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Introduction

This thesis concerns a conceptually very simple physical system: a well-defined bunch
of charged particles subjected to an electromagnetic wave. To delineate this even
more: we consider bunches that are smaller than the wavelength of the radiation.
Despite its simplicity, however, this elementary system gives rise to a multitude of
interesting phenomena. In this thesis, we will study such phenomena analytically from
multiple perspectives, identifying new physical effects and emphasizing technological
possibilities to take advantage of them. Our system of a subwavelength body of
charge emerges in a variety of contexts, ranging from pre-quantum classical electron
theory (section 1.1) to modern high-power laser experiments (section 1.2) and from
classical Mie theory to modern ultracold plasmas (section 1.4). Across these contexts
an important part is played by the ponderomotive force experienced by charges in
an oscillating, inhomogeneous electromagnetic field (section 1.3). While these topics
emphasize the role of subwavelength charged bunches as passive objects subjected to
radiation, they can also act as a coherent radiation source of, for example, terahertz
waves on a metal wire (section 1.5).

1.1 Electron theory

The structure of matter has always been one of the prime issues in theoretical physics.
Before the advent of quantum mechanics and the standard model, attempts were made
to describe elementary particles as small rigid charged bodies. Evidently, to a certain
extent a macroscopic bunch of charged particles may be viewed as a scaled-up version
of such a classical elementary particle, albeit one with much more charge and mass
than a single classical electron. The results of these classical studies, or ’electron
theories’, are therefore directly relevant to the bunches studied in this thesis. Central
to the electron theories were the Lorentz forces as experienced by the parts of the
charged particle, and caused by the electromagnetic fields generated by all the other
parts. The formulation in terms of such electromagnetic self-forces, most notably
by Abraham [1] and Lorentz [2], led to some partial successes. First of all, it was
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Chapter 1.

found that part of the total self-force is proportional and oppositely directed to the
acceleration of the particle, which suggested an electromagnetic explanation of iner-
tia. Second, a contribution to the self-force was identified that could account for the
momentum that is lost by a charged particle in the form of Larmor radiation when
the particle is accelerated. The latter force is known as the radiation reaction force.
While radiation reaction for a long time has been considered experimentally irrelevant
due to the smallness of the effect, it has recently regained interest because available
laser intensities and the associated accelerations of electrons have almost increased to
the point where radiation reaction effects may become observable [3]. The classical
electron theories, however, were not without conceptual difficulties. A well-known
example is the so-called 4/3-problem related to the absence of relativistic covariance,
which is partially resolved by assuming the presence of non-electromagnetic ”Poincaré
stresses” within the particle. The classical description of charged particles, initiated
in pre-relativistic times, is still being actively pursued in literature [4–7], which makes
it the most long-standing unfinished issue in electrodynamics. The consensus is that
the motion of a charged particle, under the influence of both external forces and its
self-force, is most correctly described by the so-called Lorentz-Abraham-Dirac equa-
tion of motion [8]. This covariant equation also takes full account of relativistic effects.

In chapter 2, we review a number of approaches that have been taken to evaluate
the self-force of a charged sphere. Although the resulting self-force representations
have been known for a long time, it has never been shown how these results can be
derived directly from one another. In chapter 2, we establish these interrelations.

1.2 Coherently enhanced radiation reaction

The recent availability of ultra-intense laser pulses has led to increased efforts to de-
velop novel compact acceleration schemes for electron beams. These include wakefield
accelerators [9–12], thin foil irradiation schemes [13, 14] and laser-vacuum accelera-
tion concepts [15, 16]. Most studies so far have concentrated on the dynamics of
the individual electrons in the considered electron bunches under the action of the
externally applied electromagnetic fields. Incorporation of the collective interactions
in the bunches is usually limited to space-charge effects, while the radiation reaction
force is usually neglected, which is well justified if the electron density is not too
high and the electron bunch size exceeds the laser wavelength used. However, in re-
cent years the interaction of intense laser light with nanometer to micrometer sized
atomic clusters of near solid state density has become the subject of thorough investi-
gation [17, 18]. This has led to the observation of large numbers of electrons emitted
from such clusters [19–22]. In particular, under suitable conditions the production of
dense, attosecond electron bunches from laser-irradiated clusters has been observed
both numerically [23] and experimentally [21, 24]. Also the creation of ultrashort
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(1) (2) (3)
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Figure 1.1: Principle of acceleration due to coherent Thomson scattering, show-
ing (1) arrival of a laser pulse (red) at a subwavelength electron bunch (black
disk), (2) emission of coherently enhanced dipole radiation, and (3) forward re-
sultant force on the electron bunch due to conservation of momentum.

bunches from laser-irradiated foils is actively studied [25–27]. Such experiments in
which powerful laser pulses irradiate solid-state targets constitute a second important
context where subwavelength charged bunches interact with an electromagnetic wave,
next to classical electron theories.

Bearing on the results from electron theory, we consider in chapter 3 the effect
of radiation reaction on relativistic electron bunches in interaction with a laser pulse.
It is shown that the interaction can be modeled by a particularly simple picture of
radiation pressure in the direction of the laser beam on a coherently enhanced ef-
fective cross section, in combination with a viscous force perpendicular to the laser
propagation direction. This suggests that laser-vacuum acceleration schemes, which
normally exhibit a transverse instability due to a radially outward ponderomotive
force, may be partially stabilized by the presence of radiation reaction. The mech-
anism by which radiation reaction may become significant in electron bunches, in
contrast to virtually all experiments where single electrons interact with laser pulses,
is that of coherent enhancement. Here, coherence means that the fields produced by
the individual electrons in the bunch add constructively. This happens because the
externally applied fields of the incident radiation are more or less uniform over the
extent of a subwavelength bunch, so that all electrons move in roughly the same way.
As the electromagnetic self-force is a direct consequence of the self-generated fields,
coherent fields therefore lead to a coherently enhanced self-force. This is apparent
from the fact that the part of the Lorentz-Abraham-Dirac equation that represents
radiation reaction is proportional to the charge of the bunch squared.

In the present context, coherent enhancement and the average effect of radiation
reaction are best exhibited in terms of the phenomenon of Thomson scattering, as
is illustrated by Fig. 1.1. Thomson scattering is the production of secondary dipole
radiation by charges that oscillate due to the electric field of the incident radiation
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wave, which can be seen as scattering of part of the incident radiation by the charges.
In case of a subwavelength electron bunch consisting of N electrons, the fields within
the scattered radiation add constructively to N times the field that a single electron
would produce, so that an N2 times larger power is scattered from the incident wave.
In the scattering process, directed radiation with net momentum is converted into
dipole radiation that has less net momentum, so that the momentum difference must
be absorbed by the electron bunch. Since this momentum difference is enhanced N2

times, Thomson scattering thus leads to a coherently enhanced force on the bunch
in the direction of the wave. The technological possibility to accelerate bunches with
this force was first articulated by Veksler [28]. In chapter 3, we show how this
force follows from the Lorentz-Abraham-Dirac equation, and how it generalizes to
relativistic velocities.

1.3 The ponderomotive force

The ponderomotive force is a time-averaged force experienced by a charged parti-
cle in an oscillating electromagnetic (EM) field that is spatially inhomogeneous. In
the conventional treatment [29, 30], it is shown that this force is the gradient of a
ponderomotive potential, and that it is always directed toward regions of low field
strength. Whenever field gradients are involved, the ponderomotive force should be
taken into account. Indeed in chapter 3, this force significantly influences the calcu-
lated electron trajectories, and proves to be essential for a correct interpretation of the
numerical results. In physics, the ponderomotive force is observed and exploited in a
wide range of contexts. In laser-plasma physics, this force drives the formation of laser
wakefields that are used for next generation electron accelerators [9–12]. Ion beams
are produced by intense laser irradiation of thin foils, in which the ponderomotive
force plays an essential role [31, 32]. Schemes have been proposed for ponderomotive
laser-vacuum acceleration of electrons [33, 34]. In Paul traps, ions are confined by
a ponderomotive potential [35]. In electron beam diagnostics, the length of electron
bunches is measured by sequentially scattering different sections of the bunch using
the ponderomotive force of a laser pulse [36, 37].

The ponderomotive force that can be produced by a single laser pulse is limited
by the minimum pulse duration and focal spot that can be reached at a given laser
intensity. For many applications of the ponderomotive force this means that, in order
to obtain a sufficiently strong force, very large field intensities are required. An at-
tractive alternative is the use of a standing wave. In this configuration, the nodes and
antinodes are spaced on the scale of the wavelength, which is much smaller than the
laser pulse length or focal spot. This results in correspondingly larger field gradients
and ponderomotive forces, which may be used to deflect charged particles, as is illus-
trated in Fig. 1.2. A number of applications have been proposed that take advantage
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of the large standing wave ponderomotive forces. These include a table-top standing
wave version of the bunch length measurement setup mentioned previously [38], a
novel x-ray free electron laser based on the wiggling of electrons in the ponderomotive
potential of a standing wave [39], use of a standing wave formed by colliding laser
pulses to pre-accelerate electrons ponderomotively in a laser-wakefield setup [40], and
creation of attosecond electron pulse trains by bunching of an electron beam due to a
co-moving ponderomotive beat potential between laser pulses of different frequencies
[41]. However, we discovered that the ponderomotive force is no longer correctly de-
scribed by the classical ponderomotive potential when applied to a standing wave. A
similar conclusion was drawn by Kaplan and Pokrovsky [42] for certain special field
configurations. In chapter 4, the ponderomotive force is derived for a relativistic par-
ticle entering a nonrelativistic standing wave with a general three-dimensional field
distribution. It is shown that the force is polarization-dependent, and may in some
cases even be directed toward high field intensities. This may have important im-
plications for experiments and proposals based on the standing wave ponderomotive
force.

Figure 1.2: Charged particle that is deflected by the ponderomotive force of a
standing EM wave.

1.4 Finite-sized plasmas

Dense bunches consisting of only electrons are inherently unstable systems: they will
expand rapidly due to the Coulomb repulsion, and they will do so more forcefully
the higher the charge density. This property directly conflicts with the requirements
for pronounced coherent interactions, that is, with a large amount of charge that is
localized within a subwavelength volume for a long time. This suggests that neu-
tralized bunches, consisting of both electrons and ions so that Coulomb forces are
compensated, have more chance to exhibit significant coherent effects. Such finite-
sized plasmas, when driven by radiation, constitute a third context in which bunches
of charged particles interact with an electromagnetic wave.
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Considering irradiated subwavelength plasmas rather than electron bunches, how-
ever, introduces all kinds of processes studied in the very rich field of plasma physics,
such as ionization and recombination, radiative processes, and various types of plasma
waves. These processes are not within the scope of this thesis. Nevertheless, being
interested in coherent effects, it should be realized that plasma bunches too expand
and hence become larger than the applied wavelength after some time. The expansion
in this case is driven by the hydrodynamic pressure rather than Coulomb forces. It is
therefore of direct relevance to at least assess the evolution of the pressure, or what
amounts to the same, the plasma temperature. In chapter 5, we consider mecha-
nisms by which the applied electromagnetic wave may lead to plasma heating and an
associated acceleration of the plasma expansion towards incoherent sizes.

Evidently, the slower the expansion of a subwavelength plasma, the more possi-
bilities there are for coherent interactions to induce significant physical effects. This
suggests the use of plasmas that are preferably as cold as possible. Recently, it has
become possible to produce so-called ultracold plasmas [43], in which the electron
temperature can be less than 10 K. Ultracold plasmas are created by photo-ionization
of a cloud of laser-cooled atoms, as is illustrated by Fig 1.3, resulting in a low-density
plasma less than a millimeter in size. The combination of low temperature and low
density makes ultracold plasmas exotic systems that are close to the strongly-coupled
regime where the Coulomb interaction energy between the particles exceeds the ther-
mal energy. For such systems, standard descriptions of plasma processes that are
commonly applied to conventional plasmas need to be reconsidered. chapter 5 on
heating mechanisms is therefore specialized to ultracold plasmas, and it is indeed
found that the combination of a very low temperature and an applied electromag-
netic wave leads to some unexpected results. The latter are also directly relevant for
current experiments in which ultracold plasmas are probed with radiofrequency and
microwave fields, enabling the observation of phenomena such as plasma oscillations
[44, 45], Tonks-Dattner resonances [46], and modes associated with nonneutral plas-
mas [47, 48]. These experiments in turn yield valuable fundamental insights into the
plasma dynamics in the ultracold and strongly-coupled regime.

