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1
Introduction

“All science is either physics or stamp collecting.”
— Ernest Rutherford.

Whether we want to know the name of Canada’s capital, or gather opinions on
Philip Roth’s new novel, the World Wide Web currently is the de-facto source to
find an arbitrary piece of information. In an era where a community-based source
as Wikipedia is found to be as accurate as the Encyclopaedia Britannica [Giles,
2005], the collective knowledge of the internet contributors is an unsurpassed col-
lection of facts, analyses and opinions. This knowledge simplifies the process for
people to gather knowledge, form an opinion or buy a cheap and reliable product.

With its rise in the late nineties, the web was intended as a medium to distribute
content among an audience. Alike newspapers and magazines, the communication
was merely one way. The content published on the web was presented in an often
attractive format and lay-out, using a natural language (e.g. Dutch) we are most
acquainted with.

Nowadays, only a few years later, the web is a place where people can easily
contribute, share and reuse thoughts, stories or other expressions of creativity. The
popularity of social web sites enriches the information available on the web. This
mechanism turned the web into a place where people can form nuanced opinions
about virtually any imaginable subject.

1
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To enable people to share and reuse content, such as the location of that great
Vietnamese restaurant in Avignon on Google Maps, the information on the web
is currently not only presented in a human-friendly fashion, but also in formats
that allow interpretation of information by machines. The so-called Social Web,
or Web2.0, enables people to easily create and publish content. Moreover, content
can be easily reused and combined.

A movement next to the social web is the semantic web. The semantic web
community has created a dedicated formal language to express concepts, predicates
and relations between concepts. Using this mathematical language for general in-
formation, knowledge can be expressed on every imaginable topic. The semantic
web can be seen as a distributed knowledge base. Instead of browsing through web
pages, the semantic web enables direct access to information.

The more information is already expressed in the semantic web languages, the
easier it becomes to represent new information. For example, to model the concept
of First Lady of the United States, it may be needed to first model the concepts
country, United States, person, president, married, time, period and so on. The use
of earlier defined notions makes the content of the semantic web richer, as content
created by various parties can be linked and combined.

In the late sixties in Eindhoven, N.G. De Bruijn and his group developed the
mathematical language for mathematics and system Automath [De Bruijn, 1968;
Nederpelt, Geuvers, & De Vrijer, 2004]. Automath is a dedicated formal language
to express mathematics. The project can be seen as an attempt to formulate and
propagate a universal language for mathematics, that is checked by a system. Such
languages serve two goals. On the one hand, it is a means to ensure mathematical
correctness. If a theorem is provided with a proof in the mathematical language,
and the well-designed system accepts this proof, then the theorem can be consid-
ered to be true. On the other hand, the language provides a means of clear and
unambiguous communication.

Białystok, Poland, the home town of the constructed language Esperanto, is
the base of one of the most active projects on formal mathematical languages. The
Mizar system builds on a set of axioms. A collection of mathematics is formalized
(i.e. derived from the set of axioms) through out the years. Although the Mizar
team have succeeded to completely formalize a whole handbook on continuous
lattices (by 16 authors in 8 years time), the formalization of an elementary the-
ory in another mathematical subject (i.e. group theory) proved to be too ambitious
[Geleijnse, 2004].

In spite of the work done by the semantic web and formal mathematics re-
searchers, both mathematicians and web publishers prefer natural language over
dedicated artificial languages to express their thoughts and findings. In mathe-
matics, dedicated researchers are formalizing (or translating) definitions, theorems
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and their proofs into formal languages. The translation of mathematics into formal
languages was the topic of my 2004 master’s thesis. In this thesis, I will discuss
approaches to catch information on the web into a dedicated formalism. Although
both topics may be closer to stamp collecting than to physics, I do hope that you
will enjoy this work.

1.1 Information on the Web
In this thesis, we focus on information that is represented in natural language texts
on the web. We make use of the text itself rather than of the formatting. Hence,
we extract information from unstructured texts rather than from formatted tables
or XML. Although some web sites may be more authoritative than others, we do
not distinct between sources as such.

Suppose we are interested in a specific piece of information, for example the
capital of Australia. Nowadays, the web is an obvious source to learn this and
many other facts. The process of retrieving such information generally starts with
the use of a search engine, for example Google or perhaps the search engine in
Wikipedia. As we are unaware of the name of Australia’s capital, we query for
terms that can be expected to co-occur with this specific piece of information. The
term Australia is of course a good candidate, but the combination of the words
Australia and capital will more probably lead to relevant pages.

The everyday internet user has learned to formulate effective search engine
queries. However, the fact ‘Canberra is the capital of Australia’ still has to be
identified within the search results. The search engine returns documents that are
likely to reveal this information, but we have to search the retrieved documents for
the fact itself.

To understand a text, we have to be able to parse the sentences, know the precise
semantics of the words, recognize co-references, read between the lines, resolve
ambiguities etc. Hence, for machines this is not a trivial task.

The study of information extraction addresses a subproblem of document (or,
text) understanding: the identification of instances of classes (e.g. names of per-
sons, locations or organizations) and their relations in a text (e.g. the expressed
relation between Canberra and Australia). In this thesis we study how information
extraction can be applied on a specific text corpus: the web.

In this thesis, we focus on the following problem. We are given a domain of
interest, expressed using classes and relations. The goal is to extract information
from unstructured texts on the web. We first find relevant texts on the web using
a search engine. Having retrieved a collection of relevant texts, we focus on two
information extraction tasks. On the one hand we are interested to discover and
extract instances from the given classes, while on the other hand we extract rela-
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tions between such instances. The extracted information is stored in a structured,
machine-interpretable format.

With structured information available, we can easily find the information we
are interested in. The extracted information can be used in intelligent applications,
e.g. in recommender systems to acquire additional meta data. This meta data can
be used to make meaningful recommendations for music or TV programs. For
example, suppose a user has expressed a preference for TV programs relating to
France. The recommender system may be able to recognize regions as Languedoc
and Midi-Pyrénées and cities as Cahors and Perpignan using the extracted infor-
mation. Likewise, if the user has expressed a preference for French music the
system will be able to recognize the names of artists like Carla Bruni and Charles
Aznavour.

1.1.1 Structured Information on the Web
Of course, not all information on the web is unstructured. As alternative sources
for information, we distinguish the following three structured representations of
information on the web.

• The semantic web and other XML-based languages. Pages written in these
language are dedicated subparts of the web for machine interpretable infor-
mation. Information represented in these formats can fairly easily be ex-
tracted.

• Web sites with a uniform lay-out. Large web sites, that make use of a
database, typically present their content in a uniform lay-out. For example,
the lay-out of the Amazon page for a CD by Jan Smit has a similar lay-out as
the page for Spice by The Spice Girls. Hence, given a page within Amazon,
we can easily identify the title, price, reviews and other information based
on the lay-out.

• Tables and other formatted elements inside web pages. In columns in a table,
typically similar elements are stored. For example, if multiple terms from
one column are known to be soccer players, all other terms in the column
can be expected to be soccer players as well.

When we are interested in information that is available on the web, from a
practical point of view, the use of unambiguous structured information is always
preferred over the extraction of information from unstructured texts. However, as
not all information is available in such a manner, web information extraction –
from unstructured texts – is a relevant research topic.
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1.1.2 The Social Web and its Potential
The web as we know it today enables us to get a nuanced view on products, events,
people and so on. The internet community can easily create content in the form of
weblogs, comments, reviews, movies, images and so on. All this information can
be used to form an opinion or help in for example selecting the right mattress to
buy or book to read. Although the content provided by amateurs may undermine
the influence of journalists, critics and other professionals [Keen, 2007], we can
learn from the collective knowledge of the web contributors.

Where the semantic web merely focusses on representing the facts of life, the
social web touches on a more vague or abstract representation of knowledge: the
‘wisdom of the crowds’. This collective knowledge can be seen as a sign of the
times, or a general opinion about a subject.

1.2 Information Extraction and Web Information Extraction
Web Information Extraction (WIE) is the task to identify, structure and combine
information from natural language texts on the web. Given a domain of interest,
we want to create a knowledge base on this topic.

As information gathering from structured sources is in general easier and more
reliable than the use of unstructured texts, web information extraction is particu-
larly interesting for the following information demands.

- The information that cannot be extracted from structured or semi-structured
sources, such as XML documents, single web sites or tables, but is spread
across various web pages.

- The information that is expected to be present on the web. Obviously, we
cannot extract information that is not present in the studied corpus. Hence,
we can say in general that web information extraction is suited for all topics
that people write about.

1.2.1 A Comparison between Web Information Extraction and Traditional
Information Extraction

Information extraction (IE) is the task of identifying instances (named entities and
other terms of interest) and relations between those instances in a collection of
texts, called a text corpus. In this work, instances can be terms and other linguistic
entities (e.g. twentieth president, guitarist, sexy) as well as given names (e.g. The
Beatles, Eindhoven, John F. Kennedy).

For example, consider the following two sentences.

George W. Bush is the current president of the United States. He was born
in New Haven, CT.
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We may consider George W. Bush, current president, the United States and
New Haven, CT to be instances in the presented example. A task in information
extraction could be to isolate these terms and identify their class, or the other way
around: when given a class (e.g. Location), find the instances.

As we deal with natural language, ambiguities and variations may occur. For
example, one can argue that the sequence president of the United States is a pro-
fession rather than the current president or current president of the United States.

Apart from identifying such entities, a second information extraction task may
be to identify relations between the entities. The verb ‘is’ reflects the relation ‘has
profession’ in the first sentence. To identify the place of birth, we have to observe
that ‘he’ is an anaphora referring to George W. Bush.

Traditional information extraction tasks focus on the identification of named
entities in large text corpora such as collections of newspaper articles or biomedical
texts. In this thesis however, we focus on the web as a corpus.

Suppose that we are interested in a list of all countries in the world with their
capitals. When we extract information from a collection of newspaper articles
(e.g. three months of the New York Times), we cannot expect all information to be
present. At best, we can try to discover every country-capital combination that is
expressed within the corpus. However, when we use the web as a corpus, we can
expect that every country-capital combination is expressed at least once. Moreover
each of the combinations is likely to be expressed on various pages with multiple
formulations. For example, ’Amsterdam is the capital of the Netherlands’ and ’The
Netherlands and its capital Amsterdam (...)’ are different formulations of the same
fact. In principle, we have to be able to interpret only one of the formulations to
extract the country-capital combination. Hence, in comparison with a ’traditional’
newspaper corpus, we can both set different objectives and apply different methods
to extract information from the web.

With respect to the task of information extraction, the nature of this corpus has
implications for the method, potential objectives and evaluation. In Table 1.1 the
most important differences between the two can be found.
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NEWSPAPER CORPUS WEB CORPUS

No or fewer redundancy. Es-
pecially for smaller corpora, we
cannot expect that information is
redundantly present.

Redundancy. Because of the
size of the web, we can expect
information to be duplicated,
or formulated in various ways.
If we are interested in a fact,
we have to be able to identify
just one of the formulations to
extract it.

Constant and reliable. In
corpus-based IE, it is assumed
that the information in the cor-
pus is correct.

Temporal and unreliable. The
content of the web is created
over several years by numerous
contributors. The data is thus
unreliable and may be out-dated.
Statements that are correctly
extracted are not necessarily
true or can be outdated.

Often monolingual and ho-
mogeneous. If the author or
nature (e.g. articles from the
Wall Street Journal) of the cor-
pus is known beforehand, it is
easier to develop heuristics or to
train named entity recognizers
(NERs).

Multilingual and heteroge-
neous. The web is not restricted
to a single language and the
texts are produced by numerous
authors for diverse audiences.

Annotated test corpora
available. In order to train su-
pervised learning based named
entity recognizers, test corpora
are available where instances of
a limited number of classes are
marked within the text.

No representative annotated
corpora. As no representative
annotated texts are available, the
web as a corpus is currently less
suited for supervised machine
learning approaches.
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Static. Experimental results are
independent of time and place
as the corpora are static.

Dynamic. The contents of
the web changes continuously,
results of experiments may thus
also change over time.

Facts only. Information Ex-
traction tasks on newspaper
corpora mainly focus on the
identification of facts.

Facts and opinions. As a
multitude of users contributes
to the web, its contents is also
suited for opinion mining.

Corpus is Key. In traditional
information extraction, the task
is to identify all information
that can be found in the corpus.
The information extracted is
expected to be as complete as
possible with respect to the
knowledge represented in the
corpus.

Information Demand is Key.
As for many information de-
mands the web can be expected
to contain all information re-
quired, the evaluation is based
on the soundness and complete-
ness of extracted information
itself.

Table 1.1: Comparison between the Web as a corpus and ‘tradi-
tional’ corpora.

1.2.2 Three Information Demands
We separate the information that can be extracted from the web into three cate-
gories: facts, inferable information and community-based knowledge.

Fact Mining
The first and probably most obvious category of information that can be extracted
from the web is factual information. In this category we focus on the extraction
of factual statements (e.g. ‘Tom Cruise stars in Top Gun’, Brussels is Belgium’s
capital). Such statements can be expected to be expressed within a single document
or even within a sentence. Hence, the extraction of factual information focusses on
the identification of a collection of factual statements, each expressed within a
single document.

In Chapter 4, we focus on the extraction of such factual information from the
web. We use the extracted information to get insights in the performance of our
algorithms, as a ground truth is often available for these information demands.
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Mining Inferable Data
An application domain other than factual data, is the extraction of inferable data
from the web. Inferable data is not present as such on the web, but when it is
discovered it can be recognized by human judges as true or relevant. We create such
information by combining data from multiple sources. For example, the average
price of an 19 inch LCD television in shops in Eindhoven can be identified by
combining data from multiple web sites.

In Chapter 5, we discuss two information demands, where the required infor-
mation is inferred from data extracted from the web. First, we present a method to
extract lyrics from the web. Although many dedicated websites exist on this topic,
it is not trivial to return a correct version of the lyrics of a given song. As many
typo’s, mishearings and other errors occur in the lyrics present on the web, there
is need to construct a correct version using the various versions available. Such a
correct version may even not be present on the web. When a user is given such a
version however, it is relatively easy to judge the correctness.

The second application focuses on an information demand from a Dutch au-
diovisual archive. The collection of audiovisual material are annotated using a
dedicated thesaurus, a list of keywords and their relations. To retrieve a partic-
ular document, knowledge on the content of this thesaurus is crucial. However,
both professional users and the general audience cannot be expected to know each
and every word that is contained in the thesaurus. Using web information extrac-
tion techniques, we present a method to link a given keyword to the term in the
thesaurus with the closest meaning.

Community-based Knowledge Mining
The web is not only a well-suited text corpus to mine factual information. As a
large community of users contributes to the contents of the web, it can also be
used to mine more subjective knowledge. For example, we call Paul Gauguin
a post-impressionist and related to Vincent van Gogh, Christina Aguilera a pop
artist similar to Britney Spears. Such qualifications may not all be facts, but rather
thoughts shared by a large community.

In the last part of this thesis (Chapter 6) we focus on methods to automatically
find such internet community-based information. On the one hand we classify in-
stances (e.g. pop artists) into categories and on the other hand identifying a distance
matrix of related instances. The information found can be used to create an auto-
mated folksonomy: a knowledge base where items are tagged using implicit input
from multiple users.

In restricted domains (e.g. Movies) for fact mining, the use of information ex-
traction techniques for semi-structured information may be well usable. The In-
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ternet Movie Database1 for example is a reliable, semi-structured source to extract
data on movies. When we are interested in subjective data based on opinions of
the web community however, we cannot restrict ourselves to a single source. We
combine data from multiple web sites, and thus multiple contributors, to charac-
terize instances. We can however use semi-structured data from social websites as
as last.fm as a benchmark on restricted domains like music [Geleijnse, Schedl, &
Knees, 2007].

1.3 Related Work
We first focus on research on the extraction of information from semi-structured
sources on the web. While the problem addressed is similar to the one in this
thesis (i.e. extracting and combining information from multiple documents into
a structured machine interpretable format), the source and therefore the methods
differ.

In the second subsection, we focus on related research fields. Finally,
Section1.3.3 focusses on previous work specific to web information extraction.

1.3.1 Gathering Information from Structured Sources
Information extraction from structured sources is thoroughly described in for ex-
ample [Chang, Kayed, Girgis, & Shaalan, 2006] and [Crescenzi & Mecca, 2004].
These methods, ‘wrappers’, make use of the homogeneous lay-out of large web
sites with pages that are constructed using a data-base.

As discussed in Section 1.1.1, web sites such as amazon.com and imdb.com
make use of a database and present automatically generated web pages. The lay-
out is uniform over the whole site, but the relevant information changes from page
to page. For example, within an online music store, the information related to a par-
ticular album is page dependent. The performing artist, the title of the album and
other catalogue data can be found on the exact same place on the page. The HTML-
source of the two pages will also only differ at these places. For pages within a
large web site, a wrapper algorithm can be created the information of interest from
an arbitrary page within the site. Agichtein and Gravano [2000] make use of the
homogeneous lay-out of large websites to extract information by first annotating a
number of pages using a training set of known instances. Etzioni and others [2005]
combine the extraction of information from unstructured sources with the identifi-
cation of instances within tables. Shchekotykhin et al. [2007] describe a method to
recognize tables on a specific domain (digital cameras and notebooks) and extract
the information represented in these tables. In [Auer et al., 2007] structured text
from Wikipedia is used to create semantic web content.

1http://www.imdb.com



1.3 Related Work 11

1.3.2 Related Fields and Tasks
In this subsection, we mention several tasks are closely related to web information
retrieval.

Information Retrieval Information retrieval is often referred to as the task to
return an (ordered) list of relevant document for a given query [Van Rijsbergen,
1979]. Kraaij [2004] gives an overview of commonly used models and techniques
as well as evaluation methods for information retrieval.

A high quality document retrieval system is an essential aspect of an informa-
tion extraction system as the retrieval of relevant documents or fragments is the
first step in any large scale information extraction task.

In this work, we use a web search engine that retrieves relevant documents
using an indexed collection of web pages [Brin & Page, 1998]. These pages are
used to extract the information from the domain of interest. On the other hand,
extracted information, such as given names, can be used to index documents in an
information retrieval system.

Named Entity Recognition In the nineties, the Message Understanding Con-
ferences (MUC) focused on the recognition of named entities (such as names of
persons and organizations) in a collection of texts [Chinchor, 1998]. Initially, this
work was mostly based on rules on the syntax and context of such named enti-
ties. For example, two capitalized words preceded by the string ‘mr.’ will de-
note the name of a male person. As the creation of such rules is a laborious task,
approaches became popular where named entities were recognized using machine
learning techniques [Mitchell, 1997], for example in [Zhou & Su, 2002; Brothwick,
1999; Finkel, Grenager, & Manning, 2005]. However, such approaches typically
make use of annotated training sets where instances (e.g. ‘Microsoft’) are labeled
with their class (‘Organization’). For tasks where instances are to be recognized of
other classes (e.g. the class Movie or Record Producer) annotated data may not be
at hand.

The identification of more complex entities is studied by Downey et al. [2007].
With statistical techniques based on the collocation of subsequent words, terms
such as movie titles are identified. Alternative rule-based approaches also give con-
vincing results using the web as a corpus [Sumida, Torisawa, & Shinzato, 2006].
Schutz and Buitelaar [2005] focus on the recognition of relations between named
entities in the soccer domain by using dependency parse trees [Lin, 1998].

Question Answering Question Answering is a task where one is offered a ques-
tion in natural language [Voorhees, 2004]. Using a large text corpus, an answer to
this question is to be returned. Although many variations in this task occur, typi-
cally the question is to be parsed to determine the type of the answer. For example,
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the type of the answer for Who killed John F. Kennedy? is person. Based on the
content of the corpus, a person name is to be returned. Question Answering also fo-
cusses on other types of questions with a more difficult answer structure (e.g. Why
did Egyptians shave their eyebrows?), the shortest possible text fragment is to be
returned [Verberne, Boves, Oostdijk, & Coppen, 2007]. Dumais et al. [2002] use
the redundancy of information in a large corpus in a question answering system.
Statements can be found at different places in the text and in different formulations.
Hence, answers to a given question can possibly be found at multiple parts in the
corpus. Dumais et al. extract candidate answers to the questions at multiple places
in the corpus and subsequently select the final answer from the set of candidate
answers.

Information extraction can be used for a question-answering setting, as the
answer is to be extracted from a corpus [Abney, Collins, & Singhal, 2000]. Un-
like question-answering, we are not interested in finding a single statement (corre-
sponding to a question), but in all statements in a pre-defined domain. Functional
relations, where an instance is related to at most one other instance, in informa-
tion extraction correspond to factoid questions. For example the question In which
country was Vincent van Gogh born?, corresponds to finding instances of Person
and Country and the ‘was born in’-relation between the two. Non-functional re-
lations, where instances can be related to multiple other instances, can be used to
identify answers to list questions, for example “name all books written by Louis-
Ferdinand Céline” or “which countries border Germany?” [Dumais et al., 2002;
Schlobach, Ahn, Rijke, & Jijkoun, 2007].

1.3.3 Previous work on Web Information Extraction
Information extraction and ontology constructing are two closely related fields.
For reliable information extraction, we need background information, e.g. an on-
tology. On the other hand, we need information extraction to generate broad and
highly usable ontologies. A good overview on state-of-the-art ontology learning
and populating from text can be found in [Cimiano, 2006].

McCallum [2005] gives a broad introduction to the field of information extrac-
tion. He concludes that the accuracy of information extraction systems does not
only depend on the design of the system, but also on the regularity of the texts
processed.

The topic of hyponym extraction is by far the most studied topic in web infor-
mation extraction. The task is given a term to either find it broader term (i.e. its
hypernym), or to find a list of hyponyms given a hypernym. Etzioni and colleagues
have developed KnowItAll: a hybrid web information extraction system [2005]
that finds lists of instances of a given class from the web using a search engine. It
combines hyponym patterns [Hearst, 1992] and learned patterns for instances of the
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class to identify and extract named-entities. Moreover, it uses adaptive wrapper al-
gorithms [Crescenzi & Mecca, 2004] to extract information from html markup such
as tables. KnowItAll is efficient in terms of the required amount of search engine
queries as the instances are not used to formulate queries. In [Downey, Etzioni, &
Soderland, 2005] the information extracted by KnowItAll is post-processed using
a combinatorial model based on the redundancy of information on the web.

The extraction of general relations from texts on the web is recently studied
in [Banko, Cafarella, Soderland, Broadhead, & Etzioni, 2007] and [Bunescu &
Mooney, 2007]. Craven et al. manually labeled instances such as person names
and names of institutions to identify relations between instances from university
home pages. Recent systems use an unsupervised approach to extract relations
from the web. Sazedj and Pinto [2006] map parse trees of sentences to the verb
describing a relation to extract relations from text.

Cimiano and Staab [2004] describe a method to use a search engine to verify
a hypothesis relation. For example, if we are interested in the ‘is a’ or hyponym
relation and we have the instance Nile, we can use a search engine to query phrases
expressing this relation (e.g. “rivers such as the Nile” and “cities such as the Nile”).
The number of hits to such queries is used to determine the validity of the hypothe-
sis. Per instance, the number of queries is linear in the number of classes (e.g. city
and river) considered.

In [De Boer, Someren, & Wielinga, 2007] a number of documents on art styles
are collected. Names of painters are identified within these documents. The doc-
uments are evaluated by counting the number of painters in a training set (of e.g.
expressionists) that appear in the document. Painters appearing on the best ranked
documents are then mapped to the style. De Boer et al. use a training set and
page evaluation, where other methods simply observe co-occurrences [Cilibrasi &
Vitanyi, 2007].

A document-based technique in artist clustering is described in [Knees, Pam-
palk, & Widmer, 2004]. For all music artists in a given set, a number of documents
is collected using a search engine. For sets of related artists a number of discrim-
inative terms is learned. These terms are used to cluster the artists using support
vector machines.

The number of search engine hits for pairs of instances can be used to com-
pute a semantic distance between the instances [Cilibrasi & Vitanyi, 2007]. The
nature of the relation is not identified, but the technique can for example be used to
cluster related instances. In [Zadel & Fujinaga, 2004] a similar method is used to
cluster artists using search engine counts. In [Schedl, Knees, & Widmer, 2005], the
number of search engine hits of combinations of artists is used in clustering artists.
However, the total number of hits provided by the search engine is an estimate and
not always reliable [Véronis, 2006].
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In [Pang, Lee, & Vaithyanathan, 2002; Dave & Lawrence, 2003; Kim & Hovy,
2004; Pang & Lee, 2005] methods are discussed to identify opinions on reviewed
products. For example, given is a set of reviews of some flat screen television
mined from the web. The task is to assign a grade to the product or its specific
features (e.g. the quality of the speakers).

The extraction of social networks using web data is a frequently addressed
topic. For example, Mori et al. [2006] use tf·idf (see [Salton & Buckley, 1988;
Manning & Schütze, 1999]) to identify relations between politicians and locations
and Jin, Matsuo and Ishizuka [2006] use inner-sentence co-occurrences of com-
pany names to identify a network of related companies.

1.4 Outline
This thesis is organized as follows. In the next chapter, we formulate the prob-
lem and give an outline of the method to extract information from the web. This
method gives rise to two subproblems, on the one hand the identification of rela-
tions in texts and on the other hand the identification of the terms and given names
of interest. We will discuss these subproblems in Chapter 3. To obtain evidence for
the applicability of the methods discussed in this thesis, in Chapter 4 we present a
number of case-studies, where we extract factual information from the web. Chap-
ter 5 focusses on two applications of web information extraction. Contrary to the
case-studies in Chapter 4, the information extracted here cannot be found in struc-
tured sources. Chapter 6 handles the extraction of community-based data from the
web, where we find tags for a set of instances. Finally, the conclusions can be
found in Chapter 7.



2
A Pattern-Based Approach to Web

Information Extraction

In this chapter we present a global outline for an approach to extract information
from the web. Hereto we first define a formal model for the concept ‘informa-
tion’. Next, we discuss the design constraints that are specific for both the corpus,
i.e. the web, and the use of a state-of-the-art search engine. Based on the design
constraints, a global method to extract information from the web is presented.

2.1 Introduction
In this section, we first focus on a model to represent information. Using the def-
initions provided in Section 2.1.2, we formulate our problem definition in Sec-
tion 2.1.3.

2.1.1 A Model for ‘Information’
Finding a suitable representation of information is one of key tasks in computing
science. We call data information, when it has a meaning. That is, when it can be
used for some purpose, for example the answering of questions.

To represent the concept information, we let ourselves be inspired by the se-
mantic web community. This community uses the concept ontology, which is de-
fined by Gruber as ‘a specification of a conceptualization’ [1995]. Wikipedia pro-

15



16

vides a perhaps somewhat more practical definition: ‘ontology is a data model that
represents a set of concepts within a domain and the relationships between those
concepts’1.

In the semantic web languages, an information unit or statement consists of a
triplet of the form subject - predicate - object, for example Amsterdam - is capi-
tal of - the Netherlands or the Netherlands - has capital - Amsterdam. Analogous
to the object-oriented programming paradigm, we speak of classes and their in-
stances. Note that in this model instances are part of the ontology. This allows us
to express knowledge on concepts such as Amsterdam and their domains (City),
but also enables us to express relations between concepts. As the predicates can be
as refined as required, this model can be used to express statements that are more
complex.

The semantic web languages OWL and RDFS enable the formulation of prop-
erties of classes and relations. These languages are rich [Smith, Welty, & McGuin-
ness, 2004], but complex [Ter Horst, 2005]. In this work, we opt for a simple
formalization as the focus of this work is on the extraction of information, rather
than on the use of the extracted information. We note that constructs that allow rea-
soning, such as axioms and temporal properties are not included in this formalism.

An initial ontology serves three purposes.

1. It is a specification of a domain of interest. Using the classes and relations,
the concepts of interest are described. A domain is specified by defining the
relevant classes (e.g. City, Capital) and relevant relations (e.g. is located in
defined on classes City and Country).

2. The ontology is used to specify the inhabitants of the classes and relations:
the formalizations of the statements describing the actual instances and their
relations. For example, Amsterdam is an instance of the class Capital and the
pair (Amsterdam, the Netherlands) may be a relation instance of is located
in.

3. We use the ontology the specify an information demand. By defining classes
and their instances as well as relations and relation instances, we model the
domain and indicate the information that is to be extracted from the web.

Now suppose we are interested in a specific piece of information, for exam-
ple: the Capital of Australia, artists similar to Michael Jackson, the art movements
associated with Pablo Picasso or the profession Leonardo da Vinci is best known
for. We assume that such information can easily be deduced from an ontology that
contains all relevant data. The aim of this work is to automatically fill, or populate,

1http://en.wikipedia.org/ article: Ontology (Computer Science), accessed December
2007.
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an ontology that describes a domain of interest. We hence focus on populating an
ontology on the one hand with instances and on the other hand with pairs of related
instances.

2.1.2 Definitions and Problem Statement
The semantic web languages are created to describe information in a machine
readable fashion, where each concept is given a unique, unambiguous descrip-
tor, a universal resource identifier (e.g. http://dbpedia.org/resource/-
Information_extraction is the URI for the research topic of Information Ex-
traction). By reusing the defined URIs, distributed content can be linked and a
connected knowledge base is built.

For reasons of simplicity we abstract from the semantic web notations. By
keeping the definitions simple, the notations introduced in this thesis can be trans-
lated into the semantic web languages with fair ease, as we maintain the subject -
predicate - object structure used in the semantic web languages.

We define an ontology O as follows.

Definition [Ontology]. An ontology O is a pair (C,R), with C the set of classes
and R the set of relations. 2

Definition [Class]. For ontology O, we define class c j ∈C as c j = (n, I,b), where
n is the string giving the name of the class,
I gives the set of instances of the class, and
b ∈ {true, f alse}, a boolean indicating whether c j is complete. 2

Hence, each class is assigned a unique name (e.g. Location, Person) and a set
of instances. As the initial ontology is used to specify the information demand,
we use b to indicate whether we consider the class to be complete, i.e. whether all
relevant instances in I are given. Note that a class c j with b ≡ true does not need
to be complete in an absolute sense, but that the completeness of c j indicates that
there is no demand to find additional instances for the class. To refer to the set of
instances of class c j, we will use I j as a shorthand notation.

Definition [Instance]. For a class c j, an instance i ∈ I is defined by the string
representing the instance. 2

We consider instance i to be an inhabitant of a class named n, if the statement
“i is a n” (e.g. Eindhoven is a city.) is true. Hence, the name of the class defines its
semantics. We assume that within a given class (e.g. Person), the string i uniquely
identifies the instance.
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Apart from classes, we also consider a set of relations R.

Definition [Relation]. For ontology O, a relation ra ∈ R as ra = (n,cs,co,ϕ,J),
with
n is the string representing the name of the relation,
cs is the subject class, cs ∈C,
co is the object class, co ∈C,
ϕ ∈ {true, f alse}, indicating whether the relation is functional, and
J is the set of relation instances, J ⊆ Is× Io. 2

A relation can be conveniently expressed as the triplet [cs] n [co]. For example,
[person] was born in [city] is instantiated with [Vincent van Gogh] was born in
[Zundert].

For non-functional relations (i.e. ϕ≡ f alse), instances in the subject class can
be related to multiple instances in the object class. For example, a person may
have multiple professions, a painter can belong to more than one art movement
and Radiohead can be considered to be related to various other musical artists. For
some relations on the other hand, the number of instances in the object class related
to a subject instance may be restricted. In practice, this distinction is viable for all
relations considered in this work. We will return to the consequences of this choice
in Chapter 3.

Finally, we define the relation instances.

Definition [Relation Instance]. For relation ra = (n,cs,co,J) in ontology O, a
relation instance j ∈ J is a pair (i, i′), where
i is an instance of the subject class cs, and
i′ is an instance of the object class co. 2

We consider relation instance j to be an inhabitant of a relation named n, if the
statement “is n io” (e.g. Eindhoven is located in the Netherlands) is true.

In Figure 2.1 an example ontology is visualized. Relations are considered be-
tween instances in the central class person and instances in all the other classes.

2.1.3 The Ontology Population Problem
As stated in the introductory chapter, we restrict ourselves to using natural language
texts on the web. Before we focus on the actual process of extracting information
from such texts, the task is how to find potentially relevant texts. For informa-
tion extraction tasks with a large collection of documents, the use of a document
retrieval system is necessary to identify relevant texts.

As the web is a collection of billions of text documents, there is need to select
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Nationality Profession Gender

Person

has has has

related_with

Fame

has

Period

lived

Figure 2.1. An example ontology on historical persons.

potentially relevant documents or document fragments. As we consider document
retrieval a separate concern, we chose to use an off-the-shelf search engine.
Using a search engine, we hence need to formulate queries that result in relevant
documents. Having retrieved a relevant document, we can focus on the extraction
of information, i.e. populating the initial ontology. We consider the following two
subproblems in ontology population from texts on the web using a search engine.

The Class Instantiation Problem. Given an initial ontology O with class
c j, identify instances of c j using texts found with a web search engine. 2

The Relation Instantiation Problem. Given an initial ontology O, with re-
lation r = (n,cs,co,ϕ,J) find relation instances (i, i′) ∈ Is× Io. 2

These two subproblems in information extraction are combined in the ontol-
ogy population problem.

The Ontology Population Problem (OP). Given an initial ontology O, in-
stantiate the classes and relations by extracting information from texts on the web
found with a search engine. 2

Given an initial ontology O, we use O′ to refer to the populated ontology.
Popular search engines currently only give access to a limited list of possibly

interesting web pages. A user can get an idea of relevance of the pages presented
by analyzing the title and a snippet presented. When a user has sent an accurate
query to the search engine, the actual information required by the user can already
be contained in the snippet.

If these snippets and titles are well usable for web information extraction
purposes, the documents themselves do not have to be downloaded and processed.
We hereto formulate the following alternative problem description.

The Snippet Ontology Population Problem (SOP). Given an initial ontol-
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ogy O, instantiate the classes and relations by extracting information from search
engine snippets. 2

2.1.4 Evaluating a Populated Ontology
Having populated an ontology, we want to obtain insight in the quality of the in-
formation extracted in terms of soundness and completeness. That is, the extracted
information on the one hand needs to be correct and on the other hand as complete
as possible.

Hereto, we use the standard measures precision and recall. To measure preci-
sion and recall, we assume a ground truth ontology Oref to be given.

For the set O′(I j) of instances of class c j found in the populated ontology O′,
we define precision and recall as follows.

precision(c j) =
|Oref(I j)∩O′(I j)|

|O′(I j)|
and

recall(c j) =
|Oref(I j)∩O′(I j|)

|Oref(I j)| .

We formulate similar measures for the relations r in R.

precision(r) =
|Oref(J)∩O′(J)|

|O′(J)|

recall(r) =
|Oref(J)∩O′(J)|

|Oref(J)| .

The standard objection function in the field of information retrieval to combine
precision and recall is the F-measure [Van Rijsbergen, 1979; Voorhees, 2005]. If
precision and recall are equally weighted, i.e. considered to be of the same impor-
tance, F is defined as follows.

