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ABSTRACT
This work concerns the interaction of light membrane structures enclosing incompressible fluids. Large dis-

placements and collapsed boundaries (initially slender subdomains) are characteristic of this class of problems.

A finite-element/boundary-element (FE/BE) coupled discretization is discussed in this work which addresses

these challenges. Most common linear fluid models have a boundary-integral representation, restricting the

problem to the boundary and making them amenable to a boundary element method (BEM) discretization. A

marked advantage of this representation with respect to the conventional partial-differential-equation-based view

of finite-element methods for fluids is the bypassing of volumetric meshing. The FE/BE approach is therefore

an enabling method for fluid–structure interaction (FSI) problems involving membranes, and the present work

serves as a proof of concept for this approach. Numerical experiments show the capabilities of the proposed

scheme.
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1. Introduction
Inflatable structures appear in a wide variety of engineering applications, e.g., evacuation slides in
aircraft, air beams for temporary civil structures, stowable space structures, parachutes and air cush-
ions. One of the most prominent examples of an inflatable structure is the airbag. Airbags form an
indispensable component of passenger-safety systems in modern cars. Statistics of the US National
Highway Traffic Safety Agency (NHTSA) corroborate that airbags yield a significant reduction in the
fatality risk in frontal crashes, provided that the passenger is in position with respect to the airbag.
On the other hand, NHTSA investigations have shown that airbags can form an important safety risk
in out-of-position situations. Airbags deploy at more than 300 km/h with an impact force exceeding
5 kN and, hence, an airbag can severely injure or kill a passenger if impact occurs before full de-
ployment. Incentivized by the danger of airbags in out-of-position situations, the NHTSA has issued
new regulations that require car manufacturers to develop auxiliary restraint systems and new airbag
systems to prevent such situations.

Numerical airbag-deployment simulations can provide valuable information in the assessment and
control of out-of-position risks. Reliable numerical simulation of airbag-deployment dynamics is a
complicated endeavor, however, on account of the inherent multiscale character of the inflation process.
The initial stowed or folded configuration of the airbag forms a complex labyrinth of small folds
with a characteristic length scale that is orders of magnitude smaller than that of the bulbous final
configuration. On the macroscale associated with the final configuration, the flow of the inflator gas
exhibits highly complex behavior, on account of its multi-component composition, high temperature
gradients, and a wide spectrum of flow velocities, extending over subsonic, transonic and supersonic
regimes. On the microscale pertaining to the small folds, compressibility effects are negligible and the
flow exhibits relatively simple behavior. The complexity of the airbag-deployment process is further
compounded by self-contact of the airbag fabric, which is particularly manifest in the initial stages of
the deployment process. Hence, airbag-deployment processes constitute FSI problems with contact,
in which the characteristic length scale of the geometry changes by many orders of magnitude, and
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each of the length scales must be adequately resolved in the numerical method to arrive at a reliable
prediction of the dynamical behavior.

Many related and challenging FSI computations have been performed with a wide array of methods,
such as interface tracking [20, 30, 35] and interface capturing [6, 17, 25, 40] techniques. Intrinsically,
these methods, being based on discretizations of the volume occupied by the fluid, are not employed in
the analysis of realistic stowed configurations on account of the geometrical complexity of the domain
as well as the very large displacements. For that reason, in industrial applications the load on the
airbag fabric is determined by overly simplified fluid models, e.g., uniform-pressure models or empirical
expressions. Such simplified models lack detailed information about the underlying physical processes,
and generally cannot capture and predict the phenomena observed during experiments [24]. Recently,
computational methods composed of particle-based approximation methods for the fluid, analogous
to smoothed-particle hydrodynamics [27], have emerged [18]. The resolution provided by the moving
particles in such approaches is uncontrollable, however, and on account of the large displacements
that occur in airbag-deployment processes, the accuracy of particle-based methods is questionable.

The fundamental conundrum in airbag-deployment simulations, is that the scale disparity is so
severe that the volumetric approximation methods that are suitable on the macroscale, cannot be em-
ployed on the microscale. The geometric complexity of the initial configuration precludes volumetric
meshing with adequate resolution, even with adaptive interface-capturing or interface-tracking tech-
niques [6, 17]. However, conversely, the flow model that underlies volumetric approximation methods,
viz., the Euler or Navier-Stokes equations, appears unnecessarily sophisticated for the flow in the
small-scale features of the airbag. It is anticipated that the flow in small-scale features can be rep-
resented by a simplified model, without essentially degrading the accuracy of the prediction of the
dynamics of the airbag on the large scales. Airbag-deployment simulation therefore necessitates an
adaptive multiscale approach of type-A [12] in which the flow in the small-scale features of the airbag
is resolved by a different model than the flow in the large-scale features.

The boundary-integral equation can be conceived of as a microscale model for the fluid flow in
small-scale features of airbags or, more generally, inflatable structures. In the present work, we consider
a FSI model for inflatable structures based on a boundary-integral formulation of the fluid. We restrict
our considerations to a 2D potential-flow model, but the investigation extends mutatis mutandis to for
instance Stokes flow, which is treated in [28]. The connection to a macroscale model for the flow in the
large-scale features and the corresponding model adaptivity will be treated in forthcoming work. The
essential attribute of the boundary-integral formulation is that it provides an adequate model for the
flow in the small-scale features of airbags, which does not require a volumetric mesh. In particular, the
boundary-integral equation is set on the manifold of codimension one formed by the fluid-structure
interface. The corresponding BEM is therefore invulnerable to the extreme deformations that occur
in airbag-deployment processes. An additional advantage of the boundary-integral formulation in
the context of FSI problems, is that it provides a very efficient model, as the domain of the flow
model is restricted to the domain where the interaction with the structure actually occurs, viz., the
fluid-structure interface.

The membrane in 2D is modeled as a linearly-elastic string [2, 39], regularized by a small flexural
rigidity. The membrane equation is approximated by means of a standard finite-element discretization
based on Hermite polynomials. Accordingly, the approximation of the aggregated FSI problem consists
of an FE/BE coupled discretization. Contiguous use of FE/BE methods to exploit the advantages of
both approaches, is an established practice; for a review see [33, 41]. Applications include blood
flow [36], elasto-plasticity [13], crack propagation [29] and electromagnetics [34], amongst others.
Coupled FE/BE approaches have also been applied to FSI problems in, e.g., [4, 5, 9, 11], but the
application of FE/BE has so far been restricted to FSI problems with small deformations. The novelty
of the present contribution lies in the exploitation of the boundary integral formulation in a new
manner, viz., to enable very large deformations.

The remainder of this paper is organized as follows. Section 2 contains a statement of the considered
fluid-membrane-interaction problem. Section 3 presents details of the discrete approximations and of
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the iterative solution procedure for the aggregated FSI problem with contact. In section 4, we conduct
numerical experiments to exemplify the properties of the BEM for fluid-membrane-interaction problems
with large displacements. Finally, section 5 presents concluding remarks.

2. Problem statement
In this section, we present the mathematical formulation of the considered FSI problem with contact.
Section 2.1 considers the boundary-integral formulation for the fluid subproblem, consisting of an
irrotational, incompressible flow. Section 2.2 is concerned with the structure subproblem. The inter-
face conditions which provide for the connection between the fluid and the structure are specified in
section 2.3.

2.1 Boundary-integral formulation of the fluid subproblem
We consider a time-dependent open bounded domain Ωt ⊂ R2 with almost everywhere C1 continuous
boundary ∂Ωt. The boundary consists of the disjoint union of the time-dependent wet boundary Γt
and the fixed inflow boundary Γin. We assume that the initial configuration of the boundary is
specified by means of an arc-length parametrization conforming to:

Γ0 = {x ∈ R2 : x = χ0(s), s ∈ (0, L)}, Γin = {x ∈ R2 : x = χ0(s), s ∈ (L,Λ)}, (2.1)

and |∂sχ0(s)| = 1. Denoting by z := zt(·) := [z(t)](·) := z(t, ·) the position of the material point on
the boundary with initial position χ0(·), the boundary at time t is parametrized with respect to the
arc length of the initial configuration according to ∂Ωt = {x ∈ R2 : x = zt(s), s ∈ (0,Λ)}; see figure 1
for an illustration. Because the inflow boundary is fixed, it holds that zt(s) = χ0(s) for s ∈ (L,Λ).

Γ0

Γin

O

χ0

s

Γt

Γin

O zt

Ω

Figure 1: Schematized problem geometry.

The fluid subproblem consists of the irrotational flow of an incompressible fluid on the time-
dependent domain Ωt. Accordingly, there exists a harmonic potential φ : Ωt → R such that the fluid
velocity v coincides with ∇φ. The wetted boundary Γt corresponds to a material boundary of the fluid
domain, which implies that the normal velocity of the fluid coincides with the velocity of the boundary
in its normal direction. Moreover, on the inflow boundary Γin, we have a prescribed normal velocity.
The boundary conditions for the fluid translate into Neumann-type conditions for the potential. The
fluid is therefore described by the Laplace–Neumann problem:

−∆φ = 0 in Ωt, (2.2a)

∂nφ = h on ∂Ωt, (2.2b)

where ∆ denotes the Laplace operator and h : ∂Ωt → R represents time-dependent exogenous data.
To connect the fluid to the structure in the aggregated FSI problem, we shall be exclusively interested
in the trace of φ on ∂Ωt. It is to be noted that (2.2) complies with a Fredholm alternative: existence
of a solution to (2.2) is contingent on the condition that

∮
h = 0, and the solution is unique only up

to a constant; see also section 2.4.
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Given the structure of (2.2) and our restricted interest in the trace of φ, we can cast the Laplace–
Neumann problem into a boundary-integral formulation. Various formulations of this type exist, viz.,
the direct formulation, and single-layer and double-layer formulations; see for instance [8]. To facilitate
the connection with the membrane in the aggregated FSI problem, the following direct formulation is
most suitable:

aφ+Kφ = V h on ∂Ωt, (2.3)

where a(x) is the interior angle between the left and right one-sided limits of the tangent vector at x
divided by 2π. In particular, a = 1/2 on smooth parts of the boundary. The operators K(·) and
V (·), generally referred to as the single-layer potential and the double-layer potential, respectively,
correspond to (traces of) convolutions with singular kernels:

(V h)(x) :=

∮
∂Ωt

G(x,y)h(y) dσt(y), (2.4a)

(Kφ)(x) :=

∮
∂Ωt

∂nG(x,y)φ(y) dσt(y), (2.4b)

where G denotes the Green’s function for the negative Laplace operator in R2,

G(x,y) := −(2π)−1 log |x− y|, (2.5)

and dσt denotes the measure carried by the boundary ∂Ωt. Moreover, ∂nG(x,y) stands for the
conormal derivative of the Green’s function with respect to its second argument:

∂nG(x,y) := (2π)−1|x− y|−2(x− y) · n(y). (2.6)

The double-layer potential is to be understood in the Cauchy-principal-value sense; see, e.g., [19,
26, 31]. A derivation of the above boundary-integral form of (2.2) can be found in, for instance,
Refs. [22, 38].

