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Chapter 1

Introduction

Through the course of history, human activity was always adapted to and influ-
enced by the surrounding landscape. Cities were built close to water resources,
such as rivers and lakes, which also meant they had to be adequately protected in
fear of floods. Fortresses, temples and other monuments were built on hill tops and
generally on prominent locations that provided high visibility of the nearby area.
There is the ever-present need for man to use the landscape for his own advantage.
This requires to extract information about different properties of the landscape
surface; which part of a terrain is going to be covered by water in case of heavy
rainfall? Which locations are visible from any point within a specific region? In
the past, the study of terrain surfaces involved the use of topographic maps but
also three-dimensional miniatures of landscapes [40, 85]. Such maps and models
would serve as approximate representations of the original real-world surface and
important decisions were taken based on these representations.
During the 20th century, major breakthroughs in computer science also had an
impact in geographical studies. The development of efficient computer systems
offered the opportunity to digitise geospatial data and process these data in an
automated manner. This gave birth to the broad field of Geographic Information
Science (gis) [95]. For the study of landscapes, it became possible to represent
terrain surfaces with digital models, the so-called digital terrain models. Among
all the different digital terrain models known so far, the most popular one is the
Digital Elevation Model (dem). A dem represents a terrain as a regular grid on
the xy-plane in which each square grid cell is assigned a height value. Another
popular digital terrain representation is the Triangulated Irregular Network (tin),
which is a two-dimensional triangulation where each triangulation vertex is as-
signed a height value—see Fig. 1.1 for an illustration of the two terrain models.
Triangulated terrains have the advantage that they allow for non-uniform res-
olution when representing landscapes; for regions where the landscape is rough
one can use many small triangles for a more detailed representation while few
large triangles are enough for representing flat regions. tins and dems have been
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used to approximate terrain surfaces for a multitude of applications: computing
shortest paths and proximity structures [5, 42, 53, 54, 63, 83], hydrological ap-
plications [14, 59, 79, 80, 88], computer graphics and flight simulations [8, 77],
civil engineering [37, 76], environmental applications [15, 75], applications that
stem from landscape archaeology [30, 49, 50, 51, 52] as well as image processing
[13, 44, 86, 92]. Indeed, digital terrains can be generally seen as representations
of xy-monotone functions and as such they can be used to model concepts other
than real-world landscapes.

1.1 Flow Modelling on Digital Terrains

One of the most important scientific topics that involves the use of digital terrain
models is modelling the flow of water on surfaces. Simulating the course of water
on a digital terrain and likewise determining the conditions under which water can
accumulate at certain locations is nowadays the standard method for predicting
floods and taking measures to prevent them [1, 22]. To do that we need to model
the behaviour of water on the digital surface. That is, we need to define a digital
flow model. The standard flow model that is used in digital terrain analysis can
be summarized in two very simple rules; (i) water always follows the directions of
steepest descent (dsd) on a surface and (ii) the dsd is unique for any point on the
surface of the terrain. From hereon we will refer to this model as the dsd model.
Of course, this model can be directly applied only to continuous surfaces, which
is not the case for dems. Also, even for continuous surfaces, this model does not
predict precisely the flow behaviour of water. The dsd model is purely geometrical
and as such it does not completely capture the behaviour on real terrains, where
aspects such as soil type and land cover also play a role. Nevertheless, purely
geometric flow models are considered to be a useful abstraction for performing
flow analysis and the dsd model is the most natural geometric flow model. Thus,
efficient and accurate algorithms for computing flow-related structures on a digital
terrain T according to the dsd model are highly desirable.
The most basic algorithmic question relating to flow is to compute, for a given
point p on a terrain, where the water from p drains to. In other words, we want
to compute the trickle path of p: the path of steepest descent starting at p and
ending at the local minimum to which the water from p drains. The set of all
points whose trickle paths reach p constitute the watershed of p. The subdivision
of a terrain induced by the watersheds of its local minima is the watershed map of
the terrain. Paths that follow the direction of steepest descent or steepest ascent
on a terrain surface, that is gradient paths, are also used for defining topological
structures on tins. Consider a terrain T and consider that we connect the saddle
points of T with the local minima and local maxima of T by expanding paths
of steepest ascent and steepest descent from the saddles. The graph Gsn whose
vertices correspond to the critical points of T and whose edges correspond to the
gradient paths between the critical points is the surface network of T . Surface
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Figure 1.1 Examples of digital terrain models: (top) A Digital Elevation
Model. (bottom) A Triangulated Irregular Network.

networks are considered to be useful abstractions of the topology of a terrain and
play a key role in many applications [70, 73]. The computation of flow paths and
watersheds on a digital terrain depends on the type of the terrain model used but
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also on the way the flow model is applied.

1.1.1 Flow Modelling on DEMs

dems are used more often than any other digital model for simulating flow on
terrains; this is because it is easy to design and implement algorithms on dems.
For hydrological applications, since a dem is a discrete non-continuous surface,
it is not completely clear how to translate the dsd model to a dem. Another
drawback is that it is not always clear which locations on the dem correspond to
critical points; more than that, it is not straightforward how to delineate crisp
characteristics of the terrain, like regions that have the morphology of ridges or
channels.
One intuitive way to model flow on dems is to compute an approximation of a
trickle path from each grid cell. A watershed of a cell c is then defined as a collec-
tion of grid cells whose approximate trickle paths reach c. The standard method
to route flow on dems in this manner is the so-called D8 method introduced by
O’ Callaghan and Mark [16]. This algorithm models flow in the following way.
Consider a grid cell c in the interior of a dem. If c is not a local minimum, then
water flows from c to one of its (at most) eight neighbouring cells, the cell that has
the smallest elevation. There are several variants of the D8 method [35, 74]; these
variants were introduced because the standard method is notorious for computing
flow paths and networks that have an unnatural shape [25]. For instance, Fair-
field and Leymarie [35] introduced an improved version of this method in order to
eliminate many parallel tributaries in the induced drainage networks.
Rather than computing for each grid cell the local minimum to which it drains,
other methods for compute watersheds on dems by expanding the watershed
boundaries from saddle points [78]. For such approaches it is important to first
define a scheme for extracting critical points from the dem [20, 93]. Then the
watershed boundaries are expanded from the extracted saddle points as lines that
approximate the direction of the up-hill gradient on the terrain surface.
Vincent and Soile [92] propose an algorithm for computing watersheds on dems
by simulating a flooding process; according to the terminology used for geometric
algorithms, their algorithm is a (bottom-to-top) space-sweep technique. Starting
from the grid cell with the smallest elevation, the watersheds of the local minima
on the terrain are delineated by symbolically tracking the terrain contour lines.
These are the lines induced by the intersection of the sweep plane and the dem
surface. This technique is not restricted to grid terrains; it can also be applied to
drainage networks that do not come from regularly shaped terrain models such as
dems.
Other approaches even consider that the dsd is not unique for every point on the
terrain [72, 25]. Such approaches aim to provide a more natural flow modelling for
dems of coarser resolutions. However, methods of this kind may lead to instances
where different local minima have overlapping watersheds and special care should
be taken to avoid this.
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Most flow-routing algorithms on dems use a scheme where flow is propagated only
through a network rather than a two-dimensional surface. Recall that the surface
of a dem makes it difficult for a definition of flow that has a straightforward
geometric interpretation. Several approaches try to alleviate this problem by first
constructing another surface based on data extracted from the dem, and then
trying to extract the flow properties of the terrain from the constructed surface.
Mitasova and Hofierka [62] present such an approach where they extract several
attributes from dems by fitting an interpolation function to dem points. Steger [84]
uses smooth interpolation functions to delineate watershed boundaries on dems;
his technique allows computing critical points and watershed boundaries on the
terrain that are not restricted by the grid cell resolution.

1.1.2 Flow Modelling on TINs

For tins the dsd model can be applied directly, since tins are continuous surfaces
(although here one also has to decide how to define flow on flat areas). The dsd
model implies that a trickle path can extend through the interior of triangles and
edges until ending at a local minimum. The edges that appear in the interior of a
tin T can be classified in three categories, depending on the dsd in the interior
of the incident triangles. Fig. 1.2 illustrates these categories. An edge e is called a
transfluent edge if the dsd in the interior of triangle incident to e points towards
e, while for the other triangle the dsd points away from this edge. An edge e of
T is called a valley edge or a channel if the dsd in the interior of both incident
triangles points towards this edge. If for both incident triangles the dsd points
away from e then this edge is called a ridge edge.

Figure 1.2 An illustration of the three different categories of tin edges
according to the configuration of the dsd: a transfluent edge
(left), a valley edge (center) and a ridge edge (right).

Unfortunately, most approaches in the field of gis do not follow the dsd assumption
on tins strictly. A common approach is to allow flow paths only follow the edges
of the tin, or the edges of a predefined network that involves the vertex set and
specific triangle interior points [60, 68]. Restricting flow to the tin edges makes
the computations easier, but it does not lead to exact results. Also most of these
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methods assign each triangle to a single watershed even when the dsd model
implies that the triangle interior is crossed by a watershed boundary. Therefore,
the computed watersheds appear as collections of full triangles.
Takahashi et al. [87] propose an algorithm that delineates watersheds on tins
by outlining their boundaries, that is by expanding ascending paths from the
saddle points of the terrain. However, these ascending paths are approximated
as sequences of terrain edges and do not follow the direction of steepest ascent
on the terrain terrain surface strictly. This method is similar to flow-modelling
approaches defined for dems such as the ones of Schneider [78] and Steger[84].

1.1.3 Flow on TINs According to the DSD Model

Jones et al. [47] are the first to consider the computation of drainage structures
on tins following strictly the direction of steepest descent. They provide a thor-
ough description of how to calculate flow paths through triangle interiors and they
propose simple algorithms for computing the areas that drain to valley edges, and
for computing approximately the watershed map on a tin. De Berg et al. [6] ex-
amine the worst-case combinatorial complexity of flow paths. The combinatorial
complexity of a flow path is the number of segments that the path consists of.
De Berg et al. proved that for a terrain T of n triangles the combinatorial com-
plexity of a trickle path can be Θ(n2) in the worst case. They showed that this
is possible by providing a tin that has a pyramid-like structure—see Fig. 1.3. On
this terrain certain trickle paths cross Θ(n) triangles each Θ(n) times, yielding the
proposed worst-case complexity. In fact, de Berg et al. primarily focus on proving
the worst-case complexity of the river network of a tin; that is the set of all points
on the terrain whose watersheds are two-dimensional regions. Consequently, the
river network of a tin T consists of all valley edges of T plus the trickle paths that
we get if we follow the dsd from the lowest vertex of each valley edge. By carefully
positioning Θ(n) valley edges on the top of the proposed tin, we get Θ(n) trickle
paths where each such path belongs to the river network and the combinatorial
complexity of each path is Θ(n2).
The next step is to study the computation of watersheds in the dsd model.
Yu et al. [96] examine the computational complexity of drainage-related queries on
tins. Given a tin T they consider queries such as computing the area measure of
the watershed of a point p on T , or computing the subset of T (in fact of its river
network) of terrain points whose watersheds have an area measure at least equal
to a given value. They also introduce an algorithm for computing the watershed
of a given point on T . This algorithm, as well as the algorithms that support the
rest of the queries that they consider, is based on a refined structure called a strip.
This concept can be described as follows; suppose that we expand from each vertex
of T all paths of locally steepest ascent and descent. These paths partition the tin
surface into strips, which together form the strip map of the tin. The “bottom” of
each strip is a segment of a valley edge, the “top” is a segment of a ridge edge—see
Fig 1.4. The crucial property of the strips is that the trickle path from any point
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Figure 1.3 A construction that exhibits the worst-case complexity of a
trickle path on a tin. The presented terrain has a group
of Θ(n) very skinny and long triangles at one corner. A
network of “bridges” makes the depicted trickle path (des-
ignated by the arrows) to intersect the group of the skinny
triangles Θ(n) times inducing Θ(n2) intersections in total.
The figure is based on an image that appears in the work
of de Berg et al. [6].

in the interior of a strip leads to the valley edge at the bottom of the strip and,
hence, drains to the same local minimum. Thus, for non-degenerate cases, the
watershed of any local minimum is the union of one or more strips. However, in
degenerate cases, the interior of a single watershed may not be connected [2]. Also,
for a point p that is not a local minimum of T , the watershed of p may not be the
union of full strips [96]. McAllister [2], and McAllister and Snoeyink [3] examine
several issues related to the properties of watersheds on tins delineated according
to the dsd model. They also describe an algorithm for computing watersheds on
tins that involves expanding paths of steepest descent/ascent only from a subset
of the tin vertices. However, it is not clear whether this algorithm always leads to
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consistent results [7]. Using a construction similar to the adversarial tin described
by de Berg et al. [6], McAllister shows that the combinatorial complexity of the
watershed map of a tin can be Θ(n3) in the worst case. The same tight bound
applies for the combinatorial complexity of the strip map.

valley edge

ridges

Figure 1.4 Part of the strip map of a tin. The boundaries of the strips
are indicated in blue colour.

The worst-case complexity of watersheds and flow networks in the dsd model
seems quite unrealistic. In practice, it is very unlikely that a flow path will ever
cross the same triangle more than once. In fact, the tins that are used to induce
the worst-case instances of the described drainage structures consist of extremely
long and skinny triangles. Such tin instances will probably never occur in real-
world applications. De Berg et al. [7] study the worst-case complexity of drainage
structures again, this time on so-called realistic tins; that is tins that fulfill a
set of well-defined properties. Specifically for their analysis they consider tins
where the minimum angle of any triangle is at least some value α. They prove
that the combinatorial complexity of a single trickle path on a terrain of this kind
is Θ(n/α2) at worst case. The worst-case combinatorial complexity of the river
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network and the watershed map on such terrains is Θ(n2/α2). A quite remarkable
result that they provide is that even for tins whose xy-projections are Delaunay
triangulations, the combinatorial complexity of watershed maps and river networks
can still be Θ(n3).
It becomes clear that, even for fat terrains, the worst-case complexity of drainage
structures such as the watershed map or the strip map is quite high. Thus, the
question arises: can we extract information on the drainage properties of tins
without computing these structures explicitly? For example, can we compute the
exact area measure of the watershed of each local minimum on the terrain without
computing the watersheds themselves? Since for general tins the combinatorial
complexity of trickle paths can be very high, can we extract information for one
or more flow paths without actually constructing these paths? For instance, it is
interesting to determine the local minima or tin boundary points where a set of
paths end, or to determine if these paths intersect certain regions of the terrain.
This will be one of the topics studied in this thesis. Another interesting question
that comes up is whether these worst case complexity bounds appear in practice;
do such complex drainage structures occur in real-world data sets? Of course, this
question can only be answered by developing software that computes watershed
maps and flow paths on tins following the dsd flow model strictly.
McAllister and Snoeyink [3], and Liu and Snoeyink [57] were the first to develop a
software package that computes watersheds on tins according to the dsd model.
Liu and Snoeyink highlight an important issue that was overlooked by the previous
theoretical approaches; drainage structures in the dsd model cannot be computed
robustly using fixed-precision numbers. In particular, they consider the number
of bits needed to compute exactly the intersection points of a trickle path with
the tin edges that it crosses. They show that this number grows linearly with
the number of (transfluent) edges crossed by the path, potentially leading to large
bit-sizes in the computations. In their implementation they use finite-precision
arithmetic, and they observe that this may give inconsistent results, for example
watersheds that do not contain exactly one local minimum. Thus, it becomes
important to develop an implementation that uses exact arithmetic; that will
show if it is actually efficient to compute drainage structures according to this
flow model. This is another contribution of this thesis. If the exact computation
of drainage structures requires numerical values of a very large bit-size then the
exact dsd model can be used only for terrain data sets of relatively small size.
This may be the case even when the computed drainage structures do not have a
high combinatorial complexity.
Another important factor that affects the output of a flow model is the noise that
appears in the input data. Noise may be caused by sampling with limited-accuracy
equipment, data conversion between different terrain representation models, and
calculations under fixed-precision arithmetic [94]. For a given tin, noise can be
represented by giving each vertex an interval of possible elevation values (rather
than a single elevation value), while keeping the xy-coordinates of the vertices
fixed. Thus we get an imprecise terrain: a terrain of which the elevations are not
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entirely fixed [39]. A realisation or a perturbation instance of such an imprecise
tin is a terrain instance that results from selecting, for each vertex, a particular
elevation value from its elevation interval. In theory, small perturbations of the
elevations of the vertices of a tin may induce substantial changes in its drainage
structure. Driemel et al. [29] study the computational complexity of a variety of
problems related to the computation of watersheds on imprecise terrains using
either the exact dsd model on tins or discretized methods of modelling flow. It is
interesting to evaluate in practice to what extent the structure of the watersheds
of a tin changes if we perturb the elevation values of its vertices. Given different
instances of the same tin created by perturbing its vertices, how much of the
terrain area appears as part of the same watershed among all different instances?
Such an evaluation may provide insight as to how noise in the input data affects
the output of software that is used for hydrological applications.
To be able to answer this question, we need to define what we consider to be the
“same” watershed across different terrain realisations. As different perturbation
instances of the same terrain lead to different watershed structures, it becomes
challenging to identify which watersheds represent the same entity between those
instances. For example, consider a tin T and a local minimum p on the surface
of T . If we perturb the vertices of T , the region that is covered by the watershed
of p may change substantially, the region may become larger or smaller, or p may
not even be a local minimum after the perturbation. Thus, what would be the
best criterion to identify which watersheds correspond to each other before and
after the perturbation? More formally, given the watershed maps of two or more
realisations of the same terrain, what is the best way to decide which watersheds
represent the same entity over all realisations? This is one more problem that we
examine in this thesis.
To this point, there is a variety of works within the gis community that study
the impact of noise on the hydrological properties of a terrain model. Hebeler
and Purves [43] examine the relation between the existence of noise and landscape
morphology, and provide a case study on the changes among two neighbouring
watersheds when noise is applied. Other works focus on the changes that appear
on flow paths or the structure of the river network due to noise [33, 56]. The flow
analysis which appears in these works refers only to dems. Even in this context,
there has been no work so far that provides a well-defined algorithmic method for
matching watersheds between different realisations of the same imprecise terrain.

1.2 Visibility on Triangulated Terrains

In the previous section, we provided an outline of several algorithmic approaches
for computing flow structures on digital terrains. We saw that drainage struc-
tures on tins may have a high combinatorial complexity in theory if water flow is
modelled as following strictly the dsd on the terrain surface. There are also other
important applications on tins where structures of high combinatorial complexity
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may occur. A good example are visibility applications.

Figure 1.5 Example of a visibility map of a tin induced by orthographic
projection on a viewing plane orthogonal to the xy-plane.

Often it is desirable to compute which parts of a terrain T are visible from a
given viewing point pview. More precisely, for each triangle of T , one wants to
know exactly which parts are visible and which parts are invisible from pview.
The projections of the visible triangle parts onto a viewing plane form the so-
called visibility map of T with respect to pview. Visibility maps are useful for
visualisation purposes; for example, they can be used for hidden-surface removal
or shadow generation. There are several algorithms for computing visibility maps
of terrains, the most efficient of which runs in time O((nα(n)+k) log n) [48] where
α(·) is the inverse Ackermann function. Here n is the number of triangles in T and
k is the output size. In other words, k is the complexity of the visibility map, which
can be defined as the number of vertices1 of the map. Each vertex of the map
either corresponds to a triangle vertex, or to two edges whose projections onto the
viewing plane intersect. In the worst case, Θ(n2) pairs of edges have intersecting
projections and all of these intersections are visible, so that the visibility map has
complexity Θ(n2). Such an example is provided in Fig. 1.6; there, a set of Θ(n)
skinny obstacles in the foreground hides at parts a set of long horizontal triangles
that appear in the background. The silhouette of the thin obstacles interacts with
the long horizontal edges inducing Θ(n2) vertices in the visibility map in total.
In most applications a quadratic complexity would make an explicit computation

1Formally, the complexity would be defined as the total number of vertices, edges, and faces
of the map. In our setting this is always linear in the number of vertices, so we restrict ourselves
to this quantity.
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Figure 1.6 A construction that shows the worst-case complexity of the
visibility map of a tin. In this view, Θ(n) skinny obstacles in
the foreground hide at parts Θ(n) long and almost horizontal
edges in the background, inducing Θ(n2) edge fragments in
the visibility map.

of the visibility map infeasible. Fortunately such high complexity is seldom en-
countered. In fact, in practice it seems that the complexity of visibility maps is
close to linear. Thus, it would be interesting to show why this structure usually
has a low complexity in practical settings. Towards this direction, Moet et al. [66]
studied the combinatorial complexity of visibility maps (but also of other terrain
structures) on realistic terrains. Recall that a realistic tin is a terrain that ful-
fills a set of desirable properties that are usually encountered in real-world data
sets. Moet et al. examined visibility maps on tins whose xy-domain is roughly
a square, the triangles of the tin are not arbitrarily skinny and the length of the
longest tin edge is not more than a constant factor greater than the length of the
shortest edge. They proved that, in the worst case, the combinatorial complexity
of the visibility map of such a terrain is Θ(n

√
n). Yet, there is still a considerable

gap between this worst-case bound and the linear complexity of visibility maps
that is observed in real-world applications. Hence, it is still an open question why
visibility maps of superlinear complexity do not appear in practice. This will be
the final topic examined in the present work.
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1.3 Contributions of This Thesis

In the following chapters of this thesis, we examine different techniques for handling
high-complexity structures on tins, both in theory and in practice. Chapters 2–4
deal with problems on the computation of drainage structures, while Chapter 5 is
about the combinatorial complexity of visibility maps on tins.
More specifically, in Chapter 2 we describe a general mechanism for extracting
important information on drainage structures on tins without computing these
structures explicitly. Our contribution is a technique for tracing a collection of n
paths of steepest descent on a terrain T implicitly in O(n log n) time. Recall that
in the worst case, the combinatorial complexity of a single path of this kind is
O(n2). The presented technique, rather than computing every possible intersec-
tion of these paths with the terrain edges, allows for computing information such
as the exact points where each of the expanded paths end, but also other infor-
mation on the topology of these paths. From this technique we derive O(n log n)
time algorithms for: (i) computing, for each local minimum p of T , the triangles
contained in the watershed of p, and (ii) computing the surface network graph of
T . We also present an O(n2) time algorithm that computes the watershed area
for each local minimum of T . This chapter is based on joint work with de Berg
and Haverkort which appeared in the 22nd ACM-SIAM Symposium on Discrete
Algorithms [9].
Chapter 3 deals with problems that arise in practice when implementing algorithms
for computing drainage structures on tins following the dsd model strictly. As
we discussed, the dsd model implies that water does not necessarily follow terrain
edges, which makes designing exact algorithms difficult and causes robustness
problems when implementing them. As a result, existing software implementations
for computing watersheds are inexact: they either assume a simplified flow model
or they perform computations using inexact arithmetic, which leads to inexact
and sometimes inconsistent results. In this chapter we perform a detailed study
of various issues concerning the exact or approximate computation of watersheds
according to the dsd model; we provide the first implementation that computes
watersheds on triangulated terrains exactly according to the dsd model, and we
experimentally investigate its computational cost. Our experiments show that the
algorithm cannot handle large data sets effectively, due to the bit-sizes needed
in the exact computations and the computation of the strip map. Using our
exact algorithm as a point of reference, we evaluate the quality of several existing
inexact (but efficient) algorithms for computing watersheds. We also describe
and theoretically analyse a new exact algorithm for computing watersheds, which
avoids the computation of the strip map. This chapter is based on joint work
with de Berg which will appear in the 19th ACM SIGSPATIAL Conference on
Advances in Geographic Information Systems [12].
In Chapter 4 we consider the problem of identifying watersheds on imprecise tins.
Remember that computing watersheds on triangulated terrains in a robust manner
is a difficult task also because it is sensitive to noise that appears in the elevation
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values of the input. This is amplified by the existence of many small watersheds
that obscure the overall hydrological structure of the terrain. In the present work
we perform an experimental evaluation of various algorithms that may help al-
leviate these problems; we introduce and experimentally investigate algorithms
for matching watersheds between different instances of a triangulated terrain that
arise from adding noise to the elevations of the terrain model. These algorithms
can be used to see which parts of a computed watershed map are reliable in the
presence of noise. We also compare two methods for merging small watersheds into
larger ones. We use these methods in combination with the watershed matching al-
gorithms to assess which merging method is most effective in facilitating successful
matching of watersheds. For the computation of watersheds on the examined tins
and the evaluation of the performance of the studied methods we used the robust
software implementation that is presented in Chapter 3. This chapter is based
on joint work with Haverkort which will appear in the 19th ACM SIGSPATIAL
Conference on Advances in Geographic Information Systems [41].
In Chapter 5 we present an explanation for the low complexity of visibility maps
on tins which is observed in practice. In particular, we study the complexity of
visibility maps of terrains whose triangles are fat, not too steep and have roughly
the same size. The combinatorial complexity of a visibility map of such a terrain
with n triangles is Θ(n2) in the worst case. We prove that if the elevations of the
vertices of the terrain are subject to uniform noise which is proportional to the edge
lengths, then the worst-case expected (smoothed) complexity is only Θ(n). We
also prove non-trivial bounds for the smoothed complexity of instances where some
triangles do not satisfy the above properties. This chapter is based on joint work
with de Berg and Haverkort that was published in the Journal of Computational
Geometry [10]. Part of the results of this work were also published earlier in the
25th ACM Symposium on Computational Geometry.



