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Summary

The process of plastic deformation in semicrystalline polymers is complicated
due to the operation of a variety of mechanisms at different levels and is strongly
dependent on their crystallinity level, the initial underlying microstructure,
and the evolution of this structure during deformation. Any macroscopically
homogeneous deformation is accommodated by various deformation mechan-
isms in the heterogeneous microstructure. The objective of this work is to
establish a quantitative relation between the microstructure and the mechanical
performance of semicrystalline polymers, as characterized by elasto-viscoplastic
deformation. In order to do that, a micromechanically based constitutive model
is used. The model represents the microstructure as an aggregate of layered
composite inclusions, each consisting of a crystalline lamella, which is mechan-
ically coupled to its adjacent amorphous layer. The crystalline phase is modeled
as anisotropic elastic with plastic flow governed by crystallographic slip. The
amorphous phase is assumed to be isotropic elastic with a rate dependent plastic
flow and strain hardening resulting from molecular orientation. To relate the
volume-averaged mechanical behavior of each layered composite inclusion to the
aggregate of composite inclusions, a hybrid local-global interaction law is used.

The concept of a layered composite inclusion as a representative element is
extended with a third phase, which is also referred to as the interphase or the
rigid-amorphous phase. This phase represents the region between crystalline
and amorphous domains, having a somewhat ordered structure and a fixed
thickness. The incorporation of the interphase in the composite inclusion model
naturally leads to a dependence on the lamellar thickness, i.e. on an internal
length scale. This rigid-amorphous phase is particularly relevant for quantitative
modeling of the behavior of oriented semicrystalline structures. A comparison
with experimental data shows a good prediction with the two-phase model for
isotropic material.

A critical factor for adding quantitative predictive abilities to the micromech-
anical model for prediction of the elasto-viscoplastic behavior in semicrystalline
polymers is the stress-dependence of the rate of plastic deformation, the slip kin-
etics, which is the mechanism underlying time-dependent, macroscopic failure.

v



vi Summary

The kinetics of the macroscopic plastic flow strongly depend on the slip kinetics
of the individual crystallographic slip systems, accompanied by the yield kinetics
of the amorphous domain. To obtain an accurate quantitative prediction, the
viscoplastic power law relation, normally used in micromechanical modeling,
is replaced with an Eyring flow rule. The slip kinetics are then re-evaluated
and characterized using a hybrid numerical/experimental procedure, and the
results are validated for uniaxial compression data of HDPE. A double yield
phenomenon is observed in the model prediction, and is found to be related to
morphological changes during deformation, which induce a change of deforma-
tion mechanism.

Experimental data on the yield kinetics of polyethylene at different temperatures
and strain rates reveals the contribution of two relaxation processes. Further
experimental observations on the stress dependence of the time-to-failure show a
piecewise linear relation in semi-logarithmic plots, with the same slope as that
of the yield kinetics. This indicates that the kinetics of failure under applied
strain-rate and applied stress are strongly related. To predict failure under both
conditions and for different temperatures, the crystallographic slip kinetics and
the amorphous yield kinetics were further refined, and the Eyring flow rule
was modified by adding a temperature shift function. The creep behavior of
polyethylene was then simulated directly using the multi-scale, micromechanical
model, predicting the time-to-failure without any additional fitting parameter.
To enable the prediction of both tension and compression, a non-Schmid effect is
added to the constitutive relation of each slip system.

Injection molded or extruded polymers possess a different morphology than
isotropic polymers, due to the subjection to shear and elongational flow dur-
ing processing. Therefore, their plastic deformation and failure behavior are
anisotropic. The relation between the initially oriented microstructure and the
deformation kinetics of oriented polyethylene tapes is investigated using the
multi-scale micromechanical model. The initial orientation distribution for the
model is obtained based on wide angle X-ray scattering experiments. Due to the
presence of oriented amorphous domains in the drawn samples, the macroscopic
plastic flow is predominantly governed by the yield kinetics of the amorphous
phase. The necessity of modeling the load angle dependence of the properties
of the oriented amorphous domain for an accurate quantitative prediction is
discussed. Furthermore, the possibilities for identifying the properties of distinct
crystallographic slip systems are investigated.



Introduction

Chapter 1

Abstract

A general introduction to the relation between structure and mechanical
properties of semicrystalline polymers is presented, as well as the under-
lying deformation mechanisms. An overview of the micromechanically
based approach used for the modeling of the mechanical behavior of these
materials, involving different length scales, is given.

1.1 General introduction

Due to many advantages such as low cost and weight, polymeric materials are
increasingly integrated in everyday life and are being used in a wide range
of applications, like packaging, building and construction, medical, household,
electrical, automotive, agriculture, etc. With an average annual growth rate of
8.1%, the world consumption of solid polymers increased from 7 million tons in
1960 to 196 million tons in 2005. Using a more conservative annual growth rate
of 6.5%, world polymer consumption will be 540 million tons in year 2020 [1].

Depending on the arrangement of molecular chains, polymers can be amorphous
with molecules lacking any positional order, or semicrystalline containing both
ordered crystalline and randomly coiled amorphous regions. One of the most
important advantages of semi-crystalline polymers is that their maximum tem-
perature of use is set by the melting temperature Tm, whereas the maximum use
temperature of amorphous polymers is set by the glass transition temperature
Tg, always lower than Tm. Of the world’s plastic consumption in year 2005,
68 million tons consisted of polyethylene [2], being one of the most important
semicrystalline polymers with many daily life and engineering applications.

1
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1.2 Processing-structure-properties

The mechanical performance of a semicrystalline polymeric product is strongly
dependent on the microstructural features, such as the degree of crystallinity,
crystal size and initial orientation, which themselves are determined by the
thermo-mechanical history experienced by the polymer during processing of
the product [3–6]. Figure 1.1 lists four basic microstructures, often observed in
semicrystalline polymers. When slowly cooled from the melt in the absence of

1 µm1 µm1 µm100 µm

ba c d

flow

Figure 1.1 Morphologies, often observed in semicrystalline polymers: (a) Optical image of
isotropic spherulites, reproduced from [7] and the schematic representation from [8].
(b) A schematics representation and an AFM image of partially oriented spherulites,
reproduced from [9]. (c) A schematics representation and an AFM image of a row-
structure, reproduced from [9]. (d) An AFM image of a shish-kebab structure,
reproduced from [9] and a schematic representation from [10].

flow, so-called quiescent crystallization, semicrystalline polymers often show a
spherulitic morphology [8, 11, 12]. Each spherulite consists of a radial assembly
of thin crystalline lamellae which are separated by amorphous layers, figure 1.1a.
Under conditions of relatively weak flow of the polymer during processing,
nucleation of spherulitic structures may be significantly enhanced [13, 14], and
slightly oriented spherulitic structures are formed, as can be seen in figure 1.1b.
At increasing flow rates or times, the crystalline morphology changes and
oriented crystalline structures such as stacked lamellae (row-structure) and a
shish-kebab-like morphology are observed [9, 15, 16], as shown in figure 1.1c
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and 1.1d, respectively. In injection molding of semicrystalline polymers, during
which the flow rate often shows strong variations throughout the mold, in
general, all these basic structures may be found [5, 6]. For example, the absence
of shear in the center of an injection-molded product results in a spherulitic
structure, while in the regions at the cavity walls that experience a strong flow,
an oriented structure can be present.

An illustrative example of the influence of different structures, formed during
processing, on the mechanical performance of semicrystalline polymers is given
in figure 1.2, which shows an injection-molded plate of high-density polyethylene
(HDPE), revealing a homogeneous core and oriented layers of different thickness
at various locations with respect to the die along the flow direction [6]. The differ-

A B

C

A

B

C

1
 m

m

tensile barssolidified polymer plaque

injection
of

molten
polymer

Figure 1.2 Variation of microstructure over the thickness in injection-molding of HDPE
(left), and the resulting different mechanical responses of samples A, B and C, cut
from different parts of the injection-molded plate (right).

ences observed in the microstructure have a drastic influence on the macroscopic
mechanical response of specimens cut at different locations and orientations from
the injection-molded plate, which range from brittle fracture, to neck formation
and homogeneous deformation, samples A, B and C, respectively. From this
simple experiment, it is evident that the mechanical properties of polymer
products are strongly linked to their underlying microstructure. Therefore,
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the objective of this work is to establish a quantitative relation between the
microstructure and the mechanical performance of semicrystalline polymers, as
characterized by elasto-viscoplastic deformation.

1.3 Phenomenology of failure

In order to predict the mechanical behavior of semicrystalline polymers, one first
needs to further investigate their yield and failure kinetics under both short-
term and long-term mechanical loadings. Figure 1.3a illustrates the short-term
mechanical behavior of HDPE, measured in a tensile test with a constant strain
rate. The material displays an initially elastic region, where the stress increases
linearly with strain. At higher stresses, the response becomes nonlinear and
eventually reaches a maximum, the so-called engineering yield stress. Soon after,
the material experiences necking due to strain localization [17] and a localized
plastic zone is formed, which can propagate along the entire length of the test
bar. From a mechanical point of view, the moment of neck initiation is regarded
as the point of failure, i.e. where the material loses its integrity.
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Figure 1.3 (a) Deformation behavior of isotropic HDPE in uniaxial tension under a constant
strain rate of 0.001 s−1. (b) Creep behavior of the same material under a constant
applied stress of 20 MPa.

Figure 1.3b shows the long-term performance of the material, in which the
evolution of the engineering strain under a constant applied stress that is
approximately 16% below the yield stress, is illustrated. As can bee seen, the
deformation increases slowly in time, with a rate of deformation becoming con-
stant (flow regime) after an initial viscoelastic region (primary creep). However,
the rate of deformation abruptly increases at longer loading times, resulting
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in the failure of the material. The observed mode of failure is similar to that
observed in short-term performance, i.e. necking. The key issue, here, is that
the applied stress dependency of the steady-state creep rate at the flow regime is
interchangeable with the strain rate dependency of the yield stress.

The time scale at which a polymer material fails, depends on the loading
condition applied. This is illustrated in figure 1.4, which shows the deformation
of an isotropic HDPE in uniaxial tension under different constant strain rates, and
the creep response of the same material under different constant applied stresses.
It can be concluded from this figure that for polymer materials, due to their time-
dependent mechanical response, it is not the question whether the material fails
under static loading, but rather when the material fails under a designed load
specification. The higher the strain rate, the higher the yield stress, and the higher
the level of the applied load, the lower the time-to-failure. The short-term and
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Figure 1.4 (a) Tensile behavior of isotropic HDPE under different constant strain rates. (b)
Creep behavior of the same material under different constant applied stresses.

long-term kinetics of isotropic HDPE at the ambient temperature are given in
figure 1.5. As can be seen, both strain rate dependence of the yield stress and the
applied stress dependence of the time-to-failure give a linear relation in a semi-
logarithmic scale, with a same absolute slope α. The observation supports the
idea that the kinetics of failure under applied strain rate and applied stress are
strongly related.

1.4 Deformation of semicrystalline polymers

Semicrystalline polymers possess a crystalline phase which consists of regularly
ordered chain segments, and amorphous domains in which molecules are ar-
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Figure 1.5 (a) Strain rate dependence of the yield stress and (b) applied stress dependence
of time-to-failure for isotropic HDPE at 25◦C.

ranged with a randomly coiled character, and which are constrained between
neighboring crystalline lamellae. These two constituent phases form a lamellar
morphology, characterized by crystallographic texture (crystalline lattice orient-
ation) and morphological texture (crystalline-amorphous interface orientation).
The plastic deformation of semicrystalline polymers is complicated due to the
operation of a variety of mechanisms at different levels and is strongly dependent
on the percentage crystallinity, the initial crystallographic and morphological
textures, as well as the evolution of these textures with ongoing deformation.
Any macroscopically homogeneous deformation is accommodated by various
deformation mechanisms in the heterogeneous microstructure [18–22]. High
density polyethylene (HDPE) will be used as an example throughout this thesis.

1.4.1 Crystalline phase

The most common crystalline structure for polyethylene is the orthorhombic unit
cell [23]. The microstructural mechanisms that control the plastic deformation
of the crystalline phase in semicrystalline polymers are assigned primarily to
the crystallographic slip process up to moderate strains [18, 20, 21]. However,
polymer crystals may also deform plastically by mechanical twinning and stress-
induced martensitic phase transformation [19, 21]. Crystallographic slip is
the main deformation mode up to moderate strains, and occurs by gliding of
macromolecular chains along each other on crystallographic slip planes within
the crystalline lamella. When the direction of slip is parallel to the chain axis,
the deformation mechanism is referred to as chain slip, whereas when the slip
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direction is perpendicular to the chain direction, the slip mechanism is called
transverse slip, as schematically shown in figure 1.6.

CS

TS

Figure 1.6 Schematic representation of chain slip (CS) and transverse slip (TS) in polymer
crystals.

During the early stages of deformation, plastic deformation predominantly
occurs by fine slip [8, 18], where a small amount of deformation is equally
distributed on a large number of slip planes. At larger strains, fine slip is
accompanied by a process of coarse slip, with large deformations on a few slip
planes, resulting in the break-up of crystalline lamellae [24, 25]. These two slip
mechanisms are schematically illustrated in figure 1.7. As can be seen, the fine

fine slip coarse slipundeformed

~c
~c

~n
~n

Figure 1.7 Schematic illustration of fine and coarse chain slip mechanisms, after [26].

slip process changes the angle between the chain direction and the interface
normal, whereas coarse slip does not alter the chain tilt angle.

The crystalline phase of polyethylene employs eight physically distinct slip
systems [20], which comprise six crystallographically different types of slip
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systems, each possibly having different properties. Figure 1.8 shows all slip
systems present in HDPE. This set of slip systems effectively comprises four
linearly independent deformation modes.

[010]

[001]

[100]

[001]

[001]

110
_

(100)

(010)

{110}

Figure 1.8 Schematic illustration of all physically distinct slip systems in the crystalline
domain of HDPE.
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1.4.2 Amorphous phase

The amorphous phase of semicrystalline polyethylene consists of an assembly of
randomly coiled macromolecules, strongly connected to their neighboring crys-
talline lamellae through tie molecules, loose chain folds, cilia and intercrystalline
chains crossing the interface of the crystalline and amorphous phase. Due to the
strong connectivity of the constituent phases in semicrystalline polymers through
many chains crossing the crystalline/amorphous interface, the crystallographic
mechanisms are inevitably accompanied by interlamellar deformation and they
can only deform simultaneously [22]. The deformation of the amorphous phase
can lead to either interlamellar shear or interlamellar separation.

1.5 Micromechanical modeling

In order to establish a quantitative relation between the microstructure and the
mechanical performance of semicrystalline polymers, as characterized by elasto-
viscoplastic deformation, a micromechanically based constitutive model [27–29]
is used. Two different length scales are distinguished in the employed multi-
scale, micromechanical model, namely the microscopic and macroscopic scale,
as is schematically depicted in figure 1.9. At the microscopic scale, a two-
phase layered composite entity [27, 28] is used as a representative microstruc-
tural element, based on the lamellar structure that is commonly observed in
semicrystalline polymers. Each separate composite entity consists of a crystalline
lamella, mechanically coupled to its corresponding amorphous layer to form
a lamellar morphology. The yield kinetics are defined at the level of the
crystallographic slip systems and the amorphous phase. A key issue is the
stress-dependence of the microscopic rate of plastic deformation, the slip kinetics,
which is the mechanism underlying time-dependent, macroscopic failure. The
kinetics of the macroscopic plastic flow strongly depends on the rate-dependence
of slip along crystallographic planes, together with the yield kinetics of the
amorphous domain. Therefore, an accurate quantitative prediction requires a
proper description of the slip kinetics and amorphous yield kinetics.

At the macroscopic level, the material is represented by an aggregate of a discrete
number of composite inclusions. The mechanical response of the aggregate to
the boundary conditions imposed, is then computed by relating the volume-
averaged deformation and stress fields of each layered composite inclusion to
the corresponding fields of the aggregate using a hybrid local-global interaction
law [27–29].
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Figure 1.9 Schematic representation of the microscopic and macroscopic scales, included
in the multi-scale, micromechanical model.

1.6 Outline of the thesis

In chapter 2, the concept of a layered composite inclusion as a representative
element is extended in an elastic framework by incorporating a third phase,
which is referred to as the interphase or the rigid-amorphous phase, having
a rather ordered structure and a constant thickness. The three-phase model
incorporates an internal length scale through crystalline lamellar and interphase
thicknesses, whereas no length scales are included in the two-phase model. A
linear elastic composite inclusion model is used to obtain a closed form solution
for the stiffness tensor of the semicrystalline polymer. The model results are
compared with experimental data to assess the capabilities of the two- or three-
phase composite inclusion model.

Chapter 3 is mainly directed towards adding quantitative predictive abilities
to the multi-scale, micromechanical model to capture the elasto-viscoplastic
deformation and texture evolution in semicrystalline polymers at room tem-
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perature. As a first step in obtaining an accurate quantitative prediction, the
viscoplastic power law relation is replaced with an Eyring flow rule. The slip
kinetics and the amorphous yield kinetics are then characterized using a hybrid
numerical/experimental procedure, and the results are validated for uniaxial
compression data of HDPE.

Experimental observations on both the yield kinetics and the time-to-failure of
polyethylene at different temperatures reveal the contribution of two relaxation
processes. Chapter 4 focuses on the prediction of this thermo-rheologically
complex short-term and long-term failure of polyethylene, which requires further
re-evaluation of the crystallographic slip kinetics and the amorphous yield
kinetics. To predict failure at different temperatures, the general Eyring flow rule
was modified by adding a temperature shift function. A non-Schmid effect is
added to the constitutive relation of each slip system to enable the prediction of
both tension and compression.

The deformation kinetics of oriented semicrystalline polymers is discussed in
chapter 5. Due to the effect of shear and elongational flow during processing,
injection molded or extruded polymers possess a different structure than iso-
tropic polymers, and their plastic deformation and failure are anisotropic. The
predictive ability of the micromechanical model, together with the characteriz-
ation of slip kinetics, is evaluated for oriented systems. The initial orientation
distribution of the material is obtained from WAXS experiments.

Finally, conclusions and some recommendations are given in chapter 6.
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Elastic properties1

Chapter 2

Abstract

The mechanical performance of semicrystalline polymers is strongly de-
pendent on their underlying microstructure, consisting of crystallographic
lamellae and amorphous layers. In line with that, semicrystalline polymers
have previously been modeled as two and three-phase composites,
consisting of a crystalline and amorphous phase and, in case of the three-
phase composite, a rigid-amorphous phase between the other two, having
a somewhat ordered structure and a constant thickness. In this work, the
ability of two-phase and three-phase composite models to predict the elastic
modulus of semicrystalline polymers is investigated. The three-phase
model incorporates an internal length scale through crystalline lamellar and
interphase thicknesses, whereas no length scales are included in the two-
phase model. Using linear elastic behavior for the constituent phases, a
closed form solution for the average stiffness of the inclusion is obtained. A
hybrid inclusion interaction model has been used to compute the effective
elastic properties of polyethylene. The model results are compared to
experimental data to assess the capabilities of the two- or three-phase
composite inclusion model.

1Reproduced from: A. Sedighiamiri, T.B. van Erp, G.W.M. Peters, L.E. Govaert, J.A.W. van
Dommelen, Micromechanical Modeling of the Elastic Properties of Semicrystalline Polymers: a
Three-Phase Approach, Journal of Polymer Science, Part B: Polymer Physics, 48: 2173–2184, 2010.
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2.1 Introduction

Semicrystalline polymeric materials are extensively used in structural, indus-
trial and electronic applications. The mechanical properties of these materials
strongly depend on their microstructure. Therefore, it is important to establish
a relation between the microstructure of semicrystalline polymers and their
effective mechanical properties. The elastic modulus of semicrystalline polymers
is an important property and difficult to predict due to their dependence on
many factors, such as: molecular weight, thermal history and crystallization
conditions [1]. The reported elastic properties of a certain polymer show large
scattering, because the samples used may differ from one another in terms of the
percentage of crystallinity or the microstructural morphology. Such scattering
can be seen in figure 2.1, which shows the Young’s modulus of melt crystallized
polyethylene versus the degree of crystallinity, reported by different sources.

Figure 2.1 Measurements of Young’s modulus as a function of crystallinity for
polyethylene, reported by: Davidse et al. [2], Crist et al. [3], Janzen [4] and BP-Solvay
polyethylene database [5].

Semicrystalline polymers can be considered as heterogeneous materials, and by
using micromechanical models their overall mechanical properties can be estim-
ated. In recent years, many studies have focused on the elastoplastic or elasto-
viscoplastic behavior of semicrystalline polymers. Lee et al. [6–8] developed a
specific micromechanical model in which a rigid-viscoplastic composite inclusion
model was used. Nikolov et al. [9, 10] used the same model for the small
deformation behavior by assuming a viscoelastic behavior for the amorphous
phase. They used a Sachs-inclusion model, which leads to a lower bound,
underestimating the experimental moduli [11]. Van Dommelen et al. [12] have
also used the Lee et al. approach for an elasto-viscoplastic model for large
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deformation of semicrystalline polymers. In this model, the behavior of the
amorphous phase was assumed to be isotropic elastic with a rate-dependent
plastic flow with strain hardening resulting from molecular orientation. The
crystalline phase was modeled as anisotropic elastic with plastic flow occurring
via crystallographic slip.

With most studies focusing on the (visco)plastic behavior of semicrystalline
materials, only a few micromechanical modeling studies on the elastic behavior
of these materials exist. Halpin and Kardos [13] proposed to use a Halpin-
Tsai model in order to obtain the elastic moduli of semicrystalline polymers,
thereby assuming that crystalline lamellae can be regarded as fibers. Phillips and
Patel [14] applied this model to polyethylene. However, this model is generally
used to calculate the moduli of short-fiber composites and is applicable for a low
filler volume fraction, which is not the case for semi-crystalline materials, for
which the crystallinity can often reach 60-70% [11].

Recently, Bedoui et al. [5, 11] proposed a differential scheme for the prediction
of elastic moduli of semicrystalline polymers. In this model, the crystalline
fraction is added step-by-step using a dilute scheme until the required volume
fraction is reached. Pham and Tucker [15] used a three-phase model to predict
the stiffness of polyethylene. The third phase, which is referred to as interphase
or rigid-amorphous phase, is a region between the crystalline and amorphous
phases, having a relatively ordered structure, constant thickness and due to the
constraints from adjacent crystal lamellae [15], much higher stiffness than bulk
amorphous phase. They compared their results with different experimental data
and concluded that a three-phase model gives a better prediction compared
to a two-phase model. In order to obtain the overall behavior, they used a
Mori-Tanaka model [16]. This theory applies for volume fractions up to 30%.
Again, this is not the case for semicrystalline polymers, especially polyethylene
with a crystallinity up to 70%. Furthermore, they modeled the microstructure
of the material as crystal lamellae randomly distributed in the amorphous
matrix. However, in semicrystalline polymers crystalline lamellae are separated
by amorphous layers [17]. Most recently, Gueguen et al. [18] also used a three-
phase model to estimate the effective elastic properties of PET (polyethylene
terephthalate).

In this work, a two-phase and a three-phase layered composite inclusion model
is developed in an elastic framework and compared in terms of predicting
quantitatively the elastic properties of semicrystalline polymers, in particular
HDPE. The incorporation of the interphase in the composite inclusion leads
to a dependence of the overal properties on the lamellar thickness. A linear
elastic composite inclusion model is used to obtain a closed form solution for the
stiffness tensor of each inclusion. The semicrystalline polymer is considered as
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an aggregate of layered composite inclusions and a hybrid interaction scheme [6,
7, 12] is used. The predictions of the models are compared with experimental
data to show the capability of the two and three-phase models. Semicrystalline
polyethylene is considered as a case study. Data available in the literature is
not very useful due to the lack of important data (crystallinity and lamellar
thickness), the use of copolymers, etc. A well defined and well characterized
material is required for a meaningful comparison between experiments and
model results. Therefore, small and wide angle X-ray scattering techniques are
used to characterize the polyethylene samples in terms of both crystallinity and
lamellar thickness. These are input for the composite inclusion model and make
the comparison more accurate, whereas in other studies, the lamellar thickness
was only chosen as a fitting parameter [15, 18]. It is also noteworthy that in
this work it is attempted to establish a model which is based on a realistic
morphological description of the semicrystalline polymers.

2.2 Experimental

The semicrystalline polymers used in this study are two different batches of
HDPE of the same grade supplied by Sabic (Stamylan HD 9089S), with Tg ≪
Troom, MW = 70, 000 [g/mol] and Mn = 11, 000 [g/mol].

2.2.1 Sample preparation

HDPE samples were compression molded between brass plates and aluminum
foil at 200 ◦C. In order to obtain different levels of crystallinity and lamellar
thickness, the samples were subjected to different crystallization procedures,
namely quenching, for which molten samples were placed in a cold press, and
isothermal crystallization (annealing), which was applied to quenched samples.
For the isothermal crystallization procedure, HDPE samples were wrapped in
aluminum foil and placed in an oven at different temperatures. The annealing of
quenched samples results in an increase of the average long period D(t), which
is related to the distance between lamellae, according to [19]:

D(t) = D0 + B(T)ln
[ t

t0

]

, (2.1)

where D0 is the initial long period of the unannealed sample at a corresponding
positive but very small time t0, and B(T) is a constant which is a function of the
annealing temperature T.
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2.2.2 Crystallinity and lamellar thickness

The degree of crystallinity and lamellar thickness of samples were measured
by wide angle and small angle X-ray scattering experiments, respectively. The
weight fraction of crystals of the semicrystalline samples is determined using:

X =
C − A

C
, (2.2)

where C is the area of the crystalline profile and A is the area of the amorphous
profile, which is impossible to measure separately due to the fast crystallization
rate of PE. Therefore, an amorphous halo was estimated only [20].

The crystalline long period, D, was determined from the SAXS profile, which
gives the intensity against the magnitude of the scattering vector ~q, which is
defined as [21]:

q =
2π

D
=

4π

λ
sinθ, (2.3)

where D is the lamellar long period, λ the X-ray wavelength and θ the scattering
angle. The peak positions of the SAXS profiles are used to calculate the average
lamellar thickness using:

δc = Xvol · D, (2.4)

where Xvol is the volumetric degree of crystallinity obtained from the weight
fraction of crystals X :

Xvol =

X
ρc

X
ρc
+ 100−X

ρa

× 100%, (2.5)

with ρc = 1000 kg/m3, the crystal density and ρa = 855 kg/m3, the amorphous
density [22]. Figure 2.2 shows the lamellar thickness and the interlamellar
thickness of the samples versus degree of crystallinity. It can be seen that, in
this range of crystallinity, lamellar thickness varies considerably with the degree
of crystallinity, whereas interlamellar thickness remains almost constant.

2.2.3 Mechanical testing

Tensile tests on the dumbbell-shaped tensile specimens were performed at room
temperature using a Zwick/Roell Z010 universal tensile tester, equipped with an
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Figure 2.2 Variation of (a): lamellar thickness and (b) interlamellar thickness versus
crystallinity of PE samples. Symbols show two different batches of the same grade.

uniaxial extensometer.