F(c j) =
2 ·precision(c j) · recall(c j)
precision(c j)+ recall(c j)

(2.1)

Using the parameter α, the F measure is generalized as Fα, where F = F1.
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Fα(c j) =
(1+α) ·precision(c j) · recall(c j)

α ·precision(c j)+ recall(c j)
(2.2)

The F-measures for evaluating the populated relations are formulated similarly.
As discussed, to measure precision and recall a ground truth ontology is re-

quired. For some information demands, we can not expect such an ontology or any
other form of structured data to exist. Moreover, information extraction tasks with
a known ground truth are not very interesting from an application point of view.

In cases where no ground truth is available, precision is typically estimated by
manually inspecting a sample subset of the instances found. Recall is estimated
using an (incomplete) set of known instances of the class. For example, if we are
interested in an ontology with musical artists, a complete list of such artists is not
likely to be known. However, we can compute the recall using a set of known or
relevant instances (e.g. famous musical artists extracted from structured sources
such as Last.fm or Wikipedia) and express the recall using this list.

A separate aspect of the evaluation is the notion of correctness. We cannot
assume that all correctly extracted statement are indeed true. However, based on
the expected redundancy of information on the web, we expect factual information
to be identifiable.

More complex to evaluate are subjective relations, such as the relation between
a musical artist and a genre as regarded by the web community. Nevertheless may
the use of web information extraction techniques be valuable for such information
demands, as subjective information is less likely to be represented in a structured
manner. We return to this topic in Chapter 6.

2.2 Extraction Information from the Web using Patterns
The ontology population problem can be split into two concerns.

• We need to compose a strategy to retrieve relevant text.

• We have to focus on a method to actually extract information from these
texts.

We will argue that choosing a strategy to retrieve documents influences the
process of extracting information from these documents. In this section, we will
discuss a global method to populate an ontology (i.e. to extract information) using
texts retrieved with a search engine. The strategy chosen to formulate search engine
queries effects the method to extract information from the texts retrieved.
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Before presenting an ontology population algorithm in Section 2.2.2, we first
discuss the consequences of choosing a commercial search engine and the web as
a corpus.

2.2.1 Design Constraints
The use of a commercial search engine and the nature of the texts on the web lead
to requirements that constrain the design of a method to extract information from
the web.

Search Engine Restrictions
In this thesis, we use a search engine that provides us with ‘the most relevant’
pages on the web for a given query. As the web is a collection of billions of
changing, emerging and disappearing pages, it is infeasible to extract information
from each and every one of them. As we hence need a reliable web document
retrieval system, we use a state-of-the-art search engine to find relevant documents.
The design of such a search engine is a separate concern and outside the scope of
this thesis. Therefore, we choose to use such commercial search engines for our
purposes. Using search engines like Yahoo! or Google also facilitates the reuse of
the methods developed, as programmer’s interfaces are provided.

The use of a (commercial) search engine also has important disadvantages.

• A query sent to the search engine from two different machines can give dif-
ferent search results, as the services of large search engines are distributed.

• The search results differ over time, as the web changes and the pages indexed
and ranked are continuously updated.

Hence, an experiment making use of a distributed search engine can give dif-
ferent results when conducted at any other time or place. For this reason, the use
of static corpora as test sets in information extraction are currently the only basis
to objectively compare experimental results. Hence, experimental results of alter-
native approaches in web information extraction are hard to compare.

In the first chapter, we give a comparison between static corpora and the Web
as a corpus. We choose not to test our methods on static corpora to benchmark
the performance with other methods, as our method is specifically designed for
the characteristics of the Web. However, where possible we do compare our web
information extraction approach with work by others.

An initiative where a snapshot of the web is stored and indexed would be a
stimulus for the field of web information extraction. Such a time and location
independent search engine would facilitate a reliable comparison of alternative
approaches in web information extraction.
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Currently, both Google and Yahoo! allow a limited amount of automatic
queries per day. At the moment of writing this thesis, Google allows only 1,000
queries a day, where each query returns at most 10 search results. Hence if for a
given query expression the maximum of 1,000 search results are available, we need
to formulate 100 queries using the GoogleAPI. Yahoo! currently is more generous,
allowing 5,000 automated queries per day, where at most 100 search results are
returned per query.

Hence, this search engine use restriction requires us to analyze our approach
not only in terms of time and space complexity, but also in terms of the order of
number of queries, which we termed the Google Complexity.

Definition [Google Complexity]. For a web information extraction algo-
rithm using a search engine, we refer to the required number of queries as the
Google complexity. 2

In this thesis, we will analyze the Google Complexity in terms of the required
number of queries for the populated ontology O′.

To restrict the Google complexity, we need accurate queries for which we
can expect the search engine to return highly relevant information. The actual
requirements depend on the application of the data. If the collection of information
is a single time effort, a run time of a couple of days would be acceptable.
However, for real-time or semi real-time applications, a more efficient approach is
required.

Design Constraint. The Google complexity of the approach chosen to pop-
ulate an ontology should be such that the algorithm terminates within days. 2

In this chapter, we present a method with a Google complexity that is linear
in the size of the output. In Chapter 5, we focus on two applications of web
information extraction, with a constant Google complexity.

Limitations on Text Processing
Having retrieved a potentially relevant document from the web, the task is to iden-
tify relevant instances and their relations. Traditionally, approaches in informa-
tion extraction (and natural language processing in general) can be split into data-
oriented and knowledge-oriented ones.

In a data-oriented information extraction approach, instances and relations are
typically recognized using an annotated training set. In a representative text corpus,
relevant information such as part-of-speech tags, dependency parse trees and noun
phrases are signaled. These annotated texts are used to train a machine learning
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algorithm to classify a text without annotations, the test set. The assumption is used
that instances of the same class appear in a similar context, are morphologically
similar, or have the same role in the sentence.

In a knowledge-oriented approach on the other hand, we create a model to rec-
ognize instances and relations in texts. We hence use our own knowledge of lan-
guage to create recognition rules. For example, we could state that two capitalized
words preceded by mr. indicate the name of a male person.

Using either a data- or knowledge-oriented approach to populate an ontology,
the approach is to be domain dependent. The annotations or rules that are used to
recognize some class c j (e.g. Movie, Musical Artist) cannot be used to recognize
instances of some other class (e.g. Person). An additional problem for a data-
oriented approach is the lack of available annotations.

Supervised data-oriented approaches in natural language processing make use
of a representative training corpus. The text in this training corpus is annotated for
the specific NLP task, for example part-of-speech tagging [Brill, 1992] or the iden-
tification of dependencies within a sentence [Lin, 1998; Marneffe, MacCartney, &
Manning, 2006]. Such low level features are commonly used in information ex-
traction methods [Collins, 2002; Etzioni et al., 2005]. The common annotations for
information extraction in the available corpora focus on standard, restricted named
entity recognition tasks, such as the recognition of person names, companies and –
in the biomedical domain – protein names. The more regular a corpus is, the better
a system performs on a given NLP task [McCallum, 2005].

The web texts found with a search engine and especially the snippets are irreg-
ular as they are multilingual and contain typo’s and the broken sentences. Due to
the irregularity of the texts and the lack of representative training data, it is there-
fore not likely that low level features like parts-of-speech can be identified reliably.
An additional problem is that annotated training data is not available for all the
class instantiation tasks we are interested in.

Given these considerations, we choose not to make use of manually annotated
training data and off-the-shelf systems that are trained on such data. Hence, to
opt for a generic approach in ontology population, we formulate the following
constraint.

Design Constraint. To facilitate a generic approach, we do not make use
of manually annotated training data. 2

In Chapter 4 we return to this topic, where we evaluate the use of an off-the-
shelf supervised named entity recognizer to identify person names in snippets.

In the next chapter, taking this design constraint into account, we discuss op-
tions in rule-based and unsupervised machine learning approaches in ontology pop-
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ulation.

2.2.2 Sketch of the Approach
In this section, we present a global approach to populate an initial ontology O.
As discussed earlier in this chapter, we are confronted with the design constraint
that the availability of the search engines is limited. This enforces us to formulate
precise queries, in order to obtain highly relevant search results.

Now, if an ontology with complete classes is given, the task is to only populate
the relations, i.e. to find relation instances. In other words, we have to find and
recognize natural language formulations of the subject – relation – object triplets.

If we are interested in the class instantiation problem, the tasks are quite similar.
For a class named n, the task is to find terms t where the triplet t is a n is expressed.
Hence, the class instantiation problem can easily be rewritten into a relation instan-
tiation problem for incomplete classes.Suppose we are handed the following class
instantiation problem: O = ({c j}, /0) with c j = (n, I,b). We now can rewrite the
problem into a relation instantiation problem for incomplete classes, by creating a
new class c j with the name of class c j as the only instance. A relation rk is intro-
duced to express the original inhabits (or is-a) relation between the instances and
the class itself. That is, O = ({c j,ci},r) with c j = (n′, I,b), c j = (n′′,{n}, true) and
r = (is a,c j,ci, true,J), with J = {(a,b)|b = n∧a ∈ I j}.

Without loss of generality we can thus focus on an approach to solve the in-
complete relation instantiation problem here. We will focus on the identification of
statements containing a subject – relation – object triplets.

A common approach in web information extraction is to formulate queries con-
sisting of all pairs of the names of known instances of the subject and object classes.
The number of hits is used by Cilibrasi and Vitanyi [2007] to compute a distance
between instances, while Mika creates a network of related instances in a similar
fashion [Mika, 2007]. Knees et al. [2004] use the total number of search results
(i.e. the numbers of hits) of queries with two instances to classify musical artists.
Gligorov et al. [2007] use the number of hits of combinations of instances from two
separate ontologies as a distance measure used in ontology mapping. De Boer et
al. [2006] use combinations of names of art styles and periods to create a mapping
between the two.

Hence, if we are interested in the relation named was born in and the subject
class cs containing the instance John F. Kennedy, we can combine this instance with
all instances in object class co into queries. The search results are then processed in
some fashion to identify evidence for the was born in relation between the queried
instances.

Although this approach is a straightforward method to collect relevant texts on
the web, we observe the following drawbacks.
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• Large number of queries. This approach leads to |Is| · |Io| queries and has
therefore in general no Google complexity linear in the total number of in-
stances.

• Not generally applicable. As such an approach assumes the classes to be
complete, it cannot be used to solve the general ontology population problem
for incomplete classes.

• No solution for relation identification. The co-occurrence of two instances
in a document does not necessarily reflect the intended relation. Hence, ei-
ther the query needs to be more specific [Cimiano & Staab, 2004] or the
documents need to be processed [Knees et al., 2004].

As an alternative, we formulate queries containing one known instance. Such
an approach would lead to a Google complexity linear in the number of instances in
O′, if we formulate a constant number of queries per instance. Having formulated
a query containing an instance, the texts retrieved by the search engine are to be
processed to recognize an instance of the other class and evidence for the relation
between the two.

A very simple language model. The web as a corpus – and especially the collec-
tion of snippets returned by a search engine – is multi-lingual and contains typo’s,
broken sentences, slang, jokes, and other irregularities. As no representative an-
notations or reliable tools are available for such data, we choose to opt for a very
simple language model to identify instances and their relations.

We focus on sentences where the instances of the subject and object class are
related by a small text fragment. We ignore the rest of the context. Given a relation
ra, we use short text fragments that are commonly used to express the relation of
interest. For example, the text fragment was born in is an often used expression
to express the relation between a person and his place of birth. We refer to these
frequently occurring text fragments as patterns.

Design Constraint. We recognize a relation between two instances if and
only if the two instances are connected by one of the predefined text fragments. 2

Of course, a relation between two instances can be formulated in numerous man-
ners and such formulations can be found in various other ways, e.g. using anaphora,
in multiple sentences etc. Hence, if we would be interested to find each and every
occurrence of an expression of the intended relation, this method might not be the
best possible choice. However, as we use the web as a corpus, we make use of
the redundancy of information. We expect that important concepts and relations
occur in various formulations on the Web. As we are interested to find at least one
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formulation of a subject – relation – object triplet on the Web, we do not have to
recognize every relevant statement encountered.

Making use of the redundancy of information, the chosen language model is a
powerful mechanism to formulate precise and effective queries. By combining an
instances and a pattern into a query (e.g. John F. Kennedy was born in, we generate
very relevant search results. The locations extracted in the search results are used
to simultaneously populate the class and the relation.

In related work, Etzioni et al. [2005] propose a method to combine pat-
terns with class names into queries to populate the given classes. The identifica-
tion of hyponyms using combined instance-pattern queries is discussed in [Tjong
Kim Sang & Hofmann, 2007].

We combine a pattern and a known instance into a search engine query. The
patterns are stored with placeholders for instances of the classes. For example,
for the relation born in with classes Person and Location, the following subject
- pattern - object triplets can be identified: [Person] was born in [Location] and
[Location] is the place of birth of [Person]. In the given examples, [Location] and
[Person] serve as placeholders for the instances of the corresponding classes. When
querying the pattern in combination with a subject instance, the object instance is
to be recognized in the position of the object class placeholder and vice versa.

Hearst [1992] coined a simple technique to identify the relations between two
terms in a text. She identified a number of frequently used text fragments – patterns
– that connect a word and its hyponym. The running example in this paper is the
following sentence.

The bow lute, such as the Bambara ndag, is plucked and has an individual
curved neck for each string.

From this example sentence, we learn that a Bambara ndag is a kind of bow
lute. Hence, to extract the hyponym relation between bow lute and Bambara ndag
no context is required but the text fragment in between the two terms. Moreover, no
knowledge or any other background information on Bambara ndags or bow lutes is
required to identify the relation between the two. Hearst identified the six patterns
as given in Table 2.1.

The preselected patterns in [Hearst, 1992] are used in various web information
extraction systems, for example [Ciravegna, Chapman, Dingli, & Wilks, 2004;
Etzioni et al., 2005; Sumida et al., 2006; McDowell & Cafarella, 2006; Pantel
& Pennacchiotti, 2006].

We expect information to occur redundantly on the web. Although we do not
need to recognize every formulation of a given fact, we can expect to extract in-
stances and relation instances from multiple different texts. We can use the re-
dundancy of information on the web to filter the extracted data. Not all extracted
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[hypernym] such as [hyponym]
such [hypernym] as [hyponym]
[hyponym] or other [hypernym]
[hyponym] and other [hypernym]
[hypernym] including [hyponym]
[hypernym] especially [hyponym]

Table 2.1. Patterns for instance-class relation.

data can be assumed to be correct. Extracted statements can be erroneous for two
reasons. On the one hand because the context influences the semantics of the in-
stance - pattern - instance phrase. For example, consider the sentence Some people
think that Sydney is the capital of Australia, where the context suggests that the
triple Sydney - is the capital of - Australia is not a true fact. On the other hand, the
information provided can simply be false.

As a consequence of the redundancy of information on the web, we assume
that a instance - pattern - instance phrase will most often express the corresponding
relation in the ontology. However, as we ignore the context of the subject - pattern
- object phrase, erroneous or misinterpreted data can be extracted. For example,
suppose we would extract Canberra to be Australia’s capital from 30 documents
on the web, while Sydney, Wellington and Canbera are identified only a couple of
times as such. Based on these figures, we filter out the erroneously extracted data.

Sketch of Algorithm. Given is an initial ontology describing the domain of in-
terest. For each relation r ∈ R in the ontology we assume given a non-empty set
P(r) of patterns expressing r and a non-empty set of instances for either the ob-
ject or the subject class. Using a known instance and a pattern, we can formulate
queries that potentially lead to relevant texts.

Using an ontology O that meets the requirements, we populate O using the
following approach. We iteratively select a relation r in R (e.g. born in) and a
pattern S corresponding to this relation (e.g. ‘was born in’). We then select a class,
i.e. either the subject or the object class for r, and take a known instance from
this class (e.g. Alan Turing from the subject class Person). The selected instance
and pattern are then combined into a search engine query (Alan Turing was born
in). Subsequently, we extract instances of the unqueried class from the search
results. This procedure is continued until no unqueried instance-pattern pairs exist.
New patterns can be learned by analyzing texts containing newly extracted relation
instances. Using newly learned patterns, the ontology population procedure can be
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do ¬ stop criterion →
do ∃r,c j∃i∈I j, S∈P(r) “i – S combination unqueried” →

combine pattern S and instance i into query ;
collect snippets or documents from the search results ;
extract instances of the related class ck from search results ;
store the extracted instances i′ in class ck ;
store the extracted relation instances (i, i′) ∈ I j× Ik in relation r;

od
find new patterns for the relations in R ;
od

Table 2.2. Sketch of the ontology population algorithm.

repeated. In Table 2.2 we give an overview of the approach in pseudo-code.
When initially no patterns are provided, the algorithm can be used to identify

patterns. However, in that case, non-empty sets of relation instances are required.
As a stop criterion we simply use a fixed number of iterations. The extraction

of the instances in the texts as well as the identification of patterns can be studied
in isolation and are the topics of the next chapter.

Google complexity. As extracted instances are used as queries, one can easily
observe that the Google complexity of the approach cannot be expressed in terms
of the size of the input, the initial ontology O. However, the Google complexity
can be expressed in terms of the size of the populated ontology O′.

After the termination of the algorithm, each instance in the output ontology
has been queried with every matching pattern. Suppose we have pat(ra) patterns
for relation ra, then the total number of queries Nq in the population phase can be
expressed as follows.

Nq = ∑
ra∈R

pat(ra) · (|Is|+ |Io|) (2.3)

Hence, assuming that a constant number of queries is used, the Google com-
plexity is linear in the sum of the sizes of the sets of instances in the populated
ontology.

Bootstrapping. It is notable that the algorithm features multiple bootstrapping
mechanisms. For an ontology with incomplete classes, the following bootstrapping
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steps apply.

• The instances extracted for relation ra are used as queries to populate other
relations. For example, using the ontology in Figure 2.1, we can find in-
stances in class Person after querying phrases containing instances of pe-
riod. We use the persons found, to identify relations between person and
profession and potentially find new professions.

• The extracted relation instances can be used to find new relation patterns.
In Section 3.1 we present a mechanism to identify patterns using a set of
relation instances. When we expand the set of relation instances, we can find
other or more reliable relation patterns. These patterns can then be used to
populate the ontology.

• The texts can be used to identify new instances. Using queried texts contain-
ing known instances, we can learn to recognize the morphology and context
of instances. We focus on this task in Section 3.2.

Hence, we created a framework, where starting with only few instances we can
populate a full ontology on a domain of interest. The approach as discussed in this
section, leaves two issues unresolved: the identification of instances from text and
the identification of patterns. These topics are the focus of the next chapter.



3
Two Subproblems in Extracting

Information from the Web using Patterns

In the previous chapter, we proposed a pattern-based method to extract information
from the web using a search engine. After having presented a global outline, we
identified two subproblems to be resolved. In this chapter, we study these prob-
lems in isolation. We first focus on the automatic identification of relation patterns
in Section 3.1. Section 3.2 focusses on several alternative approaches to identify
instances from text.

3.1 Identifying Effective Patterns
Ravichandran and Hovy [2002] present a method to automatically identify surface
text patterns expressing relations between pairs of terms using a search engine.
Based on a training set of relation instances, their method identifies natural lan-
guage patterns that express some relation between two instances. For example,
“was born in” showed to be a one of the patterns expressing the relation between
instances Mozart (of class Person) and 1756 (of class Year). This pattern proved to
be precise as many of the search results for the query Mozart was born in showed
to contain the instance 1756.

Using the terminology defined in the previous chapter, the algorithm proposed
by Ravichandran and Hovy can be sketched as follows. Given is an ontology O =
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for (i, i′) ∈ J →
combine the two terms as a search engine query: i , i′ ;
collect the sentences in the search results containing both i and i′ ;
replace instances by placeholders for the corresponding classes ;
store the text fragments S in a set P ;

rof
initialize c(S) and n(S) to 0 for all S ∈ P ;
for (i, i′) ∈ J →

query i ;
collect all sentences in the search results that contain both instances ;
for S ∈ P →

c(S) = c(S)+number of occurrences of S with i′;
n(S) = n(S)+ the total number of occurrences of S ;

rof
rof
for S ∈ P →

compute precision fpr(S) = c(S)
n(S) ;

rof
select the most precise ones using the scores fpr such that c(S)≥ 5;

Table 3.1. Sketch of the pattern identification algorithm proposed by Ravichan-
dran and Hovy.

({cs,co},{r}), with the set of relation instances J non-empty. The identification of
patterns is done in two phases: a collection and an evaluation phase.

In the collecting phase of Ravichandran and Hovy’s algorithm, queries are for-
mulated to identify potential patterns expressing the relation r. Subsequently, the
collected text fragment are evaluated to select the most precise ones. A sketch of
this algorithm is given in Table 3.1.

The algorithm presented is used in a question-answering setting for so-called
factoid questions [Voorhees, 2004]. Using the terminology introduced in the pre-
vious chapter, such questions correspond to functional relations.

We address the issue of extracting patterns, since we observed a number of
drawbacks of Ravichandran and Hovy’s work with respect to the application of
such patterns in a more general information extraction setting.
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• Ravichandran and Hovy focus only on functional relations. In a general
information extraction setting, we cannot assume that all relations are func-
tional.

• The use of precise patterns can lead to a low recall of relevant search results.
The criterion for selecting patterns, precision, is therefore not the only ba-
sis for a pattern to lead to relevant search results. Although Ravichandran
and Hovy use a threshold to filter out rare phrases, for the more frequently
occurring phrases, precision is the only selection criterion.

• When querying an arbitrary instance, the probability of retrieving sentences
that both contain the unqueried instance as well as one of the predefined
patterns is not very high.

Hence, we propose both different evaluation criteria as well as an adapted
mechanism to collect and evaluate the patterns. We present a domain-independent
method to identify effective rather than precise patterns representing relations. We
call a pattern effective, if it links many instance-pairs in the snippets found with a
search engine. Hence, the use of an effective pattern should lead to snippets con-
taining instances in the related class with high levels of precision and recall. The
identification of effective patterns is important, since we want to perform as few
queries to a search engine as possible to limit the use of its services.

3.1.1 Problem Description
We are interested to identify effective patterns for a given relation between two
classes. To discover such patterns, we require the set of relation instances J to be
non-empty.

Hence, using the terminology as posed in Chapter 2, we consider an ontology
O with one single relation, i.e. O = ({cs,co},{r}), with J non-empty. Here,
r = (n,cs,co,J)). We do not require that cs 6= co.

The Effective Pattern Extraction Problem. Given is an ontology O with relation
r and a non-empty set of relation instances for r. Identify effective patterns that
express relation r. 2

For example, we consider the classes with names Author and Book Title and
the relation named has written. We assume that J contains some relation instances,
e.g. (Leo Tolstoy, War and Peace) and (Günter Grass, Die Blechtrommel). The
aim is then to find natural language phrases that relate authors to the titles of their
books, such as the simple pattern wrote. Thus, if we query a pattern in combination
with the name of an author (e.g. Umberto Eco wrote), we want the search results
of this query to contain the books by this author.
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3.1.2 The Effective Pattern Extraction Algorithm
We present an algorithm to identify effective patterns for relations. For reasons of
simplicity we only focus on infix patterns, contrary to the approach by Ravichan-
dran and Hovy. As we are interested in subject – relation – object triplets, we
expect the relation to be expressed in text in between the two instances. There-
fore, the pre- and postfix parts of the patterns are expected to mainly function as
a means to detect the location of instances in the text. We consider this to be a
separate concern and return to this topic in the next section.

From the set J of relation instances we select a set T ⊆ J to identify patterns
from text and a validation set V ⊆ Is that is used to check the identified patterns for
effectiveness.

The set T should be chosen such the instance-pairs are typical for relation r. We
do so by selecting the instance-pairs that are found most frequently in a previous
iteration of the ontology population algorithm (Section 2.2).

To identify a (new) set of effective patterns that represent r, we first discover
how relation r is expressed in natural language texts on the web. Subsequently
we address the problem of selecting effective patterns from the total set of patterns
found.

Identifying Relation Patterns
We first generate a set of patterns with the use of the following algorithm. For
evaluation purposes, we also compute the frequency of each pattern found.

In the first part of the algorithm, the identification phase, we collect a set of
patterns by querying both instances i and i′ of the pairs in T . We query both " i *
i′ " and " i′ * i ". The * is a regular expression operator, serving as a placeholder
for zero or more words. Table 3.2 gives example search results.

Having collected the search results for the given queries, we collect the inner-
sentence text fragments in between the two queried instances. The collected text
fragments are subsequently normalized by removing all mark-up that is ignored
by the search engine. Since popular search engines are case-insensitive and ig-
nore punctuation, we translate all phrases found to a normal form: the simplest
expression that we can query that leads to the document retrieved.

For each of the normalized phrases, we compute the frequency pfreq. A sketch
of the identification phase of the effective pattern extraction algorithm can be found
in Table 3.3.

We now have generated a set with patterns and their frequencies within the
retrieved snippets.
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Leo Tolstoy’s masterpiece, War and Peace.

Leo Tolstoy, War and Peace - eSnips, share anything

Leo Tolstoy’s major work, War and Peace, is

Leo Tolstoy: His Own War and Peace (Path I) By Ekaterina Chel-
panova. Published: 1st June 05

Leo Tolstoy. Then novel War and Peace was written by a famous

Leo Tolstoy?s novel, War and Peace, contains three kinds of material, a
historical

Leo Tolstoy/Tolstoi — Download War and Peace

Leo Tolstoy name his book ”War and Peace” and not ”Peace and War”,
when

Leo Tolstoy fictionalized him in ”War and Peace’

Leo Tolstoy that is not War and Peace? Anna Karenin

Leo Tolstoy to devote a War and Peace to the period of the

Leo Tolstoy’s most celebrated novel War and Peace, the vast epic of

Leo Tolstoy, author of ”War and Peace” and ”Anna Karenina.

Leo Tolstoy’s classic work, War and Peace.

Leo Tolstoy’s monumental epic War and Peace

Table 3.2. Example search results for the allintext-query Leo Tolstoy ∗ War and
Peace.

for each (i, i′) ∈ T →
query the expressions " i * i′ " and " i′ * i " ;
extract all phrases S matching the queried expressions ;
replace i and i′ in S by placeholders for the classes ;
normalize S ;
store S and update its frequency pfreq(S) ;

rof

Table 3.3. Sketch of the pattern identification phase.
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Selecting Relation Patterns
From the list of relation patterns found, we are interested in the most effective ones.
Precision is not the only criterion for effectiveness. For example, the retrieved pat-
tern född 30 mars 1853 i proved to a 100% precise pattern expressing the relation
between a person (Vincent van Gogh) and his place of birth (Zundert). Clearly,
this rare phrase is unsuited to mine instance-pairs of this relation in general. On
the other hand, high frequency of some pattern is no guarantee for effectiveness
either. The frequently occurring pattern “was born in London” (found when query-
ing for Thomas Bayes * England) is well-suited to be used to find London-born
persons, but in general the pattern is unsuited – since too narrow – to express the
relation between a person and his or her country of origin.

Taking these observations into account, we formulate three criteria for selecting
effective relation patterns.

1. The patterns should frequently occur on the web, to increase the probabil-
ity of getting any results when querying the pattern in combination with an
instance.

2. The pattern should be precise. When we query a pattern in combination with
an instance in Is, we want to have many search results containing instances
from co.

3. If relation r is not functional, the pattern should be broad, i.e. among the
search results when querying a combination of the pattern and an instance in
Is there must be as many distinct r-related instances from co as possible.

Note that these criteria are language independent. To measure the three criteria,
we use the validation set to combine the patterns found with instances i in the
validation set V . Hereto we define the following variables.

1. The frequency of a pattern S , ffreq(S), the number of occurrences of S
found in the identification phase.

2. The precision fprec(S) of a pattern S, is given by

fprec(S) = ∑i∈V P(S, i)
|V | ,

for instances i ∈V , where P(S, i) is defined as

P(S, i) =
FI(S, i)
FO(S, i)

where
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FI(S, i) is the number of snippets
containing instances of cowhen querying S with i

and

FO(s,x)is the total number of snippets found
when querying S with i.

3. The broadness of a pattern S, fspr(S) where

fspr(S) = ∑
i∈V

B(S,x),

with

B(s,x) =
the number of distinct instances of class co found
when querying S with i.

The larger we choose the validation set V , the more reliable the measures for
precision and broadness.

We finally calculate the score of the patterns. For the non-functional relations,
we do so by multiplying the individual scores:

score(S) = ffreq(S) · fprec(S) · fspr(S) (3.1)
For the functional relations, the aim is to obtain results with low scores for

fspr(S). For these cases we propose the following function to combine the three
parameters.

score(S) = ffreq(S) · fprec(S) · 1
fspr(S)

(3.2)

For efficiency reasons, we only compute the scores of the patterns with the
highest frequencies. We apply this heuristic, as we are in practice likely to obtain
thousands of patterns in the identification phase. For the case of the computation of
the scores for patterns expressing functional relations, ffreq(S) is the upperbound
for score(S). Hence, if it holds that ffreq(S ′) is smaller than score(S) for patterns
S and S ′, then score(S ′) is also smaller than score(S). Therefore not all patterns
need to be evaluated to find the most effective ones. For the case of the non-
functional relations, the maximum value for fspr(S) can be estimated to find an
upperbound for score(S).

We express the Google complexity of the effective pattern identification algo-
rithm in terms of the sizes of the identification and validation sets T and V . The
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... [placeholder] [pattern] [known instance]︸ ︷︷ ︸
query

...

︸ ︷︷ ︸
search result

Figure 3.1. Query, pattern, search result and placeholder.

identification phase requires 2|T | queries, as each pair in T is queried twice. Each
pattern evaluated in the second phase requires |V | queries to determine the score.
Hence, assuming that the m most frequently identified patterns are evaluated, the
total Google complexity of the algorithm is 2|T |+m|V |.

3.2 Identifying Instances
As discussed in the first chapters of this thesis, the ontology population task differs
from the general information extraction task in a number of aspects. These differ-
ences also have their consequences in choosing a strategy in identifying instances
from texts.

As we use the web as a corpus, we can assume that the instances are redun-
dantly available. For our task it is not necessary to recognize each of the encoun-
tered occurrences [McDowell & Cafarella, 2006]. In recognizing instances, the
focus should be on the precision. If we extract erroneous instances and use them
in newly constructed queries, this will potentially lead to the extraction of more
erroneous instances. Hence, we opt for a strategy with high precision, while the
bootstrapping mechanisms should lead to a high recall for the ontology considered.

As we opt for a pattern-based approach, we know the context of the potential
instance (i.e. the queried expression) and its placeholder (either preceding or fol-
lowing the search query). We define the maximal distance to the query in terms of
the number of words. Figure 3.1 and Tables 3.4 and 3.5 illustrate this task. Within
the search results in Table 3.4, the task is to identify professions like scientist and
chemist at a placeholder following the queried expressing. In Table 3.5 a challenge
is to recognize Rachel Carson as a Person, contrary to Project Manager.

Now the problem is to identify instances at the placeholder.

The Instance Identification Problem. Given is an initial ontology with relation r
on the classes cs and co. Using a query combining an instance in Is and a pattern
expressing r, we obtain query results Q. Given Q, identify instances of class co at
the placeholder. 2

A class in the given initial ontology may be either complete or incomplete. In the



3.2 Identifying Instances 39

Marie Curie was a world-renowned scientist who made many important
discoveries,

Marie Curie was a dedicated humanitarian, eager to

Marie Curie was a two-time Nobel Prize winner and one of the first
women ever to
Marie Curie was a lone genius who found new

Marie Curie was a famous scientist as you think. She was born in
Poland 1867.

Marie Curie was a brilliant scientist who received two Nobel Prizes.

Marie Curie was a world-renowned scientist who made many important

Marie Curie was a physicist and chemist of Polish upbringing and, sub-
sequently,

Marie Curie was a Polish-born physicist and chemist and one of the
most famous scientists of her time.

Marie Curie was a Polish physicist and chemist who lived between
1867-1934.

Marie Curie was a Polish chemist and pioneer in the early field of radi-
ology and

Marie Curie was a Polish-born physicist and chemist and one of the
most famous

Marie Curie was a real hero as she

Table 3.4. Example search results for the pattern [Person] was a [Profession],
instantiated with Marie Curie.

first case, it may seem trivial to recognize instances in texts as we can match the
text at the placeholder with the set of instances. However, as the terms representing
the instances can be ambiguous (e.g. Live, Madonna), we present an approach to
compensate for the ambiguity. For the task with incomplete classes, we focus on
both knowledge-oriented and data-oriented approaches. The design constraint that
no representative manually annotated texts are available hampers the latter.

3.2.1 Instance Identification for Complete Classes
Given is an ontology O with a complete class ca, for example Painter. Note that
for complete classes all relevant instances are included in the ontology. Hence, if a
class is labeled to be complete, all relevant instances for the given setting are given.
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What were some of Sir Isaac Newton’s other jobs before he was a sci-
entist

scientist, while Benjamin Franklin was a scientist

if Einstein was a scientist

Project Manager was a scientist

Poste on 2008-03-13 09:59 by Mike. Fucked Up. I met this new woman.
Apparently she was a scientist

Charles W. Buggs (1906-1991) Charles W. Buggs was a scientist

describe an occupation: ”My father was a scientist

therefore the proposition that Mahatma Gandhi was a scientist

Kurt Godel was a scientist

gathered to celebrate the centennial of Rachel Carson. She was a scien-
tist

Rachel Carson was a scientist

Niels Bohr was a scientist

Werner Heisenberg was a scientist

Orange Research and Education, and was a scientist

his flaws and excesses (well depicted in the movie), Kinsey was a
scientist

Table 3.5. Example search results for the pattern [Person] was a [Profession],
instantiated with scientist.

We defined the placeholder for instances of the unqueried class in terms of the
maximum amount of words between the queried expression and the instance to be
identified, given that these words are within the same sentence. We allow distances
larger than 0 to compensate for variations in adjective, adverbs and the like. For
example, for the pattern [hyponym] is a [hypernym] the words directly preceding
the phrase is a are typically used to specify the hyponym (Chapter 5.1).

For simplicity, we use the full stop marker to detect sentence boundaries. Re-
cently, Kiss and Strunk [2006] have proposed a more elaborate method to distin-
guish sentence boundaries from abbreviations in a multilingual corpus using an
unsupervised approach.

Having defined the placeholder for instances of class ca, we scan the search
results for occurrences of the instances in the class. For larger sets of instances, a
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suffix tree can be built to efficiently represent the instances and match them with
the texts found [Gusfield, 1997].

To match the instances with the search results, we can simply opt for an ex-
act string matching approach. As an alternative, we can allow small variations
based on the edit distance (to compensate for encountered typo’s) or ignore case-
differences.

Compensating for Ambiguous Terms. Homonyms are a common phenomenon
in natural language, and are one of the factors that complicate natural language
processing. Homonyms can have meanings that are quite distant (for example the
term Boston may refer to the city and the pop band) or more closely related (e.g.
Theo van Gogh is the name of two different persons, Groningen is both the name
of a Dutch province and its capital city, Boston is both a band and the title of their
debut album).

