic pH profiles using the profiles of H2SO4 and the position of the cor-
rosion front using gypsum profiles, and delineate the role of the macroscopic
mass-transfer Biot number.

The strength of the chemical attack depends on the ability of the acid to
dissociate and on the solubility of its calcium salt. Our interest in the pH
scale is due to the fact that high pH and low temperature reduce the release of
hydrogen sulfide to the sewer atmosphere as it corresponds to the low growth
rate of the Acidithiobacillus thiooxidans [74]. It is well-known that the pH of
a concrete is approximately 12, and sulfate-producing bacteria can not grow in
such a alkaline environment. Experiments show that the drop in pH from 9 to
8 corresponds to the the presence of H2S(aq) and further reduction to pH< 3
corresponds to situations when the reaction (1.4) has already occurred, see e.g.
[93, 145]. In spite of the fact that we do not include all the responsible species in
the sulfatation process, we are able to capture numerically a drop in pH which
is in the experimental range [93].

The main focus of the Section 7.4 is on the role of two micro-macro trans-
mission conditions. We explore numerically the way in which the macroscopic
Biot number BiM connects the two reaction-diffusion scenarios. We indicate
connections between the solution of the distributed-microstructure system (with
moderate size of BiM ) and the solution to the matched-microstructure system
(with blowing up size of BiM ), where Henry’s law plays the role of the micro-
macro transmission condition. This should give us hints on the intermediate and
large-time behavior of the concentrations in particular as well as on the corrosion
process in general.
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7.2 Geometry. Model equations

First we describe our geometry in which the physical processes are observed and
then we present our distributed-microstructure model.

7.2.1 One-dimensional two-scale geometry

Focusing on the already damaged part of the concrete, we consider a homoge-
neous macroscopic domain Ω := (0, L) (with L > 0) representing the concrete
sample in the region where corrosion initiates. The boundary of Ω, say Γ, is

Figure 7.1: Cross-section of a concrete pipe and two-scale domain pointing out
microstructure at each point.

composed of two disjoint parts ΓD := {0} (the inner surface of the pipe) and
ΓN := {L}, the Dirichlet and the Neumann boundaries, respectively. At each
point in Ω, we can zoom into a typical microstructure Y := (0, l) (with l > 0).
Usually, cells (pores) in concrete contain a stationary water film, air and solid
fractions in different ratios depending on the local porosity. Generally, we ex-
pect that the choice of the microstructure depends on the macroscopic position
x ∈ Ω. Here we assume that the medium Ω is made by periodically repeating
the same microstructure Y , see Fig. 7.1. Since at the microscopic level, the
involved reaction and diffusion processes take place in the pore water, we denote
by Y1 := (0, `), ` < l < L the wet part of the pore and completely neglect the air
part of the pores.

7.2.2 Distributed-microstructure model equations

We consider the distributed-microstructure system derived in Subsection 3.3.2,
see (3.54)–(3.65). Let (0, T ) (with T > 0) be the time interval during which we
observe the corrosion processes. Here w1 denotes the concentration of H2SO4 in
Ω×Y1, w2 the concentration of H2S aqueous species in Ω×Y1, w3 the concentra-
tion of H2S gaseous species in Ω, w4 the concentration of the moisture and w5 is
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the gypsum concentration on Ω×{y = `}. The system contains information from
two scales – we expressed this by using the slow variable x (macro) and the fast
variable y (micro). ∂y denotes the partial derivatives only with respect to the
variable y ∈ Y1, while ∂x represents the Laplacian referring only to the partial
derivatives with respect to the variable x ∈ Ω. Our distributed-microstructure
system reads as follows:

β1∂tw1 − β1γ1d1∂yw1 = −Φ2
1k1w1 + Φ2

2k2w2 in Ω× Y1 × (0, T ), (7.1)

β2∂tw2 − β2γ2d2∂yw2 = Φ2
1k1w1 − Φ2

2k2w2 in Ω× Y1 × (0, T ), (7.2)

∂tw3 − d3∂xw3 = −BiM
(
Hw3 − β2

β3
w2|y=0

)
in Ω× (0, T ), (7.3)

β4∂tw4 − β4γ4d4∂yw4 = k1w1 in Ω× Y1 × (0, T ), (7.4)

β5∂tw5=Φ2
3η(w1, w5) in Ω×{y = `}×(0, T ). (7.5)

The reaction rate η takes the form

η(α, β) =

k3α
p[(βmax − β)q]+, if α ≥ 0, β ≥ 0,

0, otherwise,
(7.6)

with p, q = 1. The above system is supplemented with the following initial and
boundary conditions

wk(x, y, 0) = w0
k(x, y) on Ω× Y1×{t = 0},k ∈ {1, 2, 4},(7.7)

w3(x, 0) = w0
3(x) on Ω× {t = 0}, (7.8)

w5(x, y, 0) = w0
5(x, y) on Ω× {y = `} × {t = 0}, (7.9)

−d1∂yw1 = 0 on Ω× {y = 0} × (0, T ), (7.10)

−d1∂yw1 = Φ2
3η(w1, w5) on Ω× {y = `} × (0, T ), (7.11)

−d2∂yw2 = −BiM (Hβ3

β2
w3 − w2) on Ω× {y = 0} × (0, T ), (7.12)

−d2∂yw2 = 0 on Ω× {y = `} × (0, T ), (7.13)

w3 = wD3 on ΓD × (0, T ), (7.14)

−d3∂xw3 = 0 on ΓN × (0, T ), (7.15)

−d4∂yw4 = 0 on Ω× {y = `} × (0, T ), (7.16)

−d4∂yw4 = 0 on Ω× {y = 0} × (0, T ), (7.17)

where dm > 0, m ∈ {1, 2, 3, 4}, are the diffusion coefficients and ki, i ∈ {1, 2, 3},
are functions modeling the rate constants. Φ2

i , i ∈ {1, 2, 3} are Thiele-like mod-
uli corresponding to three distinct chemical mechanisms (reactions). They are
dimensionless numbers that compare the characteristic time of the fastest trans-
port mechanism (here: the diffusion of H2S in the gas phase) to the characteristic
timescale of the `-th chemical reaction (defined in (3.9) and also see Table 7.2).
BiM denotes the dimensionless macroscopic Biot number which quantifies the
resistance of the interface to mass transfer (defined in (3.2) and also see Ta-
ble 7.2). βj , j ∈ {1, 2, 4, 5} represents the ratio of the maximum concentration



7.3. Capturing changes in macroscopic pH 127

of the jth species to the maximum bulk H2S(g) concentration. We take here
βj = 1, j ∈ {1, 2, 4, 5}. Note that all involved parameters (except for the Henry
constant H, diffusion coefficient3 for H2S(g) d3 and Biot number BiM ) contain
microscopic information. The coefficients d3 and BiM are effective ones (see Sec-
tion 3.2 for the rule to calculating them), while H can be read off from existing
macroscopic experimental data. Note that the information at the microscale is
connected to the macroscale situation via the right-hand side of (7.3) and via
the micro-macro transmission condition (7.12). This coupling is a consequence
of the different scaling of the diffusion coefficients in formal homogenization pro-
cedure, see Subsection 3.3.2 for details.
For pH computations, we decide to leave out the partial differential equation for
moisture by assuming that Ω is uniformly wet.

7.3 Capturing changes in macroscopic pH

We use a logarithmic expression to compute the values of a macroscopic pH
based on the volume averaged concentration of the sulfuric acid w1, which is
obtained by numerically resolving the distributed-microstructure system defined
on two spatial scales. To point out corrosion effects, we evaluate the content of
the main sulfatation reaction product (gypsum) inside Ω and numerically show
the presence of a kink in the gypsum’s concentration profile. The presence of
the kink (i.e. loss of regularity) and definition (7.6) make us believe that the
reaction front localizes close to kink’s position.

7.3.1 Simulations on H2S(g) and gypsum

First we simulate the profiles of H2S(g) and gypsum. To extract the position of
the corrosion front, we use gypsum profiles. To obtain macroscale pH profiles, we
use the concentration of sulfuric acid H2SO4 at the microscale. Our numerical
scheme is essentially based on the method of lines.

