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State information based identification methods towards low order
modeling

Satyajit Wattamwar and Siep Weiland and Ton Backx

Abstract— In this paper we propose a model reduction frame-
work for obtaining low order linear and non-linear models for
large scale non-linear, reactive fluid flow systems. Our approach
is based on the combination of the method of Proper Orthogonal
Decomposition (POD), and System Identification techniques.
The proposed methods involve two steps. In the first step POD
is used to separate the spatial and temporal patterns and in
the second step different model structures of linear and of
non-linear types are proposed to approximate the temporal
patterns and corresponding model parameters are identified.
In particular, model structures of LTI, LPV and of tensorial or
multi-variable polynomial type in lower dimensional subspace
are identified. It is shown here that the POD modal coefficients
can be viewed as the states of the reduced model that is to
be identified. This has allowed us to propose different reduced
model structures. The resulting lower dimensional models need
significantly low computation time. The methods are of generic
nature and are promising to different large scale applications
characterized by existence of coherent patterns. Moreover, to
accommodate the existing knowledge in the form of plant output
measurements in the reduced order modeling framework, a new
approach is proposed. The efficiency of proposed methods are
illustrated on a large scale benchmark problem depicting an
Industrial Glass Manufacturing Process. The results show good
performance of the proposed methods.

I. INTRODUCTION

Industrial processes which are characterized by more than
one independent variable, viz. space and time are often
referred to as Distributed Systems (DS). Numerical solution
techniques of such a system involves decomposition of spa-
tial and temporal components. Spatial discretization of DS is
done by means of Finite Volume or Finite Element methods
which transfer the original DS described by the Partial Dif-
ferential Equations (PDEs) into a set of Ordinary Differential
Equations (ODEs) which are eventually integrated to obtain
the temporal dynamics. The mathematical models of DS
which consider flow, energy and mass balance using conser-
vation laws are often referred to as the First Principle Models
(FPM) or Rigorous Models. The solution techniques in the
form of spatial and temporal discretizations approximate the
steady state and dynamic process behavior reasonably well,
but the large number of ODEs formed as result of spatial
discretization of DS leads to increased model order which
further leads to increased computational complexity. It needs
considerable computational efforts (time, CPU requirement)
to simulate such FPM and therefore such process models
can not be used for online plant optimization and control
purposes. The alternative way to to develop the control
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relevant models relies extensively on plant data obtained
by performing identification tests on actual plant. But for
some chemical processes, such tests are highly expensive due
to loss of products during the tests. Moreover the validity
of the identified models from the plant data is limited to
the domain of tests performed on the plant and the states
of the identified black-box models from the plant data do
not have any physical interpretation. Therefore, on one hand
there are reliable, but computationally slow FPM and on the
other hand there are simpler models with many limitations.
Model Order Reduction (MOR) to infer reduced order or
simplified models from the FPM is therefore a necessary
step. Once the low dimensional, simplified black-box models
are obtained, one can proceed to controller and optimizer
design, see e.g. [Shvartsman and Kevrekidis(1998)].

Among different model reduction techniques, the method
of Proper Orthogonal Decomposition (POD) is widely used
for deriving lower dimensional models from the First Prin-
ciple Model. The POD method is applicable to the pro-
cesses which exhibit coherent spatio-temporal patterns. The
POD method searches the dominant coherent patterns in
the given process and defines an optimal, data-dependent
basis, that is subsequently used as a projection space to
infer the reduced order models through Galerkin type of
projections, see [Astrid(2004)] and the references therein.
There are some drawbacks associated with the POD methods;
e.g. POD methods are empirical (data dependent) in nature
and therefore these methods are susceptible to changes in
the process inputs and process parameters. Moreover, the
reduced model obtained by POD techniques using Galerkin
projections are usually very dense and one loses the original
sparse model structure. Along with the necessity of evalu-
ating the nonlinear functions in full dimensional space, the
computational gain of POD models obtained by Galerkin
projection are limited and not very attractive from the point
of online usage. These motivate us to look for other possible
approaches that can give computationally efficient, reliable
POD models that can be used for the online control and
optimization purpose.

