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1
Introduction

Detecting the presence of people or objects in a given environment recently be-
came a necessity in many aspects of our modern way of living. Everyday, millions
of people use devices such as touch screens, medical scanners, alarm and video
surveillance systems, navigation systems, and various automated robots and ve-
hicles in manufacturing processes. The functioning of all these devices relies on
efficiently performing the task of object detection.

The main interest of any detection technology is to detect the presence of objects in
a given environment, providing in addition, as much information about the objects
as possible. The type of information that is useful, and certainly the precision
and the speed with which such information is needed, strongly depends on the
application using the detection technology. For some applications like medical
imaging, the precision of the detection is of vital importance, for others like single-
touch screens it is more important to enable high responsiveness.

Over the years, various object detection technologies have been developed, as a
solution to the many different demands and purposes. Ultra-sound and magnetic
resonance are heavily used for medical imaging, different types of cameras in com-
puter vision, pressure sensors in traffic control systems, capacitive sensing for the
purposes of highly responsive touch screens, etc. In this thesis, we focus on an
innovative in-plane detection technique developed for table-top interaction [Holle-
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2 Introduction

mans et al., 2006b] that uses light rays to detect the presence of multiple objects
simultaneously, to determine the objects’ locations and to provide approximations
in terms of size and shape. More precisely, we study the underlying geometric
problems of in-plane object detection and propose algorithmic solutions, which
positions the work presented in this thesis in the field of computational geometry.

Overview. The rest of this chapter is organized as follows. The in-plane detection
technique and the device that uses it are described in Section 1.1. The research
problems addressed in this thesis are presented in Section 1.2. In Section 1.3 we
give an overview of the work related to the research presented in this thesis, before
we provide the detailed outline of the thesis in Section 1.4.

1.1 In-plane object detection

Most of the recently developed interactive table-top devices, such as Microsoft
Surface [Izadi et al., 2008; Wobbrock et al., 2009; Dietz and Eidelson, 2009],
Diamond Touch [Dietz & Leigh, 2001], and Jeff Han’s multi-touch panel [Han,
2005] detect objects using cameras and/or projectors positioned below or above the
touch surface. The innovative technology of Entertaible [Hollemans et al., 2006a;
Bergman and Hollemans, 2006; Hollemans et al., 2006b], the multi-touch screen
developed by Philips Research, enables in-plane detection of multiple objects using
infrared emitters (LEDs) and sensors positioned in a frame around the screen.

Figure 1.1. Entertaible.

A prototype of Entertaible was shown in the 2006 Consumer Electronics Show,
where it was presented as a gaming platform that combines the interactivity of
computer games with the social attractiveness of a board game [Frapolli, Hirsbrun-
ner & Lalanne, 2007]. The device is equipped with 260 emitters and 260 sensors
positioned in an alternating fashion around a 32-inch LCD screen; see Figure 1.1.
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Given the physical limitations of the hardware, more precisely, the size of an LED
and a sensor unit, the Entertaible can detect objects of diameter 1cm or larger.
Depending on the type of LEDs and on the implemented detection algorithm, the
entire process of detecting objects, also called a detection cycle, can be repeated 25
to 100 times per second, enabling in that way real-time tracking of moving objects
on the table.

The technology uses light emitters and light sensors that are placed on some fixed
positions around the space called the detection area, e.g., at the four edges of a
rectangular table. In turn, emitters generate a short flash of infrared light and the
objects placed in the detection area block that light for some of the sensors. In
other words, some of the sensors are in the shadow of one or more objects; see
Figure 1.3 for an illustration.

Figure 1.2. Entertaible detects 45 fingers.

This information can be used to determine the position and shape of objects [Jo-
vanović, 2007], e.g., game pieces or fingers on the table; see Figure 1.2. If detec-
tion cycles are short enough, then moving objects can be tracked, for instance to
recognize gestures made by fingers.

1.2 Research problems

The detection technique we described above gives rise to many interesting prob-
lems. For instance, there are problems of architectural nature that consider the
network of hardware units that are used, and there are problems from the human-
computer interaction domain that rise when the technology is implemented in some
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Figure 1.3. In-plane object detection: using the information on blocked light to
provide an approximation of geometry of objects.

device. This thesis, however, considers exclusively the geometric problems that are
at the core of the detection technique. These problems are in the realm of computer
science, and more specifically, in the domain of computational geometry.

The detection problem

The essential problem in the process of object detection is to determine the loca-
tion, size and shape of each of the objects, as accurately as possible. We refer to
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this problem as the detection problem. A solution to this problem is given by the
design of an efficient algorithm that determines from the given sensor data a list of
detected objects, with an approximation of their exact location and size.

For reason of simplicity, we will assume that emitters and sensors are points in
the perimeter of a rectangular detection area. A light flash of an emitter e can be
detected by a sensor s, provided that there is no object blocking the line of sight
between e and s. After a short detection cycle, in which each emitter has flashed
once, we know for each pair (e,s) whether or not the corresponding line of sight
is blocked. This information is represented by a so-called blocking matrix, where
each row corresponds to an emitter and each column corresponds to a sensor. The
blocking matrix B is a binary matrix, where the value bi j = 1 if the line of sight
between emitter ei and sensor s j is not blocked by an object, and bi j = 0 otherwise.
Considering only the lines of sight of one emitter, which are either blocked or not,
the detection area can be partitioned into a set of light and shadow areas. The
shadow areas that are not separated by any non-blocked line of sight, are grouped
into a shadow wedge. In this way, we can determine a set of shadow wedges
corresponding to one emitter. Figure 1.3 shows the shadow wedges for three of the
emitters. Note that each shadow wedge contains at least one object.

We consider an object to be detectable if it is in a shadow wedge for each emitter,
more precisely, an object can be detected if it blocks at least one line of sight for
each emitter. In that case, intersecting the shadow wedges of all emitters, where
each of the wedges contains the given object, results in an approximation of the
object’s location, shape and size, given in the form of a convex polygon circum-
scribing the object. Detecting multiple objects placed in the detection area amounts
to finding all wedge-intersections that contain the objects; see Figure 1.3. In other
words, the detection problem corresponds to the so-called wedge intersection prob-
lem, considered in Chapter 2.

Limitations of in-plane object detection

In addition to the design of a detection algorithm, one can explore many differ-
ent aspects related to the detection problem, such as determining the accuracy of
the object detection. The accuracy of a single detected object can be defined as
the ratio between the object’s area and the area of its approximation provided by
the detection method [Jovanović, 2007]. This accuracy depends on the number of
emitters and sensors, and consequently, on the number of lines of sight defined
by them. Clearly, the larger the number of emitters and sensors, the higher is the
detection accuracy; see Figure 1.4. When detecting multiple objects, however, the
accuracy level also depends on the objects’ relative positions, hence, the combined
occlusion that the objects define. In order to determine the maximum level of ac-
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curacy that can be achieved, we will assume an ”ideal” environment with infinitely
many emitters and sensors in a frame surrounding the objects. In this way, we
focus only on the intrinsic shortcoming of the detection technique implied by the
objects’ positions. The problem of finding the best possible approximation assum-
ing infinite number of emitters and sensors is called the shadow regions problem.
This problem will be the subject of Chapter 3.

Figure 1.4. Detecting a single circular object (left) and six identical circular
objects (right) with 32 emitters and 32 sensors (top) and with infinitely many
emitters and sensors (bottom).

Visibility problems

Detecting objects using light rays is based on the fact that the objects partly block
the emitted light. In this way, for each line of sight connecting one emitter and
one sensor we are able to determine whether or not the line of sight is blocked,
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and use that information to detect the objects. However, this detection method at
the same time, also provides grounds for many visibility problems. One example
of such a visibility problem is the so-called phantom object problem [Jovanović,
2007], which occurs usually in the presence of many objects in the detection area.
If all of the lines of sight intersecting some given area are blocked, it is assumed
that the area contains an object that blocks all those lines. However, the same
may occur in the presence of many objects, which ”accidentally” block the lines
of sight crossing some area, and as a result, a non-existing object is reported as
detected; see Figure 1.5. Such a detected non-existing object is called a phantom
object. It can happen as well that we have a real object on the location of a phantom
object, however, the detection technique is unable to distinguish between these two
cases and hence, unable to provide the correct information. In the absence of the
solution in the detection domain, it is of high importance to explore the occurrence
of the phantom objects, so that they can be avoided in the application domain, for
example, by designing a multi-touch screen game that does not allow the game
pieces to be positioned in a manner that leads to a phantom object occurrence.

Figure 1.5. Eight square objects positioned inside the detection area create mul-
tiple phantom objects.

Another example of a visibility problem is the problem of two or more objects be-
ing detected as one object. In this case, the lines of sight that separate the objects
are blocked by other objects. Unlike the phantom problem, this problem can usu-
ally be solved in the detection domain when additional information on objects’ size
is available, which is the case for many applications.

Based on the visibility problems identified in practice, we define and discuss five
visibility problems in this thesis. The detection area is assumed to be the entire
plane in which non-overlapping unit disks representing objects can be positioned.
In addition, we assume the minimum mutual distance between any pair of disks to
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be at least some given distance d.

We consider the problems of determining the minimum number of non-overlapping
unit disks needed to block a given set of rays or lines. The five visibility problems
discussed in this thesis are:
• The hidden point problem, i.e., blocking the set of all rays emanating from a

given point;
• The occluded point problem, i.e., blocking the set of all lines containing a

given point;
• The occluded disk problem, i.e., blocking the set of all lines intersecting a

given unit disk;
• The hidden disk problem, i.e., blocking the set of all rays emanating from a

given unit disk;

Figure 1.6. Four visibility problems defined for four sets of lines/rays.

• The merging disks problem, i.e., blocking the set of all lines passing between
two given unit disks;

For each of the problems we focus on deriving asymptotic bounds on the mini-
mum number of disks needed for blocking, when the minimum mutual distance d
between a pair of disks goes to infinity.

Besides the above mentioned problems, there are also many geometric problems
related to shape recognition, where the essence is in determining an object’s real
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shape from the approximation provided by the detection method. Note that what-
ever the shape of an object is, its approximation will always be a convex polygon,
as illustrated in Figure 1.7. In addition to the detection problems which are defined
for a static environment, one can consider also tracking problems, i.e., detecting
objects in a dynamic environment, which results in the recognition of movements.
These problems, however, are not the subject of the research presented in this the-
sis.

Figure 1.7. The detection method results in all objects being reported as convex
polygons.

1.3 Related work

The in-plane object detection technique is related to some extent to the methods
of image reconstruction known as tomography [Slaney & Kak, 1988; Jain, 1989],
heavily used in medical imaging. Tomography is an imaging method based on
sectioning or slicing, where projections of the same 2D or 3D image from different
angles are used to reconstruct the original image. The projections (sections) of an
image are obtained using any kind of penetrating wave, e.g., X-rays for CT scans
or radio-frequency wave for MRI scans. The original image is reconstructed from
a set of projections using a reconstructive algorithm, which is usually classified
as either filtered back projection [Lauritsch & Haerer, 1998; Katsevich, 2004] or
iterative reconstruction [Gordon & Herman, 1974; Gilbert, 1972; Chew & Wang,
1990; Mueller & Yagel, 2000]. These algorithms are based on the mathematics of
the Radon Transform [Gindikin, 1994; Ramm & Katsevich, 1996; Deans, 1983],
which allows to determine the density distribution of an unknown object from the
data collected from cross-sectional scans. The collected data consists of detected
signal strength in multiple end points, with known points of the signal origin. The
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tomographic reconstruction and our in-plane object detection are therefore, based
on the same idea. However, instead of the complex integral transform used on a
wide range of different signal strengths, we use only binary data gathered by the
sensors (received or not received the light), which is then easily transformed into a
geometric model of the objects.

As we briefly explained in the previous section, the detection method is based on
determining all shadow wedge intersections. As illustrated in Figure 1.3, a shadow
wedge has the shape of a convex polygon. Hence, a detection algorithm is based
on the operation of determining the intersection of two given polygons. Finding
the intersection of two polygons, which is essentially the problem of finding line
segment intersections [De Berg et al., 2000], is a problem considered by many
computer scientists since the foundation of the field of computational geometry.
Some interesting results on this topic that are related to our detection method can
be found in [Shamos & Hoey, 1976; Shamos, 1978; Bentley & Ottmann, 1979;
Nievergelt & Preparata, 1982; Chazelle, 1986; Chazelle & Dobkin, 1987; Chazelle
& Edelsbrunner, 1992; Balaban, 1995].

Agarwal & Sharir [2000] gave a survey on combinatorial and algorithmic prop-
erties of the arrangements of geometric objects, where an arrangement of a finite
collection of geometric objects is defined as a decomposition of the space into con-
nected cells induced by them. The problem of determining all shadow regions in
the plane defined by a given set of unit disks, i.e., the shadow region problem con-
sidered in Chapter 3 of this thesis, is therefore related to the arrangements of disks
and lines in the plane.

The geometric problems that are the subject of this thesis are closely related to the
illumination problems [Soltan, 1979; Urrutia and Zaks, 1989; Czyzowicz et al.,
1989; Schmitt, 1993; Szabó, 1998; Martini and Soltan, 1999], extensively stud-
ied in the field of combinatorial geometry. These problems deal with illumination
of bodies by a finite or infinite number of point light sources, where a point x on
the boundary of a given body is said to be illuminated by a point y outside that
body if the line segment (x,y) does not intersect the body. The origins of the il-
lumination problems lie in the problems of covering a convex body by identical
or smaller homothetic copies of it [Levi, 1954; Boroczky & Soltan, 1996; Rogers
& Zong, 1997]. The connections between the two classes of problems [Soltan,
1966] were established in [Boltjansky, 1960] and [Hadwiger, 1960] by introducing
two different types of exterior illumination, namely, the illumination by a direction
and the illumination by an exterior point. The notion of visibility between an ex-
terior point and a boundary point of a convex body was introduced in [Valentine,
1970]. Among many interesting problems related to the illumination is the problem
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of finding the minimum number of exterior points that illuminate a given convex
body. Considered in two-dimensional Euclidean space, a variant of this problem
is known in computational geometry as the classical art gallery problem, i.e., the
problem of determining the minimum number of guards sufficient to cover the in-
terior of any n-wall art gallery. The guards are points that can survey 360◦ around
their fixed positions and the art gallery is a polygon with n edges. The art gallery
problem was originally posed by Klee in 1973. Since then, many variants of the
problem [O’Rourke, 1987] in conjunction with the related illumination problems
have been investigated [Urrutia, 2000] and there is a tremendous amount of results
published on the topic.

The visibility problems considered in this thesis relate to determining the mini-
mum number of disks needed to block a given set of lines or rays. Defined in
that way, these problems are related to the visibility (illumination) problems of
a family of non-overlapping convex bodies [Tóth, 1977]. A family of pairwise
non-overlapping congruent balls in Euclidean space forms a cloud for a given ball,
if each ray emanating from the center of the given ball intersects at least one of
the balls of the family [Szabo & Ujvary-Menyhart, 2002]. Similarly, a family of
non-overlapping congruent balls forms a dark cloud for a given ball, if each ray em-
anating from the given ball intersects at least one of the balls of the family [Soltan,
1995; Zong, 1997]. Although defined in a similar way, the problems of deter-
mining minimum (dark) clouds on one side and the problems of a hidden point
or disk on the other, focus on different aspects. The constraint in both the hidden
point and the hidden disk problem is that the distance between two disks is at least
some given distance d. However, the problems of finding the minimum cloud and
the minimum dark cloud pose no requirements on the minimum distance between
the balls in the cloud and the solutions to both problems in the two-dimensional
space are well-known [Tóth, 1959]. Therefore, these problems are only challeng-
ing in the three-dimensional space. More visibility problems related to the prob-
lems considered in Chapter 4 and 5 are the problem of intersecting convex sets by
rays [Fulek, Holmsen & Pach, 2008], the floodlight illumination problem [Steiger
and Streinu, 1998; Steiger and Streinu, 1994; O’Rourke et al., 1995; Estivill-Castro
et al., 1995], many variants of the orchard visibility problem [Pólya, 1918; Allen,
1986; Kruskal, 2008; Dumitrescu and Jiang, 2010] and various visibility problems
defined in [O’Rourke, 2004].

1.4 Outline

The rest of the thesis is organized as follows. In Chapter 2, which is based on
[Jovanović, Korst & Pronk, 2009], we consider the following problem. Given a
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rectangle Γ with n emitters and n sensors on its perimeter, objects in Γ can be de-
tected by determining which of the n×n line segments (e,s) between emitters and
sensors are blocked by objects. The problem of object detection can be formulated
as the problem of finding all non-empty n-wedge intersections, where a wedge is
defined by a consecutive set of blocked line segments from the same emitter. We
show that for a given set of n wedges, one emanating from each emitter, we can
determine the intersection (i.e., the convex polygon) in O(n) time, assuming some
given ordering of the wedges. We present two algorithms that determine all non-
empty n-wedge intersections inO(n5) andO(n3) time, respectively, assuming that
objects are sufficiently large.

In Chapter 3, we describe the limitations of the detection method by exploring the
object detection in an ”ideal” environment with infinitely many light emitters and
light sensors. Formally, the problem of interest to us can be defined in the following
way. Given a set of N non-overlapping unit disks in the plane, a line ` is called
blocked if it intersects at least one of the disks and a point p is called a shadow
point if all lines containing p are blocked. In addition, a maximal closed set of
shadow points is called a shadow region. We derive properties of shadow regions,
and present an O(N4) algorithm that outputs all shadow regions. We prove that
the number of shadow regions is Ω(N4) for some instances, which implies that the
worst-case time complexity of the presented algorithm is optimal.

We address two visibility problems related to in-plane object detection in Chap-
ter 4. First, we consider the problem of determining the minimum number Nd
of non-overlapping unit disks that is required to block all rays emanating from a
point p, where each disk has at least a distance d to point p and to any other disk.
We study the asymptotic behavior of Nd , as d tends to infinity. By deriving up-
per bounds and lower bounds, we prove that both upper and lower bounds on Nd
are quadratic in d, where the upper bound is based on establishing an interesting
link between unit disks positioned on a regular triangular grid and Farey sequences
from number theory. By positioning point p as well as the centers of the disks on
the grid points of such a triangular grid, we create hexagonal rings of disks around
p. We prove that we need exactly d− 1 of these hexagons to block all rays em-
anating from p. From these results, we straightforwardly derive quadratic upper
and lower bounds on the minimum number of non-overlapping unit disks that is
needed to block all lines containing p, where again the minimum mutual distance
between any two disks as well as the distance between a disk to point p is at least
d. The results presented in Chapter 4 are published in [Jovanović et al., 2009].

In Chapter 5, which is based on [Jovanović et al., 2008; Jovanović et al., 2010a;
Jovanović et al., 2010b], we continue with a similar discussion where we explore
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three visibility problems related to hiding objects. First, we consider the occluded
disk problem that is formally defined as follows. A unit disk δ is occluded by a
set of non-overlapping disks D if every line that intersects δ is blocked by at least
one of the disks in D. We focus on determining the minimum number of disks that
occlude a given disk assuming that the minimum mutual distance between each pair
of disks is d. We derive upper and lower bounds on this minimum number of disks
for small values of distance d, more precisely, for 2≤ d ≤ 4, before we present the
asymptotic bounds that are quadratic in d as a result that directly follows from the
results presented in Chapter 4.
Next, we focus on the hidden disk problem, where a unit disk δ is said to be hidden
by a set of non-overlapping unit disks D if each ray emanating from δ is blocked
by at least one of the disks in D. We consider the problem of finding the minimum
number of disks in D that hide a given disk, where the minimum distance d from a
disk to any other disk is given. We study the asymptotic behavior of the minimum
number of disks as the minimum mutual distance approaches infinity. Using a
regular ordering of disks on concentric circular rings we derive an upper bound
and prove that the minimum number of disks required for blocking is quadratic in
the minimum distance between the disks.
The last problem considered in Chapter 5 is the merging disks problem. For a
given minimum mutual distance d between the disks, we focus on determining the
minimum number of non-overlapping unit disks that block the set of lines passing
between two given unit disks. We first present the minimum blocking sets of disks
for 2≤ d ≤ 3, before we present upper and lower bounds for d→ ∞.

Finally, we give concluding remarks in Chapter 6 by summarizing the results of
the previous chapters.
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2
Detection Algorithms

To enable simultaneous detection of multiple objects on table-top interactive de-
vices, a detection technology that uses light emitters and light sensors has been
developed. The emitters and the sensors are placed on some fixed positions in a
frame around the table. In turn, emitters generate a short flash of infrared light. Af-
ter one emitter has flashed, all sensors report whether or not they detect the emitted
light. A light flash of an emitter e can be detected by a sensor s, provided that there
is no object blocking the line segment between e and s. After a short detection
cycle, in which each emitter has flashed once, we know for each pair (e,s) whether
or not the corresponding line segment is blocked. This information can be used to
solve a detection problem, more precisely, to determine the position and shape of
objects, e.g., game pieces or fingers on the table [Hollemans et al., 2006].

In order to track moving objects on the table, for instance to recognize gestures
made by fingers, the detection problem should be solved repeatedly in a short time,
after each detection cycle. Given the physical limitations of the emitters (LEDs)
used, the frequency of the detection cycles can be at high as 100 Hz, which leaves
only 10 ms of time to solve the detection problem. Therefore, it is of utmost impor-
tance to develop a fast detection algorithm that can support real-time applications

15



16 Detection Algorithms

like multi-player board games, map navigation or web browsing.

Overview. The detection algorithms that make use of the described technology
are the main topic of this chapter. We introduce notation and formally define the
detection problem in Section 2.1. In Section 2.2 we present an algorithm for the
detection of a single object with a run time that is linear in the number of emitters.
The number of objects that can be detected is discussed in Section 2.3. In Sec-
tion 2.4 and 2.5 we present two detection algorithms, the cut-off algorithm and the
point-by-point algorithm, that run in O(n5) and O(n3) time, respectively, where n
is the number of emitters. In addition, we give pointers to alternative algorithms.
Implementation issues and other details of practical relevance are discussed in Sec-
tion 2.6.