Chapter 2

An Efficient Mechanism for
Routing Flow on TINs

2.1 Introduction

Background and motivation. In many applications it is necessary to visualize,
compute, or analyze flows on a height function defined over some 2- or higher-
dimensional domain. Often the direction of flow is given by the gradient and the
domain is a region in R2. The flow of water in mountainous regions is a typical
example of this. Modelling and analyzing water flow is important for predicting
floods, planning dams, and other water-management issues. Hence, flow modelling
and analysis has received ample attention in the gis community [36, 58, 68, 89].
In gis, mountainous regions are usually modelled as a dem or as a tin. In com-
putational geometry, a tin is usually referred to as a (polyhedral) terrain. One
advantage of polyhedral terrains over dems is that one can use a non-uniform res-
olution, using small triangles in rugged areas and larger triangles in flat areas. As
we discussed in the introdution of this thesis, another advantage is that the surface
defined by a polyhedral terrain is continuous, which makes flow modelling more
natural. Indeed, the standard flow model on polyhedral terrains is simply that
water follows the direction of steepest descent. To make the flow direction well
defined, it is then often assumed—and we also make this assumption—that the
direction of steepest descent is unique for every point on the terrain. For instance,
the terrain should not contain horizontal triangles.1

In Chapter 1 we described several important structures related to the flow of water
on a polyhedral terrain T . The simplest structure is the path that water would
follow starting from a given point p on the terrain. This path is called the trickle

1This can of course be ensured by a small perturbation of the elevations of the terrain vertices,
but even small perturbations may have undesirable effects on the water flow. How to deal with
horizontal triangles is therefore an important research topic in itself.
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path of p and, as already mentioned, in our model it is simply the path of steepest
descent. Another important structure is the watershed of a point p on T , which is
the set of all points on T from which water flows to p. In other words, it is the set of
points whose trickle path contains p. Unfortunately, the combinatorial complexity
of these structures can be quite high. For instance, de Berg et al. [6] showed
that there are terrains of n triangles on which certain trickle paths cross Θ(n)
triangles each Θ(n) times, resulting in a path of complexity Θ(n2)—see Fig. 1.3.
McAllister [2] and McAllister and Snoeyink [3] showed that the total complexity of
the watershed boundaries of all local minima can be Θ(n3). By slightly modifying
the construction provided by de Berg et al. we can in fact show that the boundary
of a single watershed can have Θ(n3) complexity. For α-fat terrains, where the
angles of the terrain triangles are lower-bounded by a constant α, the situation
is somewhat better: here the worst-case complexity of a single path of steepest
ascent/descent is Θ(n/α2)[7]. The complexity of a watershed, however, can still
be Θ(n2/α2).
It is not always necessary, however, to explicitly compute the structure of interest.
For example, it may be sufficient to compute only the surface area of the watershed
of a given local minimum, rather than an explicit description of the boundary of
the watershed itself. The question thus arises: is it possible to compute the surface
area of the watershed of a given local minimum without explicitly computing the
watershed itself, thereby avoiding a worst-case running time of Θ(n3)?
A closely related structure on a terrain is the so-called surface network of T . As
defined in Chapter 1, this is the graph whose nodes are the critical points (local
minima and maxima, and saddle points) of T and whose arcs are obtained by
tracing paths of steepest ascent and descent from the saddle points to the local
extrema [24, 70]. This graph has linear size, but explicitly tracing the paths of
steepest ascent and descent from the saddle vertices results in a procedure that is
very inefficient in the worst case. The surface network is related to the so-called
Morse-Smale complex [61, 97], which has not only been used in gis applications [24]
but also for example in molecular shape analysis [18] (although here the domain is
no longer in R2). The Morse-Smale complex has been originally defined for smooth
surfaces, and in fact transferring the concept to the piecewise linear case—for ex-
ample, to polyhedral terrains—is not straightforward. (The main difficulty lies
in the fact that a path of steepest descent can intersect a path of steepest as-
cent.) Several methods have been proposed to define and compute Morse-Smale
complexes on piecewise linear surfaces; see the paper by Čomić et al. [24] for an
overview. In one way or another, these methods are always based on following cer-
tain paths of steepest descent/ascent. Sometimes an approximation is computed:
the watershed of a point p (which is a cell of the so-called unstable Morse-Smale
complex), for instance, would then be represented as the union of a certain subset
of the terrain triangles. Existing algorithms of this type, however, are not exact:
they are not guaranteed to find exactly those triangles for which all points have a
trickle path containing p.
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Our results. Inspired by the above, we study the problem of implicitly tracing
paths of steepest descent or ascent on a polyhedral terrain T with n vertices.
First, in Section 2.2, we give an O(n log n) algorithm that finds out where the
trickle path of a given point p ends, without constructing the actual path (which
would take Θ(n2) time in the worst case). Our algorithm can also report all the
triangles crossed by the path in the same amount of time. Then, in Section 2.3,
we turn our attention to following multiple paths of steepest descent (or steepest
ascent) simultaneously. We develop a mechanism for implicitly tracing n such
paths in O(n log n) time in total. Using our mechanism, we can compute several
of the flow-related structures mentioned above. In particular, in O(n log n) time
we can:

• compute for each local minimum p of T the set of terrain triangles that lie
completely in the watershed of p;

• compute the surface network of T .

We also show how we can compute the exact surface area of all watersheds of T
in O(n2) time.

Terminology and notation. In this chapter, for a terrain T we denote the set
of its edges by E, and the set of its vertices by V . Edges in E are defined to
be open, that is, they do not include their endpoints. For any point p we denote
its z-coordinate by z(p). For an edge e ∈ E incident to a triangle t we call e
an out-edge of t if e receives water from the interior of t through the direction of
steepest descent. Otherwise we call e an in-edge of t. Thus, following from the
definitions in the introduction of this thesis, e is a valley edge if e is an out-edge
for both of its incident triangles, e is a transfluent edge if e is an out-edge for only
one incident triangle, and e is a ridge edge if it is an in-edge for both of its incident
triangles.

2.2 Computing Information for a Single Trickle
Path

Let T be a terrain with n triangles, and let p be the point for which we want to com-
pute the point where trickle(p) ends. As we only want to find where trickle(p) ends,
we do not want to explicitly compute all intersection points between trickle(p) and
the terrain edges. To avoid this, each time we encounter a sequence of edges that
we crossed before, we jump to the first edge that we have not encountered so far.
We can detect features that we already crossed, because we mark them the first
time we hit them. Next we show how to do the above.

Define an EV -sequence to be the (ordered) sequence of terrain edges and vertices
crossed by some path on T . For a point q ∈ trickle(p), let S(q) denote the



18 Chapter 2 An Efficient Mechanism for Routing Flow on TINs
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Figure 2.1 (i) The last cycle of the EV-sequence S(q) is fi, . . . , fj , and
the last chain is fj+1, . . . , fk. (ii) The trickle function.

EV-sequence crossed by the part of trickle(p) from p to q. Consider a point
q ∈ trickle(p) and let S(q) = f1f2 · · · fk. Let j be the largest index such that
the feature fj occurs at least twice in S(q), and let i be the largest index with
i < j such that fi = fj . We call fifi+1 · · · fj the last cycle of S(q), and we call
fj+1 · · · fk the last chain of S(q); see Fig. 2.1(i). We need the following lemma.

Lemma 2.1 Let f be a feature in S(q) that only occurs before the last cycle of
S(q). Then trickle(q) cannot cross f .

Proof. Let S(q) = f1, . . . , fk and let fi, . . . , fj be the last cycle of S(q). Let
e = fi = fj and let ri and rj be the intersection points of trickle(p) with e that
correspond to fi and fj , respectively. Let π(p, ri) be the part of trickle(p) from
p to ri and let π(ri, rj) be the part of trickle(p) between ri and rj . Note that
trickle(q) ⊂ trickle(rj). Define P := π(ri, rj) ∪ rirj . Then P is the boundary of
a simple polygon—see Fig. 2.1(i), where this polygon is depicted in grey colour.
Since trickle-paths cannot self-intersect and e can be crossed in only one direction
by a trickle path, one of the paths π(p, ri) and trickle(rj) lies completely inside P
while the other lies completely outside P . This implies that a feature intersecting
π(p, ri) can only intersect trickle(q) if that feature intersects π(ri, rj) and, hence,
occurs in the last cycle. 2

Now imagine tracing trickle(p) and suppose we reach an edge e that we already
crossed before. Let q be the point at which trickle(p) crosses e this time. After
crossing e again, we may cross many more edges that we already encountered.
Our goal is to skip these edges and immediately jump to the next new edge on
the trickle path. By Lemma 2.1, the already crossed edges are either in the last
cycle or in the last chain of S(q). In fact, since q lies on an edge crossed before,
the last chain is empty and so the edges we need to skip are all in the last cycle.
Therefore we store the last cycle in a data structure Tcycle—we call this structure
the cycle tree—that allows us to jump to the next new edge by performing a query
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FindExit(Tcycle, q). More precisely, if C = fi, . . . , fk denotes the cycle stored in
Tcycle and q is a point on fi, then FindExit(Tcycle, q) reports a pair (fexit, qexit) such
that fexit is the first feature crossed by trickle(q) that is not one of the features
in C and qexit is the point where trickle(q) hits fexit. The cycle tree stores the
last cycle encountered so far in the trickle path, thus we have to update this tree
according to the changes in the last cycle.
Besides the cycle tree we also maintain a list L which stores the last chain of S(q);
these edges may have to be inserted into Tcycle later on. This leads to the following
algorithm.

Algorithm ExpandTricklePath(T , p)
Input: A triangulated terrain T and a point p on the surface of T .
Output: The point where trickle(p) ends and the edges crossed by this path.
1. Initialize an empty cycle tree Tcycle and an empty list L, and set q := p. If q lies on

a feature f , then insert f into L.
2. while q is not a local minimum and flow from q does not exit the terrain
3. do � Invariant: Tcycle stores the last cycle of S(q), and L stores its last chain.
4. Let f be the first feature that trickle(q) crosses after leaving from q, and let

q′ be the point where trickle(q) hits f .
5. q := q′

6. if f is not marked
7. then Mark f and append f to L.
8. else Update Tcycle and empty L.
9. Set (fexit, qexit) := FindExit(Tcycle, q), mark fexit, and set q := qexit.

10. Append fexit to L (which is currently empty) and update Tcycle.
11. return q.

It is easy to see that the invariant holds after step 1 and that it is maintained
correctly, assuming Tcycle is updated correctly in steps 8 and 10. This implies the
correctness of the algorithm. Next we describe how to implement the cycle tree.

Consider an EV-sequence S without cycles and assume that there is some trickle
path that crosses the features in S in the given order. Let first(S) denote the first
feature of S and let last(S) denote its last feature. We define the trickle function
FS : first(S)→ last(S) of the sequence S as follows. If the trickle path of a point
q ∈ first(S) follows the sequence S all the way up to last(S), then FS(q) is the point
on last(S) where trickle(q) hits last(S). If, on the other hand, trickle(q) exits S
before reaching last(S), then FS(q) is undefined. We denote the domain of FS (the
part of first(S) where FS is defined) by Dom(FS), and we denote the image of FS
by Im(FS). Since we assumed there is a trickle path crossing S, both Dom(FS)
and Im(FS) are non-empty. Fig. 2.1(ii) illustrates these definitions. Note that
Im(FS) is a single point when one of the features in S is a vertex. The following
lemma follows from elementary geometry.

Lemma 2.2 (i) The function FS(q) is a linear function, and Dom(FS) and Im(FS)
are intervals of first(S) and last(S), respectively. (ii) Suppose an EV-sequence S
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is the concatenation of EV-sequences S1 and S2. Then FS can be computed from
FS1 and FS2 in O(1) time.

Now consider an EV-sequence S(q) = f1 · · · fk and let C = fi, . . . , fj be the last
cycle of S(q). The cycle tree Tcycle for C is a balanced binary tree, defined as
follows.

• The leaves of Tcycle store the features fi, . . . , fj−1 in order.

• For an internal node ν, let lc[ν] and rc[ν] denote its left and right child,
respectively. Let S[ν] denote the subsequence of C consisting of the features
stored in the leaves below ν. Furthermore, let first[ν] and last[ν] denote the
features stored in the leftmost and rightmost leaf below ν, respectively. Then
ν stores the trickle function FS[ν], and the trickle function FS′[ν], where S ′[ν]
is the sequence fνf ′ν with fν = last[lc[ν]] and f ′ν = first[rc[ν]].

Lemma 2.3 The function FindExit(Tcycle, q) can be implemented to run inO(log |C|)
time, where |C| is the length of the cycle stored in Tcycle.

Proof. Imagine following trickle(q), starting at fi, the first feature in C. We
will cross a number of features of C, until we exit the cycle. (We must exit the
cycle before returning to fi again, because a trickle path cannot cross the same
sequence twice without encountering another feature in between [6].) Let f∗ be
the feature of C that we cross just before exiting. We can find f∗ in O(log |C|)
time by descending down Tcycle as follows.
Suppose we arrive at a node ν; initially ν is the root of Tcycle. We will maintain
the invariant that f∗ is stored in a leaf below ν. We will make sure that we have
the point qν where trickle(q) crosses first[ν] available; initially qν = q. When ν is
a leaf we have found f∗, otherwise we have to decide in which subtree to recurse.
The feature f∗ is stored in the right subtree of an internal node ν if and only if

(i) qν ∈ Dom(FS[lc[ν]]), which means trickle(qν) completely crosses S[lc[ν]], and
(ii) FS[lc[ν]](qν) ∈ Dom(FS′[ν]), meaning trickle(qν) reaches first[rc[ν]] after cross-
ing S[lc[ν]].

If these two conditions are met, we set ν := rc[ν] and qν := FS′[ν] ◦ FS[ν](qν),
otherwise we set ν := lc[ν].
Once we have found f∗ and the point q∗ where trickle(q) crosses f∗, we can com-
pute the exit edge eexit and point qexit by inspecting the relevant triangle t incident
to f∗: we just have to compute where the path of steepest descent from q∗ exits t.
2

It remains to explain how to update Tcycle. First consider step 8 of ExpandTrick-
lePath. Suppose that, just before q reaches f , we have S(q) = f1 · · · fk. Let
fi · · · fj be the last cycle of S(q) (which is stored in Tcycle) and fj+1 · · · fk its
last chain (which is stored in L). We know that f has been crossed before. By
Lemma 2.1 this implies f = fm for some m > i. We distinguish two cases.
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• If m > j, then f occurs in the last chain and, hence, in L. Now after
crossing f the last cycle becomes fm · · · fkf . So updating Tcycle amounts to
first emptying Tcycle, and then constructing a new cycle tree on fm · · · fkf ,
which can be done by a bottom-up procedure in O(|L|) time.

• If i 6 m 6 j then f occurs in the last cycle. Then after crossing f the
last cycle becomes fm · · · fjfj+1 · · · fkf . (In the special case that m = j, we
in fact have fi = fj = f and the last cycle becomes fjfj+1 · · · fkf .) We
can now update Tcycle by deleting the features f1 · · · fm−1, and inserting the
features fj+1 · · · fk. (Recall that the last feature of a cycle is not stored in
the cycle tree.) Inserting and deleting elements from an augmented balanced
binary tree Tcycle can be done in logarithmic time in a standard manner.

Next consider the updating of Tcycle in step 10. Let fi · · · fj be the last cycle before
step 9, where we jump to the first new feature crossed by the trickle path. Let fm be
the last feature we cross before we exit the cycle, that is, the feature f∗ in the proof
of Lemma 2.3. Then after the jump, the last cycle becomes fm · · · fj−1fi · · · fm.
(Essentially, the cycle does not change, but its starting feature changes.) Thus,
to update Tcycle we have to split Tcycle between fm−1 and fm into two cycle trees
T 1

cycle and T 2
cycle, then merge these cycles trees again but this time in the opposite

order (that is, putting T 1
cycle to the right of T 2

cycle instead of to its left). Splitting
and merging can be done in logarithmic time, if we use a suitable underlying tree
such as a red-black tree. We obtain the following theorem.

Theorem 2.4 Let T be a terrain with n triangles and let p a point on the surface
of T . Algorithm ExpandTricklePath(T , p) traces the trickle path of p in time
O(n log |Cmax|), where |Cmax| is the length of the longest cycle in the EV-sequence
of trickle(p).

2.3 Expanding Multiple Paths Simultaneously

Our main interest is in designing an efficient algorithm that can expand a col-
lection of Θ(n) paths simultaneously. Our next step towards this direction is to
present how we can expand a collection of paths that emanate from the same point
efficiently. We therefore design a subroutine that expands implicitly upnet(p), the
up-network of a terrain point p; this is the set of all points on T reachable by a
path of locally steepest ascent from p. Here the directions of locally steepest ascent
are defined as follows. For a point q ∈ T , let Bε(q) be the ball of infinitesimal
radius centered at q. Let Mε be the set of points of locally maximum elevation
in Bε(q) ∩ T whose elevation is greater than z(q). Then the directions of locally
steepest ascent at q are given by the vectors from q to each point in Mε. We
are interested in tracing the up-network implicitly since it plays a key role in the
construction of the watershed of a given point [2]. We examine this issue in more
detail in Section 2.4.
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Next we describe our subroutine that expands upnet(p). We assume that the
point p for which we want to compute the up-network is a terrain vertex 2. An
up-network is not necessarily a path; it can split and rejoin at terrain vertices.
If we remove all terrain vertices from upnet(p), as well as all points that lie on
a ridge edge, then upnet(p) is broken into several components which we call up-
paths. We want our subroutine to compute the local maxima and/or the points at
the boundary of T where upnet(p) ends.

Our algorithm is a space-sweep algorithm. Let hz be the horizontal plane at
elevation z and let Pz denote the set of up-paths intersecting hz. We will maintain
Pz as we move hz upwards from p, meanwhile marking all the edges and triangles
crossed by any of the up-paths. The difficulty in doing so is that an edge can be
crossed by many up-paths and moreover that a single up-path can cross an edge
many times.
To overcome these problems we proceed as follows. Let top(π) denote the point up
to which we have traced an up-path π ∈ Pz; the point top(π) lies on or above hz,
and it will always lie on an edge. We associate π with the edge on which top(π)
lies. We denote the set of up-paths associated with an edge e when the sweep
plane is at elevation z by Pz(e). Let Pz(e) = π1, . . . , πk; here and in the rest of the
chapter we number the up-paths in Pz(e) in increasing order of the z-coordinate of
their tops. During the algorithm we will maintain each set Pz(e) in an augmented
tree according to this order. How this bundle tree is implemented will be discussed
later. The idea is now to jump with each πi to the first point where it crosses a
terrain feature that lies completely above hz. This feature can be either an edge
or a vertex and we call it the exit feature of πi. There can be several up-paths in
Pz(e) with the same exit edge. We call the collection of all such up-paths a bundle
and we will make sure that we can jump with an entire bundle to the common exit
edge. To facilitate the jumping, we store the edges currently intersecting hz in a
data structure similar to the cycle tree of the previous section. We call our new
structure a contour structure and we denote it by Dcontour. Later we will explain
how to implement Dcontour, but first we return to the overall algorithm.
We define an order on the terrain vertices and edges, that specifies the order in
which they are handled. Let rank(v), the rank of a vertex v, be the z-coordinate
of v, and let rank(e), the rank of an edge e, be the z-coordinate of the lower
endpoint of e. This implies that when we jump from an edge e, we jump to the
first feature with rank greater than the elevation of hz. For two features f1, f2

we define f1 ≺ f2 if either rank(f1) < rank(f2), or f1 is a vertex and f2 is an
edge and rank(f1) = rank(f2). We extend this partial order to a total order in an
arbitrary manner. An event queue will store vertices and edges in ≺-order. The
global algorithm is now as follows. (When we write “insert this feature into Q”
we actually first check whether the feature is already present in Q and only do the
insertion when this is not the case.)
Algorithm ExpandUpNetwork(T , p)
Input: A triangulated terrain T and a vertex p of T .

2If this is not the case we can just add p in V and re-triangulate the terrain.
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Output: The local maxima/boundary points on T where upnet(p) ends and the edges
crossed by upnet(p).