A crude but fruitful description of a plasma bunch is the so-called nanoplasma
model [49], which pictures the plasma as a rigid sphere of electrons overlapping with
an equally sized rigid sphere of ions. Accordingly, the coherent interaction of the
plasma electrons with electromagnetic radiation may to some extent be described
within the framework of electron theory and radiation reaction, as it is done in chap-

ter 3 on relativistic electron bunches. However, in a realistic plasma the electrons
do not form a rigid sphere, and due to self-produced polarization fields they may
oscillate with an amplitude that depends on the position in the plasma. A formal-
ism that is better suited to describe such effects, and which in particular enables the
self-consistent calculation of position-dependent fields and electron oscillation ampli-
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Figure 1.3: Creation of an ultracold plasma in a magneto-optical trap, involving
a cloud of atoms (center) that are subsequently cooled and confined by three
pairs of counterpropagating lasers (red) and a pair of coils (yellow), excited by
a resonant laser (blue) and ionized by another laser (green). Colors do not
represent the laser wavelengths.

tudes, are the macroscopic Maxwell equations. In chapter 6, plasma bunches in
interaction with an electromagnetic wave are therefore modeled as inhomogeneous
dielectric media, and the internal fields are calculated self-consistently. Such a di-
electric formulation is commonplace in the description of far-field radiation patterns
resulting from Mie scattering by homogeneous solid objects. We will use the for-
malism to study internal fields and forces in inhomogeneous plasmas, and show that
the radiation reaction effects emphasized in classical electron theory are still exhibited.

In addition to resultant forces that act on the electromagnetically driven plasma
as a whole, any inhomogeneities in the self-consistent fields within the plasma give
rise to local ponderomotive forces. Detailed knowledge of the fields, as provided by
the dielectric plasma description, enables an assessment of these forces, which is given
in chapter 6 as well. Since the dielectric description is not particular to plasmas,
the results suggest possibilities for the ponderomotive manipulation of other dielectric
media as well. The latter include solid state spheres and droplets in scattering ex-
periments [50–52], and levitated droplets that are needed for contact-free observation
of processes such as surface vibrations [53], ice nucleation [54], and crystallization of
salts [55].

7
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1.5 Coherent generation of terahertz waves

Up to now we have been introducing the topics of this thesis by discussing subwave-
length bunches of charged particles in the contexts of electron theory, laser-driven
electron bunches, plasma physics, and dielectric media. In the systems and applica-
tions mentioned so far, one could say that the charged particles play a passive part,
reacting to an electromagnetic field that is externally applied. As a final topic of this
thesis, we consider an application in which the roles of the particles and the radiation
field are reversed, the particles acting as a source of coherent electromagnetic waves
rather than a receiver. In chapter 7, we consider the generation of terahertz surface
waves on a metal wire by launching electron bunches onto a tapered end of the wire.

Terahertz surface waves on a wire are of current technological interest because
these waves can efficiently be focused below the diffraction limit [56–58]. This leads
to electromagnetic pulses that are both very strong and highly localized, making it
possible to study materials at terahertz frequencies with sub-wavelength spatial res-
olutions [59, 60], with applications in near-field microscopy [61, 62], imaging [63–66],
single particle sensing [67, 68] and terahertz spectroscopy [69, 70]. However, it is still
a challenge to generate wire-carried terahertz waves of appreciable amplitude. Cur-
rently, these waves are generated by scattering linearly polarized free-space terahertz
waves into a radially polarized wave, which is then coupled onto the wire [71]. How-
ever, the coupling efficiency of this scheme is very low [72], although some methods
exist to increase this efficiency somewhat [72–75].

(1) (2) (3)

Figure 1.4: Principle of terahertz surface wave (blue pulse) generation on a
wire by launching electron bunches (red) onto a conical metal tip.

In chapter 7, it is proposed to use the coherent properties of electron bunches to
produce terahertz waves on a wire, rather than trying to convert free-space terahertz
radiation. Our novel method is based on the phenomenon of transition radiation,
which is generated when charged particles pass a boundary between different media.
By letting an electron bunch pass the conical vacuum-metal boundary of the tapered
tip of a wire, transition radiation is generated that partly consists of electromagnetic
surface waves propagating along the boundary. This process is illustrated in Fig.
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1.4. We will show that the surface waves can become very strong for sharp wire tips,
and will add coherently for wavelengths larger than the electron bunch, that is, at
terahertz frequencies.
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2

Classical formulations of the electromagnetic self-force

of extended charged bodies

Abstract - Derivations of the electromagnetic self-force of rigid charged objects, as
developed in the context of classical models of charged particles, are reviewed. The
mathematical equivalence of the various dissimilar self-force expressions is demon-
strated explicitly. The position of the presented self-force calculations in the wider
context of classical electrodynamic descriptions of charged particles is discussed,
as well as their relevance to the description of macroscopic bunches of charged
particles.

Publication status - The work described in this chapter has been submitted as
an article for publication by P. W. Smorenburg, L. P. J. Kamp, and O. J. Luiten
(2013).
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Chapter 2.

2.1 Introduction

The origin of mass has always been a most important issue in physics, as exemplified
by the extreme efforts culminating in the recent observation of the Higgs particle.
Before the invention of the Higgs mechanism, and indeed before the advent of quan-
tum mechanics and the standard model, attempts were made to explain the mass of
elementary particles in terms of electromagnetic fields. As was first articulated by
Thomson [76], the acceleration of a charged body increases the energy of the electro-
magnetic field associated with the charge. This implies a resistance to accelerations,
or a electromagnetic contribution to the inertia of the body. On this basis, Abraham
[77], Lorentz [78], and others developed models for the electron in which the latter
was thought of as an extended charged body, possibly with zero non-electromagnetic
mass, that interacted with both externally applied and self-produced electromagnetic
fields. Classical electromagnetic electron models are still being actively pursued in
literature [79–82].
While electromagnetic descriptions of inertia relate to the fields that are insepara-
bly connected to the charge, that is, the Coulomb or near fields, the acceleration of
charged particles also gives rise to radiation fields, which too have their mechanical
effect on the motion of the accelerated particle. The latter influence is known as
radiation reaction, and its existence was recognized from the outset [77, 78]. While
radiation reaction for a long time has been considered experimentally irrelevant due
to the smallness of the effect, it has recently regained interest because available laser
intensities and the associated accelerations of electrons have almost increased to the
point where radiation reaction effects may become observable [83, 84]. Moreover, we
will show in chapter 5 that coherent enhancement of radiation reaction may lead to
observable effects already at moderate laser intensities.

Central to the classical electromagnetic description of inertia and radiation re-
action is the resultant Lorentz force F that is experienced by the charged particle,
and caused by the self-produced electromagnetic fields. In extended electron models
where the particle is assumed to have a finite size, this self-force reads

F =
ˆ

(ρE + J × B) d3x =
ˆ [

−ρ
(
∇φ+

∂A

∂t

)
+ J × (∇× A)

]
d3x, (2.1)

where ρ is the charge density, J is the current density, E is the electric field, B is the
magnetic field, φ and A are the electromagnetic potentials, and the integration is over
the extent of the particle. Eq. (2.1) is the starting point of any explicit calculation of
the electromagnetic self-force of a rigid charged body. In the past, several approaches
have been adopted to carry out this evaluation. In the special case of a homogeneously
charged sphere, this has yielded results in a variety of forms such as series expansions
[85, 86], definite integrals over time [87, 88], and Fourier integrals [89, 90]. Although
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Eq. (2.1) Literature,
section 2.2

Coulomb gauge Lorenz gauge

Fourier Direct Lagrange Taylor
transform integration expansion expansion
[89] [87, 88] [85, 86] [90]

Fourier Integrals Exact Linearized
integral over time series series

Linearized series Harmonic motion:
Series expansion in integral form factor integral

New results,
section 2.3

Figure 2.1: The content of this chapter in relation to existing results in litera-
ture.

these results have been cited many times and have been extensively reviewed [91], it
has never been shown how the various dissimilar expressions for the self-force can be
derived directly from each other, rather than starting from Eq. (2.1) for each method
separately. In this chapter, we establish these interrelations by deriving the mentioned
series expansions [85, 86] and integral expressions [87, 88, 90] from the result of Bohm
and Weinstein [89].

Figure 2.1 shows schematically the content of this chapter in relation to the results
available in literature. In section 2.2, a number of existing self-force derivations are
reviewed. In section 2.3, the mathematical equivalence of the resulting self-force
expressions is demonstrated. The derivations of section 2.3 constitute new results
that have not been given previously. Section 2.4 sketches the position of the presented
self-force calculations in the wider context of classical electrodynamic descriptions of
charged particles. In section 2.5, we conclude by discussing the relevance of classical
electron models to the description of macroscopic bunches of charged particles, which
are the main subject of this thesis.

2.2 Existing self-force derivations

The derivation of the self-force of a rigid charged body requires the evaluation of Eq.
(2.1) by some method. This involves a calculation of the electromagnetic potentials
appearing in Eq. (2.1), which necessitates a choice of gauge. The potentials φ(L) and
A(L) in the Lorenz gauge and the vector potential A(C) in the Coulomb gauge satisfy
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the wave equations (
1
c2
∂2

∂t2
−∇2

)
Ψ(x, t) = μ0cΠ(x, t). (2.2)

Here, Ψ ≡ {φ(L), cA(L), cA(C)
}

and Π ≡ {cρ,J ,JT }, with JT the divergenceless part
of the current density [90]. The scalar potential in the Coulomb gauge is not relevant
here, as will be discussed below. In terms of the causal Green’s function for the wave
equation, which equals [90]

G(x,x′, t, t′) =
δ (t− t′ − |x − x′| /c)

|x − x′| (2.3)

with δ the Dirac delta function, the relevant particular solution of Eq. (2.2) is given
by

Ψ(x, t) =
μ0c

4π

¨
G(x,x′, t, t′)Π(x′, t′)d3x′dt′. (2.4)

For any given charge distribution and given history of the motion of the charged
body, Π(x′, t′) is known, so that in principle the potentials can be evaluated with Eq.
(2.4), after which the self-force can be determined via Eq. (2.1). The calculations
available in literature where this program is followed differ in the order in which the
integrations in Eq. (2.4) are carried out. In view of the delta function in Eq. (2.3), it is
tempting to start with the integration with respect to t′. This immediately yields the
well-known retarded integral expressions [90] for the potentials, which indeed are the
starting point for the self-force calculations presented in sections 2.2.1 and 2.2.2 below.
However, integrating first with respect to t′ in Eq. (2.4) is not the only possibility. For
certain charge distributions, it is advantageous to start with the integration over x′,
as will be described in section 2.2.3. Still another possibility is to Fourier transform
Eq. (2.4), that is, to integrate with respect to the coordinates x; this is shown in
section 2.2.4.

2.2.1 Taylor expansion

Adopting the Lorenz gauge, integration of Eq. (2.4) with respect to t′ yields the
retarded integral expressions

Ψ(x, t) =
μ0c

4π

ˆ
Π(x′, tret)
|x − x′| d

3x′, (2.5)

where now Ψ ≡ {φ, cA} and Π ≡ {cρ,J}. In Eq. (2.5), the integration is complicated
by the fact that Π must be evaluated at the retarded time tret ≡ t−|x − x′| /c, which
is different for each volume element d3x′. Jackson [90] approaches this problem by
expanding Π in a Taylor series around the current time t,
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Π(x′, tret) =
∞∑

n=0

1
n!