Towards the purpose of identifying the low order mod-
els from the information of states evolution alone, lately
we have proposed few methods. In this paper we present
these methods in a common (simplified/reduced) modeling
framework. The proposed model reduction methods result
into Reduced Order-Linear Time Invariant(RO-LTI) models,
Reduced Order-Linear Parameter Varying (RO-LPV) models
and Reduced Order-Tensorial (ROT) models. ROT model is
a nonlinear model and can also be interpreted as a multi-
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variable polynomial model. All the forms of the reduced
order models presented in this paper are computationally
more than 1000 times faster than the full order rigorous
models. These reduced models allow to use a commercially
available software package in the form of a black-box which
generates the dynamic state information, and therefore the
proposed methods do not need access to the governing model
equations that are necessary for other POD with Galerkin
projection based methods. The methods presented here are
partially presented in the PhD thesis, see [Wattamwar(2010)].

Apart from proposing a combined model reduction frame-
work, in this paper we propose a way to combine the existing
process knowledge in the form of plant output measurements
to the reduced modeling framework. This novel approach
allows to minimize the mismatch between the actual process
and the reduced model.

This paper is organized as follows. The method of POD
is explained in section II. Assuming a generic form of the
full order model, the POD section explains the Galerkin
projection of governing model equations to infer the reduced
order model. The notions and the ideas developed in POD
section are further used to propose the identification based
reduced modeling framework in subsequent sections. The
application/motivation is a benchmark example of Industrial
Glass Manufacturing Process (IGMP) and is explained in
the section IV. Some results of the implementation of the
proposed methods on the benchmark example are presented
in the section V which is followed by conclusions and
references.

II. PROPER ORTHOGONAL DECOMPOSITION

One of the most promising and successful techniques
for an efficient reduction of large-scale nonlinear sys-
tems is the method of Proper Orthogonal Decompositions
(POD) also known as the Karhunen-Loève method, see
[Holmes et al.(1996)Holmes, Lumley, and Berkooz]. POD
is extensively applied to the systems involving fluid flow. The
method is based on the observation that for many large scale
processes, the flow characteristics reveal coherent structures
or patterns. This has led to the idea that the solutions of
model equations may be approximated by considering a
small number of dominant coherent structures (called modes
or basis) that are inferred in an empirical manner from the
measurements or the simulated data. Given an ensemble of
K measurements Tk(·), k = 1, . . . ,K with each measurement
defined on some spatial domain Ω, the POD method amounts
to assuming that each observation Tk belongs to a Hilbert
space H of functions defined on Ω. With the inner product
defined on H , it then makes sense to call a collection
{ϕ j}∞

j=1 an orthonormal basis of H if any element, say
T ∈H , admits a representation

T(k,z) =
∞

∑
j=1

a j(k)ϕ j(z), z ∈Ω, k ∈ Twith

〈ϕi,ϕ j〉= 1,∀i = j, else〈ϕi,ϕ j〉= 0 (1)

Here, the a j(k)’s are referred to as the time varying modal
coefficients(MC) and the ϕ j’s are the modes or basis of the

expansion. The truncated expansion

Tn(k,z) =
n

∑
j=1

a j(k)ϕ j(z), (2)

causes an approximation error ‖T−Tn‖ in the norm of the
Hilbert space. We will call {ϕ j}∞

j=1 a POD basis of H
whenever it is an orthonormal basis of H for which the
total approximation error in some norm over the complete
ensemble is K

∑
k=1
‖Tk−Tk

n‖ (3)

is minimal for all truncation levels n. This is an empirical
basis in the sense that every POD basis depends on the
data ensemble. Using variational calculus, the solution to
this optimization problem amounts to finding the normalized
eigenfunctions ϕ j ∈H of a positive semi-definite operator
R : H →H that is defined as,

〈ξ1,Rξ2〉 :=
1
K

K

∑
k=1
〈ξ1,Tk〉 · 〈ξ2,Tk〉 (4)

with ξ1,ξ2 ∈H . R is well defined in this manner and cor-
responds to a positive semi-definite matrix whenever H is
finite dimensional. In that case, a POD basis is obtained from
the normalized eigenvectors of R, see e.g. [Astrid(2004)]. In
practise, one approximate the infinite model by a finite one
using some spatial discretization scheme like Finite Element
or Finite Volume, with n spatial grids. The resulting model
is referred to as the full order model. And then the POD
basis are translated into ϕ j ∈ Hr, that is, r-dimensional
subspace of H which is spanned by {ϕ j}r

j=1. The POD
modal coefficients ‘a j’ are then obtained by the projection
of the ensemble Tk

n(.) on the span of dominant spatial POD
basis as,

a j(k) = 〈ϕ j(z)>,Tn(k,z)〉 (5)