1. Set z := z(p), initialize Dcontour with all edges intersecting hz, and create an event
queue Q storing only p.

2. while Q is not empty
3. do Remove from Q the feature f that is minimal in the ≺-order.
4. Set z := rank(f) and update Dcontour.
5. if f is a vertex, v
6. then if v is a local maximum
7. then output v.
8. else � Expand v:
9. For each up-path π starting at v, let eπ be the first edge hit

by π. If eπ is incident to v then report eπ, and insert the
other vertex w of this edge into Q. If eπ is not incident to v,
then add π to P (eπ), insert eπ into Q, and mark and report
eπ.

10. if f is an edge, e
11. then if e is an edge on the boundary of T
12. then Output the tops of the paths stored in Pz(e).
13. else � Jump from e:
14. Split Pz(e) into bundles. For each bundle b, proceed as fol-

lows: Let fexit(b) be the first feature crossed by b that lies
completely above the sweep plane hz. Mark and report any
unmarked edges crossed by b. Insert fexit(b) into Q, and if
fexit(b) is an edge then add b to Pz(fexit(b)).

The correctness of the algorithm can be seen as follows. By induction we can argue
that all up-paths are created. When we trace the first link of an up-path (step 9)
we mark the crossed edge, and when we extend an up-path as part of a bundle
(step 14) we mark all newly crossed edges. Furthermore, an up-path continues
to be extended until it ends. Hence, all edges crossed by upnet(p) are marked
and all reached local maxima and boundary points are reported if the steps are
implemented correctly.
Before we explain the various steps of the algorithm in more detail, we discuss
some properties of the paths and bundles generated by the algorithm. We start
with the next basic lemma.

Lemma 2.5 Let ein and eout be an in-edge and an out-edge, respectively, of a
terrain triangle t. Let p, q ∈ eout with z(p) > z(q), and let p′, q′ ∈ ein be such that
p′p and q′q are parallel to the direction of steepest descent. Then z(q′) > z(p′) if
and only if the highest vertex of eout is the lowest vertex of ein.

Proof. Since z(p) > z(q) we know that p lies closer than q to the vertex incident
to eout with the highest elevation. Let v′ be this vertex.
Let v be the vertex incident to eout and ein. We consider two cases:

v = v′: Since pp′ and qq′ are parallel, dist(p, v) < dist(q, v) implies that dist(p′, v) <
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Figure 2.2 (a) Illustration for the proof of Lemma 2.6. (b) Illustration
for the proof of Lemma 2.7.

dist(q′, v). But then we can only have z(q′) > z(p′) if and only if v is the
lowest vertex of ein.

v 6= v′: Now q lies closer to v on eout and, as pp′ and qq′ are parallel, point q′ lies
closer to v on ein than p′. Let v′′ be the other vertex incident to ein. v′′

has higher elevation than v′ otherwise v and v′′ are the vertices of lowest
elevation in t and ein cannot be an in-edge. On ein, the point p′ lies closer
to v′′ than q′ so p′ has a higher elevation than q′.

2

Consider a point q on an up-path π. We denote the part of π up to q by tailπ(q).
We define rank(tailπ(q)) to be the maximum rank of any edge crossed by tailπ(q).

Lemma 2.6 Let π and π′ be two up-paths that cross the same transfluent edge e,
and let q and q′ be the points where they cross e. If rank(tailπ(q)) > rank(tailπ′(q′))
then z(q) > z(q′).

Proof. Assume for a contradiction that z(q′) > z(q). Imagine tracing tailπ(q)
and tailπ′(q′) downwards as long as they follow the same EV-sequence. Let S =
e1, . . . , ek be this EV-sequence. Note that e1 = e. Let qi and q′i denote the points
where tailπ(q) and tailπ′(q′) cross ei, respectively—see Fig. 2.2(a).
Consider two consecutive edges ei and ei+1. Then the lowest vertex incident to
ei cannot be the highest vertex incident to ei+1. Otherwise, ei has a higher rank
than any other edge following it, contradicting rank(tailπ(q)) > rank(tailπ′(q′)).
The assumption z(q′) > z(q) thus implies, by Lemma 2.5 that z(q′i) > z(qi) for all
1 6 i 6 k.
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Let t be the triangle entered by tailπ(q) and tailπ′(q′) before crossing ek, and let v
be the vertex of t not incident to ek. We assume for simplicity that neither tailπ(q)
nor tailπ(q′) crosses v; adapting the argument is straightforward. Let ek+1 be the
edge of t incident to the two lowest vertices of t. Note that v is one of these two
vertices. Since z(q′k) > z(qk), we know that tailπ(q) crosses ek+1. Let qk+1 denote
the point where this crossing takes place. Since the endpoints of ek+1 are the two
lowest vertices of t, either ek or e′k+1 (the third edge of t) lies strictly above the
interior points of ek+1. But then any edge crossed by tailπ(qk+1) has a lower rank
than either ek or e′k+1, and the latter two edges are crossed by tailπ′(q′). Hence,
rank(tailπ′(q′)) > rank(tailπ(q)), and we reach a contradiction. 2

Lemma 2.6 is used to prove that bundles cannot interleave, so that splitting a set
Pz(e) into bundles and adding these bundles to the sets Pz(fexit) of their respective
exit features can be done efficiently. Next we make this non-interleaving property
precise.
Suppose that the algorithm jumps from an edge e in step 14. Note that two or
more bundles in Pz(e) may first follow the same edge sequence for some time before
they split. For an edge e′, we denote by BS(e, e′) the set of bundles that follow
the same edge-sequence S from e to e′ when Pz(e) is processed. We call BS(e, e′)
a multi-bundle. The tops of the up-paths when they reach e′ after traversing S
are called the tops of the multi-bundle.

Lemma 2.7 (i) Let b be a bundle of Pz(e). Then the paths in b are consecutive
in Pz(e). (ii) Let B1 := BS1(e1, e

′) and B2 := BS2(e2, e
′) be two multi-bundles

crossing the same transfluent edge e′. Then B1 and B2 do not interleave on e′,
that is, there is a point on e′ separating the tops of B1 from the tops of B2.

Proof. To prove part (i), let π1 and π2 be the two outermost up-paths in b. Since
up-paths don’t cross, any up-path starting in between π1 and π2 follows the same
edge-sequence as π1 and π2 up to fexit(b) and, hence, is an up-path in b.
To prove part (ii), assume without loss of generality that e1 was handled before e2.
Thus rank(e1) 6 rank(e2). We will show that no up-path π ∈ B1 can separate B2,
that is, top(π) cannot lie in between the tops of the outermost paths π1 and π2

in B2. Showing that no up-path in B2 can separate B1 can be done in a similar,
yet not symmetric, way.
If rank(e1) < rank(e2), then according to Lemma 2.6 the tops of B2 lie above
top(π), so π does not separate B2.
Now consider the case3 rank(e1) = rank(e2). Let z be the z-coordinate corre-
sponding to this rank (so hz is the plane through the lower endpoints of e1 and
e2). Since e′ is a transfluent edge, the paths in B2 and π cross the same trian-
gle t′ before encountering e′. We can assume that B2 and π enter t′ through the

3The argument for the case rank(e1) = rank(e2) also applies when e1 = e2. This special case
may happen when an up-path traverses some edges intersecting hz in a cyclic way. It is then
possible that some up-paths in Pz(e1) cross a sequence S′ of edges before hitting e′, while others
first traverse a cycle of all edges intersecting hz , before crossing S′ and hitting e′.
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same edge, as in Fig. 2.2(b), otherwise π surely cannot separate B2. Now imagine
following π backwards from e′ as long as it follows the same edge-sequence as B2.
If π lies in between π1 and π2, the path π must follow the same edge sequence
until either e1 or e2, whichever comes first. In fact, we can argue that e2 must
come first—otherwise, when π jumped to e1 it would actually have stopped at e2.
We claim that π crosses e2 above any of the paths πi ∈ B2, which then implies
part (ii) of the lemma. Let t be the triangle that π and the paths in B2 cross just
before e2 and let e′′, e′′′ be the other two edges incident to t. Suppose π enters t
through e′′, as in Fig. 2.2(b) . There are two cases.

• First consider a path π′ ∈ B2 that also crosses e′′ when it jumped to e2. Let q
be the point where π crosses e′′, and let q′ be the intersection point of π′ and
e′′. Since tailπ(q) crosses e1 and tailπ′(q′) does not cross any edge with rank
higher or equal to rank(e2) we have that rank(tailπ(q)) > rank(tailπ′(q′)).
By Lemma 2.6 we get that q lies above q′ on e′′. Thus, by Lemma 2.5, the
top of π on the forthcoming encounter with e2 also lies above the top of π′

on e2 as claimed.

• Now consider a path π′ that did not reach e2 through e′′, but through edge
e′′′. The lower vertex of e2 is intersected by hz, and e′′ or a vertex of e′′ is
intersected by hz since there is a path from e1 that crosses e′′, namely π,
before hitting an exit feature. Then e′′′ must lie either completely below or
completely above hz, otherwise t is horizontal. Since π′ crosses e′′′ before
ever hitting e2, then e′′′ can only lie below hz. The fact that e′′′ lies below hz
and π crosses e′′ above hz implies that the top of π on e2 lies above the top
of π′ on e2, as claimed.

2

We now return to the algorithm, and show how it can be implemented efficiently.

The contour structure. Consider a situation where hz does not contain a ver-
tex. Then hz ∩ T consists of a number of simple, closed, polygonal curves, called
contours. Let C1, C2, . . . be the contours, and let Si denote the (cyclic) edge se-
quence corresponding to Ci. We give each edge e ∈ Si that can be hit in clockwise
direction by an up-path a label cw, and each edge that can be hit in counter-
clockwise direction a label ccw. Note that ridge edges get two labels, transfluent
edges get one label, and valley edges get no label. We partition Si into maximal
subsequences Sji of edges with the same label; we call them cw-subsequences and
ccw-subsequences depending on their common label. A ridge edge will be part of
two subsequences (one cw-subsequence, and one ccw-subsequence), a transfluent
edge will be part of one subsequence, and a valley edge will not be part of any
subsequence.
Each subsequence Sji will be stored in an augmented tree D(Sji ), which is the
same as the cycle tree of the previous section, except for the following. First, the
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trickle functions should be reversed, meaning that they should specify how an up-
path (rather than a trickle path) can traverse a sequence. Second, each internal
node ν ∈ D(Sji ) stores a boolean unmarked [ν] indicating whether any of the edges
stored in the subtree rooted at ν is still unmarked. This way, when we jump over
some edges of Sji to the first encountered edge above the sweep plane, we can mark
all unmarked edges in logarithmic time per unmarked edge.
Inserting an edge or deleting an edge from the contour can be done in logarithmic
time. Moreover, we can merge and split any of the structures D(Sji ) in logarithmic
time; this is necessary when we hit a saddle vertex, for instance, since then two
contours split.

The bundle tree. Consider an edge e stored in the event queue with Pz(e) =
π1, . . . , πk. Let topsz(e) = τ1, . . . , τk be the tops of these up-paths on e. The
bundle tree Tbundle(e) stored with e is a balanced binary tree that we define as
follows.

• The leaves of Tbundle(e) store the tops τ2, . . . , τk−1 in order. Let dist(τi, τj)
denote the distance between the tops τi and τj . A leaf node ν that stores the
top τr also stores the ratio dist(τr,τr+1)

dist(τr−1,τr) . This ratio remains the same when
we expand the bundle upwards as long as the two paths incident to πr follow
the same sequence of edges.

• For an internal node ν, let first[ν] and last[ν] denote the tops stored in the
leftmost and rightmost leaf below ν, respectively. Let pred[ν] be the top that
comes before first[ν], and suc[ν] the top that follows last[ν]. Then ν stores
the ratios r1[ν] = dist(first[ν],last[ν])

dist(pred[ν],first[ν]) and r2[ν] = dist(last[ν],suc[ν])
dist(pred[ν],first[ν]) .

• We store with Tbundle(e) the coordinates of τ1 and τk, and dist(τ1, τ2) and
dist(τk−1, τk).

Updates such insertion and deletion on a bundle tree, but also merging and split-
ting, can be done in logarithmic time.
Next we show how to compute, given a point p ∈ e, which tops of Pz(e) lie on each
side of p. In other words, we have to determine the maximum j such that τj ∈ Pz(e)
lies below p. We start by setting ν := root(Tbundle(e)). We maintain the invariant
that τj is stored in a leaf under ν, or j = 1, or j = k. Define d := dist(pred[ν], p)
and δ := dist(pred[ν],first[ν]). Initially we have d = dist(τ1, p) and δ = dist(τ1, τ2).
Also define δ1 := dist(pred[ν], last[lc[ν]]) and δ2 := dist(pred[ν],first[rc[ν]]). Note
that δ1 = δ ·(1+r1[lc[ν]]) and δ2 = δ1 +δ ·r2[lc[ν]]. Using the information stored in
Tbundle(e), we can maintain d, δ, δ1, δ2 in constant time as we descend in Tbundle(e).
To determine to which child to proceed, we distinguish three cases:

(i) if d < δ1 then τj is stored in a leaf below lc[ν] or it is τ1, and so we set
ν := lc[ν].
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(ii) if δ1 < d < δ2 then τj is last[lc[ν]], and we are done.

(iii) if δ2 < d then τj is stored in a leaf below rc[ν] or it is τk, and so we set
ν := rc[ν].

The process to find τj takes logarithmic time. After finding τj , we can split
Tbundle(e) in logarithmic time into a bundle tree T 1

bundle for π1, . . . , πj and a bundle
tree T 2

bundle for πj+1, . . . , πk.

Details of the algorithm. Now that we have described Dcontour and Tbundle,
we can explain steps 4, 9, and 14 of ExpandUpNetwork in more detail.

Step 4: Updating the contour structure. Whenever we move the sweep plane hz
upward to some new elevation z∗, we have to update Dcontour: we must delete all
edges whose top endpoint now lies on or below hz, and we must insert all edges
whose bottom endpoint lies on hz. Updates can be done in O(log n), so in total
they take O(n log n) time.

Step 9: expanding a vertex v. The number of up-paths emanating from v is at
most the degree of v. Each up-path may require updating Q and then updating
some set Pz(eπ), which takes O(log n) time. Hence, the vertex expansions take
O(n log n) time in total.

Step 14: jumping from an edge e. To split Pz(e) into bundles and jump with
each bundle to its exit edge, we proceed as follows. Let Pz(e) = π1, . . . , πk, let
τ1, . . . , τk ∈ e be the tops of these up-paths, and let Sji denote the subsequence
(in the current set of contours) containing e. The call FindExit(D(Sji ), q) reports,
given a point q on an edge e intersecting the sweep plane hz, the first feature fexit

crossed by q’s up-path that lies completely above hz.
We first perform a query FindExit(D(Sji ), τ1), giving us the exit feature fexit(π1).
Let F1 : e → fexit(π1) be the function that maps a point q ∈ Dom(F1) to the
point on fexit that we reach when we follow an up-path from q. We modify
FindExit(D(Sji ), q) such that it also returns F1 and Dom(F1). Let Tbundle(e) be
the tree storing Pz(e). Using Tbundle(e) we determine the largest j such that
τj ∈ Dom(F1) and we split Tbundle(e) into two bundle trees T 1

bundle and T 2
bundle,

as described above. By Lemma 2.7(i) the paths π1, . . . , πj follow the same edge
sequence from e to fexit(π1), thus forming the first bundle of Pz(e).
We repeat the process with the remainder of Pz(e), now stored in T 2

bundle, until
we have determined all the bundles, and for each bundle b its exit feature fexit(b).
For each bundle we then mark all newly crossed egdes—this will take O(log n)
per marked edge—and if fexit(b) is an edge we insert b into Pz(fexit(b)). The
latter operation takes O(log n), since by Lemma 2.7(ii) b does not interleave with
the up-paths already stored in Pz(fexit(b)), which means we can add T 1

bundle to
Tbundle(fexit) by one splitting and two merging operations. In the case that b hits
a ridge edge, we discard b and insert the upper vertex of this edge in Q.
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Theorem 2.8 Algorithm ExpandUpNetwork(T , p) computes for a point p on a
terrain T with n vertices the points where the up-network from p ends, and the
edges crossed by this up-network in O(n log n) time.

Proof. To prove the time bound, it suffices to argue that O(n) bundles are gener-
ated. When handling an edge e, a bundle is split off when the paths of Pz(e) enter
a triangle t through one edge e1, but leave t through different edges e2 and e3.
Let v be the common vertex of e2 and e3. According to Lemma 2.7 the up-paths
of any other set Pz′(e′) do not interleave with Pz(e) on e1, and thus only one
multi-bundle can split around v. 2

2.4 Extracting Other Drainage Information

As described in Chapter 1, the surface network graph of a terrain T is an ab-
straction of the topology of T . Recall that the vertices of this graph represent
the critical points on the surface of T , and the edges of the graph represent paths
which follow the steepest slope on the surface of T and which connect saddles with
local minima and local maxima. These paths are defined as follows. For a saddle
vertex v ∈ T consider the region of T that consists of all the triangles incident
to v. We call this region the star of v and we denote this by star(v). We call
the upper star of v the subregion of star(v) that consists of the points that have
a higher elevation than v. Similarly, we call the lower star of v the set of points
in star(v) that have a lower elevation than v. As v is a saddle vertex, the upper
star and the lower star of v consist of at least two connected components each.
For each connected component of the upper star (lower star) of v we consider a
unique ascending (descending) path: this is the path that stems from v towards
the direction of steepest slope within this component.
To construct the surface network graph of T we need to compute for each saddle
vertex v the set of local extrema where the desrcibed paths from v end. For this
we need the following more general versions of the algorithm ExpandUpNetwork .
Let Psaddle be the set of the O(n) saddle points on T . Then we can compute
the edge-set of the surface network graph in O(n log n) time; first we initialise
the event queue Q in Step 1 of ExpandUpNetwork with the points of Psaddle . At
this step we expand only the up-paths from the saddle points. It is easy to see
that the algorithm ExpandUpNetwork has the same running time when expanding
O(n) paths simultaneously on T even if these paths do not emanate from the same
point. When we initiate an up-path π, we associate π with the critical point v[π]
from which the path emanates. An up-path is terminated when it hits a terrain
feature that is a vertex or a ridge edge. If this feature is a critical point u we add
an edge (v[π], u) in the surface network graph, otherwise we propagate the tag
v[π] to the path of steepest ascent that starts from this feature. To compute the
rest of the edges of the graph we use an algorithm ExpandDownNetwork , which is
essentially the same as ExpandUpNetwork except that it traces paths downwards



30 Chapter 2 An Efficient Mechanism for Routing Flow on TINs

instead of upwards. In the proof of the following theorem we also show how we
can compute the triangles contained in the watershed of each local minimum on
T in O(n log n) time.

Theorem 2.9 Let T be a terrain with n triangles and let P be the set of local
minima on T . We can compute the surface network graph of T , and assign to
each minimum p ∈ P the triangles that are entirely contained in the watershed of
p in O(n log n) time.

Proof. Consider a local minimum p of T and let t be a triangle that is entirely
contained in the watershed of p. That means that the trickle path from every
point in the interior of t ends in p. This can only happen if these trickle paths
(except maybe a discrete subset of these paths) contain also one or more valley
edges. Hence, in order to compute the watershed of p we have to find which valley
edges send water to p and then find the triangles that send water to these edges.
Therefore we proceed as follows.
We use ExpandDownNetwork to compute simultaneously for each down-path of
each terrain vertex v the first valley edge hit by such a path; the algorithm can
also compute exactly the points where these paths hit their first valley edge. Now
consider a valley edge e whose lowest endpoint sheds water to a local minimum p,
and suppose e is the first valley edge hit by the down-paths of vertices v1, . . . , vk.
Let qi ∈ e be the point where trickle(vi) hits e, and assume z(q1) < z(q2) <
. . . z(qk). For ease of exposition, we assume that these points q1, . . . qk are all
different—the reader may verify that the following proof could easily be adapted
to accommodate situations in which a trickle path reaching e from the left and a
trickle path reaching e from the right reach e in exactly the same point. Define
q0 and qk+1 to be the lowest and highest endpoints of e, respectively. The points
qi for 0 6 i 6 k are the lowest vertices of the strips [96] incident to the edge e.
A strip is a maximal subset of the terrain surface extending between a segment
s of a valley edge and a segment of a ridge edge such that all up-paths starting
from s traverse the same sequence of edges. For 0 6 i 6 k, let pi ∈ e be a point
that we pick arbitrarily between qi and qi+1. Imagine tracing an up-path from
each pi, leaving in the direction where trickle(vi) comes from, until a ridge edge
is reached. It can be shown [96] that the triangles containing a point q for which
e is the first valley edge hit by trickle(q), are precisely the triangles crossed by
one of these up-paths. We collect the points pi, qi over all valley edges in a set Q,
and then apply a modified version of ExpandUpNetworkTriangle to Q. In this
version of the algorithm we associate each terrain edge e with a tag that indicates
if all the trickle paths starting from points on e end at the same local minimum
or not. Next we describe shortly what is the reason for using these tags and then
we continue with the description of the algorithm.
Let e be a valley edge and let v the lowest vertex incident to e. We tag e with the
local minimum where trickle(e) ends. We tag each up-path in Q with the same
local minimum as the valley edge where it comes from. A triangle t is contained in
the watershed of a local minimum p if and only if the valley and transfluent edges
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of t are intersected only by up-paths in Q that are tagged with p. If the valley and
transfluent edges of t are intersected by up-paths that have different tags then t is
a border triangle.
For each bundle tree Tbundle that is generated during the sweep we maintain a tag
tag [Tbundle] in the following manner: if a bundle tree Tbundle stores up-paths that
are all tagged with the same local minimum p then we have tag [Tbundle] = “p”
otherwise this tag has a symbolic value “Multiple”. We store also such a tag for
every node of Tbundle, maintaining this information for each subtree of Tbundle. In
this way, whenever a new bundle tree T ′bundle is generated from splitting or merging
other bundle trees then the value of tag [T ′bundle] can be computed in O(log n) time.
We also change the fields stored with each node ν of a tree D(Sji ) ∈ Dcontour

slightly. Instead of a boolean unmarked [ν], we store a tag tag [ν]. If ν is a leaf
node, then ν represents an edge crossed by hz. Let e[ν] be this edge. The value
stored in tag [ν] may be of three possible kinds:

• If e[ν] has not been crossed so far by any up-path then tag [ν] stores a symbolic
value “None”.

• If e[ν] has been crossed only by up-paths that were tagged with the same
local minimum p then tag [ν] =“p”.

• If e[ν] has been crossed by up-paths that were tagged with different local
minima then tag [ν] =“Multiple”.