2.1 Defining the detection problem

Let Γ be a rectangular detection area and let E=(e0, . . . ,en−1) and S=(s0, . . . ,sn−1)
be two sets of n points on the perimeter of Γ, both ordered in clockwise fashion,
where E is the set of emitters and S is the set of sensors. The points from E
and S are positioned alternately on the border of Γ and the distance between each
pair of neighboring points is r. In addition, for each emitter ei on one side of Γ

there is a sensor s j on the opposite side of Γ, such that the line segment (ei,s j) is
perpendicular to the edges of Γ containing ei and s j. A line segment connecting
one emitter and one sensor is called a line of sight.

A closed shape placed in the interior of the detection area Γ is called an object.
Objects do not intersect the boundaries of Γ and they do not overlap each other.

Let the blocking matrix B be an n× n binary matrix where bi, j = 1 if the line of
sight between emitter ei and sensor s j is not blocked by any object, and bi, j = 0
otherwise. By definition, we have bi, j = 1 when ei and s j are on the same side of
Γ. For a given emitter ei, a maximal sequence of consecutive sensors for which the
light of ei is blocked defines a shadow wedge, or wedge for short. Let s j+1, . . . ,sk−1
be such a sequence, where indices are taken modulo n. Hence, potentially a wedge
is defined by a sequence s j+1, . . . ,sn−1,s0, . . . ,sk−1, where k < j. For an illustration
see Figure 2.1.

The shadow wedge can be formally defined as the intersection of two half-planes
as follows.

Definition 2.1 (shadow wedge). Let ei be an emitter and s j, . . . ,sk be sensors such
that s j+1, . . . ,sk−1 are blocked from ei, and s j and sk are not blocked from ei, and
k 6= j, j + 1. Let h+j denote the half-plane bounded by the line through ei,s j and
containing s j+1, and let h−k denote the half-plane bounded by the line through ei,sk
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Figure 2.1. An example of the blocking matrix and the corresponding shadow
wedges for emitter e1.

and containing s j+1. Then we say that ω = h+j ∩ h−k is the shadow wedge defined
by a 3-tuple (ei,s j,sk). 2

Note that for a wedge (ei,s j,sk), we have that bi, j = bi,k = 1 and bi,l = 0, for
l = j+1, . . . ,k−1, where all indices are taken modulo n. Hence, the light of ei is
not blocked for left and right bounding sensors s j and sk, but it is for all sensors in
between s j and sk.

Since objects are completely inside the detection area Γ, a wedge can be bounded
by intersecting it with rectangle Γ, resulting in a polygon of 3, 4 or 5 edges, de-
pending on whether s j and sk are on the same, adjacent, or non-adjacent sides of Γ.

In the case of detection of only one object placed in Γ, there is at most one shadow
wedge per emitter defined by the object. When multiple objects are placed in Γ,
there may be multiple wedges emanating from one emitter. However, the number
of wedges per emitter does not necessarily correspond to the number of objects.
The number of wedges per emitter is at most the number of objects and often,
multiple objects are contained in a single wedge. For example, emitter e3 in Fig-
ure 2.1 has only one wedge. All wedges emanating from emitter ei are given by
the sequence (ωi0,ωi1, . . . ,ωimi−1), mi < n/2, ordered in clockwise fashion, when
viewed from emitter ei; see Figure 2.1. Hence, mi gives the number of wedges
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emanating from ei.

Figure 2.2. Detectibility of an object depends on its position and orientation: left
and right - the object is detectable since it blocks at least one line of sight for each
emitter; in the middle - the object is not detectable.

An object placed in Γ that is given by its position and orientation is detectable
if it intersects at least one line segment (ei,s j) for each ei ∈ E. An object that
is detectable on one position in Γ may not be detectable on some other position
in Γ, as illustrated in Figure 2.2. Also, a different orientation of an object can
result in the object being detectable in one case, but not detectable in another; see
Figure 2.2.

Definition 2.2 (surely detectable object). An object o placed in Γ is surely de-
tectable if o intersects at least one line segment (ei,s j) for each ei ∈ E, irrespective
of its position and orientation. 2

By definition, any detectable object (See Figure 2.2) is in a wedge for each emitter.
As a consequence, we can detect such an object by determining the intersection of
all n wedges in which it is positioned. The resulting convex polygon circumscribes
the object(s) located in this intersection (See Figure 2.3).

Lemma 2.1. Let r be the distance between a pair of neighboring emitters and
sensors, then a circular object of radius at least r is surely detectable.

Proof. A circle of radius at least r is too large to be inscribed in a triangle that
has at least one edge of size less or equal to 2r. Given that the distance between
two neighboring sensors s and s′ is 2r when s and s′ are on the same side of Γ, the
circle of radius at least r cannot be inscribed in a triangle with vertices in e, s and
s′, i.e., the circle intersects either (e,s) or (e,s′). Quadrilaterals in the corners of Γ

determined by two neighboring sensors on different sides of Γ, one vertex of Γ and
one emitter are also not large enough to contain the circle of radius at least r, by
which we proved the lemma. 2
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Figure 2.3. The polygon circumscribing the circular object is the result of inter-
section of n wedges containing the circular object.

For reasons of convenience, and as a consequence of Lemma 2.1, we only consider
detecting objects that are each large enough to contain a circle of radius r.

Definition 2.3 (wedge vector). A wedge vector (z0,z1, . . . ,zn−1), where zi is an
integer such that 0≤ zi < mi, specifies a combination of n wedges, one emanating
from each emitter, given by ω0z0 ,ω1z1 , . . . ,ωn−1zn−1 . 2

To detect an object, we simply have to determine the convex polygon that is de-
fined by the intersection of wedges, one from each emitter. This gives rise to the
following definition.

Definition 2.4 (n-wedge intersection). An n-wedge intersection C specified by a
wedge vector (z0,z1, . . . ,zn−1), with 0≤ zi < mi, is given by

C =
n−1⋂
i=0

ωizi

2

Note that two n-wedge intersections specified by different wedge vectors do not
overlap, since no two wedges of the same emitter overlap. Although they do not
overlap, two n-wedge intersections can still have a non-empty intersection in the
sense that they can have one edge in common. This situation can occur when the
right bounding sensor of one wedge is identical to the left bounding sensor of a
neighboring wedge of the same emitter.

After we defined an n-wedge intersection, we are ready to formulate the problem
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of interest to us, as follows.

Wedge Intersection Problem. Given the n×n blocking matrix B, determine all
non-empty n-wedge intersections.

More specifically, we are interested in developing efficient algorithms to determine
all non-empty n-wedge intersections for a given blocking matrix B. In other words,
the wedge intersection problem represents a detection problem as defined in Sec-
tion 1.2.

An n-wedge intersection usually corresponds to one object, as shown by experi-
mental results in [Jovanović, 2007]. Occasionally, multiple objects can be detected
as one, especially if their mutual distance is too small or if the view on the area
between them is occluded by other objects; see Figure 2.4 - left. Furthermore, in-
cidentally a small area that is in the ”shadow” of an object for each emitter results
in a non-empty n-wedge intersection that can be identified as an object; see Fig-
ure 2.4 - right. In other words, an n-wedge intersection can circumscribe 0, 1 or
more objects, which will be discussed in more detail in the following chapters.

Figure 2.4. Left: an n-wedge intersection that contains two objects; right: four
circular objects create small n-wedge intersections that do not contain any object.

As we described above, detecting objects using light emitters and light sensors re-
quires determining all non-empty n-wedge intersections. Therefore, determining
an intersection of n wedges efficiently is of utmost importance for real-time appli-
cations. In the following section, we show that a single n-wedge intersection can
be determined in a time that is linear in the number of emitters. In Section 2.3 we
discuss the number of non-empty n-wedge intersections, given that we focus only
on detecting objects large enough to contain a circle of radius r.
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2.2 Determining an n-wedge intersection in linear time

The O(n logn) time algorithm to determine the intersection of n half-
planes [Shamos & Hoey, 1976] can be used straightforwardly to determine the
intersection of n wedges in O(n logn) time. Furthermore, the problem of comput-
ing the intersection of a given set of half-planes is dual to the problem of computing
the convex hull of a set of points [Edelsbrunner, 1987; De Berg et al., 2000]. It is
known that the convex hull of a set of points can be computed in linear time if
the points are already sorted by x-coordinate [De Berg et al., 2000]. Hence, the
intersection of n half-planes can be determined in O(n) time if the half-planes are
ordered by slope. In this section, however, we use a different approach to show
that an n-wedge intersection can be determined in linear time. This approach will
make it easier to understand Section 2.4. The algorithm we present here is using
the ordering of the wedges that is implied by the clockwise order of the emitters.

Figure 2.5. Intersecting an ordered set of wedges: the resulting polygon circum-
scribing the circular object after intersecting the first 8 wedges.

The algorithm starts with an initial polygon P0 = Γ. We next iteratively intersect a
polygon with a wedge. In iteration i we determine the intersection between polygon
Pi and wedge ωizi , resulting in polygon Pi+1, see Figure 2.5. Hence, after the n-th
iteration, the resulting Pn will be the intersection of all n wedges; see the pseudo-
code below.

The vertices of a polygon are given by a cyclic sequence of points, ordered in
clockwise direction. The counterclockwise neighbor (predecessor) of a vertex υ

is denoted by pred(υ) and the clockwise neighbor (successor) of υ is denoted by
succ(υ). The basic idea is that through all of the iterations we keep track of the
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Algorithm 1 DetermineIntersectionOfWedges((z0,z1, . . . ,zn−1))
P0← Γ;
for i = 0 to n−1 do

update the leftmost vertex υleftmost and the rightmost vertex υrightmost, viewed
from emitter ei;
if wedge ωizi = (ei,s j,sk) and polygon Pi do not intersect then

return C = /0;
else

Pi+1← Pi;
if υleftmost is to the left of line (ei,s j) then

Pi+1← LEFTCUT(Pi,ei,s j);
end if
if υrightmost is to the right of line (ei,sk) then

Pi+1← RIGHTCUT(Pi+1,ei,sk);
end if

end if
end for
C ← Pn;

leftmost and rightmost vertices of Pi, when viewed from the current wedge’s emit-
ter. Note that we consider the wedges in order of their emitters, which are ordered
in clockwise fashion. In iteration i we intersect Pi with ωizi = (ei,s j,sk) for some j
and k. At the start of iteration i the left and rightmost pointers are based on ei−1’s
viewpoint, from the previous iteration. We first update the pointers to the left-
most and rightmost vertices. Each of these pointers is updated by considering their
clockwise neighbors (possibly repeatedly), as new candidates. Next, we first check
whether or not the intersection is empty. It is empty if and only if the leftmost point
is to the right of (ei,sk) or the rightmost point is to the left of (ei,s j). In that case
we can stop. Otherwise, we carry out the intersection. This potentially results in
cutting part of the polygon from its left side and/or from its right side, again when
viewed from the wedge’s emitter.

If there is a left cut (see Figure 2.6), then the leftmost vertex of Pi is to the left of line
(ei,s j), and we start hopping to neighboring vertices until we cross this line. We
do this both in clockwise and counterclockwise directions, in both cases starting
at the leftmost vertex; see the routine LEFTCUT given in pseudo-code. Note that
the total number of hops is at least two, and that each additional hop removes an
additional vertex.

If the rightmost vertex of Pi is to the right of line (ei,sk), then a right cut is per-
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Figure 2.6. Intersecting a wedge and a polygon: the left cut.

formed in the same way as the left cut. Next, we show that the running time of
Algorithm 1 is linear in the number of emitters.

Algorithm 2 LEFTCUT(Pi,ei,s j)
ccwHopVertex← pred(υleftmost);
while ccwHopVertex is on the left of line (ei,s j) do

if succ(ccwHopVertex) is not υleftmost then
Delete succ(ccwHopVertex) from the list of vertices of Pi;

end if
ccwHopVertex← pred(ccwHopVertex);

end while
Insert the intersection point of line (ei,s j) and edge
(ccwHopVertex, succ(ccwHopVertex)) as a new vertex of Pi,
after ccwHopVertex by replacing the previous succ(ccwHopVertex);
cwHopVertex← succ(υleftmost);
while cwHopVertex is on the left of line (ei,s j) do

Delete pred(cwHopVertex) from the list of vertices of Pi;
cwHopVertex← pred(cwHopVertex);

end while
Insert the intersection point of line (ei,s j) and edge
(cwHopVertex, pred(cwHopVertex)) as a new vertex of Pi,
before cwHopVertex by replacing the previous pred(cwHopVertex).
The new vertex is a potential leftmost vertex for iteration i+1;

Lemma 2.2. Given a wedge vector (z0,z1, . . . ,zn−1), the n-wedge intersection
C =

⋂n−1
i=0 ωizi can be determined in O(n) time.

Proof. We consider the time complexity of Algorithm 1, by amortizing over all
its iterations. Each cut removes at least one vertex and introduces two new ones.
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Therefore, the net increase of the number of vertices per cut is at most one and the
net increase of a complete intersection is at most two.

In each cut we determine at most two new vertices, each of them as an intersection
of two lines, i.e., one bounding line of a wedge and one polygon edge. The inter-
section of two lines is a constant-time operation and at most 4 of these operations
are performed in one wedge-polygon intersection. A hop is also a constant time
operation containing the check whether a point, i.e., a vertex of the polygon is to
the left or right of a line. The number of hops per intersection with both left and
right cut is at least 4. Each additional hop that is performed removes an additional
vertex. Summed over all n intersections, the total number of additional hops is
bounded by 2n. Given the clockwise ordering of the wedges, updating the leftmost
and rightmost vertices, amortized over all n iterations, is also bounded by O(n)
steps.

Hence, the intersection of an ordered set of n wedges can be determined in O(n)
time. 2

2.3 Bounding the number of non-empty n-wedge intersections

Given the result of Lemma 2.2, one approach to the wedge intersection problem
would be to simply determine the wedges for all of the emitters from the input
matrix V and then to determine for each possible wedge vector the corresponding
n-wedge intersection. However, this would result in a non-polynomial algorithm.
More precisely, there are arbitrarily large instances with Θ(n) wedges per emitter.
The n emitters with Θ(n) wedges each, define Θ(nn) wedge vectors that may result
in a non-empty intersection, thus, Θ(nn) potential n-wedge intersections.

A trivial upper bound on the number of non-empty n-wedge intersections can
be determined using the solution of the well-known plane partitioning problem;
see [Graham, Knuth & Patashnik, 1994]. The authors prove by mathematical in-
duction that k lines in the plane can partition the plane into at most k(k+1)/2+1
regions. The number of line segments defined by n emitters and n sensors is
quadratic in n. Hence, the number of convex regions that they define is O(n4),
i.e., there are O(n4) non-empty n-wedge intersections.

This upper bound can be directly used to develop anO(n4) algorithm for determin-
ing all n-wedge intersections. More precisely, the arrangement of O(n2) lines that
bound all shadow wedges can be constructed in O(n4) time [Agarwal and Sharir,
2000; Edelsbrunner, 1987; De Berg et al., 2000]. If the depth of a cell is defined
as the number of wedges containing the cell, then the set of n-wedge intersections
is exactly the set of cells of depth n in the arrangement. Hence, to determine all
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n-wedge intersections, we compute the depth of each cell, which can also be done
in O(n4) time by traversing the dual graph of the arrangement of lines [Edelsbrun-
ner, 1987; Guibas and Sharir, 1993; De Berg et al., 2000], while maintaining the
depth. Computing the size of an n-wedge intersection can be done in time linear in
the number of edges [O’Rourke, 1998; Sack and Urrutia, 2000], hence, removing
n-wedge intersections that are not sufficiently large also takes O(n4) time.

We can further improve the upper bound on the number of non-empty n-wedge
intersections since we only consider detecting objects that are large enough to con-
tain a circle of radius at least r, where 2r is the distance between each pair of
neighboring sensors on the same side of Γ. Since an object has an area of at least
πr2 and the total area of Γ is O(n2r2), we can bound the number of objects that
can be placed in Γ by O(n2). Similarly, the number of sufficiently large n-wedge
intersections is bounded byO(n2). This upper bound on the number of sufficiently
large n-wedge intersections plays an important role in the assessment of the com-
putational complexity of the detection algorithms presented in Sections 2.4 and
2.5.

2.4 Cut-off algorithm

In this section, we present the cut-off algorithm, a detection algorithm that was im-
plemented on the Entertaible. The cut-off algorithm is an incremental algorithm,
and it represents a generalization of the algorithm presented in Section 2.2 when
multiple objects are placed in the detection area. In other words, this algorithm
builds upon a simple and intuitive idea of getting better approximations on geome-
try of multiple objects in each iteration, by cutting off parts of the shadow wedges
that do not contain any objects.

The cut-off algorithm for determining all non-empty n-wedge intersections con-
sists of repeatedly pair-wise intersecting the wedges of the current emitter ei, with
the polygons Pi that are the result of intersecting all wedges from the emitters
e0, . . . ,ei−1; see pseudo-code of Algorithm 3. The algorithm starts with intersect-
ing the wedges of the emitter e0 with the rectangle Γ, yielding a first set of polygons
P1 and ends with the intersection of the wedges of en−1 with the set of polygons
Pn−1. The resulting set Pn of all n-wedge intersections represents the detected
objects. Figure 2.7 illustrates the working of the algorithm.

Now let us take a closer look at the time complexity of the cut-off algorithm.

The list of wedges of one emitter can be determined in O(n) time, since we have
to check the values for each of the n sensors. The number of wedges per emitter is
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Figure 2.7. The cut-off algorithm in action: the set of polygons after 1, 6, 13, 20,
30 and all 40 iterations.

at most bn/2c, by the definition of a wedge.

If a wedge ωi j and a polygon Pk intersect and Pk is not entirely contained in ωi j,
then we “cut off” at most two parts of Pk. Each cut removes at least one vertex
and introduces at most two new ones. Hence, the net increase per cut is at most
one and the net increase of a complete intersection is at most two vertices. This
gives an increase of at most 2n vertices after n intersections. Hence, all polygons
Pk haveO(n) vertices. In [De Berg et al., 2000; O’Rourke, 1998; Shamos, 1978] it
is shown that the intersection between two convex polygons with n1 and n2 vertices
can be determined inO(n1+n2) time. Therefore, the intersection between a wedge
and a polygon can be determined in O(n) time; see also Section 2.2.

As we explained in Section 2.3, the number of objects that can be placed in Γ

is O(n2). Hence, the list Pk of intermediate polygons is of size O(n2) in each



2.4 Cut-off algorithm 27

Algorithm 3 CUTOFFALGORITHM(B)
P ← {Γ}
for i = 0 to n−1 do

determine the listWi of wedges of emitter ei in clockwise order
for j← 0 to size(Wi)−1 do

T ← /0

for k← 0 to size(P)−1 do
if wedge wi j and polygon Pk intersect then

determine their intersection
if the intersection is not too small then

add the intersection to list T
end if

end if
end for
P ← T

end for
end for

iteration, provided that we remove the small ones at the end of each iteration.

In the second for-loop of the cut-off algorithm, we determine the intersection for
each pair of O(n) wedges with O(n2) polygons. Each of all O(n3) combinations
that may result in a non-empty intersection can be determined in O(n) time as we
showed above. This results in O(n4) time to determine the new set of (interme-
diate) polygons. It can be shown that a wedge-polygon combination that has an
empty intersection can be verified as such in constant time. Hence, O(n3) time is
needed to discard all these combinations.

At the end of each iteration we determine the area of all non-empty O(n3) poly-
gons, to delete the ones that have an area smaller than πr2. Each of the poly-
gons has O(n) vertices. The area of such a polygon can be determined in O(n)
time [O’Rourke, 1998], resulting in O(n4) time for discarding the small polygons.

Finally, this has to be repeated for all n emitters, with which we proved the follow-
ing theorem.

Theorem 2.1. The overall time complexity of the cut-off algorithm is O(n5). 2

Note that the size of the given blocking matrix is n2, so the worst-case time com-
plexity of the cut-off algorithm is O(ξ2

√
ξ), where ξ is the input size of the prob-
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lem instance.

The worst case time complexity of the cut-off algorithm is significantly worse than
that of the algorithms we present in the next section. However, it also has a big
advantage over those algorithms in the sense that even if the detection cycle is
cut short, it can still provide some approximation on the geometry of objects with
guarantees that none of the objects is missed; see Figure 2.7.

2.5 Point-by-point algorithm

The problem of finding all large enough n-wedge intersections is related to the
problem of computing many faces in an arrangement of lines, a problem that has
been extensively studied in the field of computational geometry [Agarwal, Ma-
tousek & Schwarzkopf, 1998]. In more detail, the problem of computing many
faces in an arrangement of lines consists in computing all cells in an arrangement
of k lines, where each cell contains at least one point from a given set Q of m points.
If each of the k lines in the arrangement corresponds to a bounding line of a shadow
wedge and the set Q of points is chosen so that a large enough n-wedge intersec-
tion contains at least one point in Q, then each cell containing a point that is inside
of n wedges is an n-wedge intersection. In this way, determining all large enough
n-wedge intersections consists of (1) choosing a set of points accordingly, (2) com-
puting all cells in the arrangement containing a point, (3) determining which of the
computed cells are inside of n wedges and (4) checking the size of the computed
n-wedge intersections.

It is proved that the total number of edges of the marked cells, i.e., the cells con-
taining at least one of m points in an arrangement of k lines is Θ(k2/3m2/3 +k+m)
[Agarwal et al., 1998; Clarkson et al., 1990; Szemerédi and Trotter, 1983; Edels-
brunner and Welzl, 1986; Edelsbrunner et al., 1990]. There are many algorithms
for computing marked cells presented in the literature. Most of the algorithms
that are nearly worst-case optimal belong to the class of randomized algorithms,
although there are also a few deterministic ones. The running time of these algo-
rithms in our case isO(n4/3m2/3+n2+m) modulo some logarithmic factors, since
the number of lines isO(n2). However, all these algorithms are rather involved and
difficult to implement.