(
−|x − x′|

c

)n
∂nΠ(x, t)

∂tn
. (2.6)

Substitution of Eq. (2.6) in Eq. (2.5) expresses the potential in terms of quantities
evaluated at the current time only. Using the result in Eq. (2.1) gives, after some
manipulations [90], the electric component of the self-force

F =
ˆ
d3r ρ(r, t)

[
μ0

4π

∞∑
n=0

(−1)n

n!cn

ˆ
Rn−1 ∂

n+1

∂tn+1

(
n+ 1
n+ 2

J − n− 1
n+ 2

(J · R) R

R2

)
d3r′

]
,

(2.7)

where the integration variables have been changed to r = x−ξ(t), r′ = x′−ξ(t), and
R = r−r′. For a spherically symmetric rigid charge distribution, Eq. (2.7) simplifies
to

F =
μ0

6π

∞∑
n=0

(−1)n

n!cn
dn+2ξ

dtn+2

¨
ρ(r)ρ(r′) |r − r′|n−1

d3rd3r′, (2.8)

in which ξ(t) is the trajectory of the center of the charged body. In Eq. (2.8),
the magnetic component corresponding to the last term in square brackets in Eq.
(2.1) has been neglected, so that Eq. (2.8) is only correct up to terms linear in ξ

and its time derivatives. In case of harmonic motion ξ = ξ0 exp(−iωt) ≡ ξ̃, the
series in Eq. (2.8) can be readily summed, and is proportional to exp(iω |r − r′| /c).
Furthermore, writing in Eq. (2.8) the charge distributions ρ in terms of their spatial
Fourier transforms, and integrating the resulting expression, it is found that [90]

F =
8πω2

3ε0c2
ξ̃ lim

λ↓0

ˆ ∞

0

k2 |ρk|2
k2 − (ω/c+ iλ)2

dk. (2.9)

Here, the symmetrical convention for Fourier transformed quantities
Yk ≡ (2π)−3/2

´
Y (r) exp(−ik · r)d3r is adopted. The quantity ρk is often called the

form factor of the charge distribution.

2.2.2 Lagrange expansion

As mentioned above, Eq. (2.8) is a linearized approximation to the exact self-force due
to the neglect of the magnetic term in Eq. (2.1). However, the derivation in section
2.2.1 is inexact for another reason. Namely, by making use of a predefined rigid charge
distribution ρ throughout the derivation (or more precisely, using the distribution in
the proper frame), it is implied that the potentials are generated by a total charge´
ρ(x′, tret)d3x′. The latter is in general not equal to the true charge of the body´
ρ(x′, t)d3x′ ≡ q, but rather depends on the body’s state of motion. To correct

for this inconsistency, either the quantity Π should be defined in a relativistically
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covariant way, or else the integral (2.5) should be modified to leave the total charge
invariant. The latter, however, is precisely how the Liénard-Wiechert potentials for
a moving point charge were devised, as is explained clearly in Ref. [92]. Accordingly,
the charged body may be regarded as a collection of infinitesimal particles moving
with the trajectory ξ(t) + r′ and having a fixed charge ρ(r′)d3r′ with ρ the proper
frame distribution. The corresponding potentials are thus given by

Ψ(x, t) =
μ0c

4π

ˆ {c,v}
R− R · v/c

∣∣∣∣
t=tret

ρ(r′)d3r′, (2.10)

where v(t) = dξ/dt is the velocity of the charged body, and R(t) ≡ x − ξ(t) − r′.
An important difference between Eq. (2.5) and the Liénard-Wiechert formulation Eq.
(2.10), apart from the different denominator, is that in the former the retarded time
was known explicitly in terms of the coordinates x and x′, while in the latter it is only
defined implicitly by the retardation condition tret = t−R(tret)/c. This complicates
the derivation of the self-force significantly. Herglotz [85] and Schott [86] proceeded
by expanding retarded quantities Y in series using Lagrange’s reversion theorem [93],

Y (tret) = Y (t) +
∞∑

n=1

(−1)n

n! cn
dn−1

dtn−1

[
R(t)n dY (t)

dt

]
. (2.11)

Note that differentiation of the quantity Rn in Eq. (2.11) produces factors of the
velocity v and derivatives thereof, so that the Taylor series Eq. (2.6) is in fact a
linearization of Eq. (2.11) in which all terms nonlinear in v and its derivatives have
been neglected. Likewise, the potentials Eq. (2.5) are linearizations of the Liénard-
Wiechert potentials Eq. (2.10). On working out the first few terms of Eq. (2.11),
and noting that R ∼ b for relevant field points x, it becomes apparent that these
linearizations are good approximations provided that∣∣∣∣bncn dn

dtn
v

∣∣∣∣� |v| (2.12)

for n ≥ 1. Roughly speaking, this means that the motion of the body should not
change significantly on the time scale necessary for light to travel across the body,
which is the time scale at which self-forces are communicated. This condition is known
as quasi-stationary motion [91]. It indicates the range of validity of the form factor
integral Eq. (2.9), in addition to the condition |v| � c associated with the neglect of
magnetic forces.

Substitution of Eq. (2.11) in Eq. (2.10) expresses the potentials in terms of
quantities evaluated at the current time only. Using the result in Eq. (2.1), and
performing all integrations, gives a series expansion for the self-force. This series
has been evaluated explicitly up to cubic terms in the velocity for a homogeneously
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charged sphere of radius b by Herglotz [85]. The linear terms are

F = −6μ0q
2

πb

∞∑
n=0

(n+ 1)(n+ 4)(−2b/c)n

(n+ 5)!
dn+2ξ

dtn+2
, (2.13)

and dominate the nonlinear terms in case of quasi-stationary motion Eq. (2.12). For a
homogeneously charged sphere in rectilinear motion ξ(t) = ξ(t)ez , Schott [86] derived
the following closed-form expression including terms up to arbitrary order:

F = −36q2

πε0b
ez

∞∑
n=0

∞∑
m=0

(m+ 1)(n+ 1)(n+ 4)(−2b)n

(2m+ 1)(2m+ 3)!(n+ 5)!
(2.14)

× ∂2m+n+2

∂u2m+n+2
[ξ(t+ u/c) − ξ(t)]2m+1

∣∣∣∣
u=0

,

which reduces to Eq. (2.13) when truncated at m = 0.

2.2.3 Direct evaluation

Sommerfeld [87, 88] has evaluated the self-generated potentials of a charged body by
integrating Eq. (2.4) with respect to x′. For a homogeneously charged sphere, this
leaves a one-dimensional integral over t′ [88]:

Ψ(x, t) = − 3q
16π2b3

ˆ t

−∞

{c,v(t′)}
Rc(t′)

χdt′, (2.15)

where Rc(t′) = |x − ξ(t′)| is the distance to the center of the sphere, and

χ =

⎧⎪⎪⎨⎪⎪⎩
4c(t− t′)Rc c(t− t′) < b−Rc

b2 − [c(t− t′) −Rc]2 b−Rc < c(t− t′) < b+Rc

0 c(t− t′) > b+Rc.

(2.16)

In virtue of the delta function in Eq. (2.4), times between t′ and t′ + dt′ in Eq.
(2.15) correspond to the contribution to the potentials Ψ(x, t) generated by the charge
located within a shell with radius c(t− t′) and thickness cdt′ centered around the field
point x. Depending on Rc and t′, this shell may fall completely within the charged
sphere, or only partially, or not at all, each case leading to a different factor χ as given
by Eq. (2.16). Using the potentials Eq. (2.15) in Eq. (2.1) results in the self-force
[87]

F = − 3q2

32πε0b4c

(ˆ τ+

0

G+(τ) dτ +
ˆ τ−

0

G−(τ) dτ

)
, (2.17)

in which the integrations are over the time difference τ ≡ t− t′, and
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G±(τ) =
[
c2 − v(t) · v(t− τ)

] s

s

∂

∂s

g(cτ ± s)
s

(2.18)

+
∂

∂t

v(t− τ)g(cτ ± s)
s

;

g(y) =
y5

20b5
− y3 + 2by2 − 8b3

5
. (2.19)

Here, s = ξ(t) − ξ(t − τ) is the displacement of the charged sphere during the time
interval τ . The upper integration limits in Eq. (2.17) are the roots of the equations
cτ± ± s(τ±) = 2b. These limits demarcate different stages in the communication
of electromagnetic signals between the parts of the charged sphere that lead to the
self-force at the current time t. For subluminal motion, the trailing end of the sphere
receives electromagnetic signals at time t that were emitted by the other parts of the
sphere at times between t− τ+ and t. The signals received by the leading end at time
t were emitted by the other parts during the slightly longer interval between t − τ−

and t. Signals emitted at still earlier at times before t− τ− do not arrive at any other
part of the sphere at time t, so that the domain τ > τ− does not contribute to the
self-force Eq. (2.17) at all.

2.2.4 Fourier transform

Bohm and Weinstein [89] have adopted the Coulomb gauge to evaluate Eq. (2.1).
The benefit of this gauge choice for the calculation of the self-force of a rigid charged
body is that the scalar potential φ equals the electrostatic potential corresponding
to the instantaneous distribution of charge. Since for any pair of charge elements
de1 and de2 the instantaneous electrostatic force on de1 due to de2 is the negative
of the electrostatic force on de2 due to de1, the contribution of φ to the self-force F

integrates to zero identically. Therefore only the vector potential has to be taken into
account, which is given by Eq. (2.4) as before. It can be shown [89] that a Fourier
transformation of this equation from the spatial domain x to the wave vector domain
k yields the potential

Ak(k, t) =
μ0c

k

ˆ t

−∞
JT,k(k, t) sin [ck(t− t′)] dt′. (2.20)

Notice that the integration in Eq. (2.20) extends to the upper boundary t, so that the
potential at time t depends only on currents at past times t′ < t, that is, Eq. (2.20) is
causal as it should be. Using in the self-force Eq. (2.1) the inverse Fourier transform
A ≡ (2π)−3/2

´
Ak exp(ik · x)d3k, and substituting Eq. (2.20), gives [89]
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F =
1
ε0

ˆ t

−∞
dt′

ˆ
d3k |ρk|2 exp (ik · s) (2.21)

×
(

k × [v(t′) × k]
k2

cos ckτ − v(t) × [k × v(t′)]
ck

i sin ckτ
)
.

Note that the second term in large braces is proportional to and perpendicular to
the current velocity v(t) of the charged body, and therefore represents the magnetic
component of the self-force. The first term gives the electric component. For a
spherically symmetric charge distribution, ρk(k) is a function of the magnitude of k

but not of its direction. In this case, Eq. (2.21) can be straightforwardly integrated
over angles in k-space. This reduces Eq. (2.21) to

F = −4π
ε0

ˆ t

−∞
dt′

ˆ ∞

0

dk k2 |ρk|2
[(

v(t′) − 3[v(t′) · s]s
s2

)
j1 (ks)
ks

cos ckτ

−
(
v(t′) − [v(t′) · s]s

s2

)
j0 (ks) cos ckτ− v(t) × [s × v(t′)]

cs
j1 (ks) sin ckτ

]
, (2.22)

where jn denotes the spherical Bessel function of the first kind and order n [94]. In Eq.
(2.22), the first two terms in large square brackets represent the electric component of
the force and are given in Ref. [89]; the last term gives the magnetic component. The
integral over k containing Bessel function kernels has the typical form of an inverse
Fourier transform in spherical coordinates [95]. In section 2.3, we will derive the other
self-force representations given in sections 2.2.1 to 2.2.3 from this Fourier integral.

2.3 Equivalence of the self-force expressions

2.3.1 Fourier integral and integral over time

Sommerfeld derived for the piecewise function χ given by Eq. (2.16) the integral
representation [88]

χ =
8b2

π

ˆ ∞

0

j1(kb) sin(kRc) sin[ck(t− t′)]
k

dk. (2.23)

Substituting this representation in Eq. (2.15), and using the result in Eq. (2.1), gives
the self-force [88]

F = − 9q2

2π2ε0b2c

ˆ ∞

0

dτ

ˆ ∞

0

dk [j1(kb)]2 (2.24)

×
(

1
k

∂

∂t
[v(t− τ)j0(ks) sin ckτ ]−[c2 − v(t) · v(t− τ)

] s

s
j1(ks) sin ckτ

)
.
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Performing the integration over k indeed yields the force Eq. (2.17). We now show
that Eq. (2.24) is equivalent to Eq. (2.22) that was derived by Fourier analysis of the
potentials in the Coulomb gauge. Note that the integrands of both equations already
have a similar structure due to the form of the integral representation Eq. (2.23).
Performing the differentiation ∂/∂t in Eq. (2.24) using the property

∂j0(ks)
∂t

= −kj1(ks)
∂s

∂t
= −kj1(ks)

[v(t) − v(t− τ)] · s
s

gives, after changing the integration variable back to t′ and rearranging,

F = − 9q2

2π2ε0b2c

ˆ t

−∞
dt′

ˆ ∞

0

dk [j1(kb)]2 sin ck(t− t′)
[
c2s

s
j1(ks) (2.25)

−1
k

dv(t′)
dt′

j0(ks) +
({[v(t) − v(t′)] · s} v(t′)

s
− [v(t) · v(t′)] s

s

)
j1(ks)

]
.