For an internal node ν ∈ D(Sji ) let Tν be the subtree ofD(Sji ) with root ν. If all the
leaves in Tν have the same tag value then tag [ν] is also set to this value. Otherwise,
we distinguish two more cases. If the only tags that appear in the leaves of Tν
are “Multiple” and “p” for only one local minimum p, then tag [ν] =“Multiple
and p”. In any other case tag [ν] =“Mixed”. Notice that tag [ν]=“Multiple”
means that each valley edge represented by a leaf node in Tν has been crossed by
up-paths that were tagged with different local minima. However, tag [ν]=“Mixed”
implies that there are two or more leaf nodes in Tν that have different tags with
each other; for example there may exist a leaf node ν′ with tag [ν′]=“p” and a leaf
node ν′′ with tag [ν′′]=“q” because e[ν′] was crossed only by up-paths tagged with
“p” while e[ν′′] was crossed only by up-paths tagged with “q”.
Suppose that we execute a query FindExit(D(Sji ), τ) for some up-path τ and for
some tree D(Sji ) ∈ Dcontour that stores a cw or ccw subsequence. Let Tbundle be
the bundle tree that is generated after this query and which stores τ . Let ν ∈D(Sji )
be a node encountered during this query such that τ was found to traverse all the
edges stored in the subtree with root ν. We distinguish the following cases:

◦ If tag [ν]=“None” then we assign tag [Tbundle] to tag [ν] and we do the same
for all the nodes in Tν .

◦ If tag [ν] = “Multiple” then we do not change anything.
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◦ If tag [ν] corresponds to a local minimum p then we check the tag of Tbundle;
If also tag [Tbundle] =“p” then we do not change anything, otherwise we set
tag [ν] =“Multiple” for all the nodes in Tν .

◦ If tag [ν] =“Multiple and p” then if tag [Tbundle] =“p” we do not change
anything, otherwise we set tag [ν] =“Multiple” and we recurse with the
children of ν.

◦ If tag [ν] =“Mixed” then if tag [Tbundle] =“Multiple” we set to “Multi-
ple” the tag for all the nodes in the subtree with root ν. Otherwise, if
tag [Tbundle] =“p” for some local minimum p we recurse with the children
of ν.

According to the above, changing the values of the tag [·] fields of the nodes takes
in total O(log n) steps for each leaf node that was updated. This is because we
only visit the children of any node ν if at least one leaf tag in the subtree rooted
at ν will be changed. We charge the cost of visiting nodes in the tree to these
leafs, thus each leaf whose tag changes is charged by at most O(log n) children of
its ancestors. The tag of each leaf node in the contour structure will be updated
at most twice during the execution of the algorithm which takes O(n log n) time
in total.
After executing the modified version of ExpandUpNetwork we check for each ter-
rain triangle the tags of its incident edges and assign this triangle to a watershed
of a local minimum or classify it as a border triangle accordingly.

2

We can use a variant of ExpandDownNetwork to compute the exact watershed
area for each local minimum on T in O(n2) as explained in the following theorem.

Theorem 2.10 Let T be a terrain with n triangles and let P be the set of local
minima on T . The exact measure of the area covered by the watershed of each
point p ∈ P can be computed in O(n2) time.

Proof. Let p, q be two points on the interior of an edge e1 ∈ T and let πp and πq
be the up-paths that start from these points respectively. Suppose that these two
up-paths cross a common sequence of edges S = e1e2 . . . ek and suppose no edge
occurs in S more than once. Let p′ and q′ be the intersection points of πp and πq,
respectively, with ek. Let Λ be the part of T that is bounded by pq, p′q′, πp, and
πq. The area of Λ can be expressed as a quadratic function KS of the coordinates
of p and q. We call this function the area function of S. It is important to note
that the value of KS does not depend only on the length of pq but also on the
exact position of p, q.
To compute the area of the watershed of each local minimum in P we proceed
as follows. We use ExpandDownNetwork to compute for each valley edge e the
intersection points of e with the paths of locally steepest descent that start from
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vertices of T . Let q1(e), q2(e), . . . , qk(e) be the intersections points of e with these
paths. Assume z(q1(e)) < z(q2(e)) < . . . < z(qk(e)), and let q0(e) and qk+1(e) to
be the lowest and highest endpoints of e respectively. The segments qiqi+1 for every
0 6 i 6 k bound from below the strips—see Section 1.1.3 for a definition—that are
incident to e. As shown by Yu et al. [96], each strip is a region entirely contained
in the watershed of some local minimum. Our approach will be to compute the
area of each of the strips simultaneously and then sum the computed values of the
strips that are associated with the same local minimum. For 0 6 i 6 k, let pi(e)
be a point that we pick in an arbitrary way on the interior of qi(e)qi+1(e).
For each valley edge e ∈ T we insert all the points pi(e) that we constructed into an
initially empty queue Q. We maintain for each pi(e) a quadratic function K[pi(e)]
that is initially set to zero, and we apply a new version of ExpandUpNetwork to
Q.
For this version of the algorithm we store two extra quadratic functions with each
node ν of a tree D(Sji ) ∈ Dcontour that stores a cw/ccw subsequence. In detail,
node ν stores the quadratic function KS[ν] and the quadratic function KS′[ν] with
S[ν] and S ′[ν] defined as in Section 2.2. The following formula shows how we can
compute KS[ν] in constant time given the satellite data of the children of ν:

KS[ν] = KS[lc[ν]] +KS′[ν] ◦ FS[lc[ν]] +KS[rc[ν]] ◦ FS′[ν] ◦ FS[lc[ν]]

Consider a call FindExit(D(Sji ), τ) for some tree D(Sji ) ∈ Dcontour that stores a
cw/ccw subsequence, and some up-path τ . Let S be the sequence of edges that
τ traversed during this call. In this new version of FindExit we compute also the
area function KS as a sum of quadratic functions stored with at most O(log n)
nodes in D(Sji ). Let Tbundle be the bundle that contains τ . At the the end of the
call of FindExit we add KS to K[pi(e)] for every pi(e) which is the starting point
of an up-path in Tbundle. This takes O(n) time for each generated bundle instead
of O(log n) which was the case for the basic version of FindExit . Thus the overall
running time of ExpandUpNetwork becomes O(n2).
After the execution of ExpandUpNetwork we associate with each local minimum
p ∈ P a watershed area value A[p] initially set to zero. For each edge e, we apply
each function K[pi(e)] to the points qi(e), qi+1(e) and then add the computed value
to A[p], where p is the local minimum at which trickle(qi(e)) and trickle(qi+1(e))
end. The resulting value A[p] is the exact watershed area of each local minimum
p ∈ T . 2

2.5 Concluding Remarks

In this chapter, we presented efficient algorithms that compute certain flow-related
structures on terrains and their characteristics: the surface network, an approxi-
mation of the watersheds of all local minima, and the exact area for the watersheds
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of all local minima on the terrain. Our algorithms have an improved worst-case
running time compared to previous approaches that involve computing paths of
steepest ascent/descent on the terrain explicitly. An interesting problem for fu-
ture research is to design an implicit mechanism that can answer questions related
to proximity structures on terrains such as Voronoi diagrams that are defined
according to the geodesic distance on the terrain surface.



Chapter 3

Computing Drainage
Structures on TINs:
Practical Issues

3.1 Introduction

As indicated in the previous chapters, triangulated terrain models provide a strong
advantage when it comes to flow modelling; they are continuous surfaces. Thus, we
can consider an intuitive geometric interpretation for modelling the course of water
on such surfaces: we assume that water follows always the direction of steepest
descent on the terrain (dsd) and this direction is unique for every point on this
surface. We termed this model as the dsd model.
Given a point p on a terrain T , a simple task which is important for many hydro-
logical applications is to compute the trickle path of p. This is the path that starts
from p and follows the dsd on the surface of T until it reaches a local minimum
or the boundary of T . However, even the task of computing trickle paths on tins
is not as easy as it seems. First of all, the dsd model does not specify how water
flows across flat (horizontal) areas or when the dsd is not unique. How to deal with
this is an important research topic in itself, which is complementary to the topic
that we address in this chapter. Second, even when the dsd is unique everywhere,
it is not easy to compute trickle paths in an exact and robust manner. The diffi-
culty lies in the fact that the trickle path does not necessarily follow edges of the
tin—it sometimes crosses triangle interiors. This can cause robustness problems
during the computations: the use of standard, fixed-precision arithmetic may lead
to incorrect results. Note that a small error upstream in a flow path may cause a
very large deviation downstream.
Another important algorithmic question—the one that is the main focus of this
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chapter—is how to compute watersheds. Recall that the watershed of a point
p on T is the region consisting of all points whose trickle path contains p, and
the watershed map of T is the subdivision of T induced by the watersheds of
all local minima. Again, the fact that water can flow through triangle interiors
makes the exact computation of watersheds difficult, both conceptually and from
an implementation point of view. The use of finite-precision computations can
even lead to inconsistent results such as a watershed containing no, or more than
one, local minimum [57] and, if one is not very careful, the program crashes.

Previous work There exist many algorithms that compute a watershed subdi-
vision on a given tin; an overview can be found in the paper by Čomić et al. [24].
Due to problems mentioned above, most of these algorithms do not follow the dsd
model exactly. Instead, they often only consider flow along edges of the tin. Thus,
they restrict the flow to a discrete network rather than considering the whole tin
surface. One example of this approach is the popular algorithm of Mangan and
Whitaker [60]; other examples are the methods of Takahashi et al. [87] and of
Vincent and Soile [92].
Using only the tin edges to propagate flow affects, of course, the quality of the
output. One of the consequences is that the computed watersheds are collections
of full triangles. However, according to the dsd model it is possible that watershed
boundaries extend through triangle interiors. (Instead of considering the tin edges,
some methods [68] consider a network that also includes selected points on triangle
interiors, leading to similar problems.) Because local errors in the flow can have
global effects, they can even assign triangles to the wrong watershed when no
watershed boundary crosses them. From now on we refer to flow models (or
algorithms) that do not strictly follow the dsd assumption as inexact flow models
(or algorithms). The dsd model will sometimes be referred to as the exact flow
model.
As mentioned in the introduction of this thesis, de Berg et al. [6] were the first to
study the complexity of various structures in the dsd model on a tin. For example,
they showed that in the worst case a single trickle path may cross the same tin
edge several times. In fact, in a worst-case (and very unrealistic) scenario, a single
trickle path on a tin of n triangles can cross many edges many times, leading to
a worst-case complexity of Θ(n2). They also studied the worst-case complexity of
watersheds and river networks—see Section 1.1.2 for a precise definition.
The dsd model was further investigated by Yu et al. [96]. They introduced a
key concept for modelling drainage areas, the so-called strip. As explained also in
Chapter 1, if we expand from each tin vertex all paths of locally steepest ascent
and descent we get a refinement of the terrain surface which is called the strip map.
The expanded paths, the ridge edges and the valley edges of the tin subdivide the
terrain into faces, that is, the strips. Recall that a valley edge is an edge such that
the dsd in the interior of both of its incident triangles points towards this edge,
while for a ridge edge the dsd in the interior of both of its incident triangles points
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away from this edge. Each strip is bounded from the top by a ridge edge segment
and from the bottom by a segment of a valley edge. Its side boundaries consist of
two or more paths of steepest ascent/descent—see Fig. 1.4 for a depiction of the
topology of several strips and Fig. 3.1 for a global view of the strip map of a tin.
If we expand the trickle path of any point in the interior of a strip then this path
will hit the valley edge segment at the strip bottom and thus it will end at the local
minimum where this valley edge drains. Thus the watershed of a local minimum
in the watershed map is the union of one or more strip interiors and boundaries,
and the watershed map is easily extracted from the strip map. Unfortunately, as
mentioned in the introduction of this thesis, the complexity of the strip map is
quite high. McAllister [2], and Jones et al. [47] presented algorithms for computing
the watershed map on a tin without constructing the complete strip map; instead
both of these approaches only consider paths of steepest descent/ascent from a
specific subset of the tin vertices. Unfortunately, this may lead to incomplete
results [7].
When it comes to up-to-date implementations of watershed algorithms according
to the dsd model, we are only aware of implementations of McAllister’s algo-
rithm [57, 2, 3]. The most detailed discussion of their implementation is given
by Liu and Snoeyink [57]. As discussed in Chapter 1, they also consider, from
a theoretical point of view, numerical issues that arise when implementing flow
computations according to the dsd model. More specifically, they examine how
many bits are needed to represent the exact coordinates of the intersection points
between a trickle path and the tin edges crossed by this path. They conclude that
this number grows as a linear function of the number of transfluent edges crossed
by the path. However, in their implementation they make use of fixed-precision
arithmetic which may lead to inconsistencies in the output. This leads to the
following questions: Is it feasible in practice to compute trickle paths and water-
sheds on a tin exactly according to the dsd model, using an algorithm based on
the complete strip map and using exact arithmetic? What are the bit-sizes needed
in the computations? And if the exact algorithm turns out to be impractical, then
which of the inexact methods approximates the exact results best?

Our contribution We provide the first complete and exact implementation that
computes watersheds on tins according to the dsd model. Our implementation is
based on the computational-geometry algorithms library CGAL [21], which pro-
vides an easy way to perform the computations using exact arithmetic. We exper-
imentally investigate the performance of our implementation on several real-world
data sets. In particular we measure the bit-sizes needed for the exact computa-
tions and the resulting memory usage of the algorithm. As it turns out, the large
bit-sizes are not only a problem in theory, but also in practice. Moreover, the com-
putation of the complete strip map is a significant bottleneck of the algorithm: the
strip map has a much higher complexity than the final watershed map computed
from it (and this problem is aggravated by the large bit-size problem). Hence, our
implementation is impractical for large data sets.
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Figure 3.1 Drainage structures on a tin: (top) The strip map. Strip
boundaries are highlighted in blue colour. Note that strips do
not extend through the flat regions of the terrain. (bottom)
The watershed map. Watershed boundaries are highlighted
in white colour.

Nevertheless, our exact algorithm provides us with the opportunity to study the
quality of the output of inexact (but hopefully more efficient) algorithms, since it
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can serve as a point of reference. Therefore we implement three different inexact
algorithms from the literature—the algorithm by Mangan and Whitaker [60], the
one by Takahashi et al. [87], and the one by Vincent and Soile [92]—and we
compare their output to the output of our exact algorithm. All algorithms are quite
efficient, but the algorithm by Mangan and Whitaker [60] turns out to produce the
highest-quality results. We also propose and investigate hybrid methods, which
are based on the above-mentioned heuristics, but perform part of the computation
in an exact manner. These hybrid approaches turn out to be almost as fast as the
heuristics, while giving substantially more accurate results.
As mentioned above, the explicit computation of the complete strip map is a major
bottleneck. In Chapter 2 we showed how to compute various flow-related struc-
tures in an implicit manner, thus greatly speeding up the worst-case theoretical
running times. Based on ideas from that chapter we describe an algorithm to com-
pute the exact watershed map without computing the complete strip map as an
intermediate structure. Recall that in Chapter 2 we described an algorithm that
produces only an approximation of the watershed map of a terrain, assigning to
each watershed w only those triangles that are fully contained in w. We perform
a theoretical analysis of the running time of our algorithm as a function of the
input size n and the output size k (that is, the size of the watershed map). The
analysis shows that if the watershed map has small complexity—which is the case
in practice, as our experiments have shown—then its theoretical running time is
superior to the running time of algorithms that compute the complete strip map.

3.2 Description of Implementation and Experi-
ment Settings

In this section we describe our exact implementation for computing watersheds
according to the dsd model, and the set-up for our experiments. Our software
provides algorithms for computing flow paths, watersheds, strip maps, river net-
works and surface networks on tins.
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3.2.1 Implementation Using CGAL

As mentioned in Section 3.1, Liu and Snoeyink [57] showed that fixed-precision
arithmetic is insufficient for representing the coordinates of the intersection points
between flow paths and terrain edges exactly. Indeed, as we follow a trickle path,
it may cross a sequence of distinct transfluent edges {e1, e2, . . . , ek}—recall that
transfluent edges are edges that are neither valley edges nor ridge edges—and each
crossing can increase the bit-size of the intersection point. More precisely, if the
coordinates of the starting point of the trickle path and the coordinates of each
vertex of T are numerical values of constant bit-size, then a single coordinate of
the intersection point between this path and edge ei can be a rational with bit-size
Θ(i). Hence, using doubles or any other fixed-precision representation is insuffi-
cient to represent these coordinates exactly. The resulting inconsistencies may
cause severe problems. Indeed, running our implementation using fixed-precision
arithmetic (e.g. doubles) often results in program crashes. We thus need exact
arithmetic.
We therefore base our algorithm on the Computational Geometry Algorithms Li-
brary (CGAL). CGAL is an open source software library in C++ that provides
a wide range of geometric algorithms and data structures. This includes both
basic subroutines (computing intersection points of geometric objects, distances,
etcetera) as well as more involved algorithms and data structures (for convex hulls,
Voronoi diagrams, point location, and so on). Two major advantages of CGAL are
the flexibility that comes from the use of generic programming, and computational
robustness through the use of exact arithmetic.
CGAL follows the generic-programming paradigm, making heavy use of templates
that provide the opportunity to define a class using different parameter-types for
its representation. For example, an important notion in CGAL are the geometric
kernels: classes that provide the definitions of essential geometric objects and
functions applied to these objects. A kernel is a template class that takes as a
parameter the number type that represents the encapsulated geometric objects
and functions. Hence, by instantiating the Cartesian kernel of CGAL using the
double C++ built-in type as a template parameter, the encapsulated object-types
of the kernel such as points or segments are represented with cartesian coordinates
of double floating point precision. It is the user then who chooses which number
type to use and makes the trade-off between exact (but sometimes slow) and fast
(but not exact) computations.
In our implementation we use the GNU number type Gmpq [38], which is appropri-
ate for computations between rationals of arbitrary precision. In fact, we use the
more refined CGAL number type CGAL::Lazy_exact_nt<Gmpq> [45]. The latter
number type uses an algebraic filtering technique: it uses fixed-precision arithmetic
whenever it is possible to avoid costly exact computations, but it switches to ex-
act arithmetic when fixed precision is not enough to determine the output of some
predicate correctly. This filtering technique makes it possible to construct topo-
logically correct flow paths (and derived drainage structures) with smaller bit-size
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than the bit-size of their exact representation. At the end of the computation, it
is still possible to extract the exact coordinates. The watersheds in the output are
represented as graph type objects that follow the standards of the Boost Graph
Library [34].
The algorithm we used for computing the watershed map of an input tin T is
inspired by the work of Yu et al. [96]. First we compute the strip map of T by
expanding from each vertex v ∈ T the paths of locally steepest descent and the
paths of locally steepest ascent. In the resulting subdivision, all points in the
interior of the same strip have their trickle paths overlapping on the lower strip
boundary and thus they drain to the same local minimum. Hence, we label the
subfaces of triangles within each strip with the local minimum to which the strip
drains. Then we delete from the strip map the parts of the constructed paths
that are adjacent to strips labelled with the same local minimum 1. The resulting
subdivision is then the watershed map of T .

3.2.2 Experimental Set-Up

The experiments that are presented in this chapter were conducted using an Intel
i5 four-core CPU where each core is a 3.20 GHz processor. However, as there
is no parallelization in the algorithms that we implemented, the computations
were handled each time by only one of the processors. The main memory of this
system is 3.4 Gigabytes. Our code runs on a Linux Ubuntu operating system
version 10.10 using the GNU g++ version compiler 4.4.4. Our implementation is
compatible with version 3.8 of CGAL.
The tins we have used in our experiments were constructed using data obtained
from the U.S. Geological Survey (USGS) online server [90]. Each data set is a
dem in the ADF file format and consists of a regular 3,612 × 3,612 grid at 30m
resolution, where for each grid cell the elevation is given as a 4-byte floating point
value. Each data set represents a certain region in the United States. The names
that we use to refer to each of these data sets, as well as their elevation ranges
and the geographical areas that they model, are summarized in Table 3.1.

Table 3.1 The data sets used in the experiments.

name modelled region elevation range
duchesne Duchesne (UT) [1412 m, 3737 m]
nazareth Nazareth (TX) [1051 m, 1349 m]
parnassus Mount Parnassus (CO) [1551 m, 4351 m]

To construct each input tin, we selected 1,201× 1,201 grid cells from the central
region of the dem. We chose to model this restricted region of the dem to reduce

1If a (part of a) terrain edge appears on the boundary of adjacent strips that drain to the
same minimum we just do not highlight this (part of the) edge as a watershed boundary
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undersampling effects (as compared to modelling the whole region), while still
modelling a reasonably “interesting” region. From this region we then sampled n
points (centers of grid cells) that constitute the vertex set of the tin, using a greedy
method that attempts to minimize the elevation difference between the tin surface
and the remaining points [65]. The value of n depends on the experiment. In case
neighbouring vertices have the same elevation, we apply a small perturbation, so
that the flow is always well defined and the issue of how to deal with flat areas
does not influence our results.

3.3 The Complexity of Flow Structures
In this section we present our experimental investigation of the complexity of
several flow structures on tins. Our goal is to provide an evaluation of both
the combinatorial complexity of tin drainage structures and their total bit-size
complexity when the computations are done exactly.

3.3.1 The Complexity of Flow Paths
In the first set of experiments we measure the combinatorial complexity and the
bit-size of individual flow paths that are expanded from the vertices of a tin.
The results of such experiments can provide insight on how the complexity of
more complicated drainage structures grows as the input size increases. Indeed,
the strip map of a tin, and therefore also its watershed map, are computed by
expanding paths of steepest gradient from every vertex of the tin. If the average
bit-size of individual flow paths rises considerably as the size of the input increases,
then this poses a significant restriction on the size of the tins for which we can
compute the strip map and the watershed map using exact arithmetic. Next we
provide a detailed description of the first set of our experiments.
Consider a vertex v of a tin T . A path of steepest descent or steepest ascent on
T consists of line segments, which either lie in the interior of a tin triangle or are
(a part of) a tin edge. The number of line segments the path consists of is called
its combinatorial complexity. The total number of bytes needed to represent the
coordinates of the vertices of the path—note that these are not necessarily tin
vertices—is called the bit-size of the path. For each vertex v of T we construct
two paths, namely the path of steepest descent and the path of steepest ascent
from v. We measure the following quantities as a function of n, the number of tin
vertices.

cc(n): the average combinatorial complexity of the paths;
bs(n): the average bit-size of the paths.

Note that the paths that we consider can overlap significantly. For example, when
the path of steepest descent from a vertex v passes through a vertex w (usually
after first following a valley edge) then from that point on it will coincide with
the steepest-decent path from w. We therefore also measure the average exclusive
combinatorial complexity and the average exclusive bit-size of the paths, denoted
by cc∗(n) and bs∗(n), respectively. These are defined in the same way as cc(n)
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and bs(n), except that we only consider the part of each path up to the first
encountered tin vertex (after the starting point). Studying the complexity of this
part of the path alone is important for estimating the size of the strip map; trickle
paths and up-paths of vertices may overlap to a large extent and if we would sum
the total complexity of each path individually we would overestimate the size of
the entire structure.
We have computed the described complexity values for flow paths on tins of
different values of n but constructed from the same dem data set. More specifically,
from the nazareth dem data set we have constructed 50 tin instances, with
n = 1000k and k ranging from 1 to 50. The results of these experiments are
presented in Figs. 3.2 and 3.3.
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Figure 3.2 The average combinatorial complexity cc(n) and average ex-
clusive combinatorial complexity cc∗(n) of the paths of steep-
est ascent and descent on the nazareth data set, as a function
of the number of tin vertices.