A generic form of a full order model that results from the
spatial discretization of PDEs of DS may be represented by,

dTn

dt
= A (Tn)+B(u)+F (Tn,u,d) (6)

where observation Tn(·,k) = Tn(k) ∈ Rn ∀k, A is the
spatial operator for convection and diffusion, and is of
linear nature, B defines input matrix and F is nonlinear
source term. In the specific case of a POD basis, the finite
dimensional subspace Hr = span{ϕ j}, j = 1, . . . ,r where the
ϕ j’s denote the POD basis functions.

Classical POD method involves a Galerkin projection.
Towards this purpose let Pn : Hn →Hr and In : Hr →Hn
denote the canonical projection and canonical injection maps
or operators respectively, between full and reduced finite
dimensional spaces. The injection map projects back the
dynamic state evolutions from the reduced space to the
full dimensional space. Often, Pr =

[
ϕ>1 , . . . ,ϕ>r

]
and Ir =[

ϕ1, . . . ,ϕr
]
. This allows to represent

ar(k) = 〈Pr,Tn(k,z)〉 ar(k) ∈ Rr (7)

and, T̃n(k,z) = Irar(k) (8)
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The reduced model is then given by Galerkin projection of
(6) on lower dimensional space spanned by the POD basis
functions using the porjection operator as,

Pr
dTn

dt
= PrA (Irar)+PrB(u)+PrF (Irar,u,d) (9)

In this case using (7) (9) becomes an ordinary differential
equation in the coefficients ar(k) as,

d〈Pr,Tn〉
dt

= PrA Irar +Bru+PrF (Irar,u,d) (10)

or equivalently,

dar

dt
= Arar +Bru+Fr(P−1

r ar,u,d), ar(k) ∈ Rr (11)

Eq. (11) is reduced order model (ROM) and the POD
modal coefficients ar appear as the the states of the ROM.
Therefore the POD MC can also be viewed as dominant
temporal patterns/dynamics along which system evolves.
Often approximation order r is decided by using a criterion
based upon projection energy as,

Ptol = ∑
r
k=1 λk

∑
n
k=1 λk

(12)

where λk is the kth eigenvalue of the correlation operator as
defined in (4), r is the order of ROM and n is the order of
finite dimensional full order FPM.

III. LOW ORDER MODELS

In this section we present few novel ways to estimate
the reduced order models by using the computed modal
coefficients ar(k) from (7) and known inputs u(k). That is,
we will present the ways to infer reduced models without
invoking the Galerkin projection that is used in classical POD
technique as presented in (9) to (11).
A. Reduced order LTI models

The first two terms of eq. (11) on RHS are linear and
the third non-linear term does not appear for the systems
defined by linear ODEs. For the system governed by linear
ODEs the differential equations eq. (11) can be transformed
in equivalent discrete time form as:

ar(k +1) = Arar(k)+Bru(k) (13)

At this point one can observe that given the ensemble Tk
n,

from (4) and (5) one can obtain the POD basis and cor-
responding MC. As MC ar(k) are computed and inputs
u(k) are known, the system parameters Ad and Bd can be
easily estimated by ordinary least square (OLS) estimation
techniques. Once Ad and Bd are estimated, the LTI system
can be simulated for any other input trajectory and the cor-
responding estimated modal coefficients can be represented
as ãr. From (8) the states T̃n(k,z) of the full order model can
be reconstructed. It is clear from this discussion that even
without the availability of governing model equations one
can obtain an equivalent expression for the reduced order
model.

If the actual plant data in the form of outputs measure-
ments y(k) is available, then this knowledge can be used

to compensate the mismatch between the actual plant and
reduced model solutions by expressing the plant outputs as,

yplant(k) = CT T̃n(k) = CT Inãr(k) = Crãr(k) (14)

This output structure is linear in parameter. As yplant(k) and
ãr(k) are already known, Cr can be estimated by least square
estimation techniques again.
B. Reduced order LPV models

Linear Parameter Varying (LPV) modeling framework
offers a link between LTI and nonlinear model structures.
Operation domain of LPV model is larger than the LTI
model and often smaller than the nonlinear models. LPV
modeling framework assumes that the dynamics of a system
varies in certain polytopic region such that the corners of
the polytope represent the LTI reduced models obtained in
subsection III-A. The approach presented here is similar
to the gain scheduling principles and is already presented
separately with greater details in another paper, see
[Wattamwar et al.(2010)Wattamwar, Weiland, and Backx].
In the proposed framework, the Reduced Order-LPV is
presented as a middle step between low order LTI and low
order nonlinear models.