Next we integrate by parts the first two terms in large square brackets in Eq. (2.25)
with respect to t′, choosing for the differentiated factors respectively f1(t′) = sj1(ks)/s
and f2(t′) = j0(ks) sin ckτ . To carry out this integration unambiguously, it is neces-
sary to replace the lower integration limit t′ = −∞ by t′ = −a, and take the limit
a→ ∞ afterwards. With the help of the relations

∂f1
∂t′

=
(

3j1(ks)
ks

− j0(ks)
)
k [v(t′) · s] s

s2
− v(t′)

s
j1(ks);

∂f2
∂t′

=
kv(t′) · s

s
j1(ks) sin ckτ − ckj0(ks) cos ckτ,

the resulting self-force is

F =
9q2

2π2ε0b2
lim

a→∞

ˆ ∞

0

[j1(kb)]2 (B + I ) dk, (2.26)

where

B =
[
v(t′)
ck

j0(ks) sin ckτ − s

ks
j1(ks) cos ckτ

]t

t′=−a

;

I = −
ˆ t

−a

dt′
[(

v(t′) − 3[v(t′) · s]s
s2

)
j1 (ks)
ks

cos ckτ

−
(
v(t′) − [v(t′) · s]s

s2

)
j0 (ks) cos ckτ− v(t) × [s × v(t′)]

cs
j1 (ks) sin ckτ

]
.

Taking in Eq. (2.26) the limit a→ ∞ of I presents no difficulties, and yields precisely
Eq. (2.22), specialized to a homogeneous sphere that has the form factor
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ρk =
3q

(2π)3/2

j1(kb)
kb

. (2.27)

Therefore Eq. (2.26) is equivalent to Eq. (2.22), provided that the boundary term B

vanishes. This can be shown to be the case as follows. B evaluated at t′ = t vanishes
since sin ckτ = 0 and s(t′) = 0 at t′ = t. In the limit t′ → −∞, the first term of B
is zero trivially when v(−∞) = 0. When v(−∞) 
= 0, it must be that s(t′) → ∞
and hence j0(ks) → 0 as t′ → −∞, so that the first term does not contribute in this
case either. The second term of B, on the other hand, vanishes at t → −∞ only
when v(−∞) 
= 0. Namely, when v(−∞) = 0 it is possible that s(−∞) ≡ S has
a finite value. In that case, the boundary term makes a contribution to Eq. (2.26)
proportional to

lim
a→∞

ˆ ∞

0

h(k) cos ck(t− a)dk, (2.28)

where h(k) = [j1(kb)]2 j1(kS)/k. However, Eq. (2.28) evaluates to zero by the
Riemann-Lebesgue lemma [93]. Hence B = 0 for all possible v(−∞), so that the
force Eq. (2.26) is indeed identical to the force Eq. (2.22) that was derived by Fourier
analysis of the potentials in the Coulomb gauge.

2.3.2 Fourier integral and form factor integral

As discussed above, the self-force Eq. (2.9) in terms of a form factor integral is
valid for quasi-stationary motion Eq. (2.12) and |v| � c, and for the special case
of harmonic motion. In order to compare Eq. (2.9) with the self-force derived in
section 2.2.4, the latter should be specialized accordingly. This may be effected by
expanding the integrand of Eq. (2.21) in a Taylor series around t′ = t, and linearizing
the result by neglecting all terms nonlinear in v and its derivatives. The extremely
involved full expansion, in which all nonlinear terms have been kept, is given in
Ref. [79]. Formally, such use of a Taylor series to describe the integrand on the
infinite interval −∞ < t′ < t is questionable because the series may have a finite
radius of convergence. However, for subrelativistic motion electromagnetic signals are
communicated between parts of the charged body on a time scale ∼ b/c, so that only
the small interval t−b/c � t′ < t significantly contributes to the integral in Eq. (2.21).
This can be seen by noting in Eq. (2.21) that the integrand only contributes in the
domain |k| � b−1 because the form factor |ρk|2 ≈ 0 elsewhere, and that the integral
over this domain averages out due to the sinusoidal functions unless ckτ � π/2, that
is, unless t− b/c � t′ < t. Proceeding on this basis by Taylor-expanding, neglecting
nonlinear terms, and integrating over angles in k-space, yields

F = − 8π
3ε0

∞∑
n=0

(−1)n

n!
dnv

dtn

ˆ ∞

0

ˆ ∞

0

k2 |ρk|2 τn cos ckτ dτdk. (2.29)
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Writing in Eq. (2.29)

τ2n cos ckτ = (−1)nc−2n(d/dk)2n cos ckτ ;

τ2n+1 cos ckτ = (−1)nc−2n−1(d/dk)2n+1 sin ckτ,

as is also done in Ref. [79], and integrating by parts with respect to k repeatedly,
gives

F = − 8π
3ε0

∞∑
n=0

(−1)n

c2n(2n)!
d2nv

dt2n

ˆ ∞

0

(
B(e)

n + I(e)
n

)
dτ (2.30)

− 8π
3ε0

∞∑
n=0

(−1)n

c2n+1(2n+ 1)!
d2n+1v

dt2n+1

ˆ ∞

0

(
B(o)

n + I(o)
n

)
dτ,

in which

B(e)
n =

2n−1∑
m=0

(−1)m dm

dkm
k2 |ρk|2 d2n−m−1

dk2n−m−1
cos ckτ

∣∣∣∣∞
k=0

;

B(o)
n =

2n∑
m=0

(−1)m+1 d
m

dkm
k2 |ρk|2 d2n−m

dk2n−m
sin ckτ

∣∣∣∣∞
k=0

;

I(e)
n =

ˆ ∞

0

d2n

dk2n

(
k2 |ρk|2

)
cos ckτ dk;

I(o)
n =

ˆ ∞

0

d2n+1

dk2n+1

(
k2 |ρk|2

)
sin ckτ dk.

All boundary terms B(e)
n and B

(o)
n vanish identically. At k = ∞, this is because

ρk(∞) = 0 for any finite charge distribution. At k = 0, the terms with odd m are
zero because k2 |ρk|2 is an even function, and those with even m vanish because they
contain sin ckτ as a factor. The quantity

√
2/πI(e)

n ≡ J
(e)
n can be interpreted as

the symmetric cosine transform of the function j 2n(k) = (d/dk)2nk2 |ρk|2; likewise,√
2/πI(e)

n ≡ J
(o)
n is the symmetric sine transform of j 2n+1(k). Therefore the double

integrals in Eq. (2.30) reduce to the single integrals

ˆ ∞

0

I(e)
n dτ =

π

2c

(√
2
π

ˆ ∞

0

J (e)
n cos kx dx

)
k=0

=
π

2c
j 2n(0); (2.31)

ˆ ∞

0

I(o)
n dτ =

1
c

√
2
π

(ˆ ∞

0

sin kx
k

dk

)(ˆ ∞

0

J (o)
n dx

)
(2.32)

=
ˆ ∞

0

(√
2
π

ˆ ∞

0

J (o)
n sin kx dx

)
dk

ck
=
ˆ ∞

0

j2n+1(k)
ck

dk.
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Here, the identity
´∞
0 k−1 sinkx dk = π/2 and the variable x = cτ have been used.

With the help of Eqs. (2.31)-(2.32), the force Eq. (2.30) reduces to

F =
8π

3ε0c

∞∑
n=0

(−1)n+1

c2n(2n)!

[
π

2

(
d2n

dk2n
k2 |ρk|2

)
k=0

d2nv

dt2n
(2.33)

+
1

(2n+ 1)c

(ˆ ∞

0

d2n+1

dk2n+1
k2 |ρk|2 dk

k

)
d2n+1v

dt2n+1

]
.

This expression now has the manageable form of a series in terms of the derivatives
of the current velocity, with coefficients that are readily calculated from the form
factor of the charge distribution. In the next section, we will specialize this result to a
homogeneously charged sphere, and show that it is equivalent to the series expansion
Eq. (2.13) obtained by application of Lagrange’s reversion theorem. Here, we apply
Eq. (2.33) to the case of harmonic motion, for which v = −iωξ0 exp(−iωt) ≡ −iωξ̃.
Since (d/dt)nv = (−iω)nv, Eq. (2.33) then becomes the sum of two ordinary power
series in the quantity ω/c. The series corresponding to the first line of Eq. (2.33) may
be interpreted as the even part of the Taylor series of the function p(κ) = κ2 |ρk(κ)|2
around κ = 0, evaluated at κ = ω/c. Similarly, the series in the second line may be
identified with the odd part of the Taylor series of p(κ) around κ = k, evaluated at
κ = k + ω/c. Summing these two series therefore results in

F =
4πω
3ε0c

ξ̃

(ˆ ∞

0

p(k + ω/c) − p(k − ω/c)
k

dk+
iπ

2
[p(ω/c) + p(−ω/c)]

)
. (2.34)

Noting that p(k) is an even function, the integral in Eq. (2.34) may be recognized
as the Hilbert transform of p(k) in a less common notation [96]. Accordingly, by
changing variables it may be shown [96] that

F =
8πω2

3ε0c2
ξ̃

( ∞

0

k2 |ρk(k)|2
k2 − ω2/c2

dk + iπ Res
k=ω/c

k2 |ρk(k)|2
k2 − ω2/c2

)
, (2.35)

where
ffl

denotes the Cauchy principal value. Here, the second line of Eq. (2.34) has
been interpreted as a residue. Eq. (2.35) is identical to the force Eq. (2.9) derived
from a Taylor expansion of the retarded integrals for the potentials.

2.3.3 Fourier integral and Lagrange expansion

In the previous section, we derived the series expansion Eq. (2.33) that expresses the
linearized self-force in terms of the derivatives of the current velocity of the charged
body, for a general spherically symmetric charge distribution. We will now specialize
this result to a homogeneously charged sphere, and show that this yields the self-
force Eq. (2.13) that was obtained from series expansion of the retarded potentials.
Evaluation of Eq. (2.33) using the form factor of a homogeneous sphere Eq. (2.27)
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requires determination of the quantities

Sn =
d2n [j1(x)]2

dx2n

∣∣∣∣∣
x=0

; Tn =
ˆ ∞

0

d2n+1 [j1(x)]2

dx2n+1

dx

x
. (2.36)

The first of these equals (2n)! times the coefficient of x2n in the Taylor series of [j1(x)]2

around x = 0. By squaring the ascending power series of the Bessel function [94], it
is thus found that

Sn =
n−1∑
m=0

(2n)!
(− 1

2

)n−1

m!(n−m− 1)!(2m+ 3)!!(2n− 2m+ 1)!!
. (2.37)

Writing factorials in terms of Pochhammer symbols (p)q ≡ Γ(p+ q)/Γ(q) with Γ the
Gamma function [94], Eq. (2.37) becomes

Sn =
π(2n)!

(− 1
4

)n+1

Γ
(

5
2

)
Γ(n)Γ

(
n+ 3

2

) n−1∑
m=0

(1 − n)m

(− 1
2 − n

)
m

m!
(

5
2

)
m

. (2.38)

Here, it has been used that (p)−q = (−1)q/(1 − p)q [97]. The series in Eq. (2.38)
defines a Gauss hypergeometric function with unit argument [94]. Evaluating this
hypergeometric function, and converting Gamma functions to factorials, results in

Sn = − n(−4)n

(n+ 1)(n+ 2)(2n+ 1)
. (2.39)

Establishing Tn is more involved. The squared Bessel function [j1(x)]2 can be ex-
panded in a series of Bessel functions with doubled argument [98]. This gives

[j1(x)]2 =
∞∑

m=0

2m+ 2
(2m+ 1)(2m+ 3)

J4m+3(2x) + J4m+5(2x)
x

, (2.40)

where J denotes the cylindrical Bessel function of the first kind [94]. The factor x in
the denominator can be removed with the help of the recurrence relation 2pJp(z)/z =
Jp−1(z) + Jp+1(z). Subsequently, the integrand of Tn in Eq. (2.36) is found by
applying the expansion [99]

dpJq(z)
dzp

=
1
2p

p∑
u=0

(−1)u

(
p

u

)
Jq−p+2u(z) . (2.41)
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This gives

1
x

d2n+1 [j1(x)]2

dx2n+1
=

∞∑
m=0

2n+1∑
u=0

(2m+ 2)(−1)u

(2m+ 1)(2m+ 3)

(
2n+ 1
u

)
(2.42)

× [C0Jv(2x) + C2Jv+2(2x) + C4Jv+4(2x) + C6Jv+6(2x)
]
,

where v ≡ 4m− 2n+ 2u, and

C0 =
1

(4m+ 3)(4m− 2n+ 2u+ 1)
;

C6 =
1

(4m+ 5)(4m− 2n+ 2u+ 5)
;

C2 = C0 +
2(4m+ 4)

(4m+ 3)(4m+ 5)(4m− 2n+ 2u+ 3)
;

C4 = C6 +
2(4m+ 4)

(4m+ 3)(4m+ 5)(4m− 2n+ 2u+ 3)
.