Hence, when encountering an occurrence of one of the instances in a text, we
are not guaranteed that the term indeed refers to the intended instance. Ideally, for
each occurrence of an instance in a text we want to observe whether the occurrence
indeed reflects the intended instance. However, the automatic parsing of texts is
troublesome. Moreover if an instance is identified as a subject or object within a
sentence, then we still do not know whether the term indeed reflects the instance.

For terms with only one meaning, we can be more confident that occurrences
of these terms indeed refer to the intended instance. For term with numerous def-
initions however, this relation can be much less certain. Hereto, we propose a
mechanism to estimate the likeness that a term indeed refers to the instance.

We use the define functionality in Google to obtain the number of senses of a
term. For example, by querying define: Tool, we obtained a list of 31 defini-
tions for the term Tool, collected from various online dictionaries and encyclope-
dias. This indicates that Tool is an ambiguous term. On the contrary, terms such as
Daft Punk, Fatboy Slim and Johannes Brahms lead to precisely one definition. We
define n(i) to be the number of definitions for i that are returned by Google. If no
definitions are returned, we consider n(i) to be 1.

In Tables 3.6 and 3.7 examples are given for definitions for an ambiguous and
an unambiguous instance of the class Artist.

Based on the number of definitions n(i) returned by Google, we formulate an
estimate p(i) for the likeliness that ia is the intended meaning of the term. We
investigate the following two alternatives to estimate p(i).

• uniform. As we do not know anything about the distributions of the use of
the definitions for term i, we estimate that each definition has a equal proba-
bility to be used and that only one of the definitions reflects the instance.
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Definitions of Boston on the Web:

• state capital and largest city of Massachusetts; a major center
for banking and financial services
wordnet.princeton.edu/perl/webwn

• Boston is an American rock band that achieved its most no-
table successes during the 1970s and 1980s. Centered on gui-
tarist, songwriter, and producer Tom Scholz, the band is a staple
of classic rock radio playlists. ...
en.wikipedia.org/wiki/Boston(band)

• ”Boston” is a song by Augustana.
en.wikipedia.org/wiki/Boston(song)

• Boston is the self-titled debut album by American rock band
Boston. The album broke fast, with several blockbuster hard
rock hits. All eight of the songs on the album still receive regular
airplay on classic rock radio. ...
en.wikipedia.org/wiki/Boston(album)

• Boston (1833-1850), a chestnut with a white nose (and often
called ”Damn his eyes” because no one could beat him), was
born in Richmond, Virginia. ...
en.wikipedia.org/wiki/Boston(horse)

• Boston is a local government district with borough status
in Lincolnshire, England. Its council is based in the town of
Boston. It lies around N530’0” W00’0”.
en.wikipedia.org/wiki/Boston(borough)

Table 3.6. Top results (of 12 in total) for the Google query ‘define: Boston’ as
retrieved on March 12, 2008.
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Definitions of Right Said Fred on the Web:

• Right Said Fred is the name of a British pop band, which was
founded in 1989 by brothers Richard Fairbrass and Fred Fair-
brass from East Grinstead. ...
en.wikipedia.org/wiki/RightSaidFred

Table 3.7. All results for the Google query ‘define: Right Said Fred’ as retrieved
on March 12, 2008.

plin(i) =
1

n(i)
(3.3)

• square root. Especially for terms with many definitions, we observe some
overlap between the definitions. Moreover, two distinct definitions can be
closely related. For example, Red Hot Chili Peppers is the name of a band
and the name of their debut album. We therefore investigate a second method
to estimate p(a) by using the square root of the number of definitions found.

psqrt(i) =
1√
n(i)

(3.4)

We determine a confidence score pi for the class membership of an instance i of ca,
we multiply the estimates p(i) with the number of occurrences oc(i) of the instance
in the search results.

pi =
oc(i) · p(i)

∑i′∈Ia oc(i′) · p(i′)
(3.5)

We use these estimates to obtain a sorted list of instances for the class ca. In
Chapter 6 we use these estimators to score relations between ambiguous terms.

3.2.2 Instance Identification for Incomplete Classes
To recognize instances in incomplete classes, the strategies described for the com-
plete class case may be applied to recognize already known instances. In this part of
the chapter, we focus on the recognition of instances that are not already included
in the ontology. Here, we focus on both knowledge- and data-driven approaches.

Knowledge-Driven Approach
A commonly used strategy to recognize instances in a text, is to formulate recog-
nition rules [Chinchor, 1995; Etzioni et al., 2005; Sumida et al., 2006; Schedl &
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Class Regular Expression examples

Year (1|2) · (0−9)3 1992, 2345
Gender he|she|son|.. male, female
Person ((A-Z)·(a-z)+)2 Johnny Cash, George Baker
Person (A-Z)·(a-z)+ (A-Z). (A-Z)·(a-z)+ George W. Bush, Anton F. Philips

Table 3.8. Classes and possible recognition rules

Widmer, 2007]. It is notable that such a knowledge-driven approach to recognize
instances is class-dependent. For example, recognizing instances of Movie is done
differently from recognizing instances of the class Year.

When designing rules to recognize instances at the placeholders in the search
results, we focus on the structure of the instances and their context [De Meulder &
Daelemans, 2003].

- Context. The left and right context for a term can be expressed as regular
expressions. For example, a term in an enumeration may have a comma as
its left context and the word and as its right context.

- Structure. Rules describing the structure focus on the number of words and
the use of capitals and punctuation marks. For example, a person’s name can
be recognized as two or three capitalized words.
The rules describing the structure of instances can be described using a reg-
ular expression.

We formulate regular expressions and a maximum distance from the queried
expression to identify instances from texts. Table 3.8 gives example regular ex-
pressions to recognize the structure of instances. Instances of the class Year is for
example specified as a four digit term preceded by the name of a month. For in-
stances of the class Gender, the instances are indirectly recognized. The text is for
example scanned for the word son, which corresponds to the instance male.

The algorithm to identify instances using such a rule-based approach is
sketched in Table 3.9. We first scan the text for an occurrence of the instance
(described by M) encapsulated by a left context (cl) and a right context (cr). The
∗ is a wildcard symbol matching any string. If we encounter a substring that is
described by cl ·M · cr, we isolate the string of maximum length matching M.

Apart from the structure and context, in general information extraction tasks
there is a third method that is used to identify instances in texts. Using a part-of-
speech tagger [Brill, 1992] the roles (e.g. subject) in the sentence and word groups
(e.g. noun phrases) can be identified. These techniques are useful to identify terms
in text [Frantzi, Ananiado, & Mima, 2000; Etzioni et al., 2005]. An alternative
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Q is the set of sentences containing the queried expression ;
“select the parts of the sentences matching the placeholder” ;
for all fragments q ∈ Q →

re = cl · M · cr ·∗ ;
b = match(re,q) ;
do (¬b∧ length(q) > 0)→

“remove first word or punctuation mark from q” ;
b = match(re,q) ;

od
if (b)→

re = cl · M ;
b = match(re,q) ;
do (¬b)→

“remove last word or punctuation mark from q” ;
b = match(re,q) ;

od
re = M ;
b = match(re,q) ;
do (¬b)→

“remove first word or punctuation mark from q” ;
b = match(re,q) ;

od
fi

rof

Table 3.9. Identifying instances using rules.

approach is the use of N-gram statistics to identify named entities [Downey et al.,
2007].

Acceptance functions. After extracting a term, we can perform an additional
check to find out whether the extracted term is really an instance of the concerning
class. We perform this check with the use of a search engine. We query phrases
that express the term-class relation. Again, these phrases can be constructed semi-
automatically. Hyponym patterns are candidates as well for this purpose [Hearst,
1992, 1998; Cimiano & Staab, 2004]. A term is to be accepted as instance, when
the number of hits of the queried phrase is at least a certain threshold. For example,
we query the phrase ‘Cities such as Eindhoven and’ to check whether ‘Eindhoven’
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is indeed an instance of the class City.
Using a set of patterns R expressing relation r, we formulate the following

acceptance function:

acceptcs
(t) =

{
true if ∑S∈R h(S,cs, t)≥ n
false otherwise

where h(S,cs, t) is the number of hits for query with pattern S combined with
term t and the plural form of the name of class cs. The threshold n has to be
chosen beforehand. We can do so, by calculating the sum of hits for queries with
known instances of the class. Based on these figures, a threshold can be chosen
e.g. the minimum of these sums. When the instances in the initial ontology are
well-known, the sum of hits for these instances can be expected to be large. Hence,
setting a threshold based on such instances will lead to a threshold (and acceptance
function) that will filter out correct, but less well-known, instances.

When we use such an acceptance function, we can allow ourselves to formulate
less strict recognition rules. That is, false instances that are at first accepted, are
still rejected as an instance by the use of the acceptance function.

As an alternative, a term t can be checked using Google’s define functionality.
If the name of cs occurs in one of the definitions for t, then t is likely to be an
instance of cs. In Chapter 4 we will use this mechanism to evaluate a populated
ontology.

Data-Driven Approach
In Chapter 2 we argued that we opt for an approach without manual annotations.
Hence, in choosing a data-driven approach, we should opt for an unsupervised
learning mechanism to recognize instances in texts.

Using a set of instances, we head for an approach where we create a training
set of texts by automatic annotations. We illustrate the construction of a training
set with the following example. Suppose we have an ontology with two classes,
Year and Person. We assume both sets of instances to be non-empty. The relation
yob between the two classes is expressed by the given pattern [person] was born in
[year].

Now, we select one instance and pattern combination, say was born in 1854 (cf.
Table 3.10). We can automatically annotate the search results for this query as 1854
is a known instance of the class Year. In the search results, the queried instances
can be automatically labeled marked as members of the class. Other instances (e.g.
1875 in the first line of Table 3.10) are ignored as these instances are less likely to
reflect a year of birth.

When we select an instance from the other class, i.e. Person, we are to scan the
search results for instances of Year. Using the search results for the other query, we
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Maria Paulina ”Mary” Wittrock was born in 1854 and, in the year 1875, was
the

At one point, she claimed she was born in 1854.

Secretary Weir was born in 1854 in El Monte, California, and spent his child-
hood

(11.) Lucinda Crank was born in 1854. 4. Mary Polly Crank was born in 1804
and died in 1883.

resident of Cherokee township, was born in 1854 in Pennsylvania, where he
lived

Wilde, 1854-1900. Oscar Wilde was born in 1854 and grew up in an intellec-
tually bustling Irish

of Wisconsin. Home Page. William Alexander Grimshaw was born in 1854 in
New York.

4 iii. Thomas COLLINS was born in 1854 in Michigan. 5 iv.

Edith A. Curry was born in 1854 in Kentucky. She died on 15 Oct 1930 in
Georgia. M

Elizabeth Youngblood was born in 1854-5. She married Post.

Oscar Wilde was born in 1854 and grew up in an intellectually bustling Irish
household. His mother was a poet who wrote under the pen name Speranza
and who had a

Table 3.10. Example search results for the query was born in 1854. The instance
1854 is annotated.

can learn the structure and context of instances of this class. Hence, when querying
for example Alan Turing was born in, the use of the search results (Table 3.11) is
twofold.

1. The search results are used to identify instances of the class Year and relation
instances expressing the relation between Turing and his year of birth.

2. The training set to learn instances of Person is expanded using the search
results for the said query.

In the training set, we only annotate the queried instance. Having labeled the
instances in the sentences in the training set, the task is to create training data for
a classifier. Hereto, each word, number and punctuation mark, called token, is
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in the town of Chatrapur, Alan Turing was born in a nursing home in Paddington,
London.

Alan Turing was born in London, England, on June 23, 1912.

Alan Turing was born in 1912 and showed an early interest in the natural world. He
studied mathematics at Cambridge University and established himself as a

Alan Turing was born in London, England, on June 23, 1912. Both his parents

Alan Turing was born in 1914 and

Alan Turing was born in London, England in 1912.

Alan Turing was born in Paddington London on 23 June 1912 and went on to study

Alan Turing was born in London on June 23, 1912.

Ir J Psych Med March 2003;Vol 20 No 1: 28-31. Alan Turing was born in Paddington,
London on June 23, 1912. His family were middle-class and well-off.

Alan Turing was born in London, England, on June 23, 1912.

Known as the founder of Computer Science, Alan Turing was born in 1912 in Padding-
ton, London.

Alan Turing was born in June of 1912 to Julius Mathison Turing, a member of the

Table 3.11. Example search results for the query Alan Turing was born in. The
goal is to identify the year of birth.

labeled in the sentences. We distinguish three classes:

• start, signaling the start of an instance,

• intern, indicating all tokens within an instance following the begin label, and

• not, indicating all text that is not included in the instance.

Note that with these three labels are enough to distinguish separate instances in
a text. An explicit end label is not required, as the last word or punctuation mark
can be derived implicitly. The distinction between begin and intern is needed to
separate and recognize two subsequent instances in one sentence.

Now, given an annotated sentence, we describe each of the tokens using a fea-
ture vector. Each vector describes a focus word in the sentence, i.e. the token to be
labeled and its context. In each vector, the label is associated with the focus word.
Table 3.12 gives a collection of vectors representing one sentence, i.e. one vector
per focus word. We use a window of fixed size n (in the given example n = 1) to
represent the left and right context of the focus word.
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LEFT CONTEXT RIGHT CONTEXT FOCUS WORD LABEL

is Afghanistan start
Afghanistan a is not
is conservative a not
a Islamic conservative not
conservative country Islamic not
Islamic and country not
country 99 and not
and per 99 not
99 cent per not

Table 3.12. Feature vectors for ... Afghanistan is a conservative Islamitic country
and 90 per cent of its population is Muslim ... representing the focus word and the
context window of one token.

As we choose to opt for an approach solely based on the syntax, the features
that can be extracted to describe the focus word are limited. We concentrate on the
presence of capitals, as their use is common in many named entities. We distinguish
the features numeric (to abstract from numbers), no word (to abstract from other
tokens without letters), capitalized (for tokens starting with a capital) and no caps.

For each focus word, we create a vector of length 4n+3. For a window size of
n, we consider the n tokens preceding and following the focus word. Each of these
tokens is represented by 2 features: the token itself and its abstraction. Hence, the
context of the focus word is described by 4n features. The focus word itself, its
abstraction and its class are the other three features in the vector.

Having constructed a set of training vectors, we translate query results into a
set of test vectors in a similar fashion. The task is to classify the vectors into the
classes not, start and intern. The goal is to recognize instances at the placeholder,
by observing similarities in structure and context with respect to vectors in the
training set.

We choose to use Memory-based learning (MBL) to classify the vectors [Daele-
mans & Bosch, 2005]1. Contrary to other popular machine learning approaches,
memory-based learning does not abstract from the data processed. This character-
istic has proven to be successful in natural language processing, as irregularities
and various exceptions are typical for natural language. MBL has also shown to be
well usable for cases with a limited context. As we are interested in information
extraction from snippets, this property is of high importance.

1In our experiments, we use TiMBL (version6.1, http://ilk.uvt.nl/timbl/) with the
standard parameter settings.
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MBL is based on k-nearest neighbors classification. Suppose we have a set T of
vectors in the training set. A distance measure ∆(v, t) between two vectors is used.
This measure is a weighted sum over the distances of the features. The weight is
used to express the importance of a feature. Typically, features representing tokens
with a large distance to the focus word are less important than features representing
closer ones.

∆(v, t) = ∑
i

wi ·δ(vi, ti)

As the features are non-numerical, δ(vi, ti) has been simply defined as follows.

δ(vi, ti) =
{

1 if the strings vi and ti are equal
0 otherwise

The training set is used to compute weights for each of the features, based on
the information gain of the features with respect to the class labels [Duda, Hart, &
Stork, 2000]. For a given k, the label is selected using majority voting among the k
closest vectors in the training set.

In cases with a small training set, it is likely that a high weight is assigned to
the focus word itself. In such cases the classifier is overfitted. This may lead to a
situation where only known instances are recognized. To avoid this situation, we
can alternatively leave out the focus word itself from the feature vector. In that
case, the classification is solely based on the context and the abstraction of the
focus word. We will return to this topic in the next chapter.

Having classified the individual vectors, we have to extract the instances from
the data. From each vector classified as start, the focus term is identified. If the
focus term is obscured, we look it up from the original search results. For all
following vectors classified as intern, we extract the focus terms as well. The
extracted focus terms are combined into one term and added to the ontology as an
instance. Note that we ignore vectors classified as intern that are not preceded by a
vector labeled start.

Returning to the example of Alan Turing’s year of birth, to recognize instances
of the class Year the choice for a data-oriented approach is less obvious. The
instances can easily be described using a rule, and a complete set of instances can
be generated. However, constructing rules to recognize instances of other classes
(e.g. Pop Artist, City, Movie) can be less straightforward.

In the next chapter, we present case-studies where we compare methods us-
ing rule-based instance identification approaches with instance identification using
memory-based learning.
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Evaluation: Extracting Factual Information

From the Web

In the previous chapters, we discussed methods to populate an ontology using texts
found with a search engine, in this chapter we present case-studies to illustrate the
applicability of these methods. We compare the various alternatives in instance
identification. For evaluation purposes, we choose to populate ontologies on do-
mains that are verifiable. For each of the populated ontologies, the precision can
be determined and recall can be analyzed. In all case-studies we solely make use
of the document titles and snippets returned by the search engine. The documents
themselves are thus not accessed.

Section 4.1 focusses on the population of an ontology using manually identified
patterns, where the instances are recognized using rules.

In Section 4.2, we focus on the identification of effective patterns. Using a
small training set, we are interested whether the patterns found can be used in an
information extraction task. In Section 4.3 we identify a list of effective hyponym
patterns and compare this list with commonly used ones in the literature. The
learned patterns are used in an experiment where we investigate the applicability
of memory-based learning (MBL) in our web information extraction setting.

Section 4.4 focusses on the identification of instances and the effect of the
bootstrapping mechanisms. We compare a rule-based approach with an approach
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using MBL in finding all presidents of the US and their order.
Finally, in Section 4.5 we focus on an extensive case-study: the identification

of a list of historical persons with their biographies.

4.1 Populating a Movie Ontology
For our first case study, we have constructed a small initial ontology on the movie
domain. It is defined as O = (C,R) where
C = {cDirector,cActor,cMovie},
R = {racts-in,rdirected},
IDirector = { Steven Spielberg ,Francis Ford Coppola}
IActor = /0,
IMovie = /0,
racts-in = (acts in,cActor,cMovie,ϕ, /0)
rdirected = (directed,cDirector,cMovie,ϕ, /0)

We thus only identify three classes, each of them are incomplete. The class
Director is the only class where instances are provided. For the two relations, no
relation instances are given. The goal is to identify movies directed by these direc-
tors using patterns expressing the directed relation. The movies found are used to
find starring actors, where those actors are the basis of the search for other movies
in which they played, etc. In this experiment, we focus on the population of O in
one iteration, thus using a predefined set of patterns. We extract the information
from the top 100 snippets returned by Google.

For the two relations considered, we have manually selected the following
patterns and placeholders.

Pacts-in = {[Movie] starring [Actor]}
Pdirected = {[Director]’s [Movie] , [Movie], director [Director] }.

Instance identification. For all three classes, as a placeholder, we use the
remaining part of the sentence preceding or following the queried expression. We
do so, as multiple instances of the same class are often enumerated (e.g. in the
sentence Titanic starring Leonardo Di Caprio and Kate Winslet.). As actors and
directors are generally both persons, we apply the same recognition rules for these
two classes.

As the structure of instances of Movie is less regular, we focus on the context
of such instances in the texts. We recognize an instance of Movie if it is placed
between quotation marks. A person’s name (instances of the classes Director and
Actor) is recognized as the longest sequence of two or three capitalized words.

Another feature of the recognition function is the use of tabu words1. An ex-

1Also called stop words in literature.
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tracted term is rejected as instance, if it contains one of the tabu words. We use a
list of about 90 tabu words for the person names (containing words like ‘DVD’ and
‘Biography’). For the movie titles we use a much shorter list, since movie titles
can be much more diverse. We have constructed the tabu word lists based on the
output of a first run of the algorithm.

We check each of the extracted candidate instances with the use of one of the
following queries: “The movie [Movie]”, “[Actor] plays”, or “[Director] directed”.
A candidate is accepted, if the number of hits to the query exceeds a threshold.
After some tests we choose 5 as a threshold value, since this threshold filtered out
not only false instances but most of the common spelling errors in true instances
as well.

Experimental results. We have found 7,000 instances of the class Actor,
3,300 of Director and 12,000 of Movie. The total number of retrieved instances
increases with about 7% when 500 query results are used instead of 100.

We first ran the algorithm with the names of two (well-known) directors as
input: Francis Ford Coppola and Steven Spielberg. Afterwards, we experimented
with other less famous directors as input.

An interesting observation is that the outputs are independent of the input sets.
That is, when we take a subset of the output of an experiment as the input of
another experiment, the outputs are the same, modulo some small differences due
to the changes in the Google query results over time.

When we analyze the precision of the results, we use the data from the Internet
Movie Database (IMDb)2 as a reference. An instance in the populated ontology is
accepted as a correct one, if it can be found in IMDb. We have manually checked
three sequences of 100 instances (at the beginning, middle and end of the gener-
ated file) of each class. Based on the exact matches with the entries in IMBb, we
estimate a precision of 0.78. Most misclassified instances were misspellings or
different formulations of the same entity (e.g. “Leo DiCaprio” and “Leonardo Di-
Caprio”). Other identified instances, like James Bond (found as an instance of both
Movie and Actor) and Mickey Mouse (found as an actor in Fantasia 2000) were
related to the movie domain, but are no instances of the intended classes. It is also
notable that not all instances found relate to distinct concepts. For example, the
Karate Kid as well as Karate Kid were identified as movies, likewise Leo DiCaprio
and Leonardo DiCaprio were added to the class Actor, while Hable con Ella and
Talk to Her are alternative titles for the same movie.

Likewise, we have also analyzed the precision of the relations, we estimate
the precision of the relation between movie and director around 0.85, and between

2http://www.imdb.com
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CATEGORY RECALL

Best Actor 0.96
Best Actress 0.94
Best Director 0.98
Best Picture 0.87

Table 4.1. Recall of Academy Award Winners

movie and actor around 0.90.
With respect to the recall of the algorithm, we first observe that number of

entries in IMDb exceeds our ontology by far. Although our algorithm performs
especially well on recent productions, we also are interested how well it performs
on classic movies, actors and directors. First, we made lists of all Academy Award
winners (1927-2005) in a number of relevant categories, and checked the recall
(Table 4.1).

IMDb has a top 250 of best movies ever, of which 85% were retrieved. We
observe that results are strongly oriented towards Hollywood productions. We also
made a list of all winners of the Cannes Film Festival, the ‘Palme d’Or’. Alas, our
algorithm only extracted 26 of the 58 winning movies in this category.

Sumida et al. [2006] used a large Japanese web corpus to identify a list of movie
titles. The texts are scanned for hyponym patterns [Hearst, 1992], with phrases
like Movies such as. Movie titles are extracted when by signaling text between the
Japanese variant of quotation marks. They report a precision of 83%. KnowItAll
[Etzioni et al., 2005] uses hyponym patterns to find actors and movie titles as well
as the patterns [Actor] stars in [Movie] and [Actor] star of [Movie]. Noun phrases
are extracted as candidate instances. These candidate instances are subsequently
checked using additional queries. The focus of the evaluation is on the population
of the classes, rather than on the identification of relation instances. Precision and
recall are formulated in terms of the texts processed, rather than using ground truth
ontology. For instances of the class Actor high precision is obtained for various
levels of recall. The precision of instances Movie found with KnowItAll is less
precise.

4.2 Identifying Burger King and its Empire
Inspired by one of the list questions in the 2004 Text Retrieval Conference (TREC)
Question Answering track [Voorhees, 2004], (‘What countries is Burger King lo-
cated in?’), we are interested in populating an ontology with restaurants and the
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PATTERN PREC SPR FREQ

co restaurants of cs 0.24 15 21
co restaurants in cs 0.07 19 9
co hamburger chain that occupies

villages throughout modern day cs 1.0 1 7
co restaurant in cs 0.06 16 6
co restaurants in the cs 0.13 16 2
co hamburger restaurant in southern cs 1.0 1 4
co en co in de verenigde staten cs 1.0 1 3
cs concurrençant kfc et co 1.0 1 3
co boycott over us cs 0.92 1 3
co hamburger even in cs 0.66 1 3
cs we have mcdonald’s burger king pizza hut and co 1.0 2 1
co hamburger spokesman throughout cs 1.0 1 2
co new mcveggie burger in cs 1.0 1 2
co has 1320 restaurants in cs 1.0 1 2

Table 4.2. Top learned patterns for the restaurant (co) -country (cs) relation.

countries in which they operate. We identify the classes cs for country and co

restaurant and the relation located in between the two classes.
In this case-study we aim for the population of an ontology with names of

restaurant chains and their locations. For the given task, we define the ontology O
as follows: O = ({cs,co},{r}). Here, cs is the complete class with all countries in
the world3. The relation r expresses the non-functional is located in relation. We
have added no patterns to r, r = (is located in,cs,co, false,J), but instead included
a small set of relation instances. The goal is therefore to first identify a set of
effective patterns, that can subsequently be used to populate the ontology.

We assign the instances McDonald’s and KFC to the incomplete class co, as
well as a handful of relation instances: J = {(China,McDonald’s), (United States,
McDonald’s), (Canada, McDonald’s), (France, McDonald’s), (Australia, McDon-
ald’s), (Netherlands,McDonald’s), (Germany, KFC), (Netherlands,KFC) }.

Identifying Patterns. The patterns are identified using the eight relation in-
stances provided in the initial ontology. Using this small set, we identified a list of
170 patterns. These patterns are validated and ranked using the two instances of
the restaurant class. The total number of queries used is thus very limited: 8 for
the identification phase and 2 for the validation phase.

3The conventional short forms taken from the CIA World Factbook http://www.cia.gov/
cia/publications/factbook
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”restaurants including t and”
”restaurants for example t and”
”restaurants like t and”
”restaurants such as t and”

Table 4.3. Hyponym patterns for instance-class relation.

The learned patterns with the highest scores are given in Table 4.2. We note
that the numbers for spr and freq are low due to the limited number of queries used.
Many of the patterns are recognizable as typical for the given relation. However,
the vast majority of the patterns has a value for pspr = 1. Hence, the use of such a
pattern in combination with either KFC or Burger King led only to a single country
name. These patterns may therefore be too specific.

Recognizing Instances. The country names are recognized using the collected
list of countries. We assume the country names to be unambiguous. We extract the
longest terms t consisting of at most 4 capitalized words at the placeholder, directly
preceding or following the queried expression.

As this extraction rule is likely to not only cover restaurants but a wide range of
terms, we use a check function to filter out erroneously extracted terms. Hereto, we
use the set H of hyponym patterns in table 4.3 in the following acceptance function

accept(t) = ∑
p∈H

h(p, t)≥ n,

where h(p, t) is the number of search engine hits for query with pattern p combined
with term t. Based on experiments with the two known restaurant chains, we set
the threshold to n = 50.

Evaluation We selected the 20 best scoring patterns and use them in the ontology
population algorithm with the given ontology. The first task is to identify Burger
King as a restaurant using the given patterns. If this instance is found, it can be used
– in combination with the same patterns – to identify the countries it is located in.

Using the 20 learned patterns, 53 terms were accepted as instances of restaurant
(Table 4.4)4. The reader may recognize a number of restaurant, coffee and fast food
chains, among which Burger King. Less expected are the names of geographic
locations and names of famous cuisines such as ‘Chinese’ and ‘French’. The last
category of false instances found that have not been filtered out, are a number of
very common words (e.g. ‘It’ and ‘There’).

4Experiment conducted in November 2005 using Google.
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Chinese Bank Outback Steakhouse
Denny’s Pizza Hut Kentucky Fried Chicken
Subway Taco Bell Continental
Holywood Wendy’s Long John Silver’s
HOTEL OR This Burger King
Japanese West Keg Steakhouse
You BP Outback
World Brazil San Francisco
Leo Victoria New York
These Lyons Starbucks
FELIX Roy California Pizza Kitchen
Marks Cities Emperor
Friendly Harvest Friday
Tim Hortons Vienna Montana
Louis XV Greens Red Lobster
Good It There
That Mark Dunkin Donuts
Italia French

Table 4.4. Extracted instances for restaurant using Google, December 2005.

In Table 4.5 the 53 extracted terms can be found, together with the acceptance
scores ∑p∈H h(p, t) as found with the Yahoo! API in June 2008. As OR is an
special query operator, the hits for HOTEL OR will not reflect the actual number
of occurrences for the corresponding phrases. The high scoring terms – except for
HOTEL OR – correspond to large chains. Where Keg Steakhouse was accepted
as an instance in 2005, no hits were found for any of the four acceptance function
queries.

The algorithm returned 69 instance-pairs with countries related to Burger King.
On the Burger King website5 a list of the 65 countries can be found in which the
hamburger chain operates. Of these 65 countries, we identified 55. This implies
that our results have a precision of 55

69 = 0.80 and recall of 55
65 = 0.85. Many of the

falsely related countries – mostly in Eastern Europe – are locations where Burger
King is said to have plans to expand its ‘empire’.

Using post-processing, we can filter out common words (e.g. Good, It) which
is likely to improve the results. The geographic locations can be recognized and
filtered out using a gazetteer [Cunningham, Maynard, Bontcheva, & Tablan, 2002;
Zong, Wu, Sun, Lim, & Goh, 2005].

We hence can conclude that learning patterns using only a small set of known

5http://www.whopper.com
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Outback Steakhouse 1748
HOTEL OR 821
Burger King 506
Starbucks 489
Red Lobster 488
Pizza Hut 463
Taco Bell 392
Subway 375
Denny’s 332
Long John Silver’s 302
Chinese 288
Wendy’s 240
This 166
Japanese 149
French 144
Outback 135
California Pizza Kitchen 111
Dunkin Donuts 104
That 103
Roy 90
These 48
Victoria 47
Kentucky Fried Chicken 46
Greens 30
Friendly 29
It 28
FELIX 25

Friday 25
Harvest 24
Louis XV 23
Marks 22
Tim Hortons 22
You 21
West 18
New York 17
Bank 12
Vienna 12
Montana 12
Good 11
Lyons 10
Continental 7
Mark 5
Italia 5
Emperor 4
Cities 3
San Francisco 2
BP 1
Leo 1
Holywood 0
Keg Steakhouse 0
World 0
Brazil 0
There 0
Hotel Or 0

Table 4.5. The 53 instances found for restaurant and their scores for the accep-
tance function as found with the Yahoo! API in June 2008.

instances leads to good results in this case-study. The learned patterns are quite
specific, but recognizable as strings relating the instances of the two classes. The
extraction of the instances of the class Restaurant is done using simple rules. A
number of irrelevant terms are falsely identified, but additional filtering steps may
lead to improvements.

4.3 Identifying Countries
In this case-study, we focus on two tasks. First, we automatically identify hyponym
patterns and compare the results with the patterns identified by Hearst [1992]. Con-
trary to the previous case-study, we will use a relatively large training set of relation
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instances to identify a set of effective patterns. The learned patterns are used in the
second part of this experiment to extract instances using memory-based learning.

4.3.1 Learning Effective Hyponym Patterns
We are interested whether the effective text patterns are indeed intuitive formula-
tions of the given relation. As a test-case, we compute the most effective patterns
for the hyponym relation using a test set with names of all countries. Taking the
terms country and countries as hypernyms, we are interested which text fragments
connect the names of countries with these words. Much pattern-based information
extraction research (e.g. [Caraballo, 1999; Cimiano & Staab, 2004; Etzioni et al.,
2005; Snow, Jurafsky, & Ng, 2006; Tjong Kim Sang & Hofmann, 2007]) is based
on hyponym patterns manually identified by Hearst in [1992]. We are interested in
the overlap of the automatically found hyponym patterns with the commonly used
ones.

This experiment was set up as follows. We again use the collected list of coun-
tries (see Section 4.2). Let Io be this set of countries, and let Is be the set { (coun-
tries, country }. The set of relation instances J consists of all instance combinations
( countries,a) and ( country,a) , for a ∈ Io. We apply the text pattern learning al-
gorithm as discussed in Section 3.1 on this set of relation instances.

Using the proposed pattern learning algorithm, we identified almost 40,000
patterns. We computed fspr and fprec for the 1,000 most frequently found patterns.
In Table 4.6, we give the 25 most effective patterns found by the algorithm.

The common hyponym patterns ‘like’ and ‘such as’ show to be the most effec-
tive. This observation is useful, when we want to minimize the amount of queries
for hyponym patterns. Other commonly hyponym patterns with high scores are
including, and other and namely. All infix patterns identified by Hearst ([1992],
Table 2.1 on page 28) are identified here as well.

Apart from hyponym patterns that can be generally used, we also find patterns
that are specific for the given setting. Patterns like code for, flag of are very usable
to identify the studied relation. Such phrases are directly recognizable as usable
patterns, but may not be straightforward to identify manually. Other patterns con-
taining an adjective (e.g. is a sovereign) are perhaps over-specific, but well-usable.
The combinations of is a, is an or is the with an adjective occur in total 2,400 times
in the list.

We conclude that the commonly used hyponym patterns are indeed also identi-
fied as effective patterns. Moreover, some patterns that are very typical for this set-
ting (i.e. all countries and their hypernyms) are identified as well. Although these
patterns are intuitive formulations of the studied relation, they are less straightfor-
ward to find manually.
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PATTERN FREQ PREC SPR

(countries) like 645 0.66 134
(countries) such as 537 0.54 126
is a small (country) 142 0.69 110
(country) code for 342 0.36 84
(country) map of 345 0.34 78
(countries) including 430 0.21 93
is the only (country) 138 0.55 102
is a (country) 339 0.22 99
(country) flag of 251 0.63 46
and other (countries) 279 0.34 72
and neighboring (countries) 164 0.43 92
(country) name republic of 83 0.93 76
(country) book of 59 0.77 118
is a poor (country) 63 0.73 106
is the first (country) 53 0.70 112
(countries) except 146 0.37 76
(country) code for calling 157 0.95 26
is an independent (country) 62 0.55 114
and surrounding (countries) 84 0.40 107
is one of the poorest (countries) 61 0.75 78
and several other (countries) 65 0.59 90
among other (countries) 84 0.38 97
is a sovereign (country) 48 0.69 89
or any other (countries) 87 0.58 58
(countries) namely 58 0.44 109

Table 4.6. Learned hyponym patterns and their scores.

4.3.2 Recognizing Instances using Memory-Based Learning
Contrary to the case-study in Section 4.2, we now focus on a data-driven approach
to identify instances. We apply the method discussed in Section 3.1.2 to extract
instances by classifying feature vectors derived from the search results.