Discussion As can be seen in Fig. 3.2, the total (exclusive) combinatorial com-
plexity of the paths increases with n (not surprisingly), though not linearly. More-
over, the average exclusive complexity is rather small: most paths quickly merge
with other paths. The maximum combinatorial complexity of a single path (not
shown in the figure) for the terrain with 50,000 vertices was 66. The average bit-
sizes grow faster than the combinatorial complexity of the paths, indicating that
the bit-sizes of the individual vertices on the paths are increasing. For a tin of
50,000 vertices, the average exclusive bit-size is close to 1.3 kilobytes while the
average exclusive combinatorial complexity is roughly 5. Since a path with five
segments has six vertices, each having an x-, a y-, and a z-coordinate, this means
we need about 72 bytes per coordinate. The maximum number of bytes for a single
coordinate (not shown in the figure) was even 708 bytes, showing that very large
bit sizes really arise in practice when doing exact computations. To represent all
the paths together, we need approximately 130 MB, which is more than 100 times
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Figure 3.3 The average bit-size bs(n) and average exclusive bit-size
bs∗(n) of the paths of steepest ascent and descent on the
nazareth data set, as a function of the number of tin vertices.

the 1.2 MB that would be needed for the tin vertices if we used double preci-
sion floating point arithmetic. Since we have 2n paths, and the average exclusive
complexity is 5, a factor 10 of the blow-up is caused by increasing combinatorial
complexity. Another factor 10 is caused by the increase in the bit-size of the coor-
dinates, which is thus a serious problem in practice. We will refer to these results
later on, when we will experimentally evaluate the bit-size and the combinatorial
complexity of larger drainage structures.
Note that the goal of our experiments is not to provide a detailed analysis of the
precise dependency of the complexity of flow structures on n, or to give an extensive
evaluation of the complexity for landscapes of all kinds of different morphologies.
The main goal is to get some insight into the (in)feasibility of computing these
structures exactly. Therefore we have chosen a data set which illustrates the
potential blow-up well. We have repeated the same experiments for other data
sets that follow the standards mentioned in Section 3.2.2. For the majority of
these data sets, the numbers observed in the measured complexities differ only
up to a small constant factor from the values for the nazareth data set (with
the nazareth data set giving slightly higher complexities). Thus, even though
for other data sets the blow-up is smaller, it will still be too costly to use exact
computations when the data sets become large. For completeness we give the
results for the average bit-size for one more data set, namely the parnassus data
set—see Figure 3.4.

3.3.2 The Complexity of Watersheds, Strip Maps and River
Networks

Our next step in the experimental evaluation of the exact dsd flow model is to
measure the complexity of more involved drainage structures. In the following
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Figure 3.4 The average bit-size bs(n) and average exclusive bit-size
bs∗(n) of the paths of steepest ascent and descent on the
parnassus data set, as a function of the number of tin ver-
tices.

set of experiments we measure the combinatorial complexity and the bit-size of
watershed maps and river networks on tins. Recall that to compute the watershed
map we have to construct first a more refined intermediate structure, the strip
map. We already mentioned that the boundaries between incident watersheds in
the watershed map is a subset of the paths constituting the strip map. Thus,
although the strip map is not by itself a structure that is used in hydrological
applications, its complexity provides further insight into the computational effort
that is needed for computing exact watersheds on a tin. For this reason, in this
set of experiments we also measure the combinatorial complexity and the bit-size
of the strip map. With the results of these experiments we intend to provide a
clear picture of the computational demands of the studied flow model along with
the restrictions on the size of input data that can be processed.
For the current set of experiments we have used the same 50 tin instances derived
from the nazareth data set that were used for the experiments in Section 3.3.1.
Recall that these tins consist of from 1000 up to 50,000 vertices and are con-
structed using a greedy method that tries to minimize the elevation difference
between the tin surface and grid points of the complete data set. For each of
these tin instances we computed the combinatorial complexity and the bit-size
of the watershed map, the strip map, and the river network of the tin. (Here
we only count the number of edges, and the bit-size needed to represent their co-
ordinates; the pointers needed for the graph structure (edges, etc) are not taken
into account to avoid dependency on implementation details.) The results of these
experiments are depicted in Figs. 3.5 and 3.6. We also provide the results of the
same experiments applied to tins constructed from the parnassus data set—see
Fig. 3.7.
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Figure 3.5 The combinatorial complexity of the strip map, watershed
map, and river network for the nazareth data set, as a func-
tion of the number of tin vertices.
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Figure 3.6 The bit-size of the strip map, watershed map, and river net-
work for the nazareth data set, as a function of the number
of tin vertices.

Discussion The most striking result from the experiments is the large difference
between the complexity (and the bit-size) of the strip map, which is just an in-
termediate structure, and the complexity (and the bit-size) of the watershed map
and river network. Indeed, while the combinatorial complexity of the strip map
is much higher than that of the tin—given the results of the previous subsection,
this was to be expected—the complexity of the watershed map is comparable to
that of the tin, and the complexity of the river network is even smaller. When
one considers the bit-size instead of the combinatorial complexity, there is a small
increase for the watershed map and river network, as compared to the tin. Still,
the bit-size for the watershed map is no more than twice the bit-size needed for the
representation of the input (and the river network is even smaller). The bit-size
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Figure 3.7 The bit-size of the strip map, watershed map, and river net-
work for the parnassus data set, as a function of the number
of tin vertices.

of the strip map, on the other hand, grows to approximately 400 MB for the tin
with 50,000 vertices. (Note that the size of the strip map is even higher than the
total size of the exclusive paths from the vertices, because the strip map includes
all locally steepest paths, so that more paths may emanate from each vertex.)
We conclude that the construction of the strip map is a major computational
bottleneck when computing watersheds or river networks on a tin using the dsd
model. In fact, explicit computation of the strip map is prohibitive for large tins.
Indeed, one of the reasons that we chose to conduct experiments for the presented
range of input sizes is because we experienced problems with the main memory
usage when processing larger tins: the 3.4 GB of RAM of our workstation proved
to be barely sufficient for computing the strip map for tins of 200,000 vertices, let
alone the extended time needed for these computations. On the other hand, the
watersheds and river networks themselves have reasonable complexity, even when
computed exactly and the bit-size of their exact coordinates is taken into account.
This raises two questions. First, given the fact that computing watersheds exactly
by computing the strip map is infeasible for large data sets, what is the quality of
known heuristics for computing these structures? Second, is it possible to compute
watersheds exactly without explicitly computing the strip map as an intermediate
structure? We study these two questions in the next sections.

3.4 Quality of Inexact Flow Models

The dsd model treats the tin as a continuous surface, where water can flow along
edges as well as across triangle interiors. We saw in the previous section that
performing exact computations based on the dsd model is expensive. Discrete
flow models, where water is propagated only through a fixed network (such as the
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tin edge set), avoid the combinatorial blow-up and bit-size problems and are thus
potentially much more efficient. However, the output induced by such a model may
contain inconsistencies with the dsd assumption. Thus we would like to assess the
quality of the output of these approximate methods.
So far, the only attempts to measure the output quality of a flow model were
based either on visual criteria (which is rather subjective), or on a comparison
with output induced by a higher resolution data set (which probably tells us more
about the quality of the low-resolution data set than about the flow model). The
availability of an exact implementation of the dsd model provides us with a point
of reference to evaluate the quality of the output of the inexact but more efficient
discrete flow models: for small to medium size tins, we can compare the output
of the exact dsd model with the output of the discrete flow models and see then
which discrete model gives the best approximation to the dsd model.
We note here that using the exact dsd model as a point of reference does not
imply that the dsd model always produces results that represent the flow of water
on the real terrain accurately. However, the discrete flow models are all based
on the assumption that water follows the direction of steepest descent; they just
approximate the computation of flow for efficiency reasons. Hence, it makes sense
to compare their output to the exact dsd model.
We have selected three popular methods for computing watersheds on tins using
a discrete flow model. The first method is similar to the algorithm proposed by
Mangan and Whitaker [60], and involves expanding approximate paths of steepest
descent from tin vertices following only the edges of the tin. We refer to this
method as the steepest-neighbour method. The second method considers a space-
sweep mechanism for the computation of watersheds [92]. We call this method
the simulated immersion method, following the original term from the literature.
The third method considers computing the boundaries of watersheds by expand-
ing descending and ascending paths of tin edges from the saddle vertices of the
terrain [87]. We refer to this method as the boundary-expansion method. These
three methods are very efficient in terms of memory usage and computational time.
For all these methods, watersheds consist of only full triangles, unlike watersheds
according to the exact dsd model where watershed boundaries could extend also
through triangle interiors. Hence, the combinatorial complexity of the watershed
maps computed by these methods is the same as the size of the input. Also, the
bit-size of the computed watershed maps is basically the same as the bit-size of the
input tin; this is because we only need a few extra bits for each vertex, edge and
triangle of the tin to indicate the watershed that it belongs to. Next we provide
a more detailed description for each of these heuristics.

• Steepest-Neighbour Method: This method first assigns each tin vertex to a
local minimum by expanding an approximate path of steepest descent from
this vertex, as follows. Consider a vertex v of the input tin T and let E(v)
be the set of edges in T incident to v. The assumption is that water from a
vertex v flows through the edge e ∈ E(v) with the steepest descending slope.
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Hence, starting from v, we expand a path by picking recursively the steepest
descending edge incident to the current path vertex until we encounter a
local minimum vm. Then we assign v, and all the other vertices on this
path, to the watershed of vm. After assigning each vertex of T to a local
minimum according to this procedure, we then determine which triangles
are included in the watershed of each minimum. A triangle t is included in
the watershed of local minimum vm if at least two of its incident vertices
drain to vm. If all vertices of t drain to different minima then we assign t to
the local minimum that receives water from the vertex of t with the smallest
elevation.

• Simulated Immersion: This method assigns the tin vertices to the water-
sheds of the terrain’s local minima using a space-sweep technique. Intuitively,
we start from the lowest vertex of the tin and as we move upwards we con-
struct the terrain watersheds by labeling the vertices that appear on the
contours of the tin. More formally, we first sort the tin vertices in order
of increasing elevation. We then scan the ordered sequence of vertices start-
ing from the lowest vertex. Each time we encounter a local minimum vm,
we assign vm to its own watershed. Each time we encounter a vertex v
that is not a local minimum we look at the neighbouring vertices of v with
smaller elevation than v. If all neighbours are assigned to the watershed of
a local minimum vm then we assign also v to vm. If not all neighbours are
assigned to the same minimum, in our implementation of the method, we
search for the local minimum to which the largest number of neighbours of
v are assigned and then we assign v to the watershed of this minimum.

• Boundary Expansion: In this method, the watershed boundaries are outlined
by expanding ascending and descending paths from the saddle vertices of the
tin. These paths are sequences of tin edges that connect saddle vertices with
local minima and local maxima on the terrain. Thus, the method is some-
what similar to the exact method of Liu and Snoeyink [57], except that paths
are only expanded from saddles and that paths are restricted to tin edges.
For more details on how these paths are expanded in the vicinity of each sad-
dle vertex, the reader may refer to the work of Edelsbrunner et al. [32]. The
tin is subdivided by the computed paths into regions where, hopefully, each
region contains only one local minimum. The triangles that are contained
in such a region then form the watershed of this minimum. However, it is
not always guaranteed that each of the delineated regions contains exactly
one local minimum. In our implementation, in the case that more than one
minimum appear within the same region R, we assign a triangle t to the
watershed of a minimum vm ∈ R if (most of) the vertices of t are closer to
vm than to any other minimum in R. In the case that no minimum exists
within R, the triangles within R are not assigned to any watershed.

To compare the quality of these three heuristics, we compute the watershed map
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of a given tin four times: once using each heuristic, and once using our exact
implementation of the dsd model. Then, for each heuristic, we compute the
percentage of the tin area that is assigned by this heuristic to the same watersheds
as in the dsd model. We conducted this experiment using three different tin
data sets, nazareth, duchesne and parnassus, each consisting of 50,000 vertices.
These tins represent different types of landscapes, so that we can get a first
impression of whether the performance of the heuristics is affected by the terrain
morphology. (To draw firm conclusions about this, a more extensive investigation
would be needed.)
Most available digital terrain data sets contain many spurious minima. These
minima induce very small watersheds in the watershed map, which do not sub-
stantially affect the flow of water on the tin surface. For this reason, it is common
practice in hydrological applications to merge these small watersheds into larger
ones. This process is called hydrological conditioning [28] and there exist many dif-
ferent approaches to do this. In most cases, after computing the watersheds of all
minima on the initial terrain model, watersheds are classified as either significant
or insignificant, depending on some geometric characteristic like the topological
persistence of the watershed [71] or the watershed area measure, and then insignif-
icant watersheds are removed by merging.
We have measured the performance of the flow heuristics both before and after the
conditioning. Although the watershed subdivision after the removal of the spurious
watersheds is what is sought in practice, we also measured the performance of the
examined heuristics considering all the minima. This is because the performance
of a method that computes watersheds at this stage influences the decisions taken
during the conditioning: if some method assigns large regions of the terrain to
watersheds of the wrong minima then a wrong set of minima will be considered
as insignificant and thus will be removed during the unification process. The
criterion that we used for deciding which minima are spurious is the topological
persistence of each watershed. The topological persistence of a watershed is the
elevation difference of its minimum and its lowest saddle point, where water would
spill over into a neighbouring watershed. Watersheds with the smallest topological
persistence got merged with the neighbouring watershed into which water would
leak from the lowest saddle point, until 30 watersheds were left.
For the heuristics, we consider two variants of the conditioning algorithm based
on topological persistence, which differ only in the way in which the lowest saddle
vertex is determined for each watershed:

• In the standard method we simply use for each watershed the lowest saddle
point on its boundary.

• In the hybrid method we proceed as follows. The watersheds which are com-
puted by the heuristics (usually) have different boundaries than the water-
sheds computed with the exact method and therefore they are not adjacent
to the same saddle vertices. Thus, the persistence value of a watershed com-
puted by the heuristic can be different from the persistence value of the
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corresponding watershed in the exact method. The idea is now to use the
persistence value of the exact method when we do the conditioning on the
heuristically computed watersheds. We do not want to compute the exact
watersheds to determine these values, but, fortunately, this is not necessary:
we can just expand paths of locally steepest descent from each saddle, using
the exact flow model, determine which local minimum is reached from the
saddle, and then associate the saddle to the watershed of that local mini-
mum. Thus, a saddle may be associated to a watershed even if it does not
lie on its boundary, as computed by the heuristic.

The results of the experiments are shown in Table 3.2. A toy example of the
output of the exact method and the three heuristics is illustrated in Fig. 3.8.

Table 3.2 Performance of the heuristics (SN = Steepest neighbour,
SI = Simulated Immersion, BE = Boundary Expansion), mea-
sured as the percentage of tin surface area that is assigned
to the same minima as in the dsd model, before and after
conditioning.

SN SI BE
before conditioning

nazareth 74.6 57.1 78.1
duchesne 77.9 52.6 73.0
parnassus 83.6 61.7 82.3

after conditioning: standard / hybrid
nazareth 54.6 / 95.1 48.4 / 90.5 44.0 / 92.5
duchesne 93.7 / 95.9 84.9 / 94.5 86.0 / 90.8
parnassus 93.3 / 96.8 78.9 / 93.8 80.1 / 91.4

Discussion Before conditioning, the immersion method gives the worst results.
The other two methods are comparable, both having overlaps with the exact
method which are roughly 70% – 80%. After conditioning using the standard
method, the steepest-neighbour heuristic gives consistently the best results. For
the duchesne and parnassus data sets the performance of this method is around
93% which is a good approximation of the exact result. However, all heuristics
present a very poor performance for the nazareth data set; the performance is
close to 50% for each heuristic. This is even worse than the performance of the
heuristics before conditioning. This is possibly due to the fact that the nazareth
data set represents a terrain with a small variation in the elevations of the vertices
and many spurious watersheds. Small changes in the boundaries of the outlined
watersheds may lead to the computation of different persistence values for each
minimum, which in turns results in a different sequence of watershed unification
operations.
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Figure 3.8 Watershed for the parnassus data set as computed by the
various algorithms (standard method, before conditioning):
exact (top left), steepest-neighbour (top-right), immersion
(bottom-left), boundary expansion (bottom-right). Water-
shed boundaries are indicated in white. For the heuristics
sometimes a watershed of a local minimum is reduced to sin-
gle vertex or edge and thus it does not appear to occupy any
area.

Conditioning according to the hybrid method leads to a very good performance for
all examined heuristics; all heuristics lead to watershed maps that have roughly an
90% – 96% overlap with the one computed by the exact method. Still, the steepest-
neighbour method yields slightly better results than the other two heuristics.
The question is, of course, which price do we pay for using exact computations
to assign saddles to watersheds in terms of computation times. The next table



3.4 Quality of Inexact Flow Models 53

shows that the price is small: the overall computation times (computing initial
watersheds + conditioning) for the hybrid methods is only about 2% – 11% more
than the computation times when we use the standard method for conditioning.

Table 3.3 Computation times in seconds of the heuristics for computing
watersheds, and of the conditioning algorithms.

SN SI BE
computing initial watersheds

nazareth 15 15 46
duchesne 14 14 45
parnassus 14 14 45

conditioning: standard / hybrid
nazareth 112 / 117 113 / 116 115 / 117
duchesne 117 / 134 121 / 135 128 / 138
parnassus 64 / 72 67 / 74 67 / 76
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3.5 An Output-Sensitive Algorithm for Comput-
ing Watershed Maps

In the previous section we studied various heuristics for computing watersheds.
The resulting watersheds were clearly different from those computed by the exact
algorithm, so the question arises whether one can compute the exact watersheds
in a more efficient manner than by first computing the strip map. Recall that the
strip map is just an intermediate structure and it has much higher complexity than
the final watershed map. In this section we therefore design an output-sensitive
algorithm: an algorithm whose running time depends on the size of the watershed
map itself and not on the size of the strip map.
In Chapter 2 we described an efficient mechanism that extracts important infor-
mation related to drainage structures on tins without computing these structures
explicitly. More specifically, we described a technique that can expand Θ(n) flow
paths on a tin, without computing all the intersection points of the paths with the
tin edges. Using suitable data structures, the algorithm can be made to run in
O(n log n) time. This is possible since we treat paths as piecewise linear curves on
the surface of the terrain; these curves are evaluated only at selected points using
linear functions defined by the triangles of T . We showed that this mechanism can
be used to compute, in O(n log n) time, for each local minimum the set of triangles
that are fully included in its watershed, or the surface network (see Section 1.1 for
a definition) of the terrain. It should be emphasized here that this running-time
analysis is done in the standard way, that is, it considers numerical operations as
taking unit time—it does not consider the bit-sizes needed to do the computations
exactly. We will come back to this issue in more detail later.
We will show that the same basic mechanism can be used to obtain an output-
sensitive algorithm for computing the watershed map on a tin. The key idea is to
examine adjacent strips before computing their boundaries explicitly. We call two
strips in the strip map adjacent if they share a common boundary. If two adjacent
strips belong to different watersheds then their common boundary is a watershed
boundary and therefore it also appears in the watershed map. Thus, we will use
the implicit mechanism to find out first which strips boundaries/flow paths appear
as watershed boundaries in the watershed map and then expand only those paths
explicitly. We next provide a more detailed description of the algorithm.
The boundary of a strip consists of a segment of a valley edge, a segment of a ridge
edge and paths of locally steepest ascent/descent that emanate from tin vertices
on the sides of the strip; the endpoints of the valley edge segment and of the ridge
edge segment are the points where the side paths hit these edges for the first time.
(Recall that a valley edge is an edge such that the dsd in the interior of both of its
incident triangles points towards this edge. Similarly, a ridge edge is an edge such
that the dsd in the interior of both of its incident triangles points away from the
edge.) We call the endpoints of the valley edge segment of a strip the foot points
of the strip and we call the endpoints of the ridge edge segment of the strip the
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head points of the strip.
Two strips are adjacent if and only if they share a common side path, or (part
of) the same valley edge segment, or (part of) the same ridge edge segment. Two
strips share a common side path only if they share a common terrain vertex. Thus,
for a strip s we can find which other strips are adjacent to s if we examine the
boundaries only around the tin vertices incident to s and the foot points and head
points of s.
To find out which strips constitute the strip map, we cannot afford to compute
the strips explicitly. Instead, we seek the tin vertices incident to each strip and
compute the head points and foot points of the strip. Therefore, for each vertex
v ∈ T consider the set of triangles in T incident to v. We call these triangles the
star of v. For all the paths of locally steepest descent and all the paths of locally
steepest ascent that emanate from v, we compute only the part of these paths that
extends through the star of v. Computing these path segments for each vertex on
T takes O(n) operations in total. The path segments that we constructed around
v subdivide the star of v into regions, where each region belongs to a different
strip. To compute the foot points and the head points of each strip we expand
the rest of the paths that we initiated around each vertex, but this time we do
this implicitly, using the mechanism described in Chapter 2. This takes O(n log n)
numerical operations in total. We label each expanded path with the two strips
that share this path on their boundary. This way, after computing the foot points
and head points, we can find out exactly which paths represent the boundary of
the same strip by just traversing the foot and head segments. This takes Θ(n)
operations for all strips in total. By traversing these segments and given the strip
labels of each path, we have also computed for each strip all the strips that are
adjacent to it.
Next we compute for each strip the local minimum whose watershed contains this
strip. To do this we pick an arbitrary point in the interior of each strip; for in-
stance we can pick a point in the interior of each strip’s foot segment. We then
expand the trickle path from each of the selected points simultaneously, using the
implicit expansion mechanism. This takes O(n log n) operations in total. Thus we
compute for each of these paths the local minimum where the path ends. We then
label the strip from which the path came with the local minimum where the path
ends. Then, having labelled all the strips, we look at their common boundaries.
If two adjacent strips share a common path boundary and are labelled with dif-
ferent minima, we expand this path explicitly. If two adjacent strips labelled with
a different minimum share a common head segment we just mark this segment
as part of the boundary of their watersheds 2. This process takes Θ(k) numeric
operations in total, where k is the total combinatorial complexity of all the ex-
plicitly expanded paths. From the above it follows that O(n log n + k) numerical
operations are sufficient for the execution of the entire algorithm. From the anal-

2Two adjacent strips that share a common foot segment are always part of the same watershed.
Yet, we compute the two foot points of each strip anyway to keep track of the topology of the
strip.
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ysis also of the implicit expansion mechanism (see Section 2.3), we conclude that
during this process we have to compute at most O(n+ k) path points.
As we mentioned already, we measure the computational complexity of the algo-
rithm as the total number of numerical operations that are carried out by the
algorithm. This does not include the bit-sizes of the numbers that are handled in
these operations. The presented mechanism may not avoid to compute points of
large bit-size. However, the main goal of this mechanism is to reduce the combi-
natorial size of the computed data; as we expand a set of flow paths, the goal is to
compute fewer path points than if we naively constructed the complete represen-
tation of these paths. As we observed from the experiments in Section 3.3.2, the
combinatorial complexity of the strip map of a tin seems to grow like a superlinear
function of the input size on adversarial data sets. Thus, the average number of
paths that intersect a terrain edge is not a constant but grows as the input size
increases. We expect that, in practice, the presented algorithm will compute, on
average, only a constant number of intersection points per edge. This can be only
verified by implementing this mechanism and conducting experiments similar to
the ones of Section 3.3.2.