Substituting this expansion in Eq. (2.36), the integral Tn can be evaluated trivially
because

´∞
0
Jp(z)dz = 1 for arbitrary p > −1 [94]. Therefore Tn is given by Eq.

(2.42) if each Bessel function is replaced by 1/2. The remaining double series can be
summed in closed form. The sums over u of the various terms have been tabulated
[97]; together they evaluate to

Tn =
π(−1)n(2n+ 1)!

4Γ
(
n+ 1

2

)
Γ
(
n+ 9

2

) (2.43)

×
∞∑

m=0

(
4 +

1
m+ 1

2

− 1
m+ 3

2

)
(1)m

(
1
4 − n

2

)
m

(
3
4 − n

2

)
m

m!
(

9
4 + n

2

)
m

(
11
4 + n

2

)
m

.

The series in the second line of Eq. (2.43) is derivable from the series

Un(z) =
∞∑

m=0

(1)m

(
1
4 − n

2

)
m

(
3
4 − n

2

)
m
zm

m!
(

9
4 + n

2

)
m

(
11
4 + n

2

)
m

, (2.44)

which defines the generalized hypergeometric function [100]

Un(z) = F3 2

(
1 ,

1 − 2n
4

,
3 − 2n

4
;

11 + 2n
4

,
9 + 2n

4
; z
)
. (2.45)

Comparing Eqs. (2.43) and (2.44), it is found that

Tn =
π(−1)n(2n+ 1)!

4Γ
(
n+ 1

2

)
Γ
(
n+ 9

2

) (4Un(1) +
ˆ 1

0

Un(z)D(z)dz
)
, (2.46)
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with D(z) = z−1/2 − z1/2. The integral in Eq. (2.46) is equal to [101]

ˆ 1

0

UnDdz =
4
3

F4 3

(
1 ,

1
2
,

1 − 2n
4

,
3 − 2n

4
;

5
2
,

11 + 2n
4

,
9 + 2n

4
; 1
)
. (2.47)

Eqs. (2.45)-(2.47) define Tn in terms of two generalized hypergeometric functions
of unit argument; for both functions closed form expressions in terms of Gamma
functions exist [102]. Writing these expressions in terms of factorials yields, after
considerable reduction,

Tn =
π(2n+ 1)(−4)n

(n+ 1)(2n+ 3)(2n+ 5)
. (2.48)

Finally, having the quantities Sn and Tn at our disposal, the self-force Eq. (2.33) can
be evaluated. Combining Eqs. (2.33), (2.27), (2.40) and (2.48) gives

F =
3q2

πε0cb2

∞∑
n=0

(
(2n)(2n+ 3)(−2b)2n

(2n+ 4)!
1
c2n

d2nv

dt2n
(2.49)

+
(2n+ 1)(2n+ 4)(−2b)2n+1

(2n+ 5)!
1

c2n+1

d2n+1v

dt2n+1

)
.

Taking the two terms in large braces together by relabeling the summation index gives
precisely Eq. (2.13). It has thus been shown that the self-force obtained by Fourier
analysis of the potentials in the Coulomb gauge is equivalent to the force derived by
Lagrange expansion of the potentials in the Lorenz gauge.

2.4 Charged particle theories

In the previous sections we have given an overview of classical derivations of the
self-force of an extended rigid charged object, and we established the equivalence of
the various approaches by deriving the resulting self-force expressions from one an-
other. This body of research, symbolized by Fig. 2.1 as a whole, has been termed
’extended electron theories’ [91]. It is useful to indicate the position of these theories
within the wider scope of the classical electrodynamic description of charged particles.
First of all, classical formulations in general were largely abandoned with the advent
of quantum electrodynamics. However, on a small scale classical descriptions have
continued to attract interest, partly motivated by the unsatisfactory need of renor-
malization procedures in quantum electrodynamics. Descriptions that are based on
extended electron theories may be classified by their assumption regarding the size
of the electron, which may be illustrated with reference to the self-force expressions
Eqs. (2.13)-(2.14). In theories where the electron is supposed to have a finite size
b, the force can be represented by a series of derivatives of the velocity, which may
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be linearized or truncated depending on the approximations made. Truncation of the
series, however, leads to an equation of motion of the electron that has the form of a
finite-order differential equation, and it can be shown [103] that this equation always
admits unphysical runaway solutions in which the electron keeps accelerating without
the application of an external force. Such runaway solutions can be circumvented by
keeping all terms of the linearized series, which leads to a better behaved differential
equation of motion of infinite-order, or finite-difference equation [89, 104, 105]. Nev-
ertheless, theories in which the electron is considered to be of finite size are plagued
by other inconsistencies as well, in particular in connection with relativistic covari-
ance and with a meaningful formulation of rigidity of extended relativistic objects
[106]. These problems are avoided altogether in models which assume that the elec-
tron has vanishing extent. However, when formulating such models as the limit b→ 0
of extended electron theories, self-force divergences are encountered, as is apparent
from Eqs. (2.13)-(2.14). Although these divergences could be handled by appropriate
renormalization procedures [91], such procedures involve the unattractive assumption
of a negative non-electromagnetic mass, which inherently leads again to an equation
of motion that admits runaway solutions [107].

An alternative approach to the dynamics of classical charged particles is to assume
a point particle from the outset, thereby dispensing with any problematic implications
from extended electron theories, and base oneself on conservation laws only. Dirac
[108] showed that it is possible to formulate a consistent covariant equation of motion
in this way, which reads

ṗμ =
q

m
Fμνpν + τe

[
ṗλṗλ

(mc)2
pμ + p̈μ

]
, (2.50)

where pμ is the four momentum of the charged particle, Fμν is the electromagnetic
field tensor of the applied field, m and q are the mass and charge of the particle,
and τe ≡ q2/(6πε0mc3). Eq. (2.50), together with some approximating versions, is
presently the most widely accepted classical equation of motion of a charged particle.
However, due to the presence of the second derivative p̈μ, this equation too admits
runaway solutions. To select the physically admissible solutions, auxiliary conditions
must be made (such as ṗμ ≡ 0 in the distant future). Alternatively, these conditions
may be implied automatically by approximating ṗμ ≈ (q/m)Fμνpν in the bracketed
term in Eq. (2.50), which is equivalent to demanding that this term remain small
compared to the other terms. Both techniques to select physical solutions are equiva-
lent [109]. The so-called Landau-Lifshitz equation of motion [110] resulting from the
latter technique is at present commonly used [83, 84] as a numerically stable alterna-
tive to Eq. (2.50).
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2.5 Discussion

From the previous section, it may be concluded that the present emphasis in classical
descriptions of charged particles is on conservation laws and relativistic covariance. Al-
though extended electron theories preceded and inspired currently used descriptions,
the fields and forces within the particle presently play a subsidiary role. Nevertheless,
in the context of this thesis, where our subject is macroscopic charged bunches rather
than point particles, self-generated internal fields and forces are more than relevant.
Extended electron theories therefore offer direct information about physical effects
that can be expected in macroscopic bunches, insofar these bunches move in a more
or less rigid manner. For example, the quantity in square brackets in Eq. (2.7) rep-
resents the self-generated retarded electric field E(r, t) minus the electrostatic field
Ees(r, t) [90]. Assuming a homogeneous bunch in harmonic motion and evaluating
the lowest order term n = 0, yields

E − Ees ≈ −μ0qω
2

20πb3
[(

5b2 − 2r2
)
ξ̃ + (r · ξ̃)r

]
. (2.51)

In practice the harmonic motion is caused by the electric field Ẽ of an applied electro-
magnetic wave, such that ξ̃ = eẼ/(mω2); hence the total field in the bunch is Ẽ +E.
Now, this total field is inhomogeneous, and therefore the time-average of the Lorentz
force experienced by the electrons oscillating in this field is the ponderomotive force
Fp = −e2∇|Ẽ + E|2/(4mω2). For linear polarization in the z-direction, the cartesian
components of Fp evaluate to

Fp ≈ − e2

2mω2
∇
(
E · Ẽ

)
= −μ0qeω

2ξ̃ 2

20πb3

⎛⎝2x
2y
z

⎞⎠ . (2.52)

Eq. (2.52) shows that coherently oscillating homogenous bunches self-generate a lin-
early compressive ponderomotive force.

Although the previous example already indicates the relevance of extended elec-
tron theories for the coherent interaction of macroscopic bunches, an important aspect
of the latter is completely lacking from these theories: bunches of charged particles
are not rigid. In case of electron bunches, electrostatic forces dominate any pondero-
motive forces, leading to a rapid Coulomb explosion unless the bunch is accelerated
to relativistic velocities. At relativistic velocities, however, all of the self-force expres-
sions in this chapter loose their meaning, because no proper account has been taken of
the relativistic consequences of assuming a rigid object [106]. To still make quantita-
tive predictions about effects caused by the self-force of relativistic electron bunches,
the best available result is the equation of motion Eq. (2.51), which at least is fully
consistent with both relativity and conservation laws. In chapter 3, we therefore base
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ourselves on Eq. (2.51) to calculate trajectories of subwavelength electron bunches in-
teracting with a strong laser pulse. It is shown that the coherently enhanced self-force
of the bunch may lead to observable effects, which may be tentatively extrapolated
to significant acceleration in the regime of highly charged electrons bunches.

In case of quasi-neutral plasma bunches, electrostatic forces that drive the Coulomb
explosion are largely absent. For such bunches, however, the lack of rigidity presents
itself in the fact that the plasma electrons may oscillate with different amplitudes.
Indeed, it is well known that the field strength of an electromagnetic wave traveling
through an inhomogeneous plasma may vary substantially. Therefore, rather than
calculating the self-force based on a presupposed rigid motion, the electromagnetic
fields in a plasma bunch are more appropriately determined self-consistently by con-
sidering the plasma as a dielectric medium, and solving the macroscopic Maxwell
equations. This is done in chapter 6. Note that such a dielectric description is valid
only for nonrelativistic motion; however, in absence of a Coulomb explosion there is
no urgent experimental need to invoke relativistic velocities. It is shown in chapter 6
that a dielectric description of the plasma bunch still exhibits the total self-force on
the bunch. In addition, knowledge of the self-consistent motion is employed to study
in detail the ponderomotive effects in the plasma.
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3

Coherently enhanced radiation reaction effects

in laser-vacuum acceleration of electron bunches

Abstract - The effects of coherently enhanced radiation reaction on the motion
of subwavelength electron bunches in interaction with intense laser pulses are an-
alyzed. The radiation reaction force behaves as a radiation pressure in the laser
beam direction, combined with a viscous force in the perpendicular direction. Due
to Coulomb expansion of the electron bunch, coherent radiation reaction takes effect
only in the initial stage of the laser-bunch interaction while the bunch is still smaller
than the wavelength. It is shown that this initial stage can have observable effects
on the trajectory of the bunch. By scaling the system to larger bunch charges, the
radiation reaction effects are strongly increased. On the basis of the usual equation
of motion, this increase is shown to be such that radiation reaction may suppress the
radial instability normally found in ponderomotive acceleration schemes, thereby
enabling the full potential of laser-vacuum electron bunch acceleration to GeV en-
ergies. However, the applicability of the used equation of motion still needs to be
validated experimentally, which becomes possible using the presented experimental
scheme.