As the focus is on the instance identification task, we use the best scoring hy-
ponym patterns found with the complete list of countries. We selected the 11 most
effective patterns to express the relation (cf. Table 4.6). Contrary to the pattern
learning set-up, the class co is incomplete. We now only assume given the coun-
try names starting with A – D, i.e. from Afghanistan to the Dominican Republic.
These names of countries are used to annotate search results and train the classifier
as described in Chapter 2. No relation instances are provided. The complete class
with instances country and countries remains unchanged.
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I am deeply grateful to the Secretary General for the opportunity
of working ... and destitute state - such as Afghanistan –
provides fertile ground for ...
In an uninhabited region such as Antarctica, ...
with vaunted ski industries such as Austria and Switzerland
insist
they aren’t ...

Table 4.7. Example search results used to train the classifier.

We run the ontology population algorithm using the described initial ontol-
ogy. Using the known names of countries, we construct a training set with all
known instance-pattern combinations, i.e. all the snippets found with like (from
like Afghanistan up to like the Dominican Republic) and the ten other patterns.

In Table 4.7 some example sentences are shown that are used in a training set
of the classifier. Note that Switzerland will not be annotated as a country name, as
the term is no instance in the initial ontology.

The annotated search results are used to identify instances of ccountry when
querying instances of the other class. We recognize instances in the search results
for the 22 (11 patterns, 2 instances) queries.

We compare two approaches in the data-oriented identification of instances:
one where we use the focus word in the vectors to be classified, and one where the
actual focus word is left out. Approaches that use the focus word in the feature
vector may be biased to this feature. In the worst case, only the instances in the
training set will be recognized.

To describe the context of the focus word, we construct a vector with the 5
tokens preceding and following. Moreover, for each of these context features, we
add one of the more general feature discussed in Chapter 3. The general feature
describing the focus word is maintained for both approaches.

The vectors in the training set are labeled with one of the three following
classes: start, intern, not. From the classified feature vectors in the test set, all
focus words labeled start and possible subsequent focus words labeled intern are
extracted.

We evaluate the instances identified using the complete list of countries from
the CIA factbook. A term is thus considered a country when its exact string repre-
sentation is found in this list, and incorrect in all other cases.

We use the number of times the instances are identified as a confidence measure
p for the correctness and sort all instances found by decreasing occurrence. In
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Figure 4.1. Recall (# countries identified, including the countries in the seed list)
and precision for the instance identification.

Figure 4.1 the results of the two alternative classification approaches are compared:
the approach with the focus word in the feature vector and the one without. We plot
the precision of the n most frequently found terms against the absolute recall.

The figure shows that the 50 most frequently found instances are all correct if
we use the approach with the focus word in the vector. The precision drops steeply
for recall above 120 instances. For the other approach, errors occur among the best
rated instances, but the precision is quite constant for recall levels between 20 and
100.

In Table 4.8 we give the most frequent instances that are evaluated to be in-
correct. The table shows that many of these instances are geographic locations
(regions, nations, continents) or variations on country names (e.g. The UK, Myan-
mar). Taiwan is not recognized as a sovereign country by the USA and not included
in the CIA factbook.

Other errors include common words such as The and What and wind direc-
tions. While for example the multi-word terms United States, Saudi Arabia and
South Korea are recognized, we also identify parts of these names (e.g. Arabia,
United) as a separate instance.

As the approach using the focus word in the vector may be biased towards the
instances that occur in the training set, we also compare the results by leaving out
the country names starting with A – D in the evaluation set.

In Figure 4.2 the results are compared for the instances found that were not
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The
Europe
America
United
States
This
USA
What
Country
Korea
Sri
European

Countries
Thai
How
American
Which
South
There
Flutter
However
England
Arabia
BALI

North
African
London
Saudi
International
Asia
California
The UK
Western
People
Saturday
Our

Zealand
That
Shop
They
National
Taiwan
Sea
Gold
Rib
Napa
Cape
Myanmar

Table 4.8. The best-ranked incorrect terms found using the classification without
the focus word.
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Figure 4.2. Recall (# countries identified, excluding the countries in the seed list)
and precision for the instance identification.

included in the mentioned seed list. This figure shows that none of the two meth-
ods is clearly outperformed by the other. This is an expected result, as for this
evaluation set the focus word itself does not contain relevant information.

As the results of this experiment cannot be compared with previous work, the
quality of the results is hard to judge. We conclude that at precision levels of
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around 0.5 up to 80 new instances can be identified. Among the false positive are
many synonyms of country names and other geographic entities. The total set of
countries has a size of 270 instances, while 73 countries were used in the annotation
phase. Given the limited number of queries and the simplicity of the method,
we are encouraged by these results. Analysis of the erroneous results shows that
many false positives are geographic locations or parts of instances identified more
frequently (e.g. apart from Sri Lanka also Sri and Lanka are extracted).

By adding check functions, the precision can be improved. Alternatively, us-
ing Cimiano and Staab’s method [2004], we can distinguish between the various
geographic locations found. For example, if more evidence is found that London
is a city or Asia is a continent, the hypothesis that London and Asia are countries
can be rejected.

4.4 The Presidents of the United States of America
In this case-study, we focus on an ontology describing the presidents of the US. We
choose this setting as the required information can be expected to be redundantly
available and the evaluation of the extracted information is relatively easy as an
undisputable complete list of presidents is available as ground truth.

We want to identify a complete list of all past presidents (from George Wash-
ington to George W. Bush). We define the initial ontology as follows. Given are
the classes named US President and Rank and the relations succeeded (with sub-
ject and object class US President) and order (on US President and Rank). The
instances of the complete class rank (first president, second president .. 50th presi-
dent) are given beforehand. Note that the current president, George W. Bush, is the
43rd in line and the last instances are added for evaluation purposes.

Using this set-up, we focus on two tasks. First we populate the relations with
a given complete class US President. The second task is to populate the ontol-
ogy where US President is incomplete. We compare a rule-based approach with
instance identification using memory-based learning.

4.4.1 Identifying Relations
We apply the ontology population on the US president ontology with complete
classes starting with pattern [US President] was the [Rank] for order-relation and
[US President] succeeded [US President] for the succeeded relation.

Again, we use the snippets and page titles found with the search engine. The
most frequent relations found are used to identify new patterns.

In Section 3.1 we argued that for non-functional relations broad patterns are to
be selected. For functional relations on the other hand, patterns are to be selected
that connect the subject instance to few object instances. As the two relations are
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NON-FUNCTIONAL FUNCTIONAL
iteration succeeded order succeeded order

1 0.88 0.89 0.88 0.89
2 0.67 0.94 0.76 0.94
3 0.71 0.94 0.81 0.94
3 0.57 0.94 0.79 0.94
4 0.52 0.94 0.81 0.94

Table 4.9. F-Measure per iteration for the given relations.

in general functional6, we expect the performance of the ontology population algo-
rithm with the functional-setting for the two relations to have the best performance.

We evaluate the populated ontologies after each iteration. For the order re-
lation, we focus on the president that is most often found for a given rank. For
example, we take instance 26th and extract the most frequent relation instance con-
taining 26th. The succeeded relation is evaluated in a similar manner. As Grover
Cleveland succeeded both Chester Arthur and Benjamin Harrison, we focus on the
two most frequently occurring relation instances with Grover Cleveland as subject
instance.

In Table 4.9 the F-measures (combining precision and recall, page 20) of the
extracted relation instances is given for the first four iterations.

As the ontology populated after the first iteration is based on the two manually
selected patterns, the results do not differ for this iteration. For the subsequent iter-
ations, we observe differences between the functional and non-functional approach
in the succeeded relation. The F-measure for both approach is less than the one for
the first iteration. The non-functional results deteriorate as more and more patterns
are added (e.g. ‘(president) and (president)’) that do not express the intended re-
lation. No differences are observed for the results for the order relation. This can
be explained by the fact that few other relations are imaginable that combine the
instances of the two classes. Moreover, as the vast majority of the instances were
added in the first iterations, the ranking is stabilized after iteration 2.

We conclude that the ontology population method using the search engine snip-
pets gives good results. The results for the succeeded relation show the effect of
the distinction between functional and non-functional relations.

4.4.2 Identifying Instances
Having focussed on a task with complete classes above, the class president is now
empty. Hence, the instances of US President are initially to be found using the

6Grover Cleveland was the only president in two non-subsequent terms.
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order-relation as no queries can be formulated for the succeeded-relation.
In two alternative runs of the algorithm, the instances of US President are iden-

tified as follows.

• Rule-based approach. We have formulated a regular expression describing
person names. We accept the longest sequence with either two or three cap-
italized words, or a sequence with two capitalized words and a capital and
period in between (e.g. John F. Kennedy).

• Using Memory-based learning. Like the previous experiment in Section 4.3,
we classify vectors describing the search results and extract instances from
these vectors. We use the ten most recent presidents in the training set for the
first iteration. In the feature vectors generated from the corresponding search
results, we do not include the focus words in the classification. Hence, the
ten presidents in the training set are not instantly added when populating the
ontology but have to be extracted from the search results.

Compared to the experiment in Section 4.3, the training set for the memory-
based learning approach is small. We are interested whether we can find a long list
of instances using the bootstrapping mechanisms.

The evaluation of the extracted instances is not straightforward, as many al-
ternatives may refer to the same president (e.g. President Clinton, Bill Clinton,
William Jefferson Clinton). We therefore decided to automatically evaluate the
instances found using Google’s define functionality.

We consider an extracted instance to be a president of the United States if:

- indeed definitions are found for the given term, and
- the word president is found in at least one of the definitions, and
- the terms United States or US are found in at least one of the definitions.

When we inspect the results for the populated ontology, we encountered many
terms that refer to vice-presidents, presidents of other countries and other states-
men. Although these instances are no correct instances of US President, one could
argue that they are instances in some superclass politician. We therefore propose a
second evaluation where we focus on politicians in general. Using Google define,
we consider an instance to be a politician if:

- definitions are found for the term, and
- at least one of the words president, minister, leader, statesmen or politician

is found in the definitions.

Naturally, US presidents are included in this definition.
Figure 4.3 gives the precision and absolute recall for the first iteration. It shows

that using the rule-based method in total 120 terms were found that refer to US
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RULE-BASED USING MBL
succeeded order succeeded order

iteration 1. 0.95 0.94 0.25 0.27
iteration 2. 0.98 1.00 0.25 0.27

Table 4.10. F-Measure for the first iteration for the given relations.

presidents, while history only has known 42 distinct presidents. Using the rule-
based approach all presidents were identified, the last one – James Buchanan – at
a precision level of 0.47. Hillary Clinton is said to be the 44th president of the
United States7.

Using the rule-based approach, in total 120 correct distinct variations of the
names of the 42 presidents were found. Apart from these 120, we also found 61
names of presidents of other countries and 42 other politicians.

The performance for the approach using memory-based learning is disappoint-
ing. As only few names were included in the training set, classification of the con-
text is biased towards these names. The only presidents identified are also present
in the initial training set. As we do not abstract from the context, but only from
the focus word, words in the context like Bill and Clinton signal the presence of an
intern or start vector. For example, a focus word is only classified as intern when
it is preceded by one of the first names of the presidents in the training set (e.g.
Bill or Ronald). As no new president names are learned, the performance does not
improve in the next iterations, when newly identified patterns are applied.

With respect to the relation instances found, the F-measures for the first two it-
erations are given in Table 4.10. As only few names were identified using memory-
based learning, also the F-measures for the found relations are not convincing. The
relations using the rule-based approach are precisely identified. With respect to the
second iteration using the rule-based approach, only the succeeded relations be-
tween James Polk and John Tyler and between James Monroe and James Madison
were not extracted, while the precision for the succeeded-related was 1.

We conclude that for the given task, the simple rule-based method gives con-
vincing results. On the other hand, the approach using automatically annotated
training data is disappointing. Especially, as the search results for the rank have
shown to contain all relevant data to populate the ontology.

7The experiment was conducted in February 2008.
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Figure 4.3. Recall and precision for the instance identification.

4.5 Extracting Historical Persons from the Web
In this last section of this chapter we focus on the population of an ontology on
historical persons. Such information is currently not present as such on the Web.
By combining and structuring the knowledge on diverse web pages, we are able to
find answers to questions as Who are important novelists from Ireland?, Which no-
table people were born in 1648?, Who are popular female composers?. To present
the information in an attractive manner, we compute a fame rank for each person
based on the presence on the web.

In the given initial ontology (cf. Figure 4.4) all classes but Person are complete,
while Person is empty. The class Period contains all combinations of years that are
likely to denote the periods of life of a historical person. For example ’1345 - 1397’
is an instance of Period. The class Nationality contains all names of countries in the
world. We identify derivatives of country names as well and use them as synonyms
(e.g. American for United States, English for United Kingdom and Flemish for
Belgium). A hierarchy among the instances of Nationality is defined using the
names of the continent, such that we can for example select a list of historical
persons from Europe. Likewise, the instances of Profession reflect 88 professions.
For the instances male and female we have added a list of derivatives to be used
as synonyms, namely the terms he, his, son of, brother of, father of, man and men
for male and the analogous words for female. We use the class Fame to rank the
retrieved instances of Person according to their presence on the web. Hence the
task is to identify a collection of biographies of historical persons and to identify
a social network between the persons found. As persons may have more than
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Nationality Profession Gender

Person

has has has

related_with

Fame

has

Period

lived

Figure 4.4. The ontology on historical persons to be populated.

one profession and can be related to multiple other people, we are interested in a
ranked list of professions and related persons for each historical person found. For
efficiency reasons, we only extract information from the snippets returned by the
search engine.

We use the given instances in the ontology O to populate the class Person, i.e.
to find a list of names of historical persons. We again use the instances available in
the given ontology and combine these with patterns to formulate queries and hence
create a corpus to extract information from.

Suppose we use instances in the class Profession to extract the persons. When
querying for the instance composer, it is likely that few well-known composers
dominate the search results. As we are interested in a rich ontology of historical
persons, this is thus a less-suited approach.

The class Period contains all combinations of years that are likely to denote the
periods of life of a historical person. Hence, the number of instances known for the
class Period is by far the largest for all complete classes in O. As it is unlikely that
many important historical persons share both a date of birth and a date of death,
the use of this class is best suited to obtain a long and diverse list of persons. The
names of historical persons are often followed in texts by a period in years (e.g.
‘Vincent van Gogh (1853 - 1890)’). As this period is likely to denote the period
he or she lived in, we choose the pattern ”(year of birth – year of death)” to collect
snippets to identify the names of historical persons.

4.5.1 Identifying Person Names in Snippets
Having obtained a collection of snippets, the next problem is to extract instances
from the texts, in this case person names. We choose to identify the names within
the snippets using a rule-based approach.

First we extract all terms directly preceding the queried expressing that match
a regular expression similar to the approach in the previous case study. That is,
we extract terms of two or three capitalized words and compensate for initials,
inversions (e.g. ’Bach, Johann Sebastian’), middle names, Scottish names (e.g.
McCloud) and the like.
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Subsequently, we remove extracted terms that contain a word in a tabu list
(e.g. ‘Biography’) and names that only occur once within the snippets. Having
filtered out a set of potential names of persons, we use a string matching among
the extracted names to remove typos and names extracted for the wrong period.

Using the 80,665 periods identified, we obtain a list of 28,862 terms to be added
as instance to the class Person. Simultaneously, we extract the relations between
the periods queried and the extracted instances.

In the evaluation we analyze the quality of the extracted instances and compare
the rule-based approach with a state-of-the-art named entity recognizer using a
hidden markov model [Duda et al., 2000].

4.5.2 Using Mined Names to Find Additional Biographical Information
Having found a list of instances of the class Person, we first determine a ranking of
the instances extracted.
Finding a Rank. To present the extracted information in an entertaining manner,
we determined the number of hits for each identified person. As names are not
always unique descriptors, we queried for the combination of the last name and
period (e.g. ’Rubens (1577 - 1640)’). Although the number of hits returned a search
engine is an estimate and irregularities may occur [Véronis, 2006], we consider this
simple and efficient technique to be well suited for this purpose.

Now we use the names of these instances in a similar fashion to acquire bio-
graphical information for the 10,000 best ranked persons. To limit the number of
queries per instance, we select the pattern ’was’ to reflect the relation between Per-
son on the one hand and Nationality, Gender and Profession on the other hand. By
querying phrases such as ’Napoleon Bonaparte was’ we thus expect to acquire sen-
tences containing the biographical information. Table 4.11 contains examples of
the sentences used to determine biographical information. We scan these sentences
for occurrences of the instances (and their synonyms) of the related classes.
Relating persons to a gender. We simply counted instances and their synonyms
within the snippets that refer to the gender ‘male’ the opposite words that refer
‘female’. We simply related each instance of Person to the gender with the highest
count.
Relating persons to a nationality. We assigned the nationality with the highest
count.
Relating persons to professions. For each person, we assigned the profession p
that most frequently occurred within the snippets retrieved. Moreover, as persons
may have multiple professions, all other professions with a count at least half of
the count of p were added.

Hence, using one query per instance of Person, we identify basic biographical
information.
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Napoleon Bonaparte was the greatest military genius of the 19th century

Napoleon Bonaparte was born of lower noble status in Ajaccio, Corsica on

August 15, 1769

Napoleon Bonaparte was effectively dictator of France beginning in 1799 and

Napoleon Bonaparte was the emperor of France in the early 1800s

Napoleon Bonaparte was a bully, rude and insulting

Napoleon Bonaparte was in Egypt and was not enjoying his tour

Napoleon Bonaparte was a great warrior and a notable conqueror

Napoleon Bonaparte was born on August 15, 1769 to Carlo and Letizia

Bonaparte

Napoleon Bonaparte was defeated at Waterloo

Table 4.11. Example search results for the query ’Napoleon Bonaparte was’.

philosopher 1275 designer 222
composer 804 scientist 215
mathematician 773 musician 213
poet 668 historian 210
physicist 501 inventor 208
writer 478 essayist 201
playwright 469 engineer 199
novelist 429 singer 198
sculptor 362 dramatist 186
author 352 theorist 175
critic 346 illustrator 171
astronomer 343 journalist 166
painter 329 statesman 138
politician 323 teacher 138
artist 286 mystic 133
architect 284 educator 132
director 270 theologian 127
conductor 267 physician 125
actor 261 printmaker 124
pianist 224 scholar 112

Table 4.12. The professions that were found most often.

4.5.3 Evaluating the Identified Biographical Information
The rank assigned to each of the persons in the list provides a mechanism to present
the extracted data in an attractive manner. Table 4.13 gives the list of the 25 best
ranked persons and the identified biographical information. Using the criterion
defined in Section 4.5, Johann Sebastian Bach is thus the best known historical
figure.

As the data is structured, we can also perform queries to select subsets of the



72

Johann Sebastian Bach (1685-1750) Germany composer,organist
Wolfgang Amadeus Mozart (1756-1791) Austria composer,musician
Ludwig van Beethoven (1770-1827) Germany composer
Albert Einstein (1879-1955) Germany scientist,physicist
Franz Schubert (1797-1828) Austria composer
Johannes Brahms (1833-1897) Germany composer
William Shakespeare (1564-1616) United Kingdom author,poet
Joseph Haydn (1732-1809) Austria composer
Johann Wolfgang Goethe (1749-1832) Germany philosopher,director,poet..
Charles Darwin (1809-1882) United Kingdom naturalist
Robert Schumann (1810-1856) Germany composer
Leonardo da Vinci (1452-1519) Italy artist,scientist,inventor
Giuseppe Verdi (1813-1901) Italy composer
Frederic Chopin (1810-1849) Poland composer,pianist,poet
Antonio Vivaldi (1678-1741) Italy composer
Richard Wagner (1813-1883) Germany composer
Ronald Reagan (1911-2004) United States president
Franz Liszt (1811-1886) Hungary pianist,composer
Claude Debussy (1862-1918) France composer
Henry Purcell (1659-1695) United Kingdom composer
Immanuel Kant (1724-1804) Germany philosopher
James Joyce (1882-1941) Ireland author
Friedrich Schiller (1759-1805) Germany poet,dramatist
Georg Philipp Telemann (1681-1767) Germany composer
Antonin Dvorak (1841-1904) Czech Republic composer

Table 4.13. The 25 historical persons with the highest rank.

full ranked list of persons. For example, we can create a list of best ranked artists
(Table 4.14), or a ‘society’ of poets (Table 4.15). We note that Frédéric Chopin
is often referred to as ’the poet of the piano’. Table 4.16 shows that Vincent van
Gogh is the best ranked Dutch painter.

In Table 4.14 we give the top-40 persons that have as first profession either
artist or painter. Persons that also have as one of their professions artist or painter,
but not as their highest-scoring profession are Sir Winston Churchill, John Ruskin
and Kahlil Gibran. Their highest-scoring professions are politician, author and
poet, respectively.

The reader can verify that the given list of extracted persons are highly accu-
rate. However, lacking a benchmark set of the best known historical persons, we
manually evaluated samples of the extracted ontology to estimate precision and
recall.

Precision. To estimate the precision of the class Person, we selected three
decennia, namely 1220-1229, 1550-1559 and 1880-1889, and analyzed for each
the candidate persons that were found to be born in this decennium. For the first
two decennia we analyzed the complete list, for decennium 1880-1889 we analyzed
only the first 1000 as well as the last 1000 names. This resulted in a precision of
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Leonardo da Vinci (1452 - 1519) Italy artist, scientist,...
Pablo Picasso (1881 - 1973) Spain artist
Vincent van Gogh (1853 - 1890) Netherlands artist, painter
Claude Monet (1840 - 1926) France artist, painter,...
Pierre-Auguste Renoir (1841 - 1919) France painter
Paul Gauguin (1848 - 1903) France painter
Edgar Degas (1834 - 1917) France artist, painter,...
Paul Cezanne (1839 - 1906) France painter, artist
Salvador Dali (1904 - 1989) Spain artist
Henri Michaux (1899 - 1984) Belgium artist, poet
Gustav Klimt (1862 - 1918) Austria painter, artist
Peter Paul Rubens (1577 - 1640) Belgium artist, painter
Katsushika Hokusai (1760 - 1849) Japan painter
Amedeo Modigliani (1884 - 1920) Italy artist, painter
JMW Turner (1775 - 1851) United Kingdom artist, painter
James Mcneill Whistler (1834 - 1903) United States artist
Rene Magritte (1898 - 1967) Belgium artist, painter
Henri Matisse (1869 - 1954) France artist
Rembrandt van Rijn (1606 - 1669) Netherlands artist, painter
Edouard Manet (1832 - 1883) France artist, painter
Herm Albright (1876 - 1944) - artist, engraver,...
Marc Chagall (1887 - 1985) Russia painter, artist
Edvard Munch (1863 - 1944) Norway painter, artist
Wassily Kandinsky (1866 - 1944) Russia artist, painter
Francisco Goya (1746 - 1828) Spain artist, painter

Table 4.14. The 25 artists with the highest rank.

0.94, 0.95, and 0.98, respectively. As the decennium of 1880-1889 resulted in
considerably more names, we take a weighted average of these results. This yields
an estimated precision for the complete list of 0.98.

We compare the precision of the rule-based approach with a state-of-the-art
machine-learning-based algorithm, the Stanford Named Entity Recognizer (SNER
[Finkel et al., 2005]), trained on the CoNLL 2003 English training data. Focussing
on persons born in the year 1882, using the rule-based approach we extracted 1,211
terms. SNER identified 24,652 unique terms as person names in the same snippets.
When we apply the same post-processing on SNER extracted data (i.e. removing
typos by string matching, single-word names and names extracted for different
periods), 2,760 terms remain, of which 842 overlap with the terms extracted using
the rule-based approach.

We manually inspected each of these 2,760 terms, resulting in a precision of
only 62%. Around half of the correctly extracted names are not recognized by the
rule-based approach, most of them due to the fact that these names did not directly
preceded the queried period.

To estimate the precision of the extracted biographical relations, we inspected
randomly selected sublists of the top 2500 persons. When we focus on the best
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William Shakespeare (1564-1616) United Kingdom author,poet
Johann Wolfgang Goethe (1749-1832) Germany poet, psychologist, philosopher..
Frederic Chopin (1810-1849) Poland composer,pianist,poet
Friedrich Schiller (1759-1805) Germany poet,dramatist
Oscar Wilde (1854-1900) Ireland author,poet
Jorge Luis Borges (1899-1986) Argentina author,poet
Victor Hugo (1802-1885) France author,poet,novelist
Ralph Waldo Emerson (1803-1882) United States poet,philosopher,author
William Blake (1757-1827) United Kingdom poet
Dante Alighieri (1265-1321) Italy poet
Robert Frost (1874-1963) United States poet
Heinrich Heine (1797-1856) Germany poet
Robert Louis Stevenson (1850-1894) Samoa engineer,author,poet
Alexander Pope (1688-1744) United Kingdom poet
Hildegard von Bingen (1098-1179) Germany composer,scientist,poet
Lord Byron (1788-1824) Greece poet
John Donne (1572-1631) United Kingdom poet,author
Henri Michaux (1899-1984) Belgium poet
Walt Whitman (1819-1892) United States poet
Robert Burns (1759-1796) United Kingdom poet

Table 4.15. The 20 best ranked poets.

Vincent van Gogh (1853-1890)
Rembrandt van Rijn (1606-1669)
Johannes Vermeer (1632-1675)
Piet Mondrian (1872-1944)
Carel Fabritius (1622-1654)

Kees van Dongen (1877-1968)
Willem de Kooning (1904-1997)
Pieter de Hooch (1629-1684)
Jan Steen (1626-1679)
Adriaen van Ostade (1610-1685)

Table 4.16. The 10 best ranked painters from the Netherlands.

scoring professions for the 2500 persons, we estimate the precision of this relation
to be 96%. We did not encounter erroneously assigned genders, while we found
98% of the cases the right Nationality, if one is found.

Hence, we conclude that the ontology populated using the rule-based approach
is precise.

Recall. We estimate the recall of the instances found for Person by choosing
a diverse set of six books containing short biographies of historical persons. Of
the 1049 persons named in the books, 1033 were present in our list, which gives a
recall of 0.98 (Table 4.18).

From Wikipedia, we extracted a list of important 1882-born people8. The list
contains 44 persons. Of these 44 persons, 34 are indeed mentioned in the Google
snippets found with the queried patterns. Using the rule-based approach, we iden-

8http://en.wikipedia.org/wiki/1882, visited January 2007
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Cesar Franck (1822 - 1890, B) organist, composer, pianist
Vincent van Gogh (1853 - 1890, NL) artist, painter
Roland de Lassus (1532 - 1594, B) composer
Abraham Kuyper (1837 - 1920, NL) theologian, politician
Henri Michaux (1899 - 1984, B) artist, poet
Peter Paul Rubens (1577 - 1640, B) artist, painter
Baruch Spinoza (1632 - 1677, NL) philosopher
Rene Magritte (1898 - 1967, B) artist, painter
Christiaan Huygens (1629 - 1695, NL) astronomer, scientist,...
Rembrandt van Rijn (1606 - 1669, NL) artist, painter
Johannes Vermeer (1632 - 1675, NL) painter, artist
Edsger Wybe Dijkstra (1930 - 2002, NL) computer scientist
Anthony van Dyck (1599 - 1641, B) painter
MC Escher (1898 - 1972, NL) artist
Antony van Leeuwenhoek (1632 - 1723, NL) scientist
Piet Mondrian (1872 - 1944, NL) artist, painter
Hugo Grotius (1583 - 1645, NL) lawyer, philosopher,...
Jan Pieterszoon Sweelinck (1562 - 1621, NL) composer, organist,...
Andreas Vesalius (1514 - 1564, B) physician
Hieronymus Bosch (1450 - 1516, NL) painter
Audrey Hepburn (1929 - 1993, B) actress, princess
Ferdinand Verbiest (1623 - 1688, B) astronomer
Desiderius Erasmus (1466 - 1536, NL) philosopher, reformer,...
Theo van Gogh (1957 - 2004, NL) judge, artist
Gerard Dou (1613 - 1675, NL) painter, artist
Nicolaas Beets (1814 - 1903, NL) king, poet, writer
Carel Fabritius (1622 - 1654, NL) painter
Georges Simenon (1903 - 1989, B) author
Kees van Dongen (1877 - 1968, NL) painter
Gerardus Mercator (1512 - 1594, B) cartographer
Emile Verhaeren (1855 - 1916, B) poet, dramatist
Abel Janszoon Tasman (1603 - 1659, NL) explorer
Pieter de Hooch (1629 - 1684, NL) painter
Jan van Goyen (1596 - 1656, NL) artist
Hendrick Goltzius (1558 - 1617, NL) artist
Simon Stevin (1548 - 1620, NL) mathematician
Jacob Jordaens (1593 - 1678, B) artist, painter
Jan Steen (1626 - 1679, NL) artist, painter,...
Jacobus Arminius (1560 - 1609, NL) theologian
Guillaume Dufay (1400 - 1474, B) composer

Table 4.17. The Belgian/Dutch persons with the highest rank.

tified 24 of these persons within the snippets. The other ones were only mentioned
once (and hence not recognized) or found in different places in the snippets, i.e.
not directly preceding the queried period. Using SNER, we identified 27 persons
from the Wikipedia list.

For the recall of the identified biographical relations, we observe that for the
10,000 persons that we considered all were given a gender, 77% were given a
nationality, and 95% were given one or more professions.

Hence, we conclude that using simple methods we have extracted reliable in-
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BOOK TOTAL FOUND RECALL

The Science Book 156 147 0.94
The Art Book 358 353 0.99
The Dutch Painters: 100 Seventeenth Century Masters 108 106 0.98
Philosophy: 100 Essential Thinkers 78 78 1.00
Herinneringen in Steen 195 195 1.00
Scientists and Inventions 154 154 1.00

Table 4.18. Recall for six popular scientific editions.

formation on historical persons and their biographies with good recall.

4.6 Conclusions
We evaluated the method to populate an ontology using a web search engine us-
ing a number of case-studies. We show that simple web information extraction
techniques can be used to precisely populate ontologies. For all studied cases, the
snippets showed to be a sufficient corpus to extract the information from. By com-
bining and structuring information from the Web, we create a valuable surplus to
the knowledge already available.

The use of the pattern-instance combinations in queries is an effective approach
to access relevant search results. We have shown that the redundancy of informa-
tion on the web enables us to precisely identify instances using the rule-based ap-
proach. For the data-oriented approach, the use of a large and representative set of
known instances is crucial.

The relation instances in the various case-studies were precisely identified us-
ing the pattern-based approach. Both with manually constructed patterns as well
as with learned patterns good results were achieved in the studied cases.



5
Application: Extracting Inferable

Information From the Web

In the previous chapter, we have focused on the extraction of factual information
that is easily verifiable using structured content on the web. The evaluations give
confidence in the quality of the output of the method.

Now we focus on the extraction of information that is not present as such on the
web, but can be inferred by combining data extracted from multiple websites. We
do so by presenting two case studies. In Section 5.1 we focus on an information
demand from the Nederlands instituut voor Beeld en Geluid. Having defined a
thesaurus (or, an ontology) of keywords, the question is how to link a user-input
term to a keyword that is semantically closest. We use methods developed in the
previous chapters to address this task. Section 5.1 is based on [Geleijnse & Korst,
2007].

Section 5.2 focusses on the extraction of lyrics from the web. With numerous
fanpages, legal and less legal websites on lyrics, it is not straightforward to find a
reliable version on the lyrics for a given song. Section 5.2 is based on [Geleijnse
& Korst, 2006a] and [Korst & Geleijnse, 2006] as well as the related patent appli-
cations (page 166). We use a rule-based approach to identify lyrics within pages
found with a search engine and combine all versions into a most plausible version
for the given song.

77
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5.1 Improving the Accessibility of a Thesaurus-Based Catalog
To consistently annotate items and to facilitate their retrieval, cultural heritage in-
stitutions often use controlled vocabularies for indexing their collections. For the
Nederlands instituut voor Beeld en Geluid1 (B&G), the annotations are currently
the only basis to retrieve the audiovisual content. The maintenance of the anno-
tations as well as the addition of new annotated material is a costly and laborious
task. Many of the hundreds of thousands of documents are therefore only sparsely
annotated.

B&G uses a dedicated thesaurus, the GTAA (Gemeenschappelijke Thesaurus
Audiovisuele Archieven (Common Thesaurus Audiovisual Archives), as a con-
trolled vocabulary. Especially for the items that are briefly annotated, e.g. where a
summary of the content is missing, searching for GTAA terms is the most effective
mechanism for retrieval.

Although the use of a controlled vocabulary such as the GTAA provides a uni-
form annotation over the whole collection, it also gives rise to two problems. On
the one hand, the retrieval of items – both for professionals and for the general
public – depends on the knowledge of the content of the GTAA. Proper use of the
terms in the GTAA is crucial for both indexing and retrieval. On the other hand, the
controlled vocabulary is updated from time to time as new terms become relevant.
B&G choose to limit the size of their controlled vocabulary. Therefore, all annota-
tions that contain terms that are removed from the vocabulary have to be updated,
as expired terms are mapped to terms within the latest version of the GTAA.

As proper use of the GTAA is of value for the accessibility of the B&G catalog,
we focus on an assistant to identify proper terms within the thesaurus for a search
demand. Given an arbitrary search term, we want to identify GTAA terms with
a similar meaning. Such a mapping between the term and the GTAA can be of
assistance for those who want to search the catalog as it will provide more effective
search results. For those annotating an audiovisual production it can also be of use,
as it can help to find the closest terms within the GTAA.

For many languages, such as Dutch, no structured knowledge is available to
derive a mapping between an arbitrary term and the thesaurus. We therefore use
unstructured texts to extract such a mapping, by deploying techniques developed
in the fields of ontology mapping and web content mining. We derive semantic
relations between a query term and the thesaurus using search engine snippets.

We illustrate that the method presented is domain and language independent
by evaluating mappings of terms both to the Dutch GTAA and to the Agricultural
Thesaurus2 (NALT) of the United States National Agricultural Library.

1The Netherlands Institute for Sound & Vision, http://www.beeldengeluid.nl
2http://agclass.nal.usda.gov/agt/agt.shtml
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5.1.1 Related Work
Together with the development of the semantic web, the research topic of ontology
matching arose [Shvaiko et al., 2006]. In ontology matching, the task is to combine
or create relations between two separately designed ontologies. Although most
approaches are based on the structures of the ontologies combined with lexical
matches (e.g. [Shvaiko & Euzenat, 2005; Meilicke, Stuckenschmidt, & Tamilin,
2007]), the use of web content mining has recently been deployed for this task
[Gligorov et al., 2007; Van Hage, Kolb, & Schreiber, 2006].

Web information extraction applied to the cultural heritage domain is addressed
by De Boer et al. [2007]. Here, ontologies of painters and art movements are
linked by analyzing web pages on art movements. The numbers of search engine
hits is used in [De Boer et al., 2006] to identify the periods corresponding to art
styles. In [Cilibrasi & Vitanyi, 2007] such numbers are used to identify relatedness
between Dutch 17th century painters. In [Navigli & Velardi, 2006] a method is
presented to create structured knowledge on the arts domain using the definitions
in a glossary. Patterns in the glosses are used to identify relations. These relations
link the concept to a named entity, extracted using a NER.