3.6 Concluding Remarks

We presented the first implementation of an algorithm that computes watersheds
on a tin following the exact dsd model, that is, where water always follows the
direction of steepest descent on the tin surface. Since the algorithm needs exact
arithmetic, it is a rather costly process because it first computes the strip map
and because the exact computations need very large bit-sizes for the coordinates.
Hence, the algorithm cannot be used on large data sets. However, the implemen-
tation allowed us to investigate to what extent the output of existing heuristics is
consistent with the exact flow model. Of the heuristics we investigated, the one
proposed by Mangan and Whitaker [60] performs best. In practice, one often ap-
plies conditioning to get rid of small watersheds. We showed that doing this using
a hybrid method, which assigns saddles to watersheds using exact computations,
produces very good results while being almost as fast as the standard method.
Hence, we feel this is a good approach to use in practice. Finally, we presented an
exact algorithm for computing watersheds that avoids computing the strip map
as an intermediate structure. We leave the implementation of this new algorithm,
and the investigation of its running time and memory usage in practice, for future
research.



Chapter 4

Identifying Watersheds on
Noisy Terrains

4.1 Introduction

In the previous chapters of this thesis we considered several problems that arise
when computing drainage structures on triangulated terrain models, problems that
arise in theory but also in practice. So far we examined the high complexity of
drainage structures themselves, whether this is the worst case combinatorial com-
plexity of these structures in theory or the infeasibly large bit-sizes of their explicit
representations in practice. In the present chapter though we will investigate al-
gorithmic problems that appear in the computation of flow structures when noise
exists in the input data. We continue with a few definitions, already provided in
other chapters of this work, which are important for the problems described in
this chapter also.
As already presented in this thesis, the most natural model for water flow on tins
is that water follows the direction of steepest descent (dsd) on a surface. As water
flows across the surface of a terrain T , following the dsd, it accumulates in the
local minima of T . For a local minimum p on T , the watershed of p is the set
of all points on T from which water flows down to p as it follows the dsd. If
we delineate the boundaries of the watersheds for all local minima of T then the
induced subdivision is the watershed map of T . The works of de Berg et al. [6],
Yu et al. [96] and McAllister [2] provide an analysis of the worst-case complexity
of the drainage structures that may appear on tins according to the dsd model.
They show that, due to the assumption that water follows the direction of steepest
descent, flow paths and watershed boundaries on the surface of the tin can run
across the interiors of triangles. In Chapter 3 we described that in practice this
may cause robustness problems; Liu and Snoeyink [57] show that as a flow path
follows the dsd on the surface of a tin, fixed bit-size numeric values are not
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adequate to represent the coordinates of an intersection point of the path with
a terrain edge. Indeed, most existing software packages for flow computation on
tins do not follow the exact dsd model, but discretize the flow, for example by
only allowing water to move between a fixed set of points like the vertices of the
tin or the barycenters of the triangles [28].
However, other than the use of appropriate arithmetic, there are other factors that
affect the output of a flow model. One such factor is the existence of noise in the
input data. To explain better the concept of noise for tins, consider the vertices
of such a terrain. These vertices are supposed to represent points on the actual
surface which is approximated by the tin. However, this is rarely the case; the
coordinates of the tin vertices do not match with points on the actual surface.
This noise, that is this inaccuracy in the coordinates of the vertex set, is a result of
several processing stages. These may include inaccurate field measurements, the
possible use of an interpolation technique to construct extra points, conversions
between different terrain models and others. To model noise, we consider that the
tin is imprecise, that is the coordinates of its vertices do not have fixed values.
Yet, for simplicity reasons, imprecision is usually considered only for the elevation
of those vertices; the xy coordinates of each vertex are fixed but the elevation of
the vertex is represented by an interval of possible values. If for a tin T we pick for
each vertex a specific value within its elevation interval then we get a realisation
or a perturbation instance of T .
Distinct realisations of an imprecise terrain may differ considerably in their drainage
properties. For instance, consider the structure of the watershed map of an impre-
cise tin. Looking at different realisations of the tin, the boundaries between wa-
tersheds may change substantially, and watersheds may even disappear or appear
as the set of local minima may not be the same among the distinct realisations—see
Fig. 4.1 for an example. Yet, the drainage characteristics on some regions of the
watershed map may remain more or less the same among the different perturbation
instances. Hence, it is very interesting to examine which regions of the watershed
map are more “stable”, that is which regions maintain their drainage chracteristics
without being affected by noise. Given a discrete set of distinct realisations of an
imprecise tin, can we define a method for identifying which watersheds correspond
to each other among the different realisations? An answer to this question may
also be useful for applications of data conflation, that is, for identifying the same
watershed(s) between tins that represent the same geographical area but were
generated from different data sources.
Another problem which is inherent in delineating watersheds on terrains is the
existence of spurious minima. In most of the available digital terrain data sets
there exists a large number of local minima that correspond to watersheds of very
small area [46]. These minima are either artefacts induced by the noise in the data,
or they represent real-world entities that do not significantly affect the drainage
attributes of the terrain, especially when looking on a larger scale. Hence, it is
important for hydrological applications to provide a mechanism that merges small
watersheds into larger entities. This leads to a more realistic representation of the
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Figure 4.1 The watershed maps of two different realisations of an impre-
cise tin.

drainage properties of the real-world terrain. This process is known as hydrological
conditioning and has attracted a lot of attention within the fields of hydrology and
GIS. Filtration of insignificant watersheds is also an important issue in remote
sensing [67] and image analysis [55], where gray-scale images are treated as dems
with brightness being interpreted as elevation. One popular conditioning method
involves lowering the terrain elevation on ridges that separate local minima so
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that drainage outlets are created between the corresponding watersheds [17]. But
for most cases in practice, watersheds are merged using a flooding process, where
basins are flooded symbolically until they overflow into a neighbouring basin, with
which they are then merged into one entity. In fact, there exist many variants
of these two watershed filtration mechanisms. Collischonn et al. [23] compare
the performance of different filtration methods on dems by considering the river
network on the conditioned terrain. Revsbæk [71], and Liu and Snoeyink also
consider different geometric criteria to define insignificant watersheds. Considering
noise in the elevation data, a question that arises is: which watershed merging
variant provides the most consistent results among different realisations of the
same terrain?

Our results In the current chapter we introduce and evaluate two different
techniques for matching watersheds across different realisations of a triangulated
terrain. We study the performance of these techniques when combined with two
different strategies for merging insignificant watersheds. For the evaluation of
our methods, we used a robust C++ software package that computes drainage
structures on TINs; we already provided a brief description of this package in
Section 3.2.1. Our implementation follows the formal flow model described by
de Berg et al. [6] and Yu et al. [96], that is based on the exact dsd model. Recall
that our implementation is also the first of this kind to support the use of exact
arithmetic.
We have used our implementation on tins that represent real-world geographical
areas to perform experiments involving perturbations of the elevation values of
their vertex sets. As a first step, for each terrain instance we test two different
methods for merging spurious watersheds into larger ones. We use the output of
these methods as an input to two matching algorithms that attempt to identify
the same watershed entities across different perturbation instances of the same
terrain.

4.2 Description of the Main Algorithms

4.2.1 Algorithms for Merging Watersheds

Before we attempt to identify watersheds among different realisations of imprecise
terrains, we first have to resolve another important issue. For most of the digital
terrain data sets that are available today, a considerable part of the terrain surface
is covered by watersheds that have relatively small area. In practice, such water-
sheds are not considered to have a substantial impact on the drainage properties
of the landscape; in case of heavy rainfall shallow pits will become flooded and
the water that they accumulate will subsequently flow towards larger basins. To
some extent, this interpretation is meaningful, depending also on the scale that we
use to examine a given surface. Such small watersheds appear in large numbers
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in most terrain data sets and thus it becomes a very difficult task to draw any
conclusions on the topology of the studied terrain.

: Area < 1 km2

: 1 km2 ≤ Area < 5 km2

: 5 km2 ≤ Area < 10 km2

: 10 km2 ≤ Area

Figure 4.2 Top view of a tin of 50,000 vertices where each watershed
region is coloured according to the size of the area that it
covers. Note that large connected regions of the same colour
do not always constitute a unique watershed; they mostly
consist of many incident watersheds that fall in the same area
range.

This situation is clearly depicted in Fig.4.2. In this image, we see a top view for a
tin of roughly 100,000 triangles where each watershed region is shaded according
to the area measure of this watershed. We have considered four different area-size
ranges and each watershed whose area measure falls within one of these ranges is
coloured with the respective shade of grey. The total number of watersheds in this
terrain is 885 and approximately only 9% of the total terrain area is covered by
watersheds which have a significant size.
Consider that this example is just one among different realisations of an imprecise
tin. If we pick slightly different values for the elevations of the tin vertices,
the geometry for most of the small watersheds will change substantially. Trying
to find any similarities between the multitude of small watersheds among the
different realisations will not produce any positive results; we would conclude
that the drainage structures of the tin differ considerably with each realisation.
However, any differences in the hydrological attributes of the different realisations
may appear only on a smaller scale, while on a larger scale, the flow of water is
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not really affected by the displacement of a few shallow pits. Thus, it becomes
clear that we first have to employ a method that merges insignificant watersheds
into larger ones, so that we get a more meaningful subdivision of the terrain into
drainage basins.
Next we describe a general mechanism for unifying watersheds on the surface of
a terrain T . Let W initially be the set of all watersheds on the surface of T . Let
m be a local minimum on the surface of T and let w(m) be the watershed of m.
Suppose that w(m) is an insignificantly small watershed that cannot absorb all
the water that falls on its surface. We could then assume that water accumulates
in w(m) until it starts leaking out of w(m) from the lowest point on its boundary.
Let s be this point, which is actually a saddle point. Consider tracing a path from
s that follows the dsd on the part of T around s that is not included in w(m). Let
m′ be the local minimum where this path ends and let w(m′) be the watershed of
this minimum. We can then merge the watersheds of the minima m and m′ into
one watershed that we denote as w(m′,m); thus the watershed set of T becomes
W ′ = (W\{w(m), w(m′)}) ∪ w(m′,m). This process of merging insignificantly
small watersheds with other watersheds is repeated until no insignificantly small
watersheds remain.
We have implemented the general watershed merging algorithm by inserting the
terrain watersheds in a priority queue where the head of the queue always hosts the
least significant watershed of the terrain according to some significance measure.
As long as the head of the queue contains an insignificant watershed, this element
is extracted from the queue and merged with a neighbouring watershed w′ which
is selected in the manner that we described. When a watershed w is absorbed by
a watershed w′, we increase the significance value of the element that represents
w′ in the queue accordingly. Our implementation is generic as it allows the user
to provide a function that measures the significance of a watershed.
For the needs of our experiments we have employed two different measures for
determining the significance of a watershed:

i. Topological Persistence: Let m be a local minimum on the surface of T
and let s be the saddle point that has the lowest elevation on the boundary
of the watershed that corresponds to m. The topological persistence of the
watershed of m is the elevation difference between the points m and s. Topo-
logical persistence is the most popular concept for measuring the significance
of watersheds in GIS software [28] or of other topological notions [32].

ii. Watershed Area: This is simply the measure of the area of a watershed. We
consider this to be an intuitive significance measure but we are not aware of
any related software that makes use of this measure.

The unification process can be terminated when the least significance value of a
watershed in the watershed map is larger than some predefined threshold. In our
experiments we ended the unification process when the number of the watersheds
was reduced to some predefined value. How to decide when to terminate this
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process is an interesting question by itself and the answer may also depend on the
scale on which we examine the drainage attributes of a surface. In Section 4.3
we present a simple method that can be used as a criterion for a more axiomatic
selection of this threshold value.

4.2.2 Algorithms for Matching Watersheds

We now focus on two techniques for identifying watersheds across different real-
isations of the same terrain. More formally, consider a terrain T such that the
elevation of every vertex of T is modelled as an interval of possible values. Let
T = {T1, T2, . . . , Tk} be a set of different realisations of T ; each realisation is cre-
ated by selecting, for each vertex v ∈ T , a specific elevation value from the given
elevation interval of v. For each 1 6 i 6 k, let Wi be the set of watersheds that
appear in the watershed map of Ti. Our goal is to define a set of watershed en-
tities W so that any element w ∈ W is represented exclusively by one element
wi ∈ Wi,∀ 1 6 i 6 k. In other words, if possible, we want to match each wa-
tershed of each set Wi with exactly one element from every other set Wj with
j 6= i. We match watersheds in groups of exactly k elements, each element com-
ing from a different realisation. We want the matched watersheds to be similar
enough so as to represent the same entity, according to some notion of similarity.
In the present work, we want the watersheds that are matched together to cover
roughly the same xy region of the terrain; this is a strong indication that indeed,
they represent the same drainage entity of the real-world terrain in the different
instances of the digital model.
As we explained, there is no practical interest in attempting such a matching
among terrain instances that contain a multitude of spurious watersheds. There-
fore, we first apply one of the presented watershed unification techniques to the
given terrain realisations, and then we use the resulting watershed maps as the
input for our matching methods. Next we provide the description of each of the
proposed matching methods.

Matching According to Local Minima

For this method we identify each watershed by its local minimum; watersheds that
appear in distinct realisations of the same tin are considered to represent the same
entity if their local minima have exactly the same xy-coordinates.
Consider a tin realisation T1 ∈ T and let v1 ∈ T1 be a vertex that is a local
minimum. Assume that for every Ti ∈ T the vertex vi that has the same xy-
coordinates as v1 is also a local minimum of Ti. Let wixy be the xy-projection of
the watershed of vi for every 1 6 i 6 k. We call the core watershed1 of v1 the
region which is defined as ∩16i6kw

i
xy. This region refers to the part of the terrain

that drains to this specific minimum in all the given realisations; we consider this

1Our definition of core watersheds is partly inspired by, yet not identical to, the concept of
the same name that is introduced by Driemel et al. [29].
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to be a region that remains hydrologically stable, its drainage attributes are not
affected by the imprecision in the input data. However, if vi is not a local minimum
in each realisation Ti ∈ T, then this region is empty.

Matching According to Area Overlap

Consider two watersheds that belong to different perturbation instances of the
same tin. If these two watersheds cover very different regions of the xy projection
of the terrain, then this is an indication that they do not represent the same
structure. On the other hand, if the xy regions of these watersheds overlap to a
large extent, then they probably correspond to the same entity. This is the key
idea on which the following method is based.
Let wi be a watershed in Wi, the set of watersheds in the watershed map of the
realisation Ti of T . Our intention is to match w with exactly one watershed from
each other instance Wj , j 6= i such that the matched watersheds have the largest
possible intersection on the xy-plane.
Hence, we consider the following hypergraph representation of the watersheds in
the different realisations. A hypergraph consists of a set of nodes N and a set
of hyperedges H, where each hyperedge h corresponds to a set of nodes N(h),
and a hyperedge h is said to be incident on a node n if n ∈ N(h). Each node
in our hypergraph corresponds to a watershed in ∪16i6kWi. Each hyperedge is
incident to |T| = k nodes, each of which corresponds to a watershed from a dif-
ferent realisation of the tin. Every hyperedge is assigned a positive weight, equal
to the area of the intersection of (the xy-projections of) the watersheds corre-
sponding to the incident nodes. Our goal is to compute a maximum-weight subset
M ⊆ H of the hyperedges such that each node has at most one incident hyperedge
in M . This problem is an instance of the problem of computing a maximum-weight
k-dimensional matching in the described hypergraph [69]. Unfortunately, this hy-
pergraph problem is known to be NP-hard and thus it is not always possible to
compute an optimal solution for a large number of watersheds within reasonable
time [4].
Fortunately there exists a k + 1-approximation algorithm based on local search,
introduced by Arkin and Hassin [4]. As it is the case for local search methods, the
algorithm first computes an arbitrary valid solution. A valid solution in our setting
is a matching of watersheds, a set of hyperedges such that no graph node (i.e.
watershed) is incident on more than one hyperedge in this set. Then, this solution
is improved by repeatedly changing at most a constant number of hyperedges,
until no such change can improve the total weight of the current solution further.
In our implementation, we create the initial solution with the following greedy
algorithm. We first sort the hyperedges by decreasing weight. Then, starting from
the hyperedge of maximum weight, we scan the sorted list of hyperedges to select
hyperedges for the initial solution; a hyperedge is included in the initial solution
if and only if it does not share a graph node with one of the hyperedges that have
already been included in the initial solution. We found that in practice, over many
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executions of the approximation algorithm in our setting, the output of the local
search method always turned out to be identical to the initial solution from our
greedy algorithm. Therefore, in the experiments described in the next section,
we only used the greedy algorithm rather than the complete local search method,
which is quite slow.

4.3 Experimental Evaluation

4.3.1 A Robust Software Package for Computing Water-
sheds

To conduct our experiments we used a software package that computes drainage
structures on triangulated terrains. In particular, we have implemented algorithms
for computing paths of steepest descent/ascent, river networks (see Section 1.1.3
for a definition of this concept), watershed maps and surface networks [9, 24] on
tins, following the flow model of de Berg et al.. Our software was implemented in
C++ using CGAL [21], which provided basic geometric objects, predicates and
number types as building blocks for our needs.
As described also in Chapter 3, the implemented algorithm for computing the
watershed map of a tin T is based on the work of Yu et al.; for each vertex v
of T we look at the slope function of T around v and we compute the directions
of local extrema of this function. Then we expand a path of steepest ascent for
each local slope maximum around v and a path of steepest descent for each local
slope minimum around v. After expanding these paths for every vertex v ∈ T , the
terrain triangles are subdivided into facets where all the points in the interior of
each facet drain to the same local minimum. Starting from the local minima of the
terrain, we then tag each facet with the local minimum to which it drains. Facets
that bear the same local minimum tag are part of the same watershed. After this
process we delete from the skeleton of the induced subdivision all path segments
that are incident to facets that both belong to the same watershed.
The user can provide his own number type implementation that will be used for
the numeric computations, but we found that in practice, the algorithms of this
package will not execute properly unless an arbitrary-precision number type such
as gmpq [38, 45] is used. As explained, this is due to the fact that fixed-precision
arithmetic is not enough to represent the coordinates of the intersection points
between a path of steepest descent/ascent and terrain edge interiors [57]. The
large bit-size of the path points that are computed during the execution of the
algorithm poses a considerable restriction on the size of the tins that can be
processed by this algorithm. For more details on the high bit-size complexity of
the computed structures see Chapter 3.
We ran our implementation on a Linux Ubuntu operating system version 10.10
using the GNU g++ version compiler 4.4.4 and CGAL version 3.8.
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4.3.2 Experimental Setup

The tins that we have used for our experiments are constructed from dem data
sets that are publicly available through the online U.S. Geological Survey (USGS)
server (National Elevation Dataset) [90]. The data files hosted in this server appear
in the ADF digital format, the Arc/Info binary grid format. Each of the ADF files
that we acquired stores a grid terrain of 3,612 × 3,612 cells where the width of
each cell is 30 meters and the elevation values of the cells are 4 byte floating point
numbers. The maximum absolute error in the measurement of the elevation value
corresponding to the centre of each grid cell is estimated at 2.5 meters for these
data sets.
We have created three tins from ADF files, each derived from a different dem data
set. Each of these tins consists of 50,000 vertices and roughly 100,000 triangles. To
construct each tin, we first selected a square region of 1,201 × 1,201 cells situated
in the center of the dem. The vertex set of each tin was created by sampling a set
of points on the surface of the selected region uniformly at random. A Delaunay
triangulation was then constructed on the xy-projection of the extracted point set.
The final tin can be seen as the result of lifting the vertices of this triangulation
up to their original elevation values.
For consistency reasons, we used exactly the same data sets as in Chapter 3. We
provide again the names and other characteristics of these data sets in Table 4.1.

Table 4.1 The data sets used in the experiments.

name modelled region elevation range
duchesne Duchesne (UT) [1412 m, 3737 m]
nazareth Nazareth (TX) [1051 m, 1349 m]
parnassus Mount Parnassus (CO) [1551 m, 4351 m]

The tins that we constructed are characterized by different landscape morpholo-
gies. The parnassus data set represents a rough terrain surface with many peaks
and ridges, while the nazareth data set is characterized by plateaus and relatively
flat regions. The duchesne data set is characterized by smooth ridges.
For each of the tins, we generated four different realisations with the vertex eleva-
tion values selected in the following manner. To the elevation of each tin vertex,
we added a value that was picked uniformly at random from the interval [−η, η],
where η = 2.5 m, the maximum absolute elevation error of the dems from which
the tins were constructed.

4.3.3 Evaluation of the Algorithms

On top of our software that computes watersheds, we have implemented the wa-
tershed unification methods and watershed matching methods that we described
in section 4.2. For our experiments we have tried all possible combinations of the
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two unification methods with the two matching methods. For each of the four
resulting techniques we have computed a watershed matching among the different
realisations of each of the tin data sets that we described.
In the unification stage of the experiments, we merge watersheds until there are
only nine watersheds left. For both of the matching methods, we evaluate the
quality of the returned matching by computing the measure of the overlap of the
xy regions of the matched watersheds. We then express this quality as a percentage
of the total xy area of the terrain. Thus, this percentage expresses how much of
the terrain is consistently attributed to the same watershed regardless of the noise
that was applied. The results of the experiments are summarized in Table 4.2.

Table 4.2 The results of the watershed matching methods when applied
together with a watershed unification technique. The value
that appears in each table slot is the percentage of the to-
tal xy area of the terrain that is covered by the overlap of
the xy regions of the matched watersheds in the returned
solution. Notation: PM :persistence-based unification with
method that matches watersheds according to local minima.
PO : persistence-based unification with method that matches
watersheds according to their xy area overlap. AM : area-
based unification with method that matches watersheds ac-
cording to local minima. AO : area-based unification with
method that matches watersheds according to their xy area
overlap.