Publication status - The work described in this chapter has been published by
P. W. Smorenburg, L. P. J. Kamp, G. A. Geloni, and O. J. Luiten in Laser Part.
Beams 28, 553-562 (2010).
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3.1 Introduction

The recent availability of ultra-intense laser pulses has led to increased efforts to de-
velop novel compact acceleration schemes for electron beams. These include wakefield
accelerators [111–114], thin foil irradiation schemes [115, 116] and laser-vacuum ac-
celeration concepts [117, 118]. Most studies so far have concentrated on the dynamics
of the individual electrons in the considered electron bunches under the action of the
externally applied electromagnetic fields, while consideration of the self-interaction of
the bunches is limited to space-charge effects. Self-interaction due to the radiation
emitted by the bunch itself is often ignored. Neglect of this collective radiation reac-
tion is well-justified if the electron density is not too high and the electron bunch size
exceeds the laser wavelength used.
In recent years, however, the interaction of intense laser light with nanometer to mi-
crometer sized atomic clusters of near solid state density has become the subject of
thorough investigation [119, 120]. This has led to the observation of large numbers
of electrons emitted from such clusters [121–124]. In particular, under suitable con-
ditions the production of dense, attosecond electron bunches from laser-irradiated
clusters has been observed both numerically [125] and experimentally [123, 126]. Also
the creation of ultrashort bunches from laser-irradiated foils is actively studied [127–
129]. In view of these developments, collective radiation reaction effects may become
an important factor in the dynamics of dense electron bunches and should be taken
into account. It was realized already many years ago [130] that these effects can even
dominate the bunch dynamics and may be exploited as a collective acceleration mech-
anism. More recently, the ultra-intense field regime in which radiation reaction effects
become dominant has been analyzed [131] and the acceleration of plasma sheets as-
sisted by radiation reaction has been considered [132, 133] in the context of current
technological possibilities.
In the present chapter, we consider the effect of collective radiation reaction on a
dense subwavelength electron bunch in interaction with a laser pulse. It is shown that
the interaction can be modeled by a particularly simple picture of radiation pressure
in the direction of the laser beam on a coherently enhanced effective cross section,
in combination with a viscous force perpendicular to the laser propagation direction.
Thus collective radiation reaction may be exploited in acceleration schemes as an ad-
ditional accelerating force as well as a stabilizing force in the transverse direction.

Classically, the net radiative effect of the interaction of charged particles with an
electromagnetic wave is described by Thomson scattering. This is the production of
secondary dipole radiation by charges that oscillate due to the electric field of an inci-
dent radiation wave, which can be seen as scattering of part of the incident radiation
by the charges. In case of an electron bunch of charge q = Ne and radius R = R0

much smaller than the wavelength λ of the incident radiation, the N electrons in the
bunch will essentially perform an identical oscillation, yielding coherently amplified
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secondary radiation that is identical to the radiation a point charge of magnitude q
would produce. Hence the dynamics of the bunch as a whole can be modeled by such
a point charge, as long as R � λ is fulfilled. The classical Thomson cross section, de-
fined as the ratio of scattered power to incident intensity I in the non-relativistic limit,
is σT = N2(8π/3)r20, with r0 = e2/(4πε0mec

2) the classical electron radius [134]. The
factor N2 shows the coherent enhancement of the cross section compared to that of a
single electron. Since directed momentum of the incident radiation is scattered into
dipole radiation with zero net momentum, momentum is transferred to the electron
bunch at a rate σT I/c ≡ FT . This means that the effective force per electron FT /N

is proportional to N , and can therefore become significant for dense bunches. It is
instructive to compare FT to the ponderomotive force FP = −Ne2∇I/(2ε0mecω

2)
in a laser pulse, which is conventionally used to accelerate charges in laser-vacuum
acceleration schemes. Using a typical laser pulse with λ = 1 μm and 100 fs pulse
length, the ratio FT /FP becomes of the order of unity for a bunch of N = 106 elec-
trons. Assuming a laser intensity of I = 1 · 1019 W/cm2, this corresponds to a force
of FT = 22 mN, which is equivalent to an electric field of FP /(Ne) = 0.14 TV/m in
the laser propagation direction. This field already compares to the accelerating fields
produced in wakefield accelerators, and increases to well above 1 TV/m for larger
numbers of electrons.
Hence, radiation reaction is important for bunches containing � 106 electrons within
a size � λ, that is, for bunches with a charge density close to solid state density.
These electron bunches could only recently be extracted from atomic clusters by ir-
radiation with an intense laser pulse. Of course, such dense electron bunches quickly
expand beyond R = λ due to the strong Coulomb repulsion, so that they will scatter
radiation coherently only for a brief period of time after creation. Therefore coherent
Thomson scattering will not in itself be an efficient driving mechanism for electron
bunch acceleration. However, it will be shown in this chapter that even a short initial
period of radiation reaction dominated interaction can have observable effects.

Collective radiation reaction of subwavelength electron bunches is, in some re-
spects, the coherently enhanced version of the radiation reaction of a point charge.
The latter has been a subject fundamental to the understanding of elementary par-
ticles and early electron theory and played a role in the development of quantum
theory [135–138]. It has always been a purely academic subject due to the smallness
of the effect, however, and is only now coming within experimental reach due to the
availability of ultra-intense fields [131]. We suggest that an interesting alternative
may now be offered by electron bunches of subwavelength size. As explained above,
for bunches the enhanced radiation reaction effects are much stronger so that they
are accessible already using moderate laser intensities. Furthermore, also the charac-
teristic time scale on which radiation reaction effects play a role (as measured by the
quantity τe introduced below) is coherently prolonged, bringing these effects into the
experimental attosecond regime. Thus the coherent enhancement of radiation reac-
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tion by electron bunches yields interesting possibilities to investigate this fundamental
subject by experimental techniques.

In sections 3.2-3.4, the bunch dynamics are analyzed treating the radiation reac-
tion force in a perturbative way. In section 3.2, multiple-scale analysis and averaging
over the laser optical time scale are applied to the equation of motion including ra-
diation reaction, yielding a cycle-averaged description of the bunch dynamics. The
results are applied to the case of a laser pulse in section 3.3, validating the aver-
aged description and our numerical calculations. Subsequently, in section 3.4 the
theoretical results are placed in an experimental context by exploring the possibil-
ity of having subwavelength electron bunches in the first place. Both the time in
which electron bunches Coulomb expand beyond the wavelength and the production
of dense bunches in laser-cluster interactions are addressed. Using accordingly re-
alistic electron bunches, the observable effects of coherent radiation reaction on the
bunch trajectory are calculated. Finally, in section 3.5 the theoretical and numerical
results are tentatively extrapolated to the non-perturbative regime of highly charged
electron bunches. It is shown that ponderomotive acceleration of electron bunches by
laser pulses may be stabilized by radiation reaction.

3.2 Averaged radiation reaction force

Suppose that an electron bunch of charge q = Ne, mass m = Nme and radius
R0 � λ oscillates due to the Lorentz force FL of plane wave radiation propagating
in the z-direction with electric field E = E0 sin (ωt− kz) ex. The oscillatory quiver
motion of the bunch (henceforth modeled by a point charge q) is a ’figure-of-eight’-
cycle in the (x, z)-plane in the Lorentz frame in which the charge is at rest on average
[139]. In the course of each cycle, the accelerating charge continuously radiates and
exchanges energy with its periodically changing Coulomb field, thereby experiencing
an additional radiation reaction force FR. The detailed description of FR has been
discussed intensively in the literature [135], in which the covariant equation of motion
for a point charge [136–138],

ṗμ = Fμ
L + Fμ

R = qFμν pν

m
+ τe

(
ṗλṗλp

μ/(mc)2 + p̈μ
)
, (3.1)

has played a central role. In Eq. (3.1), dots denote differentiation with respect
to proper time, Fμν is the electromagnetic field tensor of the incident radiation,
τe = N(2r0)/(3c) is the characteristic time for radiation reaction, and the metric sig-
nature (+,−,−,−) has been adopted. The first term in brackets equals the covariant
Larmor power and represents the recoil of the charge caused by emission of radiation,
that is, by the irreversible loss of four-momentum detaching from the charge and
propagating towards infinity. The second term is referred to as the ’Schott term’ and
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is associated with the reversible exchange of four-momentum with the Coulomb or
velocity field, that is, with the part of the electromagnetic field bound to the charge
that does not give rise to radiation [140, 141]. In the usual incoherent case N = 1,
the bracketed terms can be neglected because of the smallness of τe. However, in the
present case τe is N times larger and pμ ∝ m ≡ Nme, so that Fμ

R ∝ N2. This shows
again that the radiation reaction force is coherently enhanced and can become very
relevant. Two regimes may be identified: the perturbative regime in which ωτe � 1
and the radiation reaction dominated regime in which ωτe � 1 [131]. In the perturba-
tive regime, the Thomson cross section is by definition much smaller than the physical
bunch size, and FR � FL. This is the regime studied in this and the next two sec-
tions. In section 3.5, laser-vacuum acceleration in the radiation reaction dominated
regime is considered.

The two-dimensional ’figure-of-eight’-motion in the (x, z)-plane due to the linearly
polarized incident radiation does not induce any y-component of acceleration in Eq.
(3.1), so that the motion of the charge remains two-dimensional throughout. Assum-
ing FR � FL, the radiation reaction force FR affects the quiver motion negligibly
on time scales ∼ ω−1. However, its cumulative effect over many cycles is to acceler-
ate the charge, so that it gains a slowly varying average momentum p superimposed
on the quiver motion. To study p, it is instructive to derive averaged equations of
motion from Eq. (3.1) by means of a multiple-scale expansion. For this purpose,
define a fast dimensionless time scale T ≡ ωt and a slow dimensionless time scale
εT ≡ (ωτe)T . The latter equals the time scale of radiative damping of a charged
harmonic oscillator [134] so that this is the time scale on which p will change appre-
ciably. Hence, the dimensionless momentum (γ, Px, Py, Pz) = Pμ ≡ pμ/(mc) may be
written as the sum of a slowly varying part P

μ
(εT ) ≡ 〈Pμ〉 and a rapidly varying

part P̃μ(εT, T ) = P (0)μ(εT, T ) + εP (1)μ(εT, T ) +O(ε2), where 〈·〉 denotes the average
over an optical period. Incidentally, the quiver motion in a plane wave turns out to
be more easily described in terms of the laser phase η ≡ T − kz rather than the time
T explicitly [139]. Anticipating this fact by changing the fast coordinate from T to
η, time-differentiation takes the form

γ
d

dT
Pμ(εT, η) =

(
εγ

∂

∂(εT )
+ (γ − Pz)

∂

∂η

)
Pμ(εT, η), (3.2)

where γ2 ≡ 1+P 2
x+P 2

z is the usual Lorentz factor. Substituting the sum Pμ = P
μ
+P̃μ

in the space and time components of Eq. (3.1), using Eq. (3.2), and collecting equal
powers of ε, yields the zeroth-order equations
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P (0)
x = −a cosη; (3.3)

P (0)
z = γ(0) = −aPx cos η

γ − P z

+
a2 cos 2η

4
(
γ − P z

) ; (3.4)

γ2 = 1 + a2/2 + P
2

x + P
2

z, (3.5)

where a ≡ (eE0)/(mecω) is the dimensionless field strength. Eqs. (3.3)-(3.4) give
the well-known plane wave quiver motion with average momentum p [142]. Eq.
(3.5) shows that the oscillating charge behaves like a particle with effective mass
m
√

1 + a2/2 due to the energy contained in the quiver motion [143]. Expanding next
the components of Eq. (3.1) to first order in ε, substituting the zeroth-order results
Eqs. (3.3)-(3.5), and averaging over the fast time scale, one finally obtains

dP x

dT
= −ωτea

2

2
(γ − P z)2

P x

γ
; (3.6)

dP z

dT
=
ωτea

2

2
(γ − P z)2

(
1 − P

2

x

γ
(
γ − P z

)) . (3.7)

The averaged dimensionless position X ≡ kx is calculated from

dX

dT
≡ β =

P

γ
, (3.8)

Eqs. (3.5)-(3.8) now give the evolution of the averaged position X and momentum P

of the charge in the plane wave. First, consider the special case P x = 0. Then Eqs.
(3.6)-(3.7) reduce, after multiplication by mecω, to

dp

dt
= σT

I

c
γ2
(
1 − βz

)2
ez , (3.9)

where I = ε0cE
2
0/2 is the intensity of the incident plane wave. This clearly shows that

the averaged reaction force takes the classical form of a radiation pressure I/c on an
effective cross section σT , corrected by a Doppler factor γ2

(
1 − βz

)2
. This Doppler

factor reflects the fact that plane wave appears Doppler-shifted in the frame of the
charge, with a corresponding change in radiation pressure. Eq. (3.9) may also be
obtained by Lorentz-transformation of the non-relativistic force σT I/c [139]. In the
more general case P x 
= 0, the direction of the radiation pressure is no longer along the
propagation direction of the incident wave. This is because the secondary, scattered
radiation produced by the charge is Lorentz boosted along P , so that the recoil from
this radiation has a net transverse component when P x 
= 0. The latter appears in
Eqs. (3.6)-(3.7) as the additional factors involving P x on the very right. Effectively,
in the transverse direction the averaged reaction force appears as a frictional force
proportional to the velocity, which will be important below. Effective forces similar
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to Eqs. (3.6)-(3.7) have been obtained earlier for a one-dimensional plasma sheet [132].