2.3 Micromechanical modeling

When cooled from the melt, many polymers, such as polyethylene, develop
a semicrystalline structure. These materials often show a spherulitic morpho-
logy [23, 24]. Each spherulite consists of a radial assembly of twisted thin
crystalline lamellae which are separated by amorphous layers [17], as shown in
figure 2.3. In this section, a micromechanical model based on a layered structure
is formulated in a linear elastic framework.

Figure 2.3 Morphology of a spherulitic semicrystalline polymer.
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2.3.1 Two-phase composite inclusion

The elastic behavior of microscopically heterogeneous semicrystalline material
can be modeled by an aggregate of layered two-phase composite inclusions,
as proposed by Lee et al. [6–8] for rigid-viscoplastic material behavior. Each
composite inclusion is represented by a crystalline lamella which is mechanically
coupled to its adjacent amorphous layer, as shown in figure 2.4. The stress and

Figure 2.4 Schematic representation of a two-phase composite inclusion.

strain fields in each separate phase of the composite inclusion are assumed to
be piecewise homogeneous; but, they can be different between the two coupled
phases [12]. The volume fractions of the crystalline and amorphous phases are
given by f c and f a = 1 − f c, respectively. Otherwise, the shapes and dimensions
of these layers are not specified. The inclusion-averaged stress tensor σ and linear
strain tensor ǫ are given by the volume average over the two phases:

σ
I = f c

σ
c + (1 − f c)σa, (2.6)

ǫ
I = f c

ǫ
c + (1 − f c)ǫa, (2.7)

where the superscript “I” denotes the composite inclusion. The two phases are
assumed to be kinematically compatible and in equilibrium across the interface.
The traction continuity and compatibility condition on the interface can be
written as:

σ
a ·~nI = σ

c ·~nI = σ
I ·~nI , (2.8)

~eI
1 · ǫ

a ·~eI
2 = ~eI

1 · ǫ
c ·~eI

2 = ~eI
1 · ǫ

I ·~eI
2, (2.9)
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where ~nI = ~eI
3 denotes the unit normal vector of the interface, and ~eI

1 and ~eI
2 are

two unit vectors in the interface such that ~eI
1 ×~eI

2 = ~eI
3. For convenience, let the

following fourth-order subspace projection tensors, based on the orientation of
the amorphous/crystalline interface plane, be defined as:

4P I
x =

2

∑
i=1

2

∑
j=1

~eI
i ⊗~eI

j ⊗~eI
j ⊗~eI

i , (2.10)

4P I
n = 4I − 4P I

x, (2.11)

where 4I is the fourth-order identity tensor. Then, the interface conditions can
be rewritten as:

4P I
n : σ

a = 4P I
n : σ

c = 4P I
n : σ

I, (2.12)

4P I
x : ǫ

a = 4P I
x : ǫ

c = 4P I
x : ǫ

I. (2.13)

By using consistency equations (2.6) and (2.7), together with interface condi-
tions (2.12) and (2.13), the volume-averaged fourth-order stiffness tensor of an
inclusion can be obtained (for more details, see appendix 2.A).

2.3.2 Towards a three-phase model

Semicrystalline polymers have been modeled as two-phase composites [9–12],
consisting of crystalline lamellae and an interlamellar matrix. In these models,
the properties of the interlamellar phase are assumed to be equal to those of
the bulk amorphous phase. The interlamellar stiffness, therefore, is taken to
be constant for all values of crystallinity. However, some literature suggest
that the interlamellar properties vary with the degree of crystallinity [3, 15,
25]. Strobl and Hagedorn [26] first used Raman spectroscopy to characterize
the three-phase morphological structure of semicrystalline polyethylene. They
described semicrystalline polyethylene as a superposition of three components:
an orthorhombic crystalline phase, an isotropic amorphous phase and a third
phase consisting of anisotropic ordered chain segments, which are oriented
but not in orthorhombic packing. The crystalline fraction obtained by using
the three-phase analysis was smaller than that derived from density. Lin et
al. [27] showed that the crystallinities measured by DSC and density, reflect
the summation of orthorhombic crystalline fraction and some non-orthorhombic
interphase fraction.

Lamellar thickness varies with crystallinity [20, 28, 29], see also the experimental
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results in figure 2.2a. In order to take into account the variation of lamellar
thickness with the degree of crystallinity, a three-phase model is proposed.
A composite inclusion is assumed to consist of a layered arrangement of a
crystalline lamella, a so-called rigid-amorphous phase and a bulk amorphous
phase, see figure 2.5. Each crystalline lamella is surrounded by two rigid-
amorphous layers, each of which has a thickness of δr. Consequently, four layers
are present in the schematic representation of this three-phase model.

Figure 2.5 Schematic representation of a three-phase composite inclusion.

A relationship between the crystallinity and the volume fractions of the other two
phases can be obtained:

f r = 2
δr

δa
f a, (2.14)

f a =
1 − f c

1 + 2 δr

δa

. (2.15)

A constant rigid-amorphous thickness is assumed and this thickness is obtained
from experiments. The geometrical configuration is then determined by the ratio
of rigid-amorphous layer thickness and the amorphous layer thickness. The
lamellar thickness varies with the crystallinity as:

δc = δil f c

1 − f c
, (2.16)

with δil = δa + 2δr, the interlamellar thickness. In figure 2.6, situations
with different ratios of rigid-amorphous layer thickness and amorphous layer
thickness are shown.
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a b

Figure 2.6 (a): Relationship between the crystallinity and the volume fractions of the two
other phases. (b): variation of phases thicknesses with crystallinity.

Consistency conditions, for the case of a three-phase composite inclusion, can be
written as:

σ
I = f c

σ
c + f r

σ
r + f a

σ
a, (2.17)

ǫ
I = f c

ǫ
c + f r

ǫ
r + f a

ǫ
a, (2.18)

and interface conditions are governed by:

4P I
n : σ

a = 4P I
n : σ

r = 4P I
n : σ

c = 4P I
n : σ

I , (2.19)

4P I
x : ǫ

a = 4P I
x : ǫ

r = 4P I
x : ǫ

c = 4P I
x : ǫ

I , (2.20)

where the fourth order projection tensors, 4P I
n and 4P I

x, are defined as in
equations (2.10) and (2.11). The volume-averaged fourth-order stiffness tensor
of a three-phase composite inclusion can be obtained in the same way as for
the two-phase composite inclusion and is a function of the elastic moduli of
the three phases as well as their volume fractions (see appendix 2.B). Then,
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the semicrystalline polymer is modeled as an aggregate of these three-phase
layered composite inclusions. The three-phase model incorporates the ratio of
the rigid-amorphous and amorphous layer thicknesses, whereas no length scale
is included in the two-phase model. The average stiffness of the interlamellar
material is, therefore, no longer constant.

2.3.3 Inclusion interaction law

To relate the volume-averaged mechanical behavior of each layered composite
inclusion to the aggregate of composite inclusions, a local-global interaction law
must be formulated. Consider an aggregate of N composite inclusions. The
equivalent homogeneous elastic behavior of the aggregate is defined by:

σ̄ = 4C̄ : ǭ, (2.21)

where σ̄ and ǭ denote the macroscopic stress and strain tensors. The consistency
conditions for the aggregate are written as:

σ̄ = 〈σ I i〉, (2.22)

ǭ = 〈ǫI i〉, (2.23)

with the notation 〈 · 〉 = ∑
N
i=1 f I i

( · )i denoting the volume average of all
inclusions and f I i

the volume fraction of composite inclusion i. In case the size of
all composite inclusions is the same, f I i

equals 1
N . Based on a specific assumption

for the interactions between the inclusions, several interaction laws can be used
to estimate the properties of an aggregate of inclusions.

The hybrid-interaction model for lamellar composites, which was introduced by
Lee et al. [6–8] constitutes an intermediate approach between the upper bound
Voigt- and the lower bound Reuss-inclusion models.

Since the interface condition (2.19) acts upon the 4P I i

n subspace projection of
σ

I i
, and provides certain constraints on these components of the inclusion-

averaged stress, a Voigt-like interaction law is assumed for the 4P I i

n subspace
projections of the inclusion-averaged strain. Furthermore, since a certain measure
of compatibility is provided for the inclusion-averaged strain by the interface

condition (2.20), acting on the 4P I i

x subspace projections of ǫ
I i

, a Reuss-like

interaction law is assumed for the corresponding 4P I i

x subspace projection of the
inclusion-averaged stress [12].
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For the hybrid interaction model, in contrast to Voigt- and Reuss-inclusion
models, neither conditions (2.22) or (2.23) are satisfied trivially. In order to satisfy
the 12 conditions of consistency, six more auxiliary unknowns are introduced.
Different choices for these auxiliary unknowns can be made, leading to different
versions of the hybrid interaction model. A deformation-like auxiliary unknown
was found to be the most suitable and the resulting hybrid interaction model
was showed to provide the most realistic predictions [6–8, 12]. In the ǫ̂-inclusion
model, an unknown auxiliary strain field ǫ̂ is introduced. Then, a Reuss-

like interaction law is applied to the 4P I i

x subspace projection of σ
I i

. The

subspace projection 4P I i

n of the inclusion-averaged strain is assumed to equal
the corresponding subspace projection of ǫ̂:

4P I i

x : σ
I i
= 4P I i

x : σ̄ ; i = 1, . . . , N, (2.24)

4P I i

n : ǫ
I i
= 4P I i

n : ǫ̂ ; i = 1, . . . , N. (2.25)

Considering a system of N inclusions, subjected to a macroscopic stress field,

3N local unknowns (4P I i

n : σ
I i
) and 6 global unknowns ǫ̂, must be obtained

to determine the state of each composite inclusion. Equation (2.25) provides
3N equations. Furthermore, the macroscopic equilibrium condition σ̄ = 〈σ I i〉,
provides six more equations, leading to a set of a (3N + 6) linear equations to
be solved. Elimination of these unknowns leads to a direct formulation for the
fourth order elasticity tensor of the aggregate, see Appendix 2.C.

2.4 Characterization of constituent phases

In this work, isotropic polyethylene (PE) is studied as an important example
of semicrystalline polymers. Experimental studies of melt-crystalized PE and
molecular models show that lamellar surfaces are of the {h0l} type, where the
angle between the chain direction ~c and the lamellar normal direction ~n varies
between 20◦ and 40◦ [23, 30]. Here, the lamellar surface is set at {201}, which
corresponds with an angle of 35◦. The spherulitic structure of melt-crystalized PE
is represented by an aggregate of randomly oriented inclusions. In the following
the characteristics of the constituent phases, namely the crystalline phase, the
amorphous region and the rigid-amorphous phase are described.
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2.4.1 Crystalline phase

The crystalline phase possesses highly anisotropic properties with a high elastic
modulus in the chain direction. PE crystals have an orthorhombic structure, with
lattice parameters a = 7.39 Å, b = 4.95 Å and c = 2.54 Å [31, 32].

For orthorhombic PE crystals, the elasticity matrix C involves nine independent
elastic constants:

C =











c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66











, (2.26)

and relates stress and strain, which are here stored in the following order:

σ~ = [σ11 σ22 σ33 σ12 σ13 σ23]
T, (2.27)

ǫ~ = [ǫ11 ǫ22 ǫ33 2ǫ12 2ǫ13 2ǫ23]
T. (2.28)

The elastic constants of the PE unit cell have theoretically been studied by
several authors [33–36]. In addition, experimental estimates for these parameters
have been obtained based on drawn material [37]. Table 2.1 shows the results
of the theoretically calculated elastic constants, obtained by different authors
and the only available experimentally measured values to our knowledge. In
addition to the choice of intermolecular force field parameters, theoretical results
are also sensitive to the setting angle, which is the angle between the planar
zigzag polyethylene chain with the b-axis of the orthorhombic unit cell. Another
important factor is the intermolecular interaction, which is very sensitive to
intermolecular distance. Thus, the elastic constants can be significantly affected
by temperature [38]. According to table 2.1, except for the differences due to
the mentioned factors, the principal features of the anisotropy can be observed
in all theoretical calculations, with a high value for c33, which is the elastic
constant along the chain direction [39]. Choy and Leung [37] used an ultrasonic
method for measurement of the elastic constants of ultradrawn high-density PE
with a draw ratio up to λ = 27. This draw ratio orients the chains toward the
drawing axis, but does not lead to fully drawn samples. The result is a value
of c33 = 81 GPa, which is less than the theoretical results. However, Tashiro et
al. [40] showed that in polymers with a planar zigzag conformation, the chain
experiences a thermal motion at room temperature and contracts to some extent
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Table 2.1 Elastic constants for polyethylene obtained in different studies.

Theoretical Experimental
cij (GPa) Odajima Karasawa Tashiro Choy

and Maeda [33] et al. [34] et al. [36] and Leung [37]
c11 4.83 8.3 7.99 7.0
c22 8.71 8.2 9.92 7.0
c33 257.1 318.4 315.92 81
c12 1.16 4.3 3.28 3.8
c13 2.55 0.7 1.13 4.7
c23 5.84 2.5 2.14 3.8
c44 2.06 3.6 3.62 1.6
c55 0.78 1.7 1.62 1.6
c66 2.83 3.0 3.19 1.6

from the planar-zigzag conformation, which induce a drop in the modulus along
the chain direction. Furthermore, the values of theoretical calculations, especially
for the elastic constant along the chain direction, cannot be reached in practice,
since semicrystalline polymers are by no means perfect from a structural point
of view. The crystals in semicrystalline polymers contain imperfections such as
dislocations or point defects, leading to some degree of disorder in the polymer
crystals and distortion of the crystal lattice [39].

Considering the lack of sufficient experimental measurements in the literature
to fully determine nine elastic constants of a PE unit cell and the drawbacks of
theoretical calculations, results with a theoretically calculated and experimentally
obtained stiffness are presented. Here, the experimental constants obtained by
Choy and Leung [37] as well as the theoretical stiffness constants calculated by
Tashiro et al. [36] are used.

2.4.2 Amorphous phase

For PE, the glass transition temperature of the amorphous phase is below the
room temperature. The amorphous phase, therefore, is in the rubbery state
at room temperature. The following equation relates the shear modulus of
the rubber plateau G0

N to the molecular mass between entanglements and can
be applied to the amorphous phase of thermoplastic polymers above the glass
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transition temperature [41]:

G0
N =

ρRT

Me
, (2.29)

with ρ the amorphous phase density, R the ideal gas constant, T the temperature
and Me the molecular mass between entanglements. The shear modulus of
the rubber plateau can be obtained by rheological measurements at an elevated
temperature and is reported to be almost 2 MPa for PE at approximately
463 K [41–43]. Since PE cannot be obtained in a fully amorphous state at room
temperature, G0

N values are scaled to the ambient temperature through [44]:

G0
N(T) = G0

N(T0)
ρT

ρ0T0
, (2.30)

with T0 the reference temperature and T the ambient temperature, which is set to
be 298 K. The amorphous phase density at 463 K and ambient temperature for PE
are 760 kg/m3 and 855 kg/m3, respectively [11, 22]. Then, the Young’s modulus
E and the Poisson’s ratio ν of the amorphous phase are obtained, assuming a
bulk modulus K of the amorphous phase equal to 3000 MPa [5]. The mechanical
properties used for the amorphous phase are listed in Table 2.2.

Table 2.2 Mechanical properties of the amorphous phase of PE.

E (MPa) ν (-)
4.5 0.49975

2.4.3 Rigid-amorphous phase

The mechanical properties of the interlamellar phase (amorphous phase + rigid-
amorphous phase) play a significant role for the macroscopic properties of
semicrystalline polymers. Unfortunately, no experimental measurements of the
rigid-amorphous properties, such as thickness and stiffness, exist because of its
small dimension. Furthermore, the stiffness may vary throughout the thickness
of the layer. Recently, Veld et al. [25] estimated the thermoelastic properties of
the noncrystalline domain (interlamellar phase) of semicrystalline PE by using
molecular simulations. The results show that the noncrystalline interlamellar
phase is anisotropic and exhibits properties intermediate between that of the
semicrystalline solid and of the amorphous melt. They also determined the
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interface thickness δr as a function of temperature, ranging from 350 K to 450
K, to be 1 nm to 2 nm.

Here, the interlamellar phase is assumed to be isotropic. The rigid-amorphous
phase is, therefore, considered to be isotropic as well so that it can be described
with only two elastic parameters. The bulk modulus Kr is set equal to 5000
MPa, which is between the bulk modulus of the crystalline lamellae and that of
the amorphous phase. In this work, the shear modulus of the rigid-amorphous
phase, Gr, is considered as a fitting parameter. The influence of the ratio δr

δa and
Gr on the macroscopic results will be investigated.

2.5 Results and discussion

The sensitivity of the macroscopic elastic modulus of PE, calculated by using two-
phase and three-phase micromechanical models to various physical modeling
parameters is investigated and results are compared to experimental data.
For micromechanical modeling of the spherulitic semicrystalline polymers, the
number of randomly oriented inclusions within the aggregate, N, should be
sufficiently high in order to ensure isotropy. In order to investigate the influence
of the aggregate size on the ǫ̂-inclusion model, aggregates of different sizes
N, have been randomly generated. For each aggregate size N, 20 different
configurations have been used to calculate the effective elastic properties at 70%
crystallinity from:

Ē =
1
3

(
1

s̄11
+

1
s̄22

+
1

s̄33

)

, (2.31)

with s̄ii the components of the macroscopic compliance matrix. Figure 2.7 shows
the average of the 20 homogenizations and the corresponding standard deviation
bandwidth. It can be observed that for large aggregate sizes, the average stiffness
converges and the corresponding standard deviation approaches zero. In the
following, 2000 randomly generated inclusions are used to achieve an isotropic
result and to minimize statistical variations.

First, in order to quantitatively assess the capabilities of the two-phase composite
inclusion model, the results are compared to the experimental data. Although the
elastic moduli measured for the PE system used in this study may appear high,
they are in the range of experimental data in literature (see figure 1). Figure 2.8
shows the predicted Young’s modulus of PE samples by using the two-phase ǫ̂-
inclusion model with different PE unit cell stiffnesses. As already mentioned, it
is difficult, if not impossible, to accurately measure 9 elastic constants of the PE
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Figure 2.7 Effective elastic properties of spherulitic PE at 70% of crystallinity using the
two-phase model, with different aggregate sizes.

unit cell. On the other hand, theoretical calculations are based on the assumption
of a perfect crystalline structure, which may not be correct. In order to reveal also
the effect of specific interactions among inclusions on the macroscopic results, the
two extreme inclusion interaction models, namely Voigt and Reuss models, are
also shown. Although the theoretical stiffness in the chain direction is almost four
times bigger than the experimental stiffness in the chain direction, it is observed
that the interaction between inclusions plays a far more important role in the
predictions. The two-phase ǫ̂-inclusion model predicts the Young’s modulus
of experimental data rather well in contrast to the classical interaction models,
especially when using the theoretically obtained Ec. However, there are some
limitations to the two-phase model. It was mentioned before that a two-phase
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Figure 2.8 Predicted Young’s modulus of PE samples using the two-phase model with
different interaction laws. Symbols give the experimental results for the two batches.

composite inclusion model does not incorporate any length scale and, therefore,
the predicted stiffness is independent of lamellar or interlamellar thickness.
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The three-phase model incorporates an internal length scale through amorphous
layer and interphase thicknesses. Now, the influence of various physical para-
meters of the rigid amorphous phase in the three-phase model is systematically
investigated using the theoretical stiffness for the crystalline phase. For this
purpose, it is assumed that interlamellar thickness δil remains constant with the
degree of crystallinity in the range of 60% − 80%. The value for interlamellar
thickness is taken from the experimentally measured interlamellar thickness vs.
crystallinity in figure 2.2, i.e. δil = 8 nm.

In this work the elastic modulus of the rigid-amorphous phase is considered as
a fiting parameter. The influence of varying this parameter from that of fully
amorphous to that of fully crystalline material on the macroscopic results is
illustrated in figure 2.9. The prediction of the three-phase model becomes equal to
that of the two-phase model in case the properties of the rigid-amorphous phase
are considered the same as the bulk amorphous phase. Considering the stiffness
of the rigid-amorphous phase as high as that of the crystalline phase, also leads
to a high value for the macroscopic Young’s modulus, corresponding to a higher
effective crystallinity. Therefore it can be seen that the mechanical properties of
the rigid-amorphous phase play an important role in the macroscopic properties.
The macroscopic Young’s modulus is also effected by the rigid-amorphous
layer thickness, as the ratio δr/δa influences the volume fraction of the rigid-
amorphous phase, see figure 2.10. The thicker the rigid-amorphous layer, the
stiffer the interlamellar phase and, in consequence, the material.

It is observed that the three-phase model enables having different configurations
with the same degree of crystallinity, through different rigid-amorphous layer
thicknesses and stiffness, while this effect is not captured with the two-phase
model. However, for HDPE it is clear that for isotropic material a two-phase
model is sufficient, i.e. although a rigid-amorphous phase may be present, its
relative influence is minimal for constant interlamellar thickness. Therefore,
by using a two-phase model and changing the properties of amorphous phase
to the combined properties of the rigid-amorphous region and the amorphous
region, one can almost obtain the results of the three-phase model with a given
rigid-amorphous layer thickness and stiffness. However, although the prediction
of the macroscopic properties would be the same for the isotropic case, for
oriented systems, the results can be considerably different. Figure 2.11 shows
equal area projection pole figures of an oriented system with a row structure
and uniaxial orientation of surface normals. Here, the lamellar surface is set
at {102}, which corresponds with an angle of 10◦ between the chain direction
~c and the lamellar normal direction ~n. In such a system, the Young’s modulus in
the orientation direction will be dominated by the properties of the amorphous
phase. Figure 2.12 shows the prediction of two-phase and three-phase models
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Figure 2.9 Effect of different shear and bulk moduli of the rigid-amorphous layer Gr and
Kr, on the prediction of the three-phase composite inclusion model with δr = 1 nm.
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Figure 2.10 Effect of different rigid-amorphous layer thickness on the prediction of the
three-phase composite inclusion model with Gr = 0.5 GPa.

for isotropic and oriented systems. As can be seen, it is possible to increase the
stiffness of the amorphous phase in the two-phase model (Ea = 10 MPa), so
that it can reproduce the results of the three-phase model with δr = 2 nm, in
isotropic systems. However, for oriented systems, in which the amorphous phase
is dominant in the out of plane modulus Ē33, higher stiffness of the amorphous
phase influences the macroscopic results considerably, making it impossible to
reproduce the results of the three-phase model.

These results show that in order to investigate the mechanical properties of
a rigid-amorphous phase and its influence on the mechanical properties of a
semicrystalline polymer, experimental results of the same system with different
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a b c d

Figure 2.11 Equal area projection pole figures of uniaxially oriented (a)–(c) crystallographic
lattice directions and (d) interface normals
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Figure 2.12 Effect of changing the properties of amorphous phase to the combined
properties of the rigid-amorphous region and the amorphous region in isotropic and
oriented systems.

morphological configurations are needed. For isotropic systems, a varying
interlamellar spacing with constant crystallinity will show the influence of
the rigid-amorphous phase. Furthermore, a comparison of the stiffness of
both isotropic and oriented systems elucidate the influence of incorporation
of the rigid-amorphous phase as a separate constituent of the semicrystalline
microstructure. In addition, the effects of the rigid-amorphous phase may be
more pronounced in other systems such as LDPE.

2.6 Conclusion

A micromechanical model has been developed for the prediction of the effective
mechanical properties of semicrystalline polymers. Both two-phase and three-
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phase layered composite inclusions have been used as representative microstruc-
tural elements, based on the lamellar structure that is commonly observed in
semi-crystalline polymers. All constitutive phases are mechanically coupled by
enforcing compatibility and equilibrium conditions on the interface between the
crystalline lamella, the interphase and the amorphous layer. A hybrid interaction
model also has been used to obtain the effective elastic properties, namely the
elastic ǫ̂-inclusion model, which provides an intermediate approach. Comparing
the predicted Young’s modulus to experimental data, shows that the two-phase
layered composites model together with the elastic ǫ̂-inclusion model provides a
good prediction. However, there are some limitations to the two-phase model.

It has been revealed that a three-phase composite inclusion model enables to
incorporate an internal length scale, leading to have different configurations
with the same degree of crystallinity, through different rigid-amorphous layer
thicknesses and stiffness, while this effect was not captured with the two-phase
model. It is noteworthy that more experimental data of a system with different
morphological configurations are needed to correctly verify the influence of
the mechanical properties of the rigid-amorphous phase on the macroscopic
properties.



36 2 Elastic properties

2.A Appendix: Stiffness tensor of an elastic two-phase
composite inclusion

In this appendix, a closed form solution for the average elastic properties of a
two-phase composite inclusion with orientation ~nI is presented. The constitutive
behavior of each phase is given by:

σ
π = 4Cπ : ǫ

π, with π = a, c, (2.A.1)

with 4Cπ the fourth order elasticity tensor of phase π. The consistency conditions
are written as:

σ
I = f c

σ
c + (1 − f c)σa, (2.A.2)

ǫ
I = f c

ǫ
c + (1 − f c)ǫa, (2.A.3)

and the interface conditions are given by:

4P I
n : σ

a = 4P I
n : σ

c = 4P I
n : σ

I, (2.A.4)

4P I
x : ǫ

a = 4P I
x : ǫ

c = 4P I
x : ǫ

I. (2.A.5)

Assuming the interface coordinate system, {~eI
1,~eI

2,~nI}, where ~nI denotes the unit
normal vector of the interface, every second order tensor A, can be decomposed
as A = Ax + An, with:

Ax = 4P I
x : A = A11 ~e

I
1 ⊗~eI

1 + A22 ~e
I
2 ⊗~eI

2 + A12 ~e
I
1 ⊗~eI

2 + A21 ~e
I
2 ⊗~eI

1, (2.A.6)

An = 4P I
n : A = A33~n

I ⊗~nI + A13~e
I
1 ⊗~nI + A23~e

I
2 ⊗~nI + A31~n

I ⊗~eI
1 + A32~n

I ⊗~eI
2.