Name PM PO AM AO
nazareth 0.1% 86.0% 0.1% 47.6 %
duchesne 1.0% 93.4% 0.1% 53.4%
parnassus 29.8% 93.0% 7.3% 51.3%

Experiments With a Restricted Flow Model

We have also examined the performance of our watershed matching methods using
a popular discrete flow model, that is the model where water flows only along the
edges of a tin [60]. As described also in Chapter 3, in our implementation of
this model, we consider for every vertex v on the input terrain the set of edges
E(v) incident to v; water flows from v only along the edge e ∈ E(v) that has
the steepest descending slope among all edges incident on v. We now trace, for
each vertex v, the path that water follows from v, edge by edge, until we reach
a local minimum—this will be considered to be the local minimum to which v
drains. Triangles are assigned to watersheds as follows: a triangle t is included in
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the watershed of some local minimum p if at least two of its incident vertices drain
to p. If all vertices of t drain to different minima, then we assign t to the local
minimum that receives water from the vertex of t that has the smallest elevation.
We have applied all four of our combined watershed matching methods using this
restricted flow model on the realisations of the four tin data sets regarded. The
results of these experiments are presented in Table 4.3.

Table 4.3 The results of the watershed matching methods using the dis-
crete flow model where flow is restricted to terrain edges. The
value that appears in each table slot is the percentage of the
total xy area of the terrain that is covered by the overlap of
the matched watersheds in the returned solution.

Name PM PO AM AO
nazareth 0.1% 48.0% 53.4% 21.9 %
duchesne 1.0% 94.7% 14.5% 54.8%
parnassus 41.6% 97.2% 20.1% 69.1%

4.3.4 Discussion

From the results it becomes evident that the method that combines persistence-
based unification with matching according to the overlap of watershed area has
the best performance. The methods that match watersheds according to the xy
coordinates of their minima consistently give bad results. This is mostly due to
two reasons. First, not all vertices that constitute local minima in some realisation
also appear as local minima in all other realisations. Consider a vertex v of locally
minimum elevation that has a small height difference from its neighbours in the
triangulation. Then even a slight perturbation among all terrain vertices may
cause another nearby vertex to become a local minimum instead of v, while no
large changes may be induced in the structure of the surrounding drainage area.
The second factor that impedes the performance of the minima-based method is
the watershed unification process. After merging a group of watersheds into a
single watershed region, there are multiple local minima within this region. In our
implementation, the local minimum that represents a group of unified watersheds
is always the local minimum that has the smallest elevation within the entire region
of these joined watersheds. Let Tj be a realisation of an imprecise terrain and let
vj be a local minimum on Tj . After applying a watershed unification process,
vj is still a local minimum of the joint watershed region in which it appears.
However, even if the vertex with the same xy coordinates is also a local minimum
in the other realisations of this imprecise tin, this vertex may not always have
the smallest elevation of the watersheds that it gets merged with in each other
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realisation.
The matching methods that use area-based unification are outperformed by those
that use persistence-based unification. In the intermediate stages of the unification
process, we have observed watersheds in some of our data sets that have relatively
small area (around 1% of the total terrain area) but also a very high persistence
value. In fact, these watersheds appear almost unchanged across the different real-
isations, and when persistence-based unification is used, they appear as individual
entities in the output. The area-based unification method is oblivious of such
properties, and thus watersheds of this kind are absorbed during the unification
process.
We see that for the best of all four methods, the discrete flow model provides a
slight overestimation on the size of the stable watershed areas that are computed.
The only exception appears with the nazareth data set, where the exact flow
model yields a large percentage for this method, unlike the discrete flow model
that produces poor results. Recall from Section 3.4 that nazareth was the only
data set where the discrete flow model had a poor performance after conditioning,
when computing watershed persistence values in the standard way.

4.3.5 Other Experiment Settings

In the experiments that we presented so far in this chapter, the vertices of the
imprecise input tin were picked uniformly at random from the dem surface. The
distinct realisations of each tin were created by adding a noise value to the ele-
vation of each tin vertex, where the noise value was chosen uniformly at random
from the interval [−2.5m, 2.5m] (recall that 2.5 meters is the maximum absolute
elevation error on the dem).
To check if these settings have a considerable effect on the performance of the tested
methods, we have used different settings both for building the imprecise tin and
for creating the different tin realisations. For the resulting tin realisations, we
have conducted the same watershed matching experiments as the ones that we
presented above, and we evaluated the performance of the methods under these
different settings as well.
As an alternative to random sampling, we have applied a greedy method to extract
the vertex set of the imprecise tin from a dem. The greedy method chooses the
vertices to include in the tin one by one, retriangulating the chosen vertex set
after each addition, and choosing each vertex such that we minimize the maximum
elevation difference between the center of any dem cell and the corresponding point
on the resulting tin surface [65].
As an alternative to adding uniformly distributed noise to the elevations while
constructing distinct realisations of a tin, we added noise values selected according
to a normal distribution with mean µ = 0 and standard deviation equal to one third
of the maximum absolute elevation error. Thus, there is only 0.1% probability that
a vertex receives a noise value that exceeds the maximum absolute error.
The results obtained using these alternative settings are similar to those obtained
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with the original settings (randomly selected vertices, uniform noise). When the
imprecise tin is built from the dem by greedily minimizing the elevation error,
rather than randomly sampling the dem, the performance of the matching method
that combines area-based unification with matching according to area overlap im-
proves slightly. Nevertheless, also in this setting, the method that uses persistence-
based unification with matching according to area overlap produces the best re-
sults.

4.3.6 Selecting a Unification Threshold

In the experiments presented in the current chapter we terminate the unification
process as soon as the number of the watersheds on the terrain has been reduced
to a predefined value (nine). Selecting a threshold value in this way could be
considered to be a rather arbitrary decision of how many drainage basins we want
to see in the terrain under study. This is similar to issues that arise in other
contexts where some kind of clustering needs to be obtained: it is not always clear
in advance what should be the number of clusters in the output.
To alleviate this problem, we could consider employing the matching techniques
that we describe in this work to provide a criterion for selecting a threshold for
the unification process. Given a set of realisations of a tin, we can simply apply a
watershed unification algorithm followed by a matching algorithm repeatedly; the
first time we use a unification threshold of two watersheds, and for each subsequent
iteration we increase the threshold by one. The maximum threshold that results
in a matching of a given minimum quality can then be taken as the threshold value
that we sought. The threshold value thus obtained may also serve as an indication
of the scale on which we can examine the drainage properties of a terrain effectively
using the given tin; that is the minimum scale at which the drainage properties
of the terrain are not considerably affected by noise.

4.4 Conclusions

In this chapter we evaluated the performance of different techniques for matching
watersheds among distinct instances of a tin induced by perturbations on the
elevations of its vertices. We conclude that the best quality results are provided
by a matching method that identifies similar watersheds based on the overlap
of their xy regions. This method performs better when applied on terrains where
spurious watersheds were already merged into larger watersheds according to their
topological persistence values. In contrast, we showed that matching watersheds
with respect to their local minima leads to bad results. These conclusions apply
both for the case that water is modelled to follow strictly the direction of steepest
descent on the tin surface, and for the case that water flows only along the edges
of the tin.
It would be interesting to check the performance of the presented methods on
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terrains where the uncertainty in the elevation of the vertices depends on the local
landscape morphology. Another interesting problem is to develop and evaluate
a method for extracting the surface network [9] from different realisations of an
imprecise terrain.
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Chapter 5

The Complexity of Visibility
Maps on TINs Under Noise

5.1 Introduction

The applications that involve triangulated terrains, as well as other digital terrain
models, are not restricted only to flow modelling. Many important problems on
terrain analysis have to do with visibility. A very common problem is the following:
given a point pview on or above the surface of a tin T , we want to compute the
parts of T that is visible from pview. A point p on the surface of T is considered
to be visible from pview if the interior of the line segment defined by p and pview

appears strictly above T . The set of all points on T that are visible from pview

constitute its viewshed. To get an adequate representation of the visible parts of
the landscape, as it is seen from a viewer standing on pview, we create a 2D image
by projecting these parts on a plane, the viewing plane. The projection of the
viewshed on the viewing plane is the visibility map of T induced by pview.
Of course, the viewshed of a point on a tin, and therefore the induced visibility
map, may not only contain full triangles. In fact, these visibility structures can be
very complex; in the worst case of a terrain of n triangles, Θ(n) thin obstacles in
the foreground may appear to fragment Θ(n) long terrain edges in the background
into visible and invisible pieces, resulting in a visibility map of Θ(n2) complexity.
Here, the complexity of the map is simply expressed as the number of vertices,
edges and/or faces of the visible fragments of the terrain triangles as projected on
the viewing plane.
The scenario that the visibility map of a tin of n triangles has Θ(n2) complexity is
very pessimistic. The complexity of visibility maps of real-world landscapes seems
to be closer to linear with respect to the size of the input. Thus it is very interesting
to provide a formal argument why visibility maps of quadratic complexity do not
appear in practice.
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Figure 5.1 Two views of the same terrain defined by a regular grid. The
second view gives a visibility map of complexity Θ(n

√
n).

Note that the terrain can be flattened further without chang-
ing the view combinatorially.

One possible approach to explain the low observed complexities is using a so-
called realistic input model [11]. Here one assumes that the input has certain
properties that are hopefully satisfied by inputs encountered in practice, and that
rule out contrived worst-case inputs. This approach works well for many problems,
and Moet et al. [65] have applied it to visibility maps of terrains. In particular,
Moet et al. make the following three assumptions on the terrain: the triangles of
the planar triangulation defining the terrain are fat (as defined below), the edges of
these triangles differ in length by not more than a constant factor, and the domain
of the triangulation is a rectangle of constant aspect ratio. Unfortunately, the
assumptions do not explain why visibility maps of terrains would have near-linear
complexity in practice: Moet et al. showed that the worst-case complexity of the
visibility map of a terrain that satisfies their assumptions is Θ(n

√
n). In fact, one

can even assign elevations to the vertices of a triangulated grid in such a way that
the triangles do not become steep while the visibility map has complexity Θ(n

√
n)

for certain viewing directions—see Fig. 5.1. Thus, to explain the linear behaviour,
an alternative approach is needed.

Smoothed analysis. The idea behind the alternative approach is to study how
sensitive worst-case inputs are to small perturbations. If a small random pertur-
bation of the input is likely to turn any input (whether worst-case or good-case)
into a good-case input, then one may argue that worst-case inputs are unlikely to
be found in practice—especially if the input is subject to small measurement or
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rounding errors. Smoothed analysis formalizes this idea.
Let I(n) be the set of all possible input instances (in our case: terrains) of size n.
For an input I ∈ I(n), let C(I) denote the quantity we want to analyse (the
complexity of the visibility map). Furthermore, for any input I ∈ I(n) we define
a neighbourhood N(I) ⊂ I(n) of input instances, and we define a probability
distribution over N(I) that indicates for every I ′ ∈ N(I) the probability that
perturbing the input I will result in the input I ′. Now the smoothed complexity
of an instance I is defined as

Csmooth(I) = EI′∈N(I)[C(I ′)],

where the expectation is according to the given probability distribution on N(I).
The worst-case smoothed complexity —this is what we are interested in— is then
defined as

Csmooth(n) = sup
I∈I(n)

Csmooth(I).

When N(I) is defined to be the full set of possible inputs and exactly the same
probability distribution is used for each I, then the above complexity measure
is just the average-case complexity under the given distribution. However, it is
often unclear what a reasonable probability distribution is. Moreover, average-
case complexity does not indicate whether cases that are significantly worse than
average may be expected to occur in practice. When N(I) is narrowly defined as
{I}, then the above complexity measure is just the (possibly unrealistic) worst-
case complexity. By making a good choice for N(I) between these extremes, one
may get a more realistic estimate of the output complexity for the problem being
studied.
Smoothed analysis was introduced by Spielman and Teng [82]. So far there have
only been a few applications in computational geometry (see e.g. [19, 26, 27]),
none of which deals with terrains.

Our results. We study the smoothed complexity of visibility maps of terrains
under the following model:

• To the elevation of each vertex we add a noise value that follows a uniform
distribution in an interval [−c, c], where c = c′ · η with η being the minimum
edge length of the triangulation underlying the terrain and c′ a positive
parameter which we consider to be constant.

Our noise model defines for each input terrain T a neighbourhood N(T ) consisting
of those terrain instances that can be obtained by changing the elevation of each
vertex by at most c, and a probability distribution on N(T ). It is easy to see that
this model alone is not sufficient to explain the linear complexity of the visibility
map. Indeed, by applying a small perturbation one does not get rid of peaks that
are unrealistically skinny and high, and so the smoothed visibility-map complexity
of arbitrary terrains is still quadratic. Hence, we combine the power of smoothed
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analysis with the ideas of realistic input models. In particular, we define the
following parameters of terrains:

• Fatness: the smallest angle in the triangles of the underlying triangulation
(or in other words, the smallest angle of any triangle’s projection onto the
horizontal plane);

• Steepness: the largest dihedral angle between any triangle and the horizontal
plane;

• Scale factor: the length of the longest edge divided by the length of the
shortest edge of the triangulation.

We assume that the fatness φ, steepness θ, and scale factor σ of the unperturbed
terrain are constants that are independent of the number of triangles n, with
φ > 0, and θ < π/2, and σ > 1. These assumptions are also used in other
papers [5, 65], although the steepness assumption is not needed for the specific
result on visibility maps by Moet et al. In her thesis, Moet [64] experimentally
investigates terrain models of various mountainous regions in the US. She concludes
that, at least to a large extent, they satisfy our assumptions. In itself, these
assumptions do not lead to the desired result: there are terrains satisfying these
assumptions with quadratic-complexity visibility maps. For example, we can take
a slice of the construction of Fig. 5.1, with the aspect ratio of the domain being
Θ(n). Our main result is that the smoothed complexity of any visibility map of a
terrain satisfying the abovementioned assumptions is only Θ(n). This result can
be generalized to certain non-uniform noise distributions. We also prove O(nk)
smoothed complexity for the visibility map of terrains that contain k triangles that
do not fulfil our assumptions; the bound becomes O(k2 +n) when additionally the
xy-domain of the terrain is a square. To avoid technical details regarding what
happens if one looks at the boundary of the terrain from the side, we focus on the
case of perspective views with the view point being located above the terrain.

5.2 Visibility Maps Resulting from Perspective
Projection

Let T be a terrain with n triangles, and let E be the set of edges of T . Let
the vertices be specified by three coordinates x, y and z, where the z-axis is the
vertical axis on which the elevation is specified; the x- and y-axis are orthogonal
to the z-axis and to each other. Let T denote the triangulation in the xy-plane
defining T . Without loss of generality we assume that the minimum edge length in
T is 1. Hence, the maximum edge length equals σ, the scale factor of the terrain.
We assume that T is a φ-fat triangulation—that is, a triangulation in which all
angles are at least φ, for some fixed constant φ > 0—and that the steepness of T
is bounded by θ. We study the smoothed complexity of the visibility map of T for
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perspective views, that is, the map as it appears in the projection on a viewing
plane hview for a given viewing point pview. We assume that pview is located above
the terrain.

Notation, terminology and basic properties. We denote the projection of
an object o onto hview by pr(o). For an edge e ∈ E we use halign(e) to denote the
plane containing e and pview; thus halign(e)∩ hview contains pr(e). If e is collinear
with pview, there are many such planes: in that case we define halign(e) as the
vertical plane containing pview and e. The steepness θ(t) of a triangle t is defined
as the dihedral angle of the plane containing t with the xy-plane, and the steepness
θ(s) of a segment s is defined as the smallest acute angle of the line containing s
with the xy-plane. Observe that the steepness of a triangle equals the maximum
steepness of any segment contained in it. Recall that θ denotes the maximum
steepness of any triangle in T . The following lemma shows that the steepness of
terrains that satisfy our assumptions does not change much if the vertex elevations
are subject to a small perturbation.

Lemma 5.1 Let T be a terrain constructed from a φ-fat triangulation T , and let
θ be the maximum steepness of any triangle in T , where θ < π/2 is a constant.
Then, after raising or lowering each vertex independently by a distance of at most
c, no triangle is steeper than θmax = arctan(tan(θ) + 2c

sinφ ).

Proof. Consider any triangle 4(u, v, w) of T . Then there must be a vertex of this
triangle, say v, and a point p on the edge opposite to v, such that the segment pv is
parallel to the direction of steepest descent on the triangle after the perturbation.
Let u, v and p denote the projections of u, v, and p onto the xy-plane, respectively.
Since |uv| > 1 and the angle at u is at least φ, we have |pv| > sinφ —see Fig. 5.2(a).

angle at least φ

u

v

w(i) (ii) c

c
z(p)

z(v)
maximum steepness
after perturbation

|uv| > 1

|vp|

p

Figure 5.2 Illustrations for the proof of Lemma 5.1.

Denote the elevations of v and p before the perturbation by z(v) and z(p). Then,
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since before the perturbation the steepness of the triangle is at most θ, we have

|z(v)− z(p)|
|pv| 6 tan θ

In the worst case, the difference in elevation between v and p can increase by at
most 2c due to the perturbation. Hence, as illustrated in Fig. 5.2(b), the steepness
after the perturbation is at most

arctan
( |z(v)− z(p)|+ 2c

|pv|
)

6 arctan
(

tan θ +
2c

sinφ

)
.

2

Note that because φ, θ and c are constants with φ > 0 and θ < π/2, we know that
θmax is a constant strictly smaller than π/2. We may assume that θmax > π/4;
otherwise we simply replace θmax by π/4 and the bounds proven in this paper will
still hold.
The perceived steepness θview(e) of an edge e is the steepness of pr(e) in the plane
hview. In other words, θview(e) is the smallest angle between the line containing
pr(e) and a horizontal line on hview. Even though θ(e) 6 θmax by Lemma 5.1,
θview(e) may be greater than θmax and in fact be equal to π/2. Indeed, even an
edge that is almost horizontal can appear vertical when projected onto hview. We
say that an edge e appears steep when θview(e) is well-defined—pr(e) is not a single
point—and θview(e) > θmax, otherwise e appears flat.
We say that an edge e lies in front of an edge e′, if there is a ray from pview that
hits e before hitting e′. A silhouette edge is an edge e such that the two triangles
of T that share e are on the same side of halign(e). Note that this is equivalent to
saying that one of the incident triangles of a silhouette edge is front-facing while
the other is back-facing. We say that two edges e and e′ create a visible intersection
if pr(e) ∩ pr(e′) constitutes a vertex of the visibility map. For this to be possible,
the edge hit first by a ray from pview—say this edge is e—must be a silhouette
edge. Otherwise it would have to be an edge on the boundary of the terrain or a
non-boundary, non-silhouette edge, but both cases would lead to a contradiction:
in the first case e could only be the last edge hit by any directed line through
pview because there is nothing beyond e—this is true because the domain of T
is a triangulation and, hence, convex—while in the second case the two triangles
incident to e would hide e′ from view locally around the point of e′ projecting onto
pr(e) ∩ pr(e′).
Above we observed that even though the edges of the terrain are not steeper than
θmax, they can still appear steep on hview. The next lemma, which is the key to
bounding the number of visible intersections, states that this cannot happen for
silhouette edges.

Lemma 5.2 Let T be a terrain whose triangles have steepness at most θmax and
let pview be a fixed viewing point. Then the perceived steepness (on any vertical
viewing plane) of any silhouette edge of T is at most θmax.
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h1 h2

Wsteep

Wsteep

v1

v2

e

WflatWflat

Figure 5.3 Partitioning the space around an edge in two double wedges:
one containing all steep planes that contain the edge, one
containing all other planes that contain the edge.

Proof. Consider an edge e = v1v2. Let h1 and h2 denote the two planes containing
e that have steepness exactly θmax. These two planes partition the space into two
double wedges: Wsteep := (h+

1 ∩h+
2 )∪(h−1 ∩h−2 ) and Wflat := (h+

1 ∩h−2 )∪(h−1 ∩h+
2 ),

where h+
i and h−i denote the half-spaces above and below hi, respectively. Note

that Wsteep is the union of all planes containing e that are steeper than θmax,
while Wflat is the union of all planes containing e that are less steep than θmax—
see Fig. 5.3.
Let 4(u, v1, v2) and 4(v1, v2, w) be the triangles sharing the edge e. Since no
terrain triangle is steeper than θmax, the vertices u and w must lie in Wflat. More-
over, they must lie in different parts (that is, wedges) of Wflat, since otherwise
there would be a vertical line intersecting the interiors of both 4(u, v1, v2) and
4(v1, v2, w), which cannot happen because T is a terrain.
Now consider halign(e), the plane that contains e and pview and whose inter-
section with hview contains pr(e). Suppose e appears steep, that is, θview(e) >
θmax. Because halign(e) contains pr(e) it is at least as steep as pr(e), so we have
θ(halign(e)) > θmax. Since halign(e) contains e, this means halign(e) is contained in
Wsteep. Since u and w lie in different parts of Wflat, this implies that 4(u, v1, v2)
and 4(v1, v2, w) lie on different sides of halign(e). Thus e is not a silhouette edge
if it appears steep, which proves the lemma. ut

Counting intersections. Since the number of terrain vertices is O(n), we only
need to worry about bounding the number of visible intersections created by pairs
of terrain edges. When two edges appear to intersect we will charge each visible
intersection to the edge that is furthest from the viewer. Thus we need to count,
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for each edge e in the perturbed terrain, the number of visible intersections it
creates with edges in front of it. We denote this number by K(e).
Consider the situation in which we have already perturbed the edges in front
of e, and we wish to analyse the effect of perturbing e. Consider the triangle
whose vertices are pview and the endpoints of e, and define 4(pview, e) to be the
projection of this triangle onto the xy-plane. Let Efr(e) be the set of silhouette
edges whose projection onto the xy-plane intersects 4(pview, e), clipped to the
part whose projection is contained in 4(pview, e). We exclude the edges sharing
a vertex with e; such edges cannot create a visible intersection with e. Then the
visible intersections charged to e are intersections of pr(e) with the upper envelope
of {pr(s) : s ∈ Efr(e)}—see Fig. 5.4(a). We denote this upper envelope by H(e).
Now consider a fragment f ∈ Efr(e) that appears on this upper envelope. We wish
to bound the probability that after perturbation of e, the edge e creates a visible
intersection with f .
Observe that the combinatorial structure of the visibility map on a viewing plane
hview does not depend on the location and orientation of the viewing plane, pro-
vided hview does not contain pview (in which case one would not see anything). We
can therefore assume without loss of generality that hview is a vertical plane that
contains e. For an object o, define spane(o) to be the projection of pr(o) onto a
horizontal line on hview, and define widthe(o) to be the length of spane(o). We
have the following lemma.
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Lemma 5.3 Let e be an edge of T and let f be a fragment of a silhouette edge e′

not incident to and in front of e such that spane(f) ⊂ spane(e) and widthe(f) 6
widthe(e)/3. Now suppose we independently perturb the elevations of the vertices
of e, where the perturbations are chosen uniformly at random from the range
[−c, c]. Then

Pr[e creates a visible intersection with f ] 6 3 widthe(f) · tan θmax

c
.