A typical experiment will involve the use of a high-intensity laser pulse of length
τL focused to a waist of size w0. Due to the intensity gradients in such a pulse, on
average the electron bunch will experience ponderomotive forces in addition to the
radiation reaction forces. In absence of the latter, the ponderomotive force takes the
simple form

FP

mecω
= − (k−1∇)[a2(X , T )]

4γ
, (3.10)

which can be derived by means of a separate multiple-scale analysis, using the small
parameters λ/(cτL) and (kw0)−1 [144]. The combined effect of radiation reaction and
gradients may be derived formally using a multiple-scale analysis in terms of all three
small parameters ωτe, λ/(cτL), and (kw0)−1. This is possible provided that these
parameters are all of the same order of magnitude. However, mixed expansion terms
that involve products of the parameters appear only from the second order onwards,
so that to first order the radiation reaction and ponderomotive effects remain sepa-
rated throughout the analysis. Hence, the averaged reaction force is still given by Eqs.
(3.6)-(3.7), but now with the dimensionless field strength a(X , T ) evolving according
to the laser pulse shape. Furthermore, Eqs. (3.6)-(3.7) are supplemented with the
effects of intensity gradients by simply adding the ponderomotive force Eq. (3.10) to
the right hand sides. Carrying out the full three-parameter multiple-scale analysis to
first order confirms these results. In the numerical calculations below, Eqs. (3.6)-(3.7)
will always be used with the force Eq. (3.10) included.

Rather than using averaged equations, the detailed trajectory of the electron bunch
may be calculated by direct integration of Eq. (3.1). However, it is well-known
that this equation yields unphysical runaway solutions, which may be disposed of by
substituting the applied Lorentz force ṗμ ≈ Fμ

L in the right hand side of Eq. (3.1).
This yields the space component [139, 145, 146]

dp

dt
= FL + τe

[
γ
dFL

dt
− γ3

c2

(
dv

dt
× (v × FL)

)]
. (3.11)

This expression can also be derived from quantum mechanical arguments [146, 147].

3.3 Radiation reaction in a laser pulse

In this section the results of the previous section will be applied to concrete examples
of laser-vacuum experiments. First, however, it should be stressed that an accurate
calculation of the detailed charge trajectory in a laser pulse requires the field of the
pulse to be described in more detail than the usual paraxial approximations [148], even
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in the absence of radiation reaction forces. Quesnel and Mora [144] use a laser field
representation in terms of Fresnel-type integrals to calculate detailed charge trajec-
tories in a laser pulse, which are then compared with averaged trajectories calculated
from the ponderomotive force Eq. (3.10) using the laser field in paraxial approxima-
tion. The agreement between the two results was found to be excellent except for
highly relativistic initial velocities. In this chapter we will adopt the same approach,
using the detailed field representation of Quesnel and Mora [144] when evaluating the
Lorentz force FL in Eq. (3.11), while taking the simpler paraxial approximation to
evaluate the field intensity a2 in the averaged equations (3.5-3.10). As a reference,
both field representations are shown in Appendix 3.A.

To validate the results of the previous section and to illustrate the effect of the
effective radiation pressure produced by radiation reaction, we consider an intense
laser pulse propagating in the z-direction and polarized in the x-direction, which has
wavelength λ = 1 μm, peak intensity I = 1 ·1019 W/cm2 and pulse length τL = 200 fs,
focused to a relatively large waist of size w0 = 10λ. This pulse contains 2.3 J of energy
and has a peak dimensionless field strength amax = 2.7. An electron bunch of radius
R0 � λ and radiation reaction parameter ωτe = 0.03 is considered, corresponding
to a bunch charge of q = 0.4 pC. For these parameters, λ/(cτL) ∼ (kw0)−1 ∼ ωτe
so that the averaged description is valid. The electron bunch is placed at rest at the
initial position x0 ≡ (x0, z0) = (λ, 0) prior to arrival of the laser pulse, deliberately
at an off-axis position arbitrarily set to one wavelength, in order to study the radial
acceleration as well. In this (unrealistic) first example, we disregard the Coulomb
expansion of the bunch and assume that it retains its coherent Thomson cross section
during the entire interaction.

Fig. 3.1 shows the trajectory of the bunch and its momentum as a function of
time as it is overtaken by the laser pulse, calculated using both the averaged descrip-
tion Eqs. (3.5)-(3.10) and the detailed description Eq. (3.11). Clearly, the agreement
between the averaged and the detailed description is excellent, validating the multiple-
scale analysis, the applicability of Eq. (3.11), and our numerical calculations. The
figure also shows the trajectory and the momentum in the absence of radiation reac-
tion, that is, in case of conventional ponderomotive acceleration. In the latter case the
charge is quickly expelled in the radial direction because of the large radial intensity
gradient, which is a well-known instability that so far has limited the applicability of
ponderomotive acceleration schemes [117].
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Figure 3.1: a) Trajectory of an electron bunch accelerated by a laser pulse
with parameters λ = 1 μm, I = 1 · 1019 W/cm2, τL = 200 fs, and w0 = 10λ,
calculated for the case including radiation reaction (Thomson + ponderomotive
scattering, ωτe = 0.03) and for the case without radiation reaction (ponderomo-
tive scattering, ωτe = 0). The trajectories have been calculated using Eq. (3.11)
with FL = q(E + v × B), taking for E and B Eqs. (3.17)-(3.20). The initial
position was x0 = (λ, 0) and the initial velocity was zero.
(Continued on next page)
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Figure 3.1: (continued from previous page)
b) Longitudinal momentum of the bunch as a function of time;
c) Transverse momentum of the bunch as a function of time, calculated for the
case including radiation reaction (Thomson + ponderomotive scattering, ωτe =
0.03) and for the case without radiation reaction (ponderomotive scattering,
ωτe = 0). The solid lines have been calculated using Eq. (3.11) with FL =
q(E + v × B), taking for E and B Eqs. (3.17)-(3.20). The dashed lines have
been calculated using Eqs. (3.5)-(3.10), taking a2 according to Eq. (3.21). The
initial position was x0 = (λ, 0) and the initial velocity was zero.
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The theoretical escape angle θ for ponderomotive acceleration of a charge initially
at rest by a radiation pulse, is related to the final Lorentz factor γf by [149]

θ = arccos

√
γf − 1
γf + 1

. (3.12)

In the present example γf = 1.96, yielding a theoretical escape angle of 55.3o in ex-
cellent agreement with the numerically calculated result. In contrast to the purely
ponderomotive case, in the case including coherent Thomson scattering the acceler-
ation in the radial direction is markedly suppressed. This stabilizing effect is due to
the average frictional force shown by Eq. (3.6), which opposes the tendency to radial
acceleration. Meanwhile, the charge stays in the beam longer and is accelerated in
the forward direction for a longer time by both the radiation reaction pressure and
ponderomotive forces, leading to a higher final energy and a smaller escape angle.

3.4 Realistic electron bunches

We now consider the more realistic case of an electron bunch that expands due to
Coulomb repulsion. The time after which the Thomson cross section fails to be co-
herent, that is, the time it takes the bunch to expand to R = λ, depends on the
charge and the initial size of the bunch. To obtain realistic values for these initial
parameters, we first make some estimates concerning the method to produce dense
electron bunches mentioned in the introduction.
Rather than irradiating a pre-existing electron bunch, an electron bunch may be cre-
ated in practice by irradiating a subwavelength atomic cluster. When the laser pulse
is sufficiently strong, the electron bunch will be emitted from the cluster somewhere
in the leading edge of the pulse, after which it is available to be accelerated by the
remainder of the pulse as has been analyzed in the previous section. Many different
mechanisms play a role in laser-cluster interaction [119, 120] and it is beyond the
scope of this thesis to analyze this interaction in detail. Instead, we use a strongly
simplified model of the cluster suggested by Parks et al. [150] to obtain order-of-
magnitude estimates for the initial parameters of the electron bunch. Accordingly, at
some point in the leading edge of the pulse the field strength becomes such that all
atoms in the cluster are ionized almost instantaneously, changing the neutral cluster
into a dense plasma ball. Subsequently, this plasma ball is modeled as a spherical
rigid electron bunch, interpenetrating with and moving through a practically immo-
bile oppositely charged ion bunch, under the action of both the driving laser electric
field and the restoring Coulomb force of the ion cloud. As the rising edge of the
laser pulse advances, the electron bunch oscillates around the ion bunch center with
increasing amplitude. At a critical laser field strength the electron bunch breaks free
and escapes the ion bunch within a fraction of an optical period, yielding the free,
dense electron bunch we will now use as an input for our calculation.
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The critical dimensionless field strength at which the electron bunch is liberated may
be estimated as [150]

acrit =
15
96

(ωp

ω

)2

kR0, (3.13)

where ωp =
√

3Ne2/(4πε0meR3
0) is the electron plasma frequency of the ionized

cluster consisting of N atoms. The electron bunch leaves the cluster at the maximum
of an optical cycle. The time this takes is of the order tesc ∼ ω−1

p [150], so that the
escaping electron bunch will have a velocity of approximately

βescc ≈ ωpR0 (3.14)

in the direction of the laser polarization. Incidentally, note that the coherent ra-
diation reaction parameter can be expressed in terms of the cluster parameters as
ωτe = (2/9)(ωp/ω)2(kR0)3, by which the validity condition ωτe � kR0 of section 3.2
automatically implies that βesc < 1. After leaving the cluster, the electron bunch will
start to expand. It can be shown straightforwardly that, after a short period of slow
expansion, the expansion rate increases to the constant value [151]

dR

dt
≈

√
2
3ωpR0√

1 + P 2
esc + a2

crit
2

. (3.15)

In Eq. (3.15), it has been used that the expanding electron bunch will be in quiver
motion immediately after leaving the cluster, so that it will move with an average
Lorentz factor according to Eq. (3.5). This reduces the expansion rate by a factor
γ =

√
1 + P 2

esc + a2
crit/2.

As an example we take an R0 = 16 nm cluster with an electron density of 5 · 1028

m−3, which can be routinely made using a supersonic gas jet [120], irradiated by the
same laser pulse as in the previous example. With these numbers the other parameters
are kR0 = 0.1, ωp/ω = 6.6, ωτe = 0.01, and acrit = 0.68 and βesc = 0.66 according
to Eqs. (3.13)-(3.14). The last two numbers roughly compare to the field strengths
used and electron velocities obtained by Liseykina et al. [125] and Fukuda et al. [126].
Assuming the expansion rate Eq. (3.15), the bunch grows larger than the wavelength
after a time 8.3ω−1, that is, after no more than 1.3 optical cycles following the moment
of escape from the cluster. Thus coherent Thomson scattering will only occur for a
brief initial period. Nevertheless, even such a brief period can have an observable
effect on the trajectory of the electron bunch in interaction with the laser pulse.