Next, we describe in detail an easy-to-implement deterministic algorithm for com-
puting all large enough non-empty n-wedge intersections. The algorithm deter-
mines all the n-wedge intersections that contain one or more points from a given
set Q of m points inside Γ. This set of m points is chosen such that each surely
detectable object covers at least one of them. We show here that this algorithm
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runs inO(nm+n2) time, hence, it has a slightly worse worst-case time complexity
than the algorithms mentioned above for the cases of m≥ n.

First, we explain a preprocessing step of transforming the blocking matrix B such
that the index number of the wedge of one emitter containing a given point q in the
interior of Γ can be determined in constant time.

A shadow wedge ω = (ei,s j,sk) is said to contain a point q in the interior of Γ if
q ∈ ω∩Γ and q /∈ (ei,sk). Hence, an interior point of Γ may be contained in at
most one wedge of an emitter ei. In this way, for each point q ∈ Γ, a wedge vector
z(q) = (z0,z1, . . . ,zn−1) is defined, where for each i either the wedge ωizi contains q
or zi =−1. Note that if zi 6=−1 for all i∈ {0,1, . . . ,n−1}, the n-wedge intersection
corresponding to the wedge vector z(q) contains point q.

The blocking matrix B is transformed by summing it with an n×n matrix B′ which
is given by

b′i j =

{
−2, if bi j = 1
zi, if bi j = 0

where zi is the index number of the corresponding wedge of the emitter ei. There-
fore, the transformed blocking matrix B is given by

bi j =

{
−1, if (ei,s j) is visible
zi, if (ei,s j) is inside the zi-th wedge of emitter ei

Simply said, each value 1 in B is replaced by the value -1, while each value 0 in
B is replaced by the index number zi of the corresponding wedge. Clearly, the
time complexity of the preprocessing step of transforming the blocking matrix B is
O(n2).

Lemma 2.3. For an arbitrary point q in the interior of Γ the corresponding wedge
vector z(q) = (z0,z1, . . . ,zn−1) can be determined in O(n) time.

Proof. Given a point q and an emitter ei we can determine a sensor that is on or
closest to the line (ei,q) in constant time. For the resulting sensor, we can simply
look up the index number of the wedge in the transformed matrix B in constant
time. If the line (ei,q) intersects the rectangle Γ between sensors s j and s j+1, of
which one is blocked and the other is not, then the index of the wedge in which the
blocked sensor is positioned, is used. Thus, to determine all n wedges, each from
a different emitter and each containing the given point q, takes O(n) time, which
concludes the proof of the lemma. 2

From Lemma 2.2 and Lemma 2.3 we get the following result.
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Corollary 2.1. For an arbitrary point q in the interior of Γ the n-wedge intersec-
tion containing q can be determined in O(n) time. 2

Next, we show that we can choose a set of points in Γ such that each surely de-
tectable object placed in Γ contains at least one of those points. From the discussion
in Section 2.1, we consider only surely detectable objects, i.e., the objects that are
large enough to contain a circle of radius r.

Lemma 2.4. There is a set ofO(n2) points, such that each surely detectable object
covers at least one of them.

Proof. Let us define a grid G inside Γ with all horizontal and vertical line segments
that have endpoints in the set of emitter and sensor points E ∪ S. The grid is a
regular square grid with nearest neighbors at a mutual distance r. Given that the
area of Γ is O(n2r2), the number of grid points in G is O(n2). One can easily see
that any object placed in Γ, into which a circle of radius at least r can be inscribed,
will cover at least one of these points. The largest circle that does not contain a
point from G in its interior has a radius of 1

2

√
2r < r. 2

From the theory of covering rectangles with a minimum number of circles [Melis-
sen, 1997; Pach and Agarwal, 1995], there are sets ofO(n2) points in Γ that contain
less points than the square grid G and for which at least one of those points is inside
each object. For reasons of simplicity, let us just stick to the square grid G.

The point-by-point algorithm for determining all large enough n-wedge intersec-
tions consists of three main phases; see the pseudo-code below.

First, for each q ∈ Q we determine the wedge vector from the blocking matrix.
Clearly, if a point is not in a wedge for every emitter (i.e., if the wedge vector
contains one or more ’-1’ entries), then the resulting intersection will be empty.
So, we can discard such a point. The points are being discarded with the first
occurrence of the value -1 in their wedge vectors. At the end of this phase, all
remaining points are inside non-empty wedge intersections, but a wedge vector
can still occur multiple times (See Figure 2.8 - middle).

In the second phase of the algorithm, we further reduce the set Q of points by
grouping points that have the same wedge vector (i.e., to keep only one represen-
tative point per group; See Figure 2.8 - right). The points of the same group are
removed by using a radix sort algorithm.

In the final third phase, for each remaining point inQ and its corresponding wedge
vector, we determine the n-wedge intersection. Then, we check whether or not the
intersection is sufficiently large to be considered as an object, and if it is, we add it
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Algorithm 4 POINTBYPOINTALGORITHM(B, Q)
/* Phase I */
P ← /0

for each q ∈Q do
determine corresponding wedge vector z(q);
delete q if value -1 occurs in z(q)

end for
/* Phase II */
group the points of Q that have the same wedge vector;
keep only one representative point per wedge vector and
delete other points that correspond to the same wedge vector
/* Phase III */
for each q ∈Q and the corresponding z(q) do

determine the n-wedge intersection containing q by calling
DetermineIntersectionOfWedges(z(q))
if the intersection is not too small then

add the intersection to the list P
end if

end for

Figure 2.8. Reducing the chosen set Q of points: the initial set of points on the
left, the points after discarding non-object points in the middle, and the point(s)
after the removal of the duplicates on the right.

to the list P of large enough n-wedge intersections.

Next, we discuss the time complexity of the point-by-point algorithm.

In the first phase we determine the wedge vectors of at most m points. In other
words, for each point qi from the given set Q we determine the index numbers
z0, . . . ,zn−1 of the wedges of each of the emitters e0, . . . ,en−1 that contain that point.
From Lemma 2.3 we know that such an operation can be done in O(n) time per
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point, resulting in O(mn) running time of the first phase of the algorithm.

In the second phase, we sort m points, i.e., m corresponding n-wedge vectors, using
radix sort [Cormen et al., 2001]. Since the number of wedges of an emitter is at
most bn/2c, each value z j of a wedge vector may be an integer in the range [0,

⌊n
2

⌋
],

which results in the O(mn+n2) running time of the second phase.

The third phase consists of determining the intersection of each of the O(m) or-
dered sets of n wedges containing a point from Q. From Corollary 2.1, such an
n-wedge intersection can be determined in O(n) time. Computing the area (size)
of an n-wedge intersection can be also done in O(n) time, as we mentioned in
Section 2.4, which results in the O(mn) running time of this third phase.

From Lemma 2.4, we have that Q = G, i.e., m = O(n2). Thus, we proved the
following theorem.

Theorem 2.2. The running time of the point-by-point algorithm is O(n3). 2

Expressed in the input size ξ of a problem instance, the time complexity of the
point-by-point algorithm is O(ξ

√
ξ).

2.6 Discussion

Both cut-off and point-by-point algorithms output the set of all non-empty n-wedge
intersections that are large enough to contain a circle of radius r, where n is the
number of emitters, which are here assumed to be point sources of light. In prac-
tice, however, neither emitters nor sensors are points in the frame, but they have a
width of approximately 5 mm. This results in having a light stripe connecting one
emitter and one sensor, instead of a line segment, i.e., a ray of light. Furthermore,
we assumed that each sensor detects the light from any emitter, when there is no
object to block the emitted light. However, this assumption is not entirely true,
given that the intensity of light emitted by one LED is not uniform over the entire
angle π. More precisely, the light intensity detectable by the sensors is only within
the angle of 30-40 degrees, which significantly reduces the number of lines of sight
that can be used in the detection process [Jovanović, 2007].

Lines of sight defined by the emitters and sensors partition the rectangular detection
area into a large number of small convex polygons. Based on this partition, one can
determine the minimum size of detectable circular objects in the detection area,
i.e., the mapping between each point in Γ and the minimum radius of a circular
object with the center in that point that can be detected. This analysis gives rise to
many optimization problems, such as the problem of finding the positioning of a
fixed number of emitters and sensors that provides the optimal accuracy of object
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detection [Jovanović, 2007].

Ideally, each non-empty n-wedge intersection corresponds to one object placed in
the detection area. However, one n-wedge intersection can correspond to 0, 1 or
more objects, as we explained in Section 2.1. One can reason that this phenomenon
is a direct consequence of a large number of blocked lines of sight. The number
of blocked and non-blocked lines of sight is implied by two essentially different
classes of parameters: the object parameters, regarding the objects that should be
detected and the environmental parameters, regarding the whole setup of the emit-
ters and sensors within some detection area. The variation of the object parameters
can be limited, for example, when the detection device is intended to recognize
game pieces only. To optimize the detection in this case, the game pieces can be,
for instance, identical in the detection plane, or especially designed for the device
allowing always the light from emitters to reach some of the sensors. For a general
purpose detection device, however, it is very important to explore the environmen-
tal parameters. Clearly, the larger the number of emitters and sensors, the larger is
the number of lines of sight defined by them, which consequently results in higher
accuracy of detecting objects. The question that logically follows then is whether
or not it is possible to detect the objects exactly as they are, and if not, what is
the maximum level of accuracy that can be achieved. In the next chapter, we will
discuss the output of the detection algorithms and some of its properties in the
asymptotic case, assuming the detection area to be a two-dimensional plane and
each line in that plane to be a line of sight between one emitter and one sensor.





3
Limitations of in-plane object detection

Object detection using light emitters and light sensors is based on the information
which of the lines of sight connecting one emitter and one sensor are blocked by
the objects. The detection algorithms described in Chapter 2 use this information
to provide an approximation on the geometry of the objects placed in the detec-
tion area. In order to achieve a satisfactory level of accuracy of object detection,
the detection area should be ”well covered” by the (intersecting) lines of sight [Jo-
vanović, 2007]. Finding the positioning of the fixed number of emitters and sensors
that ensures a high level of accuracy is one question that has been considered in
[Jovanović, 2007]. Here, we focus on analyzing the limitations of the detection
technique, by exploring the potential problems that can rise even in the conditions
of an ideal environment.

In order to examine the limits of the detection technique, we assume here a less
realistic environment setup than the one discussed in Chapter 2. We consider in
this chapter the case where the distance r between a pair of neighboring emitters
and sensors goes to 0. In other words, we assume that there are infinitely many
emitters and sensors in a frame in the plane surrounding objects and that each
line in the plane connects one emitter and one sensor. Furthermore, we restrict
ourselves to detecting only circular objects of the same size. In this way, by setting
up the ideal detection environment, we can concentrate on an intrinsic shortcoming
of the detection technique: the objects cannot be ideally detected, i.e., they cannot

35



36 Limitations of in-plane object detection

be recognized exactly as they are. The objects themselves strongly influence the
level of the detection accuracy. Even more, all the detection problems that have
been identified in practice, such as reporting a non-existing object, still occur in the
ideal environment. This gives rise to the shadow regions problem defined below,
that is the main problem considered in this chapter.

Let D be a set of N closed and non-overlapping unit disks, i.e., disks with radius
1, in the two-dimensional plane. Each disk of D represents a circular object in the
detection area.

Definition 3.1 (blocked line). A line ` is called blocked if it has a non-empty in-
tersection with at least one of the disks in D. 2

Definition 3.2 (shadow point). A point p is called a shadow point, if all lines con-
taining p are blocked. 2

By definition, each point in a disk δ∈ D is a shadow point. A point that is not a
shadow point, is called a light point.

Lemma 3.1. A line ` that is not blocked only contains light points.

Proof. The claim follows directly from the definition of a shadow point. 2

For a light point p it holds that there is at least one line in the plane that does not
intersect any of the disks in D. As a consequence, all the points outside the convex
hull of disks are light. In other words, all shadow points defined by the disks in D
are inside the convex hull of disks, denoted asH(D).

Definition 3.3 (shadow region). A closed shape ς in the plane is a shadow region,
if each point in ς is a shadow point and if ς is connected and maximal in the sense
that there is no shape ς′ containing only shadow points for which ς⊂ ς′. 2

One can observe that a shadow region ς is bounded by line segments and/or circular
arcs, where the former are referred to as edges of ς.

From the definition of a shadow region, it follows that the collection of shadow re-
gions partition the set of shadow points. By definition, each disk δ∈D is contained
in a shadow region.

Shadow Regions Problem. Given the set D of disks, determine the set S of all
shadow regions in the plane.

In other words, we are interested in designing an efficient algorithm that outputs the
set of all shadow regions, for a given set D of disks. Figure 3.1 illustrates a set of
281 shadow regions defined by 70 randomly positioned unit disks. Note that the set
of all shadow regions in the plane defined by the disks in D represents the output
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Figure 3.1. The shadow regions defined by 70 unit disks.
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of the detection algorithms in the asymptotic case, i.e., in the ideal environment
with infinitely many emitters and sensors in a frame surrounding the objects, thus,
infinitely many lines of sight.

Overview. This chapter is organized as follows. In Section 3.1, we describe some
basic properties of the shadow regions and show that they are determined by the
tangent lines defined by the pairs of disks in D. In Section 3.2 we define so-called
light corridors, which are areas inside H(D) that contain only light points. We
establish the relation between shadow regions and light corridors and prove that the
number of light corridors is bounded by N2, where N denotes the number of disks.
We present an O(N4) algorithm for computing all shadow regions in Section 3.3.
In Section 3.4 we show that the number of shadow regions is Ω(N4) for some
instances. In this way, we prove the optimality of the worst-case time complexity
of the presented algorithm. Finally, we discuss the relation between the shadow
regions and the output of the detection algorithms from Chapter 2 in Section 3.5.

3.1 Introducing shadow regions

Let ` be a line in the plane such that it intersects the convex hullH(D) of disks.

Definition 3.4 (defining line). A line ` is called a defining line for a shadow region
ς if it contains an edge of ς. 2

Lemma 3.2. Let ` be a defining line for a shadow region ς. Then the following
holds:

• ` does not intersect any disk in D in more than one point

• ` is tangent to at least two disks in D
• ` is not tangent to any three disks δ1, δ2 and δ3, where δ1 and δ2 are on the

same side of ` and δ3 is such that its point of tangency with ` is between the
points of tangency of δ1 and δ2 with `.

Proof. We prove the lemma by contradiction. Hence, suppose that ` is a defining
line for a shadow region ς and suppose that (1) ` intersects a disk in D in more
than one point, (2) ` does not intersect with any disk, (3) ` is tangent to exactly
one disk or (4) ` is tangent to three disks δ1, δ2 and δ3, where δ3 is between δ1 and
δ2 assuming that the disks are ordered by their points of tangency with `. We now
show that all these cases yield a contradiction.

1. Let ` intersect a disk δ∈D in more than one point, and let ` be a defining line
for a shadow region ς, i.e., ` contains an edge (q1,q2) of ς; see Figure 3.2.
Let `1 and `3 be two lines that contain point q1 and that are tangent to δ,
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Figure 3.2. The line ` that intersects δ in more than one point cannot define a
shadow region.

and let `2 and `4 be two lines that contain point q2 and that are tangent
to δ. We denote q3 = `2 ∩ `3 and q4 = `4 ∩ `1. If we chose an arbitrary
point p inside the quadrilateral q1q3q2q4, then each line containing p is either
blocked by the disk δ, or it intersects the edge (q1,q2). By assumption,
(q1,q2) contains only shadow points, thus, each line intersecting (q1,q2) is
blocked, as follows from Lemma 3.1. Hence, quadrilateral q1q3q2q4 is a
shadow region, which is in contradiction with (q1,q2) being an edge of a
shadow region.

2. If ` does not intersect any disk inD, then ` contains only light points. Hence,
` does not define any shadow region.

Figure 3.3. The line ` that is not tangent to more than one disk cannot contain the
shadow point p /∈ δ.

3. Let ` be tangent to a disk δ ∈D, such that it does not intersect any other disk
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in D. In order for ` to be a defining line it should contain a shadow point p
outside δ. Let p ∈ ` with p /∈ δ be a shadow point; see Figure 3.3. Since ` is
not tangent to any other disk inD, ` can be rotated around p over some angle
θ, in the direction away from the disk δ, until it becomes tangent to some disk
δ′ ∈ D. We denote the rotated line as `′. Then, any line containing p that is
inside the angle θ between ` and `′ is not blocked, which is in contradiction
with p being a shadow point.

Figure 3.4. The line ` that is tangent to three disks ordered as illustrated cannot
define a shadow region.

4. Let ` be a line tangent to three disks δ1, δ2 and δ3, where δ3 is between δ1
and δ2 when the disks are ordered by their points of tangency with `; see
Figure 3.4. Furthermore, let ` contain a shadow edge (q1,q2). There are
several cases of different positioning of the shadow edge (q1,q2) that need
to be considered. Here, we prove only the case when (q1,q2) is between the
points of tangency of δ1 and δ3. The other cases can be proved in a similar
fashion. Now, let a shadow edge (q1,q2) be between the points of tangency
of δ1 and δ3. We connect the centers of the disks with the points q1 and q2,
defining in that way six lines. Then, the smallest quadrilateral defined by
these lines that has (q1,q2) as its diagonal is a shadow region, which is in
contradiction with (q1,q2) being an edge of a shadow region.

2

Now, let us take a look at some small examples of D, so that we can get a notion
of the size, shape and the number of shadow regions defined by the disks and the
corresponding number of edges.

From the definition of a shadow region in the previous section, the trivial case of
D consisting of only one disk results in the disk being the only shadow region in
the plane having no edges.
Let N = 2, i.e., the set D consists of two non-overlapping unit disks. Two non-
tangent disks define four common tangent lines: a pair of external (parallel) tangent
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Figure 3.5. The shadow regions defined by 2 unit disks; the arrows point at the
small attached shadow areas.

lines and a pair of internal (crossing) tangent lines. The four tangent lines define
four shadow areas that are attached to the disks; see Figure 3.5. By definition, a
disk and all its attached shadow areas represent one shadow region. Hence, two
disks define at most two shadow regions. Note that the size of the shadow regions
depends on the distance between the two disks: the closer the disks, the larger the
shadow regions.

In the case of two disks being mutually tangent, there is only one shadow region,
as depicted in Figure 3.6. This occurs due to degeneracy of two internal tangent
lines to only one common tangent line.

Figure 3.6. The shadow region defined by two tangent unit disks.

Now, let N = 3. Depending on the mutual distance, the three disks may define one
or more free shadow regions, i.e., shadow areas that are not attached to any of the
disks; see Figure 3.7. A free shadow region is bounded by line segments only, thus,
it has the shape of a polygon. It can be shown that three disks can define at most
four free shadow regions, which implies that they can define 1 to 7 shadow regions
in total.
From the description above, a shadow region can be formally represented by a
cyclic sequence of points p0, p1, . . . , pk, ordered in clockwise order, such that pi+1
is the successor of pi, for i = 0,1, . . . ,k− 1, and p0 is the successor of pk. Each
two neighboring points are connected by either a line segment or a circular arc of
radius 1; see Figure 3.8. For example, the shadow region illustrated in Figure 3.8
is denoted as p̂0 p1 p2 p̂3 p4 p5. Note that two successive points that lie on the same
disk are, by definition, connected by a circular arc, and two successive points not
lying on the same disk are connected by a line segment. In addition, there is always
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Figure 3.7. The shadow regions defined by 3 unit disks; the arrows point at the
free shadow areas.

at least one line segment between two successive circular arcs.

Figure 3.8. The shadow region p̂0 p1 p2 p̂3 p4 p5 defined by a set of points con-
nected by either a circular arc or a line segment.

We observe that N disks define at most 2N(N− 1) common tangent lines, which
can partition the plane into O(N4) non-overlapping convex polygons that contain
either shadow points only or light points only. In Section 3.4, we will prove that
there are instances for which the number of shadow regions defined by N disks is
Ω(N4).

Let us first prove some lemmas that will turn out useful in proving our main result.

Lemma 3.3. A shadow region is convex.

Proof. We prove the lemma by contradiction. Hence, assume that a shadow
region ς is not convex. Let p be a light point inside the convex hull H(ς) of ς and
outside ς. Each line containing p intersects the shadow region ς, which implies
that it is blocked. This implies that p is a shadow point, which contradicts with the
assumption of p being a light point. 2
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As a consequence of Lemma 3.2, in the process of determining the shadow re-
gions, we consider only the set T of defining lines, i.e., from the set of all tangent
lines defined by the disks, we exclude the lines for which at least one of the three
conditions in Lemma 3.2 does not hold.

Let t∈ T be a line tangent to two disks δ1 and δ2 in D. The points of tangency
between disks δ1 and δ2 and line t we denote as pδ1 and pδ2 . Furthermore, let δ1
and δ2 be such that there is no other disk δ3 in D tangent to t such that its point
of tangency pδ3 with t is between pδ1 and pδ2 . The points of tangency pδ1 and pδ2

divide t into three parts: one line segment (pδ1 , pδ2) connecting pδ1 and pδ2 , and
two rays with apices in pδ1 and pδ2 denoted by ρδ1 and ρδ2 .

Lemma 3.4. If disks δ1 and δ2 are not on the same side of t, line segment (pδ1 , pδ2)
does not define a shadow region. If disks δ1 and δ2 are on the same side of t, the
rays ρδ1 and ρδ2 do not define a shadow region.

Proof. We prove only the case of disks δ1 and δ2 being on different sides of t. The
other case can be proved in the similar way.
Let t be an internal tangent line for disks δ1 and δ2 and let the line segment
(pδ1 , pδ2) contain a shadow point p, such that p /∈ δ1 and p /∈ δ2. If t is not a
tangent line for any other disk except δ1 and δ2, then t can be rotated around point
p over some angle θ, in the direction that it does not intersect the disks δ1 and δ2,
until it becomes tangent to some disk δ3 ∈D or eventually, to both δ1 and δ2. Then,
any line containing p ”inside” θ is not blocked, which is in contradiction with p
being a shadow point. If t is also a tangent line to a disk δ4, so that it is not possible
to rotate t around p over any angle θ without intersecting at least one of the disks
δ1, δ2 and δ4, then from the third condition of Lemma 3.2, t is not a defining line
for any shadow region. 2

Figure 3.9. Parts of the tangent lines that define the shadow regions.
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From Lemma 3.4, an internal tangent line may be involved in the definition of
shadow regions through the pair of rays with apices in the points of tangency. The
external tangent lines are involved in the definition of shadow regions through the
line segments connecting the points of tangency; see Figure 3.9.