To enable a more precise interpretation of (2.3), we denote by H1(Ωt) the Sobolev space of square-
integrable functions with square-integrable distributional derivatives, by H1/2(∂Ωt) the image of the
trace operator on H1(Ωt), and by H−1/2(∂Ωt) the dual space of H1/2(∂Ωt). Let us note that the space
H1(Ωt), and its trace and the dual thereof, are well defined whenever Ωt corresponds to a Lipschitz
transformation of a fixed Lipschitz domain, because H1 is invariant with respect to such transforma-
tions. The data h in (2.2) corresponds to an element of H−1/2(∂Ωt). The function φ in the left member
of (2.3) is the trace of a function in H1(Ωt) and, accordingly, it resides in H1/2(∂Ωt). An important
result due to Costabel [7, Thm. 1] is that the single-layer potential V : H−1/2(∂Ωt)→ H1/2(∂Ωt) and
the double-layer potential K : H1/2(∂Ωt)→ H1/2(∂Ωt) are continuous. Hence, equation (2.3) can be
conceived of as an identity of elements in H1/2(∂Ωt).

The Fredholm alternative that holds for the Laplace-Neumann problem (2.2) also applies to the
boundary-integral formulation (2.3), as a+K has a nontrivial kernel consisting of constant functions
and the image of a + K does not contain constant functions other than 0; cf. also Appendix B. We
consider a weak formulation of (2.3), in which the constant functions are removed from the test and
trial spaces. Let L2(∂Ωt) denote the Hilbert space of real-valued square-integrable functions on ∂Ωt,
equipped with the inner product (φ, ψ)L2(∂Ωt) =

∮
∂Ωt

φψ. The inner product (·, ·)L2(∂Ωt) extends by

continuity to a duality pairing on H1/2(∂Ωt) × H−1/2(∂Ωt) or H−1/2(∂Ωt) × H1/2(∂Ωt). Denoting

by H
±1/2∮

=0
(∂Ωt) := {ψ ∈ H±1/2(∂Ωt) : (ψ, 1)L2(∂Ωt) = 0} the class of distributions in H±1/2(∂Ωt)

orthogonal to constants, the boundary-integral formulation (2.3) can be cast into the weak form:

find φ ∈ H1/2∮
=0

(∂Ωt) : af(φ, ψ) = bf(ψ) ∀ψ ∈ H−1/2∮
=0

(∂Ωt), (2.7)

where the bilinear form af : H1/2(∂Ωt)×H−1/2(∂Ωt)→ R and the linear form bf : H−1/2(∂Ωt)→ R
are defined by:

af(φ, ψ) = (1
2φ+Kφ,ψ)L2(∂Ωt), bf(ψ) = (V h, ψ)L2(∂Ωt). (2.8)
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The bilinear form af(·, ·) and linear form bf(·) according to (2.8) are continuous. From [31, Thms. 3.8.7
and 3.8.9] it moreover follows that:

CK‖φ‖H1/2(∂Ωt) ≤ ‖
1
2φ+Kφ‖H1/2(∂Ωt) ∀φ ∈ H1/2∮

=0
(∂Ωt), (2.9a)

CK‖ψ‖H−1/2(∂Ωt) ≤ ‖
1
2ψ +K ′ψ‖H−1/2(∂Ωt) ∀ψ ∈ H−1/2∮

=0
(∂Ωt), (2.9b)

with K ′ : H−1/2(∂Ωt) → H−1/2(∂Ωt) the dual operator corresponding to K, and CK a positive
constant. These lower bounds on the norms of 1

2I+K and 1
2I+K ′ imply that the bilinear form af(·, ·)

satisfies:

inf
φ∈H1/2∮

=0
(∂Ωt)\{0}

sup
ψ∈H−1/2∮

=0
(∂Ωt)\{0}

|af(φ, ψ)|
‖φ‖H1/2(∂Ωt)‖ψ‖H−1/2(∂Ωt)

≥ Cf > 0, (2.10a)

∀ψ ∈ H−1/2∮
=0

(∂Ωt) \ {0} : sup
φ∈H1/2∮

=0
(∂Ωt)\{0}

|af(φ, ψ)| > 0, (2.10b)

for some constant Cf . The bilinear form and the linear form therefore comply with the conditions of
the Banach-Nečas-Babuška (BNB) theorem [14, Thm. 2.6], which implies that there exists a unique
and stable solution to (2.7).

Although H
1/2∮

=0
(∂Ωt)×H−1/2∮

=0
(∂Ωt) is the natural setting of the weak formulation of the boundary-

integral formulation, in view of the connection to the underlying Laplace-Neumann problem, an alter-
native weak formulation in L2∮

=0
(∂Ωt) = {φ ∈ L2(∂Ωt) : (φ, 1)L2(∂Ωt) = 0} can be established. The-

orem 1 in [7] (see also [31, §3.1.2]) asserts, more precisely, that K : H1/2+ς(∂Ωt) → H1/2+ς(∂Ωt) is
a continuous linear operator for any ς ∈ [−1/2, 1/2]. Therefore, we can conceive of (2.7) as a weak
formulation on L2∮

=0
(∂Ωt)× L2∮

=0
(∂Ωt),

find φ ∈ L2∮
=0(∂Ωt) : af(φ, ψ) = bf(ψ) ∀ψ ∈ L2∮

=0(∂Ωt), (2.11)

if, accordingly, the bilinear form (·, ·)L2(∂Ωt) in the definition of af and bf in (2.8) is interpreted as a
standard L2 inner product, and not the extension to a duality pairing; see also [31, §3.8]. The BNB
conditions (2.10) must then also be assessed with respect to L2∮

=0
(∂Ωt).

Regarding Galerkin finite-element discretizations of (2.7) or (2.11), it is to be noted that stan-
dard conforming discretizations of the two formulations can be distinct, as discretizations of (2.7)
have to be H1/2(∂Ωt) conforming, while discretizations of (2.11) only have to be L2(∂Ωt) conforming.
For instance, a conforming approximation to (2.7) would have to be continuous, while a conform-
ing approximation to (2.11) does not. Approximations of (2.7) and (2.11) based on H1/2(∂Ωt)-
conforming finite-element spaces are evidently identical. Furthermore, various Galerkin approxima-
tions can be derived from (2.7), based on reformulations which are equivalent in the continuous case.
For instance, by virtue of Riesz representation theorem (e.g. [31, Thm. 2.1.17]) and the fact that
1
2I +K : H

1/2∮
=0

(∂Ωt)→ H
1/2∮

=0
(∂Ωt) constitutes an isomorphism, (2.7) is equivalent to:

find φ ∈ H1/2∮
=0

(∂Ωt) : (1
2φ+Kφ, 1

2ψ +Kψ)H1/2(∂Ωt)

= (V h, 1
2ψ +Kψ)H1/2(∂Ωt) ∀ψ ∈ H1/2∮

=0
(∂Ωt). (2.12)

The advantage of the formulation (2.12) is that the bilinear form in this formulation is (strongly)
coercive; see (2.9a). Because coercivity transfers to subspaces, any conforming discretization of (2.12)
satisfies the conditions of the Lax–Milgram lemma and is hence stable. Conversely, the BNB con-
ditions (2.10) do not generally transfer to subspaces, and these conditions have to be reassessed for
the finite-element approximation spaces. The computation of the H1/2-inner products in (2.12) is
intricate, however, which limits the practical use of this formulation in finite-element approximations.
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For this reason, below we consider H1/2(∂Ωt)-conforming finite-element approximations of (2.7) or,
equivalently, (2.11). Moreover, to further facilitate the implementation, we remove the orthogonality
condition (·, 1)L2(∂Ωt) = 0 from the test- and trial-spaces and instead impose it by means of Lagrange
multipliers.

2.2 Structure subproblem
The wet boundary of the fluid is composed of a membrane corresponding to a regularized linearly-
elastic string:

z′′ −D
(
Dz(1− |Dz|−1)

)
+ εD4z = f on (0, L), (2.13)

where z : (0, L) → R2 denotes the position of the membrane parametrized with respect to the
arc-length coordinate of the initial configuration, and D denotes the (distributional) derivative,
[Dz(t)](s) = ∂z(t, s)/∂s. The load f depends implicitly on z due to contact forces and fluid loads; see
equation (2.16) below. The first two terms in the left member of (2.13) correspond to a linearly-elastic
string. The final term yields a regularization, which is required to avoid instability in compression, i.e.,
when |Dz| ≤ 1. The string equation in (2.13) can be derived from the general equations of motion
of an elastic solid under the assumptions of line-stress and linear elasticity and, in particular, the
strain term corresponds to a strain energy Ψ = E + 1−

√
2E + 1 with E = (|Dz|2 − 1)/2 the Green-

Lagrange strain tensor. Equation (2.13) is in fact in nondimensional form. The nondimensionalization
is elaborated in appendix A.

Equation (2.13) must be complemented with suitable initial and boundary conditions. The mem-
brane is attached to hinged supports, which fix the position of the membrane without inducing mo-
ments:

z(s) = χ0(s), D2z(s) = 0 for s ∈ {0, L}. (2.14)

The initial conditions on the position of the membrane are provided by

z|t=0 = χ0, z′|t=0 = χ1, (2.15)

where χ0 refers to the initial configuration and χ1 represents a prescribed initial velocity.
The load on the membrane consists of the fluid traction, proportional to pressure p, and the

contact force. The fluid traction induces a load in the normal direction of the membrane. The contact
force is represented by a nonlinear operator, F , which associates to any configuration a load on that
configuration; see section 2.5. The load f can be separated into

f := |Dz|
(
p ◦ z nz◦z +ϕz◦z

)
= p ◦ z rotDz + |Dz|ϕz◦z, (2.16)

with rot : R2 → R2 the rotation operator, rot (a1, a2) = (a2,−a1). It is to be noted that the normal
vector depends explicitly on the configuration. The composition of p, nz and ϕz with z serves to
transport the pressure, the normal vector and the contact load to the parameterized interval (0, L).
The multiplication by |Dz| accounts for the ratio of the surface measures in the initial and the actual
configuration.