(2.A.7)

Then, the constitutive behavior of each phase (π = a, c) can be rewritten as:

σ
π
x = 4Cπ

xx : ǫ
I
x +

4Cπ
xn : ǫ

π
n , (2.A.8)

σ
π
n = σ

I
n = 4Cπ

nx : ǫ
I
x +

4Cπ
nn : ǫ

π
n , (2.A.9)
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where the approperiate components of phase stiffness tensor are indicated by the
subscripts x and n. The interface condition σ

a
n = σ

c
n, can then be rewritten as

follows:

4Ca
nx : ǫ

I
x +

4Ca
nn : ǫ

a
n = 4Cc

nx : ǫ
I
x +

4Cc
nn : ǫ

c
n. (2.A.10)

Substituting consistency condition (2.A.3) into (2.A.10) and some manipulation,
leads to:

(1− f c)(4Ca
nx − 4Cc

nx) : ǫ
I
x +

4Ca
nn : ǫ

I
n = [(1− f c)4Cc

nn + f c4Ca
nn] : ǫ

c
n, (2.A.11)

which can be written as:

ǫ
c
n = 4Gc

n : ǫ
I, (2.A.12)

where the phase concentration tensor 4Gc
n is given by:

4Gc
n = [(1 − f c)4Cc

nn + f c4Ca
nn]

−1 : [(1 − f c)(4Ca
nx − 4Cc

nx) +
4Ca

nn]. (2.A.13)

Using again the consistency condition (2.A.3), leads to:

ǫ
a
n = 4Ga

n : ǫ
I, (2.A.14)

with

4Ga
n =

1
1 − f c

(4Pn − fc
4Gc

n). (2.A.15)

Then:

ǫ
π = ǫ

π
x + ǫ

π
n = (4P x +

4Gπ
n ) : ǫ

I = 4Hπ : ǫ
I , with π = a, c, (2.A.16)

with:

4Hπ = 4P x +
4Gπ

n , with π = a, c, (2.A.17)

and the constitutive behavior of each phase can consequently be rewritten as:

σ
π = 4Cπ : ǫ

π = 4Cπ : 4Hπ : ǫ
I , with π = a, c. (2.A.18)

Finally, by using consistency equation (2.A.2) and equation (2.A.18), the elastic
behavior of the composite can be written as:

σ
I = [ f c4Cc : 4Hc + (1 − f c)4Ca : 4Ha] : ǫ

I = 4C I : ǫ
I , (2.A.19)
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which leads to

4C I = [ f c4Cc : 4Hc + (1 − f c)4Ca : 4Ha]. (2.A.20)
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2.B Appendix: Stiffness tensor of an elastic three-phase
composite inclusion

In this appendix, a closed form solution for the average elastic properties
of a three-phase composite inclusion with orientation ~nI is presented. The
constitutive behavior of each phase is written as:

σ
π
x = 4Cπ

xx : ǫ
I
x +

4Cπ
xn : ǫ

π
n ; π = a, r, c, (2.B.1)

σ
π
n = σ

I
n = 4Cπ

nx : ǫ
I
x +

4Cπ
nn : ǫ

π
n ; π = a, r, c, (2.B.2)

where 4Cπ is the fourth order elasticity tensor of phase π. The consistency
conditions are given by:

σ
I = f c

σ
c + f r

σ
r + f a

σ
a, (2.B.3)

ǫ
I = f c

ǫ
c + f r

ǫ
r + f a

ǫ
a, (2.B.4)

and the interface conditions can be written as:

σ
a
n = σ

r
n = σ

c
n = σ

I
n, (2.B.5)

ǫ
a
n = ǫ

r
n = ǫ

c
n = ǫ

I
n. (2.B.6)

Using the interface condition σ
a
n = σ

r
n = σ

c
n, leads to:

(4Ca
nx − 4Cr

nx) : ǫ
I
x = 4Cr

nn : ǫ
r
n − 4Ca

nn : ǫ
a
n, (2.B.7)

(4Ca
nx − 4Cc

nx) : ǫ
I
x = 4Cc

nn : ǫ
c
n − 4Ca

nn : ǫ
a
n. (2.B.8)

Combination of interface conditions (2.B.7) and (2.B.8), and substitution of
equation (2.B.4), results, after some manipulation, in:

[ f r(4Cr
nx − 4Ca

nx) + ( f a4Cr
nn + f r4Ca

nn) : 4Ca−1

nn : (4Ca
nx − 4Cc

nx)] :ǫI
x

+4Cr
nn : ǫ

I
n = [ f c4Cr

nn + ( f a4Cr
nn + f r4Ca

nn) : 4Ca−1

nn : 4Cc
nn] : ǫ

c
n, (2.B.9)

which can be written as:

ǫ
c
n = 4Gc

n : ǫ
I, (2.B.10)
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where the phase concentration tensor 4Gc
n is given by:

4Gc
n = [ f c4Cr

nn + ( f a4Cr
nn + f r4Ca

nn) : 4Ca−1

nn : 4Cc
nn]

−1 : [ f r(4Cr
nx − 4Ca

nx)

+( f a4Cr
nn + f r4Ca

nn) : 4Ca−1

nn : (4Ca
nx − 4Cc

nx) +
4Cr

nn].
(2.B.11)

Using the interface condition (2.B.8) leads to

ǫ
a
n = 4Ga

n : ǫ
I, (2.B.12)

with

4Ga
n = 4Ca−1

nn : [4Cc
nn : 4Gc

n − (4Ca
nx − 4Cc

nx) : 4P x]. (2.B.13)

Using again the consistency condition (2.B.4) gives:

ǫ
r
n = 4Gr

n : ǫ
I, (2.B.14)

with

4Gr
n =

1
f r
(4Pn − f c4Gc

n − f a4Ga
n). (2.B.15)

Then:

ǫ
π = ǫ

π
x + ǫ

π
n = (4P x +

4Gπ
n ) : ǫ

I = 4Hπ : ǫ
I , with π = a, r, c, (2.B.16)

with:

4Hπ = 4P x +
4Gπ

n , with π = a, r, c. (2.B.17)

The constitutive behavior of each phase can consequently be rewritten as:

σ
π = 4Cπ : ǫ

π = 4Cπ : 4Hπ : ǫ
I , with π = a, r, c. (2.B.18)

Finally, by using consistency equation (2.B.3) and equation (2.B.18), the elastic
behavior of the three-phase composite inclusion can be written as:

σ
I = [ f c4Cc : 4Hc + f r4Cr : 4Hr + f a4Ca : 4Ha] : ǫ

I , (2.B.19)
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which leads to the stiffness tensor of an elastic three-phase composite inclusion
in the form of:

4C I = [ f c4Cc : 4Hc + f r4Cr : 4Hr + f a4Ca : 4Ha]. (2.B.20)
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2.C Appendix: ǫ̂-inclusion model

For the ǫ̂-inclusion aggregate model, the local-global equilibrium and compatib-
ility conditions are given by:

4P I i

x : σ
I i
= 4P I i

x : σ̄ ; i = 1, . . . , N, (2.C.1)

4P I i

n : ǫ
I i
= 4P I i

n : ǫ̂ ; i = 1, . . . , N. (2.C.2)

For a system consisting of N inclusions, for a macroscopic stress σ̄, 3N local

unknowns (σ I i

n = 4P I i

n : σ
I i
) and 6 global unknowns ǫ̂, must be obtained to

determine the state of each composite inclusion from the following equations:

4P I i

n : ǫ
I i
(σ I i

) = 4P I i

n : ǫ̂ ; i = 1, . . . , N, (2.C.3)

σ̄ = 〈σ I i〉 = 〈4P I i

x : σ̄ + σ
I i

n 〉. (2.C.4)

To obtain the macroscopic stiffness tensor, equations (2.C.3) and (2.C.4) are
rewritten as:

Ψ
i
n(σ

I i

n , ǫ̂, σ̄) = O
i
n ; i = 1, . . . , N, (2.C.5)

Ψσ(σ
I i

n , σ̄) = O. (2.C.6)

For any variation of the macroscopic stress σ̄, the equations remain O, so that:

dΨ
i
n

dσ̄

=
∂Ψ

i
n

∂σ̄

+
∂Ψ

i
n

∂σ
I i

n

:
dσ

I i

n

dσ̄

+
∂Ψ

i
n

∂ǫ̂

:
dǫ̂

dσ̄

= 4
O

i
n ; i = 1, . . . , N, (2.C.7)

dΨσ

dσ̄

=
∂Ψσ

∂σ̄

+
n

∑
j=1

∂Ψσ

∂σ
I j

n

:
dσ

I j

n

dσ̄

= 4
O , (2.C.8)

from which, dǫ̂

dσ̄
and dσ

Ii
n

dσ̄
can be determined:

dǫ̂

dσ̄

=
[ n

∑
j=1

∂Ψσ

∂σ
I j

n

:
( ∂Ψ

j
n

∂σ
I j

n

)−1
:

∂Ψ
j
n

∂ǫ̂

]−1
:
[∂Ψσ

∂σ̄

−
n

∑
j=1

∂Ψσ

∂σ
I j

n

:
( ∂Ψ

j
n

∂σ
I j

n

)−1
:

∂Ψ
j
n

∂σ̄

]

,

(2.C.9)
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and

dσ
I i

n

dσ̄

=
(∂Ψ

i
n

∂σ
I i

n

)−1
:
{

− ∂Ψ
i
n

∂σ̄

− ∂Ψ
i
n

∂ǫ̂

:
[ n

∑
j=1

∂Ψσ

∂σ
I j

n

:
( ∂Ψ

j
n

∂σ
I j

n

)−1
:

∂Ψ
j
n

∂ǫ̂

]−1
:

[∂Ψσ

∂σ̄

−
n

∑
j=1

∂Ψσ

∂σ
I j

n

:
( ∂Ψ

j
n

∂σ
I j

n

)−1
:

∂Ψ
j
n

∂σ̄

]}

. (2.C.10)

Note that the derivatives of Ψ
i
n and Ψσ can be straightforwardly determined and

depend on the stiffnesses of the composite inclusions and the orientations of
their internal interfaces. The fourth-order macroscopic compliance tensor, and
consequently the stiffness tensor, can then be obtained as:

ǭ = 〈ǫI i
(σ I i

n , σ̄)〉, (2.C.11)

4S =
dǭ

dσ̄

=
〈∂ǫ

I i

∂σ̄

+
∂ǫ

I i

∂σ
I i

n

:
dσ

I i

n

dσ̄

〉

, (2.C.12)

4C = 4S−1 =
〈∂ǫ

I i

∂σ̄

+
∂ǫ

I i

∂σ
I i

n

:
dσ

I i

n

dσ̄

〉−1
, (2.C.13)

where also the derivatives of ǫ
I i

are known.
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Deformation kinetics and texture evolution1

Chapter 3

Abstract

The mechanical behavior of semicrystalline polymers is strongly dependent
on their crystallinity level, the initial underlying microstructure, and
the evolution of this structure during deformation. A previously
developed micromechanical constitutive model is used to capture the
elasto-viscoplastic deformation and texture evolution in semicrystalline
polymers. The model represents the material as an aggregate of two-
phase layered composite inclusions, consisting of crystalline lamellae and
amorphous layers. This work focuses on adding quantitative abilities to
the multi-scale constitutive model, in particular for the stress-dependence
of the rate of plastic deformation, referred to as the slip kinetics. In order
to do that, the previously used viscoplastic power law relation is replaced
with an Eyring flow rule. The slip kinetics are then re-evaluated and
characterized using a hybrid numerical/experimental procedure, and the
results are validated for uniaxial compression data of HDPE, at various
strain rates. A double yield phenomenon is observed in the model
prediction. Texture analysis shows that the double yield point in the model
is due to morphological changes during deformation, that induce a change
of deformation mechanism.

1Reproduced from: A. Sedighiamiri, L.E. Govaert, J.A.W. van Dommelen, Micromechanical
Modeling of the Deformation Kinetics of Semicrystalline Polymers, Journal of Polymer Science Part
B: Polymer Physics, 49: 1297–1310, 2011.
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3.1 Introduction

The process of plastic deformation in semicrystalline polymers is complicated
due to the operation of a variety of mechanisms at different levels and is strongly
dependent on the underlying microstructure of these materials. Any macro-
scopically homogeneous deformation is accommodated by various deformation
mechanisms in the heterogeneous microstructure. Mechanical properties and
morphological changes of semicrystalline polymers, particularly polyethylene,
during plastic deformation have been studied extensively by experiments [1–13].
It is well established that the principal mechanisms involved in the plastic
deformation of polymer crystals, are crystallographic in nature. During the
early and moderate stages of deformation, the crystals become distorted but the
crystalline lamellae remain undestroyed, whereas at large strains, the original
crystalline microstructure breaks down and a new fibrillar structure forms [14].

The elastic and viscoplastic behavior of semicrystalline polymers strongly de-
pend on the degree of crystallinity and the initial underlying microstructure, as
well as the evolution in this microstructure during deformation. There does not
seem to be a model yet, which can explain the level of yield stress in terms of
the degree of crystallinity, morphological characteristics and strain rate in these
materials. Popli and Mandelkern [15] studied the influence of structural and mor-
phological factors on the mechanical properties of polyethylene. They reported
that the yield stress was a linear function of the degree of crystallinity and the
crystallite thickness, whereas the molecular weight had no direct influence on
the yield stress.

A first attempt to directly relate the crystalline structure to the yield stress
of semicrystalline PE was made by Young [16, 17], who regarded yield to
be controlled by the nucleation of dislocations. His approach assumes that
yield involves the thermal activation of chain screw dislocations within the
crystalline lamellae, resulting in a direct relation between macroscopic yield
stress and lamellar thickness. The method was further expanded by Séguéla et
al. [18, 19] and Nikolov and Raabe [20], who introduced the driving force for the
nucleation and propagation of chain screw dislocations to rely on 180◦ chain twist
defects that migrate along the chain stems, enabling them to further analyse the
deformation kinetics (temperature and strain rate-dependence). Drawbacks of
this type of modeling, however, are that it is only applicable to isotropic systems,
assumes that crystallinity has no influence, and only accounts for a single
crystallographic slip system, whereas it is well known that single PE lamellae
have more modes of deformation. Lack of information about the evolution of
texture is another disadvantage of Young’s approach.

To enable the analysis of texture evolution during deformation Parks and
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Ahzi [21] included all physically available crystallographic slip systems in a
polycrystalline approach. They proposed a viscoplastic Taylor-type model for
a purely crystalline material lacking five independent slip systems, with which
they were able to qualitatively predict texture development in HDPE during
uniaxial tension and simple shear. However, using Taylor’s assumption leads
to a very high post-yield stress-strain behavior and overestimates the rate of
the texture evolution. The approach was improved significantly by formulating
more sophisticated interaction laws and by the introduction of the amorphous
phase. Lee et al. [22–24] developed a specific micromechanical model in which a
rigid-viscoplastic composite inclusion model, consisting of mechanically coupled
amorphous and crystalline phases, was used in combination with a Sachs-like
and two hybrid interaction laws to predict the stress-strain behavior and
crystallographic texture evolution of HDPE. Van Dommelen et al. [25–27] have
extended the rigid-viscoplastic approach of Lee et al. to an elasto-viscoplastic
model for large deformation of semicrystalline polymers. In this model, the
behavior of the amorphous phase was assumed to be isotropic elastic with a
rate-dependent plastic flow with strain hardening resulting from molecular
orientation. The crystalline phase was modeled as anisotropic elastic with plastic
flow occurring via crystallographic slip. The concept of two-phase composite
inclusions was used in combination with a self-consistent approach by Nikolov
et al. [28]. Recently, Sedighiamiri et al. [29] developed a layered composite
inclusion model in an elastic framework to quantitatively predict the elastic
properties of polyethylene, where also the influence of the rigid-amorphous
phase was considered.

The present work is directed towards adding the same quantitative predictive
abilities to the previously developed multiscale, micromechanical model [25–27]
for the prediction of the yield and post-yield behavior, and texture evolution
in semicrystalline polymers during large deformations at different strain rates.
Semicrystalline polyethylene is considered as a case study. A critical factor is the
stress-dependence of the rate of plastic deformation, the slip kinetics, which is
the mechanism underlying time-dependent, macroscopic failure. The kinetics
of the macroscopic plastic flow strongly depends on the slip kinetics of the
individual crystallographic slip systems. Therefore, an accurate quantitative
prediction requires a proper description of the rate-dependence of slip along
crystallographic planes. As a first step in achieving this goal, the previously
used viscoplastic power law relation [25] is replaced with an Eyring flow
rule [30, 31]. The re-evaluation of the slip kinetics is performed using a combined
numerical/experimental approach and the refined slip kinetics are then validated
for uniaxial compression data of HDPE, for different strain rates. It is also
attempted to validate the prediction of texture evolution by comparing it to the
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limited experimental data, available in literature. A double yield phenomenon
is found in the model prediction and is related to morphological changes that
induce a change of deformation mechanism.

3.2 Experimental

The semicrystalline polymer used in this study is a HDPE grade supplied by
Sabic (Stamylan HD 9089S), with a weight-average molecular weight of Mw =
70, 000 [g/mol] and a number-average molecular weight of Mn = 11, 000 [g/mol].
HDPE samples were compression molded between brass plates and aluminum
foil at 200 ◦C. The degree of crystallinity of samples was measured by wide
angle X-ray scattering experiments. Compression tests were performed at room
temperature with varying strain rates.

3.3 Model description

The constitutive behavior of microscopically heterogeneous semicrystalline ma-
terial is modeled by an aggregate of layered two-phase composite inclusions [22,
23]. Each composite inclusion is represented by a crystalline lamella and an
amorphous layer. A microstructural elasto-viscoplastic constitutive model is
used for both constituent phases. In this section, the kinematical framework and
the constitutive models for the elastic and viscoplastic behavior of each phase
together with the polycrystalline aggregate model are briefly discussed. The
formulation of the material models and the sets of equations that comprise the
composite inclusion model are summarized in Appendix 3.A. For a more detailed
discussion of the models employed here, see Van Dommelen et al. [25]

3.3.1 Kinematics

For a microstructural elasto-viscoplastic constitutive description of the constitu-
ent phases, the deformation gradient tensor F = (~∇0~x)

T of each phase is
decomposed into a plastic and an elastic part, denoted by the subscripts "p" and
"e", respectively [32]:

F
π = F

π
e · F

π
p , with π = a, c, (3.1)

where the superscript π shows either the amorphous or the crystalline phase.
Subsequently, the constitutive behavior of both the crystalline and the amorphous
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phase is specified.

3.3.2 Crystalline phase

The crystalline phase of semicrystalline polyethylene consists of regularly
ordered chain segments in an orthorhombic packing. This crystal structure causes
the crystalline phase to possess highly anisotropic elastic properties with a high
elastic modulus in the chain direction, and to have plastic deformation limited to
crystallographic slip at the initial stages of deformation [5, 8, 9, 33]. Moreover,
polymer crystals may also deform plastically by mechanical twinning and stress-
induced martensitic phase transformation [5, 33, 34]. Since crystallographic slip
is the predominant deformation mode up to moderate strains, for the modeling
purpose the latter two mechanisms are left out of consideration.

The elastic part of the deformation in the crystalline domain is characterized by
an anisotropic fourth order elasticity tensor, which linearly relates the Green-
Lagrange strain tensor and the elastic second Piola-Kirchhoff stress measure.

For the viscoplastic behavior of the crystalline phase, a rate-dependent crystal
plasticity model is used. In this model, the plastic velocity gradient of the
crystalline lamella, consisting of a single crystal, is described by the contributions
of all Ns physically distinct slip systems, being 8 for high density polyethylene,
and is given by:

L
c
p = Ḟ

c
p · F

c
p
−1 =

Ns

∑
α=1

γ̇α
P

α
0 ; P

α
0 =~sα

0 ⊗~nα
0 , (3.2)

with P
α
0 the nonsymmetric Schmid tensor, defined by the dyadic product of

the unit slip direction ~sα
0 and the unit slip plane normal ~nα

0 in the reference
configuration. The shear rate of each slip system γ̇α was previously assumed
to be related to the corresponding resolved shear stress τα via the viscoplastic
power law relation:

γ̇α = γ̇c
0

τα

gα

∣
∣
∣
∣

τα

gα

∣
∣
∣
∣

nc−1

, (3.3)

with gα the critical resolved shear stress of the αth slip system, γ̇c
0 a reference

shear rate and nc the rate exponent. Here, this relation is replaced with an Eyring
flow rule:

γ̇α = ξ̇α
0 sinh

[
τα

τc
0

]

, (3.4)
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with ξ̇α
0 and τc

0 the reference shear rate and the shear strength, respectively.
Eyring [30, 31] developed a theory to describe the relaxation process of viscous
flow in liquids, and it can also be used to describe the yield behavior of
amorphous polymers, as well as the microscopic plastic flow at the level of
crystallographic slip systems in semicrystalline polymers. If the resolved shear
stress is small, equation (3.4) predicts a linear relation between the resolved shear
rate and the resolved shear stress of each slip system. For large stress, at which

sinh
[

τα

τc
0

]

≈ 1
2exp

[
τα

τc
0

]

, the resolved shear rate of each slip system increases

exponentially with increasing resolved shear stress.

3.3.3 Amorphous phase

The amorphous domain of semicrystalline polyethylene consists of an assembly
of randomly coiled macromolecules, constrained by the adjacent crystalline
lamellae. In the case of polyethylene, the glass transition temperature of the
amorphous phase is far below room temperature. The amorphous phase should,
therefore, be in the rubbery state at room temperature. However, there are some
indications in literature that suggest that the amorphous layers may be stiffer
than purely bulk amorphous material due to the confinement of amorphous
layers between thick crystalline lamellae [35]. Boyd [36] showed that for
the amorphous phase, the relaxed modulus associated with the glass-rubber
relaxation (β process) is very high due to the constraints by the neighboring
lamellae, leading to the immobilization of amorphous segmental re-orientation.

Furthermore, random thermal fluctuations allow chain ends or loose chain folds
in the amorphous phase to migrate into the crystalline lamellae. Chain segments
can similarly escape from lamellae into the amorphous regions. This process of
chain diffusion [37] is often referred to as α-relaxation as well (see figure 3.1 for
a schematic representation). Chain diffusion results in redistribution of the tight
and loose chain folds, cilia or intercrystalline links that constitute the amorphous
layer [36]. Therefore, relaxation of the interlamellar material occurs in a rate-
dependent process and its kinetics is affected by that of the crystalline phase. In
line with that, also the amorphous phase is modeled as elasto-viscoplastic.

In earlier work [25], a Boyce-Parks-Argon-like model [38] combined with a
viscoplastic power law relation was employed to model the elasto-viscoplastic
deformation of the amorphous domain. Here, in the same framework, the
effective shear strain rate and the effective shear stress are related by an Eyring
flow rule. The plastic rate of stretching is defined by an associated flow rule [25].
The Arruda-Boyce eight-chain network rubber elasticity model [39] is used to
account for orientation induced hardening [38, 40].
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Figure 3.1 Schematic representation of chain diffusion in the lamellae of polyethylene.

3.3.4 Composite inclusion model

The mechanical behavior of the microscopically heterogeneous material
is modeled by an aggregate of a number of layered two-phase composite
inclusions, as proposed by Lee et al. [22, 23] for rigid-viscoplastic material
behavior. Each composite inclusion consists of a crystalline lamella, which
is mechanically coupled to its adjacent amorphous layer to form a lamellar
morphology, characterized by crystallographic texture (lattice orientation) and
morphological texture (interface orientation), as shown in figure 3.2. The stress

~a
~b

~c
~nI

f c

1 − f c

Figure 3.2 Schematic representation of a two-phase composite inclusion.

and deformation fields in each separate phase of the composite inclusion are
assumed to be piecewise homogeneous; but, they can be different between the
two coupled phases. The inclusion-averaged Cauchy stress and the inclusion-
averaged deformation gradient are given by the volume-average of the fields of
the constituent phases. Furthermore, the crystalline lamella and the amorphous
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layer are assumed to be kinematically compatible and in equilibrium across the
interface.

To relate the volume-averaged mechanical behavior of each layered composite
inclusion to the aggregate of composite inclusions, a hybrid local-global interac-
tion law [22, 23, 25] is formulated. The consistency conditions for equilibrium
and compatibility of the aggregate are maintained by enforcing the macroscopic
stress and deformation to equal the volume-average of the stress and deformation
fields of the composite inclusions.

In the hybrid interaction model, local-global compatibility conditions are as-
sumed for the projections of the inclusion-averaged fields for which intra-
inclusion equilibrium conditions were formulated. Inversely, local-global equi-
librium conditions are formulated for the components of the inclusion-averaged
fields that are subjected to intra-inclusion compatibility. A more elaborate
description of the composite inclusion model is presented in [25].

3.3.5 Texture evolution

Crystallographic slip within the crystalline lamellae can take place by either fine
slip or coarse slip [33]. During the early stages of deformation, fine slip, which
changes the angle between the chain direction and the interface normal, is the
predominant mode of plastic deformation, whereas coarse slip, which does not
alter the angle between chain and interface normal, becomes more important at
larger strains. In this study, all slips are assumed to be of the fine slip type.

There are two types of texture development present in the model, namely,
crystallographic texture which determines the orientation of the crystallographic
axes within the crystalline lamellae, and morphological texture which is rep-
resented by the orientation of normal vectors to the crystalline-amorphous
interface. These two kinds of texture can evolve independently during the plastic
deformation process. Upon large plastic deformation, texture evolutions have
a great influence on the stress-strain behavior of a semicrystalline polymer. For
instance, a weak textural strain-hardening is observed in simple shear of HDPE,
whereas in uniaxial tension, a strong strain-hardening due to texture evolution is
found [41].

3.3.6 Deformation modes

Initially isotropic material is represented by an aggregate of randomly ori-
ented composite inclusions. The mechanical behavior of these aggregates is
investigated for two deformation modes, namely uniaxial tension and uniaxial
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compression. For this purpose, an aggregate of composite inclusions is subjected
to a constant strain rate in the principal 1-direction:

R̄ = I ; Ū11 = λ(t), (3.5)

with

λ(t) = exp(ǫ̇t) for tension, (3.6)

λ(t) = exp(−ǫ̇t) for compression, (3.7)

where R̄ is the macroscopic rotation tensor, and Ū is the corresponding right
stretch tensor. Moreover, the components of the macroscopic Cauchy stress
tensor σ̄ should satisfy:

σ̄22 = σ̄33 = σ̄12 = σ̄13 = σ̄23 = 0. (3.8)

3.4 Initial model parameters and results

In this section, the elasto-viscoplastic composite inclusion model is used to study
the mechanical behavior of initially isotropic HDPE, using a power law relation
for the kinetics of crystalline slip and plastic deformation of the amorphous phase
with the same viscoplastic parameters as used in previous works [25–27].

3.4.1 Crystalline phase

The elastic behavior of the crystalline phase is anisotropic with a high elastic
modulus in the chain direction. For orthorhombic PE crystals, the anisotropic
fourth order elasticity tensor involves nine independent elastic constants. The
constants used in this model are given in table 3.1.

Table 3.1 Elastic constants [GPa] for the crystalline phase of PE [42].

C11 C22 C33 C12 C13 C23 C44 C55 C66

7.99 9.92 315.92 3.28 1.13 2.14 3.62 1.62 3.19

There are eight physically distinct slip systems present in the crystalline domain
of HDPE, which effectively comprise four independent deformation modes.
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When the direction of slip is parallel to the molecular chain direction, the
deformation mechanism is called chain slip, whereas in case the slip direction
is perpendicular to the chain direction, the slip mechanism is referred to as a
transverse slip system. Table 3.2 summarizes all distinct slip systems together
with their critical resolved shear stresses gα in the viscoplastic power law relation
at room temperature, normalized to the critical resolved shear stress of the easiest
slip system g0 = g(100)[001] = 8 MPa. Strain hardening on the slip systems of
the crystalline lamellae is neglected, i.e. all critical resolved shear stresses are
assumed to be constant. The viscoplastic rate exponent and the reference shear
rate of the crystalline phase are set to nc = 9 and γ̇c

0 = 0.001 s−1, after Lee et
al. [22].

Table 3.2 Slip systems and the critical resolved shear stresses, corresponding to the
viscoplastic power law relation [9, 22, 23].