Throughout, we take the variable h(k) as a scheduling
parameter, and assume h(k) ∈ Θ ⊂ R+. Further consider a
finite set H = {h j} for j = 1, . . . ,M with M > 0, discrete
values. Below, subscript h and h j shows the implicit param-
eter dependence while explicit dependence on the parameter
is expressed with brackets as, (h) or (h j). As this RO-LPV
method is based on matching the input-output behavior and
blending of RO-LTI models, for the purpose of illustration
we use the transfer operators.
For a given set of local linear time-invariant (LTI) param-
eterized reduced models Gh j(q), j = 1, . . . ,M, the jth input-
output relation can be represented as:

yh j(k) = Gh j(q)u(k) :=
∞

∑
l=0

Gl,h j u(k− l) for j = 1, . . . ,M.

(15)
Here Gh j(q) ∈ Rny×nu(q), Gl,h j ∈ Rny×nu , nu and ny are
number of inputs and outputs respectively, M is the number
of local RO-LTI models which on weighted blending gives
RO-LPV model. In other words, if we interpret M models
as M vertices of a polytope in which the original nonlinear
system dynamics evolve, then the RO-LPV model describes
the original nonlinear system behavior in the polytopic region
defined by the convex combination of the local RO-LTI
models obtained in section III-A as follows:

yl pv,h(k) =
M

∑
j=1

α
j(h(k))yh j(k), or equivalently (16)

yl pv,h(k) =
M

∑
j=1

α
j(h(k))Gh j(q)u(k), that is, (17)

Gl pv,h(s) =
M

∑
j=1

α
j(h(k))Gh j(s) ∀h(k)⊂Θ. (18)

Equation (18) also defines Gl pv,h(k)(q), as long as h(k) ∈ Θ.
Here α j are the weights such that α j : Θ→R, which are used
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for the combination of the local LTI models which need to be
determined. This RO-LPV modeling amounts to approxima-
tion of global dynamics using weighted combination of local
dynamics, whose weights are varying with a time varying
parameter. Here we present weights α j(h(k)) in the form of
nonlinear splines which are presented as

α
j(h(k)) =

kn

∑
i=1

θ
j

i ϕ
j

i (h(k)) (19)

where θ
j

i ∈R are the spline coefficients and ϕ
j

i (h(k)) are the
basis functions, and h(k) ∈ Θ ⊂ R+ is the time varying pa-
rameter. The parameter can also be a working point/operating
point of the process. In-stead of spline in (19), other type
of scheduling function, for instance radial basis function or
membership functions from fuzzy modeling as explained in
[Babuska(1998)] can be used.

We present two types of splines viz. cubic and trigono-
metric. They have different properties. The cubic spline is
of the form,

α
j(h) = β

j
1 +β

j
2 h+

kn

∑
i=2

β
j

i+1|h−bi|3. (20)

bi ∈Rkn are spline knots which are distributed in kn different
(disjoint) elements, over an interval [hmin,hmax] such that
hmin ∈Θ and hmax ∈Θ, and hmin < hmax.
β

j
i are the spline coefficients corresponding to each knot.

Here we define unknown spline coefficients as a parameter
vector as,

θ
j = col(β j

1 , . . . ,β j
kn

) = col(θ j
i , . . . ,θ j

kn
). (21)

With col as the column operator. Note that there can be
various possible spline structures other than the cubic spline
as shown in equation (20). The knot distribution can be
of various types as well. The simplest knot distribution is
an equidistant covering the whole domain of scheduling
parameters, as in (20). Another spline structure we have
proposed is trigonometric of the form

α
j(h) = β

j cos(h−h j)
M

∏
i=1

(h−hi) (22)