3.2 Modelling Light Corridors

Let L be the set of all lines in the plane that do not intersect any disk, hence, L
is the set of lines that only contain light points. Set L can be partitioned into two
subsets, called dividing lines and non-dividing lines. For a non-dividing line all
disks are on the same side of that line. Each dividing line specifies a partition of
the set of disks into two non-empty sets.

Definition 3.5 (light corridor). The collection of dividing lines specifying the
same bipartition of the disks in D is called a light corridor. 2

An illustration of a light corridor is given in Figure 3.10. By definition, a light cor-
ridor contains only light points. Note that each light point insideH(D) is contained
in one or more light corridors. This means that the collection of shadow regions is
given by the difference betweenH(D) and the union of all light corridors. Clearly,
if the set of dividing lines is empty, then there is only one shadow region given by
H(D).

Let T be the set of all defining lines. A light corridor can be characterized by
its so-called supporting lines, i.e., two internal tangent lines t and t ′ in T that are
clockwise fixed and counterclockwise fixed, respectively; see Figure 3.10. For t
this means that it cannot be rotated in clockwise direction around any point on the
line over any angle θ such that it does not intersect at least one of the disks in
more than one point. An analogous interpretation holds for t ′. The supporting lines
define the “in” and “out” of the corridor through H(D). Inside the convex hull
H(D), each light corridor is an open non-convex area, bounded by a set of line
segments and a set of circular arcs of radius 1.
A light corridor is denoted by δ1δ2 . . .δ j|δ j+1δ j+2 . . .δk, where disks δ1δ2 . . .δ j

define one side of the corridor, the disks δ j+1δ j+2 . . .δk define the other side of the
corridor, and disks δ j and δ j+1 define the clockwise tangent t and disks δ1 and δk
define the counterclockwise tangent t ′; see Figure 3.10.

Lemma 3.5. The number of light corridors defined by N non-overlapping unit
disks is at most N(N−1)/2.

Proof. The N disks define at most N(N− 1) internal tangent lines in T . Each
internal tangent line in T defines one bipartition of disks, which corresponds to
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Figure 3.10. An example of a light corridor.

exactly one light corridor. Hence, the number of light corridors is not larger than
the number of internal tangent lines in T . Moreover, each light corridor is charac-
terized by a pair of internal tangent lines, which implies that the number of light
corridors is at most N(N−1)/2. 2

The upper bound on the number of light corridors presented in Lemma 3.5 is tight.
To prove this claim, we present an example of a linear number of disks creating
a quadratic number of light corridors; see Figure 3.11. More precisely, N disks
are placed on a large circular ring in such a way that their centers form a regular
N-gon. In this way, each two pairs of neighboring disks in the ring define one
light corridor, i.e., exactly N− 1 light corridors ”begin” between the same pair of
neighboring disks, as illustrated in Figure 3.11. Hence, the disks define N(N−1)/2
light corridors in total.

3.3 Shadow regions algorithm

In this section, we present an algorithm for determining the set of all shadow re-
gions defined by N non-overlapping unit disks. We give the algorithm in a step-by-
step manner and discuss its overall time complexity.

The algorithm for determining all shadow regions defined by N non-overlapping
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Figure 3.11. A linear number of disks creating a quadratic number of light corri-
dors: twelve disks define eleven light corridors per one pair of neighboring disks.

unit disks consists of the following four main steps:

1. Determine the convex hullH(D);
2. Determine the set T of all defining tangent lines;

3. Determine all light corridors insideH(D);
4. Determine the union U of all light corridors and next, the set of all shadow

regions, by finding the set difference betweenH(D) and U .

Let us now take a closer look at each step of the algorithm and its worst-case time
complexity.
The problem of determining the convex hull H(D) spanned by the disks in D
consists of (1) finding the convex hull of a set of points, in our case, the disks’
centers and (2) offsetting the resulting polygon from the first step, i.e., determining
the Minkowski sum of a polygon and a unit disk. Both problems are well-known
in the field of computational geometry [De Berg et al., 2000], and without giving
any details, the first step of determining the convex hull H(D) can be done in
O(N logN) time.

The set T of all defining lines, as defined in Section 3.1, can be determined in
O(N2 logN) time, as follows. For each disk in D, we sort radially the other N−1
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disks, which takes O(N logN) time. This structure allows us to find in linear time
all tangent lines of one disk that do not intersect any of the disks in D in more than
one point. From the first two conditions of Lemma 3.2, these lines are potentially
the defining lines. In addition to each potentially defining line determined, we
keep the information on tangent disks and the tangency points, and the part(s) of
the line which are involved in the definition of the shadow regions, i.e., the rays
or the line segment, as explained in Lemma 3.4. If a line is tangent to more than
two disks, then there are multiple defining parts associated with the line. A line
that cannot be a defining line according to the third condition of Lemma 3.2 is
associated with at least one pair of non-identical rays with a common apex. Using
this information, we can look for and remove the lines that do not satisfy the third
condition of Lemma 3.2. Hence, it takesO(N logN) time to determine all defining
lines of one disk and all the additional properties. Therefore, finding the set T of
defining tangent lines for all N disks takes O(N2 logN) time.

We can determine the set of all light corridors in O(N2) time if, for each of the
disks, we have a list of all its points of tangency sorted in cyclic order. Such lists
can be determined in O(N2 logN) time since all the defining lines are determined,
hence, all the points of tangency for each of the disks. As a result, the third step of
the algorithm can be implemented to run in O(N2 logN) time.

As mentioned in the proof of Lemma 3.5, an internal tangent line in T character-
izes one light corridor. Starting with an internal line from T , we determine the
corresponding light corridor as follows. We start by including one ray of the cho-
sen internal line. Then, we simply look up the corresponding point of tangency on
the tangent disk and take the successor point of tangency from the sorted list of
points for that disk. That point is a starting point for either a line segment, or a ray
of some other tangent line. In the case of a starting point of a line segment, we look
up the ending point on the next disk, etc. The computation of one side of the corri-
dor is finished when a ray occurs in the sequence. In other words, we determine the
sequence ray-arc-segment-arc-segment-arc-· · · -arc-ray, which uniquely represents
one side of the corridor. The other side is determined in the same way, starting with
the other ray of the originally chosen internal tangent line.

From Lemma 3.5, the number of light corridors is O(N2). In addition, the number
of all defining tangent lines is also quadratic in the number of disks, which implies
that the total number of all rays (2 rays per internal tangent) and line segments (1
line segment per external tangent) together is also O(N2). In this way, amortized
over all iterations, the light corridors can be determined in O(N2) time. Hence,
the total time complexity of the third step of the algorithm is dominated by the
complexity of the sorting algorithm used to sort the points of tangency for each of
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the disks. In other words, the third step of the algorithm runs inO(N2 logN) time.

The problem of determining the union U of all light corridors comes down to the
problem of finding the intersections of a set of line segments and circular arcs. This
is a well-known and extensively studied problem and there are many solutions
proposed [De Berg et al., 2000]. Using the deterministic algorithm presented in
[Balaban, 1995], the intersections of ns line or curve segments can be determined
in O(ns logns + ks) time, where ks is the number of intersecting pairs. Given that
we haveO(N2) line segments and circular arcs, the number ks of intersecting pairs
is O(N4). Therefore, using this algorithm, the union U of all light corridors can be
determined inO(N4) time. The set of all shadow regions is then simply determined
as a complement set of U within the convex hullH(D).

With the discussion above, we get to the following result.

Theorem 3.1. The set of all shadow regions defined by N non-overlapping unit
disks can be determined in O(N4) time. 2

3.4 Determining the number of shadow regions

In this section, we discuss the number of shadow regions that can be created by the
disks in D. More precisely, we prove that the number of shadow regions is O(N4)
and then show that this bound is tight, by presenting an example of linear number
of disks defining Ω(N4) shadow regions. This implies that the O(N4) algorithm
presented in Section 3.3 determines the set of all shadow regions in optimal time.

Lemma 3.6. The number of shadow regions defined by N non-overlapping unit
disks is O(N4).

Proof. As mentioned in Section 3.1, N unit disks define O(N2) tangent lines that
partition the plane into O(N4) convex polygons. A shadow region is a subset of
one or more of these polygons, where by definition a polygon is in at most one
shadow region. Hence, the number of shadow regions is O(N4). 2

Next, we prove that the bound presented in Lemma 3.6 is tight. The proof is based
on a specific construction containing two ”columns” of disks, each column contain-
ing N equidistant disks, such that each disk of one column is directly opposite to a
disk of the other column. The idea behind the construction is to obtain a quadratic
number of thin light corridors that pass between the disks of the two columns, i.e.,
in the left to right direction. If these corridors do not intersect within some finite
area of width w, then adding another two ”rows” of N disks each, in the same way,
creates a quadratic number of light corridors in the top-bottom direction, resulting
in Θ(N4) shadow regions in an area of w×w; see an illustration in Figure 3.12.
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If we need to add only linear number of mutually tangent disks to block the light
corridors that come from other (e.g., diagonal) directions, we then have a linear
number of disks creating Θ(N4) shadow regions.

Figure 3.12. Constructing Θ(N4) shadow regions with a linear number of disks.

Let `left be the line connecting the centers O1,O2, . . . ,ON of the disks δ1,δ2, . . . ,δN

in the left column and in the same fashion, let `right be the line connecting the cen-
ters O′1,O

′
2, . . . ,O

′
N of the disks δ′1,δ

′
2, . . . ,δ

′
N in the right column; see Figure 3.13.

Furthermore, let h denote the distance between the columns, i.e., the distance be-
tween `left and `right, and let d denote the distance between two neighboring disks
in one column, measured from center to center. Given h, the distance d is chosen
so that the top two disks of one column and the bottom two disks of the other col-
umn are all tangent to the same line. In this way, there is no light corridor defined
by these four disks, however, there is exactly one light corridor between any other
two pairs of neighboring disks in different columns. From the congruence of the
grey triangles in Figure 3.13, we can find the relation between the distances d and
h, i.e.,

1
d/2

=
h√

h2 +(N−2)2d2
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from where we can express the distance d as a function of h

d =
2h√

h2−4(N−2)2
(3.1)

Figure 3.13. The columns of disks, each column containing N disks.

For the time being, we consider only the light corridors between pairs (δi,δi+1) of
neighboring disks from the left column and pairs (δ′j,δ

′
j+1) of neighboring disks

from the right column, where i, j ∈ {1, . . . ,N−1}.

The distance d between the neighboring disks is determined by the distance h be-
tween the columns. From Equation (3.1), we get that if h→ ∞, then d→ 2. Using
elementary calculus, it can be shown that increasing the distance h between the
columns results in decreasing the width of the corridors. Note that the corridors
are not all of the same width, i.e., the long corridors are thinner than the short
corridors.

It remains to be shown that there is an area between the columns where no two
corridors intersect. Furthermore, we want to show that for some h, the width w of
that area can be at least N · d. In this way, overlapping (or intersecting) this area
containing the left to right non-intersecting corridors with the area containing the
top to bottom non-intersecting corridors, results in creating Θ(N4) shadow regions.
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In Section 3.2 we showed that each light corridor is characterized by a pair of two
internal tangent lines. In this special case of disks being placed in two columns,
one can easily notice that, between the columns, each corridor is bounded by a pair
of parallel line segments. Without loss of generality, we consider the left column
as the beginning and the right column as the end of the corridors. Among the
intersection points of the corridors’ bounding line segments, we can distinguish
two subsets of points: the splitting points and the meeting points, as illustrated in
Figure 3.14. The splitting point of two light corridors that begin between the same
pair of disks is the common (intersection) point of these corridors furthest from
`left. In a similar way, the meeting point of two corridors that do not begin between
the same pair of disks is the intersection point of these two corridors closest to `left.

Figure 3.14. The splitting points and the meeting points of nine light corridors
passing between eight disks in the columns.

Let `s denote the vertical line containing the splitting point(s) furthest from `left
and let `m denote the vertical line containing the meeting point(s) closest to `left.
Clearly, if the distance h̄s between `s and `left is smaller than the distance h̄m be-
tween `m and `left, the area between two vertical lines `s and `m, is the area inside
which no two corridors intersect. In addition, the width w of the area is given by

w = h̄m− h̄s (3.2)

Next, we express the distance h̄s as a function of the distance h between the
columns of disks. Let us consider only the N−1 light corridors that all begin be-
tween one pair of neighboring disks in the left column. One can show that among
the splitting points of these corridors, the splitting point furthest from `left, is the
splitting point of two neighboring light corridors, i.e., the corridors that end be-
tween the neighboring pairs of disks in the right column. Let hs be the distance
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from the splitting point Q of an arbitrary pair of neighboring corridors to the line
`left. Clearly, h̄s is the maximum of all distances hs of the splitting points of all
neighboring corridors.

Lemma 3.7. For an arbitrary pair of neighboring light corridors C j and C j+1, it
holds that

lim
h→∞

hs = 0.

Proof. Let C j and C j+1 be two neighboring corridors that begin between the disks
δ j and δ j+1 with centers O j and O j+1 on `left, respectively; see Figure 3.15. Fur-
thermore, let C j end between the disks δ′j+k−1 and δ′j+k and let C j+1 end between
the disks δ′j+k and δ′j+k+1.

The splitting point Q of the corridors C j and C j+1 is the intersection point of the
tangent lines t j and t j+1.The point of tangency between the disk δ j and the line t j is
denoted as Tj, while the point of tangency between the disk δ j+1 and the line t j+1
is denoted as Tj+1. In addition, let Q j = `left∩ t j and Q j+1 = `left∩ t j+1.
Since ∠O jO′j+kO j+k =∠Q jO jTj and ∠O j+1O′j+kO j+k =∠Q j+1O j+1Tj+1, and by
denoting

α = ∠Q jO jTj, β = ∠Q j+1O j+1Tj+1,

u = Q jQ j+1, u j = O jQ j, u j+1 = O j+1Q j+1,

we can express the relations

u j =
1

cosα
, u j+1 =

1
cosβ

,

u = d− (u j +u j+1) = d− (
1

cosα
+

1
cosβ

) (3.3)

From (3.3) and
4QQ jQ j+1 ∼4O′j+kO jO j+1 (3.4)

we derive the distance hs as follows.
u
hs

=
d
h

⇔ hs =
u ·h

d
. (3.5)

Since O jO j+k = k ·d and

cosα =
h√

h2 + k2d2
, cosβ =

h√
h2 +(k−1)2d2

,
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Figure 3.15. Deriving the distance hs from the splitting point Q to the line `left.

we have

hs = h−
√

h2 + k2d2 +
√

h2 +(k−1)2d2

d
(3.6)

From (3.1) and (3.6) we have

hs = h− 1
2
(
√

h2−4(N−2)2 +4k2 +
√

h2−4(N−2)2 +4(k−1)2) (3.7)

Since k ≤ N−1, expressing the limit for hs in (3.7) when h→ ∞ implies the final
result, i.e.,

lim
h→∞

hs = 0.
2
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In other words, for h large enough, all light corridors split on distance ε from the
line `left and ”enter” the area in which they do not intersect.

From Equation (3.2), to determine the width w of the area where the light corridors
do not intersect, besides the distance h̄s, we also need to determine the distance
h̄m, i.e. the distance from the closest meeting point(s) to the line `left. We first
determine the light corridors that define the closest meeting point(s).

One can show that the light corridors that define the closest meeting point(s) be-
gin between two neighboring pairs of disks; see Figure 3.14. More precisely,
the bottom-most corridor Cb of all corridors beginning between the pair of disks
(δ j+1,δ j) and the top-most corridor Ct of all corridors beginning between the pair
of disks (δ j,δ j−1) define (one of) the closest meeting point(s) to the line `left. Let
hm be the distance from the splitting point Q′ of the corridors Cb and Ct to the
line `left. Note that Cb ends between the bottom pair of disks (δ′1,δ

′
2) and Ct ends

between the top pair of disks (δ′N ,δ
′
N−1) in the right column. In a similar way as

Lemma 3.7, using elementary calculus, one can prove the following lemma.

Lemma 3.8. For the distance hm, it holds that hm→ ∞, when h→ ∞. 2

From Lemma 3.7 and Lemma 3.8 and Equation (3.2), we can conclude that for h
large enough, the width w of the area where corridors do not intersect can be of
size N · d. Note that the area is not in the middle between the columns. Instead,
we have two such areas of non-intersecting corridors adjacent to the left and to the
right column, respectively.
In the next step of the construction, we add 2N disks organized in two rows that
are on the top and the bottom side, as we mentioned earlier in this section, and
such that the areas of non-intersecting corridors completely overlap. Each of the
O(N2) light corridors in the left to right direction intersects each of theO(N2) light
corridors in the top to bottom direction. Hence, they partition the square area of
size w2 into Θ(N4) regions. In order for these regions to be the shadow regions,
the light coming from directions different than left, right, top or bottom must be
blocked. Therefore, in addition to the 4N disks used in this construction, we “close
the gaps” by extending, for example, the top row and the left column by

⌈N
2

⌉
tan-

gent disks each and the right column and the bottom row with 2N tangent disks
each; see Figure 3.16. These blocking disks ensure that there are no additional
corridors intersecting the area partitioned into shadow regions by the constructed
light corridors. Hence, we proved that the number of shadow regions defined by N
unit disks is O(N4) and that this bound is tight.
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Figure 3.16. A linear number of unit disks defining Θ(N4) shadow regions - the
thin light corridors pass between the white disks; the black disks are mutually
tangent, hence, representing the blocking disks.

3.5 Discussion

In Chapter 2 we described two algorithms for detecting objects placed in a rectan-
gular detection area. Both algorithms use as an input the blocking matrix, which
contains the information on blocked and non-blocked lines of sight for all emitter-
sensor pairs. The output is a set of convex polygons that contains all of the objects.
As we explained in Section 2.1 and 2.3, the algorithms only detect objects that are
large enough to contain a circle of radius r, where r is the distance between an
emitter and its neighboring sensor. This restriction on the minimum size of the ob-
jects follows from the definition of a surely detectable object (see Section 2.1). In
a sense, there is a trade-off between enabling detection of objects of all sizes with
no guarantees on detection of small objects, and enabling a guaranteed detection
of objects larger than some minimum size given. However, we emphasize that this
restriction results in running times of the detection algorithms being significantly
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improved. The cut-off algorithm discards the shadow wedge intersections that are
not sufficiently large to contain one object. This procedure is a very important
step in the early stages, when most of the non-object intersections are discarded.
Keeping these intersections as potential objects implies usually a large number of
further intersecting operations that costs extra computation time. The actual time
complexity of the point-by-point algorithm strongly depends on the number of ob-
jects that need to be detected, and finding a tight upper bound on that number would
not have been possible without a restriction on the minimum size of the objects.
Hence, both algorithms enable detection of all objects larger than a circle of radius
r, irrespective of their position and shape, by providing an approximation on their
geometry.

The measure of the accuracy of object detection can be simply defined as a ratio
between the total area occupied by the objects and the total area reported as a
result of detection. In a broader sense, the accuracy also includes the error in the
number of objects detected, as it is defined in [Jovanović, 2007]. More precisely,
the occurrences of the visibility problems, such as reporting multiple objects as one
and reporting non-existing objects, are considered as detection failures, and each
detection failure is penalized by decreasing the measure of the detection accuracy.

The shadow regions algorithm presented in this chapter provides the output of a
detection algorithm with the maximum accuracy of detecting objects that can be
achieved. In other words, the output of the shadow region algorithm is identical to
the output of a detection algorithm, when detecting circular objects of equal size
using infinitely many emitters and infinitely many sensors positioned in a frame
surrounding the objects.

Figures 3.17 and 3.18 illustrate the difference in detection accuracy for 14 circular
objects with 40 emitters and 40 sensors in one case, and with infinitely many emit-
ters and sensors in the other case. The latter represents the output of the shadow
regions algorithm (see Section 3.3). Clearly, the precision of the detection with a
small number of emitters and sensors is much lower than the precision of the de-
tection in the ideal environment. Note that the three free shadow regions near the
bottom right corner in Figure 3.18 are included into three separate detected objects
in Figure 3.18. These free shadow regions are smaller than the objects, hence, us-
ing any of the detection algorithms, they would have been discarded. Consequently,
the accuracy of the detection would have been increased. However, that is possible
only if the additional shadow area is detached from the shadow regions, i.e., the
n-wedge intersections, that contain the objects. The only way to achieve that is by
increasing the density of the emitters and sensors in the rectangular frame.

Based on experimental results [Jovanović, 2007], the objects may be positioned in
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Figure 3.17. Output of the cut-off algorithm and the point-by-point algorithm: de-
tecting 14 circular objects using 40 emitters and 40 sensors placed in a rectangular
frame.

Figure 3.18. Output of the shadow regions algorithm: detecting 14 circular ob-
jects using infinitely many emitters and infinitely many sensors placed in a rect-
angular frame.

such a way that they block all the light crossing an area larger than the minimum
object size. Such an area is by definition an n-wedge intersection, and because
of its size, it is reported in the output of a detection algorithm. This corresponds
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to the situation where the disks define a free shadow region larger than a disk, in
the ideal environment defined in this chapter. As we indicated in Section 3.1, the
size of a shadow region depends on the distance between the disks defining it. In
Chapter 5 we will discuss the relation between the number of disks that define such
a free shadow region and the distance between the disks, and we will show that a
set of disks can ”hide” one disk even if the distance between each two disks tends
to infinity.