We proceed with a more precise specification of (2.13)–(2.16). To this end, we require some elemen-
tary notational conventions. We denote by Lp(0, L) (1 ≤ p <∞) the Lebesgue space of functions from
(0, L) into R2 with p-integrable Euclidean norm, equipped with the norm ‖ · ‖Lp(0,L) = (

∫ L
0
| · |p)1/p.

For p = ∞, the above definition is extended by setting ‖z‖L∞(0,L) = ess sup{|z(s)| : s ∈ (0, L)}.
Furthermore, we denote by Wm,p(0, L) the Sobolev space of functions z ∈ Lp(0, L) with distribu-
tional derivatives Dkz ∈ Lp(0, L) for all k ≤ m. The spaces L2(0, L) and Hm(0, L) := Wm,2(0, L)
(m ∈ Z+) are Hilbert spaces when provided with the inner products

(w, z)L2(0,L) =

∫ L

0

w(s) · z(s) ds, (w, z)H2(0,L) = (w, z)L2(0,L) +

2∑
k=1

(Dkw, Dkz)L2(0,L).
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The subspace of Hm(0, L) (m ∈ N) of functions that vanish on the boundary {0, L} is represented by
Hm

0 (0, L). For notational convenience we deviate from the standard notation Hm(0, L) ∩H1
0(0, L).

Considering a time interval (0, T ) and a normed space (B, ‖·‖B), we denote by Lq(0, T ;B) (1 ≤ q <∞)
the Bochner space of functions z : (0, T ) → B such that the function t 7→ ‖z(t)‖H is q-integrable,
equipped with the norm ‖z‖Lq(0,T ;B) = (

∫ T
0
‖z(t)‖qB dt)1/q. These definitions are extended to q =∞

by setting ‖z‖L∞(0,T ;B) = ess sup{‖z(t)‖B : t ∈ (0, T )}.
On account of the nonlinear dependence of the stress (1 − |Dz|−1) and of the load vector f

in (2.16) on z, a precise specification of the domain of the structure operator is nontrivial. The
principal part of the operator, corresponding to the regularizing term εD4(·), is however linear and
elliptic. We shall assume that the character of the principal part extends to the nonlinear structure
operator. Restricting our consideration to the principal part of the structure operator, equation (2.13)
corresponds to an evolution equation of the second order (in t) with an elliptic operator εD4 from
H2

0(0, L) into its dual space H−2(0, L). A comprehensive general theory is available for evolution
equations of this type; see, for instance, [10, 15, 23]. We defer the result f ∈ L2(0, T ;H−2(0, L)) to
section 2.5, where the contact force is treated. Ignoring the nonlinear term in (2.13), and insisting
that χ0 ∈ H

2
0(0, L) and χ1 ∈ L

2(0, L), equation (2.13) subject to (2.14) and (2.15) defines a unique
solution in χ0 +W (0, T ), with W (0, T ) the collection of admissible structure displacements:

W (0, T ) =
{
w ∈ L2

(
0, T ;H2

0(0, L)
)

: w′ ∈ L2
(
0, T ;L2(0, L)

)}
. (2.17)

Moreover, it holds that z′′ ∈ L2(0, T ;H−2(0, L)). The left and right members of (2.13) therefore
admit an unambiguous interpretation as elements of L2(0, T ;H−2(0, L)).

We assume that the setting of the structural position in (2.17) can be retained for the nonlinear
operator. However, in addition, we assume that |Dz| is almost everywhere bounded from below, i.e.,
|Dz| ≥ α > 0, and that z(t) : (0, L) → Γt is bijective for all t ∈ (0, T ). The first assumption reflects
that parts of the membrane that initially have finite extent do not vanish during the motion. The
second assumption prohibits self-intersection of the membrane.

The general theory for evolution equations of the second order in [23, §3.8.4] provides a refined
regularity result for the solution to (2.13)–(2.15). Under the above conditions on the data, the displace-
ment and the velocity can be conceived of as continuous-in-time functions, taking values in H2

0(0, L)
and L2(0, L), respectively, and the solution to (2.13)–(2.15) in fact satisfies

z ∈ χ0 +
{
w ∈ L∞

(
0, T ;H2

0(0, L)
)

: w′ ∈ L∞
(
[0, T ];L2(0, L)

)}
. (2.18)

This refined regularity result is important to assign significance to the transmission conditions in the
aggregated FSI problem; see section 2.3.

It is to be remarked that the above elementary model for a membrane is in fact surprizingly
difficult to analyze. Refs. [2, 39] derive the model (without regularization) without regard for the
complications related to compression. Results on existence and uniqueness appear to be nonexistent;
see also [1].

2.3 Transmission conditions
The fluid and the structure interact at their mutual interface via so-called transmission conditions.
These transmission conditions can be separated into a dynamic condition, which specifies continuity of
tractions, and a kinematic condition, which expresses continuity of motion. The kinematic condition
imposes that on the wetted boundary Γt, the normal velocity of the fluid coincides with the normal
velocity of the membrane. Indicating the normal velocity on the inflow boundary Γin by q, the
kinematic condition translates into the following specification of the Neumann data h in (2.2):

h =

{
nz · (z′ ◦ z−1) at Γt,

q at Γin.
(2.19)
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The composition of z′ with z−1 serves to transport z′ to Γt.
The dynamic condition imposes continuity of tractions at the fluid-structure interface. The pressure

can be extracted from Bernoulli’s principle. Restricting our consideration to quasi-static flows, which
allows us to suppress the time-dependence of the potential in Bernoulli’s relation, it follows that the
pressure p in the structure load according to (2.16) is related to the flow potential by:

p := p(φ) = p0 − 1
2ϑ|∇φ|

2 = p0 − 1
2ϑ(z′ · (|Dz|−1rotDz))2 ◦ z−1 + 1

2ϑ|∇Γφ|2, (2.20)

with ϑ the fluid-structure mass ratio and∇Γ the so-called tangential gradient (or Γ-gradient), formally,
∇Γφ = ∇φ−n∂nφ. Moreover, p0 represents a (possibly time-dependent) pressure level; cf. section 2.4.
The final identity in (2.20) follows from a decomposition of the gradient into its normal and tangential
components, in combination with (2.19).

To establish the suitability of the Neumann data in accordance with the kinematic condition, we
will show that the data on the wet boundary resides in L∞(0, T ;L2(Γt)) and, a fortiori, that it defines
a functional in L∞(0, T ;H−1/2(∂Ωt)). By transporting the integral on Γt to the parameter interval
(0, L) and, subsequently, applying Hölder’s inequality, we obtain:

‖h‖L∞(0,T ;L2(Γt)) =

∥∥∥∥∥
(∫

Γt

(
nz · (z′ ◦ z−1)

)2
dσt

)1/2
∥∥∥∥∥
L∞(0,T )

≤

∥∥∥∥∥
(∫ L

0

|nz ◦ z|2|z′(·, s)|2
∣∣Dz(·, s)

∣∣ ds)1/2
∥∥∥∥∥
L∞(0,T )

≤
∥∥z′∥∥

L∞(0,T ;L2(0,L))

∥∥Dz∥∥1/2

L∞(0,T ;L∞(0,L))
.

(2.21)

In the final inequality we have taken into account that |Dz|−1|rotDz| ≤ 1 almost everywhere.
Sobolev’s inequality (cf. for instance [, Thm. 1.4.6]) implies that the embedding H1(0, L) ↪→ L∞(0, L)
is continuous. The refined regularity result (2.18) then leads to the conclusion that, indeed, ‖h‖L∞(0,T ;L2(Γt))

is bounded.
To confirm that the dynamic condition is meaningful, we must show that the map

w 7→
∫ T

0

∫ L

0

w(t, s) ·
(
p ◦ z(t, s) rotDz(t, s)

)
ds dt, (2.22)

with p according to Bernoulli’s relation (2.20), corresponds to a continuous linear functional on
L2(0, T ;H2

0(0, L)); cf. (2.16). Without loss of generality, we set ϑ = 1. Anticipating that the pressure
level p0 resides in L2(0, T ) (see section 2.4), we apply Hölder’s theorem to bound the term correspond-
ing to p0 according to:∣∣∣∣ ∫ T

0

∫ L

0

p0(t)w(t, s) · rotDz(t, s) ds dt

∣∣∣∣ ≤ ‖p0‖L2(0,T )‖w‖L2(0,T ;L2(0,L))‖Dz‖L∞(0,T ;L2(0,T )).

By virtue of the refined regularity result (2.18), the p0-term is therefore indeed continuous. Moreover,
by Hölder’s inequality, the term corresponding to (∂nφ)2 in (2.20) is bounded according to∣∣∣∣ ∫ T

0

∫ L

0

w(t, s) · rotDz(t, s)
(
z′(t, s) · (nz ◦ z)

)2
ds dt

∣∣∣∣
≤
∥∥w∥∥

L2(0,T ;L∞(0,L))

∥∥Dz∥∥
L∞(0,T ;L∞(0,L))

∥∥z′∥∥2

L∞(0,T ;L2(0,L))
,

where we have again taken account of the fact that that |Dz|−1|rotDz| ≤ 1 almost everywhere. The
refined regularity result (2.18) and the continuity of the embedding of Hm(0, L) ↪→ L∞(0, L) (m ∈ N)
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then conveys that the term related to (∂nφ)2 is indeed bounded. Hence, it remains to bound the term
originating from the surface gradient in Bernoulli’s relation. Hölder’s inequality yields:∣∣∣∣ ∫ T

0

∫ L

0

w(s) · rotDz(s) (∇Γφ)2 ◦ z(s) ds dt

∣∣∣∣
≤
∥∥w∥∥

L2(0,T ;L∞(0,L))

∥∥Dz∥∥
L∞(0,T ;L∞(0,L))

∥∥∇Γφ ◦ z‖2L2(0,T ;L2(0,L)).