We use a two-scale finite difference discretization in space while in time we
employ an implicit higher-order time integrator to find the solution of the non-
linear ordinary differential equation system (see (7.21)–(7.23) and (7.24)–(7.26)
in Section 7.4). In Table 7.1, we summarize the values of our set of model

d3 d1,2 k1 k2 k3 Φ2
1,2 Φ2

3 BiM H βmax wD3 L ` γ1,2,4

0.864 0.00864 1.48 0.0084 10 1 103 86.4 0.3 1 0.011 30 1 1

Table 7.1: Parameter values used in the numerical simulations in Section 7.3.

parameters used in the simulations described in this section whereas Table 7.2
contains the definition of the dimensionless parameters. For more details on the
dimensional analysis, see Chapter 3.

3In general, d3 includes the porosity information. In our case, the porosity is constant.
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BiM γi d1,2,3,4 k1,2,3 Φ2
1,2,3 τ1,2,3

reac τdiff

bmrefL

εD
Di
D3

d̃1,2,3,4

Dref1,2,3,4

k̃1,2,3

Kref
1,2,3

τdiff

τ1,2,3
reac

U1

ηref1,2,3

L2

D3

Table 7.2: Definition of the dimensionless parameters.

Parameter Units

d1,2,3,4 mm2day−1

wD3 gmm−3

H dimensionless

U1 gmm−3

βmax gmm−2

k1,2 day−1

k3 mm2(p+q−1)g1−p−qday−1

Table 7.3: Quantities with units.
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Figure 7.2: Time evolution of the concentration of H2S(g) [g/mm3] vs. pene-
tration depth x [mm] shown at t ∈ {2000, 4000, 8000, 12000, 16000, 20000} [days]
in left-right and top-bottom order.
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7.3.2 Localization of the free boundary

Fig. 7.2 and Fig. 7.3 show the evolution of H2S(g) (w3(x, t)) and gypsum (w5(x, t))
in time, respectively. The Dirichlet boundary condition w3(0, t) = wD3 models
a constant inflow of H2S(g) at x = 0. As the gas diffuses through the porous
structure, it enters the water film in the pores, where it undergoes biogenic oxi-
dation to sulfuric acid. Consequently, its concentration decreases with increasing
depth. As the system becomes saturated with sulfuric acid and the sulfatation
reaction (1.4) converts available CaCO3 into gypsum, the total concentration of
H2S(g) starts to increase (see Fig. 7.2).
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Figure 7.3: Time evolution of gypsum [g/mm2] vs. penetration depth x [mm]
shown at t ∈ {2000, 4000, 8000, 12000, 16000, 20000} [days] in left-right and top-
bottom order.

Sulfuric acid reacts at y = ` and converts the cement paste into gypsum.
The concentration profile of gypsum is shown in Fig. 7.3. Although the behav-
ior of w3 is purely diffusive, we note that a macroscopic gypsum layer is formed
around t = 1500 and grows in time. Fig. 7.4 indicates that there are two distinct
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regions separated by a slowly moving intermediate layer. The left region is the
place where the gypsum production has reached saturation (a fixed threshold
βmax appears cf. (7.6)), while the right region is the place of the ongoing sulfa-
tation reaction (1.4) where the gypsum production has not reached the natural
threshold.
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Figure 7.4: Position of the corrosion front p(t) [mm] vs. time [day]. In about
15 years, we get p(t) =5 mm.

The kink in the gypsum profiles indicates that there is something going on
there. Note that the precise position of the front is a priori unknown and to
capture it simultaneously with the computation of the concentration profiles
would require a moving-boundary formulation similar to the one reported in
[23]. To avoid a moving-boundary formulation, we extract what happens by
plotting the quantity p(t), which we define as

p(t) := {x ∈ (0, L) | w5(x, t) = βmax − δ}.

Here δ ∈ [0, βmax] is a small parameter and βmax is the maximum concentration
of gypsum produced at the solid-water boundary. Fig. 7.4 shows the graph of
p(t), which is our approximate position of the corrosion front. We note that as the
corroding front advances into the concrete specimen, its rate of growth decreases.
This is in agreement with the experimental data, since the hydrogen sulfide gas
supplied from the outside environment has to be transported (via diffusion) over
larger distances. Having in min the large-time behavior of solutions to two-phase
Stefan-like problems (see e.g. [5]), we may think that p(t) is of order of O(

√
t)

for sufficiently large times t. This behavior seems to not hold here for our set of
reference parameters. In Fig. 7.4, we see a a(t − 2000)

1
b−like behavior for the

position of the penetrating front, where a = 0.065 and b = 1.3. In Fig. 7.5, the
plot for ṗ(t) is shown. It indicates that the rate of change in p(t) is high in the
beginning and slows down gradually as expected.
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Figure 7.5: Plot of the speed ṗ(t) [mm/day] of the approximate free boundary
position vs. time [days].

7.3.3 Macroscopic pH

Now we compute the macroscopic values of pH from the available micro-scale
data. This can be viewed as a sort of post-processing of the solution to (7.1)–
(7.3) and (7.5)–(7.15).

Typically, the concentration of hydronium ions not bound in water is propor-
tional to the concentration of sulfuric acid. Having this in mind, we extract the
macroscale concentration of sulfuric acid at each x by taking the volume average
of w1 over Y1 and use the following expression for computing macroscopic pH:

pHmac(x, t) = − log10

 ka
|Y1|

∫
Y1

w1(x, y, t)dy, x ∈ Ω, t ∈ (t0, T )

 , (7.18)

where ka is the activity of hydronium ions and t0 > 0 is the time needed for
H2SO4 to form. Note that we do not know t0 a priori. (7.18) is an ad hoc
logarithmic expression to approximate numerically macroscopic pH profiles. If
we have in mind the expected regularity of w1, formula (7.18) is well-defined.
Note that (in general, the situation is complex) sulfuric acid is a diprotic acid4

(with a dissociation constant of 7.0 (at 20◦C)) with two stages of dissociation,
where the first stage occurs completely while the dissociation in the second stage
can be neglected. The pH of the wastewater is therefore of importance when
evaluating the potential hydrogen sulfide emission. After the hydrogen sulfide
arrives at the pipe’s inner crown and diffuses into the concrete, the oxidation

4A diprotic acid is an acid that contains within its molecular structure two hydrogen atoms
per molecule capable of dissociating (i.e. ionizable) in water.
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of hydrogen sulfide becomes biologically-driven as soon as the pH has dropped
below approximately 8–9 [115].
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Figure 7.6: Time evolution of macro-scale pH profiles computed from micro-
scale information shown at t ∈ {2000, 4000, 8000, 12000, 16000, 20000} [days] in
left-right and top-bottom order.

The macroscopic pH profile is shown in Fig. 7.6. We can see that in the
beginning of the simulation (first graph) with increasing depth, the pH also
increases from acidic to more basic values (as expected). Once all the available
cement is consumed and converted into gypsum (this happens for the first time
at x = 0 between the first and second graph in Fig. 7.6 around t = 1500), the
pH drops rapidly across the corrosion front. This is due to the fact that behind
the corrosion front the sulfuric acid is no longer neutralized by the sulfatation
reaction (1.4).
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7.4 Connecting two multiscale models via Biot
numbers

Because of the multiscale nature of the distributed-microstructure model, a natu-
ral question arises as to how can one connect the micro and macro information?
We numerically explore the way in which the macroscopic Biot number BiM

(given in Table 7.2) connects two reaction-diffusion scenarios involving at the
water-air interface: (i) micro-macro transmission conditions and (ii) matched
boundary conditions. We perform computations at macroscopic length scales
that are relevant to practical applications.

We aim to understanding the behavior of the solution to the distributed-
microstructure model as the macroscopic mass-transfer Biot number BiM (in-
troduced in (3.2)) tends to infinity. We achieve this by comparing the numerical
solutions of two systems: one having a matched boundary condition and the other
having BiM →∞.

Let us refer to the system (7.1)–(7.17) as problem (P ).

Matched-microstructure model

The problem (P) becomes the matched-distributed model if the boundary con-
dition (7.12) is replaced by

w2 = Hw3 on Ω× {y = 0} × (0, T ). (7.19)

Actually (7.19) is the well-known Henry’s law [47]. This is precisely what we
call matched boundary condition; see the terminology of Chapter 9 in [67].

We refer to the distributed-microstructure system (7.1)–(7.17) excluding (7.12)
and instead including (7.19) as problem P̃ .