Proof. Assume without loss of generality that the projection of e on the xy-plane
is parallel to the x-axis. Let v1 and v2 be the vertices of e. Without loss of
generality assume v2 is the vertex closest to f in the projection onto the x-axis,
with ties broken arbitrarily. Since widthe(f) 6 widthe(e)/3, the distance from
v1’s projection to spane(f) is at least widthe(e)/3. We will now show that for any
elevation of v1 after the perturbation, the probability that e intersects f when v2

is perturbed, is at most 3 widthe(f) · tan(θmax)/c.
Let ` be the vertical line on hview through pr(v2). Assume v1 has already been
perturbed, so that v1’s position is now fixed. Consider the set of all possible
positions of the projection of the perturbed vertex v2 that induce an intersection
between f and e. This set is a segment on `; we denote its upper endpoint by q and
its lower endpoint by r—see Fig. 5.4(b). The probability that, after perturbing
v2, the edge e creates a visible intersection with f is bounded by |qr|/(2c).
We will now compute an upper bound on |qr|. Notice that the triangle 4(v1, q, r)
does not necessarily contain f completely: there may be parts of f where e cannot
create an intersection (for the given, fixed position of v1), because v2 could not
be raised or lowered far enough without going beyond the given bounds on the
perturbation. Let f ′ be the part of f inside 4(v1, q, r) and let v3 and v4 be the
endpoints of f ′, with v3 being the endpoint closest to `. Let s be the point such
that 4(v1, v3, s) and 4(v1, q, r) are similar triangles. The line through v1 and
r has steepness at most θmax by Lemma 5.1 and the fact that hview contains e;
fragment f ′ has steepness at most θmax by Lemma 5.2. This implies that

|v3s| 6 2 widthe(f ′) · tan θmax.

Moreover, we have |v1v3| > |v1q|/3. Now

|qr| = |v3s| · |v1q|
|v1v3| 6 6 widthe(f ′) · tan θmax 6 6 widthe(f) · tan θmax.

Hence, the probability of intersection between e and f for any fixed position of v1

is at most |qr|
2c

6 3 widthe(f) · tan θmax

c
.

This bound is independent of the position of v1. Therefore the probability that,
when e is perturbed, e creates a visible intersection with f is at most 3 widthe(f) ·
tan(θmax)/c. 2
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hview

H(e) :
e = v1v2

v2

v1

(a)

widthe(e)

widthe(f
′)

q

r

v1

s

v3

v4
v5

v2

2c

`

f ′ = v3v4

f = v3v5

e = v1v2

(b)

Figure 5.4 (a) The horizon in front of e as it appears on the visibility
map. (b) The shaded cone indicates all the possible positions
of e that may induce a visible intersection between e and f for
a fixed position of v1. The point s is the point on the image
of v1r that has the same x-coordinate as v3.

Lemma 5.4 Let K(e) be the number of visible intersections of an edge e of T
with edges in front of it. Then

E[K(e)] 6 3 widthe(e) · tan θmax

c
+ 2.

Proof. We distinguish two cases: either halign(e) is vertical, or not. If halign(e) is
vertical, then pr(e) is vertical too. This implies K(e) 6 1: the part of e above the
intersection point would be visible and the part below it would be hidden from
view.
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It remains to discuss the case in which halign(e) is not vertical. We now need to
bound the expected number of visible intersections created by e with any edge
e′ in front of it. Consider the situation where we already perturbed the edges in
front of e, but not yet the edge e itself. Recall that e′ must be a silhouette edge.
Hence, we can restrict our attention to Efr(e), the set of segments which are parts
of silhouette edges lying in front of e in the projection onto the xy-plane, excluding
the edges sharing a vertex with e. We defined H(e) to be the upper envelope of
the projections of those segments onto hview —see Fig. 5.4(a). Then we can bound
E[K(e)] by analysing the number of intersections of pr(e) with H(e).
For a fragment f on the upper envelope H(e), we define an indicator random
variable Xf :

Xf =
{

1 e and f intersect
0 otherwise

We have K(e) =
∑
f Xf . Observe that there can be at most two such fragments

with widthe(f) > widthe(e)/3. Now consider the other fragments. By Lemma 5.3,
we have

Pr[e creates a visible intersection with f ] 6 3 widthe(f) tan θmax

c
.

Adding the at most two fragments with widthe(f) > widthe(e)/3, and summing
over all fragments with widthe(f) 6 widthe(e)/3, we get

E[K(e)] = E[
∑
f

Xf ] =
∑
f

E[Xf ] 6 2 +
∑
f

3 widthe(f) tan θmax

c
.

Clearly we have
∑
f widthe(f) 6 widthe(e), which finishes the proof. 2

Using that widthe(e) 6 σ and tan θmax 6 tan(θ) + 2c
sinφ (by Lemma 5.1) we obtain

our final result:

Theorem 5.5 Let T be a terrain of n triangles with fatness φ, steepness θ, and
scale factor σ. Suppose we add noise to each vertex’s elevation independently,
where the noise value is taken uniformly at random from the interval [−c, c], and c
is a fixed constant fraction of the minimum edge length of the triangulation under-
lying the terrain model. Then a visibility map of T under perspective projection
has smoothed complexity

O

((
tan θ
c

+
1

sinφ

)
σn

)
.

Remark 5.6 The result easily generalises to other noise distributions over the
interval [−c, c], provided that the density function of the distribution is upper-
bounded. More precisely, if the density is upper-bounded by τ , then for any
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interval [a, b] ⊂ [−c, c] the probability that the noise is in [a, b] is at most τ · |b−a|
instead of |b−a|2c . The bound on the probability given in Lemma 5.3 and, hence,
also the final bound obtained in Theorem 5.5 then simply have to be multiplied
by 2cτ .

Remark 5.7 One can also consider the setting where not only the elevations of
the sample points are subject to noise, but also their xy-positions. In a practical
setting, however, the 2D locations of the sample points determine the triangulation
(because one uses the Delaunay triangulation, for instance). This means that a
very different analysis will be necessary. If one ignores this aspect and simply
works with the given triangulation, then our results still hold provided that (i) the
noise is small enough that the fatness, steepness, and scale factor of the terrain
are still bounded, and (ii) the perturbation in the xy-plane is independent of the
perturbation of the elevation.

5.3 Terrains That Almost Satisfy the Assump-
tions

In previous works on realistic input models [11, 64] it has been observed that even
in well-formed scenes, where the majority of the objects fulfills the properties of
some model, there may exist a few objects that do not conform with the model.
This leads us to consider the case where there exists a set of k 6 n terrain triangles
that do not follow the model assumptions. We call the triangles that have fatness
φ, slope at most θ and edge length ∈ [1, σ] good and the rest bad. Furthermore,
we call a terrain edge bad if it is incident to a bad triangle; otherwise the edge is
called good. We now analyse the smoothed complexity of the visibility map of a
terrain with k bad triangles.

Theorem 5.8 Let T be a terrain containing n− k good triangles with fatness φ,
steepness θ, and edge lengths [1, σ] and k bad triangles. Suppose we add noise to
each vertex’s elevation independently, where the noise value is taken uniformly at
random from the interval [−c, c], and c is a constant. Then a visibility map of T
under perspective projection has smoothed complexity

O

(
nk +

(
tan θ
c

+
1

sinφ

)
σn

)
.

Proof. For every terrain edge e we will count how many visible intersections pr(e)
can create with edges in front of it. Recall that pr(e) can only create a visible
intersection with the images of the segments in s ∈ Efr(e) that is, the silhouette
edge parts for which it holds that spane(s) ⊂ spane(e). More precisely pr(e) can
only create a visible intersection with H(e), the upper envelope of these segments.
Because T contains bad triangles it is possible in this setting that H(e) contains
steep segments, which belong to the images of bad edges.
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We can partition the intersections that appear in the visibility map into two cat-
egories, which we analyze separately.

• Category (i): at least one of the involved edges is bad.
Since there are at most 3k bad edges, and any edge can generate only O(n) in-
tersections, the number of visible intersections of the first category is O(nk).

• Category (ii): both involved edges are good.
In Lemma 5.4, in a setting where no bad triangles exist in T , we proved
that a good edge e can be charged with a smoothed number of at most
3 widthe(e)·tan θmax

c + 2 intersections with the segments of H(e). In fact, this
can be rephrased as an upper bound for the smoothed number of intersections
between e and the flat segments of H(e); the proof itself is independent of the
existence of steep segments in H(e) and thus this bound directly applies for
the cases that T contains bad triangles. Since e is a good edge, widthe(e) 6 σ
and e can be charged with a smoothed number of at most 3σ·tan θmax

c + 2
intersections with other good edges. Hence the total number of intersections
between good edges is O

((
tan θ
c + 1

sinφ

)
σn
)

.

Summing up the intersections of categories (i) and (ii) the theorem follows. 2

Fig. 5.5 shows a view of a construction where we place Θ(n) realistic triangles
behind k skinny peaks in a way that the noise cannot cause their incident edges
to hide behind each other. The smoothed complexity of this view is Ω(nk), thus
showing that the bound from Theorem 5.8 is tight in the worst case.

A more restricted model. The result of Theorem 5.8 is a bit disappointing:
even with, say, Θ(log n) bad edges, the smoothed complexity can be superlinear.
Next we show that we can get much stronger bounds if we make one more (very
reasonable) assumption: we assume that the xy-domain of the terrain is a square
of size Θ(

√
n)×Θ(

√
n) Consequently, our model becomes a special case of the one

presented by Moet et al. [65]. Below, we mention an interesting property that
they prove for a terrain T that conforms with their model.

Property 5.9 Let s be a straight line segment that intersects the projection of
T . Then s intersects O(

√
n) triangles of T .

This property is based on a packing argument that provides an upper bound for
the number of good triangles that can fit in a rectangle of a certain size. The
existence of bad triangles therefore does not affect this argument when applied to
the good triangles. Hence, the number of good triangles intersecting any straight
line segment is still O(

√
n).

We prove a tight upper bound for the smoothed complexity of the visibility map
of such a terrain that also contains at most k bad triangles.
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Θ(k) spikes

Θ(n)
good edges{
{

Figure 5.5 A terrain with a visibility map of Θ(nk) smoothed complexity.
In this view, each of the Θ(k) thin and long spikes in the front
appears to intersect with each of the Θ(n) good triangles at
the back.

Theorem 5.10 Let T be a terrain with an xy-domain that is a square of size
Θ(
√
n) × Θ(

√
n). Let T contain n − k good triangles with fatness φ, steepness

θ, edge lengths ∈ [1, σ] and k bad triangles. Suppose we add noise to each ver-
tex’s elevation independently, where the noise value is taken uniformly at random
from the interval [−c, c], and c is a constant. Then a visibility map of T under
perspective projection has smoothed complexity

O

(
k2 +

(
tan θ
c

+
1

sinφ

)(√
nk + σn

))
.

Proof. As in the proof of Theorem 5.8, we distinguish several categories for the
intersections of the visibility map. Next we analyse each category.

• Category (i): intersections between a bad edge e and the steep segments of
H(e).
For an edge e, the steep segments of H(e) are parts of the images of bad
edges. In the worst case every bad edge may appear to intersect with Θ(k)
other such edges, summing up to O(k2) intersections of this kind.

• Category (ii): intersections between a bad edge e and the flat segments of
H(e).
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Let e be a bad edge. We consider first the case that θ(e) 6 θmax. With
an analysis similar to the one of ii) in the proof of Theorem 5.8, e can be
charged with a smoothed number of at most 3 widthe(e)·tan θmax

c intersections.

Since widthe(e) = O(
√
n), this number is O

(√
n tan θmax

c

)
. We examine

now the case that θ(e) > θmax. There can be at most O(k) steep edges
that can participate in H(e), that means that e can disappear behind H(e)
and reappear at most O(k) times. Notice that e can disappear after a steep
segment and then reappear after a flat segment or the other way round. Thus
e can in fact participate in O(k) intersections with flat segments. Hence we
can have in total a smoothed number of O

(
k2 +

(
tan θ
c + 1

sinφ

)√
nk
)

such
intersections.

• Category (iii): intersections between a good edge e and the flat segments of
H(e).
This category is identical to ii) in the proof of Theorem 5.8. Accordingly, we
can have at most O

((
tan θ
c + 1

sinφ

)
σn
)

intersections of this kind.

• Category (iv): intersections between a good edge e and the steep segments of
H(e).
We now consider the intersections that good edges induce with bad edges
that appear in front of them. Let Ebad be the set of bad edges in T and
Vbad be the set of the vertices incident to bad edges. For a good terrain
edge e and a viewing plane hview let Hbad(e) be the upper envelope of the
images of the bad edges that appear in front of e. We can divide Hbad(e)
into maximal polygonal chains whose endpoints are images of actual vertices
in Vbad. Each such chain is convex and obviously pr(e) can create at most
two visible intersections with this chain.

For some vertex v ∈ Vbad, consider the ray that starts at pview and passes
through v. Consider on this ray the segment that starts at v and ends at the
intersection of this ray with the xy-projection of the boundary of T . We call
this segment the lifespan of v—see Fig 5.6(b). If a good edge e intersects
the lifespans of m vertices in Vbad then in a possible view of the terrain
pr(e) may appear to cross all the m − 1 convex chains between the images
of those vertices plus at most two other chains. As remarked before, pr(e)
can create at most two visible intersections with each chain. So, we have at
most 2(m+ 1) visible intersections. We charge two of them to e and two to
each vertex in Vbad whose lifespan is crossed. Hence, each vertex in v ∈ Vbad
can be charged with a constant number of intersections from each good edge
that intersects its lifespan.

According to Property 5.9 there can be O(
√
n) edges that cross the lifespan

of v and thus there can be O(
√
n) intersections charged to v. That means

that there are O(k
√
n) intersections in total for all the vertices in Vbad.
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Hence, the total number of visible intersections that can appear on the visibility
map is O

(
k2 +

(
tan θ
c + 1

sinφ

)
(
√
nk + σn)

)
.

2

5.4 Concluding Remarks

We proved that the smoothed complexity of the visibility map of not-too-steep
terrains with fat triangles of similar size is O(n). This is a possible explanation
why in practice terrains with visibility maps of super-linear complexity are unlikely
to occur. We also examined the smoothed complexity for terrains that contain a
few triangles that do not satisfy the assumptions. This is the first time that
realistic input models have been combined with smoothed analysis. We believe
this is a promising approach, which could also shed light on the complexity of
certain other structures on real-world terrains. For example, the complexity of
the river network on real-world terrains seems to be linear, while the worst-case
complexity of the river network on a terrain with the above-mentioned properties
is still Θ(n2) [7]. Combining these properties with a smoothed analysis may lead
to better bounds.
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hview

: upper envelope of bad edges

: good edge

: vertex of bad edge

(a)

a

b

c

d

e

f
pview

: viewray

: lifespan

(b)

Figure 5.6 (a) A possible view of the upper envelope of the bad edges
and a good edge at the back. (b) The xy-projection of a
terrain that contains a good edge ef and two bad edges ab,
cd. Illustrated are also the lifespans for the vertices of the bad
edges.
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Chapter 6

Conclusions and Future
Research

In the present thesis we investigated various problems that have to do with the
complexity of drainage and visibility structures on triangulated terrains. As with
every work of this kind, solutions were provided for some of these problems, yet
new questions arose from these solutions. Next we list the main contributions of
this thesis together with open problems that can be the subject of future research.
In Chapter 2 we described an efficient mechanism that allows for computing infor-
mation on drainage structures on tins without explicitly computing the structures
themselves. With this mechanism, for a terrain of n triangles, we can compute
in O(n log n) time information such as the points where one or more flow paths
end, or which triangles are fully included in the watersheds of one or more local
minima. It remains an open problem if a similar mechanism can be designed to
answer queries that are related to proximity structures on terrains, such as Voronoi
diagrams. Also, it will be interesting to implement the presented algorithms and
observe their performance in practice. Furthermore, the mechanism that we de-
scribed assumes that no flat areas exist in the input terrain. This is actually the
case for all the known algorithms that consider flow routing on tins following
strictly the direction of steepest descent. Thus, it is still an open problem to de-
fine a natural model for water flow on flat areas on tins. Such models already
exist for dems [81]. But so far there has been no attempt to translate this model
for tins, and examine the complexity of the induced drainage structures both in
theory and practice.
In Chapter 3 we examined the problems that appear in practice when computing
drainage structures on tins using an exact flow model. We showed that it is ineffi-
cient to compute watershed subdivisions on large tin data sets using a consistent
flow model and exact arithmetic if the strip map is computed first. For this rea-
son we described an output-sensitive algorithm that computes the watershed map
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of a tin based on the implicit mechanism of Chapter 2. It seems challenging to
implement this algorithm and check if it is substantially more efficient than the
algorithm that computes the strip map.
We also evaluated the quality of the output of several efficient heuristics for com-
puting watersheds; our goal was to indicate which heuristic provides output that is
closest to the exact watershed subdivision on the tin. The results that the exam-
ined heuristics yielded were quite satisfactory for most experiments, yet there still
seems to be some room for improvement, especially when computing watersheds
on almost flat tins. In any case it appears challenging to investigate thoroughly
the conditions under which known heuristics fail to give a nice approximation and
then, possibly, infer new methods that will improve the ouput quality.
As presented in Chapter 4, the existence of noise in the input data affects the
drainage characteristics of the terrain. We showed how important it is to select
the appropriate algorithmic method for identifying which parts of a tin maintain
their drainage properties when subject to noise in the vertex elevations. At this
point, we should indicate another issue that is related to the use of digital terrain
models in general (and not only tins): a digital terrain model should be a good
approximation of the real-world entity that it represents but this might not be
always the case. The topologies of the original and the digital surface may differ
significantly. Recall that topological structures such as the surface network of a
terrain are based on the computation of flow paths on the terrain surface. Any
discrepancies in the topology of a digital terrain and the original surface may be
the result of technical issues related to the sampling process; errors in the physical
measurements and undersampling. Yet, artefacts in the topology of the digital
terrain may not only be due to noise in the sample point set but may also derive
from the process itself of building the digital model out of this sample. At this
stage, we should consider three possible factors that may produce artefacts during
the reconstruction process:

• The first factor is the interpolation method that is employed to create extra
points during the surface reconstruction process. This is very important in
the case of dems, since there we have to compute elevations for the canon-
ically spaced grid cells, while the points of the sample usually appear in an
irregular pattern. Although a tin can be built straightforwardly using the
sample points as its vertex set, interpolation can be used to create extra
vertices in order to enhance the approximation.

• Another factor is the geometry of the surface of the digital model; a tin im-
plies a piecewise-linear surface while a dem is usually interpreted as a surface
with many discontinuities. The critical points of the tin are restricted to
the vertex set of the triangulation, while usually for dems the critical points
appear only in grid cell centers. An exception to this rule is provided by
Steger [84]. Implicit surfaces are sometimes used to alleviate this restriction.
When considering tins, the triangulation method that is used to construct
the terrain may also influence the quality of the approximation.
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• The third factor is the flow model that is considered for representing the
course that water would follow on the digital surface.

In this thesis, and especially in Chapter 3, we examined many issues that are
related to flow models on tins. Yet, the two first factors deserve more attention
as well. Selecting an interpolation method, a digital terrain representation and
a flow model is not a straightforward task; there are many choices for each of
these three issues and consequently many more possible combinations. Thus, it
becomes interesting to evaluate how these choices influence the creation of artefacts
in the topology of the digital terrain representation. Given popular methods for
reconstructing terrain surfaces, are there large differences when comparing the
surface network and the watershed map on the reconstructed surface with the
respective structures on the original terrain? Which methods produces the most
faithful approximation? Of course, to answer this question we need a point of
reference; we need to know the topology of the original surface. Thus, synthetic
terrain data sets of known drainage properties can be used as the reference surfaces.
Here it becomes important to use a precise flow model for computing the exact
surface network and watershed map of the reference surface. The software package
that we described in Chapter 3 allows for using piecewise-linear surfaces as a point
of reference; with this software we can compute the exact watershed map and
surface network of a tin and thus we can use such a surface as a ground truth for
testing the performance of any reconstruction method.
Finally, in Chapter 5 we considered an alternative approach for explaining why
visibility maps of tins do not have a high combinatorial complexity in practice.
We used the concept of smoothed complexity to show that a visibility map of a tin
most likely has linear complexity with respect to the size of the tin. It remains to
find out if smoothed complexity can also be used to explain the low complexity of
other structures on tins such as flow paths or watersheds. In addition to proving
a theoretical bound for the smoothed complexity of these structures, it would
be interesting to investigate this problem experimentally. Considering tins with
drainage networks of high complexity, experiments may involve perturbing the tin
vertices and then evaluating any subsequent changes in the complexity of these
networks.
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Summary

Landscapes and their morphology have been widely studied for predicting physical
phenomena, such as floods or erosion, but also for planning human activities effec-
tively, such as building prominent fortifications and watchtowers. Nowadays, the
study of terrains is done in a computer-based environment; terrains are modelled
by digital representations, and algorithms are used to simulate physical processes
like water flow and to compute attributes like visibility from certain locations.
In the current thesis we focus on designing new algorithms for computing struc-
tures related to water flow and visibility on digital terrain representations. Most
specifically, the terrain representations that we considered are the so-called Trian-
gulated Irregular Networks (tins), that is, piecewise linear surfaces that consist of
triangles.

One of the problems that are considered is the effect of noise on the worst-case
complexity of visibility structures on tins. The view that a person can have from
a point on the surface of a tin can be very complex, since in the worst case thin
obstacles in the foreground may appear to fragment many long terrain edges in
the background into visible and invisible pieces. In our analysis we considered
tins whose triangles have some well-defined properties that terrains in practice
are expected to have. Although complex visibility structures can be induced on
such tins as well, we proved formally that slight perturbations on the elevations
of the tin vertex set will always get rid of the high complexity.

Another key problem that is studied is to design efficient algorithms that compute
flow-related structures on tins. So far it was known that, in the case of tins,
drainage structures that were computed using a consistent flow-model could have
high complexity for specific input instances. We managed to develop a mechanism
that can extract important information on flow paths and other drainage structures
without computing those structures explicitly. This mechanism can be used as a
basis for designing a variety of efficient algorithms, such as for computing the
area measure of drainage structures or for computing structures that represent
the terrain topology.
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The last part of the presented work involves the implementation of a software pack-
age that computes drainage structures on tins. In this package flow is modelled
as following strictly the direction of steepest descent on the tin surface. Existing
software for related applications either constrain flow on the edge set of the tin, or
use inexact arithmetic, both of which introduces imprecise and/or incorrect results
in the output. Our implementation is the first one that, at the same time, follows
a robust flow model and uses exact arithmetic. We have used this implementation
as a point of reference for evaluating experimentally the quality of the output of
other flow models which are used in many hydrological applications. We have also
used our software for conducting experiments on extracting watersheds on impre-
cise tins, that is, tins where the elevation values of the vertices are not exactly
defined but are subject to noise from some given interval. Based on the results of
these experiments, we have designed a novel method for extracting watersheds on
imprecise terrains that produces high quality output.
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