Boundedness of the first two factors in the right member again follows from the refined regular-
ity result and the aforementioned embedding relations, and it is now left to show that ∇Γφ ◦ z ∈
L2(0, T ;L2(0, L)) or, in view of the fact that z is essentially continuous, ∇Γφ ∈ L2(0, T ;L2(Γt)). It
is to be noted that such a result is cogent but non-standard, both in the context of the Neumann
problem (2.2) and of the boundary-integral formulation (2.3). For the Neumann problem, we have
the general result that for h ∈ H−1/2(∂Ω), it holds that φ ∈ H1(Ω) and ∇Γφ ∈ H−1/2(∂Ω); see, for
instance, the review of trace operators in [32]. On domains with suitably smooth boundaries it fur-

thermore holds that if the Neumann data has higher regularity, viz., h ∈ Hm+ 1
2 (∂Ω) (m ∈ Z+), then

φ ∈ Hm+2(Ω) and, accordingly, ∇Γφ ∈ Hm+ 1
2 (∂Ω); see [14, Thm. 3.10]. If we insist that the inflow

data q ∈ L2(Γin), then the Neumann data h resides in L2(∂Ω), and we require an intermediate result.
Such a result is non-standard, however. The standard result for the boundary-integral formulation
in [7] asserts that φ ∈ H1/2(∂Ω) whenever h ∈ H−1/2(∂Ω), analogous to the general result for the
Neumann problem; see also section 2.1. It is to be noted, however, that in [7] it is conjectured that
higher-regularity results hold under auxiliary smoothness conditions on the domain. In appendix B,
we establish that in the 1-dimensional setting under consideration, such a higher-regularity result
indeed holds, under auxiliary assumptions on the domain.

2.4 Compatibility condition
The selection of the pressure level p0 is not obvious. The pressure level is in fact related to an auxiliary
coupling condition between the fluid and the structure, in addition to the aforementioned kinematic
and dynamic interface conditions, which originates from the incompressibility of the fluid. The in-
compressibility of the fluid engenders a Fredholm alternative for the Laplace–Neumann problem (2.2).
By the divergence theorem, we have the identities:∫

Ωt

∆φ =

∮
∂Ωt

∂nφ =

∮
∂Ωt

h = 0. (2.23)

Hence, the Laplace–Neumann problem admits a solution if and only if the data h complies with the
compatibility condition

∮
h = 0. Moreover, ker(∆, ∂n) = span{1} and, hence, the solution to (2.2) is

unique only up to an additive constant. On account of (2.19), the compatibility condition in (2.23)
translates into a compatibility condition on the structure displacement. Such an auxiliary coupling
between the fluid and the structure is typical for FSI problems with enclosed incompressible fluids; see
also [21].

Denoting by Q(z) the volume contained within a certain structure configuration z and by c(t) the
content of the fluid domain,

c(t) = Q(χ0) +

∫ t

0

∫
Γin

q, (2.24)

the structure displacement must comply with Q(z(t)) = c(t). We shall impose this compatibility
condition in the weak formulation of (2.13)–(2.15) by means of a Lagrange multiplier. Moreover,
to elucidate the relation between the pressure level, p0, and the compatibility condition, we sepa-
rate f in (2.13) in accordance with (2.16) and, subsequently, replace p in accordance with (2.20). We
denote by

W0(0, T ) =
{
z ∈W (0, T ); z|t=0 = 0

}
, (2.25a)

WT (0, T ) =
{
z ∈W (0, T ); z|t=T = 0

}
, (2.25b)
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the admissible structure-displacement fields with vanishing initial and terminal traces, respectively.
Let us remark that the trace of z at t = 0 in (2.25a) is well defined in L2(0, L); see, for instance, [14, 15,
23]. The structure-displacement problem, including the volume constraint, can then be condensed into
the weak formulation: find z ∈ χ0 +W0(0, T ), λ ∈ L2(0, T ) such that ∀w ∈WT (0, T ), µ ∈ L2(0, T ):

−
∫ T

0

(
z′(t),w′(t)

)
L2(0,L)

dt+
(
z′(T ),w(T )

)
L2(0,L)

+

∫ T

0

as

(
z(t);w(t)

)
dt

−
∫ T

0

p0(t)
(
rotDz(t),w(t)

)
L2(0,L)

dt+
ϑ

2

∫ T

0

〈
|∇φ|2 ◦ z(t) rotDz(t),w(t)〉 dt

−
∫ T

0

〈
|Dz(t)|ϕz ◦ z(t),w(t)

〉
dt+

∫ T

0

λ(t)
〈
δQ(z(t)),w(t)

〉
dt

+

∫ T

0

µ(t)Q(z(t)) dt =

∫ T

0

µ(t) c(t) dt+
(
χ1,w(0)

)
L2(0,L)

, (2.26a)

where the semilinear form as : H2(0, L)×H2(0, L)→ R is defined by

as(z;w) =
(
(1− |Dz|−1)Dz, Dw)L2(0,L) + ε

(
D2z, D2w)L2(0,L) (2.26b)

and 〈·, ·〉 denotes the duality pairing between H−2(0, L) and H2
0(0, L). Moreover, δQ : H2(0, L) →

H−2(0, L) denotes the Fréchet derivative of the volume functional Q.
In the weak formulation (2.26a), the pressure level p0 can be identified with the Lagrange mul-

tiplier λ ∈ L2(0, T ). More precisely, if we denote by (z, λ)0 the solution to (2.26a) for p0 = 0 and
by (z, λ)1 the solution to (2.26a) for some arbitrary p0 ∈ L2(0, T ), then it holds that z1 = z0 and
λ1 = λ0 + p0. To prove this assertion, we will show that〈

δQ(z(t)),w(t)
〉

= (rotDz(t),w(t))L2(0,L), (2.27)

for all admissible structure configurations z ∈ χ0 + W0(0, T ) and all w ∈ L2(0, T ;H2
0(0, L)). The

time-dependence of the structure configuration is in fact irrelevant in (2.27) and will be suppressed in
the ensuing derivation. We first note that

Q(z) =

∫
Ωt

dx =
1

2

∫
Ωt

divx dx =
1

2

∮
∂Ωt

x · n dσt =
1

2

∫ Λ

0

z(s) · rotDz(s) ds. (2.28)

The penultimate expression in (2.28) is a straightforward consequence of the divergence theorem.
The ultimate expression follows from the transformation s 7→ x = z(s). We consider an arbitrary
w ∈ H2

0(0, L) and extend it to (L,Λ) by zero. The extension is still denoted by w. From (2.28), we
obtain:

〈δQ(z),w〉 :=
d

dε
Q(z + εw)

∣∣∣
ε=0

= 1
2 (rotDz,w)L2(0,L) + 1

2 (z, rotDw)L2(0,L). (2.29)

It is easily verified that the right member of (2.29) is linear in z and w and that∣∣∣ 12 (rotDz,w)L2(0,L) + 1
2 (z, rotDw)L2(0,L)

∣∣∣ ≤ ‖z‖H2(0,L)‖w‖H2(0,L). (2.30)

Hence, the Fréchet derivative δQ(·) can be identified with a linear continuous operator from H2(0, L)
into H−2(0, L), and for each z ∈H2(0, L) the duality pairing of δQ(z) with w ∈H2

0(0, L) is defined
by the right member of (2.29). The identity (2.27) is obtained by recasting the second term in the
right member of (2.29) into:

(z, rotDw)L2(0,L) = −(rot z, Dw)L2(0,L) = (rotDz,w)L2(0,L). (2.31)

The first identity in (2.31) is a consequence of the skew-symmetry of the rotation operator. The
second identity follows from integration-by-parts and w|{0,L} = 0.
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2.5 Contact forces
In the treatment of complex folded geometries, adequate modeling of self-contact of the membrane
is imperative to avoid self-intersection. Because our primary interest concerns the coupled problem
described in §§2.1-4 and, in this context, contact modeling is only accessory, we shall be contented
with any cogent contact model that prevents self-intersection. For this reason, we shall consider
a soft-contact model based on repulsive potentials, instead of a hard-contact model, as the latter
requires contact detection, which is nontrivial. Moreover, the soft-contact model admits an efficient
implementation by recycling the kernels that have already been generated in the boundary-element
method for the fluid subproblem.

In the soft-contact model, each segment of the membrane exerts a force on every other segment,
depending on their relative distance and orientation. We model the contact-induced traction on the
structure, z 7→ ϕz, as the marginal of a vector-valued traction density, i.e., we postulate:

ϕz(x) = ζ

∮
∂Ω

F (x,y) dσ(y), (2.32)

for some traction density F : ∂Ω × ∂Ω → R2, with ζ > 0 a model parameter. Let us note that ϕz

depends implicitly on the structure configuration, z, on account of the dependence of the domain Ω
on z. Moreover, we assume that the inflow boundary Γin also exerts a contact traction. The time
dependence of the structural configuration and of the domain are irrelevant for the exposition, and
will be suppressed. The traction density should comply with the following elementary conditions:

C1. The traction density should be essentially local, i.e., it should have local support or decay rapidly
as the distance |x− y| increases;

C2. The traction density is repulsive and acts in the direction x − y of the relative position of
segments of the membrane;

C3. The traction at any point induced by segments in the vicinity of that point vanishes. This means
that for each x ∈ ∂Ω and each ε > 0 there exist a δ > 0 and a connected subset Γδ ⊂ ∂Ω such
that x ∈ Γδ and

1

meas Γδ

∣∣∣∣ ∫
Γδ

F (x,y) dσ(y)

∣∣∣∣ < ε (2.33)

with meas Γδ the surface measure of Γδ;

C4. The contact force should prevent self-intersection of the membrane. To this end, the traction
density must approach infinity if y → x while y and x are separated on the membrane. In
particular, if there exists a sequence {yn} ⊂ Γ, yn → x as n→∞, a corresponding sequence of
sections Γn ⊂ Γ,

Γn = {Γn is the smallest connected subset of ∂Ω containing x and y} (2.34)

and a number ε > 0 such that meas Γn ≥ ε as n→∞, then |F (x,yn)| → ∞ as n→∞; cf. also
condition C3;

C5. The traction density should satisfy a reciprocity principle in accordance with Newton’s third
law of motion, which implies F (y,x) = −F (x,y).

An important observation pertains to the fact that, in the finite-element approximation, the concomi-
tant computational complexity of the soft-contact model is proportional to the number of elements
squared, as for each element we have to visit all other elements to determine the relative distances.
In the present setting, however, the relative distances have already been computed in the boundary-
integral formulation of the fluid subproblem. Moreover, we will show that the dependence of the
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contact force on the relative distance and orientation can be formulated such that the aforementioned
conditions are obeyed, and that the traction density can be composed of the singular kernel in the
double-layer potential in (2.4b). The authors are not aware of previous work on such recycling of
discrete kernels of a boundary-integral formulation to determine contact forces.