We show numerically that the solution (w1, w2, w3, w4, w5) to problem (P )
converges to the solution to the problem (P̃ ) as

ε :=
1

BiM
→ 0. (7.20)

7.4.1 Numerical scheme for problem (P)

Now we describe a semi-discrete numerical scheme for the problem (P ) based on
finite-difference discretization in space.

Let hx := L/Nx and hy := `/Ny be the spatial step sizes, where Nx and Ny
are positive integers. Let Ωh := {xi := ihx ∈ Ω̄|i = 0, . . . , Nx} and Yh := {yj :=
jhy ∈ Ȳ |j = 0, . . . , Ny} be uniform grids of nodes on Ω and Y , respectively.
Also, let ωh := Ωh × Yh and ω′h := Ωh × {yNy}. We define sets of grid functions
on Ωh, ωh and ω′h as GΩ

h := {uh|uh : Ωh → R}, Gωh := {vh|vh : ωh → R} and

Gω′h := {vh|vh : ω′h → R}, respectively, such that ui := uh(xi), uh ∈ GΩ
h ∪Gω

′

h and
vij := vh(xi, yj), vh ∈ Gωh . Finally, we define the discrete Laplacian operators as
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∆hui := (ui−1 − 2ui + ui+1)/h2
x, for uh ∈ GΩ

h , and as ∆Y hvij := (vi,j−1 − 2vij +
vi,j+1)/h2

y, for vh ∈ Gωh .

A quintuple {wkh|k = 1, . . . , 5} with wkh ∈ C1([0, T ],Gωh ), k ∈ {1, 2, 4},
w3
h ∈ C1([0, T ],GΩ

h ), w5
h ∈ C1([0, T ],Gω′h ) is called a semi-discrete solution of

the problem (P ), if it satisfies the following system of ordinary differential equa-
tions

β1

dw1
ij

dt
= β1d1∆yhw

1
ij − Φ2

1k1w
1
ij + Φ2

2k2w
2
ij , (7.21)

i = 0, . . . , Nx, j = 0, . . . , Ny,

β2

dw2
ij

dt
= β2d2∆yhw

2
ij + Φ2

1k1w
1
ij − Φ2

2k2w
2
ij , (7.22)

i = 0, . . . , Nx, j = 0, . . . , Ny,

dw3
i

dt
= d3∆xhw

3
i −BiM

(
Hw3

i − w2
i,0

)
, (7.23)

i = 1, . . . , Nx

β4

dw4
ij

dt
= β4d4∆yhw

4
ij + k1w

1
ij , (7.24)

i = 0, . . . , Nx, j = 0, . . . , Ny,

β5
dw5

i

dt
= Φ2

3η
(
w1
i,Ny , w

5
i

)
, i = 0, . . . , Nx, (7.25)

for t > 0, together with the initial conditions

wkh(0) = Pkhwk0, k = 1, . . . , 5, (7.26)

where Pkh denotes projection operators that project continuous functions wk0 on
the corresponding grids.

The values of grid functions on the nodes outside the grids arising in (7.21)-
(7.26) are eliminated using centeral difference approximations of the boundary
conditions (7.10)-(7.17). Thus, for these values and for the Dirichlet boundary
condition we obtain the following relations for t > 0

w1
i,−1 = w1

i,1, i = 0, . . . , Nx, (7.27)

w1
i,Ny+1 = w1

i,Ny−1 −
2hyΦ2

3

d1
η
(
w1
i,Ny

, w5
i

)
, i = 0, . . . , Nx, (7.28)

w2
i,−1 = w2

i,1 +
2hyBi

M

d2

(
Hw3

i − w2
i,0

)
, i = 0, . . . , Nx, (7.29)

w2
i,Ny+1 = w2

i,Ny−1, i = 0, . . . , Nx, (7.30)

w3
0 = wD3 , (7.31)

w3
Nx+1 = w3

Nx−1, (7.32)

w4
i,−1 = w4

i,1, i = 0, . . . , Nx, (7.33)

w4
i,Ny+1 = w4

i,Ny−1, i = 0, . . . , Nx. (7.34)
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k1 k2 k3 d1,2,4 d3 βmax H Φ2
i L ` γi

0.84 7.2 1.0 0.00864 0.864 0.9 2.5 1 10 1 1

Table 7.4: Reference set of parameter values used in all numerical experiments
presented in Section 7.4.

7.4.2 Numerical results

In this section we present numerical results illustrating the behavior of solutions
to the problem (P ). The numerical results for the problem (P ) were obtained
by integrating the initial value problem (7.21)–(7.34) in time by means of the
toolbox CVODE [44].

To fix ideas, we consider Ω = (0, 10) and Y1 = (0, 1). The computational
grid is chosen so that Nx = Ny = 128. The relative and absolute tolerance for
the CVODE solver is set to the value of 10−9. We assume zero constant initial
conditions for wkh(0), k = 2, 4, 5, while w1

h(0) = 0.01. The value of w3
h(0) is chosen

to be compatible with the Dirichlet boundary condition wD3 = 0.011g/cm3.
The values of the remaining parameters which are common to all numerical
experiments presented in this section are summarized in Table 7.4. We compute
the solution until T = 800.

7.4.2.1 Rate of convergence of the scheme (7.21)–(7.34) for h→ 0

Here we present results of measuring the experimental order of convergence of the
scheme (7.21)–(7.34) as the spatial size of the computational mesh decreases to
zero. As there is no analytical solution available with which we can compare the
approximate solution, we use a so-called double-mesh principle: we consider a
set of gradually refined meshes whose number of mesh nodes Nx, Ny is chosen so
that Nx = Ny = 2N , where N = 5, . . . , 9. Then we measure the convergence by
comparing the error of approximate solutions obtained on two successive meshes,
i.e., meshes with the spatial step sizes h := (hx, hy) and h/2 := (hx/2, hy/2).

We define the discrete error at time T as a grid function ekh in the following
way:

(ekh)i := (wkh)i(T )− (wkh/2)2i(T ), (7.35)

for k ∈ {3, 5} and

(ekh)ij := (wkh)ij(T )− (wkh/2)2i,2j(T ), (7.36)

for k ∈ {1, 2, 4}.
To quantify the error, we define the discrete L2-norms and maximum norms
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by

‖ekh‖22 :=
hx
2

Nx−1∑
i=0

(
(eki )2 + (eki+1)2

)
, (7.37)

‖ekh‖∞ := max
xi∈Ωh

|eki |, (7.38)

for k ∈ {3, 5} and

‖ekh‖22 :=
hxhy

4

Nx−1∑
i=0

Ny−1∑
i=0

(
(ekij)

2 + (eki+1,j)
2 + (eki,j+1)2

+(eki+1,j+1)2
)
, (7.39)

‖ekh‖∞ := max
xij∈Gω′h

|ekij |, (7.40)

for k ∈ {1, 2, 4}.

N 32 64 128 256

‖e1
h‖2 0.01929 0.00533 0.00137 0.00034

EOC1
2 1.85569 1.96049 1.98988

‖e2
h‖2 0.00216 0.00060 0.00015 0.00004

EOC2
2 1.85466 1.96036 1.98986

‖e3
h‖2 0.00009 0.00003 0.00001 0.00000

EOC3
2 1.80801 1.94844 1.98686

‖e4
h‖2 0.98538 0.27633 0.07125 0.01795

EOC4
2 1.83429 1.95547 1.98865

‖e5
h‖2 0.01368 0.00399 0.00104 0.00026

EOC5
2 1.77918 1.94165 1.98519

Table 7.5: Results of our convergence rate study (measured in the discrete
L2-norm).

Finally, we define the experimental order of convergence EOCkp of wkh as

EOCkp := log2

(
‖ekh‖p
‖ekh/2‖p

)
. (7.41)

Using these expressions for discrete error and experimental order of conver-
gence, we performed the analysis of the rate of convergence for wkh, k = 1, . . . , 5.
We set Lx = Ly = 1 to obtain equal spatial step sizes in both directions and we
evolved the solution until T = 80.
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Also, to minimize the influence of the truncation error from the time inte-
gration, we set the relative and absolute tolerance to a stringent value of 10−13.
The Biot number BiM was set equal to 86.4 and the values of the remaining
parameters are given in Table 7.4. The results of the EOC computations are
given in Table 7.5 where the error is measured in L2-norms defined in (7.37) and
(7.39), and in Table 7.6 where the error is measured in maximum norms (7.38)
and (7.40). In the first row the number of mesh nodes N in one direction is
shown (the corresponding spatial step size is thus hx = hy = 1/2N ). In the fol-
lowing rows, we show the norm of the error function for each wkh, k ∈ {1, . . . , 5}
together with the EOC.