If all the necessary information to identify a RO-LPV model
viz. yplant(k)(or yFPM(k)), yh j(k), h(k), Gh(q) and u(k) is
available then the problem of RO-LPV identification can be
transformed into a problem of estimation of spline coeffi-
cients β

j
i , see eq. (21). The quality of an identified RO-LPV

model will then be decided by the accuracy of estimation of
spline parameters, θ

j
i . For this purpose we define the output

error of the RO-LPV model as follows:
eh(k) = yplant(k)− yl pv,h(k) = yplant(k)−

M

∑
j=1

α
j(h(k))yh j(k),

(23)
or equivalently,

eh(k) = yplant(k)−
M

∑
j=1

kn

∑
i=1

[ϕ j
i (h(k))y j

h(k)]θ
j

i . (24)

It is desired to minimize the error in (24) by formulating an
optimization problem as

θ̂ := argmin
θ

K

∑
k=1
||eh(k)||22 (25)

As the error model (24) is linear in the spline parameters θ
j

i ,
we can attain a solution of the optimization problem (25) in
least square sense as:

θ̂ = [ΦT
Φ]−1

Φ
TY (26)

where, Y = col(y(1), . . . ,y(K)) and

Φ=

ϕ1
1 (h)y(1) · · · ϕ1

i (h)y(1) · · · ϕ
j

i (h)y(1)
...

...
ϕ1

1 (h)y(K) · · · ϕ1
i (h)y(K) · · · ϕ

j
i (h)y(K)

 (27)

θ̂ is the estimated value of θ . From (27) it is clear that the
splines are dependent on the process data. This suggests that
it is necessary to have plant data sufficiently rich to capture
the plant dynamics corresponding to the complete space in
which parameters vary. This can be achieved only when the
plant data contains the information of transition from one
working point to another, i.e.there should be an excitation
signal during the transition as well. Eq. (17) of LPV model
can be written in usual state space form as

ar,l pv(k +1) = Ar,l pv ar,l pv(k)+Br,l pv u(k)
yl pv,h(k) = Cr,l pv,h ar,l pv(k) (28)

Ar,l pv = diag(A1
r , A2

r , . . . ,A
M
r ),Br,l pv = col(B1

r ,B
2
r , . . . ,B

M
r )

Cr,l pv,h = [α1(h)C1
r , α

2(h)C2
r , . . . ,αM(h)CM

r ]and

ar,l pv = col
(
a1

r a2
r . . .aM

r
)

(29)

The spline weight must be included in the matrix Cr,l pv,h
which reconstructs the states of the full order FPM from the
states of the RO-LPV model. The RO-LPV model presented
here is already based on minimizing the mismatch between
the plant outputs and the outputs of RO-LPV model and
therefore it does not need any further treatment. Some other
aspects like bounds on parameter variation, its effect on
nonlinear spline structure and stability of resulting RO-LPV
models is still under investigation.
C. Reduced order nonlinear models

Identification of nonlinear ROM aims at getting a sub-
stitute for the reduced model in (11) using an alternative
approach other than the classical POD with Galerkin pro-
jection. Here we use an approach that is similar to the one
mentioned in subsection III-A. Availability of the states, that
is the POD modal coefficients of the reduced model is again
exploited to determine the parameters of a nonlinear model.

There are many possible ways to approximate the non-
linearities like black-box, neural net, fuzzy logic, grey
box, and many other input-output based fit of Weiner-
Hammerstein type, see [Giannakis and Serpedin(2001)]. It
is also well known that the Taylor series expansion can be
a good approximation of a non-linear function. The use of
Taylor Series is not very often considered in input-output
type of identification methods due to lack of state infor-
mation. But as explained earlier in section III-A, the states
(i.e. POD modal coefficients)of ROM are accessible and
therefore one can make use of Taylor series to approximate
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the non-linear terms in (11). For the purpose of illustration,
we briefly explain the Taylor series expansion for a scalar
valued function, later for a vector valued function and finally
its implementation for the computation purpose.
For a scalar valued function,

ẋ = f (x) , where f : R→ R & f (x∗) = 0 (30)

Taylor series expansion in x as a nominal variable and x̃ as
a deviation variable, x̃ = x− x∗

˙̃x = f (x∗)+ f
′
(x∗) x̃+(1/2!) f

′′
(x∗) x̃2 + ... (31)

where, f
′
(x) = J (x) : R → R, the Jacobian operator and

f
′′
(x) = H(x) : R→ R, the Hessian operator.