To facilitate the presentation, we factorize the traction density in four components according to
F (x,y) = b(r/d) ν(x,y) r−1d(x,y), where r := |x − y| is a condensed notation for the distance
between x and y and d > 0 is a preselected cut-off radius. The function b serves to localize the
traction density in accordance with condition C1. To this end, we apply a smooth window function
based on a b-spline b : R+ → [0, 1]:

b(r) :=


1− 3r2, r < 1/3,

3/2− 3r + (3/2)r2, 1/3 ≤ r ≤ 1,

0, otherwise,

Let us remark that this is a common kernel in the realm of smooth particle hydrodynamics. The
vector-valued function d accounts for the directional dependence in condition C2:

d(x,y) = r−1(x− y).

The function ν serves to impose the non-contiguity condition C3 and the reciprocity principle C5:

ν(x,y) =
∣∣∣r−1

(
x− y

)
·
(
n(x)− n(y)

)∣∣∣. (2.35)

Finally, the factor r−1 serves to introduce the singular behavior of the traction density to fulfill
condition C4. Another important argument for selecting the particular form of ν in (2.35) and the
r−1 dependence, is that these lead to a traction density that can be conveniently expressed in terms
of the singular kernel ∂nG according to (2.6) in the double-layer potential.

The expression for ν in (2.35) warrants some further elaboration. To prove that the corresponding
traction density satisfies condition C3, we consider a parametrization (0, L) 3 s 7→ z(s) ∈ Γ, and we
note that for |α| < δ and δ → + 0, it holds that

F (z(s), z(s+ α))

= b

(
|z(s)− z(s+ α)|

d

) ∣∣∣∣ z(s)− z(s+ α)

|z(s)− z(s+ α)|3
·
(

rotDz(s)

|Dz(s)|
− rotDz(s+ α)

|Dz(s+ α)|

)∣∣∣∣ (z(s)− z(s+ α)
)

= b

(
|Dz(s)α+ o(δ)|

d

) ∣∣∣∣−Dz(s)α+ o(δ)

|Dz(s)α+ o(δ)|3
·
(
Dz(s) ·D2z(s) rotDz(s)α

|Dz(s)|3
− rotD2z(s)α

|Dz(s)|
+ o(δ)

)∣∣∣∣
×
(
−Dz(s)α+ o(δ)

)
= Cz(s)

α

|α|
+ o(1) (2.36)

where o(·) denotes the Landau symbol with the property that o(δβ)/|δβ | → 0 as δ → 0 for all β ≥ 0
and

Cz(s) = −
∣∣∣∣ Dz(s)

|Dz(s)|
·
(
Dz(s) ·D2z(s) rotDz(s)

|Dz(s)|3
− rotD2z(s)

|Dz(s)|

)∣∣∣∣Dz(s)

supposing that all the above derivatives exist. Hence, the leading order term of F (z(s), z(s + α))
corresponds to an odd function in α, and its integral on a symmetric interval around α = 0 vanishes.
More precisely, selecting Γδ in (2.33) according to

Γδ = {x ∈ Γ : x = z(s+ α), |α| < δ} (2.37)



2. Problem statement 13

we obtain, in the limit δ → + 0,

1

meas Γδ

∣∣∣∣ ∫
Γδ

F (z(s),y) dσ(y)

∣∣∣∣
=

1

2δ|Dz(s)|+ o(δ)

∣∣∣∣ ∫ δ

−δ

(
Cz(s)

α

|α|
+ o(1)

)
|Dz(s) + o(1)| dα

∣∣∣∣ = o(1), (2.38)

and, hence, for each ε > 0 there exists a δ > 0 such that (2.33) holds with x = z(s).
Summarizing, the contact-induced traction on the structure reads:

ϕz(x) := ζ

∮
∂Ω

F (x,y) dσ(y) = 2ζ

∮
∂Ω

b(x,y)

∣∣∣∣ (x− y) · (n(x)− n(y))

2r2

∣∣∣∣x− yr dσ(y)

= 2πζ

∮
∂Ω

b(x,y)
∣∣∂nG(x,y) + ∂nG(y,x)

∣∣x− y
r

dσ(y).

(2.39)

In a numerical procedure, the expression ϕz(x) is required at certain integration points, {xi}. More-
over, for each x ∈ {xi}, the integral on ∂Ω in (2.39) is computed by means of a quadrature rule, which
involves determining the value of the integrand at points {yj}. Hence, the value of the integrand is
required for all pairs of points (x,y) ∈ {xi} × {yj}. The final expression in (2.39) conveys that ϕz

can indeed be efficiently computed, because the values of the singular kernel ∂nG(x,y) and of the
relative positions x− y at {xi} × {yj} have already been computed in the numerical approximation
of the double-layer potential (2.4b).

To establish that the contact-induced traction defines a meaningful load on the structure, we must
show that the map:

w 7→
∫ T

0

∫ L

0

w(t, s) ·ϕz ◦ z(t, s) |Dz(t, s)| ds dt (2.40)

defines a continuous linear functional on L2(0, T ;H2
0(0, L)); cf. (2.16) and (2.22). We first note that

by Hölder’s inequality, we have∣∣∣∣ ∫ T

0

∫ L

0

w(t, s) ·ϕz ◦ z(t, s) |Dz(t, s)| ds dt
∣∣∣∣

≤ ‖w‖L2(0,T ;L∞(0,L))‖Dz‖L∞(0,T ;L∞(0,L))‖ϕz ◦ z‖L2(0,T ;L1(0,L)) (2.41)

Hence, by the same arguments as in Section 2.3, it remains to bound the right-most factor in (2.41).
The function ϕz ◦ z(t, s) can be expanded into:

ϕz ◦ z(t, s) = ζ

∮
∂Ω

F (z(t, s),y) dσt(y)

= 2πζ

∮
∂Ω

(
− ∂nG

(
z(t, s),y

)
− ∂nG

(
y, z(t, s)

))
Θ(z(t, s),y) dσt(y) (2.42)

where

Θ(x,y) = b

(
|x− y|
d

)
1supp(ν)(x,y)

x− y
|x− y|

(2.43)

with 1supp(ν) the characteristic function of the support of ν according to (2.35), i.e., 1supp(ν)(x,y)
is 1 if ν(x,y) 6= 0 and 0 otherwise. Because Θ in the ultimate expression depends on z, we cannot
rely on standard results on continuity of the double-layer potential and its adjoint to bound the
right-most factor in (2.41). A detailed analysis of ϕz ◦ z(t, s) is technical and is beyond the scope of
this paper, and boundedness of ‖ϕz ◦ z‖L2(0,T ;L1(0,L)) is left as a conjecture. However, in support of
this conjecture, we note that the asymptotic result in (2.36) implies that, under suitable smoothness
conditions on z, the traction density F (z(s), z(s + α)) is bounded at the singularity of ∂nG, i.e., in
the limit as α→ 0.
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3. Numerical approximation and solution
In this section, we consider the numerical approximation of the aggregated fluid-structure-interaction
problem, composed of the weak form of the boundary-integral formulation of the fluid equations (2.7),
the weak formulation of the membrane equations and the compatibility condition (2.26), and the
kinematic and dynamic transmission conditions (2.19) and (2.20). Section 3.1 presents the spatial
and temporal discretizations of the fluid and structure subproblems. The aggregated system is solved
by means of a partitioned iterative solution procedure, which is elaborated in Section 3.2.

3.1 Finite-element approximations
Recalling that the initial wet boundary Γ0 and the inflow boundary Γin of the fluid domain are
parametrized with respect to the arc-length intervals (0, L) and (L,Λ), we introduce a sequence of
nested regular partitions Sh of these intervals, parametrized by a strictly decreasing sequence of mesh
parameters h ∈ {h0, h1, . . .}. For each h, the partition Sh provides a cover of (0, L) and (L,Λ) by
disjoint open subsets {κh1 , κh2 , . . .}. The regularity of the partitions implies that there exist moderate
constants c and c̄, independent of h, such that for each κ ∈ Sh it holds that ch ≤ measκ ≤ c̄h. The
nesting of the partitions implies that whenever h1 < h0, for each subset κ ∈ Sh1 there exists a subset
κ ∈ Sh0 such that κ ⊆ κ. A partition Sh and the subintervals it contains are referred to as a mesh
and elements, respectively.

The partitions form the substructure of the finite-element approximation spaces for the fluid and
structure subproblems,

Sh :=
{
z ∈ C1(0, L) : z|κ ∈ P3(κ,R2) ∀κ ∈ Sh, κ ⊂ (0, L)

}
, (3.1a)

Fhp :=
{
φ ∈ C0(0,Λ) : φ|κ ∈ P1(κ,R) ∀κ ∈ Sh; φ(0) = φ(Λ)

}
, (3.1b)

respectively, where Pp(κ,Rn) represents the class of polynomials of degree ≤ p from κ into Rn. The
approximation space Sh ⊂H2(0, L) (resp. Fhp ⊂ H1

p(0,Λ), viz., the periodic functions in H1(0,Λ)) is

H2(0, L)-conforming (resp. H1
p(0,Λ) conforming). On account of the regularity and nesting properties

of the meshes, the sequence of approximation spaces Sh is nested and asymptotically in H2(0, L), i.e.,
Sh0 ⊂ Sh1 ⊂ · · · ⊆ H2(0, L) and Sh →H2(0, L) as h→ 0. Similarly, Fhp is a sequence of asymptotically
dense nested subspaces in H1

p(0,Λ).
To facilitate the evaluation of the singular integrals in the boundary-element formulation of the

fluid, we do not use the element-wise polynomial representation of the boundary provided by the
approximation of the structure position but, instead, we select a continuous element-wise linear ap-
proximation of the domain boundary, which nodally coincides with the structure position or, along the
section associated with the inflow boundary, with the initial configuration. In particular, for an ap-
proximate structural position zh ∈ Sh, the boundary of the approximate fluid domain is parametrized
according to ∂Ωh = {x ∈ R2 : x = z̃h(s), s ∈ (0,Λ)}, where z̃h is the unique function defined by:

{z̃h ∈ C0(0,Λ) : z̃h|κ ∈ P1(κ,R2) ∀κ ∈ Sh; z̃h(0) = χ0(0); z̃h(L) = χ0(L);

z̃h(Λ) = χ0(0); z̃h|Nh∩(0,L) = zh|Nh∩(0,L); z̃
h|Nh∩(L,Λ) = χ0|Nh∩(L,Λ)}, (3.2)

where N h := {∂κ;κ ∈ Sh} (without repetitions) is the set of nodes corresponding to Sh. Singular
contributions to the integrals in (2.7) occur on elements where both ψ and φ are supported. Denote the
linear basis on z̃h(κ) by Nκ

i , i ∈ {0, 1}. For convenience of notation we introduce Jκ :=
∣∣Dz̃h|κ∣∣meas κ

which is a constant on κ by virtue of the approximation z̃h of the configuration. We can then compute
the singular contributions by combinations of the integrals

(Ni,KNj)L2(z̃h(κ)) = 0,

(Ni, V Nj)L2(z̃h(κ)) =
(
6 + (−1)i+j − 4 log Jκ

) J2
κ

2π
.