N 32 64 128 256

‖e1
h‖∞ 0.04280 0.01078 0.00269 0.00067

EOC1
∞ 1.98990 2.00096 2.00047

‖e2
h‖∞ 0.00417 0.00105 0.00026 0.00007

EOC2
∞ 1.99067 2.00400 2.00091

‖e3
h‖∞ 0.00012 0.00003 0.00001 0.00000

EOC3
∞ 1.80827 1.94850 1.98687

‖e4
h‖∞ 1.27092 0.35626 0.09185 0.02314

EOC4
∞ 1.83487 1.95564 1.98869

‖e5
h‖∞ 0.01411 0.00408 0.00106 0.00027

EOC5
∞ 1.79127 1.94369 1.98563

Table 7.6: Results of our convergence rate study (measured in the discrete
maximum norm).

From the obtained results we can conclude that, with very high probability,
the scheme converges with second-order accuracy.

7.4.2.2 Illustration of concentration profiles for ε > 0

We present several computations to demonstrate the behavior of the system (P )
for various values of the parameter ε defined by (7.20).

In Fig. 7.8, Fig. 7.7 and Fig. 7.9, the columns show the time evolution of
wk, k ∈ {1, 2, 3, 4, 5} and each row corresponds to one time moment with the top
row showing the initial conditions. We plot the functions wk, k ∈ {1, 2, 4}, as
functions of y for four fixed values of x ∈ X := {1, 3, 5, 9}. The position of these
values of x is shown in the third and fifth column as colored vertical dotted lines
and the color of each dotted line matches the color of the graph of the functions
wk(x, ·), k ∈ {1, 2, 4}, x ∈ X, in the first, second and fourth column.
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Figure 7.7: Plots of the time evolution of the semi-discrete solution to problem
(P ) computed with the scheme (7.21)-(7.25) for BiM = 0.000864. The profiles
of w1, w2, w3, w4 [g/mm3] and w5 [g/mm2] are plotted vs. x, y [mm] at t ∈
{0, 160, 320, 480, 800} [days].
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Figure 7.8: Plots of the time evolution of the semi-discrete solution to problem
(P ) computed with the scheme (7.21)–(7.25) for BiM = 0.00864. The profiles
of w1, w2, w3, w4 [g/mm3] and w5 [g/mm2] are plotted vs. x, y [mm] at t ∈
{0, 160, 320, 480, 800} [days].
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Figure 7.9: Plots of the time evolution of the semi-discrete solution to prob-
lem (P ) computed with the scheme (7.21)-(7.25) for BiM = 864. The pro-
files of w1, w2, w3, w4 [g/mm3] and w5 [g/mm2] are plotted vs. x, y [mm] at
t ∈ {0, 160, 320, 480, 800} [days].
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The result of the first computation is shown in Fig. 7.8, where BiM = 0.00864
(ε ≈ 115.741). Starting with the middle column displaying the evolution of
w3, we see that the initially constant concentration of H2S(g) decreases rapidly
as it enters through the water-air interface into the water phase at each pore
unsaturated by H2S. After entering into the water phase, H2S diffuses and
undergoes reaction that converts it into H2SO4. This evolution is depicted in
the second column. w2 attains higher values at lower x position (closer to the
inner surface of the pipe) similar to the profile of w3 at y = 0.

The concentration of H2SO4 is plotted in the first column. At first, w1 has
a nearly linear profile for each fixed x decreasing to almost zero at y = `. This
conversion of concrete into gypsum can be seen in the fifth column. At the
beginning, the concrete is fresh and w5 = 0. Increased concentration of w1 at
y = ` results in growing concentration of w5. w5 continues to grow until it
reaches a critical value βmax = 0.9.

Once w5 reaches βmax, w1 does not react with the solid matrix anymore and
the boundary condition at y = ` changes into no-flux condition. At t = 640, this
change has already taken place at x = 1 and is about to take place at x = 3.
As a consequence, w1 starts to grow at x = 1 gradually approaching a constant
value over all Y1. At t = 800, the corrosion front has nearly arrived at x = 5:
the profiles of w1 corresponding to x = 1 and x = 3 have already grown and the
one corresponding to x = 5 is now starting to grow. The growth of w1 results
in the growth of w2 which in turn results in a slow growth of w3. Finally, the
fourth column shows the evolution of w4 (moisture) as a product of reaction
decomposing H2SO4. As time increases, the corrosion tends to be complete and
the system wants to reach a constant steady state.

In Fig. 7.7, we show a computation with a Biot number much lower than
in the previous numerical experiment. Consequently, the coupling between the
equations for w3 and w2 becomes weaker. As a result, w3 does not decrease as
much as in the previous experiment due to a barrier for H2S in the air hindering
its entrance into the water phase. Hence w2 and w1 attain lower values and their
profiles tend to be uniform along the x-axis. Eventually, this leads to a gradual
corrosion of the pipe wall simultaneously along the whole domain and we do not
observe the same progress of the corroding front as in the previous case (there
is nearly no motion of the corrosion front).

Fig. 7.9 shows a computation with a much larger Biot number compared
to both previous experiments. Here we used BiM = 864 (ε ≈ 0.00116), which
means that the boundary condition for w2 at y = 0 is essentially a Dirichlet
one. We observe that, in this case, the concentrations of w2 and w3 are higher
than in the previous numerical experiments. Additionally, the corrosion process
seems to be much faster exhibiting a prominent corroding front (observable in
the fifth column) advancing into the concrete.
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7.4.2.3 Illustration of the convergence scenario as ε→ 0

Now we are concerned with the behavior of solutions to (P ) as ε→ 0. The main
result here is that we show numerically that

‖Hw3 − w2|y=0‖L2(Ω) → 0 as ε→ 0,

i.e., as BiM → ∞. We show this by simply measuring the experimental order
of convergence. We proceed as follows: We compute solutions of (7.21)–(7.34)
at T = 800 for gradually increasing values of BiM = 4i, i ∈ {1, . . . , 6}. For each
choice of ε, we measure the quantity Eε := ‖Hw3

h(T ) − w2
h(T )|Ωh‖2 in terms of

the discrete L2-norm; see (7.37). Finally, we define the experimental order of
convergence of Eε as

EOCEε :=
log(Eε1)− log(Eε2)

log(ε1)− log(ε2)
. (7.42)

The results shown in Table 7.7 indicate that Eε behaves as O(ε).

log4Bi
M

∥∥Hw3
h − w2

h|Ωh
∥∥

2
EOCEε

-2 6.95208 · 10−2 0.98907

-1 1.76455 · 10−2 0.98806

0 4.48495 · 10−3 0.99612

1 1.12728 · 10−3 0.99896

2 2.82225 · 10−4 0.99973

3 7.05819 · 10−5 0.99993

4 1.76471 · 10−5 0.99998

5 4.41187 · 10−6 0.99999

6 1.10297 · 10−6

Table 7.7: Experimental order of convergence of Eε as ε→ 0.

7.4.3 Convergence of the two-scale finite difference scheme
(7.21)–(7.34) as h→ 0

To close the chapter, we list the results obtained by V. Chalupecký and A.
Muntean in [29], proving that the two-scale finite difference scheme (7.21)–(7.34)
converges to the weak solution of (7.1)–(7.3) and (7.5)–(7.15).

Assumption 7.4.1. 1. di > 0, i ∈ {1, 2, 3}, BiM , H,wD3 > 0 are constants.
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2. We assume that η(α, β) := kR(α)Q(β) is positive for α, β ≥ 0 and zero
otherwise. In addition, η is globally Lipschitz in both arguments. Further-
more, R is taken to be sublinear, i.e., R(α) ≤ Cα for α ∈ R+and Q is
bounded above by the threshold βmax > 0.

3. w10, w20 ∈ {L2(Ω;H1(Y1))∩L∞+ (Ω× Y1)}2, w30 ∈ H2(Ω)∩L∞+ (Ω), w50 ∈
H1(Ω) ∩ L∞+ (Ω).