4
Visibility problems I:

Dark and shadow points among objects

The accuracy of object detection based on the technology that uses emitters and
sensors, depends on many parameters. In Chapter 3, we considered detecting cir-
cular objects assuming infinitely many emitters and sensors in a frame surrounding
the objects. As a consequence of such an assumption, each line in the plane can be
considered as a line of sight between one emitter and one sensor, which results in
the maximum level of accuracy that can be achieved for a given placement of ob-
jects in the detection area. However, the detection is also heavily influenced by the
objects’ relative positions. One observation is that the size of the shadow regions
is closely related to the distance between the objects. More precisely, the objects
that are relatively close to each other define larger shadow regions than the objects
that are relatively far from each other. Besides decreasing the accuracy of the de-
tection, the objects that are close to each other can cause more serious problems in
the process of object detection. A large free shadow region, i.e., a shadow region
that does not contain any object, may be interpreted by the detection device as an
object in the detection area. Furthermore, two or more objects may be detected as
one, and generally, this issue cannot be resolved easily when there is no additional
information on the number and/or the size of the objects.

Ideally, the detection process results in reporting the geometry of the objects, ex-

59
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actly as they are. However, the objects define additional shadow points that de-
crease the accuracy of detection. In this chapter, we explore the relation between
the occurrence of ”free” shadow points and the distance between the objects.

As in the previous chapter, we restrict ourself to circular objects having identical
size. We also restrict the minimum distance between each pair of objects to be
some given distance d. The reason for these restrictions comes from the application
domain. Many board games use pawns that are circular on the bottom (e.g., chess)
and both the pawns and the board with the playing fields can be designed so that
the pawns cannot be on a distance less than some predefined distance. In order to
avoid the visibility problems caused by the occurrences of free shadow regions, one
needs to find the relation between the number and the positions of the objects and
the minimum mutual distance given. However, the problem of finding this relation
is not a simple or a precisely defined problem, but rather a complex collection of
many related challenging problems. We start the investigation by considering the
problem of determining the minimum number of objects that can define one free
shadow point, when the distance between any two objects is at least d.

Overview. The rest of this chapter is organized as follows. In Section 4.1 we
define two types of blocking sets of disks, namely, sets of disks that block all the
rays emanating from a given point, in which case the point is called dark, or sets
of disks that block all the lines passing through a point, in which case the point
is a shadow point, as defined in Chapter 3. Then we formally define two separate
problems of determining minimum blocking sets depending on a given minimum
mutual distance d between the disks. We refer to the problems as the hidden point
problem and the occluded point problem. In Section 4.2 and Section 4.3 we pro-
pose the solutions to the hidden point problem and the occluded point problem,
respectively, by presenting the asymptotic bounds on the minimum cardinality of
blocking sets of disks when d tends to infinity.

4.1 Dark and shadow points and blocking sets of disks

In the previous chapter we defined a shadow point as a point for which all lines
containing it are blocked by one or more non-overlapping unit disks. Here, we
introduce another class of points that may occur within a set of disks, i.e., the dark
points.

Definition 4.1 (blocked ray). A ray ρ in the plane is said to be blocked by a disk
δ, if ρ and δ have a non-empty intersection. 2

Definition 4.2 (dark point). A point q is a dark point if all rays emanating from q
are blocked by a set of disks. 2
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Figure 4.1. Left: an example of a dark point and the corresponding blocking set
of disks; right: an example of a shadow point and the corresponding blocking set
of disks.

For convenience, we here restate the definition of a shadow point.

Definition 4.3 (shadow point). A point q is called a shadow point if all lines con-
taining q are blocked by a set of disks. 2

By definition, any dark point is a shadow point. Hence, the set of all shadow points,
i.e., the set S of all shadow regions defined in Chapter 3, is a superset for the set
of all dark points defined by a set of disks in the plane. As in the previous chapter,
we assume closed and non-overlapping disks of unit radius.

Let p be a point in the two-dimensional plane. Let Rp denote the set of all rays
that emanate from p and let Lp denote the set of all lines that contain p.

Definition 4.4 (blocking set). A set D of non-overlapping unit disks is called a
blocking set for the set of raysR if every ray ρ ∈R is blocked by a disk in D.
A set D of non-overlapping unit disks is called a blocking set for the set of lines L
if every line ` ∈ L is blocked by a disk in D. 2

Hence, if for a point p there exists a blocking set D for all rays in Rp, then p is a
dark point; see Figure 4.1-left. In the same way, if D is a blocking set for the set of
lines Lp, then point p is a shadow point; see Figure 4.1-right.

Definition 4.5 (d-apart blocking set). A blocking set D of disks is called d-apart
if the distance between each pair of disks inD as well as the distance between each
disk and the given point p is at least d. 2
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Figure 4.2. Minimum blocking sets for the set of rays - left, and the set of lines -
right, for d = 2.

Distances are measured from center to center. Hence, the minimum distance be-
tween two disks is 2, in the case of two mutually tangent disks.

In the rest of the chapter, we focus our attention on two problems: (i) the hidden
point problem and (ii) the occluded point problem. The essence of both problems is
determining d-apart blocking sets of minimum cardinality, for some given distance
d, where in the hidden point problem we consider blocking sets of disks for the set
of raysRp and in the occluded point problem we consider blocking sets for the set
of lines Lp.

Figure 4.2 illustrates the solutions of these problems for d = 2. The disks of the
blocking sets form a (partial) hexagonal lattice. These solutions follow directly
from the well-known results in the theory of plane and circle packing [Melissen,
1997; Conway et al., 1999], where it is proved that the hexagonal lattice is the
densest of all possible plane packings [Tóth, 1954].

The question of the existence of dark points among disks was posed in [Mitchell,
2007]. In [Dumitrescu & Jiang, 2010], the authors show that for large enough
radius of a circle packed by unit disks, there are dark points on the boundary of the
disks. Furthermore, they propose an algorithmic solution to the problem of finding
a boundary illumination map, i.e., the problem of finding all dark points that are on
the boundary of disks in a given set of disks. Hence, these authors only consider
dark points on the boundary of the disks.
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4.2 The hidden point problem

In this section, we discuss the problem of blocking all rays Rp emanating from a
given point p. Formally, we define the problem as follows.

The hidden point problem. Given a minimum mutual distance d, what is the
minimum cardinality Nd of a d-apart blocking set for the setRp of rays?

More specifically, we are interested in the asymptotic behavior of Nd , as d tends to
infinity. For reasons of convenience, we will assume d to be a positive integer at
least 2.

As the main result, we present the upper and lower bounds on the minimum car-
dinality Nd of a blocking set for Rp, for d→ ∞. The upper bounds are derived by
considering blocking sets for which point p as well as the disks inD are positioned
on grid points of a regular triangular grid. In this way, the disks are grouped into
successive regular hexagons with sides of length d, 2d, etc., all centered at p. Us-
ing a slightly simplified model of the disks, we prove that we need exactly d− 1
hexagons to block all rays, by establishing an interesting link between blocking
disks and Farey sequences. Farey sequences have been studied extensively in num-
ber theory, already in the 19-th century; see e.g., [Hardy & Wright, 1979]. They
have some amazing properties that we use to prove our results.

The lower bounds on Nd are derived by counting the number of circles that can be
packed in regular hexagonal rings, such that the distance between them is at least
d. In this way, we establish the lower bound that is quadratic in d.

Combining the results on upper and lower bounds, we prove that the minimum
cardinality Nd of a d-apart blocking set for the set of rays Rp is quadratic in d.
More precisely, we show that

π2

16
≤ lim

d→∞

Nd

d2 ≤
18
π2 . (4.1)

4.2.1 Determining Upper Bounds

In this section we show that Nd =O(d2). We present blocking sets for which point
p as well as the centers of the disks are positioned on the grid points of a regular
triangular grid; see Figure 4.3. The centers of the 6 disks that are at a distance
d from p form a regular hexagon H1, with sides of length d. The centers of the
disks that are at a distance d from the disks in H1 (and outside the hexagon) form a
regular hexagon H2 with sides of length 2d, etc. First, we show that d−1 hexagons
are sufficient to block all rays. Then, we give a tight upper bound on the number
of disks that are positioned in these d−1 hexagons.
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Figure 4.3. Intersection of disks and hexagons.

Bounding the number of hexagons

To prove that we need at most d− 1 hexagons, we make the following simplifi-
cation. Instead of determining which rays are blocked by the disks, we determine
which rays are blocked by the line segments that are defined as the intersection of
the disks with the hexagons; see bold lines in Figure 4.3. Note that a ray that is
blocked by such a line segment is also blocked by the corresponding disk. Hence,
the number of hexagons that we need to block all rays by the line segments is an
upper bound on the number of hexagons that we need to block all rays by the disks.

We next prove that the number of hexagons that are needed to block all rays by the
line segments is exactly d−1. To do so, we project all line segments in hexagons
H1,H2, . . . ,Hd−1 from center point p onto the sides of hexagon Hd . To easily dis-
tinguish line segments before and after projection, we will call the latter intervals.
For symmetry reasons, we can concentrate on one of the six sections of hexagon
Hd ; say the upper middle section in Figure 4.3. This section is an equilateral tri-
angle, with sides of length d2 and with p as one of its vertices. Before projecting
the line segments onto the upper side of this triangle (i.e., the side opposite to p),
we normalize the triangle by dividing all lengths by d2. Hence, we reduce the
sides of the triangle to 1. We associate the interval [0,1] with the upper side of the
triangle. This interval must be completely covered by the projected intervals. As
illustrated in Figure 4.4, the i-th line segment on hexagon H j, having a length 2/d2,
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Figure 4.4. Projecting a line segment of length 2
d2 from the hexagon H2 onto the

side of the hexagon Hd to an interval of length 1
d .
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Figure 4.5. The intervals associated with the successive hexagons, shown as part
of the interval [0,1]. The bottom row gives the two intervals related to 0/1 and 1/1.
The second row gives the intervals related to 0/2, 1/2, and 2/2, etc.

is projected onto the upper side of the triangle to an interval of length
d
j
· 2

d2 =
2
jd
.

The midpoint of the original line segment (i.e., the center of the disk) will be pro-
jected on point i/ j in the interval [0,1]; see Figure 4.6. Hence, the resulting inter-
val, after projection, can be expressed as[

i
j
− 1

jd
,

i
j
+

1
jd

]
, (4.2)

potentially truncated when it falls outside the interval [0,1]. Figure 4.5 shows the
intervals associated with the successive hexagons for d = 30.

We next show that an interval is completely contained in another if the correspond-
ing fraction i/ j is reducible. For example, the intervals related to 2/4,3/6, . . . are
completely contained in the interval related to 1/2.

Lemma 4.1. If a given fraction i/ j can be reduced to a fraction i′/ j′ then any ray
blocked by the

[
i
j −

1
jd ,

i
j +

1
jd

]
will also be blocked by

[
i′
j′ −

1
j′d ,

i′
j′ +

1
j′d

]
.

Proof. Using that i′/ j′ = i/ j and 0 < j′ < j, it is easily shown that

i′

j′
− 1

j′d
<

i
j
− 1

jd
<

i
j
+

1
jd

<
i′

j′
+

1
j′d

.

which implies the result. 2

In other words, a line segment associated with the reducible fraction is obsolete,
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Figure 4.6. With each disk we can associate a fraction i/ j where i and j are
integers satisfying 0≤ i≤ j and 1≤ j. The center of the disk is projected to point
i/ j in the interval [0,1].

because it only blocks the rays that are already blocked by the line segment as-
sociated with the corresponding irreducible fraction. Hence, we can restrict our-
selves to intervals for which the midpoints i/ j are irreducible. To prove that all
the remaining intervals cover the complete interval [0,1], we use some well-known
results from number theory. Let us first introduce the concept of Farey sequence
from this domain.

Definition 4.6 (Farey sequence). The Farey sequence Fn is the ordered sequence
of all non-negative irreducible fractions a

b for which 1≤ b≤ n and 0≤ a≤ b. 2

For example, the Farey sequence F5 is given by
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
.

These Farey sequences have been extensively studied, already in the 19-th century.
We need the following two well-known properties.

Lemma 4.2. Let a
b and a′

b′ be two successive terms of a Farey sequence Fn, with
a
b < a′

b′ . Then the following properties hold

a′b−ab′ = 1 (4.3)
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and
b+b′ > n. (4.4)

2

Proofs of these properties can be found in e.g. [Hardy & Wright, 1979]. For the
original sources, we refer to pointers in [Dickson, 2005]. In addition, for each
n ≥ 2, it can be shown that Fn+1 can be constructed from Fn by simply inserting
the term

a+a′

b+b′
between two successive terms a/b and a′/b′ for which b+ b′ = n+ 1. It is quite
easy to prove that

a
b
<

a+a′

b+b′
<

a′

b′
and that this new term is irreducible. Hence, this results in a very efficient way to
generate Farey sequences, since we only add terms that are irreducible and these
are directly added at their correct position in the sequence.

Let Id−1 denote the set of intervals related to H1,H2, . . . ,Hd−1, i.e.,

Id−1 =

{[
a
b
− 1

bd
,
a
b
+

1
bd

]}
where 1≤ b≤ d−1, 0≤ a≤ b, and a

b is irreducible, and let I be the sequence of
all intervals from Id−1 ordered by increasing midpoint (i.e., by a

b ). Furthermore,
let the midpoint of an interval I ∈ Id−1 be denoted by m(I). By definition of a
Farey sequence, the midpoints of the intervals in I are given by the terms in the
Farey sequence Fd−1. Using the above properties of Farey sequences, we can now
prove the following results.

Theorem 4.1. Two successive intervals I, I′ in I always overlap, i.e.,

I∩ I′ 6= /0,

but they never cover each others midpoint, i.e.,

m(I′) /∈ I and m(I) /∈ I′.

Proof. Let I and I′ be two successive intervals in I, such that

I =
[

a
b
− 1

bd
,
a
b
+

1
bd

]
and I′ =

[
a′

b′
− 1

b′d
,
a′

b′
+

1
b′d

]
.
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Figure 4.7. Illustration of the merged intervals: each higher row is obtained by
including the intervals of the next hexagon.

The distance between the midpoints of I and I′ is given by

m(I′)−m(I) =
a′

b′
− a

b
=

a′b−ab′

bb′
=

1
bb′

,

using (4.3) to derive the last equality. The sum of the right half of I and the left
half of I′ is given by

1
bd

+
1

b′d
=

b′+b
bb′d

≥ d
bb′d

=
1

bb′
,

using (4.4) and the fact that b and b′ are integer. Hence, I and I′ intersect in at least
one point.

We next prove that I and I′ never cover each others midpoint. We already proved
that the distance between the midpoints of I and I′ is given by

m(I′)−m(I) =
1

bb′
.

The size of the right half of I, i.e. the part of I larger than m(I), is given by
1

bd
<

1
bb′

,

since b′ < d. Likewise, the size of the left half of I′ is given by
1

b′d
<

1
bb′

,

since b < d. Hence, I and I′ do not cover each others midpoint. 2

Corollary 4.1. The union of all intervals in Id−1 covers the complete interval [0,1]
and for each I ∈ Id−1 the union of all intervals in Id−1\I does not cover [0,1]
completely.

Proof. Since the leftmost interval covers point 0 and the rightmost interval covers
point 1 and since each pair of successive intervals overlap each other, necessarily
the complete interval [0,1] is covered. Furthermore, if interval I ∈Id−1 is removed,
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then point m(I) will not be covered by the other intervals. 2

In other words, exactly d−1 hexagons are required to block all rays. We end this
section with the observation that intervals relating to the first bd/2c hexagons never
overlap.

Let Ibd/2c ⊆ Id−1 be the subset of intervals relating to the first bd/2c hexagons,
more precisely, the hexagons H1,H2, . . . ,Hbd/2c.

Theorem 4.2. For each pair of intervals I, I′ ∈ Ibd/2c we have that I∩ I′ = /0.

Proof. Let the intervals in Ibd/2c be ordered by increasing midpoint. Let a/b and
a′/b′ be the midpoints of two successive intervals I and I′ in this ordering. The
fractions a/b and a′/b′ are irreducible by definition and they correspond to two
successive terms in the Farey sequence Fbd/2c. By definition of a Farey sequence,

b≤ bd/2c and b′ ≤ bd/2c,
and furthermore, b 6= b′, which implies that

b+b′ < d. (4.5)

To prove that intervals I and I′ do not overlap, we need to show that the left end-
point of the interval I′, i.e., the fraction a′

b′ −
1

b′d is larger than fraction a
b +

1
bd that

is the right end-point of the interval I. The difference between the two fractions is
given by

a′

b′
− 1

b′d
− (

a
b
+

1
bd

) =
a′b−ab′

bb′
− b+b′

bb′d

=
1

bb′
− b+b′

bb′d

=
d− (b+b′)

bb′d
(4.6)

using property (4.3) of the Farey sequences to derive the equality in the middle.
From (4.5) we have that d− (b+b′)> 0, which implies that I∩ I′ = /0. 2

The union of the intervals that are obtained by repeatedly adding the intervals of
the successive hexagons gives rise to nice self-similar images; see Figure 4.7 for
an example with d = 60. The figure consists of 59 rows, numbered from bottom to
top, where row i gives the intervals in Ii as part of the interval [0,1].

Bounding the number of disks

To determine the total number of disks that we use in the hexagons, we could make
the following straightforward observation. Hexagon H j contains at most a total of
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6 j disks. Hence, the total number of disks can be bounded by
d−1

∑
j=1

6 j = 3d2−3d.

However, in that case we would also count the disks that correspond to reducible
fractions. Leaving out the disks that correspond to reducible fractions, as it is
shown for d = 5 in Figure 4.8, gives in the following result.

Theorem 4.3. For the minimum number Nd of disks to block all rays in Rp we
have

lim
d→∞

Nd

d2 ≤
18
π2 .

Proof. Theorem 4.1 implies that the midpoint of each interval in Id−1 is not cov-
ered by any other interval. This implies that all intervals that correspond to irre-
ducible fractions are needed to block all rays. The number of irreducible fractions
with a given denominator n is given by Euler’s totient function, which is usually
denoted by ϕ(n); see e.g. [Conway & Guy, 1995]. Using this result, we can bound
the total number of disks that are required to block all rays by

6
d−1

∑
i=1

ϕ(i).

The sum ∑
n
i=1 ϕ(i) can be bounded by

3
π2 ·n

2 +O(n logn),

see e.g. [Graham, Knuth & Patashnik, 1994]. This implies the above result. 2

Note that we used the simplification to consider only the blocking by line segments
instead of the blocking by disks. One can show that the error that we make by this
simplification is smallest in the middle, i.e. for disks with i/ j close to 1/2 and
increases to both ends to a factor of 2/3

√
3≈ 1.15. We also implemented an algo-

rithm where the actual disks are projected on the side of hexagon Hd . Experiments
indicate that still exactly d−1 hexagons are needed to block all rays. However, in
addition to the disks that correspond to reducible fractions we can now discard ad-
ditional disks in the hexagons Hk with k close to d. Numerical results suggest that,
instead of discarding approximately a fraction of (1− 6/π2) ≈ 0.39 of the disks,
we can now discard approximately a fraction of 0.45. Hence, by avoiding this
simplification we cannot gain in number of required hexagons, but we can slightly
improve the constant given by Theorem 4.3.
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Figure 4.8. A blocking set for the hidden point problem for d = 5.

4.2.2 Determining lower bounds

In this section we derive a lower bound on the minimum number Nd of disks re-
quired to block all rays inRp. The primary aim of this section is to derive a lower
bound that is also quadratic in d. In addition, we want to derive a tight lower bound
on limd→∞ Nd/d2.

For this analysis we partition the plane into hexagonal rings R1,R2, . . ., where Ri is
the area between hexagons Hi and Hi+1, excluding inner hexagon Hi and includ-
ing outer hexagon Hi+1 for i > 1, and including both inner hexagon Hi and outer
hexagon Hi+1 for i = 1. The width of each of the 6 stripes of these rings is d

2

√
3.

Ring Ri has inner sides of length id and outer sides of length (i+ 1)d. Figure 4.9
shows ring R2.
In order to determine a tight lower bound on Nd , we need to determine the max-
imum number j of hexagonal rings that is necessary to block all rays in Rp. For
this reason, we place the maximum number of d-apart disks inside each of the
hexagonal rings. A ring R j is said to contain a disk δ, if the disk’s center O ∈ R j.
With the maximum number of disks placed, we determine the number j of rings
by assuming that each ray is blocked by exactly one disk and that each of the disks
blocks as many rays as one disk in a given ring can block.

We first determine the maximum number of disks that can be placed within the
union of j hexagonal rings, such that the disks form a d-apart blocking set.
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Figure 4.9. Ring R2 excluding the inner sides of length 2d, including the outer
sides of length 3d.

Lemma 4.3. For j ≥ 1, the number of d-apart disks within the union
⋃ j

i=1 Ri is at
most 3( j+1)( j+2).

Proof. The total number of d-apart disks within
⋃ j

i=1 Ri is obtained by using
an arrangement of the disks as shown in Figure 4.3. Hence we have hexagons
H1,H2, . . . ,H j+1, where Hi contains 6i disks, resulting in

j+1

∑
i=1

6i = 3( j+1)( j+2)

disks. The problem is equivalent to packing circles of radius d/2 in a regular
hexagon of side-length ( j+ 3/2)d. Using the result by L. Fejes Toth that can be
found in e.g. [Pach & Agarwal, 1995], we conclude that this arrangement is the
best possible: in the interior of union

⋃ j
i=1 Ri we have an optimal packing on a

regular triangular grid. In addition, the area of the disks that falls outside hexagon
H j+1 is maximal. For further details we refer to e.g. [Melissen, 1997], where the
closely related circle packing in equilateral triangles is considered. 2

Next, we define a collection of rays that one disk blocks.

Definition 4.7 (blocking wedge). A blocking wedge β(δ) of a disk δ is the wedge
that contains all rays inRp that intersect δ. 2

The size of a blocking wedge is given by the angle that the wedge covers. Hence,
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Figure 4.10. An illustration of a blocking wedge.

the size of the blocking wedge of one disk that is on distance d from the point p is
given by 2arcsin 1

d . This leads to the proof of the following lemma (see Figure 4.11-
left).