4. Numerical examples 15

For the temporal discretization of the structure equation (2.26), we apply an implicit backward-
Euler approximation. To facilitate the formulation of the discretization of the fluid-structure-interaction
problem, we denote by zh0 ∈ Sh a suitable approximation to the initial position χ0 such that
zh0 |{0,L} = χ0|{0,L}, and by Sh0 = {zh ∈ Sh : z|{0,L} = 0} the functions in Sh that vanish at the end
points of the interval (0, L). The discrete approximation of the aggregated fluid-structure-interaction
problem can then be formulated as: For n = 1, 2, . . ., find

(
zhn, λn, φ

h
n, ζn) ∈ (zh0 + Sh0 )× R× Fhp × R,

such that for all
(
w, µ, ψ, υ) ∈ Sh0 × R× Fhp × R, there holds:

τ−2
(
zhn,w

)
L2(0,L)

+ as

(
zhn;w

)
− λn

(
rotDzhn,w

)
L2(0,L)

+
ϑ

2

(
|∇Γφ

h
n|2 ◦ z̃hn rotDzhn,w

)
L2(0,L)

+
ϑ

2

((
τ−1(zhn − zhn−1) · (|Dzhn|−1rotDzhn)

)2
rotDzhn,w

)
L2(0,L)

−
(
|Dzhn|F zhn

◦ zhn,w
)
L2(0,L)

+ µQ(zhn) + ( 1
2φ

h
n +Kφhn, ψ)L2(∂Ωhn) −

(
V
(
|Dz̃hn|−1rotDz̃hn · (τ−1(z̃hn − z̃hn−1)

)
◦ (z̃hn)−1, ψ

)
L2(Γhn)

+υ(φhn, 1)L2(∂Ωhn)+ζn(ψ, 1)L2(∂Ωhn) = τ−2
(
zhn−1,w

)
L2(0,L)

+τ−1
(
vhn−1,w

)
L2(0,L)

+µc(tn)+(V q, ψ)L2(Γhin)

(3.3)

with τ the time step and tn = nτ . Furthermore, vh0 denotes a suitable approximation of the initial
velocity and vhn = τ−1(zhn − zhn−1) for n = 1, 2, . . .; cf. (2.26) and (2.7). It is to be noted that the
term pertaining to the pressure level p0 in (2.26) has been merged with the Lagrange-multiplier term,
in accordance with the exposition in Section 2.4. Moreover, in (3.3), the |∇φ|2 term in (2.26) has
been expanded in accordance with the ultimate identity in (2.20), and the orthogonality conditions
(φ, 1)L2(∂Ωt) = 0 and (ψ, 1)L2(∂Ωt) = 0 in (2.7) are instead imposed by means of Lagrange multipliers.

3.2 Partitioned solution of coupled system
Having fixed solution methods for both the fluid and structure subsystems, we elaborate the parti-
tioned solution of the coupled system, shown in table 1. A linear extrapolation of the initial data
serves as a first approximation of the new coupled solution. Within a fluid–structure subcycle, a
structural solve is performed first, to ensure compatibility of the fluid boundary data. The subcycle is
considered converged if the norm of the structure residual is below the tolerance before a Newton solve
is performed. In performing Newton iterations, the pressure and contact loads are treated explicitly
whereas the stiffness semilinear form and volume constraint are consistently linearized as

〈δas(z
h
n;w), δz〉 =

(
[(1− |Dzhn|−1)Id + |Dzhn|−3Dzhn ⊗ zhn]Dδz, Dw

)
L2(0,L)

+ ε(δz,w)H2
sem(0,L)

and
〈δ〈δQ(zhn),w〉, δzhn〉 = (rotDδz,w)L2(0,L)

respectively.
The return statement is not reached if either the coupling iteration or the structure solve does

not converge due to, for instance, large contact forces. This high temporary stiffness of the problem
is resolved by invoking the simplest possible time adaptivity, where the time step is resolved with
increasingly finer time steps 2−kτ until the iterations converge. At the subsequent time level, k is
derefined according to k = max(k − 1, 0).

Though performing a linearization on the aggregate fluid–structure system is known to improve
convergence of the discrete coupled problem, the complexity rises considerably. The zhn-derivative of
the fluid subproblem is highly nontrivial due to the zhn-dependence of the kernels. For this reason, a
partitioned solution strategy was preferred above a monolithic scheme.

4. Numerical examples
To demonstrate the performance of the FE/BE approach proposed here, we first perform a convergence
study on the case of a pancake-shaped domain, adapted from [6, 30], see section 4.1. Secondly, we
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Table 1: Partitioned solution algorithm in Python™ pseudo code, given numerical parameters (τ ,
imax, jmax, TOL), and input (zt, zt−τ , φt, q, ct). For simplicity, we have incorporated the Lagrange
multipliers into the respective solution vectors. Note that indices do not denote tensor entries, but
iterates.

z00, φ0 = extrapolate( τ,zt, zt−τ , φt )

# Coupling iteration

for 0 ≤ i < imax:

..# Structure solve

..for 0 ≤ j < jmax:

....rij = assembleResidual( zij , zt, φi, ct, q, τ )

....if ‖rij‖L2 < TOL: break

....(δr)ij = assembleTangent( zij )

....zij+1 -= [δr]−1
ij rij

..# Return statement

..if not j: return zij

..# Fluid solve

..V hi,Ki = assembleFluid( zij , zt )

..φi+1 = [1/2 +K]−1
i V hi

consider a simple folded configuration to observe the response and convergence rates in the presence
of contact forces. Let us note that the derivation of convergence rates for coupled problems is very
technical, see for instance [16]. In the exposition below, we restrict ourselves to the experimentally
observed convergence rates.

4.1 Pancake-shaped domain
The initial configuration, χ0, is as given in figure 2 with geometrical parameters r = 1/3, w = 4.
Furthermore we set the mass ratio ϑ to 0.1, and perform spatial and temporal convergence tests
with regularization set to ε = 1 × 10−4. The parametric domain is divided into elements of size
h ∈ L/{24, 48, 72, 96, 144, 288}. The time domain (0, T ) is divided into increments of τ ∈ per/2{5,...,10}

with per = (Λ/π)2 an approximation of the period of the first eigenmotion (based on the flexural term).
Finally, the inflow is specified as q = qσ(s− L)θ(t), with

σ(s) = 4s(r − s)/r2,

θ(t) =
1

t2


(1− cos (πt/t1)) /2, 0 < t ≤ t1,
1, t1 < t ≤ t2,
(1 + cos (π(t− t2)/t1)) /2, t2 < t ≤ t1 + t2,

0, t1 + t2 < t.

In these relations we have t1 = 100, t2 = 2t1, T = 4t1 and the mean influx q = (|Ω(0)| − |Ωt|)/t2. The
initial volume can be found in terms of w and ri and the final volume is specified as |Ωt| = 1.05Λ2/4π.
Note that the mean flux has a negative sign as it is directed into the enclosure.

iWe have |Ω(0)| = 2wr − r2 + πr2/2.
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Figure 2: Pancake-shaped domain, initial geometry.
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Figure 3: Convergence behavior in the space-time norm with symbols {4,�,⊕,⊗, �} representing
time levels t = {0.750, 3.00, 12.0, 192, 400}, respectively.

The convergence behavior is assessed in the space-time norm of the structure defined by

|||z||| := ‖z‖L2(0,T ;H2(0,L)) =

∫ T

0

∫ L

0

∑
α≤2

|Dαz|2 ds dt

1/2

(4.1)

and is plotted in figure 3, with reference solution zref obtained from the finest discretization in space
and time. Spatial convergence is given in the left panel. The optimal (quadratic) convergence rate
of the decoupled structural problem seems to be preserved in the initial response. This trend breaks
down when simulation times increase and phase-lag dominates the errors. This is due to the fact that,
on long time intervals, marginal phase differences cause large deviations in the norm.

For temporal convergence (right panel) the linear rate expected of the backward Euler scheme is
retained. Also, a linear increase in time of the error norm is observed initially, just like in the spatial
convergence case. A reduction in the convergence rate is observed as the time interval increases
because the phase-lag precludes correlation between the different time-steps. It is however anticipated
that even for long time intervals, the asymptotic first-order convergence is recovered at very small
time steps.

Snapshots at different time-levels are given in figure 4. The initial inflation process is quasi-static.
When the airbag is fully inflated, the momentum build-up in the fluid due to the influx causes an
upward movement of the airbag. At this point the compressive force at the top of the airbag is seen
to cause wrinkling, which is smoothened out by the flexural regularization. The upward movement
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t = 0 t = 730 t = 1460

t = 2190 t = 2920 t = 3650

Figure 4: Snapshots of the pancake response, for w = 4, colors indicate the static pressure.

is subsequently absorbed by the hinged supports, sending waves through the structure. These waves
in the structural response are seen to be accompanied by pressure minima. A periodic bounding
motion sets in, called the airbag breathing motion. The mathematical system is conservative, however,
numerical dissipation causes this motion to diminish and the displacement to tend to an equilibrium
solution, the circle. Observe the very large deformations of the domain, for which a significant number
of remeshing cycles would be necessary in an ALE-type approach.