Under the Assumption 7.4.1, the semi-discrete solution to problem (P ) was
defined as follows:

Definition 7.4.2. We call (w1, w2, w3, w5) with

w1
h, w

2
h ∈ C1([0, T ];Gωh ), w3

h ∈ C1([0, T ];GΩ
h ) and w5

h ∈ C1([0, T ];Gω
′

h )

a semi-discrete solution to problem (P ), if it satisfies the system of ordinary
differential equations given in (7.21)– (7.23) and (7.25) together with the initial
and boundary conditions (7.26)–(7.32).

Proposition 7.4.3. Consider Assumption 7.4.1. There exists a unique semi-
discrete solution

w1
h, w

2
h ∈ C1([0, T ];Gωh ), w3

h ∈ C1([0, T ];GΩ
h ) and w5

h ∈ C1([0, T ];Gω
′

h )

in the sense of Problem 7.4.2.

For the proof of Proposition 7.4.3, see Proposition 3 in [29].

Theorem 7.4.4. Consider Assumption 7.4.1, there exists a semi-discrete solu-
tion
{w1

h, w
2
h, w

3
h, w

5
h} for any time T > 0 whose interpolate {ŵ1

h, ŵ
2
h, ŵ

3
h, ŵ

5
h} con-

verges in L2(Ω× Y ), L2(Ω× Y ), L2(Ω× Y ), L2(Ω× Y ) respectively, as |h| → 0
to a weak solution (w1, w2, w3, w5) to problem (P ) in the sense of Definition 7.4.2.

For the proof of the statement, see Theorem 15 in [29].

For the complete implementation details in C of the numerical scheme (7.21)–
(7.32), we refer the reader to Chapter 7 in [99].

7.5 Notes and comments

In this chapter, we illustrated numerically the macroscopic pH and gypsum
profiles which point out approximate position of the corrosion front. We also
showed the behavior of the solution for the distributed-microstructure model for
large mass transfer Biot number BiM .

Although our model does not include all the responsible species in the sulfa-
tation reaction (e.g. bacteria are missing), yet our pH profiles are in the range
seen in the experimental data published in [93, 109]. For instance in [109], it is
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stated that the pH of the heavily corroded gypsum layer that is exposed to the
H2S is within the range 2.6 to 2.7. To meet this, it is necessary to incorporate
in the model other species involved in the sulfatation of concrete. We expect
that the size of the drop of pH will become comparable to the one seen in [109]
as soon as the effects of nonlinear moisture transport, bacteria motility, and
temperature effects are taken into account in the model equations. The main
message here is that we are able to detect and compute a macroscopic pH drop,
once the right micro-information is available.

The calculation time is rather long: e.g. to estimate 10 years of corrosion
takes a bit more than 2 hours. We expect this to happen due to our choice of the
reference parameters in Table 7.1. More numerical studies are needed to check
the stability of the solution with respect to initial data and parameters.

We see in Fig. 7.4 penetration of the corrosion front of about 5mm in 15
years. The speed of the front seems to be rather slow compared to what is seen
experimentally (i.e. 10–15 mm in about 15 years, see e.g. [92]). In this chapter,
we performed simulations for a fixed geometry. In the case of x−dependent
(locally-periodic) microstructures, efficient direct computations as well as the
corresponding error analysis are generally open problems.

A practical question regarding the large-time behavior of the penetrating
front p(t) arises at this point. We have seen in Fig. 7.4 that p(t) is of order of

O(a(t − t0)
1
b ). It is worth checking how do a, p and t0 depend on the solution

and on the choice of parameters (e.g. cement, porosity, transport and reaction
coefficients).

It is worth mentioning that there are many multiscale numerical techniques
available that could be used to tackle RD systems of the type treated here. We
mention here three such approaches:

1. The multiscale finite element method (FEM) developed by Babuška at el,
see the monograph [51] for more references.

2. Computations on two-scale FEM spaces [85] / two-scale Galerkin approx-
imations [100, 101]. Kouznetsova et al. deal with multiscale computa-
tional homogenization – a tool which fits well to computing distributed-
microstructure models, see [42, 43, 58, 76].

3. Heterogeneous multiscale methods (HMM) [1, 142]. Since the concrete is
highly saturated in the sewerage, it is possible to extend the model by con-
sidering the mobility of the water. In this case, convective effects appear
and most likely the two-scale finite element scheme based on homogeniza-
tion provided in [147]/HMM become applicable.



Chapter 8

Conclusions and Outlook

8.1 Conclusions

In the thesis, we use multiscale reaction-diffusion systems to describe corrosion
processes induced by the presence of aggressive chemical reactions. We focus here
on the concrete sulfatation. The goal was to identify reliable and easy-to-use
upscaled models able to forecast the penetration of sulfuric acid into sewer pipes
walls estimating in this way the durability of the material. We paid attention
to the following aspects:

(i) Modeling of reaction-induced corrosion [with focus on concrete sulfatation];

(ii) Multiscale mathematical analysis;

(iii) Multiscale simulation.

The role of (i)-(iii) is to prepare a multiscale methodology to proceed towards
comparison with experiments. For modeling of corrosion processes, we took into
account balance equations expressing physical processes taking place in the mi-
crostructures of partially saturated concrete pipes. We considered two different
types of models: On one hand, we looked at pore scale reaction-diffusion sys-
tems describing corrosion propagation and applied averaging (homogenization)
techniques to scale out the oscillations occurring in space. On other hand, we
considered a distributed-microstructure reaction-diffusion system containing in-
formation from two scales (micro and macro). The models we discussed in the
thesis underline two important features:

• non-equilibrium exchange of H2S from water to the air phase (and vice
versa);

• production of gypsum at microscopic solid-water interfaces.

We modeled the transfer of H2S by means of Henry’s law, while the production
of gypsum was incorporated into a non-standard non-linear reaction rate. Our
proposed models consist of coupled semilinear partly diffusive reaction-diffusion
system posed in a spatially heterogeneous domain. The presence of the spatial
heterogeneities urged the need of averaging techniques to approximate the overall
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behavior of the microscopic equations with oscillating coefficients. We dwelt on
the following mathematical issues:

1. Formal derivation of multiscale corrosion models for locally-periodic do-
mains for two special scalings of the diffusion coefficients;

2. Rigorous derivation of the upscaling of one of the reaction-diffusion models;

3. Construction of corrector estimates for concentrations and their fluxes;

4. Solvability of a distributed-microstructure system incorporating a varia-
tional inequality.

We tried as much as possible to deviate from the uniform periodicity assump-
tion by accounting for a class of locally-periodic microstructures. In the latter
framework, we considered two particular scalings of the diffusion coefficients.
As a next step, we used two-scale asymptotic expansions to expand the solution
in powers of the scaling parameter ε. As a result of the two scalings, we ob-
tained two different types of upscaled models (both two-scale or with distributed-
microstructure). For the rigorous derivation of the multiscale models posed in
uniformly periodic domains, we ensured the well-posedness of the microscopic
system of partial differential equations, and then, we obtained ε-independent
energy estimates needed to achieve the necessary compactness for subsequences
– an essential ingredient to pass to the limit in the microscopic system. The
nonlinearity posed at the oscillating boundary made the rigorous averaging pro-
cedure challenging. To cope with this difficulty, we combined two averaging
techniques: two-scale convergence in the sense of Nguestseng and Allaire and
periodic boundary unfolding. Consequently, we derived upscaled equations to-
gether with explicit formulae for the effective diffusion coefficients and reaction
constants. In order to understand the quality of the upscaling, we asked our-
selves: How good our averaging strategy is? We addressed this question in terms
of corrector estimates for concentrations and their fluxes. We obtained error
(corrector) estimates under minimal regularity assumptions on the solutions to
the microscopic and macroscopic systems and to the corresponding auxiliary cell
problems.

Apart from the homogenization context, we considered a distributed-microst-
ructure reaction-diffusion system. For this, we ensured basic estimates like pos-
itivity and L∞−bounds on the concentrations to the system. Then we proved
the global in time existence and uniqueness of a suitable class of positive and
bounded solutions. The main ingredients in the proof of the existence part in-
cluded fixed-point arguments and convergent two-scale Galerkin approximations.