As an alternative approach to the use of web content mining to improve the
accessibility of the catalog, Malaisé et al. [2007] created a method to link the Dutch
GTAA thesaurus to the English WordNet [Fellbaum, 1998] via a bilingual online
dictionary. As the GTAA contains many multi-word terms and compounds, such a
mapping can not always be found. Moreover, it is not trivial to link an arbitrary
given term via WordNet to the GTAA.

5.1.2 Problem Description and Outline
Given is a thesaurus, i.e. a list of terms and their semantic relations. Typical rela-
tions are the broader term relation (BT) between a term and a more general term
(e.g. herring gull and seagull), its counterpart the narrower term relation (NT), and
the related term RT relation for terms that are associated with one another. More-
over, a thesaurus can contain preferred and non-preferred terms. The latter refer to
the first via the use relation (US), used for (UF) is its inverse. As a thesaurus solely
consists of a set of terms and their mutual relations, it can easily be described using
the terminology posed in Chapter 2. Van Assem et al. [2004] proposed a mecha-
nism to convert a thesaurus to semantic web format.

Apart from the standard thesaurus relations, the GTAA also distinguishes one or
more categories for each preferred term. These categories are subdivided into 15
main categories (e.g. sports and leisure) and each containing 3 to 7 subcategories
(e.g. recreation). The terms in the GTAA are mostly in plural, but the singular forms
are added as well.

Example terms from both the GTAA and the NALT are given in Tables 5.1 and
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bioscooppersoneel (cinema personnel)
1D05.03 economy – trades, services
1D12.01 arts and culture – general
1D13.02 sports and leisure – recreation
BT personeel (personnel)
BT werknemers (employees)
NT filmoperateurs (film operators)
RT bioscopen (cinemas)
RT film (film)
UF explicateurs (± silent film commen-
tator)

Table 5.1. Example terms from the GTAA

earthworms
BT invertebrates
BT soil invertebrates
RT earthworm burrows
RT Lumbricidae
RT vermiculture
RT worm casts

Table 5.2. Example term from the the NALT

5.2. For the GTAA term the translations in English are given. For example, the
entry shows that invertebrates is a broader term (BT) for earthworms.

Currently, detailed knowledge of the content of the GTAA thesaurus T is
crucial for describing (and redescribing) items within the catalog. Moreover, the
recall of briefly described items will improve when using search terms within the
GTAA. Hence, an assistant is desired that suggests terms from the GTAA for a
given query term. The problem addressed in this section is the following.

Thesaurus Mapping Problem. Given a term v and a thesaurus T , find the
term t ∈ T that is semantically closest. 2

Ideally, for a given term v we are interested in a synonym of v within T . As
the GTAA only consists of about 5,000 terms, it is not likely that a synonym is
present for v. We therefore focus on finding the narrowest broader term t for v. For
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example, if we are interested in a mapping for the term albatross, the terms bird
and animal are indeed broader terms, but are too broad. Seabird however would be
the narrowest broader term for albatross.

The algorithm presented is to be used as an assistant. For a given query v, we
therefore present multiple candidate terms with hyperlinks to the GTAA. Even if t is
not identified by the assistant, t can easily be found if the method does return terms
that are semantically close (e.g. by the RT relation) and hence links to t. Instead of
navigating through a thesaurus with 5,000 terms, the user is now only presented a
handful of alternatives. Hence, the user can select a term at a single glace.

As no suitable structured information is available for this task, we again use
a pattern-based method to determine a mapping from v to the thesaurus. Using
the Yahoo! API for our experiments, we are allowed to perform 5,000 automated
queries a day. Approaches as discussed in e.g. [Cimiano & Staab, 2004; Cilibrasi
& Vitanyi, 2007] have a query complexity of the order of the number of terms in T
per query term v. We therefore aim at an approach more efficient in the number of
queries per term.

As a first approximation, we start with determining the most relevant categories
(Table 5.1) for v. We use the computed categories in the next steps, where we
present three alternative approaches in mapping v to T .

5.1.3 Determining Categories
A commonly used paradigm in natural language processing is that the semantics of
a term can be determined by its context [Manning & Schütze, 1999]. We use this
assumption to first determine the subcategory – and thus main category – for the
term v. For each subcategory r, we compute a score sv(r).

We collect the 100 snippets for the query "v" and we scan them for terms
in T . Each term in T that occurs in the snippets contributes to the scores of its
subcategories [Fleischman & Hovy, 2002]. Hence, if the term bioscooppersoneel
(see Table 5.1) occurs in the snippets found with v, this occurrence contributes to
the scores of the subcategories 1D05.03, 1D12.01 and 1D13.02.

As infrequent terms are more discriminative than frequent ones, the occur-
rences of the terms in T are weighted by their estimated total frequency on the
web. Words such as haar (either hair or her in English) that appear frequently in
Dutch texts get a lower score than infrequent terms such as 1 mei-vieringen (May
1 celebrations).

The score sv(r) for subcategory r is given by a tf.idf-based weighting scheme
[Manning & Schütze, 1999]

sv(r) = ∑
t∈r

oc(t) · log
C

f (t)
, (5.1)
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where

oc(t) denotes the number of times term t (or its singular form) occurs ,

f (t) gives the number of search engine hits for the query “t”, and

C = ∑
t∈T

f (t) gives the sum of all hits.

After having computed the scores for each of the subcategories, we assign the
subcategory rmax with the highest score to v. As a term can be within multiple cat-
egories, we also add the subcategories with at least half the score of rmax. Hence,
we add each subcategory ri for which the following holds

sv(ri)≥ 0.5 · sv(rmax). (5.2)
We will use the subcategories in the mapping techniques described in the next

three subsections.

5.1.4 Term Mapping using Hyponym Patterns
We assume a set of patterns to be given that relate Dutch terms with their hyper-
nyms. [Hearst, 1992]. IJzereef [2004] manually constructed such a set.

Having such a set of patterns, we combine the term v with each of the patterns
into queries. We query an expression (e.g. such as puffins) and scan the returned
snippets for terms in T preceding the search term. Hence, the aim is to find phrases
(like seabirds such as puffins) to determine broader terms for v.

For a term t ∈ T found within the snippets for query term v, we compute its
score sv(t) as follows.

sv(t) = q(t,v) ·oc(t) · log
C

f (t)
(5.3)

We use q(t,v) as a penalty score for terms outside the subcategories found in
the previous section.

q(t,v) =





1.0 if t and v share a subcategory
0.3 if t and v share a main category
0.1 if t and v share no category
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The values for q(t,v) are chosen in a somewhat arbitrary way. We will return
to these choices when discussing the experimental results.

Using the scores, we compute a ranked list for the potential hypernym terms
for v found using this method.

5.1.5 Term Mapping using Enumeration Patterns
Snow et al. [2006; 2005] observe that related terms (or siblings) tend to co-occur
in enumerations. We thus can state that enumerated items share a broader term.
Hence, if we can observe which terms within T are siblings of v, we can use the
structure of the thesaurus to compute the broader term for v.

Similar to the approach described in the previous section, we select a number
of patterns expressing the RT relation. Again, we scan the snippets for terms within
the thesaurus. However, we do not score the terms found, but (all) their broader
terms. Hence, the presence of the term aalscholvers (cormorants) contributes to the
scores for watervogels (water birds), vogels (birds), and dieren (animals).

A term t is hence scored using the presence of all its narrower terms NT∗(t) in
the snippets.

sv(t) = ∑
s∈NT∗(t)

q(s,v) ·oc(s) · log
C

f (s)
(5.4)

We assume that the broadest concepts (e.g. dieren, animals – 26,000,000 hits)
are in general more present on the web than narrower concepts (e.g. watervogels,
waterbirds – 230,000 hits). Hence, we do take the distance of s to t into account
as the factor C

f (s) penalizes common concepts. Again, we compute a ranked list of
potential hypernym terms using this enumeration-based approach.

5.1.6 Term Mapping using a Lexical Approach
We observe that hyponym-hypernym pairs that are lexically similar (e.g. dienstver-
lenende beroepen and beroepen, earthworms and worms) occur infrequently within
the same sentence. Next to the two approaches based on web information extrac-
tion, we therefore adopt an approach using the morphology of the terms.

If some term t in T is a suffix of v, then v may be a hypernym of t (e.g. if v
contains a preceding adjective). However, not all t that match with a suffix of v
are indeed hypernyms of v. For example, the GTAA term ogen (eyes) is a suffix of
psychologen (psychologists).

However, if the computed categories for v do not overlap with the categories for
suffix t, it is not likely that the two are related. We therefore use the subcategories
as computed in Section 5.1.3 to filter out erroneous lexical mappings.

We construct a list of thesaurus terms that are suffixes of v and share a subcate-
gory with v. If no such terms exist, we create such a list of terms that share a main
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category with v. The list is sorted by increasing length.

5.1.7 Presenting the Results
Having independently found three lists of potentially relevant terms for the query
v, the task is to identify a mapping, i.e. the most relevant term in T . We search the
three lists to select the ‘best of three’.

This best of three term is selected as follows. We select the term with the
highest average rank that is found by all methods. If no such term exists, we select
the term with the highest average rank over two of the three methods. We leave
this ‘best of three’ field blank if no term is identified by more than one method.

Finally, the set of winners is identified, consisting of at most four terms: the
best scoring terms for the individual methods plus the best of three.

As the algorithm presented is intended to be an assistant for users of the catalog
rather than a fully automatic mapping, we also present the outputs of the individual
methods. An HTML page is generated where the terms are linked with the corre-
sponding entries in the thesaurus. Hence, even if the best suited term is not found,
the user can navigate to this term by clicking a closely related term.

As the number of queries is linear in the number of patterns for a given in-
put term, a real-time application is possible. With an (inefficient) implementation
where 21 queries (1 for the categories and 10 for both the hyponyms and enumer-
ation patterns) per term are performed sequentially, the method returns the results
within a minute.

5.1.8 Experimental Results
In this section we present experiments with two thesauri. We evaluate the perfor-
mance when mapping terms to the Dutch GTAA for the audiovisual archives, where
in the second part of this subsection we use the United States NALT agricultural
thesaurus.

To be of assistance, the relevant terms within the results of the method should
be observable at a single glance. We therefore not only analyze the performance
of the best of three term, but also the precision of the three individual methods and
the average ranking of the terms in the benchmark set.

Experiments with the GTAA
We performed two experiments with the GTAA. In the first experiment, we map a
set of ‘expired terms’ to the thesaurus, where in the second we use a ‘leave-one-
out’ strategy to evaluate the recall and precision of the method. That is, we remove
a term t from the thesaurus T and map this term to T\{t}.

Mapping expired terms to the GTAA. As novel items are constantly added to
the archive of B&G, the GTAA is updated from time to time as well. A major
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[query] [keyword]
[query] en [keyword]
[keyword] en [query]
[keyword] [query]
[keyword] zoals [query]
[query] en andere [keyword]
[keyword] als [query]
[keyword] of [query]
[query] of [keyword]
[keyword] van [query]

[query] [keyword]
[keyword] en [query]
[query] en [keyword]
[keyword] [query]
[query] of [keyword]
[query] en de [keyword]
[query] de [keyword]
[keyword] of [query]
[query] in [keyword]
[query] van [keyword]

Table 5.3. The 10 hyponym patterns (left) and enumeration patterns (right) used
for the GTAA.

problem is replacement of ‘expired terms’ with terms within the latest version of
the GTAA.

In this experiment we discuss the applicability of our method to resolve this
problem. As a benchmark set, B&G provided us a list of 78 pairs of such expired
terms and the terms within the (current) GTAA to replace them.

We have automatically learned the patterns (Chapter 3) for the hyponym and
enumeration relations by selecting all terms in the thesaurus starting with a – e and
their BT or RT respectively. For each of the two methods, we use the 10 patterns
that are found to be most effective (Table 5.3). We use [query] as a placeholder
for the term to be queried (thus outside the thesaurus) and [keyword] denotes the
place in the snippets where we search for terms within the thesaurus. It is notable
that there is an overlap between the patterns for the two relations. The patterns
zoals and en andere are Dutch translations of the patterns first identified by Hearst
[1992] and translated by IJzereef in [2004].

The results for the test with the expired terms can be found in Tables 5.4 and
5.5. Table 5.4 shows the accuracy of the highest ranked terms for the three indi-
vidual methods as well as the accuracy for the best of three and set of winners. It
shows that the best of three provides the correct term – i.e. the benchmark – in 13
cases, while the highest scored terms with the hyponym, enumeration and lexical
methods are correct in only 12, 4, and 7 cases respectively. For 15 terms, no best
of three could be identified.

We have also analyzed the recall of the terms that are 1 click away from the
benchmark term by either the US, BT, NT or RT relation. Hence, these terms found
have a closely related meaning. For example, given the term bioscooppersoneel
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WITHOUT CATEGORIES USING CATEGORIES
benchmark 1 click away benchmark 1 click away

#1 hyponyms 13 24 12 22
#1 enumerations 2 13 4 16
#1 lexical 6 11 7 15
best of three 14 21 13 24
set of winners 20 41 18 41

Table 5.4. Performance for the 78 expired terms. We compare the precision
using the computed categories and subcategories (l.) with the approach where no
(sub)categories were assigned to the expired terms.

(see Table 5.1), the terms personeel, werknemers, filmoperateurs, bioscopen, film
and explicateurs are all linked to this term. If the method select either one of these
terms, the user can navigate in one step to the term bioscooppersoneel. We analyze
the number of times one of the one click away terms is among the search results.
The average rank is computed using the one click away term with the highest rank.

If we analyze the term selected as the best of three, then 24 out of 78 are one
click away from the term in the benchmark set. The set of winners contains such a
term in 41 out of the 78 cases.

Table 5.4 shows that the performance of the lexical method improves when
we take the category information into account. Contrary to our assumptions, the
results of the method using hyponym patterns does not improve when using the
category information. For the given benchmark set, the ranking of the enumeration
patterns is slightly improved when using the category information.

Table 5.5 focusses on presence of the benchmark term within the full ordered
lists. Depicted is the number of times the actual benchmark term is identified and
their average rank. Hence, the benchmark term is identified in 46 out of the 78 cases
using the hyponym patterns. However, the average rank of both the benchmark
term and of the terms with distance 1 is better using the enumeration patterns. Here
we see that the use of category information has a positive effect on the ranking of
the method using the hyponym patterns.

When analyzing the results of the methods, we encounter numerous terms
found that are intuitively correct. In Table 5.6 we give a number of examples
of expired terms, the best of three alternative found and the benchmark as given by
B&G.

For example, for the term tabakswinkels (tobacco shop) the term in the bench-
mark set, detailhandel (retail trade), was not found. However, the found sugges-
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WITHOUT CATEGORIES USING CATEGORIES
benchmark 1 click away benchmark 1 click away

recall hyponyms 46 70 46 70
average ranking 14.84 8.14 9.45 7.72

recall enumerations 16 44 16 44
average ranking 7.43 3.63 7.31 3.47

Table 5.5. Recall and average rank for the 78 expired terms.

term best of three benchmark

tabaksplanten planten tabak
tobacco plants plants tobacco
tabakswinkels winkels detailhandel
tobacco shops shops retail trade
tegelzetters bouwvakkers ambachten
tiler construction workers crafts
titanium metalen chemische elementen
titanium metals chemical elements
toxicologie geneeskunde vergiftigingen
toxicology medical science poisonings
troepen militairen krijgsmacht
troops soldiers armed forces
tweeverdieners gezinnen inkomens
two-earner family families incomes

Table 5.6. Example terms and their English translations with their ’best of three’
and benchmark mapping.

tions kiosk, sigaretten (cigarettes) and winkels (shops) seem valid alternatives as
well. For treinongelukken (train accidents), we find ongelukken (accidents), ram-
pen (disasters) and verkeersongelukken (traffic accidents), where the correct term
was spoorwegongelukken (railway accidents).

To test the effect of the choice of the values for q(t,v), we varied the value for
the main category. We compute the ranks for the three individual methods by incre-
mentally increasing the value for the main category, from 0.1 (the value for sharing
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benchmark

#1 lexical 138
#1 hyponyms 71
#1 enumerations 87
best of three 159
set of winners 239

benchmark

recall hyponyms: 343
average ranking: 13.66

recall enumerations: 146
average ranking: 2.12

Table 5.7. Performance: recall and average rank for the 573 GTAA terms

no category) to 1 (the value for sharing a subcategory). For this experiments, the
differences encountered were negligible. Hence, q(t,v) can be simplified by only
distinguishing two cases: either v and t share a subcategory or not. The use of the
subcategory information is of particular use for the lexical- and enumeration-based
methods.

Leave one out. In this second experiment with the GTAA, we use the thesaurus
itself as a benchmark set. We proceed as follows. We select a term t within the
GTAA that has a broader term b. We then remove t from the thesaurus and use this
thesaurus T \ t as a reference. The task is now to find the mapping of the term
outside the thesaurus (i.e. t) to b.

We use the same patterns as in the previous experiment. For fairness, we there-
fore will only evaluate with terms in the thesaurus starting with the letters f to z
that have a broader term. This resulted in a test with 573 terms. When a term has
multiple broader terms, in the evaluations we focus on the best scoring one.

The results for these tests are given in Table 5.7. It shows that in 239 out of
the 573 terms (i.e. 42%) the correct term is among the set of winners (of size at
most 4). Table 5.7 shows again that the recall using the hyponym patterns is larger,
but the ranking of the enumeration-based method is more precise. The lower recall
using the enumerations can be explained by the structure of the thesaurus. As the
GTAA is quite flat, for many terms found within the snippets no broader term is
defined.

As an example, in Table 5.8 we give the best scoring output for the query term
fietspaden (bicycle tracks). The broader term in the thesaurus is infrastructuur
(infrastructure).

Given the difficulty of the tasks, and the fact that the mappings chosen in the
benchmarks are sometimes debatable, we consider the results of the experiments
convincing. As the correct answer is present in the majority of the cases (as the
hyponym pattern method found 343 out of 573 correct mappings), the method
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best of three: paden
lexical: paden paths/tracks
hyponyms: wegen roads
hyponyms: trottoirs sidewalks
hyponyms: paden
hyponyms: meren lakes
hyponyms: padden toads
enumeration: infrastructuur infrastructure
enumeration: paden
enumeration: openbare voorzieningen public services
enumeration: wegen
enumeration: beroepen professions

Table 5.8. Best scoring output for fietspaden (bicycle tracks).

can be of value as an assistant for those working with the GTAA or the catalog of
B&G. The experiment with the expired term showed that the determination of the
categories improves the performance of the lexical approach. The results suggest
that this preliminary step can be omitted for the other two approaches.

Experiment with NALT
To illustrate that the methods used are suited for English as well, we perform the
last experiment with the Agricultural Thesaurus (NALT) of the US National Agri-
cultural Library.

The NALT contains Latin names for animals and plants, names for molecules
and bacteria, but also product names such as Brie Cheese, champagne and fish
steaks.

We learn the patterns using the terms starting with the letter a. The patterns
found for NALT are given in Table 5.9. As the NALT does not categorize the terms,
we omit the step as described in Section 5.1.3. As the NALT consists of 68581
terms, we also leave out the collection of the number of search engine hits for each
thesaurus term, as this would require 14 days using the Yahoo! API.

We test the performance of the methods on the 3321 NALT terms starting with
the letters b to d that have a broader term. The results are given in Table 5.10. As an
illustration Table 5.11 gives the output for the term dietary cation anion difference,
where feed formulation is its broader term in the NALT. The right mapping for the
(more common term) bitterness indeed was found (Table 5.12).

For the hyponym-pattern based approach, typically a long list of terms is found
that all co-occur once with the queried term. As no frequency information is avail-
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[query] [keyword]
[query] and [keyword]
[query] are [keyword]
[query] or [keyword]
[keyword] and [query]
[query] the [keyword]
[query] and other [keyword]
[keyword] such as [query]
[keyword] including [query]
[keyword] or [query]

[query] [keyword]
[query] and [keyword]
[keyword] and [query]
[query] or [keyword]
[query] are [keyword]
[query] such as [keyword]
[query] of [keyword]
[keyword] or [query]
[query] as [keyword]
[query] for [keyword]

Table 5.9. The 10 hyponym (l.) and enumeration (r.) patterns used for NALT.

benchmark

#1 lexical 169
#1 hyponyms 10
#1 enumerations 100
best of three 192
set of winners 286

benchmark

recall hyponyms: 468
average ranking: 41.02

recall enumerations: 301
average ranking: 8.39

Table 5.10. Performance for the 3321 NALT terms

able, the ranking is just alphabetic. Using the enumeration method however, less
terms are found. Moreover, as multiple hyponyms contribute to the score of their
hypernym, the scores for the terms found tend to differ. Hence, although the num-
ber of correct mappings found with the enumeration patterns is smaller, the ranking
of the method is much more reliable than the hyponym-based method.

It immediately shows that the results for NALT are far more modest. However,
given the nature of the NALT and the fact that we did not correct for the frequencies
of the terms, we consider the results as a proof of concept that this method is also
applicable to another domain and language.

5.1.9 Conclusions
We have developed an algorithm to assist people to find alternative terms within a
thesaurus for a given query term.

The algorithm developed combines three approaches to map a term to a term
within a thesaurus. We use both texts found with Yahoo! as well as a simple
lexical matching technique to make the mapping. The algorithm is constructed in-
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hyponyms: ammonia
hyponyms: anions
hyponyms: buffering capacity
hyponyms: fever
hyponyms: literature
hyponyms: milk
hyponyms: milk fever
hyponyms: placenta
hyponyms: retained placenta
hyponyms: salts
hyponyms: species differences
hyponyms: urea
hyponyms: viscosity
enumeration: periparturient diseases and disorders
enumeration: pregnancy complications

Table 5.11. The output for dietary cation anion difference.

best of three: flavor
...

hyponyms: face
hyponyms: families
hyponyms: fear
hyponyms: flavor
hyponyms: food choices
hyponyms: garlic

...
enumeration: flavor
enumeration: ketones
enumeration: thermodynamics
enumeration: physics
enumeration: light
enumeration: grapes

Table 5.12. Part of the output for bitterness; 116 alternatives with the same score
were found using the hyponym patterns.

dependently from the content of the thesaurus and can easily be mapped to another
language. The combination of independent methods lead to considerably better
performances than any of the individual methods.

The method can facilitate searching a catalog with the use of index terms, since
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the algorithm can present a small number of alternative thesaurus terms for a given
term. This reduces the number of alternatives from the 5,000 GTAA terms to only
a handful. The experiments with the GTAA show that the algorithm indeed can be
usable as an assistant to find the right terms within the thesaurus.

5.2 Extracting Lyrics from the Web
In the second section of this chapter, we focus on a rather different application of
information extraction: the identification and construction of lyrics from the web.

We present an approach to automatically retrieve and extract lyrics of arbitrary
popular songs from the web. An increasing amount of music is distributed via the
Internet without the lyrics being included. Our approach offers the possibility to
retrieve the lyrics of popular songs with little or no user effort allowing them to be
read or sung during playback.

Lyrics are also used in karaoke-like settings. Applications that synchronize
the music with its lyrics are the focus of ongoing research [Y. Wang, Kan, Nwe,
Shenoy, & Yin, 2004; Iskander, Wang, Kan, & Li, 2006; Chen, Gao, Zhu, & Sun,
2006; Geleijnse et al., 2008]. These methods take both the audio-file and the lyrics
as input. In this section we show that the retrieval of lyrics can be done automati-
cally.

The lyrics of a song can also be used to extract additional information on the
corresponding song. For example, if we want to create a playlist with, say 60%
Christmas songs, the use of lyrics is the most obvious method to achieve this goal.
Earlier work by Logan et.al. [Logan, Kositsky, & Moreno, 2004] focussed on the
semantic analysis of lyrics. A set of songs was classified by genre using either
features extracted from audio or from the lyrics. Their results indicate that the
combination of the two could result in a better classification. Where Logan et.al.
used a model where genres were associated with frequently occurring words in
lyrics of the genre, other directions can be taken as well to extract information
from the lyrics. The lyrics can be used to detect the topic of a song (e.g. Christmas,
New York, lost love, summer holiday), its mood [Balog, Mishne, & De Rijke,
2006], the song’s structure or the language in which it is sung [Mahedero, Martı́nez,
Cano, Koppenberger, & Gouyon, 2005]. Hence such meta-data extracted from
the lyrics can be used to find similar songs. Feature extracting from lyrics may
thus be a valuable addition next to acoustic features extracted from audio (e.g.
[McKinney & Breebaart, 2003]) and external sources such as reviews [Dave &
Lawrence, 2003; Whitman & Ellis, 2004] or arbitrary web pages on music [Knees
et al., 2004; Geleijnse & Korst, 2006c].

On the web several lyrics sites offer the lyrics of large collections of songs. So,
users could access one of these lyrics sites. Apart from having to extract the lyrics
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from the pages manually, these sites have two disadvantages. Each of the sites
offers only a relatively small part of the total amount of available songs. In addition,
the lyrics they offer are rather error prone. The lyrics sites usually depend on
lyrics that have been uploaded by end users. Detailed analysis reveals considerable
differences in the lyrics offered by the various sites for the same song.

In this section we present an approach to retrieve multiple lyrics versions of a
given song using a search engine. This also offers access to the lyrics of songs that
can be found on the web but do not appear at popular lyrics sites. Furthermore, by
aligning the multiple lyrics versions we give direct insight into the differences in
these lyrics versions.

Our approach consists of the following steps. Using only the song title and
artist name, web pages are extracted that potentially contain lyrics of the song.
Usually such web pages contain, in addition to the lyrics, other material, including
surrounding text, advertisements, etc. From each of these web pages, the text
fragment that is expected to comprise the lyrics is identified and extracted. Next,
the multiple text fragments are compared to remove outliers. In order to compute
a ‘correct’ version of a song’s lyrics, the remaining text fragments are aligned on a
word-by-word basis, aiming to maximize the number of matching words.

To the best of our knowledge, Knees, Schedl & Widmer [2005] are the only
ones that consider web-based lyrics extraction. Our approach differs from theirs in
the following aspects. Although they use a similar method to acquire web pages
containing the lyrics, the subsequent steps of our approach are far more efficient.
Before carrying out the actual alignment, we reduce the number of text fragments
by removing outliers (i.e., text fragments that do not relate to the lyrics) by using a
fingerprinting method. In addition, Knees et al. perform an approximate multiple
sequence alignment of n web documents by aligning each pair of texts in a hier-
archical fashion, requiring a total of n2 logn alignments of web document pairs.
In contrast, we select one reference text fragment and align each of the other text
fragments with this reference text, requiring only n alignments of text fragment
pairs, while retaining the same quality of solutions.

The outline of this section is as follows. First, we discuss an approach to iden-
tify a collection of documents that are likely to contain the intended lyrics (Sec-
tion 5.2.1). In Section 5.2.2 we present an algorithm to extract the lyrics from these
documents. The collected set of lyrics is likely to contain other texts than solely
the lyrics of the intended song. We present an efficient method to remove outliers
in Section 5.2.3. Having identified a set of lyrics that are expected to reflect the
intended song, we present a multiple sequence alignment algorithm to construct a
single version of the lyrics in Section 5.2.4. In Section 5.2.5 we discuss the com-
putational complexity of the proposed algorithms and make a detailed comparison
with the algorithm of Knees et al. We present experimental results in Section 5.2.6
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allinanchor: “[Artist]”, “[Title]”, lyrics
allintitle: “[Artist]”, “[Title]”, lyrics
allinanchor: “[Title]”, lyrics
allintitle: “[Title]”, lyrics
“[Title]”, lyrics

Table 5.13. The query templates used to retrieve pages containing relevant lyrics.

and end with concluding remarks in Section 5.2.7.

5.2.1 Website-independent Lyrics Extraction
In this section we describe how we retrieve and select a number of texts that each
potentially constitute the lyrics of a given song. We assume that we are only given
the title of the song and the name of the performing artist. The lyrics extraction
algorithm consists of two steps. First we collect URLs of documents that potentially
contain the lyrics of the song of interest (Section 5.2.1). Since we are interested in
the lyrics themselves – and not in the documents as a whole – we then extract the
lyrics from these documents using a website independent approach (Section 5.2.2).

Collecting URLs of Documents
We first retrieve the URLs of documents that potentially contain the lyrics of the
intended song. We focus on heterogeneous sources and opt for an approach that is
website independent.

To obtain potentially relevant documents we use a list of queries with place-
holders. For our experiments we heuristically constructed the list of query tem-
plates in Table 5.13. The expressions [Artist] and [Title] are placeholders
for the artist name and song title.

The first query returns web pages that contain the exact strings of the song title
and artist name (by putting them between quotes) and the word lyrics in the anchor
text surrounding the links to these pages (by adding the allinanchor clause).
The anchor text is the text that directly relates to a link and can be considered as a
condensed summary of the content of the page.

As an alternative to the allinanchor option we also use the allintext
option. For this application, the allinanchor-option usually offers more hits than
the allintitle-option, where the allintitle-option requires that the terms in the query
appear in the title of the web page. The allinanchor-option is especially worthwhile
for rare songs, for which the allintitle-option may give no or only a small number
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of results. For the more well-known songs, the top-ranked results for both options
seem to be of equal quality.

We store the URLs of the search results of the first query in a list L in the order
as they are presented by the search engine. The results of the following queries are
added to the tail of L, where we omit double URLs.

5.2.2 Extracting Lyrics from the Documents
After retrieving the list of relevant URLs, we want to extract the lyrics from the
corresponding documents.

We make use of the textual structure of lyrics. Within a book, we can observe
at a single glance whether the text is prose or poetry. Like poetry, lyrics typically
consist of stanzas separated by blank lines. Each stanza consists of one or more
lines, where each line has a maximum number of characters. We opt for a rule-
based approach to recognize the lyrics in text (Chapter 3.2.2).

In hypertext, the end of a line is marked with <br>-tag. Each line within the
lyrics will thus end with such a tag. We assume the markup within the lyrics to be
constant. Hence, the only tags within the lyrics part of the HTML source file of the
page will be the end-of-line markers.

We use these characteristics to identify lyrics in a hypertext as follows. Let
D be a document containing r end-of-line markers. Then, D can be considered
as a sequence (t0, t1, . . . , tr) with r +1 fragments, where the ith end-of-line marker
separates ti−1 and ti.

Since we opt for a time-efficient algorithm, we scan the full document only
once. We therefore map the string of r + 1 fragments ti, 0 ≤ i ≤ r, to a string L of
the form (b|l|n)r+1, i.e. a string of length r + 1 containing only bs, ls and ns. The
mapping m of the fragments ti meets the following criteria.

- m(ti) = b whenever ti is empty or only consists of white space characters
(blank line),

- m(ti) = l (a lyrics line) whenever ti

(a) does not contain any HTML-tags,

(b) contains between 3 and 80 characters and

(c) half of the characters are letters,

and
- m(ti) = n otherwise (non lyrics).

In terms of bs, ls and ns, lyrics can now be described by a regular expression.
As we provided the algorithm with a list of query templates, we also input a list of
regular expressions that describe lyrics (Table 5.14).
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R0 = (l1−20 ·b)1−12 · l1−20

R1 = l3−40

Table 5.14. Regular expressions R0 and R1 expressing lyrics within a page.

Here, ai− j denotes a sequence of as of a length l, i ≤ l ≤ j. The second ex-
pression accepts a wider variety of texts. This is useful where there no stanzas are
indicated, e.g. in lyrics of rap songs.

We match the string L to a regular expression as follows. As we want to extract
the full lyrics (and for example not omit the last stanza), we want to identify the
first longest substring that is described by the regular expression.

We match the string L with the regular expression R′ = R0 · (l +b+n)∗ to find
a prefix of L that matches R0. If the first character of L is either a b or a l this is a
O(1) operation. If not, the matching has an upperbound of the maximum number
of lines in the lyrics as described by R0, hence 21 ·12+20 = 273, or the length of
L if |L| ≤ 273. If no such match is found we remove the first character of L and
repeat the procedure until either a match is found or L is the empty string. The
search for a substring matching R′ thus has a time complexity of O(|L|2).

After having found a substring of L that matches R′, we want to find the longest
prefix that matches R0. We use a bounded linear search to determine the length of
the longest prefix that matches R0. We remove the last character from the string
until the full string matches R0. Hence, the identification of the longest substring
matching a regular expression has a total time complexity of O(|L|2).

Some web sites contain the lyrics within preformatted text (put between tags
<pre> and </pre>). As a preprocessing step, we first extract such fragments
from the document. The preformatted text is then mapped to a sequence L with the
same rules (using the new line character instead of the <br>-tag).

We match the sequence L to the regular expressions R0 and R1 and extract the
fragment as described above. We use the corresponding substring in the document
to obtain the lyrics within it. Finally, we check the text that directly precedes and
succeeds the resulting substring, since the first and last lines of the lyrics may not
be included in this substring.

Again for efficiency reasons, not all documents in the list L are downloaded.
From the list of URLs, the top element is taken and the corresponding document
is retrieved. The above extraction algorithm is applied to the retrieved document.
The texts retrieved with either one of the regular expressions are added to a set P
of potential lyrics. We continue this process until lyrics have been extracted from
40 documents, or the list L is empty.
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5.2.3 Selecting a Subset of Lyrics
After having collected a number of URLs of documents and identified a number
of potential lyrics (the set P) from the documents collected, the task remains to
remove the texts that are not the lyrics of the intended song s.

The setP of text fragments that is extracted as described in the previous section
is likely to also contain text fragments that do no relate to the lyrics of the intended
song, for a number of reasons, such as the following ones.

- A text fragment can be the lyrics of another song by the same artist (espe-
cially if the title of the intended song is a subsequence of the title of the other
song).

- A text fragment can be the listing of an album’s songs in which the intended
song appears (especially if the song title is identical to the album title).

- A text fragment can be a listing of a playlist.

In this stage we want to remove these so-called outliers, since they do not
reflect the intended lyrics. We use the assumption that the majority of the extracted
text fragments constitutes the lyrics of the intended song.

We cluster the text fragments on the basis of similarity and retain only the text
fragments in the largest cluster. As variations frequently occur in representations
of lyrics to the same song, exact string matching is unsuited for this purpose. Ap-
proximate string matching techniques of strings of lengths s0 and s1 are in general
O(s0 · s1). Since in worst case we need to compare each pair in P , we consider this
as computationally too expensive.

Creating a Fingerprint for the Lyrics
Instead of comparing the full strings in the set P , we compare the fingerprint of the
strings.

We use the assumption that longer words occur less frequently in texts than
shorter ones [Manning & Schütze, 1999; Sigurd, Eeg-Olofsson, & Van Weijer,
2004]. We hence define the fingerprint f (t) = (wt1,wt2, . . . ,wtm) as the m longest
– and most typical – words for a text t.

For these purposes we define the order ≺ on words as follows.

w0 ≺ w1 if and only if

- The length of w0 is smaller than the length of w1, or

- w0 and w1 have equal length and w0 is lexicographical smaller than w1.