Slip system gα/g0

Chain slip (100)[001] 1.0

(010)[001] 2.5

(110)[001] 2.5

(11̄0)[001] 2.5

Transverse slip (100)[010] 1.66

(010)[100] 2.5

(110)[11̄0] 2.2

(1̄10)[110] 2.2

3.4.2 Amorphous phase

An isotropic generalized neo-Hookean relationship is used to model the elastic
behavior of the amorphous phase. The bulk modulus Ka is chosen to be 3000
MPa [43]. The effect of the shear and bulk moduli of the interlamellar layer
on the predicted Young’s modulus of the elastic composite inclusion model
was discussed in [29]. Figure 3.3 presents the influence of different amorphous
shear moduli on the initial behavior, predicted by the elasto-viscoplastic model,
compared to experimental data [29]. Based on this observation, the shear
modulus of the amorphous phase is selected to be 35 MPa.
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Figure 3.3 The predicted initial modulus in uniaxial compression as a function of
crystallinity for different shear moduli of the amorphous phase. Symbols give
experimental results of HDPE [29].

The viscoplastic rate exponent and the reference shear rate of the amorphous
phase are set equal to those of the crystalline phase. The reference initial
shear strength of the amorphous phase is considered to be related to the critical
resolved shear stress of the easiest slip system as ga

0 = ag0. The viscoplastic
parameters of the amorphous phase, used in the power law relation, and the
hardening parameters, are listed in table 3.3, in which µR is proportional to the
initial stiffness and N represents the number of rigid links between entangle-
ments in the Arruda-Boyce eight-chain network rubber elasticity model [39].

Table 3.3 Viscoplastic and hardening parameters of the amorphous phase.

γ̇0 [s−1] n a µR [MPa] N

0.001 9 1.2 1.6 49

3.4.3 Initial crystalline and lamellar orientations

Experimental studies of melt-crystalized PE and molecular models show that
lamellar surfaces are of the {h0l} type, where the angle between the chain
direction ~c and the lamellar normal direction ~nI varies between 20◦ and 40◦ [44,
45]. Here, the lamellar surface is set to {201}, which corresponds with an angle
of 35◦. The spherulitic structure of melt-crystallized PE is represented by an
aggregate of 500 randomly oriented inclusions.
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3.4.4 Application: uniaxial tension

In this section the mechanical response of initially isotropic HDPE subjected to
uniaxial tension with a constant strain rate of ǫ̇ = 0.001 s−1, is investigated. A
volume crystallinity of f c = 64.9% is used in the model prediction. Figure 3.4
shows the predicted macroscopic true stress σ̄11, as a function of imposed
macroscopic logarithmic strain ǫ̇ t = ln(λ).
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Figure 3.4 Predicted equivalent macroscopic stress vs. macroscopic logarithmic strain, for
HDPE subjected to uniaxial tension. σy1 and σy2 indicate the first and the second
yield points, respectively.

One important feature in the stress-strain response of HDPE is the existence
of two yield points. The double yield phenomenon has been widely seen in
engineering stress-strain curves during both tensile and compression deforma-
tion modes and reported in literature [15, 46–49]. Popli and Mandelkern [15]
reported a well-resolved double tensile yield point for branched polyethylenes
and ethylene copolymers at the ambient temperature. They assigned this
phenomenon to the broad distribution of lamellar thickness. However, this
hypothesis was refuted by Séguéla and Darras [49], who phenomenologically
studied the double yield of polyethylene and related copolymers. They found
that the crystallite thickness distribution is not the main factor for the double
yield phenomenon, since deeply interconnected crystals of various thickness
are not allowed to yield independently, giving rise to distinct yield points. A
partial melting-recrystallization process was also proposed as an alternative to
explain the multiple yield in polyethylene [15, 50]. It was proposed that the
concentration of stress on the less perfect crystallites provides enough energy
for them to partially melt and recrystallize during deformation to form a new
population of crystallites. The occurrence of two yield points was then assigned
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to the yielding of the original and the newly formed crystallites [50]. However,
partial melting-recrystallization is not a commonly accepted explanation for
the existence of double yields. Evidence against this hypothesis was given
by Butler et al. [51]. Time resolved simultaneous small- and wide-angle X-
ray scattering experiments [51–53] during deformation of polyethylene in both
tensile and compression modes, revealed that the double yield point exists in
both deformation modes. The most accepted explanation for the deformation
mechanisms of both yield points is the association of the first yield point to
fine slip within the crystalline lamellae and the presence of a process of coarse
slip resulting in lamellar fragmentation at the second yield point [51–54], as
schematically shown in figure 3.5.

fine slip coarse slip

σy1 σy2

Figure 3.5 Schematic representation of fine slip at the first yield point (σy1) accompanied
by lamellar disintegration due to coarse slip at the second yield point (σy2) [55].

As can be seen in figure 3.4, a double yield phenomenon is also found in the
model prediction, although there is no coarse slip or lamellar fragmentation
present in the model since all slips are assumed to be of the fine slip type.
The phenomenon observed in the model prediction must, therefore, originate
from the morphological features and deformation mechanisms present in the
model. Figure 3.6 shows the activity of the (100)[001] chain slip system and
the transverse (100)[010] and {110}〈11̄0〉 slip systems, represented by their
normalized averaged resolved shear rate ¯̇γ/γ̇0, during deformation. The first
and the second yield point are also marked in the figure. As can be seen,
since the crystallographic (100)[001] slip system is the most easily activated slip
system, it is predominantly active. Up to the first yield point, crystallographic
slip is mainly limited to the (100)[001] chain slip system, while the transverse slip
systems reveal very weak activity up to this point. After the first yield point,
the activity of the transverse slip systems increases up to the second yield point
and significant crystallographic slip takes place in the transverse slip systems,
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particularly the {110}〈11̄0〉 family of transverse slip systems and these modes of
deformation become highly active. It is worth pointing out that the {110}〈11̄0〉
family of slip systems become active not in all inclusions, but in particular ones,
oriented at an optimum angle for these slip systems to become active. This
can be concluded from the relatively large value of the standard deviation of
the normalized resolved shear rate of the {110}〈11̄0〉 family of transverse slip
systems at the second yield point. This change of mechanism between the
chain and transverse slip systems is found to be responsible for the double yield
phenomenon present in the model and, therefore, the difference between the
level of the critical resolved shear stress of the (100)[001] slip system and the
{110}〈11̄0〉 family of slip systems determines the difference between the two
yield points and the strain hardening modulus between them.
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Figure 3.6 Activity of the three easiest crystallographic deformation modes vs.
macroscopic logarithmic strain in uniaxial tension. Solid lines show the normalized
averaged resolved shear rate ¯̇γ/γ̇0 and dashed lines show the normalized values
plus their corresponding standard deviations. σy1 and σy2 represent the first and the
second yield points, respectively.

3.5 Characterization of model parameters

Since localization phenomena like necking and crazing, which occur in uni-
axial tensile experiments, are not present in uniaxial compression tests, these
tests are usually employed to determine the intrinsic deformation behavior of
polymers [55, 56]. In accordance with that, uniaxial compression experiments,
performed at various strain rates on HDPE (Stamylan HD 9089S) at room tem-
perature, are used here to characterize the elasto-viscoplastic model parameters.
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The kinetics of plastic flow of semicrystalline polymers at a macroscopic level are
mainly governed by the kinetics of the crystallographic slip systems together with
the yield kinetics of the amorphous domains at the microscopic scale. Therefore, a
suitable description of the rate-dependency of slip along crystallographic planes
as well as the rate-dependency of the effective shear stress of the amorph-
ous phase, enables a quantitative prediction of the mechanical performance of
semicrystalline polymers. The strain rate dependency of the compressive yield
stress, predicted by a viscoplastic power law relation, is shown in figure 3.7b. It
is observed that the model does not provide a good prediction of experimental
data.

As a first step in achieving a quantitative prediction, the previously used power
law relation is replaced with a viscoplastic Eyring flow rule. The initial values of
the reference shear rate ξ̇α

0 and the reference shear strength τc
0 in the Eyring flow

rule are determined by a nonlinear least-squares curve fitting of the power law
relation in the range of 10−3–10−1 (see figure 3.7a). The strain rate dependency of
the yield stress, predicted by the elasto-viscoplastic model with the Eyring flow
rule, is presented in figure 3.7b.
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Figure 3.7 (a) Description of slip kinetics of individual slip systems using the power law
relation (gray lines) and the Eyring flow rule (black lines). (b) Strain rate-dependency
of the compressive yield stress, predicted by the elasto-viscoplastic model with both
a power law relation and an Eyring flow rule. Symbols show the compressive
yield stress of quenched HDPE with a volume crystallinity of f c = 64.9% at room
temperature, which was also used in the model prediction.

However, true stress-strain curves obtained from compression tests on HDPE
samples with a varying degree of crystallinity and strain rate show that both
yield stresses increase in a similar way, resulting in a constant strain hardening
modulus between the two yield points, as shown in figure 3.8. Since the harden-
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ing between the yield points predicted by the model is mainly governed by the
difference between the kinetics of the (100)[001] slip system and the {110}〈11̄0〉
family of slip systems, the slip kinetics of the individual slip systems should be
parallel on a semi-logarithmic scale. The slip kinetics are, therefore, refined and
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Figure 3.8 First (σy1) and second (σy2) yield stresses as a function of strain rate for HDPE
samples at room temperature. Lines are a guide to the eye to indicate the strain rate-
dependence.

re-evaluated in terms of the reference shear rate ξ̇α
0 and the characteristic shear

stress τc
0 in order to fit the compressive true stress-strain curves of HDPE. To

do that, the value of the characteristic shear stress of the amorphous and the
crystalline phase in the Eyring model, are set to an equal value of τc

0 = τa
0 = 1.2

MPa. Moreover, the reference shear rate of the amorphous phase is taken to
be ξ̇a

0 = 6.6 × 10−7[s−1]. Table 3.4 summarizes the reference shear rate ξ̇α
0 for

individual slip systems.

Compressive true stress-strain curves at varying strain rates, predicted by the
model using the refined slip kinetics are shown in figure 3.9. Comparison
with experimental data reveals a good agreement up to moderate strains. It
should be noted that the post second-yield behavior is not predicted as accurately
as the post first-yield response. A very likely cause is the fact that lamellar
fragmentation, due to the process of coarse slip, is not taken into account in
the model. The model prediction of the relation between crystallinity and the
compressive first and second yield stress is also presented in figure 3.10. Both
yield points are increasing in a similar way as also observed in experimental data.

The behavior of the amorphous phase also plays an important role in the yield
kinetics. At room temperature, the amorphous phase of HDPE should be in the
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Table 3.4 Slip systems and the reference shear rates, corresponding to the viscoplastic
Eyring flow rule.

Slip system ξ̇α
0 [s

−1]

Chain slip (100)[001] 2.5 × 10−6

(010)[001] 1.3 × 10−10

(110)[001] 1.3 × 10−10

(11̄0)[001] 1.3 × 10−10

Transverse slip (100)[010] 1.0 × 10−7

(010)[100] 1.3 × 10−10

(110)[11̄0] 2.0 × 10−9

(1̄10)[110] 2.0 × 10−9
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Figure 3.9 (a) Description of slip kinetics of individual slip systems by using the Eyring
flow rule. (b) The predicted compressive true stress-strain curves (solid lines)
compared to experimental true stress-strain curves (symbols) for quenched HDPE
with Xvol = 64.9% at room temperature.

rubbery regime, with the glass transition temperature near −70 ◦C. However,
as already mentioned, an elasto-viscoplastic behavior was assumed for the
amorphous phase. In order to test the validity of this assumption, the mechanical
response of HDPE subjected to uniaxial compression was simulated with the
amorphous phase considered to behave elastically with the shear modulus equal
to that of the bulk amorphous material [29]. The levels of the resolved shear stress
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Figure 3.10 Relationship between the degree of crystallinity and the two yield points
predicted by the model (solid lines), compared to experimental data [55] (symbols),
for HDPE at a constant strain rate ǫ̇ = 0.003 s−1. σy1 and σy2 indicate the first and the
second yield points, respectively.

of all individual slip systems were then increased in order to fit the compressive
experimental data with this new assumption. The results showed that the first
yield point, which is mainly due to the activity of the (100)[001] chain slip system,
was still predicted well, however it resulted in an unrealistically high second
yield point.

As has already been noted, the difference between the level of the first and
second yield points is governed by the level of the resolved shear stresses of
the (100)[001] chain slip and the {110}〈11̄0〉 family of transverse slip systems.
Therefore, an attempt was made to enhance the prediction of the second yield
point in case of a fully elastic amorphous phase by decreasing the slip kinetics of
the {110}〈11̄0〉 family of transverse slip systems. However, this situation could
only occur when it is unrealistically assumed that the {110}〈11̄0〉 transverse slip
systems are the easiest slip systems rather than the (100)[001] chain slip system. In
this case, the first yield point is still governed mainly by (100)[001] chain slip and
the {110}〈11̄0〉 family of transverse slip systems, which have become the easiest
slip systems, are not activated. This is due to the initially fixed relation between
the crystalline orientation and the lamellar surface, which is taken to be of the
{201} type. The above consideration, as well as the high value of the relaxed
modulus associated with the glass-rubber relaxation [36], and the presence of a
chain diffusion process [37], supports the choice of an elasto-viscoplastic behavior
for the interlamellar material.

The texture evolution during deformation is depicted in figure 3.11. As can be
seen, the normals to the crystallographic (100) plane, or~a axes, migrate towards
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the compression direction, whereas the normals to the crystallographic (010)
planes, or ~b axes, orient to an angle of almost 70◦–80◦ with the compression
direction, and the normals to the (001) planes, or ~c axes, migrate away from the
compression axis. The lamellar normals are also observed to migrate towards
the compression axis. Evolution of crystallographic and morphological textures

(100)

2

3
(010)

2

3

a b

(001)

2

3
~nI

2

3

c d

Figure 3.11 Predicted crystallographic and morphological textures trajectories for HDPE
subjected to uniaxial compression up to a macroscopic logarithmic strain of ǭ = 1.
The dots denote the final position of the poles.

has a great influence on the mechanical behavior of a semicrystalline polymer.
Therefore, a prediction of the evolution of macroscopic mechanical properties
depends on the prediction of the evolution of textural anisotropy. Here, the
texture development predicted by the model, is confronted with some limited
experimental data. Figure 3.12 shows the predicted textures, compared to
experimental WAXS intensities reported by Bartczak et al. [8]. It is observed
that the normals of the (100) planes migrate toward the compression direction,
whereas the normals of the (010) planes rotate away from this axis. Experimental
WAXS intensities show a maximum for (100) planes located at an angle of 25◦–30◦

with the compression direction, which is in good agreement with the predicted
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Figure 3.12 Top: predicted crystallographic textures for HDPE subjected to uniaxial
compression at a macroscopic true strain of ǭ = 0.82. The compression direction is
normal to the plane of the pole figures. Bottom: corresponding experimental WAXS
intensities after [8].

orientation of the (100) planes. For the (010) planes, the experimental maximum
intensity is located at 80◦–90◦. The model prediction also shows these poles to
migrate away from the compression direction, however the maximum intensity
of poles is located at an angle of almost 70◦–80◦. The (011) planes show a
weak texture, however the general tendency for these planes is to rotate away
from the compression direction. The morphological texture predictions and
their corresponding SAXS patterns are shown in figure 3.13. As can be seen,
the tendency of lamellar normals to migrate towards the compression direction
during deformation is compared favorably with the experimental data, obtained
by Bartczak et al. [8].

As already mentioned, the double yield phenomenon, found in the model,
is related to the morphological factors that induce a change of deformation
mechanisms. Here, the texture prediction is used to analyze the underlying
morphological changes. Figure 3.14a represents the true stress-strain behavior of
HDPE during uniaxial compression with a constant strain rate of ǫ̇ = 0.001 s−1.
Crystallographic texture (~b axis, corresponding to the lamellar growth direction)
and morphological texture at four different points are studied in figure 3.14b.
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Figure 3.13 Top: predicted morphological textures for HDPE subjected to uniaxial
compression at a macroscopic true strain of (a) ǭ = 0, (b) ǭ = 0.35 and (c) ǭ = 0.82.
The compression direction is vertical. Bottom: Corresponding experimental SAXS
intensities [8].

In these pole figures, the location of each dot denotes the orientation of an
inclusion and its gray value shows the magnitude of the resolved shear rate
of the indicated slip system for the inclusion. As can be seen, up to the first
yield point (point 2), crystallographic slip occurs predominantly on the (100)[001]
slip system, which is the most easily activated slip system, and specifically for
those inclusions whose lamellar normals are almost aligned with the compression
direction, and with lamellar growth directions perpendicular to that. The
microscopic deformation, therefore, is dependent on the local orientation of the
lamellar normals with respect to the loading direction. Lamellae with their
normals aligned in the compression direction are at an optimum orientation
for the (100)[001] slip system to become active. The {110}〈11̄0〉 family of slip
systems shows little activity up to this point. At the second yield point (point
4), significant crystallographic slip takes place in the transverse slip systems,
particularly the {110}〈11̄0〉 family of transverse slip systems, for inclusions with
the growth direction almost perpendicular to the compression direction and the
lamellar normal direction aligned to the loading axis. The change of mechanism
between the chain and transverse slip systems is found to be responsible for
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the double yield phenomenon present in the model. This morphological change
might also be the underlying mechanism for the onset of lamellar break up.

3.6 Discussions and conclusions

The deformation of semicrystalline polymers is the result of the operation of
various mechanisms at different levels. An accurate quantitative prediction of the
mechanical behavior of these materials requires a good description and modeling
of the various deformation mechanisms in the heterogeneous microstructure.
The layered two-phase, micromechanical model is able to simulate the elasto-
viscoplastic properties of semicrystalline polymers based on the micromechanics
of the material. At the microscopic level, a two-phase composite entity is
employed, which is comprised of a crystalline lamella that plastically deforms
by rate-dependent slip, and an amorphous phase, with a rate-dependent flow
process. At the macroscopic level, the material is modeled by an aggregate of a
number of composite inclusions.

An attempt was made to add quantitative predictive abilities to the model.
To do that, slip kinetics of the individual crystallographic slip systems, being
responsible for time-dependent macroscopic failure, have been re-evaluated and
refined by using a numerical/experimental approach. It has also been illustrated
that an Eyring flow rule can better mimic the kinetics of the macroscopic plastic
flow, and, therefore, the previously used viscoplastic power law relation has
been replaced with an Eyring flow rule. The necessity of using a viscoplastic
behavior for the amorphous phase has been discussed as well. Comparing
the predicted stress-strain behavior of HDPE with experimental data, shows a
promising agreement.

A double yield phenomenon has also been observed in the model prediction and
has been found to originate from the morphological changes during deformation
that cause a change in the deformation mechanisms. Predicted texture evolution
during deformation, has been used to analyze and understand the morphological
factors, resulting in a double yield phenomenon in the model. Confrontation
of the predicted two yield points with experimental data shows that the model
provides a good prediction of the relation between crystallinity and the first yield
point. However, the second yield point and the second post-yield behavior have
not been predicted as accurately as the first, since the lamellar disintegration,
which is a consequence of the process of coarse slip, has not been taken into
account in the model.

Figure 3.15 illustrates the predicted true tensile stress-strain curves showing
double yield points together with their corresponding engineering stress-strain
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Figure 3.14 (a) True stress-true strain curve for HDPE, subjected to uniaxial compression.
(b) Activity of (I)-(II) the (100)[001] slip system, and (III)-(IV) the {110}〈11̄0〉 slip
systems, at different strain. Gray intensity represents the magnitude of the resolved
shear rate of the specified slip system for each inclusion.
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curves. One of the consequences of double yield points is that the second yield
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Figure 3.15 Model prediction of (a) true stress-strain curves and (b) engineering stress-
strain curves, exhibiting double yield points in uniaxial tension.

point always leads to a sharp neck for tensile loading, whereas the first yield
point is associated either with no neck or with only a very shallow neck due
to the relatively large strain hardening following the first yield point [46]. As a
result, the experimental tensile yield stress, defined as a local maximum in stress
can either be related to the first yield or the second yield stress as depicted with
the arrows in figure 3.15b, and studies using the yield point from tensile tests
can become less unambiguous. Experimental tensile tests on polyethylene and
related copolymers [46, 49], performed at different temperatures, revealed the
same shape of yielding as the true stress-strain curves of figure 3.15b. Besides
temperature, strain rate and crystallinity also have an effect on the yield stress. It
is noteworthy that a more accurate prediction requires a re-evaluation of the slip
kinetics, including their dependence on pressure and lamellar thickness as well.
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3.A Appendix: Micromechanical model

In this appendix, different aspects of the composite inclusion model for semicrys-
talline polymers are presented.

3.A.1 Crystalline phase

The elastic behavior of the crystalline phase is characterized by a fourth order
elasticity tensor 4Cc which linearly relates the second Piola-Kirchhoff stress tensor
τ

c and the Green-Lagrange strain tensor E
c
e:

τ
c = 4Cc : E

c
e, (3.A.1)

with

τ
c = Jc

e F
c−1

e ·σ
c · F

c−T

e and E
c
e =

1
2

(

F
cT

e · F
c
e − I

)

, (3.A.2)

with Jc
e = det(Fc

e) the volume ratio, σ
c the Cauchy stress tensor and I the second

order identity tensor. The viscoplastic component of the deformation in the
crystalline phase is given by:

L
c
p = Ḟ

c
p · F

c
p
−1 =

Ns

∑
α=1

γ̇α
P

α
0 ; P

α
0 =~sα

0 ⊗~nα
0 , (3.A.3)

with

γ̇α = ξ̇α
0 sinh

[
τα

τc
0

]

and τα = τ
c ·Cc

e : P
α
0 . (3.A.4)

where Cc
e denotes the elastic right Cauchy-Green deformation tensor.

3.A.2 Amorphous phase

The elastic behavior of the amorphous phase is modeled by a generalized neo-
Hookean relationship:

σ
a
e =

Ga

Ja
e

B̃
ad

e + Ka(Ja
e − 1)I, (3.A.5)
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where the superscript "d" denotes the deviatoric part, F̃
a
e = Ja−

1
3

e F
a
e is the isochoric

elastic deformation gradient tensor and B̃
a
e = F̃

a
e · F̃

aT

e is the isochoric elastic left
Cauchy-Green deformation tensor. Ga and Ja

e are the shear modulus and bulk
modulus, respectively.

A viscoplastic Eyring flow rule is employed to relate the effective shear strain rate
γ̇a

p to the effective shear stress of the amorphous phase τa, defined as

τa =

√

1
2

σ
ad
∗ : σ

ad
∗ with σ

a
∗ = R

aT

e ·σ
a · R

a
e − H

a, (3.A.6)

with R
a
e the rotation tensor, obtained from the polar decomposition of F

a
e and

H
a a back stress tensor, which accounts for orientation-induced hardening and is

given by:

H
a = µR

√
N

λch
L−1

(
λch√

N

)(

B
a
p − λ2

chI

)

, (3.A.7)

where λch =
√

1
3tr(Ba

p) represents the stretch of each chain in the eight-chain

network model and L−1 is the inverse of the Langevin function. The plastic rate
of deformation D

a
p is then given by:

D
a
p =

γ̇a
p

τa σ
ad

∗ . (3.A.8)

3.A.3 Composite inclusion

The inclusion-averaged deformation gradient F
I and Cauchy stress σ

I of each
individual composite are given by:

F
I = f c

0 F
c + (1 − f c

0 )F
a, (3.A.9)

σ
I = f c

σ
c + (1 − f c)σa. (3.A.10)

Let the following fourth-order subspace projection tensors, based on the orienta-
tion of the normal~nI of the amorphous/crystalline interface plane, be defined as:

4P I
n =

3

∑
i=1

~eI
i ⊗~nI ⊗~nI ⊗~eI

i , (3.A.11)
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4P I
x = 4I − 4P I

n. (3.A.12)

where 4I is the fourth-order identity tensor. Then, the interface conditions can
be written as:

4P I
x0

: F
a = 4P I

x0
: F

c = 4P I
x0

: F
I. (3.A.13)

4P I
n : σ

a = 4P I
n : σ

c = 4P I
n : σ

I. (3.A.14)

3.A.4 Hybrid interaction law

In the hybrid interaction model, six auxiliary deformation-like unknowns Û are
introduced. The prescribed components of macroscopic Cauchy stress tensor σ̄

and macroscopic right stretch tensor Ū are denoted by 4Pσ : σ̄ and 4PU : Ū ,
respectively. Then, for an aggregate of NI composite inclusions, the following
nonlinear equations together with the interface conditions (3.A.13) and (3.A.14)
are simultaneously solved for each time increment:

• Inter-inclusion equilibrium:

4P Ii

x : σ
Ii
= 4P Ii

x : σ̄ ; i = 1, . . . , NI. (3.A.15)

• Volume-averaging of stress:

σ̄ =
NI

∑
i=1

f Ii
σ

Ii
. (3.A.16)

• Inter-inclusion compatibility:

4P Ii

n0
: U

Ii
= 4P Ii

n0
: Û ; i = 1, . . . , NI. (3.A.17)

• Volume-averaging of deformation:

4PU : Ū = 4PU :
(

J̄

JΣ

) 1
3 NI

∑
i=1

f Ii

0 U
Ii

, (3.A.18)

with J̄ =
NI

∑
i=1

f Ii

0 JIi
and JΣ = det

(
NI

∑
i=1

f Ii

0 F
Ii

)

.
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• Prescribed rotations:

R
Ii
= R̄ ; i = 1, . . . , NI. (3.A.19)
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Short- and long-term failure kinetics1

Chapter 4

Abstract

The process of plastic deformation in semicrystalline polymers is
complicated due to the operation of a variety of mechanisms at different
levels and is strongly dependent on their underlying microstructure. The
objective of this work is to establish a quantitative relation between
the microstructure and the mechanical performance of semicrystalline
polymers, as characterized by elasto-viscoplastic deformation. In order to
do that, a micromechanically based constitutive model is used. The model
describes the material as an aggregate of two-phase layered composite
inclusions, consisting of crystalline lamellae and amorphous layers. The
starting point for adding quantitative abilities to the model, in particular for
the yield kinetics, is formed by experimental observations on both the yield
kinetics and the time-to-failure of polyethylene at different temperatures,
which reveal the contribution of two relaxation processes. To predict the
thermo-rheologically complex short-term and long-term failure behavior,
the crystallographic slip kinetics and the amorphous yield kinetics are re-
evaluated, and the Eyring flow rule is modified by adding a temperature
shift function. To enable the prediction of both tension and compression,
a non-Schmid effect is added to the constitutive relation of each slip
system. The creep behavior of polyethylene is then simulated directly using
the multi-scale, micromechanical model, predicting the time-to-failure,
controlled by plastic deformation.

1Reproduced from: A. Sedighiamiri, L.E. Govaert, M.J.W. Kanters, J.A.W. van Dommelen,
Micromechanics of semicrystalline polymers: Yield kinetics and long-term failure, Journal of
Polymer Science Part B: Polymer Physics, accepted, 2012.
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4.1 Introduction

Plastic flow of semicrystalline polymers is a complex multi-level process, due to
the complex hierarchical structure of these materials and various morphological
and structural factors that play a role at different levels during deformation [1–
12]. Any macroscopically homogenous deformation is accompanied by the
operation of a variety of mechanisms in the heterogeneous microstructure.
Therefore, the mechanical behavior of semicrystalline polymers strongly depends
on the initial underlying microstructure, and the evolution of the microstructure
during deformation. Much experimental and modeling studies [13–26] have
been focused on understanding the elasto-viscoplastic behavior of semicrys-
talline polymers, specifically polyethylene, establishing a relation between the
morphological features (crystallinity, lamellar thickness and molecular weight)
and the macroscopic mechanical properties (yield stress, strain hardening and
elastic modulus).