To address practical questions especially concerning the presence of the cor-
rosion front and the large-time behavior of the overall system, we used an ad
hoc logarithmic expression to approximate numerically macroscopic pH profiles
dropping down with the onset of corrosion. We extracted from the gypsum
profiles the approximate position of the corrosion front. At this point, our pH
results are only of qualitative nature, specially because we have not included
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in our models the evolution of bacteria. To get insight into air-liquid mass
transfer processes, we studied the role of BiM – the macroscopic mass transfer
Biot number (quantifying the mass-transfer of H2S(g) at air-liquid interface).
We illustrated numerically that BiM naturally connects two multiscale reaction-
diffusion scenarios, i.e., as BiM →∞ the solution of the two-scale system having
the Henry law acting as micro-macro transmission condition converges to the
solution of the matched two-scale system (matched-microstructure system).

Due to the complexity of the subject, several modeling, analytical and simula-
tion questions remain open for further investigation. We enumerated selectively
a few of them within the frame of the section Notes and comments at the end of
each chapter of this thesis.

8.2 Open issues

There are a few modeling and mathematical issues that would need further
investigation.

8.2.1 Open issues (at the modelling level)

1. To get realistic estimation of corrosion, the presence of bacteria needs to be
included in the model, see section 2.1.1 in chapter 2. Perhaps, a Michaelis-
Menten type mass-action kinetics could be used to address this issue.

2. Our numerical experiments indicate the presence of a free boundary pene-
trating the concrete. Having this in mind, it is perhaps possible to consider
a free boundary formulation of the corrosion model in a similar way as it
was done in [23]. The main difficult question is: What are the correct free-
boundary conditions at the corrosion front? Such approach would provide
direct information on the location of the corrosion front.

8.2.2 Open issues (at the mathematical level)

1. Rigorous derivation of upscaled systems with locally-periodic distribution
of pores is not fully solved. Useful tools are available in the literature,
see notes and comments in chapter 4, some others [e.g., a good concept of
unfolding operator valid for non-period geometries] are still missing;

2. It would be interesting to study large-time behavior of the concentrations
in distributed-microstructure model;

3. The identification of convergence rates (corrector estimates) of microscopic
solutions in locally-periodic domains is difficult to handle;

4. Singular limits (fast reaction limit, slow diffusion limit, etc.) may become
involved in the context of homogenization [see e.g. [87] by Meier and
Muntean]. This topic intuitively connects to the occurrence of boundary
layers and is mathematically not fully understood;
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5. Relating to point 2 in subsection 8.2.1: The well-posedness of multiscale
moving-boundary problems is generally not understood.

8.2.3 Open issues (regarding the validation against dura-
bility tests)

Regarding the numerics and the validation of the models presented in the thesis
versus experiments we mention the following aspects:

1. Efficient multiscale numerical methods for problems involving locally pe-
riodic microstructure are needed. In particular, (a priori and a posteriori
control on the multiscale approximations need to be constructed);

2. There is need for two-scale experiments for the calibration of the model
and identification of the parameters (like transport coefficient, reaction
rates, etc.);

3. Multiscale goal-oriented adaptivity can play a role in the above mentioned
issues.



Appendix

Proof of Theorem 4.2.5

In this Appendix, we prove the existence of solutions to problem (4.4)–(4.8). For
this, we use a Galerkin approximation and show its convergence in appropriate
function spaces. For the sake of simplicity, we drop the superscript ε from the
notation of the concentrations and of the domains. We consider a Schauder
basis of the form {ζk}k∈N, where {ζk}k∈N is a basis of H1(Ω) with {ζk}k∈N
constituting an orthonormal system with respect to L2(Ω)-norm. We define the
projection operator on the finite dimensional subspaces PN associated with the
bases {ζk}k∈N. Projections of ϕ are defined by

(PNϕ)(x) =

N∑
k=1

akζk(x).

The choice of the bases {ζk}k∈N is made in such a way that the projection oper-
ator PN is stable with respect to the L2-norm and H1-norm. Here we are inter-
ested in the finite-dimensional approximations of the functions u1, u2, U3, u4, u5,
where U3 := u3 − uD3 which are of the form

uN1 (t, x) :=

N∑
k

αNk (t)ζk(x), uN2 (t, x, y) :=

N∑
i,j=1

βNk (t)ζk(x),

UN3 (t, x) :=

N∑
i=1

γNk (t)ζk(x), uN4 (t, x) :=

N∑
i=1

ξNk (t)ζk(x)

uN5 (t, x) :=
N∑

i,j=1

(t)µNk ζk(x), with

lim
N→∞

uN` (0, x) = u`0(x) ∈ L2(Ω1), ` ∈ {1, 2, 4},

lim
N→∞

UN3 (0, x) = U`0(x) ∈ L2(Ω2) lim
N→∞

uN4 (0, x) = w40(x) ∈ L2(Γ1) (8.1)

where the coefficients αNk , β
N
k , γ

N
k , ξ

N
k , µ

N
k , k = 1, 2, ..., N are determined by the fol-

lowing relations:∫
Ω1

(
∂tu

N
1 (t)φ1 + d1∇uN1 (t)∇φ1 + k1u

N
1 (t)φ1 − k2u

N
2 (t)φ1

)
dx
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= −ε
∫
Γ1

η(uN1 (t), uN5 (t))φ1dγx, (8.2)

∫
Ω1

(
∂tu

N
2 (t)φ2 + d2∇uN2 (t)∇yφ2 − k1u

N
1 (t)φ2 + k2u

N
2 (t)φ2

)
dx

=

∫
Γ2

(
a(UN3 + uD3 )(t)− buN2 (t)

)
φ2dγx, (8.3)

∫
Ω1

∂tU
N
3 (t)φ3dx+

∫
Ω2

d3∇UN3 (t)∇φ3dx =

∫
Ω

(∂tu
D
3 (t)− d34uD3 (t))φ3dx

−
∫
Γ2

(
a(UN3 + uD3 )(t)− buN2 (t)

)
φ3dγx, (8.4)

∫
Ω1

(
∂tu

N
4 (t)φ4 + d4∇uN4 (t)∇φ4 − k1u

N
1 (t)φ4

)
dx = 0, (8.5)

∫
Ω×Γ1

∂tw
N
5 (t)φ5dγx =

∫
Γ1

η(uN1 (t), wN5 (t))φ5dγx, (8.6)

for all φi ∈ span{ζk(x) : k ∈ {1, 2, ..., N}},i ∈ {1, 2, 3, 4, 5} with

αNk (0) :=
∫

Ω1

u10ζkdx, βNk (0) :=

∫
Ω1

u20ζkdx, (8.7)

γNk (0) :=
∫

Ω2

(u30 − uD3 (0))ζkdx, ξNk (0) :=

∫
Ω1

w40ζkdxdy (8.8)

µNk (0) :=
∫
Γ1

w50ζkdxdγy, .

Consider φi = ζk, k ∈ {1, 2, ..., N}, i ∈ {1, 2, 3, 4, 5} as a test functions in (8.2)–(8.6),
this yields the system of ordinary differential equations

∂tα
N
k (t) +

N∑
j=1

(Aj)kα
N
k (t) = F (αNk (t), βNk (t)) + εF̃ (αNk (t), µNk (t)), (8.9)

∂tβ
N
k (t) +

N∑
j=1

(Bj)kβ
N
k (t) = F (αNk (t), βNk (t)) + εG(βNk (t), γNk (t)), (8.10)

∂tγ
N
k (t) +

N∑
j=1

(Cj)kγ
N
k (t) = −εG(βNk (t), γNk (t)), (8.11)

∂tξ
N
k (t) +

N∑
j=1

(Dj)kξ
N
k (t) = F̂ (αNk (t), βNk (t)) (8.12)

∂tµ
N
k (t) = F̃ (αNk (t), µNk (t)), (8.13)
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where all j, k = 1, ..., N , we have

(Aj)k :=
∫

Ω1

d1∇ζj∇ζkdx, (Bj)k :=

∫
Ω1

d2∇ζj∇ζkdx,

(Cj)k :=
∫

Ω1

d3∇∇ζj∇ζkdx, (Dj)k :=

∫
Ω1

d4∇∇ζj∇ζkdx,

Fk :=
∫

Ω1

(
− k1u

N
1 (t) + k2u

N
2 (t)

)
ζkdx, F̃k :=

∫
Γ1

η(wN1 (t), wN5 (t))ζkdx,

Gk := α
∫
Γ2

((
a(UN3 + uD3 )(t)− buN2 (t)

))
ζkdγx, F̂k :=

∫
Ω1

k1w
N
2 (t)ζkdγx.