For a vector valued function f : Rn→Rn, the first derivative
is defined as a map: f

′
: Rn→L (Rn,Rn), and when the first

derivative is evaluated at x∗ ∈ Rn then f
′
(x∗) ∈L (Rn,Rn),

i.e. f
′
(x∗) is a linear operator, and when it acts on the n

dimensional vector x then its image is ∈Rn, i.e. f ′(x∗)(x) ∈
Rn. This lets us to understand first derivative as a map,
f ′ : Rn∗Rn→Rn. As f ′(x∗) is constant term (fixed operator),
we better write it as [ f ′(x∗)](x)∈Rn. This operator is usually
referred as the system Jacobian matrix, [ f ′(x∗)] := J (x∗).
The same procedure is repeated for computing the second
derivative of the function, f ′′ : Rn ∗Rn ∗Rn → Rn, i.e. f ′′ :
Rn→L (Rn,L (Rn,Rn)), i.e. f ′′(x∗) ∈L (Rn,L (Rn,Rn)),
i.e. f ′′(x∗)(x) ∈ L (Rn,Rn), i.e. f ′′(x∗)(x)(x) ∈ Rn, i.e.
[ f ′′(x∗)](x,x) ∈Rn [ f ′′(x∗)] := H(x∗), Hessian operator. It is
clear from the above discussions that the Hessian operator is
a tensor with argument from two domains while its codomain
remains the same that of the Jacobian operator. The linearity
of Hessian operator allows us to compute it like the Jacobian
operator, but now with one more argument as:

[ f
′′
(x∗)](x,x) =


n
∑

k=1

n
∑
j=1

∂ 2 f1(x∗)
∂xk∂x j

xkx j

.
n
∑

k=1

n
∑
j=1

∂ 2 fn(x∗)
∂xk∂x j

xkx j

 (32)

the above expression can be written as:

[ f
′′
(x∗)](x,x) = A1(x⊗ x) (33)

where, (x⊗ x) is the Kroneckar product. The complete sim-
plification procedure mentioned above is aimed to express,
f ′′ : Rn → L (Rn,L (Rn,Rn)) as, f ′′ : Rn → L (Rn2

,Rn).
This is possible due to the notion of the linearity of the tensor
operator. From the discussion above, a nonlinear equation of
the form ẋ = f (x,u) can be expanded in Taylor series as
in (31) which can be approximated by a polynomial of the
form, ẋ =Ax(t)+Bu(t)+A1(x(t)⊗ x(t))

+B1(u(t)⊗u(t))+Q(x(t)⊗u(t)) (34)

Where, A1, B1, Q are Hessian operators, A B are Jacobian
operators. x ∈Rn, u ∈Rl , A ∈Rn∗n, B ∈Rn∗l , A1 ∈R(n∗n)∗n,
B1 ∈R(l∗l)∗n, Q ∈R(l∗n)∗n ⊗ the Kronecker products. Equiv-
alent discrete form of Eq. (34) can be written as,

x(k +1) =Adx(k)+Bdu(k)+A1d(x(k)⊗ x(k))
+B1d(u(k)⊗u(t))+Qd(x(k)⊗u(k)) (35)

For convenience, below we drop the superscript d from
eq. (35). Note that the polynomial equation (35) is non-linear
in states and inputs but it is linear in all the model parameters.
This is a big advantage. As the states, i.e. the POD modal
coefficients and inputs are known from (4) and (5), by fixing
the polynomial model structure of (35) we can estimate
the model parameters by Least Square parameter Estimation
(LSE) techniques again. Therefore, replacing x(k) by ãr(k)
gives us reduced order nonlinear model. The reduced model
structure in (35) has form similar to bilinear systems, see
[Wingerden and Verhagen(2009)]. Towards this, define

ξk :=col(x(k),u(k),(x(k)⊗ x(k)),(x(k)⊗u(k)),
(u(k)⊗u(k))) (36)

then from (35), xk+1 'Θξk where, Θ = [ABA1 B1 Q]. Define
the parameter estimation error at each time instance as

ek+1 = xk+1−Θξk (37)

or the error over the complete simulation horizon K is

E := [x1 . . .xK ]−Θ[ξ0 . . .ξK−1] (38)

equivalently, E := X − ΘΞ, where, K is the number of
samples and X ∈ Rn∗(K−1), Ξ ∈ R(n+l+n∗n+l∗l+n∗l)∗(K−1) and
Θ ∈ Rn∗(n+l+n∗n+l∗l+n∗l) The least square solution is given
by