A first attempt to relate the crystalline structure of semicrystalline polyethylene
to the yield stress, was made by Young [27, 28], who regarded the yield process
to be controlled by the nucleation of dislocations. This approach assumes that
yield involves the activation of [001] screw dislocations, accounting for a single
crystallographic slip system, and enables a direct relation between macroscopic
yield stress and lamellar thickness. Shadrake and Guiu [29] proposed that
the energy required for nucleation of screw dislocations from the edge of
the crystals, with a Burgers vector parallel to the chain direction, is supplied
by thermal fluctuations of chain segments within crystals. This was later
supported by Séguéla et al. [30, 31] who pointed out that slip occurs due to
the nucleation of screw dislocations from the lateral surface of the crystalline
lamellae and proposed that the underlying mechanism for the nucleation of
screw dislocations relies on chain twist defects that migrate along the chain
stems. Such conformational defects are also responsible for translational mobility
of chain segments within the crystal, referred to as chain diffusion, and are
required for the α-relaxation process, resulting in reorientation and relaxation of
the interlamellar material [32]. This approach was further expanded by Nikolov
and Raabe [33], who modeled the stress-induced motion of the chain twist defects
within the dislocation core, enabling them to analyze the temperature and strain
rate dependence of yield, by directly relating the macroscopic strain rate ǫ̇ to the
microscopic slip rate γ̇.

Unfortunately, these approaches only account for a single slip system, and it is
well known that single polymer crystals have more modes of deformation. For
instance, the crystalline phase in HDPE employs eight physically distinct slip
systems [7], which effectively comprise four independent modes of deformation.
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Moreover, such an approach does not account for the crystallographic and mor-
phological texture evolutions during deformation, which have a great influence
on the stress-strain response of semicrystalline polymers [34]. Parks and Ahzi [15]
employed a viscoplastic Taylor-type model for a purely crystalline material
in a polycrystalline approach to include all physically available slip systems,
enabling them to qualitatively describe the texture development of HDPE during
deformation. However, Taylor’s assumption leads to the prediction of a high
post-yield stress-strain response and overestimates the rate of texture evolution.
The approach was significantly improved by formulating more sophisticated
interaction laws and by the introduction of the amorphous phase. Lee et
al. [18, 19] developed a specific micromechanical model in which a rigid-
viscoplastic two-phase composite inclusion model, consisting of mechanically
coupled amorphous and crystalline phases, was used in combination with a
Sachs-like and two hybrid interaction laws to predict the stress-strain behavior
and crystallographic texture evolution of HDPE. The rigid-viscoplastic approach
was further extended by Van Dommelen et al. [23, 24] to an elasto-viscoplastic
framework for large deformation of semicrystalline polymers. In this model,
the behavior of the amorphous phase was assumed to be isotropic elastic with
a rate-dependent plastic flow with strain hardening resulting from molecular
orientation. The crystalline phase was modeled as anisotropic elastic with
plastic flow occurring via crystallographic slip. Recently, Sedighiamiri et al. [26]
used a hybrid numerical/experimental procedure to add quantitative predictive
abilities the micromechanical model of Van Dommelen et al. [23, 24] by char-
acterization of the stress-dependence of the rate of plastic deformation, the slip
kinetics. To quantitatively predict the deformation kinetics, the previously used
power law relation [23] was replaced by an Eyring flow rule [35].

With most modeling studies focusing on the short-term deformation kinetics of
semicrystalline materials, i.e. the response under applied constant strain rate,
only a few phenomenological [36–38] and no morphological modeling studies
on the long-term behavior and time-to-failure of these materials exist to the
authors’ knowledge. The time-scale at which polymeric materials fail depends
strongly on the loading conditions. Originating from their molecular mobility,
polymers always fail, even under constant static loads well below their yield
stress, also referred to as creep deformation. Therefore, the possibility to predict
yield and failure at different time-scales under designed load specifications, is a
challenging task and an essential requirement for safe application of load-bearing
polymeric materials. Due to their extensive range of load-bearing applications,
the creep behavior of semicrystalline polymers, especially polyethylene, has been
widely studied by experiments [39–42]. Experimental observations on long-term
properties of isotropic semicrystalline polymers [41, 42] reveal that the time-to-
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failure under static loading conditions is controlled by three principal failure
modes. At high stress levels and low temperatures, a ductile failure mode due
to strain localization, is encountered. At lower stress levels, a brittle failure
mode occurs, since the stress dependence of the time-to-failure is controlled
by the kinetics of slow crack growth. Finally, at very low applied stress and
very long lifetime, a nearly stress independent failure mode, associated with
molecular degradation, is observed. Regardless of failure modes, the time-to-
failure under long-term static loading increases with decreasing applied stress
and temperature. However, in the absence of a quantitative model for long-term
lifetime prediction, real-time time-to-failure experiments need to be performed,
which are lengthy and impractical.

In the present work, it is attempted to provide a quantitative relation between
the microstructure and the deformation kinetics (both short-term and long-term)
of semicrystalline polymers at different deformation modes and temperatures.
To do that, a multi-scale micromechanical model is employed [23, 26]. A key
issue is the stress-dependence of the microscopic rate of plastic deformation, the
slip kinetics, which is the mechanism underlying time-dependent, macroscopic
failure. The kinetics of the macroscopic plastic flow is strongly dependent on
the rate-dependence of slip along crystallographic planes, together with the
yield kinetics of the amorphous domain. Therefore, an accurate quantitative
prediction requires a proper description of the slip kinetics and amorphous yield
kinetics. The starting point is formed by the experimental observations on the
yield kinetics of polyethylene at different temperatures and strain rates, which
reveal the contribution of two deformation processes. Further experimental data
on the stress dependence of the time-to-failure show a piecewise linear relation
in semi-logarithmic plots, with the same absolute slope as that of the yield
kinetics. This indicates that the kinetics of failure under applied strain rate and
applied stress are strongly related. To predict failure under both conditions and
for different temperatures, the crystallographic slip kinetics and the amorphous
yield kinetics are re-evaluated, and the Eyring flow rule is modified by adding
a temperature shift function. To capture the influence of hydrostatic stress, e.g.
the difference between tension and compression, a non-Schmid effect is added to
the constitutive relation of each slip system. The creep behavior of polyethylene is
then simulated directly using the multi-scale, micromechanical model, predicting
the time-to-failure, controlled by plastic deformation (ductile failure), without
any additional fitting parameter.
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4.2 Experimental

4.2.1 Material

The semicrystalline polymer used in this study is a polyethylene grade supplied
by Sabic (Vestolen A 6060R), with a bimodal molecular weight distribution,
which improves the long-term performance enabling application of the material
in pressurized pipe systems for water, gas and sewage. This Vestolen grade is
certified as a PE100 pipe grade.

4.2.2 Sample preparation

Sheet material of 1.5 mm and 8 mm thickness was compression molded in a hot-
press at 230 ◦C. The force was step-wise increased to 100 kN and kept constant for
3 minutes. Subsequently, the mold was taken from the hot-press and allowed to
cool in ambient temperature, which resulted in a cooling rate of about 5 ◦C/min.
The resulting degree of crystallinity of the material was measured by wide angle
X-ray scattering experiments. For tensile experiments, dog-bone shaped samples,
with dimensions of the smallest section of 55× 5 mm, were punched from the 1.5
mm thick compression molded sheets. For uniaxial compression tests, cylindrical
samples (�6 × 6 mm) were machined from the 8 mm thick plates.

4.2.3 Mechanical testing

Both tensile and compression tests were performed at constant, linear strain rates
varying from 10−5 s−1 up to 10−1 s−1 at different temperatures. Long-term failure
experiments were performed under load control, applying a constant load in
uniaxial tension during which the displacement was recorded. The point of
failure is found by taking the maximum strain rate when observing the evolution
of strain rate versus strain in a so called Sherby-Dorn plot [43]. The time needed
to apply the constant load was negligible in comparison to the time-to-failure
obtained. For all measurements, performed at different temperatures, the sample
was allowed to warm to equilibrium temperature for 15 minutes before testing.

4.2.4 Size exclusion chromatography (SEC)

Hight temperature SEC analysis was performed on as-received and loaded
samples using a Waters Alliance GPCV 2000 chromatograph equipped with three
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columns (three PL Olexis, 250 × 8.5 mm, Polymer Laboratories Ltd). Samples
were eluted with trichlorobenzene at a flow rate of 1 mL.min−1 at 160 ◦C.

4.3 Constitutive modeling

An aggregate of a discrete number of layered two-phase composite inclu-
sions [18, 19] is used to represent the constitutive behavior of microscopically
heterogeneous semicrystalline material at the macroscopic scale. Each composite
inclusion is comprised of a crystalline lamella and an amorphous layer. These
two phases are mechanically coupled by enforcing kinematical compatibility
and traction equilibrium on the interface between the crystalline lamella and
the amorphous layer. A microstructural elasto-viscoplastic constitutive model is
used for both constituent phases. In this section, the kinematical framework and
the constitutive models for the elastic and viscoplastic behavior of each phase
together with the polycrystalline aggregate model are concisely summarized.
The constitutive material models of each domain and the set of equations that
compose the composite inclusion model are summarized in Appendix 4.A.
A more detailed discussion of the models employed here, is given by Van
Dommelen et al. [23].

4.3.1 Kinematics

For a microstructural elasto-viscoplastic constitutive description of the constitu-
ent phases, the deformation gradient tensor F = (~∇0~x)

T of each phase is
decomposed into a plastic and an elastic part, denoted by the subscripts "p" and
"e", respectively [44]:

F
π = F

π
e · F

π
p , with π = a, c, (4.1)

where the superscript π shows either the amorphous or the crystalline phase.
Subsequently, the constitutive behavior of both the crystalline and the amorphous
phase is specified.

4.3.2 Crystalline domain

The crystalline domain of semicrystalline polyethylene consists of regularly
ordered chain segments in an orthorhombic packing. This crystal structure causes
the crystalline phase to possess highly anisotropic elastic properties with a high
elastic modulus in the chain direction, and to have plastic deformation primarily
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governed by crystallographic slip up to moderate strains [5–7, 9]. Moreover,
polymer crystals may also deform plastically by mechanical twinning and stress-
induced martensitic phase transformation [5, 9, 45]. Since crystallographic slip
is the predominant deformation mode at the initial stages of deformation and
can accommodate larger plastic deformations than the latter two mechanisms,
for the modeling purpose the other two mechanisms are left out of consideration.
Crystallographic slip within the crystalline lamellae can take place by either fine
slip or coarse slip [9]. During the early stages of deformation, fine slip, which
changes the angle between the chain direction and the interface normal, is the
predominant mode of plastic deformation, whereas coarse slip, which does not
alter the angle between the chains and the interface normal and will ultimately
lead to lamellar break-up, becomes more important at larger strains. In this study,
all slips are assumed to be of the fine slip type.

The elastic part of the deformation in the crystalline domain is characterized by
an anisotropic fourth order elasticity tensor, which linearly relates the Green-
Lagrange strain tensor and the elastic second Piola-Kirchhoff stress measure.

A rate-dependent crystal plasticity model is employed for the viscoplastic beha-
vior of the crystalline phase. In this model, the plastic flow rate of the crystalline
lamella, consisting of a single crystal, is described by the contributions of all Ns

physically distinct slip systems, being 8 for high density polyethylene, and is
given by:

L
c
p = Ḟ

c
p · F

c
p
−1 =

Ns

∑
α=1

γ̇α
P

α
0 ; P

α
0 =~sα

0 ⊗~nα
0 , (4.2)

with P
α
0 the nonsymmetric Schmid tensor, defined by the dyadic product of

the unit slip direction ~sα
0 and the unit slip plane normal ~nα

0 in the reference
configuration. The shear rate γ̇α of each slip system α was previously assumed to
be related to the corresponding resolved shear stress τα via a viscoplastic power
law relation. In order to achieve a better quantitative prediction, Sedighiamiri et
al. [26] replaced the power law relation with an Eyring flow rule:

γ̇α = γ̇α
0 sinh

(
τα

τα
0

)

, (4.3)

with γ̇α
0 and τα

0 the reference shear rate and the shear strength, respectively.
Eyring [35] developed a theory to describe the relaxation process of viscous
flow in liquids, and it can also be used to describe the yield behavior of
amorphous polymers, as well as the microscopic plastic flow at the level of
crystallographic slip systems in semicrystalline polymers. However, varying
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loading conditions and non-isothermal conditions can change the deformation
behavior and complicate the description of the rate-dependency of slip along
crystallographic planes. Therefore, a more complex viscoplastic rate-dependent
relation than the one in equation (4.3) needs to be employed to capture these
conditions and provide a better quantitative predictive ability for the model. To
do that, here a modified Eyring flow rule is used:

γ̇α = γ̇α
0 exp

(−∆Uα

R T

)

︸ ︷︷ ︸

(I)

sinh
(

τα

τc
0

)

︸ ︷︷ ︸

(II)

exp
(

µα σα
n

τc
0

)

︸ ︷︷ ︸

(III)

. (4.4)

The temperature dependence of slip kinetics is captured in part (I), where ∆Uα

is the activation energy of the slip system, R the universal gas constant and T
the absolute temperature. Part (II) represents the stress dependence of the plastic
flow, and part (III) accounts for the effect of pressure on plastic flow in terms
of the normal stress on each slip plane, with µα the normal stress dependency
coefficient and σα

n the normal stress on the slip plane.

4.3.3 Amorphous domain

The amorphous domain of semicrystalline polymers consists of an assembly of
randomly coiled macromolecules, strongly connected to their adjacent crystalline
lamellae through tie molecules, loose chain folds, cilia and intercrystalline chains
crossing the interface of the crystalline and amorphous phase. In the case of
polyethylene, the glass transition temperature of the amorphous phase is far
below room temperature. The amorphous phase should, therefore, be in the
rubbery state at room temperature. However, there are some indications in
literature [46, 47] that suggest that the interlamellar layers may be stiffer than
purely bulk amorphous material due to the confinement of amorphous layers
between thick crystalline lamellae, leading to the immobilization of amorphous
segmental re-orientation.

Due to the strong connectivity of the constituent phases in semicrystalline
polymers through many chains crossing the crystalline/amorphous interface,
such as tight or loose chain ends, cilia, and intercrystalline links, the crystallo-
graphic mechanisms are inevitably accompanied by interlamellar deformation
and they can only deform simultaneously [48]. Furthermore, random thermal
fluctuations allow chain segments in the crystalline phase to migrate into the
amorphous domain. Chain ends or loose chain folds can similarly escape
from the amorphous phase into the crystalline lamellae. This process of chain
diffusion [49], generally referred to as α-relaxation, results in redistribution of the
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chain segments that constitute the interlamellar layer. Therefore, the relaxation
of the interlamellar material in a rate-dependent process occurs as well at a rate
controlled by translational mobility of chain segments within the crystals [32]. In
line with that, also the amorphous phase is modeled as elasto-viscoplastic, with
kinetics influenced by that of the crystalline phase.

In earlier work [23], a Boyce-Parks-Argon-like model [50] combined with a
viscoplastic power law relation was employed to model the elasto-viscoplastic
deformation of the amorphous domain. Here, in the same framework, the
effective shear strain rate and the effective shear stress are related by a modified
Eyring flow rule:

γ̇a
p = γ̇a

0 exp
(−∆Ua

R T

)

sinh
(

τa

aτa
0

)

exp
(−µa pc

bτa
0

)

, (4.5)

with γ̇a
0 the reference shear rate, ∆Ua the activation energy of the amorphous

yield kinetics, τa
0 the shear strength, µa the pressure dependency coefficient and

pc the pressure within the crystalline domain. The latter choice is made due to
the fact that the kinetics of the relaxation of the amorphous domain originates
from that of the crystalline phase. a and b are two constants accounting for
the difference in the definition of the effective shear stress of the amorphous
phase and the resolved shear stress of the crystalline phase, and of the crystalline
normal stress and pressure, respectively, making them comparable for a uniaxial
stress state. In that respect, a and b are taken to be 1.15 and 0.76, respectively.
The plastic rate of stretching is defined by an associated flow rule [23]. The
Arruda-Boyce eight-chain network rubber elasticity model [51] is used to account
for orientation induced hardening [50]. For more details about the constitutive
model of the amorphous phase, see Appendix 4.A.

4.3.4 Composite inclusion model

In the multi-scale micromechanical model, two different levels are distinguished,
namely the microscopic and macroscopic scale. At the microscopic scale, a
layered two-phase composite entity is used as a representative microstructural
element, as proposed by Lee et al. [18, 19] for rigid-viscoplastic material be-
havior. Each separate composite inclusion consists of a crystalline lamella,
mechanically coupled to its corresponding amorphous layer to form a lamellar
morphology, which is characterized by the crystalline lattice orientation, also
referred to as crystallographic texture, and the interface orientation, also known
as morphological texture; see figure 4.1. The stress and deformation fields
within each phase are assumed to be homogeneous; however, they may differ
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~nI

f c

1 − f c

Figure 4.1 Schematic representation of a two-phase composite inclusion.

within each of the coupled phases. The inclusion-averaged deformation gradient
and the inclusion-averaged Cauchy stress are given by the volume-average of
the fields of the respective phases. Furthermore, kinematical compatibility and
equilibrium conditions are defined on the interface of the crystalline lamella and
the amorphous layer.

At the macroscopic level, the material is represented by an aggregate of com-
posite inclusions. The mechanical response of the aggregate to the imposed
deformation, is then computed by relating the volume-averaged deformation and
stress fields of each layered composite inclusion to the corresponding fields of the
aggregate using a hybrid local-global interaction law [18, 19, 23]. The consistency
conditions for equilibrium and compatibility of the aggregate are maintained by
enforcing the macroscopic stress and deformation to equal the volume-average
of the stress and deformation fields of the composite inclusions.

In the hybrid interaction model, local-global compatibility conditions are as-
sumed for the projections of the inclusion-averaged fields for which intra-
inclusion equilibrium conditions were formulated. Inversely, local-global equi-
librium conditions are formulated for the components of the inclusion-averaged
fields that are subjected to intra-inclusion compatibility. A more elaborate
description of the composite inclusion model is presented in Appendix 4.A.

4.3.5 Deformation modes

Initially isotropic material is modeled by an aggregate of composite inclusions,
represented by a set of random crystallographic orientations and corresponding
lamellar orientations. The mechanical behavior of this aggregate is investigated
for different deformation modes. For uniaxial tension and uniaxial compression,
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an aggregate of composite inclusions is subjected to a constant strain rate in the
principal 1-direction:

R̄ = I ; Ū11 = λ(t) (4.6)

with

λ(t) = exp(ǫ̇t) for tension, (4.7)

λ(t) = exp(−ǫ̇t) for compression, (4.8)

where R̄ is the macroscopic rotation tensor, and Ū is the corresponding right
stretch tensor. Moreover, the components of the macroscopic Cauchy stress
tensor σ̄ should satisfy:

σ̄22 = σ̄33 = σ̄12 = σ̄13 = σ̄23 = 0. (4.9)

In the case of long-term static loading for creep failure, a constant nominal stress
P̄ is applied in the principal 1-direction of the material coordinate system. In line
with that, the following conditions are imposed:

P̄ = σ̄11 J̄

∥
∥
∥
∥
∥

[(
J̄

JΣ

) 1
3 NI

∑
i=1

f Ii

0 U
Ii
]−T

·~e1

∥
∥
∥
∥
∥

, (4.10)

with σ̄ = ∑
NI

i=1 f Ii
σ

Ii
, J̄ = ∑

NI

i=1 f Ii

0 JIi
and JΣ = det

(

∑
NI

i=1 f Ii

0 F
Ii
)

, f Ii

0 the initial

volume fraction of the ith inclusion, and

σ̄22 = σ̄33 = σ̄12 = σ̄13 = σ̄23 = 0. (4.11)

4.4 Phenomenology of failure

In order to predict the mechanical response of semicrystalline polymers, first it is
needed to further investigate their so-called short-term and long-term mechanical
properties. Figure 4.2a illustrates the short-term performance of HDPE, measured
in a tensile test with a constant strain rate. The material displays an initially
linear elastic region, where the stress increases linearly with strain. At higher
stresses, the response becomes nonlinear and eventually reaches a maximum, the
so-called engineering yield stress, which marks the onset of plastic deformation.
Soon after, the material experiences necking due to strain localization [52] and a
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localized plastic zone is formed, which can propagate along the entire length of
the test bar. From a mechanical point of view, the moment of neck initiation is
regarded as the point of failure, i.e. where the material loses its integrity.
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Figure 4.2 (a) Deformation behavior of isotropic HDPE in uniaxial tension under a constant
strain rate of 0.001 s−1. (b) Creep behavior of the same material under a constant
applied stress of 20 MPa.

Figure 4.2b shows the long-term performance of the material, in which the
evolution of the engineering strain under a constant applied stress that is approx-
imately 16% below the yield stress, is illustrated. As can be seen, the deformation
increases slowly in time, with a rate of deformation becoming constant (flow
regime) after an initial viscoelastic region (primary creep). However, the rate
of deformation abruptly increases at longer loading times, resulting in the failure
of the material. The observed mode of failure is similar to that observed in short-
term performance, i.e. necking. The key issue, here, is that the applied stress
dependency of the steady-state creep rate at the flow regime is interchangeable
with the strain rate dependency of the yield stress.

Furthermore, the strain rate dependence of the yield stress and the applied stress
dependence of the time-to-failure, as shown in figure 4.3, both display a piece-
wise linear relation in semi-logarithmic plots with a similar absolute slope. This
indicates that the kinetics of failure under applied strain rate and applied stress
are strongly related.

The bilinear dependence of yield stress on strain rates implies the contribution
two flow processes, and has been also observed in literature for semicrystalline
polymers [53, 54]. The first flow process, which has a very low slope, acts at
high temperatures or low strain rates, whereas the contribution of second process,
with a higher slope, is revealed at low temperatures or high strain rates.
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Figure 4.3 (a) Strain rate dependence of the yield stress, and (b) applied stress dependence
of the time-to-failure of PE samples at different temperatures. Lines are a guide to
the eye.

4.5 Results and discussion

In this section, the mechanical response of initially isotropic HDPE subjected to
uniaxial tension and compression for a range of strain rates and temperatures
is investigated. A volume crystallinity of f c = 0.55 is used in the model
prediction. Experimental studies of melt-crystalized PE and molecular models
show that lamellar surfaces are of the {h0l} type, where the angle between the
chain direction ~c and the lamellar normal direction ~nI varies between 20◦ and
40◦ [55, 56]. Here, the lamellar surface is set to {201}, which corresponds with an
angle of 35◦. The spherulitic structure of melt-crystallized PE is represented by
an aggregate of 500 randomly oriented inclusions.

It is now well established that the kinetics of the macroscopic plastic deformation
in semicrystalline polymers are mainly governed by the kinetics of the individual
slip systems, accompanied by the deformation kinetics of the amorphous domain
at the microscopic level. Therefore, an accurate quantitative prediction of the
yield kinetics and time-dependent macroscopic failure strongly depends on the
proper description of the rate-dependency of slip along crystallographic planes
together with the rate-dependency of the amorphous material. As a first step
in adding quantitative predictive abilities to the multi-scale micromechanical
model, the viscoplastic power law relation, often used in micromechanical
modeling of polymers, was replaced with an Eyring flow rule [26]. The necessity
of using a viscoplastic behavior for the amorphous phase was also discussed. The
predicted compressive stress-strain behavior and the texture development during
deformation were confronted with experimental data at room temperature, and
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revealed a promising agreement.

However, experimental data of the tensile yield kinetics of polyethylene at
different temperatures and strain rates reveals the contribution of two relaxation
processes, depicted as a clear change in slope of the strain rate dependence of
the yield stress and the stress dependence of the time-to-failure, see figure 4.3.
In principle, one can distinguish two flow processes acting in a semicrystalline
polymer, namely an intralamellar process related to crystallographic slip within
the crystalline lamella, and interlamellar shear associated with the α-relaxation
process [57]. Depending on the temperature and time scale of the experiment,
each or both of these processes may contribute to the mechanical response. At
high temperatures or low strain rates, the stress contribution of the interlamellar
process (process II) becomes negligible, and the yield kinetics of isotropic HDPE
is governed by the intralamellar slip process (process I). For HDPE at a frequency
of 1 Hz, the α-relaxation peak occurs at a temperature of approximately 80◦C [47].
This implies that at higher temperatures and longer time scales, the interlamellar
deformation associated with the α-relaxation process can be easily activated,
and no significant stress is needed to activate this process. At higher strain
rates or lower temperatures, the additional contribution of the interlamellar
process becomes apparent, resulting in a clear change of slope in the strain
rate dependence of the yield stress [58, 59]. Figure 4.4 illustrates a schematic
illustration of the molecular processes contributing to the mechanical response,
with their stress contributions being additive. In order to describe this complex
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Figure 4.4 Schematic illustration of the stress contribution of two relaxation mechanisms
on the yield kinetics.

behavior, the original Eyring rate expression for the individual slip kinetics and
the kinetics of the amorphous domain is further modified. As a first step, an
Arrhenius-type temperature shift function is added to capture the temperature
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dependency of the crystallographic slip and amorphous yield kinetics. In order
to predict the response in both tension and compression, a pressure dependence
of the yield kinetics of the amorphous material and a normal stress dependence
of the crystallographic slip kinetics, also referred to as a non-Schmid effect, are
included, as described in section 4.3. There are eight physically distinct slip
systems present in the crystalline domain of polyethylene, which comprise six
crystallographically different types of slip systems, each possibly having different
properties. However, it should be noted that it is not possible to make a complete
distinction between all different slip kinetics from experimental data on isotropic
samples only, and various sets of parameters at the microscopic level could
lead to a similar result at the macroscopic level. An illustrative example is
given in figure 4.5. Crystallographic slip and amorphous yield kinetics at the
microscopic level are classified into three distinct groups, namely the (100)[001]
chain slip system as the easiest one, the amorphous yield kinetics, and the other
slip systems. For the sake of simplicity, the pressure and non-Schmid effects
are left out of consideration in this example. It is first attempted to mimic
the thermo-rheologically complex yield kinetics (figure 4.3a), by assuming less
rate sensitive slip kinetics and steeper amorphous yield kinetics, as can been in
figure 4.5a, since the first and the second relaxation mechanisms are assigned to
the crystalline and amorphous domains, respectively. However, as can be seen in
figure 4.5c, this set of kinetics does not result in a change in slope of the strain rate
dependence of the yield stress, and provides a linear relation between the yield
stress and the logarithm of the strain rate. Furthermore, figures 4.5b and 4.5c
reveal that using a different set of parameters, and parallel kinetics, still enables
predicting a similar macroscopic deformation kinetics. In line with this, parallel
slip kinetics are assumed for further characterization.