Note that F, F̃ ,G and F̂ are globally Lipschitz continuous functions. According to
the standard existence theory for ordinary differential equations, there exists a unique
continuous solution (αNk , β

N
k , γ

N
k , ξ

N
k , µ

N
k ), k ∈ {1, 2, ..., N} satisfying (8.7)–(8.13) for

a.e. 0 ≤ t ≤ T . Thus the solution (uN1 , u
N
2 , U

N
3 , u

N
4 , u

N
5 ) defined in (8.1) solves (8.2)–

(8.6).

Lemma 8.2.1. Assume (A1)–(A4). There exists sequences such that

uN1 , u
N
2 , u

N
4 → u1, u2, u4 strongly in L∞(0, T ;L2(Ω1)) and L2(0, T ;H1(Ω1)),

UN3 → U3 strongly in L∞(0, T ;L2(Ω2)) and L2(0, T ;H1
0 (Ω2)),

uN5 → u5 strongly in L∞(0, T ;L2(Γ1)),

∂tu
N
1 , ∂tu

N
2 , ∂tu

N
4 → ∂tu1, ∂tu2, ∂tu4 weakly in L2((0, T )× Ω1),

∂tU
N
3 → ∂tU3 weakly in L2((0, T )× Ω2),

∂tu
N
5 → ∂tu5 strongly in L2((0, T )× Ω× Γ1).

Proof. We show that the sequences uN1 , u
N
2 , U

N
3 , u

N
4 , u

N
5 are Cauchy sequences in

spaces given in statement and hence converge strongly. From (8.2), it follows for
N1 ≤ N2∫
Ω1

(
∂tu

N1
1 − ∂tuN2

1 )φ1dx+

∫
Ω1

d1∇(uN1
1 − uN2

1 )∇φ1dx = −
∫
Ω1

(k1u
N1
1 − k1u

N2
1 )φ1dx

+

∫
Ω1

(k2u
N1
2 − k2u

N2
2 )φ1dx− ε

∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
φ1dγx.

We take φ1 = uN1
1 − uN2

1 to obtain

1

2
∂t

∫
Ω1

|uN1
1 − uN2

1 |
2dx+

∫
Ω1

d1|∇(uN1
1 − uN2

1 )|2dx = −
∫
Ω1

k1(uN1
1 − uN2

1 )(uN1
1 − uN2

1 )dx

+

∫
Ω1

k2(uN1
2 − u

N2
2 )(uN1

1 − u
N2
1 )dx− ε

∫
Γ1

(
η(uN1

1 , uN1
5 )−η(uN2

1 , uN2
5 )
)
(uN1

1 − u
N2
1 )dγx.(8.14)
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Similarly, (8.3) leads to (φ2 = uN1
2 − uN2

2 )

1

2
∂t

∫
Ω1

|uN1
2 − uN2

2 |
2dx+

∫
Ω1

d2|∇(uN1
2 − uN2

2 )|2dx

=

∫
Ω1

k1(wN1
1 − 1uN2

1 )(uN1
2 − uN2

2 )dx−
∫
Ω1

k2(uN1
2 − uN2

2 )(uN1
2 − uN2

2 )dx

+ε

∫
Γ2

a(uN1
3 − uN2

3 )(uN1
2 − uN2

2 )dγx − ε
∫

Ω×Γ2

b|uN1
2 − uN2

2 |
2dxdγx. (8.15)

By (8.4), we have

1

2
∂t

∫
Ω2

|uN1
3 − u

N2
3 |

2dx+

∫
Ω2

d3|∇(uN1
3 − u

N2
3 )|2dx

= −ε
∫
Γ2

a|uN1
3 − uN2

3 |
2dγx + ε

∫
Γ2

b(uN1
2 − uN2

2 )(uN1
3 − uN2

3 )dγx. (8.16)

1

2
∂t

∫
Ω1

|uN1
4 −u

N2
4 |

2dx+

∫
Ω1

d4|∇(uN1
4 −u

N2
4 )|2dx =

∫
Ω1

k1(wN1
1 − u

N2
1 )(uN1

4 − u
N2
4 )dx.(8.17)

From (8.6), we obtain

1

2
∂t

∫
Γ1

|uN1
5 − uN2

5 |
2dγx =

∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
(uN1

1 − uN2
1 )dγx. (8.18)

Adding up (8.14)–(8.18) and re-arranging terms, we obtain

1

2
∂tE0(t) +

∫
Ω1

(
d0

1|∇(uN1
1 − uN2

1 )|2 + d0
2|∇(uN1

2 − uN2
2 )|2 + d0

4|∇(uN1
4 − uN2

4 )|2
)
dx

+d0
3

∫
Ω

|∇(uN1
3 − uN2

3 )|2dx+ ε

∫
Γ2

b|uN1
2 − uN2

2 |
2dγxdx+ ε

∫
Γ2

a|uN1
3 − uN2

3 |
2dγx

≤ (k∞1 + k∞2 )

∫
Ω1

(uN1
2 − uN2

2 )(uN1
1 − uN2

1 )dx+ ε

∫
Γ2

a(uN1
3 − uN2

3 )(uN1
2 − uN2

2 )dγx

−ε
∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
(uN1

1 − uN2
1 )dγx

+ε

∫
Γ2

b(uN1
2 − uN2

2 )(uN1
3 − uN2

3 )dγx +

∫
Ω1

k1(uN1
1 − uN2

1 )(uN1
4 − uN2

4 )dx

+ε

∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
(uN1

5 − uN2
5 )dγx, (8.19)
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where

E0(t) :=

∫
Ω1

|uN1
1 − uN2

1 |
2dx+

∫
Ω1

|uN1
2 − uN2

2 |
2dx+

∫
Ω2

|uN1
3 − uN2

3 |
2dx

+

∫
Ω1

|uN1
4 − uN2

4 |
2dx+ ε

∫
Γ1

|uN1
5 − uN2

5 |
2dγx.

Using Assumption (4.1.4) to the terms on r.h.s. of (8.19). First term on r.h.s leads to

(k∞1 + k∞2 )

∫
Ω1

(uN1
2 − uN2

2 )(uN1
1 − uN2

1 )dx ≤ C
∫
Ω1

(
|uN1

1 − uN2
1 |

2 + |uN1
2 − uN2

2 |
2)dx,

while second and fourth terms are estimated by using (4.1) as follows:

ε

∫
Γ2

a(uN1
3 − uN2

3 )(uN1
2 − uN2

2 )dγx ≤ εC
∫
Γ2

(
|uN1

2 − uN2
2 |

2 + |uN1
3 − uN2

3 |
2)dγx

≤ C
∫
Ω1

(
|uN1

2 − uN2
2 |

2 + ε2|∇(uN1
2 − uN2

2 )|2
)
dx

+C

∫
Ω2

(
|uN1

3 − uN2
3 |

2 + ε2|∇(uN1
3 − uN2

3 )|2
)
dx.

We estimate fifth term by∫
Ω1

k1(uN1
1 − uN2

1 )(uN1
4 − uN2

4 )dx ≤ C
∫
Ω1

(
|uN1

1 − uN2
1 |

2 + |uN1
4 − uN2

4 |
2)dx.

Third term can be estimated as

−ε
∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
(uN1

1 − uN2
1 )dγx

≤ ε
∫
Γ1

(
R(uN1

1 )−R(uN2
1 )
)
Q(uN1

5 )(uN1
1 − uN2

1 )dxdγx

+ε

∫
Γ1

R(uN2
1 )
(
Q(uN1

5 )−Q(uN2
5 )
)
(uN1

1 − uN2
1 )dxdγx.