The last criterion assures the selection of fingerprints from the texts to be con-
sistent.
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The Beatles - Penny Lane photographs roundabout meanwhile
hourglass suburban

Bob Dylan - A Hard Rain’s Gonna Fall executioner’s whisperin mountains
graveyard forgotten

O-Zone - Dragostea Din Tei fericirea dragostea primeste
amintesc Picasso

The Police - Roxanne wouldn’t tonight streets
Roxanne another

Prince - Purple Rain underneath friendship something
laughing changing

Procol Harum - A Whiter Shade of Pale straightway cartwheels cardboard
wandered straight

Queen - Bohemian Rhapsody Thunderbolt Scaramouche monstrosity
frightening silhouetto

Britney Spears - Baby One More Time loneliness something shouldn’t
wouldn’t supposed

Emily Brontë - Wuthering Heights intercommunication mispronunciations
incomprehensible unsatisfactorily
unconsciousness

Charles Dickens - Oliver Twist pockethandkerchief chimbleysweeper’s
stauncherhearted unconstitutional
Northamptonshire

Euclid - The Elements (book 1) parallelogrammic quadrilaterals
Parallelograms quadrilateral
perpendicular

E.W. Dijkstra - Goto statement considered harmful superfluousness undesirability
specifications recommendation
correspondence

Table 5.15. The fingerprints, with f = 5, of a number of texts.

As a fingerprint for t we thus select the m longest words using ordering≺. The
fingerprint of t can be computed in time linear in the length of t. Table 5.15 gives
examples of the fingerprints for a number of lyrics and other texts.

Comparing Lyrics using Fingerprints
Having computed the fingerprints f (t) for each text fragment t, we use them to
select a subset P ′ of P such that each t in P ′ is a representation of the lyrics of the
song queried. As an example, Figure 5.1 gives the fingerprints of 12 texts gathered
for the song Silver and Gold by U2. The fingerprint of text 8 contains indeed terms
that occur in the lyrics of the song. However, as the fingerprint words are shorter
than the ones of e.g. text 1, text 8 will be an incomplete version of the lyrics to this
song. Texts 1 and 6 share three out of five fingerprint words, where text 6 will not
contain the word silence. The fingerprint for text 11 reflects a different song as it
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1 temperature something prisoners daylight silence
2 temperature something prisoners daylight silence
3 temperature something prisoners daylight silence
4 satisfied important seriously caution foolish
5 temperature something prisoners daylight silence
6 temperatur something prisoners daylight someone
7 temperature something prisoners daylight silence
8 shotgun praying hunter hunted house
9 rivers lights silver these shine
10 temperature something prisoners daylight silence
11 punctures waterless disappear carnival tonight
12 temperature something prisoners daylight silence

Figure 5.1. The fingerprints of 12 lyrics versions of the song Silver and Gold by
U2.

shares no words with any other text.
To compute the subsetP ′ ofP , we pairwise compare the fingerprints of the text

fragments. We assume that if the fingerprints of two text fragments share at least
k words, then they relate to the same text. We note that different lyrics versions
of a song will have similar fingerprints, irrespective of whether repeating parts are
included explicitly or not. For our experiments, we chose k = 3, while m = 5.

We construct a graph, where each node in the graph corresponds to an extracted
text fragment. There is an edge between two nodes if the fingerprints of the cor-
responding text fragments share at least k words. Now, the connected components
of the graph determine the clusters of the extracted text fragments. Two extracted
text fragments are in the same cluster if there is a path in the graph from one to the
other. We only retain the text fragments in the largest cluster.

Since a fingerprint consists of an ordered list of m words, we can determine
whether two fingerprints share at least k words in at most 2m word comparisons.
Hence, constructing the graph and determining the largest connected component
requires O(n2m) word comparisons.

Occasionally, the extracted text fragments are so diverse that there is no clear
winning subset. In that case the previous step is redone with the alternative regular
expression, or, if that does not work, the document retrieval step is redone using a
broader query.

5.2.4 Aligning Multiple Lyrics
If the lyrics retrieval and selection have successfully completed, then we have ex-
tracted a number of similar text fragments, that are all expected to be lyrics versions
of the intended song. Even if this is the case, then there may still be a large variety
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that life’s a bore so full of the superficial
that life support of all of the superficial

A thousand lights had made me colder
A thousand lies have made me colder

Hear him with the women just around midnight
Hear him whip the women just around midnight

Burned out dealer to the teachers pet
Burnouts deal it to the teacher’s pet

Cause waiting at the answer to his questions is a definite blow
Persuade him that the answer to his questions is a definite no!

Figure 5.2. A list of pairs of transcriptions. Each pair gives two different tran-
scriptions of the same part of a song that we encountered in the retrieved lyrics.

in the extracted text fragments. Varieties occur as a result of mishearings, typo’s
and the use of abbreviations such as repeat chorus.

In Figure 5.2 we give a number of examples of transcriptions we encountered.
We next want to align the extracted text fragments to easily visualize the dif-

ferences and to come up with a most probable version of the lyrics. This version is
constructed using the lyrics identified on the web. The final version thus does not
need to occur as such on the web.

Aligning multiple sequences is known to be an NP-hard problem [L. Wang &
Jiang, 2004], for many sensible choices of the objective function such as the sum-
of-pairs objective function. For a given alignment of n sequences the sum-of-pairs
objective function simply sums up the score of all sequence pairs in the alignment.
Several approximation algorithms have been proposed in the literature, e.g. [L.
Wang & Gusfield, 1997; L. Wang, Jiang, & Lawler, 1996].

We choose the following approach. We first select a reference sequence and
optimally align each of the other sequences with this reference sequence. Next we
combine all these individual alignments into a single alignment of all sequences.
As reference sequence we simply choose a sequence of maximum length, as we
expect this sequence to give a complete transcription of the intended song. Shorter
sequences may not include repeating parts explicitly or miss the beginning or end
of the song.

Aligning a Pair of Lyrics
We align a pair of lyrics on the word level. To realize this, we opt for a dynamic
programming approach where we align a pair of strings S1 and S2 in a 2× l matrix
A = [ai j] of words. For A we have max(l1, l2)≤ l ≤ l1 + l2. Of this matrix, the ith
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row is denoted by Ai◦ and the jth column is denoted by A◦ j. The upper row A1◦
consists of the source string S1 with possibly empty strings inserted and the lower
row A2◦ consists of the destination string S2 with possibly empty strings inserted.
An empty string or gap in an alignment is denoted by an asterisk (*), assuming that
this character does not appear as a word in the lyrics.

Each column A◦ j in the alignment corresponds to either a deletion, an insertion,
a substitution, or a match. Gaps in the upper row A1◦ correspond to insertions in
S1, and gaps in the lower row A2◦ correspond to deletions in S1. There is at most
one gap in each column. If there are no gaps in a given column, then this position
either corresponds to a match (if both characters in that column are identical) or a
substitution (otherwise).

As a primary objective, the goal is to maximize the number of matches, and,
as a secondary objective, to minimize the number of mismatches. To realize this,
we use the following recurrence relation. We compute the dynamic programming
table to align S1 and S2 using the following recurrence relation.

D(i, j) =





− j if i = 0
−i if j = 0
max { D(i−1, j)−1,D(i, j−1)−1,

D(i−1, j−1)+ t(i, j) } otherwise

(5.5)

with

t(i, j) =
{

M if S1(i) = S2( j)
−1 if S1(i) 6= S2( j),

where Si( j) now denotes the jth word in the ith text fragment. Hence, all
insertions, deletions and substitutions receive a weight −1, while a match receives
a weight M. Now, M must be chosen large enough such that each alignment with a
maximum score has a maximum number of matches. In a worst-case situation, an
alignment with a single match in the lower-left or upper-right corner of the dynamic
programming table must still get a larger score than an alignment with no matches
and max(l1, l2) mismatches. Consequently, it must hold that M− (l1− 1)− (l2−
1) > −max(l1, l2), which is equivalent to M > min(l1, l2)− 2. Hence, choosing
M = min(l1, l2) gives the desired result.

Multiple alignments with maximum D(l1, l2) may occur. To get the matches as
much as possible in the first part of the alignment, we give preference to insertions
and deletions when tracing back.

Combining Single Alignments
We use the above dynamic programming approach to align the different text frag-
ments on a word-by-word basis. Suppose that the remaining set of text fragments is
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given by P ′= (S0,S1, . . . ,Sm), and suppose that these word-sequences are ordered
by decreasing length, i.e., |Si| ≥ |Si+1| for all i = 0,1, · · · ,m− 1. Then, we select
S0 as reference sequence and construct an optimal alignment between the reference
sequence and each of the other sequences, resulting in alignments A1,A2, . . . ,Am.

The resulting m alignments A1,A2, . . . ,Am are next combined into a single mul-
tiple alignment A = [ai j] containing m+1 rows. We could simply take A1◦ = A1

1◦,
and Ai+1◦ = Ai

2◦ for i = {1, . . . ,m}. However, the upper rows in the different align-
ments (i.e. the rows corresponding to S0) will generally have a different number
of gaps, and these gaps will generally be at different positions. Let us consider
aligning the following three character sequences as an example: ‘california dream-
ing’ and ‘californian dream’ and ‘calif. dreaming’, then the first will be chosen as
reference sequence, resulting in the alignments A1 and A2 given as follows.

california* dreaming california dreaming

californian dream*** calif.**** dreaming

Just taking the rows, as suggested above, from these two alignments would
result in an alignment A given as follows.

california* dreaming

californian dream***

calif.***** dreaming

To obtain a better alignment, a gap can be inserted right after the tenth character
in the third row, i.e., at the position where there is a gap in the upper row of A1.

We propose the following simple strategy to account for differences in gaps in
the upper rows of the given alignments A1,A2, . . . ,Am. We simultaneously scan the
upper rows of the given alignments from beginning to end. If at a given position,
there is a gap in any of these upper rows, then for each alignment Ai that does not
have a gap at this position, we insert a gap at that position both in the upper and
lower rows of Ai.

A small example of the multiple sequence alignments that we obtain in this
fashion is given in Figure 5.3. For easy visual inspection the words in the same
column are appended with spaces such that they are all of equal length. The char-
acter | denotes a line break, which is considered as a single word. In addition, an
extra row has been added to underline the columns where there is disagreement.
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cause I know the dreams that you keep | that’s where we meet
Cause I know the dreams that you keep | That’s where we meet
Cause I know the dreams that you keep | That’s where we meet
Cos i know the dreams that you keep is wearing me * *
Cos i know the dreams that you keep is wearing me * *
Cos i know the dreams that you keep is wearing me * *
Cos i know the dreams that you keep is wearing me * *
Cos I know the dreams that you keep is wearing me * *
Cos I know the dreams that you keep is wearing me * *
cause I know the dreams that you keep | that’s where we meet
----- - -- ------- ----- -- ----

Figure 5.3. A fragment of a multiple sequence alignment of 10 lyrics versions of
the song No distance left to run by Blur.

5.2.5 Computational Complexity
In this section we analyze the computational complexity of the lyrics retrieval and
alignment algorithms presented in the previous sections, and we give a detailed
comparison with the computational complexity of the algorithms presented by
Knees et al. [2005]. In this analysis we do not take into account the time required
for issuing queries to Google and for retrieving the documents from the web. The
time required for these activities are assumed to be identical for both approaches.

Algorithm by Knees et al. The document collection approach of Knees et al. is
very similar to our approach. However, Knees et al. do not extract the lyrics from
the documents before aligning. They only remove HTML-tags and corresponding
links and preprocess the documents to handle annotations. For example, they re-
place annotations such as ‘repeat chorus’ by the actual chorus. Knees et al. also do
not consider removing outliers before aligning. In conclusion, if both algorithms
start with the same collection of documents, but our approach will retain fewer and
shorter text fragments for the actual alignment.

Let us assume, nevertheless, that both multiple alignment algorithms have the
same number of text fragments as input, i.e., that there are no outliers in the set of n
documents. For ease of analysis, let us assume that we have n text fragments each
with a length of l words, and let us assume n to be a power of two. Furthermore,
let us assume that all alignments remain of O(l) length.

The multiple sequence alignment proposed by Knees et al. follows an iterative
hierarchical approach [Corpet, 1988]. For ease of reference, an alignment consist-
ing of n rows is called an n-alignment. In the first iteration the algorithm pairs the
n text fragments to n/2 2-alignments. It does so by repeatedly selecting the best
aligning pair of text fragments, until it obtains n/2 2-alignments. To determine the
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best aligning pair, an l× l dynamic programming table is constructed for each pair
of text fragments. This results in a total number of word comparisons of O(n2l2)
in the first iteration.

In the second iteration, it pairs the n/2 2-alignments to n/4 4-alignments, again
by repeatedly selecting the best aligning pair. To determine the best aligning pair,
a dynamic programming table is constructed for each pair of the set of n/2 2-
alignments, where each entry in the table requires 4 word comparisons. This results
in a total number of word comparisons of O(n2l2) in the second iteration.

Analogously, in the ith iteration the algorithm pairs the n/2i−1 2i−1-alignments
to n/2i 2i-alignments, where each entry in the dynamic programming tables re-
quires 22(i−1) word comparisons. Again, this results in a total of O(n2l2) word
comparisons in the ith iteration.

Since the total alignment procedure will consist of logn iterations, we obtain a
total number of O(n2 logn l2) word comparisons.

Our algorithm. In comparison, our algorithm first extracts text fragments from
the n documents by using the regular expression in O(nl) time, where l denotes
the maximum number of words in a collected document. Next, it selects a sub-
set of text fragments using the fingerprints in O(nlm)+ O(n2m) time, where m is
the number of words that are used in a fingerprint. Constructing a fingerprint for
each of the n documents requires O(nlm) time. Constructing the graph and deter-
mining the largest connected component requires O(n2m) time. Next, a multiple
sequence alignment is constructed, by only aligning each of the text fragments to a
single reference text fragment. Assuming that there are no outliers in the collected
documents, this requires O(nl2) word comparisons. In addition, the insertion of
additional gaps to construct the final multiple sequence alignment requires O(nl)
time.

Hence, the total time complexity of our algorithm amounts to O(nlm+n2m+
nl2). Since m < l, we can simplify this total time complexity to O(n2m + nl2).
Furthermore, in practice one may assume that nm < l2. In that case, the total time
complexity can be further simplified to O(nl2).

As both multiple sequence alignment approaches give approximate results, it re-
mains to be evaluated whether our algorithm is able to obtain results of at least the
same quality. This is the subject of the next section.

5.2.6 Experimental Results
We tested the algorithms on two test sets. The first set was also used by Knees,
Schedl and Widmer in their lyrics extraction method [2005]. We tested the perfor-
mance using the lyrics of the songs as found in the CD booklets.

We conducted a second experiment on a set of 608 songs. We compare the
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retrieval of our algorithm with the retrieval of the Yahoo! lyrics service, which
uses the GraceNote lyrics collection.

The 258 Song Test Set
Our lyrics extraction and alignment algorithms were tested on the set of 258 songs
from Knees, Schedl & Widmer [2005], of which we obtained the ground truth ver-
sions from these authors. The ground truth versions are the versions as they exactly
appear in the CD booklets. We next give experimental results for the successive
steps in the algorithm.

Collecting documents. To give the reader an idea of the number of docu-
ments that are expected to contain the lyrics of the various songs, for the 258
songs Google reported an average of 507 hits for the first query (containing the
allinanchor-option). However, using this first query, for 6 songs no hits were found.

Extracting lyrics. By extracting the lyrics from the documents, we get a sub-
stantial reduction. On average, the size of the extracted lyrics is only 7% of the
original document size. However, the reduction is rather modest in comparison to
the size of the documents after they have been stripped from HTML-tags and cor-
responding links. On average, the size of the extracted lyrics is 79% of the stripped
document size.

Removing outliers. On average, 38% of the extracted text fragments were found
to be outliers. Comparing the size of the largest cluster with the size of the second
largest cluster, we obtain that on average the first is four times as large as the second
one. Hence, on average, there is a clear winner among the clusters.

Multiple sequence alignment. For the 258 songs we derived the following re-
sults. To compare the results of the multiple sequence alignment with that of the
ground truth, we transform the multiple sequence alignment into a final version, by
applying simple majority voting on a word-by-word level. For each column in the
m-alignment, we select the word that occurs most often, where a gap is handled as
follows. When for a given column the different words are being counted, then a
gap (ai j = ’*’) is counted as a word, unless it is succeeded or preceded in its row
Ai◦ by only gaps. Otherwise, it is just skipped. If the most-occurring word is not
a gap, then this word is added to the final version. If the most-occurring word is a
gap, then this is just skipped for the final version.

To determine the similarity between the resulting final version and the ground
truth version we simply construct an optimal 2-alignment of these versions. Each
column of this 2-alignment can be associated with one of the following four cases,
namely a match, a substitution, a gap in the final version, or a gap in the ground
truth. The fraction of columns relating to these four cases are denotes by rma, rsu,
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rgf, and rgg, respectively. Clearly, these fractions are between 0 and 1 and sum up
to 1. Analogously to Knees et al., we define the recall as

rec = rma + rgf (5.6)

and precision as
pre = rma + rgg. (5.7)

For the total set of 258 songs our algorithm obtains an average recall of 0.93 and
an average precision of 0.86. This result is very similar to the best results obtained
by Knees et al. Occasionally, recall is considerably lower than the average recall
due to the fact that in the ground truth version a chorus is repeated explicitly while
it is not in the extracted final version. Likewise, for some songs, the precision
is considerably lower than the average precision due to the fact that in the final
version a chorus is repeated explicitly while it is not in the ground truth version.
Since these differences cannot really be considered as errors, we also determined
the average value of rsu. This is only 0.02. In other words, in the alignments
of the extracted version with the ground truth version, only 2 out of 100 words
correspond to a substitution. We note that these substitutions still contain many
pairs as (movin’, moving), (yeah, yea), (’re, are) that cannot really be considered
as wrong.

The above results are averaged over all 258 songs. However, for 7 of the 258
songs the recall and precision are substantially below the above averages because
the algorithm selected the lyrics of another song. In all seven cases, the selected
song was by the same group or artist. In addition, in four of these seven cases
the song title of the intended song appears in the lyrics or even in the title of the
extracted song. For example, when searching for the lyrics of A Long Way From
Home by The Kinks the lyrics of Long Distance was found. This lyrics contains the
string ‘a long way from home’. For three of the seven cases, the intended song was
found as a second largest cluster. For the four other cases, the clustering resulted
in many small clusters, with an average fraction of outliers of 0.70, which could be
used as an indication that something is wrong. Furthermore, when extracting the
lyrics of all songs of a given artist, it can be easily checked whether the extracted
lyrics for different songs incidentally are (very) similar. Hence, these errors can be
detected automatically.

Comparison with the Yahoo! Music Collection
Since April 2007, Yahoo! Music provides access to song lyrics for “hundreds
of thousands of songs”, being “the largest database of high quality lyrics”3,4 To

3http://www.gracenote.com/corporate/press/article.html/date=2007042400
4It is notable that the (growing) content of Yahoo! Music is restricted to material where the

copyright is granted. The experiment with Yahoo! Music was conducted on August 3, 2007.
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Cathy Dennis - Touch Me (All Night Long)
Floyd Cramer - On the Rebound
Frank Mills - Music Box Dancer
Groove Theory - Tell Me
Horst Jankowski - A Walk in The Black Forest
Inner Circle - Bad Boys

Table 5.16. Examples of songs that were not retrieved by the algorithm.

investigate whether the algorithm we presented is now obsolete, we compare the
results of our algorithm with the Yahoo! Music lyrics collection.

An external company handed us a set of 609 song titles. We test our algorithm
on this collection and compare the results of our method with the content of the
Yahoo! Music lyrics database. The set mainly contains well-known artists and
songs from various genres.

For each song, we query Yahoo! Music at most three times. Contrary to the
experiment with the 258 songs, this collection contains a number of song titles
and artist names containing parentheses. If the query lyrics, [songtitle],
[artist] fails, we remove the texts between parentheses in both the song title
and the artist name (e.g. Blowin’ Me Up (With Her Love) is now queried as Blowin’
Me Up). If no results are found after the adaptation, we leave out the artist name
in the query.

As no ground truth is available for this set, we manually inspect the output of
the algorithm. We consider the retrieved lyrics to be correct if we recognize them
as the lyrics corresponding to the queried song.

The results of this experiment are as follows. Using the algorithm as described
in this article, we find lyrics of 577 songs. Of only 32 songs we did not find any
lyrics, or the lyrics retrieved did not correspond to the song, see Table 5.16 for
some examples.

When we query the Yahoo! Music lyrics collection, we only find 191 correct
lyrics for the given song-artist combinations. Additionally, 12 lyrics of different
versions of the queried song were found. For example, for Strangers in the Night
by Frank Sinatra, the version of the song by Bette Midler was finally retrieved
using the third query. For 108 songs, lyrics to a different song were found. Hence,
no results were found for 301 out of the 609 songs in the collection.

Of the songs that were not found by the algorithm presented, three could be
found in Yahoo! Music (viz. Table 5.18). Table 5.17 contains some example songs
that were not found in Yahoo! Music, but were indeed retrieved using our algo-
rithm.
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Beck - Loser
Crosby, Stills, Nash & Young - Woodstock
Aerosmith - Angel
Anita Baker - Giving You the Best That I Got
Bob Marley & The Wailers - Who Is Mr. Brown

Table 5.17. Examples of songs that were retrieved by the algorithm, but were not
found in Yahoo! Music.

Inner Circle - Bad Boys
Chitty Chitty Bang Bang Original Cast - Chitty Takes Flight (Finale to Act One)
Groove Theory - Tell Me

Table 5.18. The three songs that were found in Yahoo! Music, but could not be
retrieved using the algorithm.

Although the lyrics provided by Yahoo! Music may be of high quality, this ex-
periment shows that some well known songs are not included. As no complete and
reliable web site is available for collecting lyrics, the algorithm described remains
a valuable tool for music research.

5.2.7 Concluding remarks
We have presented an approach to retrieve lyrics versions from the web using a
search engine, and to efficiently align them. In comparison to the approach by
Knees et al., our approach is much more efficient but nevertheless gives comparable
results. A second experiment illustrated that the algorithm is also able to find lyrics
of songs that are not stored on the large lyrics Yahoo! Music. The algorithm as
presented in this article can be a valuable tool for those researching lyrics-based
music information retrieval [Kleedorfer, 2008; Mahedero et al., 2005]. Moreover,
the lyrics found can be used as a basis for automatic lyrics synchronization [Chen
et al., 2006; Y. Wang et al., 2004] and creating visual effects using images and
colored lights [Sekulovski et al., 2008; Geleijnse et al., 2008].



6
Discovering Information by Extracting

Community Data

Apart from factual information, the web also is a valuable source to gather
community-based data as people with numerous backgrounds, interests and ideas
contribute to the content of the web. Hence the web is also a valuable source to
extract opinions, characterizations and perceived relatedness between items.

We extract and combine information from diverse sources on the web to char-
acterize items such as Madonna and The Great Gatsby using community-based
data. By combining information from various sources such as fan pages, newspa-
per reviews, gossip magazines and music websites, the aim is to create a character-
ization of for example Madonna as expressed on the web. By combining this data,
we create new information that may not be verifiable as it is not available as such.

This chapter is organized as follows. In Section 6.1, we discuss the problem
definition and two alternative methods to extract information from the web. In
Section 6.2 we present a method to process extracted data into characterizations.
Section 6.3 focuses on the evaluation of the extracted community-based data using
data from a social website, while in Section 6.4 we present a number of case studies
followed by conclusions in Section 6.5.

109
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6.1 Extracting Subjective Information from the Web
In this chapter, we are interested in the characterization of an item or concept by the
web community. For example, given the latest novel by Philip Roth or Madonna’s
new single, we want to know the way people describe such items. Moreover given
a book or an artist, which other books or artists are considered to be related?

Users of so-called social websites – or folksonomies – such as Flickr.com,
YouTube.com and Last.fm are invited to label the items described on these sites.
Unlike the thesauri studied in Chapter 5.1, the tags applied to the items have no
formally defined semantics, while the vocabulary is uncontrolled. However, in
practice tagging has shown to be an effective mechanism to describe and retrieve
content.

For a collection of items to be well searchable, a large and active community
is required who explicitly labels the items with tags. Items that are not labeled or
labeled with less intuitive tags may thus not be retrievable. However, such commu-
nity websites describe items that are often also described on many other web pages.
Users are thus invited to enter knowledge that is potentially already available on
the web.

Current ontology population methods based on texts on the web (e.g. [Etzioni
et al., 2005; McDowell & Cafarella, 2006]) focus on factual information rather
than on more subjective, community-based descriptors of items. Here we present
methods to efficiently identify and structure information as can be found on social
websites. We focus on the labeling of items, such as musical artists, with tags
from unstructured web sources. Hence, we propose a method where the tagging of
artists is done implicitly by the web community. We thus compute the semantics of
an item (e.g. a musical artist) in terms of tags as perceived by the web community.
Previous methods (e.g. [Mika, 2007; Cilibrasi & Vitanyi, 2007; Schedl, Pohle,
Knees, & Widmer, 2006]) use a quadratic number of queries to a search engine. In
this chapter, we compare efficient techniques as discussed in chapter 2 with such
approaches.

A method to automatically label items with tags can on the one hand be used
as an alternative to the labeling of items by a community. On the other hand the
computed tags can be used in support of a community web site. For example,
computed tags can be presented as a suggestion to the user or can be used to avoid
a ‘cold start’ problem for items in a collection that have not been labeled yet.

6.1.1 Relatedness, Categories and Tags
To describe instances using the collective knowledge of the web community, we
thus adopt the notion of tags. In this chapter, we assume that a collection of in-
stances (books, popular artists, painters, etc.) is given as well as a list of relevant
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descriptors or tags. This leads to the ontology population problem with complete
classes (Chapter 2).

Problem Definitions. Given is an ontology O with two complete classes ca and
cg, with sets of instances Ia of size n and Ig of size m. We will again use the
shorthand notation Ia and Ig to refer to these sets. The class ca consists of objects
or concepts i (pop artists, books, painters), while the instances j of cg are relevant
descriptions (labels, tags, genres). We are interested in the perceived relatedness
between the instances in Ia, as well as the applicability of the tags in Ig to these
instances.

In this chapter, we focus on the following three problems.

The Instance Relatedness Problem. Given O = ({ca},{r}), where r expresses
the is related to relation with ca as subject and object class. Populate O, where
for each relation instance pair (i, i′) ∈ Ia × Ia we are interested in the degree of
relatedness t(i, i′) of instance i′ with respect to i. 2

Definition. Given is a set of tags Ig and an instance i ∈ Ia. We then call a tag j ∈ Ig

most appropriate for i if a domain expert would select j from the set Ig as the label
best applicable to i ∈ Ia. 2

The Instance Categorization Problem. Given O = ({ca,cg},{r}), where r
expresses the applicability relation with subject ca and object cg. Populate O,
where for each instance i ∈ Ia we are interested in the most appropriate tag m(i) in
Ig. 2

The Instance Tagging Problem. Given O = ({ca,cg},{r}), where r expresses
the relation between the two classes. Populate O, where for each relation instance
pair (i, j) ∈ Ia× Ig we are interested in the degree of applicability p(i, j) of tag j
with respect to instance i. 2

We first present two alternative approaches to extract relation instances on the
web. In the next section, we present methods to address each of the three problems
described above.

6.1.2 Two Alternatives to the Pattern-based Approach
We present two methods to extract information from the web, alternative to the one
described in Chapters 2 and 3. In Chapter 5.2 we have already seen that the pattern-
based approach does not suit all information demands. As the relation between an
instance in Ia and a tag is not always expressed within a sentence, we compare our
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pattern-based approach with two alternatives.
We base these methods on co-occurrences on the web. If the instances Johnny

Cash and U2 are often mentioned in the same context, we can conclude that these
instances are related in some sense. The co-occurrences of instances on the web
form the basis of the approach to deal with the problems as defined in this chapter.
After discussing the alternatives, Section 6.2 handles the processing of these co-
occurrences to solve the problems addressed in this chapter.

Pattern-based Method (PM). The Pattern-based Method (PM) is based on the
methods described in the first part of this thesis. To find occurrences of relation
instances (i, j) in Ia× Ig and (i, i′) in Ia× Ia, we apply this method and bookkeep
the total number of co-occurrences encountered. From the snippets returned by
the search engine, we thus identify the elements of either Ia or Ig to measure the
number of co-occurrences of the pairs. Hence, using PM for instances i and j
co(i, j) is defined as follows,

Definition [PM co-occurrences]. coPM(i, j) gives the sum of the number of
occurrences of i when querying patterns with j, plus the number of occurrences of
j when querying patterns with i. 2

Using PM we only needO(m+n) queries to collect co-occurrences of pairs in
Ia× Ig and Ia× Ia for Ia of size n and Ig of size m.

Page-Count-based Method (PCM). As a first alternative to PM, we extract
the estimated number of hits co(i, j) [Cilibrasi & Vitanyi, 2007; Knees et al.,
2004; Mika, 2007; Gligorov et al., 2007]. This method to find co-occurren-
ces between instances is based on analyzing the total numbers of occurrences
of pairs of instances on the web. We identify the co-occurrences co(i, j) as follows,

Definition [PCM co-occurrences]. coPCM(i, j) gives the number of hits for the
search engine query "i", " j". 2

We assume that the order of the terms i and j in the query does not effect the
number of hits, thus we assume co(i, j) = co( j, i).

This Page-Count-based Method (PCM) is simple and intuitive. If we are for
example interested in categorizing music artists into genres, we analyze the num-
ber of hits to queries for combinations of the names of the artist and each genre.
Assuming Johnny Cash to be a country artist, we expect that more documents con-
tain both the terms Country and Johnny Cash than Reggae and Johnny Cash. An
important drawback of PCM is the high Google complexity. For large sets this can
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be problematic [Cafarella, Downey, Soderland, & Etzioni, 2005]. Moreover, the
number of hits can fluctuate over time [Véronis, 2006], which hampers the reuse
of old hit counts.

Using PCM we thus need to perform m · n queries to collect the co-occurren-
ces between tags and instances and 1

2(n2−n) queries to gather all pairs of co-oc-
currences between the instances in Ia. Hence, the Google Complexity of PCM is
O(mn + n2). When we assume that the size of Ig does not exceed n, the Google
Complexity of PCM is O(n2).

Document-based Method (DM). In the Document-based Method (DM) ap-
proach we collect the first k URLs of the documents returned by the search engine
for a given query, constructed using a known instance. These k URLs are the most
relevant for the query submitted based on the ranking used by the search engine
[Brin & Page, 1998]. The corresponding documents are subsequently scanned for
occurrences of instances of the related class [De Boer et al., 2007].

In the first phase of the algorithm, we query all instances in both Ia and Ig

and collect the top k documents for each of the queries. For instances in Ia, we
retrieve each document using the URLs found by the search engine. We count
the occurrences of the categories in Ig (thus the names of the categories) in the
retrieved documents for the initial mapping m′. From the documents retrieved with
a category g ∈ Ig, we similarly extract the occurrences of instances in Ia.

The documents obtained using DM are the most relevant for each element
b ∈ Ia. For the instances in Ia queried, we expect to find biographies, fan pages,
pages of museums, entries in database sites and so on. The labels in Ig (e.g. the
genres, styles or other descriptors) mentioned in these pages will most probably
reflect the genre of the artist queried. Thus co(i, j) is here defined as follows.

Definition [DM co-occurrences]. coDM(i, j) gives number of occurrences of j in
documents found with i, plus the number of occurrences of i in documents found
with j. 2

Like PM, this method also requires onlyO(n+m) queries. However, additional
data communication is required since for each query up to k documents have to be
downloaded instead of using only the data provided by the search engine.

6.2 Processing Extracted Subjective Information
In the previous section, we discussed three methods to identify relation instances
on the web. Here we show how we use the numbers of co-occurrences of these
related instances to address the three problems presented in this chapter.
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6.2.1 Identifying Relatedness between Instances
Having gathered a list of co-occurrences of instances in Ia using either PM, PCM

or DM, we are interested to what extent these instances are expressed to be related.
We assume that two instances are related when they are relatively often mentioned
in the same context. For each instance i we could consider the instance i′ ∈ Ia with
the highest co(i, i) to be the most related to i. However, we observe that, in that
case, frequently occurring instances have a relatively large probability to be related
to any other instance. This observation leads to an approach inspired by the theory
of pointwise mutual information [Manning & Schütze, 1999; Downey et al., 2005].
We use T (i, i′) to express the relatedness of instances i′ to i as follows,

T (i, i′) =
co(i, i′)

∑i′′,i′′ 6=i′ co(i′′, i′)
. (6.1)

The function T can be normalized to t, i.e. with values 0≤ t(i, i′)≤ 1

t(i, i′) =
T (i, i′)

∑i′′∈Ia T (i, i′′)
. (6.2)

We address the Instance Relatedness Problem using t(i, i′) by identifying an or-
dered list of all instances related to i.

6.2.2 Categorizing Instances
The Instance Categorization Problem handles the identification of a most applica-
ble j ∈ Ig for a given instance i ∈ Ia. We use the co-occurrences between instances
in Ia and Ig to compute scores s(i, j) that express the applicability of tag j to in-
stance i. For each instance i, we identify an initial mapping m′(i) by selecting the
tag with the highest score.

Subsequently, we investigate whether we can use the hypothesis that related
instances often share a category, as we have created methods to identify relatedness
between instances. We hence reuse the values t(i, i′) to find a final mapping.

Using either PM, PCM or DM, we can also acquire co-occurrence counts for
pairs (i, j) ∈ Ia× Ig. The function S(i, j) expressing the extent of applicability of j
to i is defined similarly as function T , namely

S(i, j) =
co(i, j)

∑i′∈Ia co(i′, j)
, (6.3)

and we normalize this function as follows

s(i, j) =
S(i, j)

∑ j′∈Ig S(i, j′)
. (6.4)
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Now, s(i, j) can be read as the probability that tag j is applicable to i. If we are
interested in the tag m′(i) most applicable to i, we thus select the j such that s(i, j)
is maximized,

m′(i) = argmax j∈Ig
s(i, j). (6.5)

The instance categorization problem focuses on the identification of one single
tag or category for a given instance. We investigate whether we can improve the
initial mapping m′ by using the assumption that related instances in Ia often share
a category. We are hence interested if the use of the computed relatedness between
instances in Ia helps to improve the precision of the mapping m′.

We combine the scores t with the initial mapping m′ as follows. For each i∈ Ia,
we inspect m′ to determine the category that is assigned most often to i and its k−1
most related instances. We thus expect that the most appropriate category j for i is
most often mapped by m′ among i and its nearest neighbors.

For each instance i ∈ Ia, we construct an ordered list Bk(i) with i and its k−1
nearest neighbors

Bk(i) = (i1, i2, ..., ik)
with i as its first element, i.e. i = i1, and

t(i, il) ≥ t(i, il+1), for 1≤ l < k.
For a final mapping m of instances i∈ Ia to a category in Ig, we inspect the most

occurring category mapped by m′ to i and its k−1 nearest neighbors.

m(i,k) = argmax j∈Ig
( ∑

i′∈Bk(i)
τ(i′, j))

with

τ(i′, j) =
{

1 if m′(i′) = j
0 otherwise.