In the above pancake case, we observe second order h-convergence of the coupled response z in
the W (0, T ) space-time norm. Surprisingly, this is not hampered by the convergence of the fluid load
(see eq. 2.22)

w 7→
∫ T

0

∫ L

0

w(t, s) ·
(
p ◦ z(t, s) rotDz(t, s)

)
ds dt.

which is expected to exhibit O(h) convergence, as p depends on the Γ-gradient of φ ∈ Fh, the space of
piece-wise linears. We conjecture that the higher-order rate of convergence is caused by the symmetry
of the configuration. To verify this conjecture, we consider the following case. A hierarchy of nested
meshes and corresponding linear spaces is generated on each level. The pancake geometry of figure 2
and fabricated boundary conditions are projected onto the coarsest mesh. In this case the boundary
conditions are g = z′ · n with

z′ = {0.3(|x1| − r/2), 0}, (4.2)

thus, g both satisfies the compatibility constraint (2.23) and respects the structural boundary condi-
tions. These projections form the input of the fluid problems that are solved at each mesh level. This
ultimately yields the desired family of load functionals that can be tested against the projection of

w = {0, sin(kπs/L)},

onto a Hermite space on the finest mesh. Note that the test function is thus identical at each resolution
of the convergence analysis, eliminating the effect of this projection on observed convergence rates.
The cases k = 1 and 2 correspond to symmetric and asymmetric test functions w, respectively.

Employing a hierarchy of equidistant meshes with 16 · {2, ..., 15, 60} elements, and comparing the
errors with respect to the finest approximation, we obtain the convergence behavior in figure 5. Note
that the three curves corroborate the above assertions, namely, that the pressure converges with rate
1 in the L2(0, L) norm, but that the rate increases to 2 in the case of a symmetric w. This enables
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Figure 5: Convergence of the pressure in the L2(0, L) norm (◦), and corresponding loads tested against
symmetric (×) and asymmetric (+) functions.

the structure solution to converge with rate 2 as observed in the symmetric pancake case of §4.1. In
the case of an asymmetric w the convergence rate does not attain the optimal value.

4.2 Folded configuration
We next consider a folded configuration (see fig. 6) including contact forces, with parameters ζ = 1.0,
d = 2.0. The contact force parameters have been chosen to ensure no self-contact occurs throughout
the simulations. Figure 7 illustrates that the membrane exhibits significant wrinkling. These wrinkles
are caused by the contact force. The contact force plays a dominant role in the structural response,
on account of the so-called Venturi effect. This Venturi effect pertains to the phenomenon that
the pressure decreases in narrow sections of the fluid domain with nonzero flow. This effect is to
be compared to the pressure drop in a converging-diverging channel. The pressure drop causes the
membrane on the two opposite sides of the converging section to approach, which in turn causes a
local narrowing of the fluid domain, and a corresponding strengthening of the pressure drop. In the
absence of contact forces, this process would ultimately lead to a local collapse of the membrane.
The aforementioned Venturi effect in fact results in a singular attractive force between sections of
the membrane. This singular attractive force must be counteracted by a sufficiently strong singular
contact force to avoid collapse of the structure. It is to be noted that the Venturi effect is particular for
the considered potential-flow model and that, in contrast, Stokes flow displays a repulsive lubrication
effect [28].

Figure 8 displays the error in the displacement for time step 6.621 · 10−2 and mesh widths h in
L/{160, 280, 320, 400, 480, 640} with the last of these the resolution for the reference solution. A fine
h is observed to be necessary to be in the asymptotic convergence regime. We consider the error
convergence as h→ 0 in figure 8. We see that we also recover optimal convergence rates in the norm
|||·||| in the case of contact forces.

5. Conclusions
A model was presented for the interaction of a membrane with an enclosed fluid described by potential
flow. The linearity of the fluid response allows discretization with the BEM. Despite its simplicity,
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Figure 6: Initial configuration of folded domain test case.
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Figure 7: Snapshots of the response for the folded domain.
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Figure 8: Convergence behavior for the folded configuration in the space-time norm |||·||| with symbols
{◦,4,�,⊕,⊗, �} representing time levels t ∈ {0.26, 1.06, 4.24, 16.95, 67.80, 135.59}, respectively.

the model poses some theoretical and numerical challenges. Uniqueness results are not available and
are not easily acquired. A regularization of the membrane equation is needed for stability. In this
work flexural rigidity is introduced for that purpose. As the fluid is enclosed and incompressible, the
volume needs to be constrained explicitly. A physical interpretation was derived for the Lagrange
multiplier enforcing this constraint, the total internal excess pressure p0.

The numerical tests show the capabilities of the presented FE/BE coupling scheme. The discretiza-
tion of the fluid with the BEM, allows for very large deformations without evolving or recreating
volumetric meshes. In this sense, it extends the type of problems that can be treated using an ALE-
approach.

To counteract self-crossing of the membrane, ubiquitous in the simulation folded inflatable struc-
tures, an efficient contact force is introduced. The potential contact force is passive and its compu-
tation is feasible because of reuse of components generated in the BEM formulation of the fluid. An
inherent feature of potential flow is the Venturi effect, where pressure forces cause a narrow section
in the flow field to contract further. Contraction would lead to collapse and self crossing, which has
to be prevented by the contact force. Numerical experiments for a folded configuration revealed that
owing to the Venturi effect, the contact forces play a dominant role in the structural response.

6. Acknowledgements
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of the Lagrange multiplier as a total pressure. This research is supported by the Dutch Technology
Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO)
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A. Nondimensionalization
The membrane motion is given as s, t 7→ z : [0, L]× [0, T ]→ R2 and governed by

%0hz
′′ = EhD

(
Dz(1− |Dz|−1)

)
+
(
p0 − 1

2ρ|∇φ|
2
)

rotDz, (A.1)
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with appropriate initial- and boundary conditions. In this equation %0, h and E are the membrane
density, thickness and stiffness, resp. Furthermore, ρ and φ the are the fluid density and potential,
resp. For nondimensionalization we choose two characteristic quantities of the problem, namely the
wave propagation speed in the membrane c0 = (E/%0)1/2; and a length `, then

z = `{z}, φ = `c0{φ}, (·)′ = c0`
−1{(·)′}, D = `−1{D}, ∇ = `−1{∇}.

In the following, the nondimensionalization braces {·} have immediately been dropped. Substitution
yields a one-parameter wave equation

z′′ −D
(
Dz(1− |Dz|−1)

)
−
(
p0 − 1

2ϑ|∇φ|
2
)

rotDz = 0, (A.2)

with ϑ := ρ`/%0h the mass ratio. The dimensionless total pressure {p0} = p0`/(%0c0
2h) = p0`/Eh.

Thus, we see that effectively time derivatives have been scaled by c0 w.r.t. spatial derivatives, i.e.,
choosing ` = 1 we have h/1 = {h} and τ · c0/1 = {τ}. Secondly, the influence of stiffness is through
(i) this scaling of derivatives; and (ii) the total pressure.

For the fluid, we arrive at our old relation,

1

2
φ(x) +

1

2π

∮
∂Ω

(x− y) · n(y)

|x− y|2
φ(y)dσ(y) = − 1

2π

∮
∂Ω

(log `+ log |x− y|)h(y)dσ(y) (A.3)

= − 1

2π

∮
∂Ω

(log |x− y|)h(y)dσ(y),

where the last equality follows from the compatibility condition on h.

B. Increased regularity results for the boundary-integral formulation
The aim of this appendix is to establish that under certain simplifying assumptions on the domain,
the map h 7→ φ corresponding to the boundary-integral formulation (2.3), defines a bounded linear
operator from Hm(∂Ω) into Hm+1(∂Ω) (m ∈ Z+) and, accordingly, h 7→ ∇Γφ is a bounded operator
from Hm(∂Ω) into itself. In light of the analysis in section 2.3, we shall be mostly interested in
the case m = 0. Below, we first recollect the necessary theory on Fourier characterization of Sobolev
spaces, and then proceed by presenting the analysis for a circular domain and, subsequently, discussing
extensions to more general domains.

B.1 Fourier characterization of Sobolev spaces
We first recall some elements of the Fourier characterization of Sobolev spaces; see also, for instance,
Ref. [3, Ch. 7]. Consider a bounded interval (0,Λ) ⊂ R. We denote by L2((0,Λ),C) the class of
square-integrable complex-valued functions, equipped with the inner product

(u, v)L2((0,Λ),C) =

∫ Λ

0

u(s) v∗(s) ds, (B.1)

where (·)∗ denotes the complex conjugate. The norm induced by (B.1) is denoted by ‖ · ‖L2((0,Λ),C).
The space L2((0,Λ),C) is a separable Hilbert space. An orthonormal basis of the space is provided
by the Fourier modes: {

en(s) = Λ−1/2 eι2πns/Λ
}
. (B.2)

Hence, any element u ∈ L2((0,Λ),C) can be represented with respect to the Fourier-basis functions as

u(s) =

∞∑
n=−∞

ûnen(s) with ûn = (u, en)L2((0,Λ),C). (B.3)

Of course, the representation (B.3) holds a fortiori for real-valued functions in L2(0,Λ) := L2((0,Λ),R).
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For u, v ∈ L2((0,Λ),C) it holds that

(u, v)L2((0,Λ),C) =

∞∑
n=−∞

ûnv̂
∗
n. (B.4)

The identity (B.4) implies Parceval’s theorem,

‖u‖2L2((0,Λ),C) =

∞∑
n=−∞

∣∣ûn∣∣2, (B.5)

and it follows that the Fourier coefficients of functions in L2((0,Λ),C) reside in the space of square
summable sequences, `2(Z).