Using (A3) in Assumption 4.1.4

−ε
∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
(uN1

1 − uN2
1 )dγx

≤ εC
∫
Γ1

|uN1
1 − uN2

1 |
2dγy + εC

∫
Γ1

|uN1
5 − uN2

5 |
2dγx

≤ C
∫
Ω1

(
|uN1

1 − uN2
1 |

2 + ε2|∇(uN1
1 − uN2

1 )|2
)
dγx + εC

∫
Γ1

|uN1
5 − uN2

5 |
2dγx,
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and similarly

ε

∫
Γ1

(
η(uN1

1 , uN1
5 )− η(uN2

1 , uN2
5 )
)
(uN1

5 − uN2
5 )dγx

≤ C
∫
Ω1

(
|uN1

1 − uN2
1 |

2 + ε2|∇(uN1
1 − uN2

1 )|2
)
dγx + εC

∫
Γ1

|uN1
5 − uN2

5 |
2dγx,

(8.19) becomes

1

2
∂tE0(t) + E1(t) ≤ C

∫
Ω1

|uN1
1 − uN2

1 |
2dx+ C

∫
Ω1

|uN1
2 − uN2

2 |
2dx

+C

∫
Ω2

|uN1
3 − uN2

3 |
2dx+ C

∫
Ω1

|uN1
4 − uN2

4 |
2dx+ εC

∫
Γ1

|uN1
5 − uN2

5 |
2dγx

≤ CE0(t),

where

E1(t) := (d0
1 − ε2C)

∫
Ω1

|∇y(uN1
1 − uN2

1 )|2dx+ (d0
2 − ε2C)

∫
Ω1

|∇y(uN1
2 − uN2

2 )|2dx

+(d0
3 − ε2C)

∫
Ω2

|∇y(uN1
3 − uN2

3 )|2dx+ (d0
4 − ε2C)

∫
Ω1

|∇y(uN1
4 − uN2

4 )|2dx

+

∫
Γ2

b|uN1
2 − uN2

2 |
2dγx +

∫
Γ2

b|uN1
3 − uN2

3 |
2dγx.

Applying Gronwall’s inequality, we have

E0(t) +

t∫
0

E1(t)dτ ≤ ectE0(0) ≤ ecT
( ∫
Ω1

|uN1
1 (0)− uN2

1 (0)|2dx

+

∫
Ω1

|uN1
2 (0)− uN2

2 (0)|2dx+

∫
Ω2

|uN1
3 (0)− uN2

3 (0)|2dx+

∫
Ω1

|uN1
4 (0)− uN2

4 (0)|2dx

+ε

∫
Ω×Y1

|uN1
5 (0)− uN2

5 (0)|2dγx
)
−→ 0 as N1, N2 →∞.

For the estimates on the time-derivative of the concentrations, we follow the procedure
in the proof of Lemma 4.3.2.

Now, we return to the actual proof of the Theorem 4.2.5. We pass to the limit in
(8.2)–(8.6) for N → ∞ using the convergence results obtained in Lemma 8.2.1. For
the non-linear function η, we use the Lipschitz continuity and strong convergence to
obtain the system (4.4)–(4.8).

It remains to show that ui(0) = ui0, i ∈ {1, 2, 4, 5}. The initial data can be recov-

ered following the same lines given in [52], see page 357.
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Summary

Multiscale Reaction-Diffusion System Describing
Concrete Corrosion: Modeling and Analysis

This thesis deals with the modeling and multiscale analysis of reaction-
diffusion systems describing concrete corrosion processes due to the aggressive
chemical reactions occurring in concrete. We develop a mathematical framework
that can be useful in forecasting the service life of sewer pipes. We aim at identi-
fying reliable and easy-to-use multiscale models able to forecast the penetration
of sulfuric acid into sewer pipes walls.

For modeling of corrosion processes, we take into account balance equations
expressing physico-chemical processes that take place in the microstructures
(pores) of the partially saturated concrete. We consider two different model-
ing strategies: (1) we propose microscopic reaction-diffusion systems to delin-
eate the corrosion processes at the pore level and (2) we consider a distributed-
microstructure model containing information from two separated spatial scales
(micro and macro). All systems of differential equations are semi-linear, weakly
coupled, and partially diffusive. Since the precise microstructure of the material
is far too complex to be described accurately, we consider two approximations,
namely uniformly-periodic and locally-periodic array of microstructures, which
are tractable by using averaging mathematical tools.

We use different homogenization techniques to obtain the effective behavior of
the microscopically oscillating quantities. For the formal derivation of our mul-
tiscale models, we apply the asymptotic expansion method to the microscopic
reaction-diffusion systems defined in locally-periodic domains for two special
choices of scaling in ε of the diffusion coefficients. We end up with (i) upscaled
systems and (ii) distributed-microstructure systems. As far as rigorous deriva-
tions are concerned, we apply the notion of two-scale convergence to the PDE
system defined in the uniformly periodic domain. To deal with the non-diffusive
object, i.e. the ordinary differential equation tracking the damage-by-reaction,
we combine the two-scale convergence idea with the periodic-boundary-unfolding
technique.

Additionally, we use the periodic unfolding techniques to obtain corrector
estimates assessing the quality of the averaging method. These estimates are
convergence rates measuring the error contribution produced while approximat-
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ing macroscopic solutions by microscopic ones. We derive these estimates under
minimal regularity assumptions on the solutions to the microscopic and macro-
scopic systems, microstructure boundaries, and to the corresponding auxiliary
cell problems.

We prove the well-posedness of a distributed-microstructure reaction-diffusion
system which includes transport (diffusion) and reaction effects emerging from
two separated spatial scales. We perform this analysis by incorporating a vari-
ational inequality requiring minimal regularity assumptions on the initial data.
We ensure basic estimates like positivity and L∞−bounds on the solution to the
system. Then we prove the global-in-time existence and uniqueness of a suitable
class of positive and bounded solutions.

To predict the position of the corrosion front penetrating the concrete, we
use our distributed-microstructure model to perform simulations at macroscopic
length scales while taking into account transport and reactions occurring at
small length scales. Using an ad hoc logarithmic expression, we approximate
numerically macroscopic pH profiles dropping down with the onset of corro-
sion. We extract from the gypsum profiles the approximate position of the
corrosion front penetrating the uncorroded concrete. We illustrate numerically
that as the macroscopic mass-transfer Biot number BiM →∞, BiM naturally
connects two different multiscale reaction-diffusion scenarios: the solution of the
distributed-microstructure system having the Henry’s law acting as micro-macro
transmission condition converges to the solution of the matched distributed-
microstructure system.



Nomenclature

x, y, t macro (slow), micro (fast) and time variable , respectively

Ω Global domain in three dimensional setting

Y Single pore in Ω

Y1 Water-filled part of the pore

Y2 Air-filled part of the pore

Γ Boundary of Ω

Γ1 Solid-water interface in Ω

Γ2 Water-air interface in Ω

ε Small scaling parameter

Ω1 Union of all water-filled parts within Ω

Ω2 Union of all air-filled parts within Ω

Ωε1 Union of all water-filled parts scaled by ε within Ω

Ωε2 Union of all air-filled parts scaled by ε within Ω

Γε1 Union of all solid-water interfaces between Ωε1 and solid matrix

Γε2 Union of all air-water interfaces between Ωε1 and Ωε1

k1,2 inf(0,T )×Ωε1
|kε1|

k∞1,2 sup(0,T )×Ωε1
|kε2|

a, b inf(0,T )×Ωε |aε|, inf(0,T )×Ωε |bε|
a∞, b∞ sup(0,T )×Ωε |aε|, sup(0,T )×Ωε |bε|
uε1 Concentration of H2SO4 in Ωε1

uε2 Concentration of H2S(aq) in Ωε1

uε3 Concentration of H2S(g) in Ωε2

uε4 Concentration of H2O in Ωε1

uε5 Concentration of gypsum on Γε1

w1 Concentration of H2SO4 in Ω× Y1

w2 Concentration of H2S(aq) in Ω× Y1

w3 Concentration of H2S(g) in Ωε2

w4 Concentration of H2O in Ω× Y1

w5 Concentration of gypsum on Ω× Γ1
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BiM Mass-transfer number at the interface

k1,2,3 reaction constants

Φ2
j Thiele modulus

ωk Solution of the cell functions

ϕ+ Positive part of the function ϕ

ϕ− Negative part of the function ϕ

f1, f2 reaction rates in the bulk

η Reaction rate on the surface

L∞+ (Ω) Space of bounded functions on Ω which are positive as well

T εY1
Unfolding operator

T εΓ1
Boundary unfolding operator

φi Test functions

R Primitive of R

Mε
Yi

Local average operator

QεYi Q1−interpolation of Mε
Yi

UεYi Averaging operator

P Extension operator

Λ Contraction operator

C A generic constant independent of ε

M1,2,3,4,5 Supremum bounds on the concentrations
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