If two categories have an equal score, we select the first occurring one. That is,
the category that is mapped by m′ to i or to the instance most related to i.

Hence, we address the instance categorization problem by selecting the single
tag (category, genre, etc.) m(i,k).

6.2.3 Tagging Instances
With respect to the instance tagging problem, we assume that multiple tags may
be applicable to an instance. Hence, we are interested in an ordered list of tags
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for a given instance in Ia. Similar to the approach for the instance categorization
problem, we will start with the scores s(i, j) to compute an initial ordered list of
tags for instance i. Likewise, we investigate whether the use of instance relatedness
can lead to improvements over the initial tagging.

When addressing the instance categorization problem, we assumed the relation
between instances and tags to be functional. That is, each instance in Ia was as-
sumed to be related to at most one tag (e.g. a genre or art style). When dealing with
the instance tagging problem however, we assume that multiple tags are applicable
to a given instance. Thus the question is which of the tags are most applicable and
to what extent.

The use of the score s(i, j) is a first approximation to identify the tags most
related to the given instance i. Similar to the computation of the final mapping m,
we use the similarity between the instances in Ia to obtain a final score.

The degree of relatedness of an instance i′ to i is given by t(i, i′). For tag j, the
degree of applicability of j to i is given by s(i, j).

We use the computed scores of relatedness t(i, i′) to improve the initial tagging
s(i, j). If two instances are closely related, we expect similar tags for the two.
Hence, if i′ is closely related to i, we want s(i′, j) to contribute significantly to the
final score p(i, j). Using the normalized scoring functions, we can compute the
applicability p′(i, j) of tag j to instance i as follows

p′(i, j) = ∑
i′,i′ 6=i

t(i, i′) · s(i′, j). (6.6)

If erroneously a high score is found for s(i, j), this error is decreased when
close related instances i′ have low scores for s(i′, j).

However, p′(i, j) does not suffice as no self-relatedness score t(i, i) is defined.
We do consider s(i, j) relevant when computing the scores for the tags with respect
to instance i. Hence, we introduce a weight w for s(i, j) as a substitute for t(i, i) in
the score p(i, j),

p(i, j) = w · s(i, j)+(1−w) · ∑
i′,i′ 6=i

t(i, i′) · s(i′, j). (6.7)

Note that p(i, j) = s(i, j) for w = 1. For instance i and tag j, p(i, j) can be read
as the confidence estimator that j is applicable to i. It simply shows that the sum
of p(i, j) for all tags j being applicable to i is 1.

Since both s and t are normalized, using simple calculus we show that p is
normalized as well, i.e. the sum of p(i, j) over all j equals 1.
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∑
j′

p(i, j′) = ∑
j′

(
w · s(i, j′)+(1−w) · ∑

i′,i′ 6=i
t(i, i′) · s(i′, j′)

)

= ∑
j′

(
w · s(i, j′)

)
+ ∑

j′

(
(1−w) · ∑

i′,i′ 6=i
t(i, i′) · s(i′, j′)

)

= w ·∑
j′

s(i, j′)+(1−w) ·∑
j′

∑
i′,i′ 6=i

t(i, i′) · s(i′, j′)

= w+(1−w) ·∑
j′

∑
i′,i′ 6=i

t(i, i′) · s(i′, j′)

= w+(1−w) · ∑
i′,i′ 6=i

∑
j′

t(i, i′) · s(i′, j′)

= w+(1−w) · ∑
i′,i′ 6=i

t(i, i′) ·∑
j′

s(i′, j′)

= w+(1−w) · ∑
i′,i′ 6=i

t(i, i′)

= w+(1−w)
= 1

It now remains to find an appropriate value for w. One approach is to identify
a training set of artists and related tags. Using the co-occurrences acquired we can
determine the value of w, 0≤w≤ 1, for which the scores of the tags fit the training
set best. In the following section, we investigate whether the performance of the
artist tagging method indeed improves for values of w smaller than 1.

Complexity Analysis. We analyze the computational complexity of the compu-
tation of values for p(i, j). First we compute the complexity of creating all values
for t(i, i′) and s(i, j). We assume that the values for the co-occurrences scores
co(i, j) and co(i, i′) are stored in ordered lookup tables.

For instances i and i′ with co(i, i′)≥ 1, t(i, i′) can be rewritten as follows,

t(i, i′) =
T (i, i′)

∑i0 T (i, i0)

=

co(i,i′)
∑i′′,i′′ 6=i′ co(i′′,i′)

∑i0
co(i,i0)

∑i1 ,i1 6=i0
co(i1,i0)

=
co(i, i′)

c(i′) ·∑i0
co(i,i0)

c(i0)

where c(i) is given by
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c(i) = ∑
i′,i′ 6=i

co(i, i′). (6.8)

The value for c(i) can be simply computed using n steps, where n is the size of
Ia. Hence, computing c(i) for all i requires O(n2). The values of c(i) and co(i, j)
can hence be looked up in O(logn), while the computation of t(i, j) requires n
lookups for c(i0). Hence, t(i, i′) can be computed in O(n logn). Hence, computing
all values for t(i, i′) requires a time complexity O(n3 logn).

The computation of s(i, j) can be done in a similar fashion, requiring
O(m log(nm)) steps, where m is the size of Ig. All values of s(i, j) are thus com-
puted in O(nm2 log(nm)).

We store the values of s and t again in a lookup table. Assuming that the number
of tags in Ig does not exceed the size of the set of instances in Ia, we conclude that
the preprocessing step requires a computational complexity of O(n3 · logn).

Having computed all values for s(i, j) and t(i, i′), we can now compute p(i, j)
for a given w. The values for t(i, i′) · s(i′, j) are computed in n− 1 steps of two
lookups. Hence, the value for p(i, j) can be computed in O(n logn). To create
ordered lists of tags for all instances in Ia thus requires a time complexity of O(m ·
n2 log(n)).

In total, the time complexity for the computation of all values of p(i, j) is thus
O(n3 logn+nm2 log(mn)+mn2 logn). If we assume m < n, the complexity is thus
O(n3 logn). Especially for PCM this value is realistic, as it is to be expected that
most co-occurrence counts are at least 1.

6.3 Evaluating Extracted Subjective Information
In this section, we investigate whether information from social websites can be
used to evaluate the populated ontologies computed with the methods discussed
in the previous section. We focus on one of the larger social websites, Last.fm,
and its topic: music. We investigate the consistency of the tags as provided by the
Last.fm community and compare this data with the concept genre that is often used
by professionals to characterize music.

Researchers in music information retrieval widely consider musical genre to be
an ill-defined concept [Aucouturier & Pachet, 2003; Scaringella, Zoia, & Mlynek,
2006; McKay & Fujinaga, 2006]. Several studies also showed that there is no
consensus on genre taxonomies [Aleksovski, Kate, & Harmelen, 2006; Pachet
& Cazaly, 2000]. However, automatic genre classification is a popular topic of
research in music information retrieval (e.g. [Basili, Serafini, & Stellato, 2004;
Tzanetakis & Cook, 2002; Li, Ogihara, & Li, 2003; Pampalk, Flexer, & Widmer,
2005; Schedl et al., 2006]).
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McKay and Fujinaga [2006] conclude that musical genre classification is worth
pursuing. One of their suggestions is to abandon the idea that only one genre is ap-
plicable to a recording. Hence, multiple genres can be applicable to one recording
and a ranked list of genres should be computed per recording.

Today, the content of web sites such as del.icio.us, flickr.com and youtube.com
is generated by their users. Such sites use community-based tags to describe the
available items (photos, films, music, (scientific) literature, etc.). Although tags
have proven to be suitable descriptors for items, no clear semantics are defined.
Users can label an item with any term. The more an item is labeled with a tag, the
more the tag is assumed to be relevant to the item.

Last.fm is a popular internet radio station where users are invited to tag the
music and artists they listen to. Moreover, for each artist, a list of similar artists
is given based on the listening behavior of the users. Ellis et al. [2002] propose a
community-based approach to create a ground truth in musical artist similarity. The
research question was whether artist similarities as perceived by a large community
can be predicted using data from All Music Guide and from shared folders for peer-
to-peer networks. Now, with the Last.fm data available for downloading, such
community-based data is freely available for non-commercial use.

In Last.fm, tags are terms provided by users to describe music. They “are sim-
ply opinion and can be whatever you want them to be”1. For example, Madonna’s
music is perceived as pop, glamrock and dance as well as 80s and camp. When we
are interested in describing music in order to serve a community (e.g. in a recom-
mender system), community-created descriptors can be valuable features.

In this section we investigate whether the Last.fm data can be used to generate
a ground truth to describe musical artists. Although we abandon the idea of char-
acterizing music with labels with defined semantics (e.g. genres), we follow the
suggestion of MacKay and Fujinaga [2006] to characterize music with a ranked
list of labels. We focus on the way listeners perceive artists and their music, and
propose to create a ground truth using community data rather than to define one
by experts. In line with the ideas of Ellis et al. [2002], we use artist similarities
as identified by a community to create a ground truth in artist similarity. As tastes
and opinions change over time, a ground truth for music characterization should
be dynamic. We therefore present an algorithm to create a ground truth from the
dynamically changing Last.fm data instead of defining it once and for all.

6.3.1 Analyzing the Last.fm Tags
Last.fm users are invited to tag artists, albums, and individual tracks. The 100
top-ranked tags (with respect to the frequency a tag is assigned) for these three

1http://www.Last.fm/help/faq/?category=Tags
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rap Gangsta Rap
Hip-Hop Aftermath
hip hop favorites
Eminem metal
hiphop Favorite
pop rnb
rock dance
alternative american
detroit classic rock
seen live r and b

Table 6.1. Top 20 tags for Eminem.

categories are easily accessible via the Audioscrobbler web services API2. By an-
alyzing the listening behavior of its users, Last.fm also provides artist similarities
via Audioscrobbler3. Per artist, a list of the 100 most similar artists is presented.

We first analyze tags for artists. As the lists of the top-ranked tags tend to con-
tain noise, we propose a simple mechanism to filter out such noise (Section 6.3.2).
In order to check the consistency of the tags, we inspect whether users label sim-
ilar artists with the same tags. We end Section 6.3 with a proposed mechanism to
create a dynamic ground truth in artist tagging and similarity using Last.fm data.

Tagging of Artists
In Table 6.1, the 20 top-ranked tags for the artist Eminem are given, as found with
the Audioscrobbler web service. The terms rap, hiphop and detroit can be seen as
descriptive for the artist and his music. Eminem is tagged with multiple terms that
reflect a genre but the tag rap is more significant than metal.

Without questioning the quality or applicability of the terms in the list in Ta-
ble 6.1, we observe some noise in the tagging of this artist. Whether we consider
Eminem to be a hip-hop artist or not, after encountering the second highest ranked
tag Hip-Hop, the tags hip hop, hiphop do not provide any new information. More-
over, the tag Eminem does not provide any new information with respect to the
catalog data. The tags favorite and good do not seem very discriminative.

To investigate whether the tags are indeed descriptive for a particular artist, we
collected the tags applied to a set of artists. In [Schedl et al., 2006]4, a list of 1,995
artists was derived from All Music Guide. We calculated the number of artists that

2http://ws.audioscrobbler.com
3e.g. http://ws.audioscrobbler.com/1.0/artist/Madonna/similar.xml
4http://www.cp.jku.at/people/schedl/music/C1995a_artists_genres.

txt
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jazz (809) country (308)
seen live (658) hard rock (294)
rock (633) singer songwriter (291)
60s (623) oldies (289)
blues (497) female vocalists (285)
soul (423) punk (282)
classic rock (415) folk (281)
alternative (397) heavy metal (277)
funk (388) hip-hop (267)
pop (381) instrumental (233)
favorites (349) rnb (231)
american (345) progressive rock (229)
metal (334) electronica (215)
electronic (310) dance (209)
indie (309) alternative rock (208)

Table 6.2. The 30 most popular tags and their frequencies for the set of 1995
artists.

grimey (1) stuff that needs further exploration (1)
disco noir (1) american virgin festival (1)
gdo02 (1) lektroluv compilation (1)
808 state (1) electro techo (1)
iiiii (1) richer bad rappers have not existed (1)
mussikk (1) crappy girl singers (1)
good gym music (1) techno manchester electronic acid house (1)
knarz (1) music i tried but didnt like (1)

Table 6.3. Some of the least used tags for the 1995 artists.

are labeled with each of the tags. The most frequently occurring tags over all artists
are given in Table 6.2. Table 6.3 contains some of the tags that are applied only to
one artist. For the 1,995 artists, we encountered 14,146 unique tags.

If a tag is applied to many diverse artists, it cannot be considered to be dis-
criminative. We observe that there are no tags that are applied to a majority of the
artists. The high number of artists labeled with jazz can be explained by the fact
that the 1,995-artist-set contains 810 jazz artists. All frequent tags seem relevant
characterizations for musical artists or for the relation of the users to the artists
(e.g. seen live).

The most debatable tag among the best scoring ones may be favorites. Table 6.4
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Radiohead Coldplay
The Decemberists Pink Floyd
Death Cab for Cutie The Postal Service
The Beatles Bright Eyes
The Shins Elliot Smith

Table 6.4. The 10 top artists for the tag ’favorites’.

contains a list of the top artists for this tag, as extracted from audioscrobbler. We
notice that no mainstream dance or pop artists are among the list of 100 top artists
for favorites. The 100 top artists for seen live are artists that toured in the 00s.

Tags that are applied to only one, or only a few artists are not informative either.
Since we do not consider the semantics of the tags, uniquely occurring tags cannot
be used to compute artist similarities.

We observe that the tags that are only applied once to artists in this set are more
prosaic, are in a language other than English, or simply contain typos (cf. “electro
techo” in Table 6.3). It is notable that in total 7,981 tags (56%) are applied to only
one artist. Only 207 tags are applied to at least 50 out of the 1,995 artists.

To check whether the 7,981 tags are descriptive for a larger set of artists, we
computed the top count. For each of the at most 100 top artists5 for this tag, we
extract the number of times ni the tag is applied to artist i. The top count is the
sum over all (at most 100) ni. Table 6.5 contains examples of tags applied once in
the 1995 artist collection and their top counts. If this sum is one, only one user has
tagged one artist with this tag. Hence, the larger the top count, the more people will
have used the tag to describe their music. Out of these 7,981 tags, 7,238 have a top
count of at most 100. For comparison, the tag ’rock’ has a top count of 150,519.
Hence, we can conclude that the tags that are found only once in a collection of
artists are in general uncommon descriptors for an artist.

Based on these small experiments, we conclude that most frequently used tags
are relevant characterizations for musical artists. Moreover, although users can
label an artist with any term, the list of frequently used tags is relatively small. We
conclude that the number of tags that describe multiple artists is in the order of
thousands. If we select the tags that apply to 5% of the artists, the number is in the
order of hundreds.

5e.g. http://ws.audioscrobbler.com/1.0/tag/post-hardcore/
topartists.xml gives the top artists and counts for post-hardcore
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post-hardcore (8134) fagzzz (0)
twee (4036) when somebody loves you (0)
futurepop (3162) ravens music (0)
mathcore (2865) bands i met (0)
piano rock (2558) most definitely a bamf (1)

Table 6.5. Examples of tags occurring only once with the high and low top counts.

6.3.2 Filtering the Tags
As indicated above, not all tags provide sufficient information for our task since
tags occur with small spelling variations and catalog data (such as the names of
artists or songs) are used as tag as well. Moreover, tags that are only applied to few
artists cannot be used to discriminate between artists, as no semantics are defined
for tags. Suppose that we have a collection Ia of artists. We present a simple
method to filter out such meaningless tags.
Normalizing Tags. As we want tags to be descriptive, we filter out tags attached
to i ∈ Ia as follows.

• If a tag equals the name of the artist, we remove it.

• We compute a normalized form for all tags by

– turning them into lowercase,

– computing the stem of all words in the tags using Porter’s stemming
algorithm [Porter, 1980], and

– removing all non-letter-or-digit characters in the tags.

• If two tags have the same normalized form, we remove the second one in the
list.

• We remove every infrequently applied tag. In our experiments, we remove
the tags that are applied to less than 5% of the artists in Ia.

Track Filtering. As we want the tags to reflect the music of the artist, we propose
a next filtering step based on the tags applied to the best scoring tracks of the artist.
Audioscrobbler provides the most popular tracks per artist, based on the listening
behavior of the Last.fm users. As tracks can also be tagged individually, we can
compare the tags applied to the artist with the tags applied to the top tracks. In the
Track Filtering step, we filter out tags applied to the artist, that are not applied to
his top tracks.
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hip hop alternative
Eminem seen live
hiphop metal
Aftermath classic rock

Table 6.6. Tags removed for Eminem after normalization (l.) and track-filtering
(r.).

By removing the tags that do not reflect the (most popular) music of an artist,
we perform a second filtering step.

• We collect the n top-ranked tracks according to Last.fm for every artist in the
list.

• For each of these, we retrieve the most popular tags.
• We compute a normalized form for the tags for each track.
• For the list of the normalized tags of i ∈ Ia, we retain only those whose

normalized form is applied to at least m out of the n top-ranked tracks for the
respective artist.

In our experiments, we choose to retain the tags that are applied to at least 3
out of the 10 top-ranked tracks for the respective artist.

The tags from Table 6.1 for Eminem that are removed after normalization and
track filtering are given in Table 6.6.

6.3.3 Checking the Consistency of the Tags
The artist similarities as provided by Last.fm are based on the listening behavior of
the users. Since we want to use the Last.fm data as ground truth in music character-
ization, we investigate whether the tagging is consistent, i.e. similar artists should
share a large number of tags.

To ensure this criterion, we selected the set of 224 artists used in [Knees et
al., 2004]6, where the artists were originally chosen to be representatives of 14
different genres. For each of the 224 artists, we collected the 100 most similar
artists according to Last.fm. For the resulting set of the 224 artists and their 100
nearest neighbors, we downloaded the lists of the 100 most popular tags. For each
artist in the list of 224, we first compared the list of tags of the most similar artist.
We did the same for the following (less) similar artists in the list.

6http://www.cp.jku.at/people/knees/publications/artistlist224.
html
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Figure 6.1. Average number of shared tags for the 224 artists.

We computed the average number of overlapping tags for the 224 artists and
their k nearest neighbors and display the results in Figure 6.1. As – especially
after track filtering – often less than 100 tags are assigned to each artist, we also
computed the similarity score for each of the 224 artists and their k nearest neigh-
bors by taking the average number of tags relative to the total number of tags for
the nearest neighbors. For example, if an artist shares 34 out of 40 tags with an
artist in the list of 224, the relative tag similarity score for this artist is 34/40. The
average similarity scores are given in Figure 6.2. The scores are computed using
unfiltered, normalized and track-filtered Last.fm data.

The average number and score of overlapping tags decreases only slightly for
the unfiltered and normalized data with increasing k. For the track-filtered data,
we even note a small increase in the relative amount of tags shared (starting from
k = 25). This can be explained by the small number of tags that remain after track-
filtering, as can be found in Figure 6.1.

Using the unfiltered Last.fm tags of all retrieved artists, we estimate the ex-
pected number of tags shared by two randomly chosen artists as 29.8 and the rel-
ative number of shared tags as 0.58. When we filter the tags by normalization and
compare the normalized forms of the tags, we obtain an average of 29.8 shared
tags, with a relative number of 0.62. For the track filtering, these numbers are 3.87
and 0.64 respectively. Hence, the number of tags shared by similar artists is indeed
much larger than that shared by randomly chosen artists.
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Figure 6.2. Relative tag similarity score for the 224 artists and their k Nearest
Neighbors

6.3.4 Evaluating with Data from a Folksonomy
In earlier work (e.g. [Schedl et al., 2006; Pohle, Knees, Schedl, & Widmer, 2007;
Geleijnse & Korst, 2006b]) computed artist similarities were evaluated using the
assumption that two artists are similar when they share a genre. To our best knowl-
edge, only the tagging of artists with a single tag, usually a genre name, has been
addressed in literature. Also in other domains than music, the automatic creating
of a list of tags from unstructured texts from multiple pages on the web has not
been addressed.

As the Last.fm data shows to be reliable, we propose to use it as a ground truth
for evaluating algorithms that identify tags for artists tagging and compute artist
similarity. The use of such a rich, user-based ground truth gives better insights in
the performance of the algorithm and provides possibilities to study the automatic
labeling of artists with multiple tags. Moreover, by evaluating a method using
artists and Last.fm ground truth we gain insights in the output of the method. High
quality output for the musical artist data may lead to confidence on domains that
can not be evaluated as easily.

A Dynamic Ground Truth Extraction Algorithm
As the perception of users changes over time, we propose a dynamic ground truth
to evaluate a populated ontology with tags and instances. In the evaluation section
of this chapter, we will use this evaluation method to evaluate populated ontologies
on the artists using Last.fm data. Moreover, an ontology on books is similarly
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evaluated using the social website LibraryThing.com.
For the evaluation of similarity of instances in Ia (e.g. artists), we use the similar

artists for the artists in the set Ia as provided by the social website. For the lists of
similar instances, we discard the artists that are not in Ia.

To create a ground truth for the ranked tags applicable to the artists in Ia, we
download the top tags for each artist and compute the normalized tags as described
in Section 6.3.2. The set of known tags Ig is constructed by collecting all normal-
ized tags applied to the Ia artists.

Proposed Evaluation Measures
For a tag or an artist ti given by the ground truth, ga(ti) denotes the rank of ti
with respect to artist a. Hence, ga(ti)−1 tags or artists are considered to be more
applicable (or similar) to a than ti. In contrast, with ra(ti) we denote the rank of ti
for a as computed by the method to be evaluated.

We propose two evaluation measures. The first focuses on the traditional infor-
mation retrieval measures precision and recall, the second evaluates the ranking.
Precision and Recall. We select the set Sn of the top n tags for artist a in the
ground truth and evaluate precision and recall of the computed ordered list Lm of
the m most applicable tags according to the tagging approach to be evaluated.
Ranking. We do not only consider the retrieval of the n top-ranked tags in the
ground truth to be important, but we also want to evaluate the ranking itself, hence
the correlation between the ranking in the ground truth ga(ti) and the computed
ranking ra(ti). We evaluate the ranking for each artist using a standard measure,
Spearman’s Rank Correlation Coefficient [Kendall, 1975], as follows.

ρ(a) = 1− 6∑i(ga(ti)− ra(ti))2

n(n2−1)
We have now proposed a test set of artists and an algorithm to dynamically

create a ground truth. Such ground truths are used in Section 6.4.3 to evaluate the
tagging of musical artists and books.

6.4 Experimental Results
In this section, we focus on experiments conducted on each of the three problems
described in the beginning of this chapter.

6.4.1 Identifying Relatedness between Instances
We first focus on the extraction of the relatedness of instances from the web. We
will apply the methods as discussed in Section 6.2.1 and return to the historical
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”like [person] and [person]”
”such as [person] and [person]”
”including [person] and [person]”
”for example [person] and [person]”

”namely [person] and [person]”
”[person] and [person]”
”[person] [person] and other”

Table 6.7. Patterns used to find co-occurrences within the search engine snippets.

persons extracted (Chapter 4). Subsequently we discuss the identification of relat-
edness within a set of musical artists.

Famous People
Having gathered a list of historical persons with biographical information (Sec-
tion 4.5), we are interested to know how the persons in the list are perceived to be
related. Obviously such information can be extracted from the biographies, e.g.
persons can be considered related when they share a profession, have the same
nationality or lived in the same period.

However, we are interested in the way people nowadays relate the historical
people extracted. For example, we are interested to identify the person who is
considered to be most related to Winston Churchill. We therefore mine the web for
a social network of people extracted using the method in the previous section.

We assume that two persons are related when they are often mentioned in the
same context. Using the hypothesis that enumerated items are often related, we use
the pattern-based approach by selecting enumeration patterns (Table 6.7).

For each of the best 3,000 ranked persons found in Section 4.5, we computed
a ranked list based on t(p,q) of most related persons in the large set of the 10,000
persons with biographies.

Aiming for a reflection of the collective knowledge of web contributors on his-
torical figures, the extracted social network of historical persons is not a verifiable
collection of facts. We illustrate the social network extracted by two examples.
Figure 6.5 depicts the relatedness among the best ranked persons. An arrow from
person p to q is drawn if q is among the 20 nearest neighbors of p. Using the same
criterion, Figure 6.6 depicts the relatedness among the best ranked authors.

We are able to verify the precision of the relatedness between historical persons
if we make the following assumptions. We consider the following “minimal criteria
for” two persons to be related:

- either they lived in the same period, i.e. there is an overlap in the periods the
two lived, or

- they shared a profession, or

- they shared a nationality, or
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Figure 6.3. Precision for the social network for the n highest ranked persons and
their k nearest neighbors.

- they are both female.

Of course we cannot evaluate recall of the algorithm on these criteria, as for
example not all persons sharing a nationality need to be consider to be related. We
therefore evaluate precision of the social network on these minimal criteria. For
the 3,000 best ranked persons, we select the k most related persons. Per pair we
evaluate whether either one of the four criteria is being met. This precision rate is
presented in Figure 6.3. In comparison, the probability of any of the 3,000 persons
to be related to a person in the large list of 10,000 is 45%. The precision rates
for the social network per criterion can be found in Figure 6.4. The probabilities
for two randomly selected persons to share a period, profession and nationality are
38%, 7.5% and 6.5% respectively. The chance that two historical persons are both
female is only 0.5% for the studied list of 10,000. We hence conclude that these
results give good confidence in the quality of the extracted social network.

Musical Artists
In the second case-study on the extraction of a network of related instances, we
focus on musical artists. Hereto, we use two standard sets of artists: a set of 224
artists, equally divided over 14 genres [Knees et al., 2004] and a large set of 1995
artists divided over 9 genres [Schedl et al., 2006]. For both sets of artists, each
artist is only associated with one genre. We consider two artists to be similar, if
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Johann Sebastian Bach

Johann Wolfgang Goethe

William ShakespeareWolfgang Amadeus Mozart

Ludwig van Beethoven

Joseph HaydnFrederic Chopin Giuseppe Verdi

Johannes Brahms

Robert Schumann

Franz Schubert

Albert Einstein

Charles Darwin

Leonardo da Vinci

Figure 6.5. The extracted social network for the 15 highest ranked persons.

they share a genre in the test set.
We use the common test set I224 of 224 artists, equally divided over 14 genres

as defined by Knees et al. [2004]7 to evaluate the computed artist similarities t(i, i′).
We consider two artists to be similar, if they share a genre in the test set. In these
experiments, we only evaluate precision. If for an artist i no mapping or related
instance could be found, we consider the result to be incorrect.

In this case-study, we compare the results of the three alternative methods to
obtain the co-occurrence counts. For PCM we added the extra term music for find-

7www.cp.jku.at/people/knees/publications/artistlist224.html
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Figure 6.6. The extracted social network for the highest ranked authors.

like [Artist] and [Artist]
such as [Artist] and [Artist]
including [Artist] and [Artist]
namely [Artist] and [Artist]
[Artist] and [Artist]
[Artist] [Artist] and other

Table 6.8. patterns for artist - artist relation.

ing co-occurrences of the artists. For example the terms Bush and Inner Circle
co-occurred a lot on the web, due to American politics. By adding the term music
we restrict ourselves to documents handling music.

Since we are not interested in the nature of the relatedness between artists, for
PM we selected general enumeration patterns (Table 6.8) to obtain co-occurrences.

Figure 6.7 shows the average precision of the similarity of the artists and their
k-NN for the sets of 224 artists. Note that for each artist only 15 others are defined
to be related. We can conclude that the pattern based method PM gives good results
and outperforms both DM and PCM. For smaller values of k the method most
inefficient in the number of queries is outperformed by both DM and PM. The
performance of DM drops quickly due to the fact that only few related artists are
mentioned among the highest ranked pages for the queried instances.

We have also compared the results of the three methods with the data from
Last.fm. For each of the 224 artists, we have extracted a ranked list of similarities
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Figure 6.7. Precision for the categorization of the 224 musical artists compared
with the data extracted from Last.fm.
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Figure 6.8. Precision for the sets of 224 and 1995 artists.

with the other 223 artists8. For small sizes of k the Last.fm data is more precise
than PCM, but for larger k all web-based methods outperform the experiment with
the Last.fm experiment. This can be explained by the fact that for each artist only
100 similar artists are provided. Hence, the average number of identified related

8e.g. http://ws.audioscrobbler.com/1.0/artist/Madonna/similar.xml
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Instructors can add Voice Tool and Live Classroom links directly
to the Vista Calendar.

... States W2, Canada B12, and Japan [H18, K9] indicate ...

If you work in a large population center, for example, Chicago,
Boston, New York City, and ...

They go together like lamb and tuna fish,

Table 6.9. Not all composed queries lead to relevant texts.

artists in the set of 224 is lower than all web-based methods.
Figure 6.8 shows the average precision of the similarity of the artists and their

k-NN for the sets of 224 and 1995 artists. We can conclude that the pattern based
method gives good results and outperforms DM in both sets. For the set of 1995
we did not compute the co-occurrences using PCM, as this would take over a year
using the Yahoo! API.

Dealing with Ambiguity. As the use of PM leads to good results in the identifi-
cation of artist similarities, we applied the method to a collection of 1732 artists,
used in music recommender experiments [Tiemann & Pauws, 2007]. As this set
contains a number of ambiguous artist names, we return to the work discussed in
Section 3.2.1, and propose a method to identify related instances for a set Ia with
ambiguous terms.

We computed the artist similarities using t. Since no ground truth is available
for this collection of artist, we cannot evaluate the precision. In Table 6.11 we give
the top most related artists to six of the artists in the collection using the method as
discussed in Section 6.2.1.

We observe that the artists Tool, Live and Fish frequently occur amidst the most
related artists. Especially for lesser famous artists, where the data is sparse, these
artist can be found often among the nearest neighbors. Tool is for 1227 out of the
1731 other artists one of the 5 most similar artists, Live is 1334 times in the top 5
and Fish is 724.

Unlike most of the artist names in the commonly used evaluation sets, these
frequently occurring artist names are very ambiguous. A number of examples of
irrelevant snippets due to artist name ambiguity can be found in Table 6.9.

In Section 3.2 we addressed this problem by using Google’s define function-
ality. We use the number of definitions as an estimator for the probability that the
term indeed reflects the intended instance.
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ARTIST BASELINE plin psqrt

Live 1227 1 54
Tool 1334 0 642
Fish 724 0 7
Juli 691 1251 1207

Table 6.10. Number of times an ambiguous artist name occurs among the top 5
nearest neighbors of the 1731 other artists.

Ideally, for each occurrence of an artist name in a text we want to observe
whether the occurrence indeed reflects the intended artist. However, the automatic
parsing of sentences is troublesome as the snippets contain broken sentences and
may be multilingual. Moreover if an artist name is identified as a subject or object
within a sentence, then we still do not know whether the term indeed reflects the
artist.

We therefore aim for a method where we estimate the probability that a term
a indeed reflects the intended artist named a. Using functions plin (equation (3.3)
on page 43) or psqrt (equation (3.4)), we estimate the relatedness between two in-
stances as follows,

T ′(a,b) =
co′(i, i′)

∑i′′,i′′ 6=i′ co′(i′′, i′)
, (6.9)

with

co′(i, i′) = co(i, i′) · p(i) · p(i′). (6.10)
Note that for p(i) = p(i′) = 1, we have the baseline function T (i, i′).
In this section we investigate the effect of the use of the ambiguity correction

on the performance on the test sets.
For both the sets of 224 and 1995 artists, we collected the numbers of defini-

tion for all the artist names. We recomputed the artist similarities using the linear
approach plin and the square root approach psqrt and compared the two with the
baseline.

An alternative approach is to explicitly add terms such as ’music’ to the query
expression. However, this approach leads to less snippets, while the snippets re-
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Figure 6.9. Precision for the sets of 224 artists using the three ambiguity estima-
tors.

turned contained less related instances.
We present the results for the sets I224 and I1995 in Figures 6.9 and 6.10. For the

set of 224 the performance of the methods using disambiguation is slightly less than
that of the baseline approach. This result is expected, as no ambiguous terms occur
in the set of 224 artists. For the set of 1995 artists however, the results improve
using either the uniform or the sqrt approach. We note that contrary to the set
of 224 artists, the 1995 set does contain some ambiguous names such Autograph,
Gamma Ray and Hypocrisy.

For the set of 1732 artists in our own collection, we compare the number of
times that ambiguous artist names occur among the 5 nearest neighbors for the
other artists (Table 6.10). We note that for the term Juli only one definition is
found. Although the distribution of ambiguous names is quite different for plin and
psqrt, we cannot draw conclusions on which approach is better suited as currently
no ground truth for artist similarity ranking is available. Hence, a ground truth data
set for such a diverse collection with ambiguous artist names is needed. With such
a set, we can obtain better insights in the quality of web information extraction
methods for these purposes.

6.4.2 Categorizing Instances
In this subsection, we focus on experiments that address the categorization of the
instances in Ia by selecting the most applicable label in Ig.



136

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  5  10  15  20  25  30  35  40  45  50

pr
ec

is
io

n

k

Precision for k-NN Artist Similarity

linear
sqrt

baseline

Figure 6.10. Precision for the sets of 1995 artists using the three ambiguity esti-
mators.

Musical Artists
In this experiment, I224 is again the set of all artist names in the list composed by
Knees et al. [2004]. This list consists of 14 genres, each with 16 artists.

To find the most appropriate genre for the artists in I224, the genres mentioned
in the list are not all suitable for finding co-occurrences. For example, the term
classical is ambiguous and Alternative Rock/Indie is an infrequent term. We there-
fore manually rewrote the names of the genres into unambiguous ones (such as
classical music) and added some synonyms. After collecting the numbers of co-
occurrences of artists and genres, we summed up the scores of the co-occurrences
for synonyms. In this way, for each artist b the number of co-occurrences with
the terms Indie and Alternative Rock are added to the co-occurrences of b with the
genre Alternative Rock/Indie. Although the absolute number of co-occurrences
with Alternative Rock/Indie may increase using this approach, it is notable that we
use a relative measure to determine the most applicable category per artist.

Motivated by the results in [Schedl et al., 2005], for PCM we used the
allintitle option in the artist categorization experiment.

For PM we selected for the genre-artist relations the patterns in Table 6.12 from
a list of patterns expressing this relation.

For all three methods, we reuse the artist similarities computed in the previous
experiments.