Lemma 4.4. Let δ and δ′ be two disks on distance x and x′ from the point p, re-
spectively, where x < x′. Then the blocking wedge β(δ) is larger than the blocking
wedge β(δ′). 2

From Lemma 4.4 one can easily show the following corollary (see Figure 4.11-
middle).

Corollary 4.2. Let δ and δ′ be two disks such that their centers and the point p
are collinear, and δ is between p and δ′. Then the blocking wedge β(δ) contains
the blocking wedge β(δ′). 2

Figure 4.11. An illustration of the size of two blocking wedges depending on
the distance of the disks to the central point - left; a blocking wedge of one disk
contains an entire blocking wedge of another disk that is further from the central
point - middle; the blocking wedges of two disks partly overlap - right.

Note that the blocking wedges of the disks may also partly overlap (see Figure 4.11-
right). If the union of the blocking wedges of all of the disks in a given set covers
the entire angle 2π, then the disks form a blocking set for the set of raysRp.
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Lemma 4.5. The blocking wedge β(δ) of a disk δ in ring R j is of size at most

4
√

3
3 jd

+O
(

1
j3d3

)
.

Proof. From Lemma 4.4, to determine an upper bound on the size of a blocking
wedge, we need to determine the minimum distance to the point p on which a disk
in the ring R j can be placed. The inner side of the ring R j is of size jd. The
rings are by definition positioned so that the point p is the center for each of them.
Therefore, the minimum distance between the point p and a point in R j is given by
jd
√

3/2. The blocking wedge of a disk positioned on distance x from the point p
is given by 2arcsin 1

x . To bound this expression, we use that

arcsin
1
x
<

1
x
+

1
x3 ,

for x > 1. Substituting the distance jd
√

3/2 for x in the inequality above and by
multiplying the whole inequality by 2, we get the required result. 2

For ease of notation, let

α j = 4

√
3

3 jd
,

i.e. α j denotes the size of the maximum blocking wedge of a disk in ring R j. In
order not to complicate the argumentation, we neglect theO(1/( j3d3)) term below.
A more precise analysis yields the same final result.
For a set D of disks, let β(D) denote the size of the union of the blocking wedges
of all disks in D. Furthermore, let

µ j =

{
0, j = 0
3( j+1)( j+2), if j ≥ 1

In other words, µ j denotes the maximum number of disks that can be placed within
the union of j hexagonal rings R1,R2, . . . ,R j, as it is shown in Lemma 4.3. The
following lemma gives an upperbound on β(D) for a set D of d-apart disks.

Lemma 4.6. LetD be a set of N d-apart disks. Then for all j≥ 1 such that N ≥ µ j

it holds that

β(D)≤
j

∑
i=1

(µi−µi−1)αi +(N−µ j)α j+1.

Proof. Let j≥ 1. We denote the disks inD by δ1, . . . ,δN , and assume that they are
ordered with increasing ring number. Note that αk is decreasing in k, as it follows
from Lemma 4.4. The size of the blocking wedge of any disk is thus at most α1.
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As a consequence, β({δ1, . . . ,δµ1})≤ µ1α1.

Now, let 2 ≤ i ≤ j. A disk δk with k > µi−1 cannot reside in one of the rings
R1,R2, . . . ,Ri−1, and hence, its blocking wedge is of size at most αi. The number
of disks residing in ring Ri is by definition µi−µi−1. The number of disks residing
outside of the union of j hexagonal rings R1,R2, . . . ,R j is N−µ j, as a consequence
of Lemma 4.3. Hence, the blocking wedges of the disks δk with µi−1 < k ≤ µi are
jointly of size at most equal to (µi−µi−1)αi, and the blocking wedges of disks δk
with µ j < k ≤ N are jointly of size at most equal to (N−µ j)α j+1. 2

Using this lemma, we can now prove the theorem that we use to determine the
number j of hexagonal rings that is necessary to block all rays inRp.

Theorem 4.4. Let D be a d-apart blocking set containing N disks. Furthermore,
let the number j of hexagonal rings be such that µ j ≤ N < µ j+1. Then it holds that

3+
j+1

∑
i=2

(
1+

1
i

)
≥ π

4
√

3
d.

Proof. As D is a d-apart blocking set, β(D) = 2π. Using Lemma 4.6, we obtain

2π = β(D)≤
j

∑
i=1

(µi−µi−1)αi +(N−µ j)α j+1. (4.7)

From N < µ j+1 and α j+1 > 0, we have that

(N−µ j)α j+1 < (µ j+1−µ j)α j+1. (4.8)

From (4.7) and (4.8) we then have

2π≤
j+1

∑
i=1

(µi−µi−1)αi. (4.9)

Substituting the explicit expressions for µi and αi in (4.9) and splitting off the i = 1
term, we obtain

2π ≤ (µ1−µ0)α1 +
j+1

∑
i=2

(µi−µi−1)αi

⇔ 2π ≤ 18 · 4
√

3
3d

+
j+1

∑
i=2

(3(i+1)(i+2)−3i(i+1))
4
√

3
3id

⇔ π

2
√

3
≤ 6

d
+

j+1

∑
i=2

(i+1)(i+2− i)
1
id

⇔ π

4
√

3
d ≤ 3+

j+1

∑
i=2

(1+
1
i
)
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2

The size of a d-apart blocking set thus satisfies

Nd ≥ µ j = 3( j+1)( j+2),

where j is such that

3+
j+1

∑
i=2

(1+
1
i
)≥ π

4
√

3
d.

Using

3+
j+1

∑
i=2

(1+
1
i
) = j+O(log j)

and µ j = 3 j2+O( j), we finally determined a lower bound on the minimum number
Nd of disks needed to block all rays inRp.

Theorem 4.5. For the minimum number Nd of disks needed to block all rays inRp

we have that

lim
d→∞

Nd

d2 ≥
π2

16
.

2

4.3 The occluded point problem

In this section, we discuss the problem of determining the minimum number Nd
of disks that form a d-apart blocking set for the set Lp of lines containing a given
point p. As in the previous section, we focus on the asymptotic behavior of Nd , as
d tends to infinity. Formally, the problem is defined as follows.

The occluded point problem. Given a minimum mutual distance d, what is the
minimum cardinality Nd of a d-apart blocking set for the set Lp of lines?

Upper and lower bounds on the minimum number Nd of disks needed to block all
the lines from Lp can be straightforwardly derived from the bounds of the hidden
point problem. In more detail, each line that contains point p corresponds to two
different rays emanating from p. A pair of rays in Rp that corresponds to one
line in Lp is blocked by two diametrically opposite disks in the solution of the
hidden point problem. Clearly, to block the corresponding line in Lp only one of
the diametrically opposite disks is needed. Hence, the number of disks needed to
block all the lines in Lp is one half of the number of disks needed to block all the
rays in Rp; see Figure 4.12 in comparison with Figure 4.8. Note that in this way,
for each blocking set for Rp that has λ pairs of diametrically opposite disks we
have 2λ different blocking sets for Lp since for each of the λ pairs we can choose



78 Visibility problems I: Dark and shadow points among objects

any of the two disks.

Figure 4.12. An example of a blocking set for the occluded point problem for
d = 5.

The lower bound for the occluded point problem is derived in a similar way as
the lower bound for the hidden point problem. We place the maximum number
of disks in one half-plane defined by a line containing point p. By maximizing
the size of the blocking wedge of each disk, we determine the number of half-rings
needed such that the blocking wedges of all of the disks sum up to π/2. We assume
then that it is possible to place again the maximum number of disks in the other
half-plane so that these disks block the complementary wedges that are joined also
equal to π/2. In this way, the blocking wedges of the disks in both half-planes
completely cover the angle π. Note that for the occluded point problem, we do
not need the blocking wedges to jointly cover the entire angle 2π, which is again a
consequence of blocking lines instead of rays.

The upper and lower bound for the occluded point problem are given by the fol-
lowing corollary.

Corollary 4.3. For the minimum number Nd of disks needed to block all lines in
Lp we have that

π2

64
≤ lim

d→∞

Nd

d2 ≤
9
π2 .

Proof. The upper bound is straightforwardly derived from the result of Theo-
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rem 4.3. The lower bound is derived as explained above, by substituting the values

β(D) =
π

2
,

µi =
3
2
(i+1)(i+2),

αi =
4
√

3
3id

in Lemma 4.6. 2

We expect that the tightness of the bounds given by Corollary 4.3 can be improved.
The following discussion provides details to support this expectation.

The lower bounds given by Theorem 4.5 and Corollary 4.3 for the hidden point
problem and the occluded point problem, respectively, can be improved by ex-
pressing the exact values of the size of the blocking wedges of each of the disks. In
other words, including the size of each of the blocking wedges separately instead
of using the upper bound on that size given by Lemma 4.5 results in tighter lower
bounds.

Let D be a d-apart blocking set for the set of lines Lp that contains N disks and
that is constructed by taking one half of the disks of a blocking set for Rp, as we
described above. Furthermore, let D be such that the centers of all its disks are in
one half-plane defined by a line containing p. With each disk δ ∈ D we associate
two centrally symmetric blocking wedges β(δ) and β′(δ) with the center in point p,
where β(δ) contains δ. By definition, the union of these pairs of blocking wedges
of all of the disks in D covers the entire angle 2π.

The size of a blocking wedge of one disk depends on the distance between the disk
and the point p, as it is shown in Lemma 4.4. Simply said, the disks closer to
the point p have larger blocking wedges. Now, let us consider only the blocking
wedges β(δ1),β(δ2), . . . ,β(δN) that contain the disks of D. Among these wedges
we can identify the groups of small and partly overlapping blocking wedges that
correspond to the disks that are relatively far from the point p. These groups of
small overlapping wedges can be covered also by only one disk placed closer to
the point p in the half-plane that initially does not contain any disk of D. In other
words, by using both half-planes when constructing blocking sets, it is possible to
cover larger wedges by a smaller number of disks. In this way, the number of disks
needed to block all the lines in Lp can generally be decreased.

Deriving a tighter upper bound using this observation is still a very challenging
problem, given the minimum mutual distance between the disks that should be
taken care of when placing the disks in the ”empty” half-plane. An illustration
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Figure 4.13. A blocking set for Lp for d = 5, straightforwardly derived from the
solution of the hidden point problem contains 18 disks. Placing some of the disks
closer to the center results in a blocking set containing 13 disks.

of the described procedure of decreasing the number of disks of a blocking set
is shown in Figure 4.13. Finding an algorithm that generates the blocking sets
of disks where the number of disks is minimized is considered a topic for future
research.



5
Visibility problems II:

Hiding objects

Detecting objects using light emitters and sensors placed in a frame surrounding
the detection area may pose visibility problems occurring during the detection pro-
cess. As we already explained in Chapter 4, the visibility problems occur for two
reasons. First, the problems may be the result of a small number of emitters and
sensors in the frame, which consequently leads to a small number of visible lines of
sight, i.e., the lines of sight not blocked by the objects. However, we have shown in
Chapter 3 that even with infinitely many emitters and sensors, visibility problems
still may occur. In other words, the relative positions of the objects in the detec-
tion area and especially their mutual distance play a large role in creating visibility
problems. Therefore, we once more investigate the occurrence of these problems
in a less realistic environment, assuming that each line in the plane is a line of sight
connecting one emitter and one sensor. As in Chapter 4, we assume all objects to
be unit disks.

Overview. In this chapter we discuss three problems of finding the minimum
number of disks needed to block (1) the set of lines intersecting a given disk, (2) the
set of rays emanating from a given disk, and (3) the set of lines passing between two
given disks. In Section 5.1 we define the occluded disk problem, i.e., the problem
of falsely detecting a non-existing object. The hidden disk problem is the topic
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of Section 5.2. This problem corresponds to the problem of hiding an object that
emits light, where a set of objects blocks all the light emitted by one object. We
present solutions by deriving upper and lower bounds on the minimum cardinality
of blocking sets. In the same manner, the merging disks problem, i.e., the problem
of detecting multiple objects as one, is discussed in Section 5.3.

5.1 The occluded disk problem

Let U be a closed unit disk with center p in the two-dimensional plane and let LU

denote the set of all lines that have a non-empty intersection with U .

Definition 5.1 (occluded disk). A disk U is said to be occluded by a setD of non-
overlapping unit disks if D is a blocking set for the set of lines LU . 2

A blocking set D is called d-apart if the distance between each pair of disks in
D∪{U} is at least d, where distances are measured from center to center. We can
now define the occluded disk problem, as follows.

The Occluded Disk Problem. Given a unit disk U and a minimum mutual dis-
tance d, what is the minimum cardinality Nd of a d-apart blocking set for the set
LU of lines?

The occluded disk problem corresponds to the problem of falsely detecting a non-
existing object. In more detail, this type of problem occurs when multiple objects
block all of the lines of sight that intersect some convex area, e.g., a disk. This
”occluded” area is then, by definition, an n-wedge intersection; see Section 2.1.
Hence, the occluded area is necessarily reported as an object because a detection
algorithm is unable to distinguish it from the ”real” objects.

Let δ and δ′ be two disks such that their centers and the center p of the given disk
U are collinear, and such that δ is between U and δ′. Using elementary calculus,
one can easily prove the following lemma (see Figure 5.1).

Figure 5.1. Any ray/line blocked by disk δ′ is also blocked by disk δ.

Lemma 5.1. Given three unit disks U, δ and δ′ with their centers collinear and
such that δ is between U and δ′, any line ` ∈ LU blocked by disk δ′ is also blocked
by disk δ. 2
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Figure 5.2. Minimum blocking set for d = 2.

The occluded disk problem has a simple solution [Stephenson, 2005] of cardinality
4 for d = 2; see Figure 5.2. Each line that intersects disk U in the middle, also
intersects at least one of the four disks surrounding it.

Another example of a blocking set is shown in Figure 5.3. For d = 3, the 9 dark
shaded disks positioned at points of a regular triangular grid, as illustrated below,
block all the lines that intersect the light disk in the middle.

Figure 5.3. Example of a blocking set: 9 disks block all lines that intersect the
light disk in the middle.

However, the problem of determining Nd for an arbitrary distance d > 2 is difficult,
even for small values of d. Therefore, we first derive upper and lower bounds on
Nd for 2≤ d ≤ 4 using two different approaches that we explain in detail in Section
5.1.1 and Section 5.1.2, respectively, and present the results in Section 5.1.3. Then,
in Section 5.1.4 we present bounds for d → ∞, which is the result that directly
follows from the solution of the occluded point problem.

5.1.1 Deriving upper bounds for small distances between disks

In this section, we construct a special class of blocking sets providing upper bounds
on Nd for 2≤ d ≤ 4. We focus on blocking sets that have an even number k of disks
at a distance d from the center of the given disk U , such that they form a regular
polygon, with either k = 4 or k = 6.

Each of these first k disks blocks some lines from the given set LU . The remaining
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set of lines, can be divided into disjunct bundles of lines. For k = 4 and k = 6, we
obtain 2 and 3 bundles, respectively (see Figure 5.4).

Figure 5.4. The remaining sets of lines grouped as disjunct bundles of lines.

Let D′ be an arbitrary set of non-overlapping unit disks such that D′ ∪{U} is d-
apart and let L′U ⊂LU denote the set of all lines in LU that are not blocked by the
disks of D′.

Definition 5.2 (bundle of lines). A collection of all lines in L′U defining the same
bipartition of disks in D′ is called a bundle of lines. 2

Note the similarity between a bundle of lines and a light corridor defined in Chap-
ter 3. The only difference between the two is that the lines of a bundle contain
shadow points by definition, since they intersect disk U , and a light corridor con-
tains only light points.

In the same way as a light corridor, a bundle of lines is characterized by its sup-
porting lines, the clockwise fixed tangent t and the counterclockwise fixed tangent
t ′. The supporting lines ”bound” the bundle of lines, denoted as L(t, t ′). The angle
between the supporting lines is denoted as θ.

We can now define a subproblem of the occluded disk problem as follows.

Bundle blocking problem. Given a bundle of lines L(t, t ′)⊂L′U , find a blocking
setD(L(t, t ′)) of minimum cardinality, such that the blocking setD(L(t, t ′))∪D′∪
{U} is d-apart.

Given the restriction on the mutual distance, for each of the disks we define a
boundary circle that determines the region in which it is not possible to place any
additional disks. Therefore, a blocking set for a bundle of lines can be chosen to
consist of the disks positioned between the supporting lines and on or outside the
boundary circles (see the shaded area in Figure 5.5 as an example).
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Figure 5.5. An example of a bundle of lines.

Every additional disk that we place in the shaded area reduces the set of lines of
the bundle. However, depending on the position of the added disk, the non-blocked
lines can all be in one bundle or can be separated into two disjunct bundles. In both
cases, the angle(s) between the supporting lines of the new bundle(s) is/are strictly
smaller than the angle between the supporting lines before placing the additional
disk.

Next we propose a heuristic algorithm that tries to block a given bundle of lines
L(t, t ′) by 1, 2, 3, 4, or 5 disks. We discuss each of the cases separately.

Blocking a bundle by 1 disk. To test whether or not one disk can block all the
lines, we use a simple procedure. Let t and t ′ be the two supporting lines of L(t, t ′)
and let θ be the angle between them. Let p̄ be the intersection point of the bisector
of the angle θ and a boundary circle, such that p̄ is not in the interior of any other
boundary circle. If the distance between p̄ and t is less or equal to 1, it is possible
to block the bundle with one disk (see Figure 5.6 - left).
Blocking a bundle by 2 disks. The essential part of the test whether or not two
disks can block a given bundle is the observation that the first added disk can be
chosen to be tangent to one of the supporting lines. Otherwise, it would separate
the bundle into two disjunct bundles, requiring at least two additional disks for
the blocking. Therefore, we add one disk such that it is tangent to one of the
supporting lines and it is not possible to push the disk closer towards the center
without violating the minimum distance requirement. Then, we test whether or not



86 Visibility problems II: Hiding objects

Figure 5.6. Blocking bundles of lines by one disk (left) and two disks (right).

the rest of the lines (the new bundle) can be blocked by one disk (see Figure 5.6 -
right).

To test whether a bundle can be blocked by 3 or more disks, we need an additional
construction method: find the position of one disk that is closest to U such that one
of the new bundles of lines defined by that disk can be blocked by exactly one disk.
The specific positions of the two disks can be found using analytic geometry and
considering different cases.

Different positions of the first added disk result in different bundles of non-blocked
lines. Therefore, we consider some cases of that positioning for testing whether the
given bundle can be blocked by 3 or more disks.

Blocking a bundle by 3 disks. The analysis is by considering two cases. In the
first case, we add the first disk such that it is tangent to one of the supporting lines.
Then, the non-blocked lines are in one bundle, and we test whether or not these can
be blocked by 2 disks.

In the second case, we first find the position to place the first disk such that one of
the two new bundles of lines can be blocked by exactly one disk. Then, we check
whether the non-blocked bundle of lines can be blocked by 1 disk.

Blocking a bundle by 4 disks. This test consists of checking two cases, as in the
test with 3 disks. In the first case, we add one disk such that it is tangent to one of
the supporting lines and check whether the new bundle can be blocked by 3 disks.

In the second case, we place the first disk such that one of the two new bundles of
lines can be blocked by exactly one disk and check whether the remaining bundle
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can be blocked by 2 disks.

Blocking a bundle by 5 disks. Besides the two cases similar to those in tests with
3 and 4 disks, we have an additional one in which we place the first disk at the
intersection point of the angle bisector and a boundary circle and check whether
both new bundles of lines can be blocked by 2 disks.

Blocking the lines by 6 or more disks has also been considered. However, exper-
imental results show that the bundles of lines defined by the first 4 or 6 disks on
regular polygon positions can be blocked by at most 5 disks for 2≤ d ≤ 4.

5.1.2 Deriving lower bounds for small distances between disks

In this section, we explain the approach we use to obtain lower bounds on Nd . For
this, we consider the set Lp ⊂ LU that consists of all the lines from LU that pass
through the center p of the given disk U . The cardinality of a minimum blocking
set D for the set of lines Lp represents a lower bound on Nd since Lp ⊂ LU . A
minimum blocking set D can be constructed, since one can prove that in the set
of minimum blocking sets for Lp, there are always non-overlapping ones, i.e.,
blocking sets for which the intersection of lines blocked by any two disks consists
of at most one (tangent) line. The number of non-overlapping blocking sets for
Lp of cardinality N can be reduced to a few cases, where for each case, we can
determine the largest value of d possible for that case. We will first consider the
case where all lines in Lp can be blocked by four disks.

Let d be a distance for which the cardinality of a minimum blocking set D is
N = 4. The subset of lines from Lp blocked by a disk δi is given by blocking angle
αi, defined by the two lines in Lp that are tangent to δi. The blocking angle αi is
given by

αi = 2arcsin
1
di

(5.1)

where di is the distance between p and the center of disk δi (See Figure 5.7).

Let δ1,δ2,δ3 and δ4 be the four disks of a blocking set D, and let d1,d2,d3 and d4
be the distances from p to their centers, respectively.

Let α1,α2,α3 and α4 be the blocking angles of the disks δ1,δ2,δ3 and δ4, respec-
tively. We consider non-overlapping blocking sets, thus

α1 +α2 +α3 +α4 = π (5.2)

Without loss of generality we assume

α1 ≥ α2 ≥ α3 ≥ α4 (5.3)
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Figure 5.7. The blocking angle of a disk.

which implies
d1 ≤ d2 ≤ d3 ≤ d4 (5.4)

From (5.4) we have that d = d1. Note that α1 = α2 = α3 = α4 is not feasible
for d > 2, since four disks cannot be positioned in a way that each of them has a
blocking angle π/4 and they do not violate a minimum distance condition.

For α1 = α2 = α3 > α4 we have a blocking set D as shown in Figure 5.8.

Figure 5.8. A non-overlapping blocking set of cardinality 4.
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From the system of equations

3α1 +α4 = π

α1 = 2arcsin
1
d

(5.5)

α4 = 2arcsin
1
d4

d4 = 2d cos
α1 +α4

2

we have d =
√

8√
5−
√

13
.