It has been shown by several researchers [53, 59–61] in their phenomenological
models for the deformation kinetics of polymers, that using the Ree-Eyring [62]
modification of the original Eyring expression enables describing the thermo-
rheologically complicated behavior. The modified theory assumes that two
independent flow processes exist, with the stress contributions being additive.
Here, the same assumption is employed for the stress dependence of the crystallo-
graphic slip systems, and the yield kinetics of the amorphous phase. The resolved
shear stress along the slip planes and the total contribution of the amorphous
material, can, then, be expressed as:

τtot = τI + τII. (4.12)

Here, the transition in kinetics is incorporated in a single viscosity expression
through extending the viscosity function for two parallel process. A deriv-
ation of the viscosity function and the corresponding parameters is given in
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Figure 4.5 (a) Non-parallel slip and amorphous yield kinetics, (b) parallel slip and
amorphous yield kinetics, and (c) their corresponding predicted macroscopic plastic
flow in uniaxial tension.

Appendix 4.B.

As discussed in section 4.4, Experimental observations reveal that there is a
similar failure mode in both applied strain rate and applied stress conditions.
Ductile failure under an applied strain rate occurs due to strain localization
associated with a local maximum in engineering stress. The sudden increase in
creep rate under applied stress, which results in failure, is also due to necking
of the material and the associated increase in local stress. Therefore, in order
to predict failure under both conditions and for different temperatures, the
crystallographic slip kinetics and the amorphous yield kinetics need to be further
refined to predict the local maximum in engineering stress.



4.5 Results and discussion 95

The tensile stress-strain curves of isotropic HDPE, at various temperatures and
strain rates, is shown in figure 4.6a. An important factor for accurate prediction
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Figure 4.6 (a) Tensile response of isotropic HDPE, at various temperatures and strain rates.
(b) Temperature dependence of the tensile yield kinetics of isotropic HDPE. Lines
show the micromechanical model prediction and symbols indicate experimental
data.

of the tensile engineering stress-strain curves is the strain rate and temperature
dependent elastic modulus of the material. A strain rate and temperature
dependence of the elastic moduli of the constituent phases is not explicitly
described in the model. However, the optimum amorphous modulus leading
to the best description of the experimental tensile stress-strain curves at a specific
strain rate, is determined for two temperatures and is taken to change linearly
with temperature:

Ga = 85 − 0.8 T, (4.13)

with Ga [MPa] the shear modulus of the interlamellar layer, and T [◦C] the
temperature. The bulk modulus of the interlamellar layer is chosen to be 3000
MPa [63]. Furthermore, in the Arruda-Boyce eight-chain model [51], accounting
for the orientational hardening of the amorphous phase, the number of rigid links
between entanglements and the constant proportional to the initial stiffness, are
taken as N = 49 and µR = 1 MPa, respectively. It was observed that changing the
elastic constant of the crystalline phase with temperature does not have much
effect on the tensile yield strain. Therefore, only the elastic modulus of the
interlamellar layer is assumed to change with temperature. The elastic constants,
used in this model for the crystalline phase, are listed in table 4.1.

The kinetics were first characterized for two extreme temperatures, namely 25◦C
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Table 4.1 Elastic constants [GPa] for the crystalline phase of PE [64].

C11 C22 C33 C12 C13 C23 C44 C55 C66

7.99 9.92 315.92 3.28 1.13 2.14 3.62 1.62 3.19

and 80◦C, to predict the local maximum in engineering stress, which could either
be related to the first yield point, at low temperatures and high strain rates, or
the second yield point, at high temperatures and low strain rates [16]. Figure 4.7
shows the obtained slip kinetics and the amorphous yield kinetics for these two
temperatures. The re-evaluation of the slip kinetics was performed, taking into
account both uniaxial tensile and compression data of isotropic HDPE. As can be
seen, the kinetics of each slip system together with the kinetics of the amorphous
phase include both processes, observed in the experimental data. The resulting
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Figure 4.7 Refined slip kinetics and amorphous yield kinetics ( τa

a ) at different
temperatures.

micromechanical model description of the tensile engineering stress-strain curves
at these two temperatures is illustrated in figure 4.6a. Then, the activation
energies of the individual slip systems and the amorphous yield kinetics were
calculated, enabling the prediction of the local engineering maximum at any
temperatures in between. Table 4.2 summarizes the yield kinetics of all slip
systems and the amorphous phase, together with their activation energies and
the reference shear rates γ̇∗

0,Tref
, characterized at a reference temperature Tref, for

both relaxation processes. Since all slip kinetics and the amorphous yield kinetics
account for the onset of the stress contribution of the interlamellar process at the
same shear rate, the activation energies of the kinetics in process II are the same.
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The temperature dependence of the reference shear rates can then be calculated
using:

γ̇∗
0,T = γ̇∗

0,Tref
exp

[

−∆U

R

(
1
T
− 1

Tref

)]

(4.14)

with Tref being 80◦C in this study. The values of the characteristic shear stresses
for the relaxation processes within the crystalline and amorphous phases in the
Eyring model are set to τc,I

0 = τa,I
0 = 0.06 MPa and τc,II

0 = τa,II
0 = 0.7 MPa.

Table 4.2 Yield mechanisms in the constituent phases, with their reference shear rates and
activation energies of both processes, corresponding to the viscoplastic Eyring flow
rule, at Tref = 80◦C.

Process I Process II

Mechanism γ̇∗
0,Tref

[s−1] ∆UI[kJ mol−1] γ̇∗
0,Tref

[s−1] ∆UII[kJ mol−1]

(100)[001] 6.5 × 10−20 560 2.2× 10−3 110

(010)[001] 1 × 10−27 1293 2.2× 10−3 110

{110}[001] 1 × 10−27 1293 2.2× 10−3 110

(100)[010] 5 × 10−26 867 2.2× 10−3 110

(010)[100] 1 × 10−27 1293 2.2× 10−3 110

{110}〈11̄0〉 1 × 10−27 1293 2.2× 10−3 110

amorphous 1.6 × 10−23 582 2.2× 10−3 110

As can be seen in table 4.2, a large temperature dependence, corresponding
to high activation energies of 867 kJ mol−1 and 1293 kJ mol−1, is observed for
some slip systems in process I. These activation energies appear unrealistic for
a plastic deformation process, since they are larger than the energy required
for chain scission (breaking of a covalent C-C bond), which is in the range of
284 − 368 kJ mol−1 [65]. This indicates that chain scission could contribute to the
deformation at elevated temperatures. To investigate this issue, molecular weight
distribution was measured using SEC on as-received samples and samples
loaded for various times (failure after 12.5 hours and interrupted after 7 hours
loading) at 80◦C. The results are presented in table 4.3, where it becomes
clear that there is no significant difference between molecular weights of three
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Table 4.3 Molecular weights of samples, as-received and loaded at 80◦C.

samples Mn[kg mol−1] Mw[kg mol−1] Mz[kg mol−1]

as-received 9.5 260 1300

loaded for 7 hrs 9.6 290 1500

failed after 12.5 hrs 9.6 260 1200

samples. Therefore, the chain scission can be excluded as a major contributor
to the plastic deformation. This is completely in line with experimental data on
pressurized pipe testing, where molecular degradation was never observed in the
ductile failure regime [41]. Séguéla et al. [30, 31] proposed that the underlying
mechanism for the nucleation and propagation of screw dislocations relies on
defects that migrate along the chain stems within the crystalline domain. The
change in the mobility of such a defect with temperature is captured by an
Arrhenius temperature dependence. However, it should be noted that the defect
density is also subject to change with temperature [66], and thus leads to a
further increase in crystallographic slip rate. Therefore, it is hypothesized that
the observed high activation energies are related to the collective effect of thermal
activation of defect mobility and increase in defect density.

Figure 4.6a shows the prediction of the tensile stress-strain curves of isotropic
HDPE with the micromechanical model, using the refined kinetics, at various
strain rates and also an intermediate temperature, compared to the experimental
data. The resulting temperature dependence of the tensile yield kinetics under
constant strain rate is given in figure 4.6b.

The normal stress dependency coefficients of the slip systems and the pressure
dependency coefficient of the amorphous phase were chosen to both account for
the relative difference between the yield stress in tension and compression, and
also the initial strain hardening, influencing the engineering tensile maximum.
Table 4.4 lists the normal stress dependency coefficients along slip planes and
the pressure dependency coefficient of the amorphous phase. Since specific data
regarding the pressure dependence of the processes I and II are lacking, the
normal stress and pressure dependence of the two processes are assumed to be
equal.

The compressive true stress-strain response is shown in figure 4.8a. The initial
post-yield hardening is partly due to texture evolution during deformation.
However the initial hardening of the amorphous phase also affects the post-
yield response, especially up to moderate strains. By using a constant hardening
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Table 4.4 Amorphous phase pressure dependency and normal stress dependency
coefficients of individual slip planes.

slip planes µ

(100) 0.005

(010) 0.16

{110} 0.16

amorphous 0.004

modulus µR for the amorphous phase, the post-yield hardening in compression
is insufficient. Orientational hardening of the amorphous phase is modeled
by an Arruda-Boyce eight chain network model [51], which assumes a purely
entropic origin for the strain hardening. However there are many arguments
in contrast to such an hypothesis [67–70]. Van Melick et al. [67] showed that
the strain hardening in amorphous glassy polymers decreases with increasing
temperatures, whereas, in case of an entropic response, an increasing modulus
would be expected. In addition, experimental evidence of the strain rate
dependency of strain hardening for a selection of polymers is given in [69, 70].
Studies on the effect of hydrostatic pressure on the compressive deformation
behavior of both amorphous and semicrystalline polymers have also revealed
an increase of the strain hardening with increasing pressure [71, 72]. These
observations suggest that in addition to the polymer chain network contribution,
there is a relation between strain hardening and flow stress, i.e. a viscous
contribution to strain hardening [73]. A physical picture would be that the
thermal mobility of the chain segments in the amorphous region is influenced
by inter-chain packing. When the interlamellar material is under compression,
the free volume decreases, and therefore, the inter-chain Van der Waals forces in-
crease, resulting in intensification of activation barriers for initiation of molecular
mobility [74]. In correspondence to that, and to obtain a reasonable compressive
stress-strain behavior, the hardening constant, proportional to the initial stiffness,
for compressive deformation, is taken to be µR = 1.6 MPa.

Confrontation of true stress-strain curves predicted with the model for varying
temperatures and strain rates with experimental data (figure 4.8a) reveals a good
agreement up to moderate strains. However, at later stages of deformation,
specifically after the second yield point, the predictions deviate from the ex-
perimental curves. It is most likely due to the fact that lamellar fragmentation,
as a result of a process of coarse slip [75–78], is not taken into account in the
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Figure 4.8 (a) Compressive true stress-strain curves at varying temperatures and strain
rates, predicted by the micromechanical model, and (b) Compressive true yield
kinetics of isotropic HDPE. Symbols indicate experimental data.

model. Figure 4.8b shows the predicted compressive true yield kinetics at various
temperatures, compared to experimental results, which shows a good agreement.

Having predicted the yield kinetics, it is now attempted to predict the long-term
failure of isotropic HDPE, dominated by plastic flow (ductile failure). Therefore,
the creep behavior of polyethylene under constant force is simulated directly
using the multi-scale, micromechanical model, linking the time-to-failure to
the applied stress without any additional fitting parameter, often employed in
modeling approaches [37, 38]. Figure 4.9a shows the predicted creep curves of
isotropic HDPE under various constant applied stresses at ambient temperature.
A comparison of the model simulation with actual experimental creep curves,
also shown in this figure, reveals a good agreement. To obtain the time-to-failure
from the prediction, a so-called Sherby-Dorn plot [43], i.e. a semi-logarithmic plot
of creep rate versus strain, is used, see figure 4.9b. Failure is assumed to occur
at the maximum creep rate in the Sherby-Dorn plot. Finally, in figure 4.10, the
predicted dependence of the time-to-failure on temperature and applied stress
is given. Comparison with experimental data shows that both the short-term
(figures 4.6 and 4.8) and the long-term (figure 4.10) kinetics of isotropic HDPE are
described well by the micromechanical model within the range of temperatures,
strain rates and applied loads.

Figure 4.11a illustrates the activity of a selected number of slip systems at the
engineering yield stress of 18.15 MPa (maximum in local stress) under a constant
applied strain rate of 10−4 s−1 in tension at 25◦C. The activity of the same
slip systems under a constant applied stress of 18 MPa, at the secondary creep
stage, where the creep rate remains more or less constant (the minimum in the
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Figure 4.9 (a) Predicted creep curves of isotropic HDPE, subjected to different constant
loads. Symbols show the experimental creep curves. (b) Sherby-Dorn plots,
predicted by micromechanical model. Symbols indicate the maximum creep rate,
associated with failure.
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Figure 4.10 Applied stress dependence of time-to-failure at various temperatures. Lines
indicate the micromechanical model prediction and symbols give the experimental
data.

Sherby-Dorn plot), is shown in figure 4.11b for a temperature of 25◦C. In these
inverse pole figures, the location of each dot denotes the relative orientation of
the loading direction with respect to the crystallographic coordinate system of the
corresponding inclusion, and its color shows the magnitude of the resolved shear
rate of the indicated slip system. As can be seen, the micromechanical steady-
state rates of deformation in static loading are similar to the rates of deformation
at the yield point for a constant strain rate. This demonstrates that in polymers,
an applied stress results in a steady state rate of plastic flow, and hence failure,
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that are equivalent to the plastic flow at the yield point and failure mode observed
under a constant strain rate.
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Figure 4.11 Inverse pole figures of the activity of a number of slip systems (a): at the yield
stress of 18.15 MPa under a constant applied strain rate of 10−4 s−1 in tension at 25◦C,
and (b) during the constant steady-state creep rate under a constant applied stress of
18 MPa at 25◦C. Colors represent the magnitude of the resolved shear rate of the
specified slip system for each inclusion.

As has already been mentioned, the kinetics of each slip system and the kinetics
of the amorphous phase are assumed to include both processes. Here, a
physical picture behind that is discussed. Crystallographic slip occurs due to the
generation and migration of dislocations within the crystals [27]. The number
of mobile dislocations that pre-exist in the crystalline lamellae of semicrystalline
polymers is sufficient to initiate the process of plastic deformation [48]. However,
during crystallographic slip, dislocations propagate through the crystal and soon
emit from the edges of the lamellae, due to the small dimensions of the crystals
in semicrystalline polymers. Therefore, new dislocations must be generated and
enter the crystals to accommodate the plastic flow. At low rates of deformation,
the motion of dislocations through the crystalline domain occurs at a low rate.
Then, if temperature is high enough, dislocations can be easily nucleated as a
result of thermally-induced translational mobility of chain segments within the
crystalline domain, and the resistance of the crystalline lattice to the propagation
of dislocations is assumed to be the rate controlling process. However, at
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higher rates of deformation, dislocations emit from the edge of the crystals at
a higher rate, and, therefore, a higher rate of nucleation of dislocations is needed
for crystallographic slip. Accordingly, more stress is needed to nucleate the
amount of dislocations, required to allow for plastic flow. The kinetics of plastic
flow, therefore, is controlled by the nucleation of dislocations [79]. Séguéla et
al. [30, 31] proposed the mechanism for the nucleation of dislocations to be the
migration of stress-induced twist defects along the chain stems. Such defects
allow translational mobility of chain segments, also referred to as chain diffusion,
and are required for the α-relaxation process as well, resulting in relaxation of the
interlamellar material in a rate dependent process [32]. Therefore, the kinetics
of the relaxation of the amorphous phase is influenced by that of the crystalline
phase, and in line with that, the slip kinetics and the amorphous yield kinetics
in the model both account for the rate controlling process. The need of having
a relaxation process for the amorphous domain in regime I might be due to the
intra-inclusion interaction conditions.

4.6 Conclusions

The current work is directed towards adding quantitative predictive abilities to
a multi-scale micromechanical model for semicrystalline polymers, specifically
for their deformation kinetics and long-term failure. The model distinguishes
two different scales. At the microscopic level, a two-phase composite entity is
employed, comprised of a crystalline lamella that deforms plastically via rate-
dependent crystallographic slip, and an amorphous domain, with plastic flow
being a rate-dependent process. At the macroscopic level, the actual orientation
distribution is modeled by an aggregate of these composite inclusions.

A critical issue in achieving the goal of quantitative prediction, is a proper
description of the crystallographic slip kinetics and the yield kinetics of the
interlamellar material, which are the mechanisms underlying time-dependent,
macroscopic failure. Characterization of the kinetics at the microscopic scale
has been done using a combined numerical/experimental approach, taking into
account uniaxial compression and tension experiments of isotropic HDPE, at
various temperatures and strain rates. The kinetics of individual slip systems,
together with the kinetics of the amorphous phase, account for the two relaxation
mechanisms that are present in the experimentally obtained data for tensile yield
kinetics. Comparing the predicted compressive and tensile yield kinetics with
experimental data, shows a promising agreement.

Phenomenological studies of failure show that the mode of failure observed in
the long-term performance of polymers is similar to that observed in a short-
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term tensile test; necking, associated with decreasing engineering stress. Having
predicted that, the creep behavior of isotropic HDPE has also been simulated
directly using the micromechanical model, and the time-to-failure under various
applied stress and temperatures has been calculated. The predicted stress-
dependence of the time-to-failure reveals a piece-wise linear relation on a semi-
logarithmic scale, with the same absolute slope as that of the rate-dependence of
the yield kinetics, and provides a good agreement with experimental data.

In the present work, the micromechanical model is characterized based on the
response of initially isotropic semicrystalline polymers. To characterize the
crystallographic slip kinetics and the amorphous yield kinetics, their properties
are related to the engineering level, in which experiments can be performed.
However, what is observed at the macroscopic level is the effective contribution
of six different types of slip systems, each possibly having different properties,
and the yield kinetics of the amorphous material. Therefore, it is not possible to
completely distinguish between all slip systems using macroscopic yield kinetics
of an isotropic systems, and in line with that the properties of some slip systems
are assumed to be the same in the micromechanical model.

The next step will be the evaluation of the model prediction for materials
with an initially oriented microstructure. This might require a re-evaluation
of the individual slip kinetics. Furthermore, the model does not yet take into
account the pronounced dependence on lamellar thickness that is experimentally
observed.
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4.A Appendix: Multi-scale constitutive model

In this appendix, the material models used for the constituent phases, and the
composite inclusion model for semicrystalline polymers are presented.

4.A.1 Crystalline phase

The elastic behavior of the crystalline phase is characterized by a fourth order
elasticity tensor 4Cc which linearly relates the second Piola-Kirchhoff stress tensor
τ

c and the Green-Lagrange strain tensor E
c
e:

τ
c = 4Cc : E

c
e, (4.A.1)

with

τ
c = Jc

e F
c−1

e ·σ
c · F

c−T

e and E
c
e =

1
2

(

F
cT

e · F
c
e − I

)

, (4.A.2)

with Jc
e = det(Fc

e) the volume ratio, σ
c the Cauchy stress tensor and I the second

order identity tensor. The viscoplastic component of the deformation in the
crystalline phase, composed of the contributions of all Ns physically distinct slip
systems, is given by:

L
c
p = Ḟ

c
p · F

c
p
−1 =

Ns

∑
α=1

γ̇α
P

α
0 ; P

α
0 =~sα

0 ⊗~nα
0 , (4.A.3)

with P
α
0 the nonsymmetric Schmid tensor, given by the dyadic product of the

unit slip direction ~sα
0 and the unit slip plane normal ~nα

0 of the αth slip system.
The resolved shear rate γ̇α of each slip system is assumed to be related to the
corresponding resolved shear stress τα, via a modified Eyring flow relation:

γ̇α = γ̇α
0 exp

(−∆Uα

R T

)

sinh
(

τα

τc
0

)

exp
(

µα σα
n

τc
0

)

, (4.A.4)

with

τα = Jσ
c : P

α = τ
c ·C

c
e : P

α
0 , (4.A.5)

and

σα
n = Jσ

c : N
α = τ

c : N
α
0 . (4.A.6)
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where N
α
0 is a tensor defined as N

α
0 = ~nα

0 ⊗~nα
0 and C

c
e denotes the elastic right

Cauchy-Green deformation tensor.

4.A.2 Amorphous phase

The elastic behavior of the amorphous phase is modeled by a generalized neo-
Hookean relationship:

σ
a
e =

Ga

Ja
e

B̃
ad

e + Ka(Ja
e − 1)I, (4.A.7)

where the superscript "d" denotes the deviatoric part, F̃
a
e = Ja−

1
3

e F
a
e is the isochoric

elastic deformation gradient tensor and B̃
a
e = F̃

a
e · F̃

aT

e is the isochoric elastic left
Cauchy-Green deformation tensor. Ga and Ja

e are the shear modulus and bulk
modulus, respectively.

A viscoplastic Eyring flow rule is employed to relate the effective shear strain rate
γ̇a

p to the effective shear stress of the amorphous phase τa, defined as

τa =

√

1
2

σ
ad
∗ : σ

ad
∗ with σ

a
∗ = R

aT

e ·σ
a · R

a
e − H

a, (4.A.8)

with R
a
e the rotation tensor, obtained from the polar decomposition of F

a
e and

H
a a back stress tensor, which accounts for orientation-induced hardening and is

given by:

H
a = µR

√
N

λch
L−1

(
λch√

N

)(

B
a
p − λ2

chI

)

, (4.A.9)

where λch =
√

1
3tr(Ba

p) represents the stretch of each chain in the eight-chain

network model and L−1 is the inverse of the Langevin function. The plastic rate
of deformation D

a
p is then defined as:

D
a
p =

γ̇a
p

τa σ
ad

∗ , (4.A.10)

where the effective shear rate γ̇a
p, is given by:

γ̇a
p = γ̇a

0 exp
(−∆Ua

R T

)

sinh
(

τa

aτa
0

)

exp
(−µa pc

bτa
0

)

, (4.A.11)
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with pc the pressure within the crystalline domain, due to the fact that the kinetics
of the relaxation of the amorphous domain originates from that of the crystalline
phase, and given by:

pc = −1
3

σ
c : I. (4.A.12)

4.A.3 Composite inclusion model

The inclusion-averaged deformation gradient F
I and Cauchy stress σ

I of each
individual composite are given by:

F
I = f c

0 F
c + (1 − f c

0 )F
a, (4.A.13)

σ
I = f c

σ
c + (1 − f c)σa. (4.A.14)

The two phases are assumed to be kinematically compatible and in equilibrium
across the interface. The compatibility and equilibrium conditions on the
interface can be written as:

F
a ·~xI

0 = F
c ·~xI

0 = F
I ·~xI

0, (4.A.15)

σ
a ·~nI = σ

c ·~nI = σ
I ·~nI, (4.A.16)

where ~nI = ~eI
3 denotes the unit normal vector of the interface, and ~xI

0 denotes an
arbitrary vector in the plane of interface, spanned by~eI

1 and~eI
2 such that~eI

1 ×~eI
2 =

~eI
3.

4.A.4 Hybrid interaction law

In the hybrid interaction model, six auxiliary deformation-like unknowns Û are
introduced. The macroscopic Cauchy stress tensor, the macroscopic right stretch
tensor an the macroscopic rotation tensor are denoted by σ̄, Ū and R̄, respectively.
Then, for an aggregate of NI composite inclusions, the following local-global
interaction conditions are used:

U
Ii ·~nIi

0 = Û ·~nIi

0 ; i = 1, . . . , NI, (4.A.17)

σ
Ii ·~xIi

= σ̄ ·~xIi
; i = 1, . . . , NI, (4.A.18)
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R
Ii
= R̄ ; i = 1, . . . , NI, (4.A.19)

in combination with the consistency conditions:

σ̄ =
NI

∑
i=1

f Ii
σ

Ii
, (4.A.20)

Ū =

(
J̄

JΣ

) 1
3 NI

∑
i=1

f Ii

0 U
Ii

, (4.A.21)

with J̄ = ∑
NI

i=1 f Ii

0 JIi
and JΣ = det

(

∑
NI

i=1 f Ii

0 F
Ii

)

.
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4.B Appendix: Viscosity expression

The thermo-rheologically complex response of a semicrystalline polymer is
captured here based on the Ree-Eyring [62] modification of the original Eyring
expression, assuming that the total resolved shear stress along a slip plane can
be expressed by two independent flow processes, with the stress contributions
being additive (see figure 4.12):

τtot = τI + τII. (4.B.1)

Rewriting equation (4.A.4) in terms of resolved shear stress of an individual slip

log(shear rate)

re
s
o
lv

e
d
 s

h
e
a
r 

s
tr

e
s
s

τII

τII

τI

τI

τtot

Figure 4.12 Schematic illustration of the modified Eyring rate expression for the slip and
amorphous phase kinetics.

plane gives:

τπ = τπ
0 sinh−1

[

γ̇

γ̇π
0

exp
(

∆Uπ

R T

)

exp
(−µ σn

τc
0

)]

, with π = I, II. (4.B.2)

In a similar way, the resolved shear stress in the I+II regime can be expressed as:

τI+II = τI+II
0 sinh−1

[

γ̇

γ̇∗I+II

0

exp
(−µ σn

τc
0

)]

, (4.B.3)

where τI+II
0 represents the rate dependence in the I+II regime, and the temper-

ature dependent pre-exponential constant γ̇∗I+II

0 contains a contribution of the
two processes. For large stresses, at which sinh−1(x) ≈ ln(2x), equations (4.B.2)
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and (4.B.3) become:

τπ = τπ
0 ln[γ̇] + τπ

0 ln

[

2
γ̇π

0
exp

(
∆Uπ

R T

)

exp
(−µ σn

τc
0

)]

, with π = I, II (4.B.4)

τI+II = τI+II
0 ln[γ̇] + τI+II

0 ln

[

2

γ̇∗I+II

0

exp
(−µ σn

τc
0

)]

, (4.B.5)

respectively, where τI+II
0 and γ̇∗I+II

0 can be derived from equations (4.B.4)
and (4.B.5), while τI+II = τI + τII, as:

τI+II
0 = τI

0 + τII
0 (4.B.6)

γ̇∗I+II

0 = 2 exp

(

−
τI

0 ln
[

2
γ̇I

0
exp

(
∆UI

R T

)]

+ τII
0 ln

[
2

γ̇II
0

exp
(

∆UII

R T

)]

τI
0 + τII

0

)

. (4.B.7)

The stress and temperature dependence of the solid state viscosity η in the I and
I+II regimes can be obtained by replacing equations (4.B.2) and (4.B.3) in η = τ

γ̇

and defining the zero viscosity as η0 = τ0
γ̇0

. Figure 4.13a shows the combination of

the viscosity of the I regime with the I+II regime. At low shear stress levels, ηI is
much larger than ηI+II (note the logarithmic scale), whereas at high shear stress
levels, ηI+II is dominant. The viscosity response over the complete range of shear
stresses can be approximated by addition of these two viscosity regimes:

ηtot = ηI + ηI+II = ηI
0

[ τ
τI

0

sinh
(

τ
τI

0

) exp
(

∆UI

R T

)

+
η∗I+II

0

ηI
0

τ
τI+II

0

sinh
(

τ
τI+II

0

)

]

exp
(−µ σn

τc
0

)

.