Set H0
p(0,Λ) := L2(0,Λ) and let Hm

p (0,Λ) denote the class of periodic functions in Hm(0,Λ)
(m ∈ N). For all k ≤ m and n ∈ Z, we have:

(Dku, en)L2((0,Λ),C) =

∫ Λ

0

Dku(s) e∗n(s) ds = (−1)k
∫ Λ

0

u(s)Dke∗n(s) ds = (ιñ)kûn,

where ñ is a condensed notation for 2πn/Λ. Hence, we obtain

(u, v)Hmp (0,Λ) =

m∑
k=0

∞∑
n=−∞

(ιñ)kûn
(
(ιñ)k

)∗
v̂∗n =

∞∑
n=−∞

(
1 + |ñ|2 + · · ·+ |ñ|2m

)
ûnv̂

∗
n (B.6)

and, accordingly,

‖u‖2Hmp (0,Λ) =

∞∑
n=−∞

(
1 + |ñ|2 + · · ·+ |ñ|2m

)
|ûn|2. (B.7)

B.2 Results for circular domains
We next consider the single- and double-layer potentials conforming to (2.4) for a circular domain of
radius r. We consider an arc-length parameterization (0,Λ) 3 s 7→ x(s) = r(cos(s/r), sin(s/r)) of the
boundary, with Λ = 2πr. Taking the Fourier transform of the right member of the boundary integral
formulation (2.3), leads to the following sequence of identities:

(V h, en)L2((0,Λ),C) =

∫ Λ

0

e∗n(s)

∫ Λ

0

G(x(s),x(t))h(t) dt ds

= − r

2π

∫ 2π

0

∫ 2π

0

log r
∣∣(cosα− cos θ)2 + (sinα− sin θ)2

∣∣1/2 e−ιnα√
Λ

dαh(rθ) r dθ

= −r log r

2π

∫ 2π

0

e−ιnα√
Λ

dα

∫ 2π

0

h(rθ) r dθ

− r

4π

∫ 2π

0

∫ 2π

0

log(2− 2 cos(α− θ))e−ιnα√
Λ

dαh(rθ) r dθ

= −r log r

2π

∫ 2π

0

e−ιnα dα

∫ Λ

0

e∗0(t)h(t) dt

− r

4π

∫ 2π

0

log(2− 2 cos θ)e−ιnθ dθ

∫ Λ

0

e∗n(t)h(t) dt

= V̂nĥn,

where

V̂n =

{
−r log r if n = 0 ,

r/(2n) if n ∈ Z \ {0} .
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The collection of eigenvalues {V̂n} is also referred to as the Fourier symbol of the single-layer potential.
Similarly, we obtain for the Fourier transform of the double-layer potential according to (2.4b):

(Kφ, en)L2((0,Λ),C) = − r

2π

∫ 2π

0

e−ιnα√
Λ

∫ 2π

0

(cosα− cos θ) cos θ + (sinα− sin θ) sin θ

(cosα− cos θ)2 + (sinα− sin θ)2
φ(rθ) dθ dα

= K̂nφ̂n,

where the Fourier symbol of the double-layer potential is given by:

K̂n =

{
−1/2 if n = 0 ,

0 if n ∈ Z \ {0} .

For given Neumann data h ∈ Hm
p (0,Λ) (m ∈ Z+) such that

∮
h = 0, let φ denote the solution to (2.3),

subject to the auxiliary condition
∮
φ = 0. Taking the Fourier transform of (2.3) and of the auxiliary

condition, we obtain that φ̂n = 2V̂nĥn for all n ∈ Z \ {0} and φ̂0 = 0. Hence, the following sequence
of inequalities holds:

‖φ‖2
Hm+1

p (0,Λ)
=

∑
n∈Z\{0}

(
1 + ñ2 + · · ·+ ñ2(m+1)

)
|φ̂n|2 ≤ 2

∑
n∈Z\{0}

(
1 + ñ2 + · · ·+ ñ2(m+1)

)∣∣V̂n∣∣2∣∣ĥn∣∣2
≤ r

∑
n∈Z\{0}

(1 + ñ2 + · · ·+ ñ2m)
∣∣ĥn∣∣2 ≤ r‖h‖2Hmp (0,Λ) (B.8)

Therefore, it indeed holds that if the Neumann data h in the right member of the boundary integral
formulation (2.3) resides in Hm

p (0,Λ) (m ∈ Z+), then the solution (trace) φ lies in Hm+1
p (0,Λ).

B.3 Extension to non-circular domains
The above results can be extended to non-circular domains which admit an angular parametrization

(0, 2π) 3 θ 7→ x(θ) = r(θ)(cos θ, sin θ) ∈ R2 with r ∈ C3
p(0, 2π). Let s(θ) =

∫ θ
0
|Dx(α)| dα denote

the arc-length coordinate corresponding to the angle θ. We assume that the domain boundary and
its parametrization are such that Ds(·) is strictly positive and, accordingly, s(·) does not exhibit
stationary points. For the Fourier transform of the single-layer potential in the right member of (2.3),
we obtain:

(V h, en)L2((0,Λ),C) =

∫ 2π

0

h(s(θ)) e∗n(s(θ)) V̂n(θ)Ds(θ) dθ,

where

V̂n(θ) =

∫ 2π

0

G(x(α),x(θ)) e−ιñ(s(α)−s(θ))Ds(α) dα. (B.9)

The range of the single-layer potential is determined by the behavior of V̂n(θ) in the limit n → ∞.
In the absence of stationary points, Kelvin’s stationary-phase argument [37] asserts that as n → ∞,
the only significant contribution to the integral in (B.9) arises from a small neighborhood of the
singularity at α = θ. Away from the singularity, the rapid oscillation of exp(ιñs(α)) yields an effective
destructive interference and, consequently, the overall contribution is o(n−1) as n → ∞. Hence,
ignoring terms o(n−1), it holds that

∣∣V̂n(θ)
∣∣ =

∣∣∣∣ ∫ θ+ε

θ−ε
G(x(α),x(θ))e−ιñ(s(α)−s(θ))Ds(α) dα

∣∣∣∣ (B.10)



B. Increased regularity results for the boundary-integral formulation 25

as n →∞, for any sufficiently small ε > 0. Inserting G in (2.4a) into the above asymptotic approxi-
mation, we obtain, successively:

∣∣V̂n(θ)
∣∣ =

∣∣∣∣ 1

4π

∫ θ+ε

θ−ε
log
∣∣(r2(α) + r2(θ)− 2r(α)r(θ) cos(α− θ)

∣∣ e−ιñ(s(α)−s(θ))Ds(α) dα

∣∣∣∣
≤ ‖Ds‖L∞(0,2π)

∣∣∣∣ 1

4π

∫ +ε

−ε
log
∣∣(r2(θ) +Dr2(θ))α2 + ρ0(α)

∣∣ e−ιñ(Ds(θ)α+ρ1(α)) dα

∣∣∣∣
≤ ‖Ds‖L∞(0,2π)

(∣∣∣∣ ∫ +ε

−ε
2 log |α| e−ιñDs(θ)α dα

∣∣∣∣
+

∣∣∣∣ ∫ +ε

−ε
log
∣∣(r2(θ) +Dr2(θ)) + α−2ρ0(α)

∣∣ e−ιñDs(θ)α dα ∣∣∣∣
)

(B.11)

with ρ0 the remainder of the Taylor-series expansion of r2(α) + r2(θ)− 2r(α)r(θ) cos(α− θ) =: Φθ(α)
around α = θ up to second order and ρ1 the remainder of the Taylor-series expansion of s(α) around
α = θ up to first order:

ρ0(α) =

∫ α

θ

D3Φθ(ζ)

2
(α− ζ)2 dζ, ρ1(α) =

∫ α

θ

D2s(ζ) (α− ζ) dζ.

Note that the remainder ρ0 contains derivatives of r(·) up to third order. Hence, the remainder is well
defined for r ∈ C3

p(0, 2π). By the stationary-phase argument, the second term in parenthesis in the
ultimate expression in (B.11) is o(n−1) as n → ∞. Again ignoring terms o(n−1), the first term can
be evaluated explicitly:

|V̂n(θ)| ≤ 4 ‖Ds‖L∞(0,2π)

∣∣∣∣ log ε sin(Ds(θ) εñ)− Si(Ds(θ) εñ)

Ds(θ) ñ

∣∣∣∣, (B.12)

where Si(θ) =
∫ θ

0
α−1 sinαdα denotes the sine integral. Noting that ‖Ds‖L∞(0,2π) is bounded and

that Ds > 0 under the standing assumptions, and recalling that ε > 0 is essentially arbitrary, we
obtain that |V̂n(θ)| = O(n−1) as n → ∞. Hence, in the limit n → ∞, the single-layer potential
behaves essentially the same as in the case of a circular domain.

For the double-layer potential, we have

(Kφ, en)L2((0,Λ),C) =

∫ 2π

0

φ(s(θ)) e∗n(s(θ)) K̂n(θ)Ds(θ) dθ

with

K̂n(θ) =− n1(θ)

2π

∫ 2π

0

r(α) cosα− r(θ) cos θ

r2(α) + r2(θ)− 2r(α)r(θ) cos(α− θ)
e−ιñ(s(α)−s(θ))Ds(α) dα

− n2(θ)

2π

∫ 2π

0

r(α) sinα− r(θ) sin θ

r2(α) + r2(θ)− 2r(α)r(θ) cos(α− θ)
e−ιñ(s(α)−s(θ))Ds(α) dα.

We again construct an asymptotic approximation to the above integrals in the limit n → ∞ by
invoking the stationary-phase argument. Accordingly, we obtain

K̂n(θ) = − 1

2π

(
Dr(θ) cos θ − r(θ) sin θ

r2(θ) +Dr2(θ)
n1(θ) +

Dr(θ) sin θ + r(θ) cos θ

r2(θ) +Dr2(θ)
n2(θ)

)
×
∫ ε

−ε
(1/α) e−ιñ(Ds(θ)α+ρ1(α))

(
Ds(θ) + ρ1(α)

)
dα+ o(n−1). (B.13)
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For the components of the normal vector, it however holds that

(
n1(θ), n2(θ)

)
=

rotDx(θ)

|Dx(θ)|
=

(r(θ) cos θ +Dr(θ) sin θ, r(θ) sin θ −Dr(θ) cos θ)√
r2(θ) +Dr2(θ)

(B.14)

and substitution of (B.14) into (B.13) reveals that the term in parentheses vanishes. Hence, we arrive
at the result that |K̂n(θ)| = o(n−1) as n→∞.

From the above results, it follows that there exist positive constants CV , CK such that:∣∣(V h, en)L2((0,Λ),C)

∣∣ ≤ CV n−1 |ĥn|
∣∣(Kφ, en)L2((0,Λ),C)

∣∣ ≤ CKn−1 |φ̂n|

as n→∞. The above asymptotic bounds lead to the following sequence of inequalities:(
1
2 − CKn

−1
)
|φ̂n| ≤ 1

2 |φ̂n| −
∣∣(Kφ, en)L2((0,Λ),C)

∣∣ ≤ ∣∣ 12 φ̂n − (Kφ, en)L2((0,Λ),C)

∣∣
=
∣∣(V h, en)L2((0,Λ),C)

∣∣ ≤ CV n−1|ĥn| (B.15)

which implies that |φ̂n| ≤ 2CV n
−1|ĥn| as n → ∞. It then follows from (B.8) that, for the class of

domains under consideration, the boundary-integral formulation indeed maps h ∈ Hm
p (0,Λ) (m ∈ Z+)

to φ ∈ Hm+1
p (0,Λ).
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