We prove now that the derived distance d =
√

8√
5−
√

13
represents the maximum dis-

tance d for which N = 4. We consider an arbitrary non-overlapping blocking set
D′ of cardinality 4 such that for the blocking angles of its disks it holds that

α
′
1 > α

′
2 > α

′
3 > α

′
4 (5.6)

The minimum mutual distance between the disks ofD′ is denoted as d′. From (5.6)
we have that the disk δ′1 is on the distance d′ from the disk U . We have two cases:

1. If α1 ≤ α′1 then d ≥ d′, i.e. d is maximum distance.

2. Let α1 > α′1. From (5.6) and

3α1 +α4 = π (5.7)

α
′
1 +α

′
2 +α

′
3 +α

′
4 = π (5.8)

we have
α4 < α

′
4 (5.9)

At least two of four disks are adjacent having one common tangent line (in
the same way as disks δ1 and δ4 shown in Figure 5.8). Then, the furthest
disk δ′4 is on the distance d′4 from the center of the disk U :

d′4
2
= x2 + y2−4+2

√
y2−4 ·

√
x2−1 (5.10)

where x > d and y > d.

The distance d4 of the furthest disk in the blocking set D is

d4
2 = d2 +d2−4+2

√
d2−4 ·

√
d2−1 (5.11)

From (5.10) and (5.11) we conclude that

d′4 > d4 (5.12)

which implies
α
′
4 < α4 (5.13)
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which contradicts (5.9).

Hence, we conclude that d > d′. In the same way it can be shown that different
relations between the angles α′1,α

′
2,α
′
3 and α′4 result in blocking sets with a smaller

d. Therefore, the maximum distance d for which the blocking set D is of cardinal-
ity 4 is d =

√
8√

5−
√

13
. The maximum distance d for which the blocking set D is of

cardinality N > 4 can be derived in a similar fashion.

Figure 5.9. Every line passing through the center of the middle disk is blocked
by at least one of the 5 disks around it.

The example in Figure 5.9 shows the optimal non-overlapping blocking set for the
set of lines Lp for k = 5. The maximum distance d for which 5 disks can block the
lines from Lp is simply derived as d = 1/sin π

10 .

5.1.3 Upper and lower bounds for small distances between disks: results

In this section we present the upper and lower bounds on minimum blocking sets
that we obtained for 2 ≤ d ≤ 4 by the methods explained in Sections 5.1.1 and
5.1.2. Furthermore, we present the asymptotic bounds on minimum blocking sets
for the set of lines LU .

In Figure 5.10, d is given on the horizontal axis. The number N of disks is given
on the vertical axis. For example, for d = 3, we have 5≤ Nd ≤ 9.
Obviously, Nd is a monotonic function of d with positive integer values. Table 5.1
gives the d-values of the points where the bounds on that function change value.
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Figure 5.10. Upper and lower bounds on the cardinality of minimum blocking
sets for the occluded disk problem.

The d-value of the lower bound point b4 is

d4=1/

√√√√ 9
16
− 1

16
y−1

2

√
9
32

+
1

16 3
√

18
x+

1
8x 3
√

12
+

3
32y

,

where x= 3
√

81−
√

6549 and y=

√
9− 4

x
3
√

2
3 −2x 3

√
4
9 .

i 1 2 3 4 5
ai 2 2.2361 2.5776 3.0551 3.5914
bi 1/sin π

6

√
8√

5−
√

13
1/sin π

10 d4 4cos π

14

Table 5.1. Values of d where upper bounds ai and lower bounds bi change value.

By randomly generating blocking sets, we did not obtain sets with less disks than
the corresponding upper bounds. This indicates that probably the lower bounds
can be improved.
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Figure 5.11. The line defined by an arbitrary point in U and an arbitrary point
of the projection interval of a disk δ is blocked by δ - left, blocked by δ′ that is
symmetric to δ - middle, and blocked by both δ and δ′ - right.

5.1.4 Asymptotic bounds

In this section, we derive upper and lower bounds on Nd , for d→∞. We first show
that the blocking sets for Lp that we constructed in Section 4.3 with additional
three disks are also blocking sets for LU . In more detail, let D̄ be a blocking set
for Rp, constructed as explained in Section 4.2.1, for a given distance d. Let `
be the line containing an arbitrary point on one edge of the hexagon Hd and an
arbitrary point in disk U . The chosen point on the hexagon edge belongs to at
least one interval that is the projection of a disk δ in D̄ from p onto the hexagon
edge. One can prove that line ` is then blocked by δ or blocked by disk δ′ that is
symmetric to δ with respect to p, or it is blocked by both δ and δ′; see Figure 5.11.
More precisely, if the line ` is blocked by a disk δ that is positioned in one of the
hexagons H2, . . . ,Hd−1, then ` is also blocked by the disk δ′ that is diametrically
opposite to δ. Hence, besides the six disks of the first hexagon H1, we need only
half of the disks in hexagons H2, . . . ,Hd−1 to block all lines in LU . In other words,
the blocking set for the set of lines Lp with additional three disks placed in the first
hexagon is a blocking set for the set of lines LU ; see Figure 5.12 in comparison to
Figure 4.12.

Consequently, an upper bound on Nd for the occluded disk problem is given by

lim
d→∞

Nd

d2 ≤
9
π2 .

Since Lp ⊂ LU , we need at least as many disks to block all the lines intersecting
disk U as we need to block all the lines containing its center p. Therefore, a lower
bound for the occluded disk problem is given by

lim
d→∞

Nd

d2 ≥
π2

64
.
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Figure 5.12. An example of a blocking set of disks for the occluded disk problem
for d = 5.

Combining the results on upper and lower bounds for the occluded disk problem,
we get to the following result.

Corollary 5.1. For the minimum number Nd of disks needed to block all lines in
LU , it holds that

π2

64
≤ lim

d→∞

Nd

d2 ≤
9
π2 .

2

5.2 The hidden disk problem

The results presented so far show that the detection algorithms presented in Chap-
ter 2 cannot distinguish real objects from the occlusion reported as one or more ob-
jects. This limitation initiated a new approach to the object detection problem: the
game pieces can also be equipped with emitters like LEDs and/or sensors, which
would potentially lead to an improved detection. In this section, we discuss the
problem of ”hiding” objects that emit light.

LetRU denote the set of all rays that emanate from a given disk U .

Definition 5.3 (hidden disk). A disk U is said to be hidden by a set D of non-
overlapping unit disks if D is a blocking set for the set of raysRU . 2

Hence, the given disk U here corresponds to an object that emits light and the set
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RU of rays corresponds to the set of light rays emitted by that object, assuming that
the object emits light in all directions from each point on its boundary. The distance
between the objects, i.e., the disks, is restricted to be not less than some given
distance d, as it was the case with the previously discussed visibility problems.
Formally, we can define the problem of interest to us as follows.

The Hidden Disk Problem. Given a minimum mutual distance d, what is the
minimum cardinality Nd of a d-apart blocking set for the setRU of rays?

As for the visibility problems we discussed so far, we propose a solution by deriv-
ing upper and lower bounds on Nd . We show that both upper and lower bounds on
Nd are quadratic in d, i.e., we prove that Nd = Θ(d2). In more detail, we first show
that N ≥ 6 disks can be positioned such that they form a 2-apart blocking set. The
disks of that blocking set are placed on a circle concentric to U with neighboring
disks being mutually tangent. We present a simple algorithm of pushing the disks
towards the center of U such that the blocking of rays is preserved. The algorithm
provides a regular ordering of disks on concentric circular rings such that the disks
form a d-apart blocking set, where d > 2. This is used to show that

π2

16
≤ lim

d→∞

Nd

d2 ≤
π2

2
,

where the lower bound is derived as an immediate consequence of the lower bound
in the hidden point problem, presented in the previous chapter.

5.2.1 Blocking rays emanating from a disk

An upper bound on Nd for blocking all rays RU emanating from a given disk U
is not possible to determine straightforwardly from the upper bound(s) we estab-
lished in Sections 4.2.1, 4.3 and 5.1.3 for the three previous blocking set problems.
More precisely, disks positioned on grid points of a regular triangular grid do not
form a blocking set for RU , regardless of the number of the hexagonal rings used.
The gaps between the neighboring disks in the corners of the hexagons allow some
rays to “escape”; see Figure 5.13. Therefore, we take a different approach by con-
sidering a problem equivalent to the minimum blocking set problem. We show that
a 2-apart blocking set with an arbitrary number of disks can always be constructed.
Such a blocking set can then be transformed into a d-apart blocking, with d > 2,
using a simple algorithm for which the blocking of rays is preserved. Finally, by
maximizing the distance d for which a 2-apart blocking set can be transformed into
a d-apart blocking set with the same number of disks, we derive an upper bound
on Nd .
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Figure 5.13. The rays emanating from U that are not blocked by any of the disks
that block all the rays emanating from P.

We first define a problem that is equivalent to the hidden disk problem.

Maximum Distance Blocking Set Problem. Given N unit disks, what is the max-
imum distance d for which the disks form a d-apart blocking set for the set RU of
rays?

Next, we present an ordering of disks that enables blocking all rays fromRU for a
given number N of disks. We assume for convenience that N = 6η. The N disks are
placed on a circle c concentric to the given disk U , such that the centers of the disks
are on the circle c and there is no gap between neighboring disks; see Figure 5.14.
More precisely, two neighboring disks positioned on c are mutually tangent. The
radius rc of circle c is easily derived from rc = 1/sin π

6η
. Given the mutual tangency

of each pair of neighboring disks, one can easily see that any ray ρ∈RU is blocked
by at least one and at most two disks of the given set of 6η disks. Hence, these disks
form a blocking set. The distance between two neighboring disks on c is 2, while
the distance between U and a disk from the blocking set is at least 2 for any η≥ 1.
Therefore, the constructed blocking set is 2-apart. Let this blocking set be denoted
by D2.

For the maximum distance blocking set problem, we are interested in the maximum
distance d for which the 6η disks form a d-apart blocking set forRU . As such, the
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Figure 5.14. 24 disks positioned on the circle of radius rc concentric to U .

problem appears to be hard: constructing a d-apart blocking set for an arbitrary d is
certainly challenging, because it requires proving that a set of N disks is a blocking
set. Therefore, we focus on transforming the constructed 2-apart blocking set into
a d-apart blocking set.

Figure 5.15. Transformation of D2 into a d-apart blocking set.

In order to transform D2 into a d-apart blocking set, with d > 2, the disks of D2
should be separated from each other, while the blocking of all rays should be pre-
served. To define a step of the proposed transformation we use Lemma 5.1, where
it is shown that the rays blocked by a given disk δ are still blocked by δ after the
disk is moved towards the center of U , i.e., along the line segment that connects the
two positions of δ. Consequently, a transformation of the blocking set D2 where
some disks of D2 are shifted from their original position on circle c towards the
center of U represents a transformation into a d-apart blocking set, where d is
the minimum of all pair-wise distances between the disks; see Figure 5.15. The
problem of interest to us now is to determine the maximum d for which we can
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transform D2 into a d-apart blocking set.

5.2.2 Ordering disks on circular rings

In Section 5.2.1 we proved that we can construct blocking sets by pushing the disks
ofD2 into the interior of the circle c, given that the disks are moved in the direction
of the center of c. In this section we propose a regular ordering of disks forming a
blocking set that can be obtained as follows.

Figure 5.16. The definition of three circular rings with radii d, 2d and 3d.

Let D2 be the 2-apart blocking set constructed as in Section 5.2.1, consisting of 6η

disks. In the interior of the circle c we can define a number of circles called rings
and denoted as c1,c2, . . . ,ck, where the radius of the ring c1 is d, the radius of c2 is
2d, etc. The last ring ck with the radius kd is assumed to be the given circle, which
has radius rc = 1/sin π

6η
; see Figure 5.16. In the process of shifting the disks of D2

towards the center, we place the center of each of them exactly on one of the rings.

The line segment that connects the center of a disk in D2 and the center of U
is called a thread. Thus, the disks of D2 define 6η threads. Since we chose to
place the disks on the rings and the disks can be moved only along their threads,
each disk can be placed in one of the k intersection points of its thread and the k
rings. Note that the d-apart rings ensure that the distance between any two disks
positioned on different rings is at least d. However, choosing an arbitrary ring for
each disk may result in two disks of the same ring being less than distance d apart;
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see Figure 5.17.

Figure 5.17. Shifting two disks onto inner rings: on the left, the disks are not
d-apart, and on the right, the disks are d-apart.

The number k of rings determines the distance d for given η. Given that the radius
of the largest ring is rc = 1/sin π

6η
and as we mentioned above rc = kd, we have

that

d =
1

k sin π

6η

. (5.14)

Hence, in order to maximize the distance d, we need to minimize the number k of
rings needed, for 6η disks to form a d-apart blocking set. We assume the rings to
be numbered from inside to outside.

For a ring of given radius, it is easy to determine the maximum number of disks that
can be positioned equally spaced, such that the distance between two neighboring
disks on this ring is at least d. For example, at most 6 disks can be placed on
the first ring, at most 12 disks on the second ring, at most 18 disks on the third
ring, etc. In this way, we can easily derive a lower bound on the minimum number
k of rings needed, for a given η. However, the minimum number of rings that
suffices for disks to form a d-apart blocking set is often larger than this lower
bound. This is because of the restriction of fixed positions for placing the disks,
which does not always allow placing the maximum number of disks on the rings.
In the construction we propose, we place less than the maximum number of disks
on some of the rings or even keep some of the rings empty.

In more detail, we choose to place 6η j disks on the j-th ring, where

η j = 2blog2 jc, (5.15)

such that the disks form a regular polygon. Note that 6η j is equal to the maximum
number of disks that can be placed, only for the rings j = 2l , for some l ≥ 0,
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however, it is less than maximum for all other rings; see the comparison given in
Table 5.2.

Ring j 1 2 3 4 5 6 7 8
Max disks 6 12 18 24 30 36 42 48

6η j 6 12 12 24 24 24 24 48

Table 5.2. The maximum number of disks and the chosen number of disks for
rings 1 to 8.

For symmetry reasons, we focus on one of the six sections of D2 with η disks.
We show that any set of η disks can be split into k subsets, where the j-th subset
contains either 2blog2 jc or 0 disks. The j-th subset is then placed on the j-th ring
such that the distance between each two disks is at least d. More precisely, we
show that the given number η can be represented as

η = η̄1 + η̄2 + · · ·+ η̄k, (5.16)

where η̄ j ∈ {0,η j}, or simplified, any natural number η can be represented as

η = b0 +2+2︸︷︷︸
max 2

+4+4+4+4︸ ︷︷ ︸
max 4

+ · · ·+2y +2y + · · ·+2y︸ ︷︷ ︸
max 2y

, (5.17)

for some y ≥ 0 and b0 ∈ {0,1}. Note that the total number of addends in (5.16)
is k, i.e., each addend corresponds to a ring, more precisely, to the number of
disks placed on each of the six sections of the ring. This results in including the
zero-addends in counting, since they indicate the presence of empty rings. More
precisely, we include the zero-addends in counting when we have less than the
maximum number of equal addends, for all addends except for the largest ones.
For example, η = 15 can be represented as 15 = 1+ 2+ 0+ 4+ 4+ 4 and the
number of rings needed is k = 6, with the third ring being empty.

Formally, we prove the existence of a representation of η given by (5.17), using the
following lemma.

Lemma 5.2. For any positive integer η a sequence Aη = (a0,a1, . . . ,ay) exists
such that

η =
y

∑
i=0

ai ·2i (5.18)

where 0≤ ai ≤ 2i and ay > 0.

Proof. The proof of the lemma follows from the binary scale representation of η.
2
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For a given η, there are generally multiple sequencesAη. From Equation (5.14), to
construct a d-apart blocking set, where distance d is as large as possible, we need
to minimize the number k of rings. The number of rings we define is equal to the
number of addends in (5.17). Hence, the number k of rings is given by

k = (1+2+4+8+ · · ·+2y−1)+ay = 2y−1+ay (5.19)

where ay is the number of addends of size 2y in (5.17). Hence, our interest is in the
sequences A∗η for which 2y +ay is minimal.

Figure 5.18. An example of a d-apart blocking set for n = 8, where d ≈ 4.

Disk ordering algorithm

In the previous section we showed how to determine the number of rings and the
number of disks on each of them, using Lemma 5.2 and choosing the sequence A∗n
for which the number of rings is minimal. In this section, we present an algorithm
that given the sequence A∗n, for each disk of D2 determines the ring on which it
should be placed, which results in the disks forming a d-apart blocking set; see
Figure 5.18.

We restrict ourselves to finding the solutions for all η that are divisible by their
largest addend 2y in the representation (5.17). Note that 2y|η implies that η j|η, for
all j.

Let us define a table τ with k rows and η columns, such that each thread corre-
sponds to one column of τ and each ring corresponds to one row of τ, with the
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outermost ring corresponding to the top row. Each cell of the table τ then rep-
resents a position on which the corresponding disk can be placed, i.e., it is the
intersection of its thread and a ring. When one disk is moved to a certain position,
the value in the corresponding cell of τ is set to 1 or “full”, while the other cells
of the same column have values 0 or “empty”; see Figure 5.19. The defined table
represents one of the six identical sections of the blocking set, thus, we consider
the table as if its columns are cyclic (its first and its last column are connected).

Figure 5.19. A set of 16 disks with 6 rings and the corresponding 6 x 16 table.

An ordering of full cells in a table τ is called valid if and only if the following
conditions hold:
• There is exactly one full cell in each column;
• The j-th row is either empty or it contains exactly η j full cells;
• The number of empty cells between any two successive full cells in the j-th

row is exactly η

η j
−1.

Lemma 5.3. A valid table τ exists for any positive integer τ represented by (5.17)
for which 2y|η.

Proof. The proof of the lemma is given by a method for constructing a valid table,
which follows from the equation 2x = 2x−1 +2x−1. In more detail, a complete row
of full cells can be split into η/2y rows, where each row contains 2y full cells,
as illustrated in Figure 5.20. Each of the resulting rows can again be split into
two rows, by pushing every second full cell to a new row. After a finite number
of ”splitting” steps, each row corresponds to a non-zero addend in representation
(5.17). The rows can be swapped then if necessary, such that each row τi+1 that is
directly above a row τi contains at least the same number of full cells as τi. The
process is completed by inserting empty rows where needed. 2
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Figure 5.20. Constructing a valid table for n = 24.

Note that the proof of Lemma 5.3 represents a disk ordering algorithm that for each
of the n disks determines the ring on which it should be placed, such that the disks
form a d-apart blocking set.

5.2.3 Upper and lower bounds

In Sections 5.2.1 and 5.2.2, we showed that we can construct a d-apart blocking
set for each η that is divisible by its largest addend in representation (5.17). In
this section, we present upper and lower bounds on the cardinality Nd of such a
blocking set, as a function of the minimum distance d. We start by deriving an
upper bound.

One can easily show that the ordering of disks presented in Section 5.2.2 implies
that the minimum of all pair-wise distances between the disks is d. The relation
between the distance d, the given number η and the corresponding number k of
rings is given by

d =
1

k sin π

6η

(5.20)
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From the choice of sequence A∗η in Lemma 5.2, for which ay +2y is minimal, we
have that

y−1

∑
j=0

22 j +(ay−1) ·2y ≤ η (5.21)

where ay is the number of largest addends 2y in representation (5.17). From (5.21)
and

y−1

∑
j=0

22 j =
1
3
(4y−1) (5.22)

it follows that
4y +3(ay−1)2y ≤ 3η+1 (5.23)

With further transformations of inequality (5.23) we have

((2y)2 +2(ay−1)2y)+(ay−1)2y ≤ 3η+1

⇔ k2 +(ay−1)(2y−ay +1) ≤ 3η+1 (5.24)

Since 1≤ ay ≤ 2y, we have that

(ay−1)(2y−ay +1)≥ 0 (5.25)

Finally, from (5.24) and (5.25), we bound the number k of rings by a function in η

as follows.
k ≤

√
3η+1 (5.26)

We transform (5.20) into
1

kd
≤ sin

π

6η
(5.27)

and multiply (5.26) by
√

η

k
√

η≤
√

3η2 +η (5.28)
Multiplication of (5.27) and (5.28) and expressing the limit for d→ ∞, results in

lim
d→∞

η

d2 ≤
π2

12
(5.29)

and since N = 6η, we derived an upper bound on Nd , i.e.,

lim
d→∞

Nd

d2 ≤
π2

2
(5.30)

The lower bound on the minimum number of disks which form a d-apart blocking
set for the set of all rays emanating from a single point is π2

16 d2, where d tends to
infinity, as given by Theorem 4.5 in Section 4.2.2. To block the rays emanating
from a given unit disk we need at least as many as to block the rays emanating
from its center. Hence, the lower bound on the minimum number Nd of disks is
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given by

lim
d→∞

Nd

d2 ≥
π2

16
. (5.31)

Combining the results of (5.30) and (5.31), we proved the following theorem.

Theorem 5.1. For the minimum cardinality Nd of a d-apart blocking set to block
all rays emanating from a unit disk we have

π2

16
≤ lim

d→∞

Nd

d2 ≤
π2

2
.

2

5.2.4 Discussion

We expect that both bounds, especially the upper bound, can be further improved.
The following discussion provides some directions for potential improvements.

Constructing a d-apart blocking set from D2 through a sequence of transformation
steps where a number of disks is pushed towards the center results in the rather
large constant π2/2. The disks pushed inside circle c block much larger sets of rays
than the sets of rays they block from their original positions on c. Consequently,
the sets of rays blocked by two disks on different rings may not be disjoint. This
implies that constructing blocking sets for which the overlap of sets of blocked
rays is minimized may potentially provide a better upper bound. In addition, the
number of disks on one ring is less than the maximum possible number for the
majority of rings. Placing the maximum number of disks on each of the rings
may further improve the upper bound. The combination of the last two conjectures
may be used to define an optimization problem, similar to the problem of opening
a combination lock with k rings, i.e. to find the rotation angle for each of the k
rings that are d-apart and contain the maximum number of d-apart disks, such that
the disks form a blocking set and the total overlap of blocked rays is minimized.
We expect that the solution of this problem provides a better upper bound. The
main challenge here is still the problem of proving that a set of disks, positioned
following some constraints, is a blocking set for the setRU of all rays.