In Table 6.13 the performance of the initial mappings can be found for the
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baseline using plin using psqrt

Babylon Zoo:
1. Tool Juli Juli
2. Live Chumbawamba Chumbawamba
3. Fish Jamiroquai Jamiroquai
4. Juli Shakira Tool
5. Chumbawamba Sonic Youth Shakira
6. Play Right Said Fred Janet Jackson
B12:
1. Tool Juli Juli
2. Live Carl Craig Carl Craig
3. Fish Jamiroquai Jamiroquai
4. Juli Autechre Tool
5. Play Shakira Autechre
6. Japan Speedy J. Shakira
B. Springsteen:
1. Neil Young T. Petty & Heartbreakers Neil Young
2. U2 Tom Petty T. Petty & Heartbreakers
3. Bob Dylan The Afghan Wigs Tom Petty
4. Tom Petty Neil Young The Afghan Wigs
5. Tool Patti Smith Bob Dylan
6. The Afghan Wigs Robert Plant Patty Smith
Tool:
1. Freefrom Mudvayne Mudvayne
2. Mudvayne Type O Negative Type O Negative
3. Racoon Hothouse Flowers Hothouse Flowers
4. Strauss Massive Attack Massive Attack
5. Type O Negative Nine Inch Nails Nine Inch Nails
6. Hothouse Flowers Dream Theater Dream Theater
U2:
1. Hothouse Flowers Hothouse Flowers Hothouse Flowers
2. Radiohead Radiohead Radiohead
3. Sinéad O’Connor Sinéad O’Connor Sinéad O’Connor
4. Madonna Coldplay Coldplay
5. Coldplay Bruce Springsteen Talking Heads
6. Elvis Presley Pearl Jam Bruce Springsteen

Table 6.11. Examples of most related artists using the baseline method and the
two alternatives plin (3.3) and psqrt (3.4).
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[Genre] artists like [Artist]
[Genre] artists such as [Artist]
[Genre] artists for example [Artist]
[Artist] and other [Genre] artists

Table 6.12. Four of the patterns for the artist-genre relation. In the other patterns,
artists is respectively replaced with acts, musicians and bands.
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Figure 6.11. Precision for the categorization of the musical artists.

three methods (k = 0). We were able to map all artists to a genre. Co-occurrences
between genres and artists thus could be found using PCM, PM as well as DM. The
latter performs best. With respect to the preliminary mapping, the method with the
smallest amount of Google queries performs best.

Using DM only few related artists can be found on the documents visited. In-
creasing k hence does not effect the performance for the final mapping, as the lists
of related artists are small (Figure 6.11). Contrary to especially PCM, large num-
bers of k do not deteriorate the precision.

The performance of the pattern-based method strongly improves by consider-
ing related artists, the best performance is obtained for k = 8. All methods perform
best for values of k between 5 and 13. The Rock n’ Roll artists proved to be the
most problematic to categorize. The artists in the genres classical, blues and jazz
were all correctly categorized with the best scoring settings.

With the supervised music artist clustering method discussed in [Knees et al.,
2004] a precision of 87% was obtained using complex machine learning techniques
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method k = 0 best (corresponding k)

PCM 0.71 0.81 (13)
PM 0.72 0.89 ( 8)
DM 0.84 0.87 ( 5)

Table 6.13. Precision without related artists and best precision per method.

and a relatively large training set. In [Schedl et al., 2005] a precision of up to
85% precision was obtained using O(|Ia|2) queries. We can conclude that our
simple and unsupervised method produces similar results. Moreover, we compute
a categorization of artists into genres instead of clusters of artists.

We also conducted this experiment using Last.fm data. For each artist, we
initially selected the genre that gets the highest score. In this case, we thus select
the genre that is mentioned as the highest ranked tag. If no genre is mentioned for
an artist, initially no genre is assigned.

For the experiment with the Last.fm data, we retrieved for each artist of the 224
artist set the list of the (at most) 100 most similar artists. Having obtained an initial
mapping between each of the 224 artists and a genre, we use the nearest neighbors
to compute a final mapping. Alike the three web-based methods, we compute a
majority voting among the initial genre for each artist and its k nearest neighbors
using PM, DM and the Last.fm data.

We compare the results of the Last.fm-based artist categorization with the best
two results from [Geleijnse & Korst, 2006c] in Figure 6.12. For the method
DM co-occurrences between artists and genres within full web documents are
used to compute the initial mapping. To compute artist similarity using DM, we
use co-occurrences of artist names within documents. The method PM uses co-
occurrences within phrases that express the relations of interest.

The results for artist categorization using the Last.fm data are similar to the
ones gained using web-data collected with a search engine. The results for Last.fm
are best when incorporating the tags of the 3 nearest neighbors of every artist.
Since an average number of 14 similar artists (out of the set of 224) is identified,
the performance deteriorates for larger values of k.

It is notable that for all three methods most misclassifications were made in the
Folk, Heavy and Rock ’n Roll genres, where often the genre Indie/Alternative was
assigned to the artist.

When we classify the artists using the Last.fm data after track filtering (see
page 123), the initial mapping (k = 0) improves slightly as Chubby Checker is now
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Figure 6.12. Precision of the 224 artist categorization for k-NN using Last.fm and
the two best web-based methods.

correctly classified. For values of k larger than 1, the performance using the track
filtered data is equal to the one using either the raw or the normalized Last.fm data.

As the results of the genre categorization using the Last.fm data are equally
good as those gained with the best methods using arbitrary web-data, we conclude
that DM and PM are reliable methods for this classification task. We also observe
that there is no complete overlap with the data extracted from Last.fm and the
ground truth composed by experts in the field. This on the one hand gives confi-
dence in our methods, but on the other hand raises questions on the fact that not
all artist-genre combinations are recognized by the general public. We therefore
investigate the use of Last.fm data as a ground truth in the last part of this section.

Categorizing Painters into Movements
For this experiment, we constructed a list of painters Ia and a list of movements
Ig in art using Wikipedia and map the two. From Wikipedia we extracted a set Ia

of 1,280 well-known painters from the article List of painters and a set Ig of 77
movements in art from List of art movements9. We tested the performance of the
algorithm on the subset of 160 painters who could be extracted from the Wikipedia
pages describing movements (e.g. from the page on Abstract Expressionism). The
other 1,120 painters are either not mentioned on the pages describing styles or are
mentioned on more than one page. However, when computing similarities between
the painters, we take all 1,280 painters into account. For the elements of Ig in this

9www.wikipedia.org Both pages visited in April 2006.
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[Painter] synthetic [Movement] [Painter] [Movement]
[Movement] artist [Painter] [Movement] [Painter]
[Painter] and other [Movement] [Painter] express [Movement]
[Painter] and [Movement] [Painter] of the [Movement]
[Painter] tog initiativ til [Movement] [Painter] uit de [Movement]
[Painter] experimenting with [Movement] [Painter] and the [Movement]
[Painter] surrealism [Movement] [Painter] arte [Movement]

Table 6.14. Best scoring learned patterns for painter - movement relation.

PAINTER-MOVEMENT

method k = 0 best (corresp. k)

PCM 0.35 0.35 (0)
PM 0.54 0.64 (18)
DM 0.65 0.81 (20)
PM-STEMMING 0.53 0.62 (28)

Table 6.15. Precision without related instances and best precision per method.

test no synonyms were added. For fairness, we excluded pages from the domain
wikipedia.org in the search queries.

For PM, we selected learned patterns for the mapping between the elements
in Ia and Ig. For learning, we used instance-pairs outside the test set. The best
scoring patterns can be found in Table 6.14. For the relation between the instances
in Ia, these patterns found were mostly enumeration patterns, e.g. “including b
and”. The complete details of both experiments and the patterns used in PM can be
found on the web page10. Due to the rareness of some of the painters and names of
movements, we did not use any additional terms in the queries for DM or PCM.

In Table 6.15 the performance of the initial mapping m′ can be found for the
three methods (k = 0). The experiments show that in general the use of related
instances improves the categorization (see Table 6.15 and Figure 6.13). It shows
again that the methods with the lowest Google Complexity thus PM and DM per-
form better than PCM.

Although in the painter-movement experiment the number of categories iden-
tified (77) is much larger than in the previous experiment (16), the performance

10http://gijsg.dse.nl/webconmine/
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Figure 6.13. Precision for categorization of the painters.

of PM and especially DM is still good. The results of PCM indicate that when the
precision of the intermediate mapping is low (35%), the use of related instances
does not improve the results. In this experiment we even observe a deterioration
of the performance. Here DM clearly outperforms PM. This can be explained by
the fact that using PM considerably less painter-movement pairs could be extracted.
We expected the recall of PM to increase when applying stemming on the names
of movements and the texts extracted [Porter, 1980]. Although the number of pairs
extracted slightly increases, the precision does not improve (Table 6.15).

6.4.3 Tagging Instances
In this subsection, we focus on two case-studies on the tagging of instances related
to the methods described in Section 6.2.3. We compare the extracted lists of tags
with ground truth extracted from a social website. No previous work is known to us
in this field. We therefore present two exploratory studies in the automatic tagging
of instances. In the first experiment, we tag the set of 224 artists and evaluate
the tagging using Last.fm. The second experiment focusses on books, where the
results are compared with data from LibraryThing.com.

Tagging Musical Artists
In this experiment, we focus on the tagging of the 224 artists as done by the Last.fm
community using the method described in Section 6.3. Using a large set of artists,
we select the 248 most frequently applied tags after the normalization procedure11.

11The list of tags used can be found at http://gijsg.dse.nl/tags224.html
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We investigate whether our method is well suited to label the 224 artists and com-
pare the results with the tags as applied by the Last.fm users.

The previous experiments showed that PM was the most successful alterna-
tive to identify artist similarities, while DM outperformed PM with respect to the
labeling of artists with genre names. We hence use DM to find the co-occurren-
ces between artist names and tags and reuse the results from PM to identify the
artist similarities. For fairness, the pages from Last.fm and Audiocrobbler.com are
excluded from the search results.

Per artist in the test set, an average of 79 tags was identified using DM. All
tags in the test set were linked to at least one artist, however not for all tag/artist
combinations a score could be identified, as not all artists are related to one another.

We compare the computed ranking of the tags for the artists with a normalized
ranking as identified by the Last.fm users as described in Section 6.3. For instance,
the terms ’Rocker’ and ’rock’ have the same normalized form.

We evaluate the computed rankings for the different values of w as follows.
We first evaluate the precision and recall for the highest ranked tags and secondly
compute Spearman’s rank correlation between the computed ranking and the one
from Last.fm.
Precision and Recall. We selected the set Sn of the top n tags for artist i in the
ground truth (i.e. the normalized Last.fm data) and evaluated precision p and recall
r of the computed ordered list Lm of the m most applicable tags for i.

p =
|Sn

⋂Lm|
|Lm| and r =

|Sn
⋂Lm|
|Sn|

The average recall and precision for the computed 25 highest ranked tags (i.e.
m = 25) compared with the 25 highest ranked tags by the Last.fm (i.e. n = 25) is
given in Figure 6.14. For all values of w the precision is marginally larger than
recall, as we found less than 25 tags for few of the artists. We note that for the
given set of tags random precision and recall are both 0.10.

For the given settings, we hence obtain precision and recall rates between 0.25
and 0.3. For w = 0.25 we obtained the best results. Hence, we again observe that
the use of artist similarities improves the labeling of the artists.

For w = 0.25 we compute the average precision and recall of the top n Last.fm
tags by repeatedly increasing m from 1 to 100. The results for various values of n
can be found in Figure 6.15.
Ranking. We also evaluate the ranking itself, hence the correlation between the
ranking of tag ti in the ground truth ga(ti) and the computed ranking ra(ti). For a
given artist, we focus on the ranking of the tags that are both in the ground truth
data and in the computed list.

The average Correlation Coefficient ρ per w for the 224 artists is given in Fig-
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Figure 6.14. Precision and Recall for the 25 best scoring computed tags with
respect to the 25 best scoring normalized Last.fm tags for the 224 artists.
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Figure 6.15. Precision and Recall for the n best scoring computed tags with
respect to the 25 best scoring normalized Last.fm tags for the 224 artists with
w = 0.25.

ure 6.16. The correlation is indeed positive – but weak – for all values of w. We
note that the value for ρ is slightly lower for values of w approaching both 0 and 1.

The results of the labeling of artists with the tags as applied by Last.fm users
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Figure 6.16. Spearman’s correlation coefficient between the 224 artist tagging
and the Last.fm ground truth.

are modest. Given the difficulty of the task and the nature of the ground truth, we
are nevertheless encouraged by the results.

We observe that some frequently applied tags occur infrequently in web texts
(e.g. ‘i want to hear everything streamable by them’). Such tags were rarely iden-
tified in the texts on the web. On the other hand, among the best scoring tags we
find terms that seem less descriptive but often occur on the web, for example good,
hot and fun.

Tagging Books
In this second experiment, we focus on books and their tags. Using the social web-
site LibraryThing.com, we create a ground truth for the 500 most popular books
on this website (Table 6.16 gives the top 25 at the moment of conducting the ex-
periment). After normalization, we reduced the size of the ground truth set of tags
to 286. The book titles have been slightly simplified by removing the text after the
colon (e.g. in Animal farm : a fairy story).

As two author-title combinations are less likely to co-occur within a sentence,
we gather the co-occurrences scores for the books in Ia using DM. We query the
book title and the name of the author and gather the (at most) 100 resulting doc-
uments. Again, the pages of the evaluation website are excluded. To identify
co-occurrences, we scan the documents only for the titles of the other books. The
identification of co-occurrences between tags and books is done is a similar fash-
ion.
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1. Harry Potter and the Sorcerer’s Stone by J.K. Rowling (21,415)
2. Harry Potter and the Half-Blood Prince by J.K. Rowling (20,650)
3. Harry Potter and the Order of the Phoenix by J.K. Rowling (19,510)
4. Harry Potter and the Goblet of Fire by J.K. Rowling (18,658)
5. Harry Potter and the Chamber of Secrets by J.K. Rowling (18,638)
6. Harry Potter and the Prisoner of Azkaban by J.K. Rowling (18,567)
7. The Da Vinci code by Dan Brown (16,013)
8. The Hobbit by J.R.R. Tolkien (14,538)
9. 1984 by George Orwell (13,655)

10. The Catcher in the Rye by J.D. Salinger (13,363)
11. Pride and prejudice by Jane Austen (12,813)
12. To Kill a Mockingbird by Harper Lee (11,890)
13. The Great Gatsby by F. Scott Fitzgerald (11,331)
14. The Lord of the Rings by J.R.R. Tolkien (10,572)
15. Jane Eyre by Charlotte Bronte (9,847)
16. The Curious Incident of the Dog in the Night-Time by Mark Haddon (9,526)
17. Brave New World by Aldous Huxley (9,142)
18. Life of Pi : a novel by Yann Martel (9,071)
19. Animal Farm : a fairy story by George Orwell (8,967)
20. Angels & Demons by Dan Brown (8,799)

Table 6.16. The taste of the crowds: the most popular books among the Library-
Thing community in August 2007. The figures between parentheses reflect the
number of people claiming to own the book.

Spearman’s rank correlation coefficient is given in Figure 6.17. It shows that
contrary to the previous experiments the use of related books has a negative effect
on the correlation with the ground truth. Again, the correlation is positive, but
weak, with best coefficients around 0.3.

Using w = 1, we also computed the average precision and recall for the top
25 tags in the ground truth set, see Figure 6.18. These results are also comparable
with the Last.fm experiment.

The results for the tagging experiments are open to improvement. Mika [2007]
proposes to compute a semantic distance between tags. In future work, such an
approach can be used both to identify a ‘cleaner’ ground truth and to identify syn-
onyms of tags. The use of learned synonyms may improve the performance as
many tags occur infrequently in unstructured sources on the web. Hence, the as-
sumption that instances can be linked to tags using occurrences of pairs of the two
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fiction
classic
novel
paperback
literature
20th century
Favorites
American
fantasy
hardcover

series
science fiction
english
british
american literature
sf
Contemporary Fiction
Humor
contemporary
1001 books

Table 6.17. The 20 most frequently applied tags on LibraryThing.com.
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Figure 6.17. Spearman’s correlation coefficient between the computed tags and
the LibraryThing ground truth.

in texts does not hold for these cases.
Future work should therefore focus on the identification of formulations of

tags in unstructured texts. Using an annotated training set of artists and tags we
can learn such formulations. Moreover, currently we assume the tags in the set Ig

to be given. We are interested to exploit methods to learn new terms for the set Ig.
This can for instance be done with the tf·idf-approach [Knees et al., 2004; Manning
& Schütze, 1999].
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6.5 Conclusions
In this chapter we have focussed on the extraction of information from the web
that is not present as such. By combining information from various sources, we
have created characterizations of instances based on the collective knowledge on
the web. We have argued that such collaborative characterizations are often more
informative than the ones provided by experts.

We presented a simple method to identify relatedness among instances in one
class (e.g. artists) using co-occurrences found with web information extraction
methods. With similar techniques we find the most applicable category (e.g. a
genre) for each instance in a given set. The last problem addressed focuses on
the identification of a ranked list of tags applicable to an instance, based on the
information available on the web.

The experimental results for the identification of the relatedness among in-
stances and the categorization of instances are both convincing. We have shown
that the use of the identified relatedness improves the categorization.

In the last part of this chapter, we focused on a novel task in web informa-
tion extraction. We identified an ordered list of tags for a given set of instances.
The computed lists were compared with a ground truth for a social website (e.g.
Last.fm). Although the results of both tagging experiments are modest, we are
encouraged given the difficulty of the task. As we have sketched directions for im-
provement, we hope that this work inspires to continue the research on the tagging
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of instances using web information extraction.
To evaluate the methods presented, we compared the output of the method with

benchmarks composed by experts as well as sets collected from social web sites.
Although the use of these benchmark sets gives valuable insights in the quality of
the output, it will be interesting to analyze the use of extracted community data in
applications. For example, the questions remain how the extracted information can
contribute to a recommender system, and how the performance compares with the
use of information gathered from other sources.
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7
Conclusions

Intelligent applications can benefit from the collective knowledge of the internet
community as to be found on the web. However, the vast majority of the informa-
tion on the web is represented in a human-friendly format using natural language
texts. Such information in natural language texts is not machine interpretable.

In this thesis, we presented approaches to find, extract and structure informa-
tion from natural language texts on the web. Such structured information can be
machine interpreted and hence be used in intelligent applications.

Information extraction is the task of identifying instances of classes and their
relations in a text corpus. We adopted the concept of ontology to model the infor-
mation demand. The information extraction problem is translated into an ontology
population problem.

We proposed a simple ontology population method using patterns. Patterns
are commonly occurring phrases that are typically used to express a given rela-
tion. Patterns are accompanied by placeholders for instances, for example [City]
is the capital of [Country]. We combine such patterns and known instances into
search engine queries (e.g. Amsterdam is the capital of). Subsequently, we extract
instances and relations from the retrieved documents. The use of the constructed
queries serves two goals. On the one hand, it shows to be an effective mechanism
to access highly relevant texts, while on the other hand we can identify relations
between instances.
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State-of-the-art search engines have restrictions on the accepted numbers of
automated queries per day. We hence analyze our methods by their Google Com-
plexity.

After having discussed a general approach to populate an ontology in Chap-
ter 2, we focused on two subproblems: the identification of effective patterns and
the recognition of the instances of the defined classes in texts. The presented ap-
proach contains bootstrapping mechanisms, as learned instances and patterns are
used to formulate new search engine queries.

We make use of the redundancy of information on the web. Many statements
(i.e. subject – relation – object triples) can be found on various pages using diverse
formulations. We use this characteristic of the web as a corpus to filter out erro-
neously extracted data. The more a statement is identified on the web, the higher
the confidence in its correctness.

We have argued that precision of a pattern is not the only criterion for a pat-
tern to be effective. The patterns identified in the case-studies are recognizable
formulations of the corresponding relation.

To recognize instances in web texts, and more specifically in snippets, we pre-
sented two alternative approaches. On the one hand, we can identify instances
using a knowledge-oriented approach, where regular expressions are created to
match instances of a given class. On the other hand, we presented a data-oriented
approach. Given a set of known instances, a collection of texts is annotated. A clas-
sifier uses the annotated texts as training set in order to recognize new instances in
the other texts.

The methods discussed are illustrated with several case-studies. In the thesis,
we focused on three tasks in web information extraction. In order to benchmark
our method, we extract facts from the web. The second part focuses on two ap-
plications of web information extraction, while the last part of the thesis focuses
on the discovery of information. By combining content of multiple documents,
we create community-based descriptions for instances such as books, painters and
popular artists.

In the case-studies in Chapter 4 we show that we can precisely identify rela-
tion instances using the pattern-based approach. Both with manually constructed
patterns as well as with learned patterns good results were achieved in the studied
cases. The use of the pattern-instance combinations in queries is an effective ap-
proach to access relevant search results. We have shown that the redundancy of in-
formation on the web enables us to precisely identify instances using the rule-based
approach. For the data-oriented approach, the use of a large and representative set
of known instances is crucial.

In Chapter 5, we discussed two applications of web information extraction. In
the first part of the chapter, we presented a method to map arbitrary terms to a
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semantically related term in a given thesaurus. As the thesaurus is used to index a
collection, the access to this collection is improved.

For those interested in the retrieval of the lyrics of a given song, we developed
an application that extracts versions of the lyrics from the web and combines them
into a most plausible version. The results of the experiments are convincing.

Chapter 6 focuses on community-based data. We are interested in the identifi-
cation of characterizations of instances like musical artists and painters, based on
the wisdom of the crowds as expressed on the web. We have discussed three tasks
in the identification of community-based data: the identification of the perceived
relatedness between instances, the categorization of instances and the tagging of
instances. The experimental results for the identification of the relatedness among
instances and the categorization of instances are both convincing. We have shown
that the use of the identified relatedness improves the categorization. With respect
to the tagging of instances using texts on the web, no comparable previous work
is known. Although the results of both tagging experiments are modest, we are
encouraged given the difficulty of the task. We have developed an algorithm to
generate a dynamic ground truth to evaluate the tagging of instances, which facili-
tates the challenging research beyond the categorization of instances.

In this thesis we have shown that we can extract information from the web in
a simple and efficient manner. By combining and structuring information from the
Web, we create a valuable surplus to the knowledge already available. The iden-
tification of collective knowledge and opinions is perhaps more interesting than
collecting plain facts, which often can be mined from semi-structured sources.

As the web is an ever growing corpus of texts, and intelligent applications can
benefit from the extracted information, the future for web information extraction is
bright and promising.
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Malaisé, V., Isaac, A., Gazendam, L., & Brugman, H. [2007]. Anchoring dutch
cultural heritage thesauri to wordnet: two case studies. In Proceedings of the
workshop on language technology for cultural heritage data (latech 2007)
(p. 57 - 64). Prague, Czech Republic.

Manning, C. D., & Schütze, H. [1999]. Foundations of statistical natural language
processing. Cambridge, Massachusetts: The MIT Press.

Marneffe, M.-C. de, MacCartney, B., & Manning, C. D. [2006]. Generating Typed
Dependency Parses from Phrase Structure Parses. In Proceedings of the ieee
/ acl 2006 workshop on spoken language technology.

McCallum, A. [2005]. Information extraction: distilling structured data from



Bibliography 161

unstructured text. ACM Queue, 3(9), 48–57.
McDowell, L., & Cafarella, M. J. [2006]. Ontology-driven information extrac-

tion with ontosyphon. In Proceedings of the 5th international semantic web
conference (iswc 2006) (Vol. 4273, pp. 428 – 444). Athens, GA: Springer.

McKay, C., & Fujinaga, I. [2006]. Musical genre classification: Is it worth pursu-
ing and how can it be improved? In Proceedings of the seventh international
conference on music information retrieval (ismir’06) (pp. 101 – 106). Vic-
toria, Canada.

McKinney, M. F., & Breebaart, J. [2003]. Features for audio and music classifica-
tion. In Proceedings of the 4th international conference on music informa-
tion retrieval. Baltimore, MD: Johns Hopkins University.

Meilicke, C., Stuckenschmidt, H., & Tamilin, A. [2007]. Repairing ontology
mappings. In Proceedings of the 22nd conference on artificial intelligence
(aaai-07). Vancouver, Canada.

Mika, P. [2007]. Ontologies are us: A unified model of social networks and
semantics. Journal of Web Semantics, 5(1), 5 – 15.

Mitchell, T. [1997]. Machine learning. McGraw Hill.
Mori, J., Tsujishita, T., Matsuo, Y., & Ishizuka, M. [2006]. Extracting relations in

social networks from the web using similarity between collective contexts.
In Proceedings of the 5th international semantic web conference (iswc 2006)
(Vol. 4273, pp. 487 – 500). Athens, GA: Springer.

Navigli, R., & Velardi, P. [2006]. Enriching a formal ontology with a thesaurus: an
application in the cultural heritage domain. In Proceedings of the 2nd work-
shop on ontology learning and population: Bridging the gap between text
and knowledge (pp. 1–9). Sydney, Australia: Association for Computational
Linguistics.

Nederpelt, R., Geuvers, J. H., & De Vrijer, R. C. (Eds.). [2004]. Selected papers
on automath. Amsterdam, the Netherlands: North-Holland.

Pachet, F., & Cazaly, D. [2000]. A taxonomy of musical genres. In Content-based
multimedia information access conference (riao). Paris, France.

Pampalk, E., Flexer, A., & Widmer, G. [2005]. Improvements of audio-based
music similarity and genre classificaton. In Proceedings of the sixth inter-
national conference on music information retrieval (ISMIR’05) (pp. 628 –
633). London, UK.

Pang, B., & Lee, L. [2005]. Seeing stars: Exploiting class relationships for senti-
ment categorization with respect to rating scales. In Proceedings of the 43th
annual meeting of the association for computational linguistics (acl 2005)
(pp. 115–124). Ann Arbor, MI.

Pang, B., Lee, L., & Vaithyanathan, S. [2002]. Thumbs up? Sentiment classifi-
cation using machine learning techniques. In Proceedings of the 2002 con-



162 Bibliography

ference on empirical methods in natural language processing (emnlp) (pp.
79–86).

Pantel, P., & Pennacchiotti, M. [2006]. Espresso: Leveraging generic patterns
for automatically harvesting semantic relations. In Proceedings of confer-
ence on computational linguistics / association for computational linguistics
(coling/acl-06) (pp. 113 – 120). Sydney, Australia.

Pohle, T., Knees, P., Schedl, M., & Widmer, G. [2007]. Building an interactive
next-generation artist recommender based on automatically derived higher-
level concepts. In Proceedings of the fifth international workshop on content-
based multimedia indexing (cbmi’07). Bordeaux, France.

Porter, M. F. [1980]. An algorithm for suffix stripping. Program, 14, 130 – 136.
Ravichandran, D., & Hovy, E. [2002]. Learning surface text patterns for a question

answering system. In Proceedings of the 40th annual meeting of the asso-
ciation for computational linguistics (acl 2002) (pp. 41 – 47). Philadelphia,
PA.

Salton, G., & Buckley, C. [1988]. Term-weighting approaches in automatic text
retrieval. In Information processing and management (pp. 513–523).

Sazedj, P., & Pinto, H. S. [2006]. Factbox - a framework for instantiating ontolog-
ical relations from text. In Proceedings of the iswc 2006 workshop on web
content mining with human language technologies (webconmine). Athens,
GA.

Scaringella, N., Zoia, G., & Mlynek, D. [2006]. Automatic genre classification
of music content. IEEE Signal Processing Magazine : Special Issue on
Semantic Retrieval of Multimedia, 23(2), 133 – 141.

Schedl, M., Knees, P., & Widmer, G. [2005]. A Web-Based Approach to Assessing
Artist Similarity using Co-Occurrences. In Proceedings of the fourth inter-
national workshop on content-based multimedia indexing (CBMI’05). Riga,
Latvia.

Schedl, M., Pohle, T., Knees, P., & Widmer, G. [2006]. Assigning and visualizing
music genres by web-based co-occurrence analysis. In Proceedings of the
seventh international conference on music information retrieval (ismir’06)
(pp. 260 – 265). Victoria, Canada.

Schedl, M., & Widmer, G. [2007]. Automatically Detecting Members and Instru-
mentation of Music Bands via Web Content Mining. In Proceedings of the
5th workshop on adaptive multimedia retrieval (AMR’07). Paris, France.

Schlobach, S., Ahn, D., Rijke, M. de, & Jijkoun, V. [2007]. Data-driven type
checking in open domain question answering. Journal of Applied Logic,
5(1), 121–143.

Schutz, A., & Buitelaar, P. [2005]. Relext: A tool for relation extraction from text
in ontology extension. In Proceedings of the fourth international semantic



Bibliography 163

web conference (iswc 2005) (p. 593-606). Galway, Ireland.
Sekulovski, D., Geleijnse, G., Kater, B., Korst, J., Pauws, S., & Clout, R. [2008].

Enriching text with images and colored light. In Proceedings of the is&t/spie
20th annual electronic imaging symposium. San Jose, CA.

Shchekotykhin, K. M., Jannach, D., Friedrich, G., & Kozeruk, O. [2007]. Allright:
Automatic ontology instantiation from tabular web documents. Busan, Ko-
rea.

Shvaiko, P., & Euzenat, J. [2005]. A survey of schema-based matching approaches.
In Journal on data semantics iv (Vol. 3730, pp. 146 – 171). Heidelberg,
Germany: Springer.

Shvaiko, P., Euzenat, J., Noy, N., Stuckenschmidt, H., Benjamins, R.,
& Uschold, M. (Eds.). [2006]. Proceedings of the iswc’06 in-
ternational workshop on ontology matching. CEUR-WS Vol-225.
(http://www.om2006.ontologymatching.org/)

Sigurd, B., Eeg-Olofsson, M., & Van Weijer, J. [2004]. Word length, sentence
length and frequency - zipf revisited. Studia Linguistica, 58(1), 37 - 52.

Smith, M. K., Welty, C., & McGuinness, D. L. [2004]. Owl web ontology language
guide.

Snow, R., Jurafsky, D., & Ng, A. Y. [2005]. Learning syntactic patterns for au-
tomatic hypernym discovery. In Advances in neural information processing
systems 17 (pp. 1297–1304). Cambridge, MA: MIT Press.

Snow, R., Jurafsky, D., & Ng, A. Y. [2006]. Semantic taxonomy induction from
heterogenous evidence. In Proceedings of the 21st international conference
on computational linguistics and the 44th annual meeting of the acl (col-
ing/acl 2006) (pp. 801–808). Sydney, Australia.

Sumida, A., Torisawa, K., & Shinzato, K. [2006]. Concept-instance relation extrac-
tion from simple noun sequences using a full-text search engine. In Proceed-
ings of the iswc 2006 workshop on web content mining with human language
technologies (webconmine). Athens, GA.

Ter Horst, H. [2005]. Completeness, decidability and complexity of entailment for
rdf schema and a semantic extension involving the owl vocabulary. Journal
Web Semantics, 3(2-3), 79 – 115.

Tiemann, M., & Pauws, S. [2007]. Towards ensemble learning for hybrid music
recommendation. In Proceedings of the 2007 acm conference on recom-
mender systems ( recsys 2007) (p. 177-178). Minneapolis, MN, USA.

Tjong Kim Sang, E., & Hofmann, K. [2007]. Automatic extraction of dutch
hypernym-hyponym pairs. In Proceedings of computational linguistics in
the netherlands (clin-17). Leuven, Belgium.

Tzanetakis, G., & Cook, P. [2002]. Musical genre classification of audio signals.
IEEE Transactions on Speech and Audio Processing, 10(5).



164 Bibliography

Van Assem, M., Menken, M. R., Schreiber, G., Wielemaker, J., & Wielinga, B.
[2004, November]. A Method for Converting Thesauri to RDF/OWL. In
S. A. McIlraith, D. Plexousakis, & F. van Harmelen (Eds.), Proceedings of
the third international semantic web conference (iswc’04) (pp. 17–31). Hi-
roshima, Japan: Springer-Verlag.

Van Hage, W. R., Kolb, H., & Schreiber, G. [2006]. A method for learning part-
whole relations. In Proceedings of the 5th international semantic web con-
ference (iswc 2006) (Vol. 4273, pp. 723 – 736). Athens, GA: Springer.

Van Rijsbergen, C. J. [1979]. Information retrieval, 2nd edition. London, UK:
Butterworths.

Verberne, S., Boves, L., Oostdijk, N., & Coppen, P.-A. [2007]. Evaluating
discourse-based answer extraction for why-question answering. In Proceed-
ings of the 30th annual international acm sigir conference on research and
development in information retrieval (sigir 2007) (pp. 735 – 737). Amster-
dam, the Netherlands.
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Summary

Information Extraction from the Web using
a Search Engine

The web currently is the de-facto source to find an arbitrary piece of infor-
mation. Intelligent applications can benefit from the collective knowledge of the
internet community as to be found on the web. However, the vast majority of the
information on the web is represented in a human-friendly format using natural
language texts. Such information in natural language texts is not machine inter-
pretable. As intelligent applications – for example recommender systems – may
benefit from such structured information, we focus on the extraction of informa-
tion from the web.

We present approaches to find, extract and structure information from natu-
ral language texts on the web. Such structured information can be expressed and
shared using the standard semantic web languages and hence be machine inter-
preted.

Information Extraction focusses on the identification of instances (given names
and terms like Technische Universiteit Eindhoven, Carla Bruni and Amarillo) of
classes (e.g. university, person, or location). Apart from the identification of such
instances, their relations are to be discovered in a collection of texts (e.g. the re-
lation between Amsterdam and the Netherlands). Inspired by the semantic web
community, we specify the information demand (e.g. ‘Find the names of all coun-
tries in the world’, ‘Given a list of pop artists, which one is said to be most related
to Amy Winehouse?’) using an ontology. The information extraction problem is
expressed in terms of an ontology population problem.

Other information extraction tasks focus on the corpus rather than on the on-
tology. Where their goal is to identify all instances and relation as expressed in the
texts, our goal is to solely find the demanded information expressed in the initial
ontology. As information on the web can be assumed to be redundantly available,
we do not have to recognize each formulation of a fact of interest. For example, the
statement Amsterdam is the capital of the Netherlands is expressed in many texts
using diverse formulations. To extract this information from the web, we may not
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have to recognize all of the encountered formulations.
In the thesis, a simple ontology population method using patterns is proposed.

Patterns are commonly occurring phrases that are typically used to express a
given relation. We combine such patterns and known instances into search en-
gine queries. For example if Anton Philips is a known instance, was a is pattern
expressing the relation between a person and his profession, we combine the two
into the query “Anton Philips was a”. Subsequently, we extract instances and re-
lations from the retrieved documents. The use of the constructed queries shows to
be an effective mechanism to access highly relevant texts on the one hand and to
identify relations on the other hand.

After discussing a general approach to populate an ontology, we focus on two
subproblems: the identification of effective patterns and the recognition of the in-
stances of the defined classes in texts. The presented approach contains a boot-
strapping mechanism, as learned instances and patterns are used to formulate new
search engine queries.

The approach is illustrated with several case-studies. In order to benchmark our
method, we extract facts from the web. The second part focuses on the extraction
of inferable information, i.e. information that is not present as such on the web, but
can be derived by combining data from multiple documents. The last part of the
thesis focuses on the discovery of community-based information. By combining
content of multiple documents, the wisdom of the crowds, we create descriptions
for instances such as books and popular artists.

We show that we can reliably extract information from the web using simple
techniques. Furthermore, making use of the redundancy of information on the web,
the recall of relevant information is high for the studied domains.
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