(4.B.8)

Due to the logarithmic dependence of the viscosity to stress, the contribution of
ηI+II is negligible in the I regime, and that of ηI is negligible in the I+II regime.
The resulting shear stress dependence of the shear rate, depicted in figure 4.13b,
is then given by:

γ̇ =

[
γ̇I

0 exp
(

− ∆UI

R T

)

sinh
(

τ
τI

0

)

γ̇∗I+II

0 sinh
(

τ
τI+II

0

)

γ̇I
0 exp

(

− ∆UI

R T

)

sinh
(

τ
τI

0

)

+ γ̇∗I+II

0 sinh
(

τ
τI+II

0

)

]

exp
(

µ σn

τc
0

)

. (4.B.9)
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Figure 4.13 (a) Description of the I and I+II viscosity regimes as a function of the shear
stress. (b) The resulting shear stress as a function of logarithm of resolved shear rate.
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Deformation kinetics of oriented polymers1

Chapter 5

Abstract

The mechanical response of extruded semicrystalline materials, in which
a stacked lamellar morphology is commonly observed, depends on the
direction of loading with respect to the direction of flow. Plastic
deformation and failure are, therefore, both anisotropic. The predictive
ability of the micromechanical model, including the characterization of the
kinetics of the crystallographic slip and amorphous yield, is evaluated here
for oriented high-density polyethylene tapes with different draw ratios. The
initial morphology of the material is generated based on pole figures from
wide-angle X-ray diffraction experiments, which show a strong alignment
of molecular chains with the drawing direction for specimens produced
with a large draw ratio. The angle between chain direction and lamellar
normal direction is found to have a strong influence on the yield kinetics,
especially when loading is in the direction of the chain. Anisotropic
crystal plasticity alone proves not able to quantitatively describe the
macroscopic mechanical response in the solid state hot drawn samples.
Most likely, during this process also the amorphous domains became
oriented. Therefore, the influence of a loading angle dependent yield
kinetics for the amorphous phase is evaluated, and indeed the predictions
improve considerably. Finally, the possibilities for characterizing the
properties of different crystallographic slip systems are investigated.

1A. Sedighiamiri, L.E. Govaert, J.A.W. van Dommelen, A micromechanical study on the
deformation and failure kinetics of oriented semicrystalline polymers, in preparation.
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5.1 Introduction

The plastic deformation of semicrystalline polymers is complicated due to their
hierarchical structure. Various competing phenomena and mechanisms are likely
to occur simultaneously, and many morphological and structural factors play
a role at different levels [1–5]. Therefore, their mechanical performance, as
characterized by elasto-viscoplastic deformation, strongly depends on the mor-
phological features (crystallinity, lamellar thickness and molecular weight), the
initial underlying microstructure, as well as the evolution of the microstructure
during deformation [6–8]. However, there is yet to exist a quantitative model
which can accurately describe the deformation and different failure modes,
and explain the deformation kinetics in terms of structural and morphological
characteristics.

Young [9, 10] made a first attempt in establishing a direct relation between the
crystalline structure and the yield stress of semicrystalline PE. His approach
regards that yield involves the activation of [001] screw dislocations, accounting
for a single crystallographic slip system, and enables a direct relation between
macroscopic yield stress and lamellar thickness. The energy required for the
nucleation of screw dislocations from the edge of the crystals, with a Burgers
vector parallel to the chain direction, was proposed to be supplied by thermal
fluctuations of chain segments within crystals [11]. Séguéla et al. [12, 13] later
supported Young’s plasticity approach, suggesting that crystallographic slip
occurs due to nucleation of screw dislocations from the lateral surface of the
crystalline lamellae and proposed an underlying mechanism that relies on chain
twist defects that migrate along the chain stems.

In recent years, micromechanically-based models have been increasingly used
to understand the plastic deformation in semicrystalline polymers, taking into
account the contribution of multiple slip systems, the amorphous phase and the
crystallographic and morphological texture evolutions during deformation [14–
21]. Lee et al. [15, 16] developed a specific micromechanical model in which
a rigid-viscoplastic two-phase composite inclusion, consisting of mechanically
coupled amorphous and crystalline phases, was used to predict the stress-
strain behavior and crystallographic texture evolution of HDPE. This approach
was further extended by Van Dommelen et al. [18, 19] to an elasto-viscoplastic
framework for large deformation of semicrystalline polymers. In this model,
the amorphous phase was assumed to be isotropic elastic with a rate-dependent
plastic flow and with strain hardening resulting from molecular orientation.
The crystalline phase was modeled as anisotropic elastic with plastic flow
occurring via crystallographic slip. Sedighiamiri et al. [21] used a hybrid
numerical/experimental procedure to add quantitative predictive abilities to



5.1 Introduction 119

this model by characterization of the stress-dependence of the rate of plastic
deformation, the slip kinetics, for isotropic semicrystalline polyethylene.

However, semicrystalline polymeric products are usually manufactured and
shaped in their molten state, using processing operations as injection molding
or film and sheet extrusion, during which shear and elongational flows in-
duce orientation prior to crystallization (flow-induced orientation). Orientation-
dependent mechanical properties in semicrystalline polymers could also be due
to plastic deformation during drawing or rolling processes (deformation-induced
orientation) [22–24]. The resulting morphology is quite different from what
is found for isotropic polymers. The stacked lamellar morphology, commonly
observed in extruded semicrystalline materials [25, 26], gives rise to a strong
influence of the extrusion direction with respect to the loading direction on
the deformation kinetics, causing plastic deformation and failure to be aniso-
tropic [27, 28]. This was confirmed by Van Dommelen et al. [20], who performed
tensile tests on melt-extruded HDPE samples at different angles with respect to
the extrusion direction. Their results illustrate that when loaded in extrusion
direction, a homogeneous deformation was observed throughout the entire
sample, whereas a neck was formed when the material was loaded perpendicular
to the extrusion direction. The composite inclusion model was used to describe
these effects in a qualitative sense.

In the present work, the relation between the initially oriented microstructure
and the deformation kinetics of oriented semicrystalline polymers is investigated
using a multi-scale micromechanical model [18, 21]. The mechanical behavior
at the macroscopic scale is modeled by an aggregate of layered two-phase
composite inclusions. The initial orientation distribution is generated based
on pole figures of orientation distributions obtained from wide angle X-ray
scattering experiments. Oriented high density polyethylene tapes are considered
as case studies. The kinetics of macroscopic plastic flow strongly depends on
the rate-dependence of slip along crystallographic planes, together with the yield
kinetics of the amorphous domain. Therefore, a key issue is a proper description
of the stress-dependence of the microscopic rate of plastic deformation for both
crystalline and amorphous domains. It is found that due to the presence of
extended chains in the oriented amorphous domains in the drawn samples, the
orientation-dependent macroscopic plastic flow is predominantly governed by
the yield kinetics of the amorphous phase. Therefore, the necessity of modeling
an anisotropic amorphous domain for an accurate quantitative prediction is
discussed. Finally, the possibilities for identifying the properties of different
crystallographic slip systems are explored.
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5.2 Experimental

5.2.1 Material

The material used is a high density polyethylene, supplied by DSM (Stamylan
HD 9089S), with Mw = 70, 000 [g/mol] and Mn = 11, 000 [g/mol]. HDPE tapes
were monoextruded using a Collin E20-T single screw extruder fitted with a 100
mm coat hanger die. The extrudate was quenched on Collin CR-72 rolls at a
temperature of 15◦C and then collected on a spool. Solid state drawing was
performed at a temperature of 120◦C, and different tapes with draw ratios λ of 1,
4 and 6 were made.

5.2.2 Crystallinity

Wide angle X-ray scattering (WAXS) experiments were performed on the tapes
and the weight fraction of crystals of the oriented samples was determined to be
60%, 66% and 63% for tapes with draw ratios of 1, 4 and 6, respectively. Figure 5.1
gives the recorded WAXS pattern of HDPE tapes with different draw ratios. The

a b c

Figure 5.1 WAXS patterns of HDPE tapes with a draw ratio of λ = 1 (a), λ = 4 (b) and
λ = 6 (c).

tape with a draw ratio of λ = 1 is found to be isotropic, as its WAXS pattern shows
full Debye rings of the reflection of the crystallographic planes. Apparently, flow
induced crystallization did not occur during the extrusion process. From the
weight fraction of crystals of this sample, the volumetric degree of crystallinity
is obtained to be approximately 57%, assuming ρc = 1000 kg/m3, for the
crystal density and ρa = 855 kg/m3, for the isotropic amorphous density [29].
WAXS patterns of the other two samples (figures 5.1b and 5.1c) indicate a rather
strong orientation. Bartczak et al. [30] estimated the density of the amorphous
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component in uniaxially oriented HDPE samples. A density of about ρa =
960 kg/m3 was observed for a HDPE, compressed to a compression ratio of 6.4,
which is very close to the density of the crystals, suggesting a very high degree
of ordering of the molecular chains in the amorphous fraction. Due to lack of
information about the density of the oriented amorphous fraction, which makes
the estimation of the volumetric degree of crystallinity uncertain, the volumetric
degree of crystallinity of all samples is set to be 60% in this study. A concise
discussion on the effect of crystallinity on the deformation kinetics will be given
in section 5.3.4.

5.2.3 Orientation measurement

The oriented HDPE tapes were analyzed by additional wide angle X-ray scat-
tering experiments, and pole figures were constructed to characterize the three
dimensional crystallographic orientation distribution. To do that, samples were
positioned on a goniometer with the rotation axis in the middle of the ND-TD
plane, with ND denoting the thickness direction and TD showing the width
direction. The samples were then rotated around the machine direction (MD),
collecting WAXS patterns, to create full pole figures of the crystallographic
orientation distribution. Figure 5.2 shows a schematic illustration of the setup
for orientation measurement.

Goniometer

Beam
Sample

ND
TD

MD

Detector

Figure 5.2 Schematic illustration of the setup for orientation distribution measurement.

The resulting pole figures of orientation distributions of two crystallographic
planes are shown in figure 5.3 for samples with draw ratios of 4 and 6. It is
observed that the (200) plane normals, corresponding to the crystallographic
a-axes, and (110) plane normals are oriented in the ND-TD plane, being per-
pendicular to the draw direction, with an intensity maximum in the center.
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HDPE possesses an orthorhombic unit cell, i.e. the crystallographic directions
are orthogonal. Therefore, the crystallographic b-axes, corresponding to the
lamellar growth directions, should also be oriented perpendicular to the draw
direction, and the crystallographic c-axes, denoting the molecular chain axes, are
oriented preferentially in the draw direction, corresponding to a stacked lamellar
morphology.

MD

TD

MD

TD

(200) (110)

a

MD

TD

MD

TD

(200) (110)

b

Figure 5.3 Pole figures of orientation distribution for HDPE tape with draw ratios of 4 (a)
and 6 (b).

For uniaxially oriented systems, a quantitative measure of orientation can be
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given by the Hermans’ orientation factor ( fH), defined as [31]:

fH =
3〈cos2φ〉 − 1

2
(5.1)

with φ the angle between the unit whose orientation state is of interest (e.g.
crystallographic axes) and a reference axis (e.g. fiber or machine direction).
fH = 1 indicates perfect orientation, fH = 0 indicates random orientation, and
fH = −0.5 indicates an orthogonal orientation. Table 5.1 lists the Hermans’
orientation distribution factors obtained for the principal crystallographic axes.

Table 5.1 Hermans’ orientation distribution factors for crystallographic directions.

sample draw ratio fa fb fc

1 4 −0.40 −0.29 0.70

2 6 −0.45 −0.48 0.94

5.2.4 Mechanical testing

For uniaxial tensile tests, dogbone-shaped samples were cut from the tapes with
different angles (0◦, 20◦ and 50◦) with respect to the machine direction (drawing
direction), as shown schematically in figure 5.4. Tensile tests were performed

j 5= 0° j 2= 0° j = 0°

3

1

2
MD

Figure 5.4 Schematic illustration of orientation of samples cut from the tapes with different
angles with respect to the machine direction.

at constant, linear strain rates varying from 10−4 s−1 up to 10−2 s−1 at room
temperature.
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5.3 Model description

The constitutive behavior of semicrystalline material is modeled by an aggregate
of a discrete number of layered two-phase composite inclusions [15, 16, 18]. Each
composite inclusion is comprised of a crystalline lamella and an amorphous
layer. These two phases are mechanically coupled by enforcing kinematical
compatibility and traction equilibrium on their interface. A microstructural
elasto-viscoplastic constitutive model is used for both constituent phases. In this
section, the material models for the elastic and viscoplastic behavior of each phase
together with the aggregate model are briefly summarized. A more detailed
discussion of the models is given in chapters 3 and 4.

5.3.1 Crystalline phase

The crystalline phase consists of regularly ordered molecular chains, causing
highly anisotropic elastic properties, with a high modulus in the chain direction,
and a plastic deformation that is primarily governed by crystallographic slip up
to moderate strains [2, 32–34]. Polymer crystals may also deform plastically by
mechanical twinning and stress-induced martensitic phase transformation [2, 8,
34], but these two mechanisms are left out of consideration, since crystallographic
slip is the predominant deformation mode and can accommodate larger plastic
deformations than the other two mechanisms.

The elastic component of the deformation in the crystalline domain is charac-
terized by an anisotropic fourth order elasticity tensor, which linearly relates the
Green-Lagrange strain tensor to the elastic second Piola-Kirchhoff stress measure.

The viscoplastic flow behavior of the crystalline phase is described by a rate-
dependent crystal plasticity model. In this model, the plastic flow rate of the
crystalline lamella, consisting of a single crystal, is composed of the contributions
of all Ns physically distinct slip systems, being 8 for high density polyethylene.
The shear rate of each slip system is assumed to be related to the corresponding
resolved shear stress via a viscoplastic Eyring flow rule [35]:

γ̇ = γ̇∗
0(T) sinh

(
τ

τc
0

)

, (5.2)

where

γ̇∗
0(T) = γ̇0 exp

(−∆U

R T

)

(5.3)
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captures the temperature dependence of the slip kinetics, with ∆U the activation
energy of the slip system, R the universal gas constant and T the absolute
temperature.

5.3.2 Amorphous phase

The amorphous phase consists of an assembly of randomly coiled macromolec-
ules, strongly connected to their adjacent crystalline lamellae through many
chains crossing the crystalline/amorphous interface, such as tight or loose chain
ends, cilia, and intercrystalline links [36]. In the case of polyethylene, the glass
transition temperature of the amorphous phase is below room temperature,
causing the amorphous phase to be in the rubbery state. However, there are
some indications in literature [37, 38] that suggest that the interlamellar layers in
a semicrystalline polymeric materials may be stiffer than purely bulk amorphous
materials due to the confinement of amorphous layers between thick crystalline
lamellae.

Furthermore, due to random thermal fluctuations, chain segments in the crys-
talline phase can migrate into the amorphous domain. Similarly, chain ends
or loose chain folds can escape from the amorphous phase into the crystalline
lamellae. This process of chain diffusion [39], generally referred to as α-relaxation,
results in a redistribution of chain segments that constitute the interlamellar
layer. Therefore, the relaxation of the interlamellar material also occurs in a rate-
dependent process at a rate controlled by translational mobility of chain segments
within the crystals [40]. In line with that, also the amorphous phase is modeled
as elasto-viscoplastic.

The elastic deformation of the amorphous phase is modeled by a generalized
neo-Hookean relationship, characterized by shear and bulk moduli. An Eyring
flow relation is used to relate the effective shear strain rate and the effective shear
stress:

γ̇ = γ̇∗
0(T) sinh

(
τ

aτa
0

)

, (5.4)

with a = 1.15 a constant accounting for the difference in the definition of the
effective shear stress of the amorphous phase and the resolved shear stress of the
crystalline phase, making them comparable for a uniaxial stress state. The plastic
rate of stretching is defined by an associated flow rule [18]. The Arruda-Boyce
eight-chain network rubber elasticity model [41] is used to account for orientation
induced hardening [42].
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5.3.3 Composite inclusion model

The mechanical behavior at the macroscopic scale is modeled by an aggregate
of layered two-phase composite inclusions, as proposed by Lee et al. [15, 16]
for rigid-viscoplastic material behavior. The stress and deformation fields in
each separate phase of the composite inclusion are assumed to be piecewise
homogeneous; but they can be different between the two coupled phases.
The inclusion-averaged Cauchy stress and the inclusion-averaged deformation
gradient are given by the volume-average of the fields of the constituent phases.
Furthermore, the crystalline lamella and the amorphous layer are assumed to be
kinematically compatible and in equilibrium across the interface.

To relate the volume-averaged mechanical response of each layered composite
inclusion to the imposed boundary conditions for an aggregate of inclusions, a
hybrid local-global interaction law [15, 16, 18] is formulated. The consistency
conditions for equilibrium and compatibility of the aggregate are maintained by
enforcing the macroscopic stress and deformation to equal the volume-average
of the stress and deformation fields of the composite inclusions.

In the hybrid interaction model, local-global compatibility conditions are formu-
lated for the projections of the inclusion-averaged fields for which intra-inclusion
equilibrium conditions were formulated. Inversely, local-global equilibrium
conditions are assumed for the components of the inclusion-averaged fields that
are subjected to intra-inclusion compatibility.

5.3.4 Initial orientations

The initial crystalline orientations of the oriented HDPE tapes with different
draw ratios are generated according to the experimentally obtained pole figures
of orientation distributions and Hermans’ orientation distribution factors. For
initially randomly oriented materials, possessing a spherulitic morphology, the
angle between the chain direction~c and the lamellar normal direction~nI is known
to be 35◦ [43, 44], corresponding to the {201} planes. However, for oriented
systems, the molecular chains are assumed to be more aligned with the lamellar
normals. Shinozaki and Groves [45, 46] studied the structure of polyethylene
and polypropylene sheets, oriented by solid state hot drawing at a temperature
range of 105◦C to 120◦C, after an elongation of approximately 600%. The final
material was observed to be oriented with molecular chains parallel to the initial
draw direction, and the lamellae roughly perpendicular to the draw direction
and, therefore, normal to the molecular chain axis. Their finding is also supported
by experimental WAXS and SAXS data [47–49] on structural changes during hot
drawing of semicrystalline polymers, which show a process of transformation of
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crystalline lamellae into much smaller folded-chain crystalline blocks, with both
their crystalline lamellar normal and chain orientation almost parallel to the draw
direction, which are connected by somewhat extended amorphous chains. In line
with that, a reduced chain tilt angle of 5◦, with lamellar surfaces again of the
{h0l} type, is assumed.

Figure 5.5 shows equal area projection pole figures of the principal crystallo-
graphic lattice directions together with the initial lamellar orientations. The
oriented structure of the material is represented by an aggregate of 500 composite
inclusions. The resulting Hermans’ orientation distribution factors are listed in
table 5.2, which shows a good agreement with experimentally obtained ones in
table 5.1.
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Figure 5.5 Equal area projection pole figures of the principal crystallographic and lamellar
orientation distributions for HDPE tape with draw ratios of 4 (a) and 6 (b). The draw
direction is vertical.

The elasto-viscoplastic composite inclusion model is used to investigate the effect
of the morphological factors, namely the tilt angle and the degree of crystallinity,
on the mechanical behavior of the material. In the model, the elastic deformation
of the interlamellar layer is characterized by the shear and bulk moduli, Ga and
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Table 5.2 Hermans’orientation distribution factors of crystallographic directions, based on
generated orientations.

sample draw ratio fa fb fc

1 4 −0.38 −0.32 0.73

2 6 −0.47 −0.47 0.94

Ka, respectively. The elastic parameters as well as the hardening properties of the
amorphous phase are summarized in table 5.3, with µR and N being respectively
the constants proportional to the initial stiffness and the number of rigid links
between entanglements in the Arruda-Boyce eight-chain model [41]. For

Table 5.3 Elastic and hardening parameters of the amorphous phase.

Ga [MPa] Ka [MPa] µR [MPa] N

65 3000 1 49

orthorhombic PE crystals, the anisotropic fourth order elasticity tensor involves
nine independent elastic constants. Their values are given in table 5.4.

Table 5.4 Elastic constants [GPa] for the crystalline phase of PE [50].

C11 C22 C33 C12 C13 C23 C44 C55 C66

7.99 9.92 315.92 3.28 1.13 2.14 3.62 1.62 3.19

Figure 5.6 shows the crystallographic slip kinetics and the amorphous yield
kinetics for the isotropic sample at 23◦C. The evaluation of the kinetics at the
microscopic level was performed, taking into account the tensile kinetics of
the HDPE tape with draw ratio λ = 1 (isotropic). Table 5.5 summarizes the
yield kinetics of all slip systems and the amorphous phase, together with their
activation energies and the reference shear rates γ̇∗

0,ref, characterized at a reference
temperature Tref, for both relaxation processes. A more elaborated discussion
on the contribution of two relaxation processes to the yield kinetics is given in
chapter 4. The temperature dependence of the reference shear rates can then be
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Figure 5.6 Crystallographic slip and amorphous yield kinetics, used to describe the yield
kinetics of the isotropic sample at room temperature.

calculated using:

γ̇∗
0(T) = γ̇∗

0,ref exp

[

−∆U

R

(
1
T
− 1

Tref

)]

, (5.5)

with Tref = 23◦C. The values of the characteristic shear stresses for the relaxation
processes within the crystalline and amorphous phases in the Eyring model are
set to τc,I

0 = τa,I
0 = 0.06 MPa and τc,II

0 = τa,II
0 = 0.84 MPa.

A systematic study on the effect of the tilt angle as well as the degree of
crystallinity on the model prediction of the tensile yield kinetics of the sample
with draw ratio of 6, loaded in drawing direction, is illustrated in figure 5.7.
As can be seen, the deformation kinetics is predominantly influenced by the
chain tilt angle, whereas the crystallinity has a much smaller effect. Therefore
the assumption of a volumetric degree of crystallinity of 60% for all samples
would not drastically affect their deformation kinetics. Furthermore, the results
are observed to not be much sensitive to making the chain tilt angle smaller than
5◦.

5.4 Results and discussion

The mechanical response of HDPE tapes with various microstructures subjected
to uniaxial tension is investigated here for a range of strain rates and loading
angles, using the composite inclusion model. The starting point is formed
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Table 5.5 Yield mechanisms in the constituent phases, with the reference shear rates and
activation energies of processes, corresponding to the viscoplastic Eyring flow rule,
at Tref = 23◦C.

Process I Process II

Mechanism γ̇∗
0,ref[s

−1] ∆UI[kJ mol−1] γ̇∗
0,ref[s

−1] ∆UII[kJ mol−1]

(100)[001] 8 × 10−35 512 2 × 10−5 105

(010)[001] 2 × 10−49 762 2 × 10−5 105

{110}[001] 2 × 10−49 762 2 × 10−5 105

(100)[010] 2 × 10−49 762 2 × 10−5 105

(010)[100] 2 × 10−49 762 2 × 10−5 105

{110}〈11̄0〉 2 × 10−49 762 2 × 10−5 105

amorphous 6 × 10−39 516 2 × 10−5 105

by characterization of the kinetics of the crystallographic slip systems and the
deformation kinetics of the amorphous domain at the microscopic level to
quantitatively predict the macroscopic plastic flow kinetics for the sample with
draw ratio λ = 1, which is both structurally and mechanically found to be
isotropic. There are eight physically distinct slip systems present in the crystalline
domain of polyethylene, which comprise six crystallographically different types
of slip systems, each possibly having different properties. For an isotropic system,
at the macroscopic level only the effective contribution of all these slip systems,
combined with that of the amorphous domains is observed. It is, consequently,
not possible to completely characterize and distinguish between the effect of
different slip systems for such isotropic systems [51]. Therefore, the properties
of some slip systems are assumed to be the same, see figure 5.6.

5.4.1 Isotropic amorphous domains

The model predictions of the tensile yield kinetics of the HDPE tape with draw
ratio λ = 1 is shown in figure 5.8a, and compared with experimental data. In
both simulations and experiments, a similar strain rate dependence of the yield
stress for various loading angles is found. Applying the same kinetics (figure 5.6),
to the oriented samples, with draw ratios λ = 4 and λ = 6, gives the results
shown in figures 5.8b and 5.8c, respectively. As can be seen, the model predictions
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Figure 5.7 (a) The effect of varying chain tilt θ on the tensile yield kinetics for a constant
crystallinity of f c = 60%. (b) The effect of varying crystallinity on the tensile yield
kinetics for a constant chain tilt of θ = 5◦. The loading direction is aligned with the
draw direction of the sample with draw ratio of 6.

are reasonably good for a loading angle of 50◦, whereas for the lower loading
angles of 20◦ and 0◦ the kinetics is not predicted well. The results show that
the anisotropy of the crystalline phase is not sufficient to capture the anisotropic
macroscopic yield kinetics. This could be explained by the fact that in the solid
state drawn tapes, the anisotropy is deformation-induced, causing not only the
crystalline phase, but also the amorphous domains to stretch and orient in the
drawing direction.

The results at a testing temperature of 80◦C are shown in figure 5.9. It is observed
that, although the 20◦ and 50◦ deformation kinetics are described reasonably
well, the 0◦ kinetics for both oriented samples is underestimated. This could
be an indication that the influence of the oriented amorphous domains on the
macroscopic flow kinetics, is present even at elevated temperatures.

5.4.2 Oriented amorphous domains

Bartczak et al. [30] studied the molecular orientation of the amorphous compon-
ent in oriented semicrystalline high density polyethylene, produced by plane
strain compression. Their results suggest that the plastic deformation induces
a preferred orientation of macromolecules not only in the crystalline domain, but
also for the amorphous component. They proposed that the oriented amorphous
component consists of domains of extended chain segments, which are closely
packed in a two-dimensional pseudo-hexagonal structure. The presence of
an oriented amorphous domain in oriented semicrystalline polymers is also



132 5 Deformation kinetics of oriented polymers

10
-5

10
-4

10
-3

10
-2

10
-1

0

50

100

150

200

250

λ = 1, T = 23°C

φ = 0°

φ = 20°

φ = 50°

strain rate [s
-1

]

y
ie

ld
 s

tr
e

s
s
 [

M
P

a
]

a

10
-5

10
-4

10
-3

10
-2

10
-1

0

50

100

150

200

250

λ = 4, T = 23°C

φ = 0°

φ = 20°

φ = 50°

strain rate [s
-1

]

y
ie

ld
 s

tr
e

s
s
 [

M
P

a
]

b

10
-5

10
-4

10
-3

10
-2

10
-1

0

50

100

150

200

250

λ = 6, T = 23°C

φ = 0°

φ = 20°

φ = 50°

strain rate [s
-1

]

y
ie

ld
 s

tr
e

s
s
 [

M
P

a
]

c

Figure 5.8 The model prediction of the tensile yield kinetics of the sample with (a) λ = 1,
(b) λ = 4 and (c) λ = 6, at various loading angles. Lines show the micromechanical
model prediction and symbols indicate experimental data.

reported elsewhere [52].