Θ = X Ξ
T (ΞΞ

T )−1 (39)

Once the reduced order tensorial (polynomial) model is
obtained, it can be integrated for any other input trajectory
and corresponding modal coefficients ãr can be computed.
The complete spatio-temporal information T̃n of FPM can
be reconstructed by injecting back the solution of reduced
model (35) i.e. ãr in place of ar in (8). The error involved
here will be the sum of projection error and the statistical
fit in the identification step to the few selected POD modal
coefficients corresponding to the maximum energy content
as per eq. (12). Similar to section III-A, to compensate the
mismatch between the actual plant outputs and the outputs of
the reduced model, we propose a polynomial structure again
as, yplant(k) = C1ãr(k)+C2(ãr(k)⊗ ãr(k)) (40)

yplant and ã are known, C1 and C2 are linear in parameter.
Therefore they can be estimated using least square estimation
techniques.

IV. MOTIVATION: GLASS MANUFACTURING

This section describes the motivating example of Indus-
trial Glass Manufacturing Process, IGMP. IGMP is usually
carried out in large furnaces which are very well designed in
order to have a desired laminar flow pattern of the glass.The
flow pattern of glass determines the residence time of the
glass in the melting furnace which in turn determines the
quality of the glass produced. The process is an example
of very large scale integrated systems. Most of the process
variables like temperature, velocity, pressure, viscosity are
interacting with each other. Due to this interacting nature
the control of the furnace has to be done carefully. Usually
pull rate (production rate), heat input and pressure valve
positions are some of the control variables. Variables of
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interest are temperature distribution and velocity profiles
in the furnace. The product quality is largely determined
by these two variables. The temperature maintained inside
the furnace varies between 1400− 1650 0C. Based on the
process operation there are roughly three regimes - glass
melting, fining to remove high concentration of dissolved
gases from the molten glass and refining to remove all re-
maining undissolved gases from the glass. The IGMP shows
large variation in the time constants, from minutes to days.
Some details about mathematical modeling of glass can be
found in [Huisman(2005)], [Patankar(1980)], [Post(1988)].
Due to very high process temperature and due to the viscous
nature of glass, the glass furnace is a hostile environment
for sensor systems. Therefore sensors are largely limited to
temperature measurements in the bottom refractory of the
melting furnace. 3 dimensional glass furnace model easily
consist of 104−106 equations, which are not convenient to
test novel methods easily, therefore we use an approximate
2D glass furnace which mimics a vertical cross section along
the length of 3D glass furnace.

V. RESULTS AND DISCUSSION

Here we present the application of the proposed methods
to glass manufacturing process. We have considered only
temperature as the variable of interest. The order of the
first principle model is 3000. From the method explained
in the section III we have obtained a fourth order linear and
non-linear polynomial model. The input considered for the
identification purpose is pull-rate(feed) in terms of tons/day,
which varies 5% around the nominal value in the form
of +/- steps superimposed by PRBS signal. The simulation
horizon is 120 hours and sampling time is 16 mins. Figure 1
shows the identification result for both linear and polynomial
models as proposed in this paper. Plot shows the result
for four outputs which are temperature at the bottom of
the four main zones of the glass. Plots show that the both
models approximate the dynamic behavior very well, but
in comparison to the reduced order polynomial model, the
linear model fails to capture the PRBS signal dynamics
with precision. For a similar experiment we validate the
performance of the RO-LPV model in Figure 2. Plots shows
that the RO-LPV models also preforms reasonably well. All
the reduced models are > 1000 times faster than the original
full scale model.

VI. CONCLUSIONS

In this paper we have proposed a few data-driven model
reduction methods using a common model reduction frame-
work with their application to a large scale industrial prob-
lem. The proposed methods are promising and suited es-
pecially for very large scale processes where complexity
reduction merely by physical insight is not possible. The
methods presented here allow to infer low order LTI, LPV
and nonlinear tensorial models in the absence of governing
model equations. In future, we want to investigate observer
and controller synthesis for the RO-polynomial model.

Fig. 1: Performance of RO-LTI and RO-Poly models

Fig. 2: Performance of RO-LPV model
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