5.3 The merging disks problem

Let U1 and U2 be two non-overlapping unit disks in the plane such that the distance
between them is d. Furthermore, let L(U1,U2) be the set of all lines in the plane
that do not intersect U1 and U2 and such that for each line ` ∈ L(U1,U2), the disks
U1 and U2 are on different sides of `. Hence, the set L(U1,U2) of lines is bounded
by the two internal tangent lines defined by U1 and U2, as illustrated in Figure 5.21.
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Note that the set L(U1,U2) of lines represents a light corridor between the disks U1
and U2.

Figure 5.21. The bundle of lines between the disks U1 and U2.

For ease of notation, let M = L(U1,U2). For some given distance d, a set D of
non-overlapping unit disks is a d-apart blocking set for the set of lines M if the
distance between any two disks in D∪{U1,U2} is at least d. In the same way as
we defined the four visibility problems considered so far, we formally define the
merging disks problem as follows.

The Merging Disks Problem. Given a minimum mutual distance d between two
disks U1 and U2, what is the minimum cardinality Nd of a d-apart blocking set for
the setM= L(U1,U2) of lines?

Note that the merging disks problem is in essence the bundle blocking problem,
as defined in Section 5.1.1, where for d→ ∞, the set of lines to be blocked in the
merging disks problem is significantly larger than the corresponding set of lines in
the occluded disk problem. For small values of d, however, we use the methods
and results presented in Section 5.1.1 to determine the minimum blocking sets for
the merging disks problem.

5.3.1 Minimum blocking sets for small distances

Let us now take a closer look at examples of minimum blocking sets for the set of
linesM, for small values of d, more precisely, for 2 ≤ d ≤ 3. If d = 2, then the
disks U1 and U2 are mutually tangent, which implies thatM = /0. The two disks
then define one shadow region, as illustrated in Figure 3.6.

We next determine the maximum distance d for which the setM of lines can be
blocked by one, two and three disks.
The problem of blocking a bundle of lines by one disk is already discussed in
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Figure 5.22. Left: determining the maximum distance d for which one disk can
block the setM of lines; right: the shadow region defined by the three disks.

Section 5.1.1. In order to determine the maximum distance d for whichM can be
blocked by one disk, this ”blocking” disk is positioned such that it is on distance d
from disks U1 and U2 and it is tangent to both bounding lines of the setM of lines,
as it is shown in Figure 5.22. From the system of equations

x2 =
d2

4
−1 (5.32)

d =
d
2
+2x (5.33)

we have that d = 4
3

√
3, or d ≈ 2.3094.

Note that, for symmetry reasons, U1 blocks the bundle of lines between U2 and
the blocking disk, and U2 blocks the bundle of lines between U1 and the blocking
disk. Hence, the three disks are contained in one shadow region, i.e., the three
corresponding circular objects will be detected as one large object; see Figure 5.22.

Figure 5.23. Blocking a bundle of lines between the given two disks by two and
three disks and the corresponding sets of shadow regions.

The maximum distance d for which two and three disks block the setM of lines
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can be derived in a similar fashion, using elementary calculus. The positioning
of the blocking disks and the corresponding shadow regions defined by the disks
is illustrated in Figure 5.23. The corresponding values of the derived maximum

distance are
√

9+
√

17
2 and

√
8, for the blocking sets of two and three disks, respec-

tively. Note that there are three shadow regions defined in both cases.

Figure 5.24 illustrates a blocking set for M consisting of four disks for d = 3.
The blocking set is constructed using a heuristic algorithm similar to the algorithm
we used to determine the upper bounds for small values of d in the occluded disk
problem. Since the maximum distance for which three disks can blockM is d < 3
(see the results presented below), we conclude that the constructed blocking set is
of minimum cardinality.

Figure 5.24. Left: blocking a bundle of lines by four disks for d = 3; right: the set
of shadow regions defined by the six disks as an illustration of the merging disks
problem.

The minimum cardinality Nd of a blocking set for distances 2 ≤ d ≤ 3 is given
in Figure 5.25. The distance d is given on the horizontal axis, and the minimum
cardinality Nd is given on the vertical axis.

5.3.2 Asymptotic bounds

In this section, we derive asymptotic bounds on the minimum number Nd of disks
forming a d-apart blocking set for the setM of lines, when d→∞. An upper bound
is derived using the same construction method as for the hidden disk problem pre-
sented in Section 5.2. A lower bound for the merging disks problem is a result that
follows directly from the lower bound of the occluded point problem presented in
Section 4.3. Combining the results on upper and lower bounds, we show that the
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Figure 5.25. The minimum cardinality Nd of a blocking set for the merging disks
problem as a function of distance d, where 2≤ d ≤ 3.

minimum number Nd of disks for the merging disks problem is quadratic in d, i.e.,
we show that

π2

64
≤ lim

d→∞

Nd

d2 ≤
π2

4
. (5.34)

Let p be a midpoint of the line segment connecting the centers of the disks U1 and
U2, and let c be a circle with center in p. In the similar way as in the previous
section, we construct a 2-apart blocking set forM by placing N unit disks in one
half-plane defined by the line connecting the centers of U1 and U2, such that the
disks’ centers are positioned on c and each two neighboring disks are mutually
tangent; see Figure 5.26. This 2-apart blocking set is then transformed into a d-
apart blocking set, where d > 2, using the disk ordering algorithm presented in
Section 5.2.2. The k circular rings c1,c2, . . . ,ck defined in this case have radii
3d
2 , 5d

2 , . . . , (2k+1)d
2 , since a disk in the first ring must be at distance at least d to the

disks U1 and U2, however, this has no influence on the asymptotic result. Hence,
an upper bound on Nd for the merging disks problem is given by

lim
d→∞

Nd

d2 ≤
π2

4
(5.35)

Note that the upper bound can be improved by placing the disks in both half-planes,
as discussed in Section 4.3 and illustrated in Figure 4.13.

To determine a lower bound on Nd , we make the following observation. For d→∞,
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Figure 5.26. An illustration of the constructive method for deriving upper bounds
for the merging disks problem in the asymptotic case.

the angle between the ”bounding” lines of the set M of lines, i.e., the internal
tangent lines defined by U1 and U2, approaches π. In this case, the setM of lines
is a superset of the set Lp of lines containing the point p. Therefore, we need at
least as many disks to block the set of linesM as to block the set of lines Lp. In
other words, a lower bound for the occluded point problem is also a lower bound
for the merging disks problem, i.e.,

lim
d→∞

Nd

d2 ≥
π2

64
(5.36)

In this way, we have determined upper and lower bounds on Nd for the merging
disks problem that are both quadratic in d, for d→ ∞.





6
Conclusion

To enable interaction on multi-user table-top devices, an in-plane object detection
technology has been developed by Philips Research. Objects place in the detection
area, e.g., on a rectangular LCD screen, are detected using the information on
blocked and non-blocked lines of sight between light emitters and light sensors
positioned in a frame surrounding the detection area. By repeatedly performing
the object detection process, it is possible to track moving objects, for instance, to
recognize a hand gesture.

In Chapter 1 we defined the detection problem as the problem of determining ap-
proximations on the geometry of objects from the information on blocked and non-
blocked lines of sight between the emitters and the sensors. In Chapter 2 we de-
scribed two algorithmic solutions to the detection problem, assuming that emitters
and sensors are points on the perimeter of a rectangular detection area such that
the distance between each pair of neighboring points is r. Both algorithms use as
an input the blocking matrix, which contains the information on blocked and non-
blocked lines of sight for all emitter-sensor pairs, and provide the identical output:
a set of convex polygons representing the objects. In order to ensure the detection
of each of the objects, we restrict the minimum size of an object. More precisely,
the algorithms are designed to only detect objects that are larger than a circle of
radius r. This restriction is in favor of a guaranteed detection of objects larger than
some minimum size given, over enabling detection of objects of all sizes with no

111



112 Conclusion

guarantees on detection of small objects. In addition, the running times of both
detection algorithms is significantly improved as a result of the restriction on the
minimum object size. Both cut-off and point-by-point algorithms determine the set
of all non-empty shadow wedge intersections that represent the detected objects.
The cut-off algorithm discards the shadow wedge intersections that are not suffi-
ciently large to contain one object. This procedure is a very important step in the
early stages of the execution of the algorithm. Most of the non-object intersec-
tions are discarded then, while keeping them as potential objects results usually in
a large number of further intersecting operations that cost extra computation time.
The running time of the point-by-point algorithm strongly depends on the num-
ber of objects that need to be detected, and determining a tight upper bound on
that number would not have been possible without a restriction on the minimum
size of the objects. Hence, both algorithms enable detection of all objects larger
than a circle of radius r, irrespective of their position and shape, by providing an
approximation on their geometry.

With emitters and sensors being the points on the perimeter of the rectangular de-
tection area, the set of all lines of sight defined between the emitters and the sensors
partition the detection area into a large number of small convex polygons. From a
given partitioning, one can find the mapping between each point in the detection
area and the minimum radius of a circular object with the center in that point that
is surely detectable. This gives rise to many optimization problems, such as the
problem of finding the positioning of a fixed number of emitters and sensors that
provides the optimal detectability and the problem of finding the minimum number
and positioning of emitters and sensors that provides some predefined detectability.
In addition to the considered environment setup, one can address similar optimiza-
tion problems in a more realistic environment where neither emitters nor sensors
are points in the frame, but instead, they have a width of approximately 5 mm. In
this way, the minimum size of a surely detectable object is implied by the hardware
limitations, i.e., the detection of objects smaller than a circle of radius 5mm is not
guaranteed. Furthermore, different types of emitters have different light intensity
distributions over the emission angle, which ranges from 0 to π in our case. How-
ever, there is no emitter with uniform light intensity distribution over the entire
range. The light intensity detectable by the sensors is usually within the angle of
30-40 degrees, which reduces the number of lines of sight that can be used in the
detection process to approximately 20% of all of the lines of sight.

Ideally, the detection process results in the reporting of all non-empty n-wedge in-
tersections, where each n-wedge intersection corresponds to one object and more-
over, each of these intersections has the same shape and size as the corresponding
object. However, one n-wedge intersection can correspond to 0, 1 or more objects.
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Even in the case where each reported n-wedge intersection corresponds to exactly
one object, the size of the two is never the same. This gives rise to the definition of
object detection accuracy. The measure of accuracy can simply be defined as the
ratio between the total area occupied by the objects and the total area of reported
n-wedge intersections. In a broader sense, each detection failure in the form of
a visibility problem, such as reporting multiple objects as one or reporting non-
existing objects, implies further decreasing of the measure of detection accuracy.

Regardless of the definition of the accuracy measure, one can reason that the level
of the detection accuracy is a direct consequence of the number of blocked lines
of sight. The number of blocked and non-blocked lines of sight depends on two
essentially different factors: (1) the number and the density of emitters and sensors
and (2) the positions and size of objects placed in the detection area. Clearly, the
larger the number of emitters and sensors, the larger is the number of lines of sight
defined by them, which consequently results in higher accuracy of detecting ob-
jects. Consequently, the maximum level of detection accuracy that can be achieved
is when infinitely many emitters and sensors are positioned in a frame surrounding
the objects, so that the distance r between an emitter and its neighboring sensor
goes to zero.

In Chapter 3, we consider detecting identical circular objects assuming the above
mentioned ideal environmental parameters. As a consequence of such an assump-
tion, each line in the plane can be considered as a line of sight between one emit-
ter and one sensor, which results in the maximum level of accuracy that can be
achieved for a given placement of objects in the detection area. An algorithm that
provides the same output as a detection algorithm would provide in the ideal de-
tection environment is the shadow regions algorithm presented in Section 3.3. The
algorithm determines the set of all shadow regions, which is a direct consequence
of the objects’ relative positions.

One can observe that the size of the shadow regions is closely related to the distance
between the objects. More precisely, the closer the objects are to each other the
larger are the shadow regions that they define. The objects that are close to each
other can also cause many visibility problems in the process of object detection.
For instance, a large free shadow region, i.e., a shadow region that does not contain
any object, may be interpreted by the detection device as an object in the detection
area. The light passing between two objects that are relatively close to each other
can be easily blocked by other objects, causing in that way the two objects to be
detected as one, and generally, this type of problem cannot be resolved easily when
there is no additional information on the number and/or the size of the objects and
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their mutual distance.

In order to avoid these visibility problems, we explored the relation between the oc-
currence of ”free” shadow points/regions and the mutual distance between the ob-
jects in Chapters 4 and 5. Two visibility problems discussed in Chapter 4, namely,
the hidden point problem and the occluded point problem, are the starting point
of the investigation. The methods and solutions of these problems represent the
essence in solving the more challenging problems in Chapter 5, namely, the oc-
cluded disk problem, the hidden disk problem and the merging disks problem.

For each of the five visibility problems considered, the distance between two ob-
jects is restricted to be at least some given distance d. We also restrict ourself to
circular objects of identical size. The reason for these restrictions comes from the
application domain. Many board games use pawns that are circular on the bottom.
In addition, the pawns as well as the playing fields on the board can be designed so
that the pawns cannot be on a distance less than some predefined distance.

The visibility problems considered are in essence the problems of finding the min-
imum number Nd of disks that blocks a given set of lines or rays, where the min-
imum mutual distance d between the disks is given. The five problems discussed
are defined for five different sets of lines/rays (1) the set of all rays emanating from
a point, (2) the set of all lines containing a point, (3) the set of all lines intersecting
a disk, (4) the set of all rays emanating from a disk, and (5) the set of all lines pass-
ing between two disks. We showed that for each of the problems, the minimum
number Nd of disks needed to block the given set of lines/rays is quadratic in the
minimum mutual distance d between two disks. This result follows from deriving
upper and lower bounds on Nd that are both quadratic in d.
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JOVANOVIĆ, N., J. KORST, AND V. PRONK [2009], Object detection in flatland,
Proceedings of the 3rd International Conference on Advanced Engineering
Computing and Applications in Sciences, Sliema, Malta.

KATSEVICH, A. [2004], An improved exact filtered backprojection algorithm for
spiral computed tomography* 1, Advances in Applied Mathematics 32, 681–
697.

KRUSKAL, C.P. [2008], The orchard visibility problem and some variants, Journal
of Computer and System Sciences 74, 587–597.

LAURITSCH, G., AND W.H. HAERER [1998], Theoretical framework for filtered
back projection in tomosynthesis, 3338, 1127.

LEVI, F.W. [1954], Ein geometrisches uberdeckungsproblem, Archiv der Mathe-
matik 5, 476–478.

MARTINI, H., AND V. SOLTAN [1999], Combinatorial problems on the illumina-
tion of convex bodies, Aequationes Mathematicae, 121–152.

MELISSEN, H. [1997], Packing and Covering with Circles, Ph.D. thesis, Utrecht
University, Utrecht, The Netherlands.

MITCHELL, J. [2007], Dark points among disks, Open Problems from the
2007 Fall Workshop in Computational Geometry, http://www. research. ibm.
com/people/l/lenchner/fwcg2007/fwcg open problems. pdf.

MUELLER, K., AND R. YAGEL [2000], Rapid 3-d cone-beam reconstruction with
the simultaneous algebraic reconstruction technique (sart) using 2-d texture
mapping hardware, Medical Imaging, IEEE Transactions on 19, 1227–1237.

NIEVERGELT, J., AND F.P. PREPARATA [1982], Plane-sweep algorithms for in-
tersecting geometric figures, Communications of the ACM 25, 739–747.

O’ROURKE, J. [1987], Art gallery theorems and algorithms, Oxford University
Press, USA.

O’ROURKE, J. [1998], Computational Geometry in C, Cambridge University
Press.

O’ROURKE, J. [2004], Handbook of discrete and computational geometry, Chap-
ter Visibility. Chapman & Hall/CRC.

O’ROURKE, J., T. SHERMER, AND I. STREINU [1995], Illuminating convex
polygons with vertex floodlights, Proceedings of the Seventh Canadian Con-



Bibliography 119

ference on Computational Geometry, 151–156.
PACH, J., AND P.K. AGARWAL [1995], Combinatorial Geometry, Wiley-

Interscience, New York.
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Symbol Index

Detection Algorithms
e emitter 15
s sensor 15
n number of emitters (sensors) 16
Γ detection area 16
E set of emitters 16
S set of sensors 16
r distance between an emitter and its neighboring sensor 16
(ei,s j) line of sight 16
B = [bi, j] n x n visibility matrix 16
ω shadow wedge 17
mi number of wedges of emitter ei 17
o object 18
(z0, . . . ,zn−1) wedge vector 19
C n-wedge intersection 19
Pi polygon 21
υ vertex of a polygon 21
Q set of points 28
G grid 30

Limitations of in-plane object detection
D a set of non-overlapping unit disks 36
N the number of disks 36
`,`′, `1 lines 36
p,q, p′,q′ points 36
δ a unit disk 36
ς a shadow region 36
H(D) the convex hull of the disks in D 36
S the set of all shadow regions 36
T the set of defining (tangent) lines 43
t, t ′, t1 tangent lines 43

121



122 Symbol Index

(pδ1 , pδ2) a line segment 43
ρδ1 ,ρδ2 rays 43
L the set of all lines containing only light points 44
U the union of all light corridors 46
δ1, . . . ,δN the disks of the left column 49
δ′1, . . . ,δ

′
N the disks of the right column 49

O1, . . . ,ON the centers of disks in the left column 49
O′1, . . . ,O

′
N the centers of disks in the right column 49

`left line connecting the centers of the disks in the left column 49
`right line connecting the centers of the disks in the left column 49
h the distance between the columns 49
d the distance between two neighboring disks in one column 49
w the width of the area where no two corridors intersect 50
`s the vertical line containing splitting points furthest from `left 51
`m the vertical line containing meeting points closest to `right 51
h̄s the distance between `s and `left 51
h̄m the distance between `m and `left 51
C j the light corridor that begins between disks δ j and δ j+1 52

Visibility Problems I
d the minimum distance between two disks 60
ρ a ray 60
p a given point 61
Rp the set of all rays emanating from the given point p 61
Lp the set of all lines containing the given point p 61
D a (blocking) set of disks 61
Nd the minimum cardinality of a d-apart blocking set D 63
H1, . . . ,Hd hexagons of side length d,2d, . . . ,d2 containing the disks 63
Fn the Farey sequence of order n 67
Id−1 the set of intervals related to H1,H2, . . . ,Hd−1 68
I all intervals from Id−1 ordered by increasing midpoint 68
I, I′ intervals in Id−1 68
ϕ(n) Euler’s totient function 71
R1,R2, . . . hexagonal rings 72
β(δ) the blocking wedge of the disk δ 73
α j the maximum blocking wedge of a disk in ring R j 75
µ j the maximum number of disks within the union of R1, . . . ,R j 75
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Visibility Problems II
U the given disk 82
LU the set of all lines that intersect U 82
RU the set of all rays that emanate from U 93
L(t, t ′) a bundle of lines between tangent lines t and t ′ 84
c a circle of large radius concentric to U 95
rc the radius of the circle c 95
η the number of disks such that N = 6η 95
D2 a 2-apart blocking set 95
c1, . . . ,ck concentric circular rings of radii d,2d, . . . ,kd 97
k the number of circular rings 97
η j the number of disks in one sixth of the j-th ring 98
Aη the sequence of integers corresponding to the number of disks

in the rings 100
A∗η the sequence of integers where k is minimal 100
τ the table corresponding to the ordering of disks 100



Summary

In-plane Object Detection:
Detection Algorithms and Visibility Problems

A large number of devices today incorporate some form of detection of objects
and people in a given environment. Various detection technologies have been de-
veloped over the years, as a response to many different demands. The devices
such as video surveillance systems, scanners, touch screens and various systems
for tracking people and objects in space, detect objects using camera videos and/or
measurements gathered by sensors.

To enable simultaneous detection of multiple objects on table-top interactive de-
vices designed to support games that combine the social attractiveness of tradi-
tional board games with the interactivity of computer games, an in-plane detection
technology that uses LEDs and sensors was developed by Philips. The presence
of objects on the table results in blocking light emitted by the LEDs for some of
the sensors. This information can be used to determine the position and shape of
objects such as game pieces or fingers on the table. If the detection process is per-
formed fast enough, then moving objects can be tracked, for instance, to recognize
gestures made by fingers. This detection technique gives rise to many interesting
geometric problems, such as developing efficient detection algorithms. In addition,
due to occlusion created by the multiple objects placed on the table, some visibility
problems can occur in the process of detecting objects.

We present detection algorithms that use the sensor data as an input and provide an
approximation on the geometry of objects as an output. We discuss the advantages
and disadvantages of the presented algorithms and analyze their worst-case time
complexity as a function of the number of LEDs and sensors.

In addition, the maximum level of the accuracy of detecting circular objects that
can be achieved has been investigated. To investigate this maximum level of ac-
curacy we assume infinitely many LEDs and sensors in a frame surrounding the
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objects. We present and discuss a worst-case optimal algorithm that determines the
output that a detection algorithm would provide in this case.

Several visibility problems have been explored that relate to occlusion, an intrinsic
shortcoming of the detection technique. Among many visibility problems that can
be identified, the focus was on five problems related to either falsely detecting a
non-existing circular object or detecting multiple objects as one. These problems
occur when multiple objects positioned in the detection area block all of the lines
of sight between LEDs and sensors that cross some area that is not occupied by an
object. In this thesis, we focused on exploring the worst-case scenarios, in other
words, finding the minimum number of identical circular objects that can cause one
such visibility problem to occur in relation to the distance between the objects. We
have proved that this number is quadratic in the minimum mutual distance between
the objects. This result can be used in practice, for example, to adapt the layout of
game boards such that these visibility problems can be avoided.
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