First, the influence of the kinetics of the amorphous phase on the macroscopic
yield kinetics is systematically probed. In order to just study the effect of the
amorphous domain, the degree of crystallinity is set to be zero. The effective
shear stress of the amorphous phase is related to the effective shear strain by an
Eyring flow rule, which is characterized by two parameters, namely γ̇∗

0 and τ0,
see equation (5.4). The effect of these parameters on the macroscopic tensile yield
kinetics is shown in figure 5.10: changing γ̇∗

0 only affects the level of the yield
stress, while τ0 mainly governs the slope. Therefore, a combination of these two
parameters enables to describe a loading angle dependent yield kinetics for the
amorphous phase.
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Figure 5.9 (a) Crystallographic slip and amorphous yield kinetics at 80◦C, and the resulting
micromechanical model prediction of the deformation kinetics of sample with (b)
λ = 4 and (c) λ = 6. Lines show the micromechanical model prediction and symbols
indicate experimental data.

The effect of introducing an oriented amorphous phase combined with the
contribution of the anisotropic crystalline phase on the yield kinetics of the
oriented samples is given in figure 5.11. The crystallographic slip kinetics are
taken the same as the ones given in figure 5.6. To describe the macroscopic
yield kinetics for every specified load angle, the kinetics of the amorphous
phase is changed. The reference shear rates γ̇∗

0,ref and the characteristic shear
stresses τ0 used for process II in every load angle are summarized in table 5.6.
The properties of process I are set to be the same as in table 5.5. A higher
modulus is assumed for the 0◦ loading angle, since the elastic properties also
become anisotropic for oriented amorphous domains [52, 53]. As can be seen
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Figure 5.10 Influence of the varying characteristic shear stress τ0 (a) and reference shear
rate γ̇∗

0,ref (c) of the amorphous phase (see equation (5.4)) on the macroscopic yield
kinetics (b) and (d).

in figure 5.11, by assuming a loading angle dependent yield kinetics for the
amorphous phase of the oriented HDPE tapes, it is possible to describe the
deformation kinetics of two tapes with different degrees of orientation at various
loading angles. However, it should be noted that for the oriented sample with
λ = 4, the 0◦ yield kinetics is not predicted well, especially at high strain rates.
The values for the amorphous yield kinetics used are restricted, and not allowed
to be higher than those of the sample with λ = 6, since the sample with λ = 4
is less oriented than the one with λ = 6. The low model prediction could
partly be due to the effect of the initial orientation distribution. The generated
initial orientations were quantified by the experimentally obtained Hermans’
orientation factor. There is not a unique solution for a Hermans’ orientation factor
of approximately 0.7 and different distributions can result in the same number.
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Table 5.6 The reference shear rates and characteristic shear stresses of the amorphous
phase for varying loading angles at Tref = 23◦C.

Sample λ = 4 Sample λ = 6

Loading angle γ̇∗
0,ref[s

−1] τa
0 [MPa] γ̇∗

0,ref[s
−1] τa

0 [MPa]

0◦ 1.6 × 10−4 6.3 1.9 × 10−4 7.7

20◦ 5.1 × 10−5 1.4 1.2 × 10−4 3.4

50◦ 2.0 × 10−5 0.84 2 × 10−5 0.84

The results show that the prediction of anisotropic yield kinetics with high
values of yield stress for a 0◦ load angle, requires the description of anisotropic
yield kinetics for the amorphous domain, due to the presence of oriented
extended chains. The need of describing an anisotropic behavior of the oriented
amorphous phase is also supported by experimental data for the loading angle
dependence of the elastic modulus of the oriented tapes, as shown in figure 5.12,
where a loading angle dependent Young’s modulus is observed. Predictions
of the elastic ǫ̂-inclusion model, introduced in chapter 2, are given for various
properties of the crystalline and amorphous domains, including an orthorhombic
material behavior for the amorphous phase, which is characterized by the
following set of parameters:







E11 = E22 = 4.5 MPa, E33 = 450 MPa.
1
2(ν12 + ν13) =

1
2(ν21 + ν23) =

1
2(ν31 + ν32) = ν = 0.4996

G12 = G13 = G23 = E11
2(1+ν)

= 1.5 MPa.

It is observed that a better prediction is obtained, when an anisotropic (or-
thorhombic) behavior is assumed for the amorphous phase, with a high elastic
modulus in the direction of the chains in the neighboring crystalline lamella.
A better prediction for the elastic modulus close to a loading angle of 90◦ can
be achieved by using the experimentally obtained elastic constants [54] for the
crystalline phase, which are lower than the theoretically calculated values [50],
see chapter 2. A lower stiffness could likely be due to the increased effect of
imperfections such as dislocations or defects within the crystal during plastic
deformation [52].
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Figure 5.11 (a) Crystallographic slip and varying amorphous yield kinetics (table 5.6), used
to describe the yield kinetics of the sample with λ = 4 at room temperature. (b)
Micromechanical model prediction of the anisotropic yield kinetics of the sample
with λ = 4. (c) Crystallographic slip and varying amorphous yield kinetics
(table 5.6), used to describe the yield kinetics of the sample with λ = 6 at room
temperature. (d) Micromechanical model prediction of the anisotropic yield kinetics
of the sample with λ = 6. Lines show the micromechanical model prediction and
symbols indicate experimental data. Slip kinetics are the same as in figure 5.6, with
the solid line showing the kinetics of (100)[001] chain slips, and the dash-dot line
denoting the remaining kinetics.

5.4.3 Probing characterization of crystallographic slip systems

It is not possible to distinguish between the contribution of different slip systems
for an isotropic semicrystalline polymer [51], since the macroscopic plastic flow
is governed by the effective contribution of different types of slip systems with
different properties. Therefore, it was suggested that more experimental data
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Figure 5.12 Young’s modulus of the oriented sample with λ = 6 versus the loading angle.
Symbols denote experimental data, and lines show the prediction of the elastic ǫ̂-
inclusion model introduced in chapter 2. The elastic constants for the theoretically
and experimentally obtained stiffness of the crystalline phase are given in table 2.1.

of a system with an initially oriented morphology are needed to correctly make
a distinction between different types of slip systems and to characterize them.
However, the results of micromechanical modeling of oriented HDPE tapes in
section 5.4.2 show that the deformation kinetics is dominantly influenced by the
properties of the oriented amorphous phase. This is due to the fact that in solid
state drawing, both crystalline and amorphous domains are oriented. Therefore,
to identify the properties of different crystallographic slip systems, samples with
oriented crystalline lamellae and unoriented amorphous domains are needed in
combination with the micromechanical model.

Figure 5.13 illustrates the resolved shear stress of a selected number of slip
systems at the engineering yield stress (maximum in local stress) under a constant
applied strain rate of 10−3 s−1 for the sample with λ = 6 in tension at 23◦C,
for various loading angles. In these pole figures, the location of markers shows
the loading direction relative to the crystallographic axes of each lamella and
colors represent the magnitude of the resolved shear stress of the specified slip
system for each inclusion. As can be seen, for a 0◦ load angle, the stress is
mainly resolved on the chain slip systems (100)[001] and {110}[001], whereas
the amount of resolved shear stress on the transverse slip systems (100)[010] and
{110}〈11̄0〉 is less significant. As the load angle increases to 90◦, a change in
the shear stress on the slip systems is observed. At a 90◦ load angle, the stress
is mostly resolved on the (100)[010] and {110}〈11̄0〉 transverse slip systems,
while in this case the (100)[001] and {110}[001] chain slip systems are almost
inactive. The effect of the properties of different groups of slip systems on
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Figure 5.13 Inverse pole figures showing the resolved shear stress of a number of slip
systems at the engineering yield stress under a constant strain rate of 10−3 s−1 in
tension at 23◦C, with various load angles of (a) 0◦, (b) 20◦, (c) 50◦ and (d) 90◦, for the
sample with λ = 6. The kinetics are the same as in figure 5.6. Colors represent
the magnitude of the resolved shear stress of the specified slip system for each
inclusion, and the location of the markers indicates the loading direction relative
to the crystallographic axes of each lamella.
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the macroscopic deformation kinetics is shown in figure 5.14. The results are
compared to those corresponding to the slip and amorphous yield kinetics of
figure 5.6, as a reference to indicate the effect of different slip systems. First the
level of the chain slip kinetics is increased, while the level of the transverse slip
kinetics is the same as in figure 5.6, see figure 5.14a. The effect on the macroscopic
yield kinetics is depicted in figure 5.14b, which shows an increase in the 0◦ yield
kinetics, whereas the 90◦ yield kinetics does not change. In the same way, by
increasing the level of the transverse slip systems, while keeping the chain slip
systems the same (figure 5.14c), the 90◦ yield kinetics increases, whereas the 0◦

yield kinetics remain almost the same, as shown in figure 5.14d. These results are
supported by the inverse pole figures showing the resolved shear stress of slip
systems in figure 5.13.

Alternative experimental techniques to obtain oriented samples, with a some-
what isotropic amorphous fraction could be injecting molding [55] and extended
dilatometry (PVT–γ̇) [56, 57]. With these techniques, the crystalline orientation
is due to the flow induced orientation of the melt, and the presence of high
temperature leads an almost relaxed and isotropic amorphous phase, making the
characterization of slip kinetics using the micromechanical model possible.

5.5 Conclusions

The deformation of semicrystalline polymers is the result of the interplay of
various mechanisms at different levels. A quantitative and accurate prediction
of their mechanical behavior requires a coupled and detailed modeling of
the various deformation mechanisms in the heterogeneous microstructure. A
multi-scale micromechanical model is used to describe the deformation kinetics
of hot-drawn oriented semicrystalline polyethylene tapes with different initial
microstructures. The model represents the microstructure as an aggregate of
layered composite inclusions, each consisting of a crystalline lamella, which is
mechanically coupled to its adjacent amorphous layer. The crystalline phase
is modeled as an anisotropic elastic material with plastic flow governed by
crystallographic slip. The amorphous phase is assumed to be isotropic elastic
with a rate dependent plastic flow and strain hardening resulting from molecular
orientation. To relate the volume-averaged mechanical behavior of each layered
composite inclusion to the aggregate of composite inclusions, a hybrid local-
global interaction law is used.

The initial orientation distribution for the micromechanical model was generated
based on pole figures from wide-angle X-ray diffraction experiments. A key issue
in the initial morphology of oriented HDPE was found to be the angle between
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Figure 5.14 Crystallographic slip and amorphous yield kinetics with (a) increased chain
slip kinetics and (c) increased transverse slip kinetics, and (b) and (d) the effect on
the yield stress for different loading angles. Solid lines show the model prediction
corresponding to the kinetics of (a) and (c), and dashed lines give the prediction
corresponding to the kinetics of figure 5.6.

the chain direction and the lamellar normal direction, also referred to as chain tilt,
which showed a strong influence on the yield kinetics.

The results of micromechanical model with isotropic yield kinetics of the amorph-
ous phase showed that the orientation of the crystalline phase alone is not
sufficient to account for the anisotropic yield kinetics. The additional contribution
of the anisotropic yield kinetics of the interlamellar material is needed to
quantitatively describe the anisotropic mechanical response of the tapes. This is
due to the fact that the anisotropy of the solid state drawn tapes is deformation-
induced, which means that not only the crystalline phase, but also the chains in
the amorphous domains are oriented. To investigate the effect of an oriented
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amorphous phase on the macroscopic plastic flow kinetics, a loading angle
dependent yield kinetics for the amorphous phase was taken, which enabled to
describe the deformation kinetics of the oriented tapes at various loading angles.
Therefore, a critical factor for prediction of the anisotropic mechanical response
of oriented HDPE tapes is the dominant influence of the yield kinetics of the
amorphous phase on the macroscopic yield kinetics, and an accurate description
of the constitutive behavior of the oriented amorphous phase is required.

Finally, the possibilities for characterizing the properties of distinct crystallo-
graphic slip systems were investigated. The results of the inverse pole figures
showing the resolved shear stress of a number of slip systems revealed the
feasibility of distinguishing between the contribution of different slip systems for
various loading angles. A combination of experimental data of oriented samples
with isotropic amorphous phase, and the micromechanical model seems to be
promising for characterization of different crystallographic slip systems.
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Conclusions and recommendations

Chapter 6

Abstract

The main ideas, methods and conclusions concerning the micromechanical
modeling of semicrystalline polymers are summarized. Recommendations
for future work are given.

6.1 Conclusions

The process of plastic deformation in semicrystalline polymers is complex due
to their hierarchical structure. Any macroscopically homogeneous deformation
is accommodated by a variety of competing phenomena and mechanisms at
different levels. The mechanical properties strongly depend on morphological
features (like degree of crystallinity, lamellar thickness and molecular weight),
initial microstructure, as well as the evolution of the microstructure during plastic
deformation. In line with that, this thesis aimed at establishing a quantitative
relation between the microstructure and the mechanical performance of semicrys-
talline polymers, as characterized by elasto-viscoplastic deformation. In order to
do that, a micromechanically based constitutive model was used. The model
represents the microstructure as an aggregate of layered composite inclusions,
each consisting of a crystalline lamella, which is mechanically coupled to its
adjacent amorphous layer. The crystalline phase was modeled as anisotropic
elastic with plastic flow governed by crystallographic slip. The amorphous phase
was assumed to be isotropic elastic with a rate dependent plastic flow and strain
hardening resulting from molecular orientation. To relate the volume-averaged
mechanical response of each layered composite inclusion to the boundary con-
ditions imposed, for an aggregate of composite inclusions, a hybrid local-global
interaction law was used.
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First, the concept of a layered composite inclusion as a representative element
in an elastic framework was further extended by adding a third phase, referred
to as the interphase or the rigid-amorphous phase. This phase represents
the region between crystalline and amorphous domains, having a somewhat
ordered structure and a constant thickness. The three-phase composite inclusion
model enables to incorporate an internal length scale, which naturally leads to a
dependence of mechanical properties on the lamellar thickness, while this effect
was not captured in the two-phase model. The comparison of the prediction
of the two-phase model with experimental data revealed a good agreement for
isotropic material. However, this rigid-amorphous phase is particularly relevant
for quantitative modeling of the behavior of oriented semicrystalline structures.
To correctly characterize the properties of the rigid-amorphous phase, and its
effect on the macroscopic properties, more experimental data of semicrystalline
polymers with different morphological configurations are needed.

A key issue in adding quantitative predictive abilities to the micromechanical
model for an accurate prediction of the mechanical performance of semicrystal-
line polymers is the stress-dependence of the microscopic rate of plastic deforma-
tion for both crystalline and amorphous domains, which is the mechanism under-
lying time-dependent, macroscopic failure. The kinetics of macroscopic plastic
flow is strongly dependent on the slip kinetics of the individual crystallographic
slip systems, accompanied by the yield kinetics of the amorphous domains. In
order to achieve an accurate quantitative prediction, the viscoplastic power law
relation, previously used in micromechanical modeling, was replaced with an
Eyring flow rule, which was shown to be able to better mimic the kinetics of the
macroscopic plastic flow. The slip and amorphous yield kinetics were evaluated
and characterized using a hybrid numerical/experimental procedure, and the
results were validated for uniaxial compression data of HDPE. A double yield
phenomenon was observed in the model prediction and was found to originate
from the morphological alterations during deformation that cause a change in the
deformation mechanism. The predicted texture evolution during deformation,
was used to analyze and understand the morphological factors that resulted in a
double yield phenomenon in the model.

Experimental data of the yield kinetics of polyethylene at elevated temperatures
and various strain rates reveal the contribution of two relaxation processes.
Further experimental observations on the stress dependence of the time-to-
failure show a piece-wise linear relation in semi-logarithmic plots, with the same
absolute slope as that of the yield kinetics, which is an indication of a relation
between the short-term and long-term failure kinetics. To quantitatively predict
failure under both conditions and for different temperatures, the kinetics at the
microscopic scale were characterized using a combined numerical/experimental
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approach, taking into account uniaxial compression and tension experiments
of isotropic HDPE, at various temperatures and strain rates. The Eyring flow
rule was modified by adding a temperature shift function. A non-Schmid effect
was also added to enable the prediction of both tension and compression. The
creep behavior of polyethylene was then simulated directly using the multi-scale,
micromechanical model, predicting the time-to-failure without any additional
fitting parameter. The predicted compressive and tensile yield kinetics and
the stress-dependence of the time-to-failure provided a good agreement with
experimental data.

Semicrystalline polymeric products are often manufactured from the molten state
by common processing techniques, such as injection molding and extrusion.
During these processes, the polymer melt experiences shear and elongational
flow that induces orientation within the product. The resulting morphology
is, therefore, different from that of isotropic polymers, e.g. a stacked lamellar
morphology is commonly observed in extruded semicrystalline polymers. For
these materials, the mechanical response depends on the direction of loading
with respect to the flow direction, and thus their plastic deformation and failure
kinetics are anisotropic. The relation between the initially oriented microstructure
and the deformation kinetics of oriented polyethylene tapes was studied using
the multi-scale micromechanical model. Wide angle X-ray scattering experiments
were used to obtain the initial orientation distribution for the model. It was
observed that due to the existence of oriented amorphous domains in the drawn
samples, the macroscopic deformation kinetics is predominantly governed by the
yield kinetics of the amorphous phase, and, therefore, the need of modeling the
load angle dependence of the properties of the oriented amorphous domain for
an accurate quantitative prediction was discussed. Furthermore, the possibilities
for identifying the properties of distinct crystallographic slip systems was invest-
igated.

6.2 Recommendations

The main objective of this thesis is adding quantitative predictive ability to the
multi-scale micromechanical model for accurate prediction of the mechanical
performance of semicrystalline polymers, as characterized by elasto-viscoplastic
deformation. However, due to the complex nature of the plastic deformation in
these materials, some assumptions and simplifications are made. In this section,
some recommendations for future work are listed.

• It has been revealed in the first chapter that the incorporation of the rigid-
amorphous phase in the composite inclusion model, leads to a dependence
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on the lamellar thickness, i.e. on an internal length scale. This en-
ables having different configurations with the same degree of crystallinity,
through different rigid-amorphous layer thicknesses and stiffness. To ex-
perimentally obtain different levels of crystallinity and lamellar thickness,
samples were subjected to two different crystallization procedures, namely
quenching, and isothermal crystallization (annealing) of the quenched
samples. The annealing procedure results in an increase in crystallinity
but also of the lamellar thickness (see figure 6.1), which is not appropriate
for the characterization of the interphase. More experimental data of
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Figure 6.1 Variation of lamellar thickness versus crystallinity of HDPE samples. Symbols
give experimental data, and line shows the prediction assuming a constant lamellar
spacing, as suggested by Sedighiamiri et al. [1]

semicrystalline polymers with different lamellar thicknesses and a fixed
degree of crystallinity are needed to correctly verify the influence of the
mechanical properties of the rigid-amorphous phase on the macroscopic
properties.

• A dependence of the yield stress on the lamellar thickness is observed
in many semicrystalline polymers [2–5]. Crystallographic slip is often
considered to occur due to the nucleation of screw dislocations from the
lateral surface of the crystalline lamellae. The thicker the lamellar thickness,
the more difficult the generation of a dislocation line within the crystals
becomes [6], and consequently the yield stress increases. The change in
yield stress with increasing crystal thickness is illustrated in figure 6.2. As
can be seen, above a lamellar thickness of about 40 nm, the dependence of
the yield stress on crystal thickness quickly levels off. This could possibly
be an indication of a change of mechanism from nucleation of screw
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Figure 6.2 Variation of yield stress as a function of lamellar thickness for polyethylene, at
a constant strain rate of 10−3 s−1 [5]. Symbols are experimental data, and line is a
guide to the eye.

dislocations to other mechanisms that are independent of the thickness of
the lamellae [6]. One of the challenges of adding quantitative abilities to the
micromechanical model, would be a description of the lamellar thickness
dependence of the crystallographic slip kinetics.

• An important factor for accurate prediction of the stress-strain curves is
the strain rate and temperature dependent elastic modulus of the material.
A strain rate and temperature dependence of the elastic moduli of the
constituent phases is not explicitly described in the model. However, as
can seen in figure 6.3, the Young’s modulus of polyethylene shows a strong
dependency on the temperature and strain rate. A constitutive model,
which characterizes the mechanical performance as viscoelastic-viscoplastic
deformation, with a temperature dependency of the initial stiffness can
provide a more accurate prediction.

• For oriented semicrystalline materials, the mechanical response depends
on the direction of loading with respect to the initial orientation direction,
and therefore their deformation and failure kinetics are anisotropic. For
drawn polyethylene samples, it was observed that due to the presence of
oriented amorphous domains in the material, the macroscopic deformation
kinetics is mainly governed by the yield kinetics of the oriented amorphous
phase. Therefore, for an accurate quantitative prediction, one needs to
properly describe the load angle dependence of the properties of the
oriented amorphous domain. One possible approach would be modeling a
deformation dependent activation volume for the viscous part of the strain
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Figure 6.3 (a) Strain rate dependency of the elastic modulus of HDPE at 23◦C. (b)
Temperature dependency of the elastic modulus of HDPE samples at a constant
strain rate of 10−3 s−1. Lines are a guide to the eye.

hardening of the amorphous domains, while taking into account a pre-
stretched elastic hardening component, as suggested by Senden et al. [7],
within the EGP model.

• There are eight physically distinct slip systems present in the crystalline
domain of polyethylene, which comprise six crystallographically different
types of slip systems, each possibly having different properties. For an
isotropic semicrystalline polymer, the macroscopic plastic flow is governed
by the effective contribution of these slip systems, accompanied by the
yield kinetics of the amorphous domains. Therefore, it is not possible to
completely characterize and distinguish between the effect of different slip
systems for an isotropic system, and experimental data of a system with
an initially oriented morphology is needed to correctly make a distinction
between different types of slip systems and characterize them. However,
it was observed that due to the presence of oriented amorphous domains
besides the oriented crystalline phase in drawn samples, the deforma-
tion kinetics is dominantly influenced by the properties of the oriented
amorphous phase. To further characterize the properties of different
crystallographic slip systems, experimental data of oriented samples with
unoriented amorphous domains are needed.
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Samenvatting

Het proces van plastische deformatie in semikristallijne polymeren is gecom-
pliceerd door de aanwezigheid van een verscheidenheid aan mechanismen op
verschillende niveaus en is sterk afhankelijk van de kristalliniteit, de onder-
liggende microstructuur en de evolutie van deze structuur tijdens deformatie.
Een macroscopische homogene deformatie gaat vergezeld met diverse deform-
atiemechanismen in de heterogene microstructuur. Het doel van dit werk is
het ontwikkelen van een kwantitatieve relatie tussen de microstructuur en het
elastoviscoplastische gedrag van semikristallijne polymeren. Teneinde dit te
bereiken wordt een micromechanisch constitutief model gebruikt. In het model
is de microstructuur vertegenwoordigd door een verzameling van gelaagde
composiete inclusies, elk bestaand uit een kristallijn lamel, dat mechanisch
gekoppeld is aan een amorfe laag. De kristallijne fase is gemodelleerd als
anisotroop elastisch met plastische deformatie in de vorm van kristallografi-
sche slip. De amorfe fase is verondersteld isotroop elastisch te zijn met een
snelheidsafhankelijke plastische deformatie en rekversteviging als gevolg van
moleculaire oriëntatie. Om het volumegemiddelde gedrag van iedere gelaagde
composiete inclusie te relateren aan het gedrag van de verzameling composiete
inclusies wordt gebruik gemaakt van een hybride lokaal-globale interactiewet.

Het concept van een gelaagde bicomposiete inclusie als een representatief ele-
ment is uitgebreid met een derde fase, welke de tussenfase of de star-amorfe fase
genoemd wordt. Deze fase vertegenwoordigt het gebied tussen de krijstallijne en
amorfe domeinen en heeft een enigszins geordende structuur en een constante
dikte. Het opnemen van de tussenfase in het composiete inclusiemodel leidt op
een natuurlijke wijze tot een afhankelijkheid van de lameldikte en daarmee van
een interne lengteschaal. Deze star-amorfe fase is in het bijzonder relevant voor
de kwantitatieve modellering van het gedrag van georiënteerde semikristallijne
structuren. Een vergelijking met experimentele data laat een goede macroscopi-
sche voorspelling met het tweefasen model zien voor isotroop materiaal.

Een kritische factor voor het toevoegen van kwantitatief voorspellende waarde
aan het micromechanische model voor het elastoviscoplastische gedrag van
semikristallijne polymeren is de spanningsafhankelijkheid van de snelheid van
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plastische deformatie. Deze slipkinetiek ligt ten grondslag aan het tijdsaf-
hankelijke macroscopische faalgedrag. De kinetiek van macroscopische plas-
tische vloei is sterk afhankelijk van de slipkinetiek van de individuele kristallo-
grafische slipsystemen, vergezeld door de vloeikinetiek van de amorfe fase. Om
een nauwkeurige kwantitatieve voorspelling te verkrijgen is de viscoplastische
machtsfunctie, welke gewoonlijk gebruikt wordt in micromechanische model-
leringen, vervangen door een Eyring relatie. De slipkinetiek is daarna opnieuw
gekarakteriseerd middels een hybride numeriek/experimentele procedure en
de resultaten zijn gevalideerd voor uniaxiale compressie data voor HDPE.
Een dubbel vloei effect is waargenomen in de modelvoorspelling en bleek
gerelateerd te zijn aan morfologische veranderingen tijdens deformatie waardoor
een verandering van deformatiemechanisme optreedt.

Experimentele resultaten voor de vloeikinetiek van polyethyleen voor verschil-
lende temperaturen en reksnelheden laten de bijdrage van twee relaxatiepro-
cessen zien. Verdere experimentele observaties van de snelheidsafhankelijkheid
van de tijd-tot-falen laten een lineaire relatie zien op een semilogaritmische
schaal, waarbij de helling gelijk is aan die voor de vloeikinetiek. Dit wijst
erop dat de kinetiek van falen onder opgelegde reksnelheid en opgelegde
spanning sterk gekoppeld zijn. Om falen te voorspellen voor beide condities
en voor verschillende temperaturen, zijn de kristallografische kinetiek en de
amorfe vloeikinetiek verder verfijnd en is de Eyring relatie uitgebreid met
een temperatuursafhankelijkheid. Het kruipgedrag van polyethyleen is daarna
direct gesimuleerd met het micromechanische model, waarbij de tijd-tot-falen
voorspeld wordt zonder gebruik te maken van een extra parameter. Om
het gedrag voor zowel trek als druk te voorspellen, is een niet-Schmid effect
toegevoegd aan de constitutieve relatie voor ieder slip systeem.

Polymeren producten, geproduceerd via spuitgieten of extrusie, bezitten een
morfologie die verschilt van die van isotrope polymeren door de aanwezigheid
van stroming tijdens het proces. Hierdoor zijn hun plastische deformatie en
faalgedrag anisotroop. De relatie tussen de initieel georiënteerde microstructuur
en de deformatiekinetiek van georiënteerde polyethyleen tapes is onderzocht
met het micromechanische model. De initiële oriëntatieverdeling voor het
model is gebaseerd op Röntgenverstrooiingsexperimenten (WAXS). Door de
aanwezigheid van georiënteerde amorfe gebieden in de getrokken samples wordt
het macroscopische plastische gedrag vooral bepaald door de vloeikinetiek van
de amorfe fase. De noodzaak voor de modellering van de afhankelijkheid
van de eigenschappen van de amorfe fase van de belastingsrichting voor een
nauwkeurige kwantitatieve voorspelling wordt besproken. Tenslotte worden de
mogelijkheden voor het identificeren van de eigenschappen van verschillende
kristallografische slipsystemen onderzocht.
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