Fig. 3.2 shows the trajectory of the bunch in interaction with the laser pulse, both
for the case without the radiation reaction force (ωτe = 0) and for the case including
the radiation reaction force (ωτe = 0.01) during the initial period 0 ≤ ωt ≤ 8.3. In
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Figure 3.2: Trajectory of an electron bunch accelerated by a laser pulse,
calculated for the case including radiation reaction (Thomson + ponderomotive
scattering, ωτe = 0.01) during the initial period 0 ≤ T ≤ 8.3, and for the case
without radiation reaction (ponderomotive scattering, ωτe = 0). See Fig. (3.1)
for details about the calculation and laser parameters. The dash-dotted lines
show the error margins for the case ωτe = 0 corresponding to an hypothetical
uncertainty of magnitude λ in the initial position, calculated using the averaged
description. The initial position was x0 = (−λ, 0) and the initial velocity was
according to Eq. (3.14).

the latter case, the decrease in coherent radiation reaction was modeled by a sudden
switch-off, setting ωτe = 0 at the somewhat arbitrary point ωt = 8.3. Again, the
results of Fig. 3.2 were calculated both using the averaged description Eqs. (3.5)-
(3.10) and the detailed description Eq. (3.11). In both cases the initial position was
x0 = (−λ, 0) and the initial velocity was βesccex. The initial position of the laser
pulse along the z-axis was chosen such that a = acrit at x0, and the optical phase
offset φ0 was chosen such that the optical cycle was at its maximum at t = 0. This
time, the escape angle for the case without radiation reaction does no longer agree
with Eq. (3.12) or its generalization for a nonzero initial velocity [149]. This may
be caused by the sudden injection into the radiation field at t = 0, which is not con-
sidered in the derivation of Eq. (3.12). The good agreement between the averaged
and detailed descriptions is remarkable here, considering the fact that the concept of
averaging the equation of motion over the optical time scale is not a priori valid when
applied during the initial period, which is as short as the optical period itself.
From the figure it is clear that the initial period of radiation reaction still reduces
the escape angle observably, but much less than in the previous example because the
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radiation reaction force is switched off at an early stage. To put the 1.3 degrees of
reduction in angle in perspective, the figure also shows the error margins around the
trajectory without radiation reaction which would be caused by an uncertainty of
magnitude λ in the initial position x0. The deviation caused by radiation reaction is
clearly outside these error margins.

As another example we show how the initial period of coherent Thomson scattering
may even change the behavior of the bunch completely. Fig. 3.3 shows the trajectory
of the bunch, using the same laser parameters and initial conditions as in the previous
example, only now with the initial position changed to x0 = (−7.1λ, 0). This time the
effect of radiation reaction is such that the bunch is deflected by the laser pulse in the
negative x-direction instead of the positive x-direction. Under the initial conditions
of this example, the bunch is produced much further from the laser beam axis and
is therefore decelerated in the negative x-direction by the radial ponderomotive force
of Eq. (3.10) for a longer time. Without the action of the radiation reaction force,
the bunch just makes it across the laser axis (where the ponderomotive potential
is maximum), after which it is accelerated in the positive x-direction. Including
radiation reaction, however, in the initial stage the bunch is additionally decelerated
by the frictional force of Eq. (3.6). Furthermore it is additionally accelerated in
the positive z-direction by the radiation pressure of Eq. (3.7), so that it keeps up
with the laser pulse and is under the action of the decelerating radial ponderomotive
force for a somewhat longer time. Both effects are only small, but in this case just
enough to prevent the bunch from passing the beam axis. It is to be noted that in this
example whether or not the bunch will pass the beam axis is very sensitive to the initial
parameters. This is an additional reason why the averaged description cannot be used
here to reproduce the trajectories of Fig. (3.3), since the small differences between the
two descriptions in the initial part of the trajectory affect the final behavior strongly.
Still, it is clear that radiation reaction can play an important role in laser-vacuum
experiments.

3.5 The radiation reaction dominated regime

In the previous section, relatively small electron bunches were considered leading
to modest values for the bunch charge and for the radiation reaction parameter
(ωτe � 1), thereby staying well inside the perturbative regime mentioned in sec-
tion 3.2. Much stronger radiation reaction effects could be expected when scaling the
system to larger bunches. In the introduction, the magnitude of the effective radia-
tion reaction force was estimated assuming a wavelength of 1 μm. Taking now, for
instance, a CO2 laser with a wavelength of 10 μm, ten times larger bunches still scatter
light coherently. Since the coherent Thomson cross section scales as σT ∝ N2 ∝ R6,
in that case an effective force FT = σT I/c of the order of kN rather than mN may be
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Figure 3.3: See Fig. (3.2), with the initial position changed to x0 = (−7.1λ, 0).

expected, equivalent to accelerating fields FP /(Ne) approaching PV/m rather than
TV/m. Thus, the radiation reaction force in this case completely dominates the bunch
dynamics. In this radiation reaction dominated regime ωτe ∼ 1, the averaged descrip-
tion Eqs. (3.5)-(3.10) is no longer valid, and analysis of the dynamics is restricted
to the instantaneous equations of motion (3.1) or (3.11). However, in this regime
the validity of these equations is at issue. Eq. (3.1) can be shown to be valid for a
subwavelength but finite charged body when the mass equivalent of its electrostatic
energy U/c2 ∼ (Ne)2/(ε0Rc2) is less than its mechanical mass Nme [152]. From the
definition of τe, this requirement is equivalent to ωτe < kR, in which case Eq. (3.11)
is valid as well [153, 154]. But in the present case this requirement is not satisfied,
as ωτe ∼ 1 � kR here. Thus the experiment in the radiation reaction dominated
regime can provide valuable insights, as the departure from known equations can be
controlled and studied.

We now give an example of acceleration using radiation reaction in the regime
ωτe ∼ 1, as it would result according to equation of motion (3.11). As before, the
action of the radiation reaction force is restricted to the initial period following the
creation of the electron bunch, while the bunch is still smaller than the wavelength.
Therefore the large accelerating fields mentioned above are not effective as a driving
acceleration mechanism. However, the initial radiation reaction dominated phase pre-
accelerates and redirects the velocity of the bunch, which serves to stabilize subsequent
ponderomotive acceleration. Consider the same laser pulse as used in the previous
examples, but scaled ten times in all directions so that λ = 10 μm, τL = 2 ps and
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w0 = 10λ. This CO2 laser pulse contains 2.3 kJ of energy and has a peak dimension-
less field strength amax = 27, which is presently available. The increased wavelength
allows an electron bunch of initial size R0 = 160 nm containing N = 8.5 · 108 elec-
trons, resulting as before in kR0 = 0.1, but this time in a much bigger value ωτe = 1.
The non-relativistic cluster model of [150] does not apply for such a large amount of
charge. We assume a relativistic initial electron bunch velocity of β0 = 0.9 instead,
as is also indicated by Liseykina et al. [125]. Substituting Pesc ≡ β0/

√
1 − β2

0 and
acrit ≡ amax in Eq. (3.15), the resulting expansion rate is such that the bunch stays
smaller than the wavelength for about one optical cycle, just as in the previous ex-
amples.

Fig. 3.4 shows the trajectory and momentum of this electron bunch in the laser
pulse. The initial bunch position was set to x0 = (λ, 0), the initial position of the laser
pulse along the z-axis was chosen centered around x-axis so that the bunch started
its movement at the pulse maximum, and the optical phase offset φ0 was chosen such
that the optical cycle was at its maximum at t = 0 and x0. From the figure the
effect of the initial period of radiation reaction is evident: the large radial velocity
of the bunch is suppressed immediately preventing an early escape from the beam
waist, after which the bunch is strongly accelerated in the direction of propagation
of the laser pulse. The inset of the pz-panel of Fig. 4 shows the long-term evolution
of the momentum in this direction. The bunch is first accelerated by the leading
edge of the laser pulse and then decelerated by the trailing edge, as is characteristic
for laser-vacuum acceleration. The energy of the bunch is increased to γ ≈ 600,
corresponding to an energy of 0.3 GeV per electron. In the case without radiation
reaction, the bunch is quickly expelled from the laser beam. Consequently, the energy
gained is much less. The cusp-like features in the corresponding pz- and px-plots of
Fig. 3.4 agree with previous results [155, 156] in comparable cases of ponderomotive
scattering.
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Figure 3.4: a) Trajectory of an electron bunch accelerated by a laser pulse
with parameters λ = 10 μm, I = 1 · 1019 W/cm2, τL = 2 ps, and w0 = 10λ,
calculated for the case including radiation reaction (Thomson + ponderomotive
scattering, ωτe = 1) during the initial period 0 ≤ T ≤ 2π and for the case without
radiation reaction (ponderomotive scattering, ωτe = 0). The trajectories have
been calculated using Eq. (3.11) with FL = q(E + v × B), taking for E and B
Eqs. (3.17)-(3.20). The initial position was x0 = (λ, 0) and the initial velocity
was β0 = 0.9ex.
(Continued on the next page)
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Figure 3.4: (Continued from the previous page)
b) Longitudinal momentum of the bunch as a function of time;
c) Transverse momentum of the bunch as a function of time, calculated for
the case including radiation reaction (Thomson + ponderomotive scattering,
ωτe = 1) during the initial period 0 ≤ T ≤ 2π and for the case without radi-
ation reaction (ponderomotive scattering, ωτe = 0). The solid lines have been
calculated using Eq. (3.11) with FL = q(E + v × B), taking for E and B Eqs.
(3.17)-(3.20). The inset of the upper panel shows the long-term behavior of the
longitudinal momentum for the case including radiation reaction. The inset of
the lower panel is a zoom-in on the first optical period; the slope of the dashed
line is according to Eq. (3.16). The initial position was x0 = (λ, 0) and the
initial velocity was β0 = 0.9ex.
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In the case including radiation reaction, it may seem strange that the bunch starts,
at t = 0, with a downward radial acceleration while the laser electric field points
upward at that moment. This, however, is a consequence of the large value of ωτe
as can be inferred from Eq. (3.11). Namely, at t = 0 the optical field at the bunch
position is maximum, so that

qEx = qcBy = mecωamax;
dFL

dt
= q

dv

dt
× B,

while pz = 0. Substituting the above in the x- and z-components of Eq. (3.11),
writing dv/dt in terms of the momentum p = γmv, and rearranging, one finds in
dimensionless form the x-component

dPx

dT

∣∣∣∣
t=0

= amax
1 − ωτeamaxγ

2
0β0

1 + γ2
0(ωτeamax)2

≈ − β0

ωτe
, (3.16)

where γ0 ≡ (1−β2
0)−1/2. On the right hand side it has been used that ωτeamaxβ0 � 1

in the example of Fig. 3.4. In the inset of the px-panel of Fig. 3.4, the initial accel-
eration Eq. (3.16) is indicated by the sloped line.

Eq. (3.16) suggests that the initial velocity of the bunch can be redirected by
means of a short period of radiation reaction choosing favorable parameters amax and
ωτe, which may be exploited to efficiently accelerate the bunch into the direction
of propagation of the laser. Whether this scheme, and the results of this section
in general, are realistic depends on the way the validity of Eq. (3.11) extends into
the present radiation reaction dominated regime. This may be studied by means of
the proposed setup, which also may offer further opportunities to experimentally test
radiation reaction theories.

3.6 Conclusion

The current developments in laser technology make it possible to obtain subwave-
length electron bunches of very high charge density. With that, a qualitatively new
regime is accessed in which coherently enhanced radiation reaction effects become
significant. In this chapter, we have analyzed some of these effects in the context of
laser-vacuum experiments. It has been shown that the radiation reaction force affects
the bunch dynamics notably, even if the radiation reaction can still be treated as a
small perturbation on the optical time scale. Considering larger bunches containing
more charge, we demonstrated that the radiation reaction effects may even become
strong enough to be exploited in effective bunch acceleration schemes, although this is
also where the theory is still controversial and needs further development. It is clear
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that the coherently enhanced radiation reaction of high-density electron bunches of-
fers interesting new possibilities, both as a technological tool in the development of
novel acceleration schemes, and as an experimentally accessible system to study the
fundamental topic of radiation reaction.

Appendix 3.A Laser field representations

In this chapter, when evaluating the Lorentz force FL in Eq. (3.11), the following
fields are used [144]:

qEx

mecω
=

(kw0)2amax

4

(
I1 +

I2
X

)
; (3.17)

qEz

mecω
=

(kw0)2amax

4
I4; (3.18)

qBy

meω
=

(kw0)2amax

4

(
I1 − I2

X
+ I3

)
; (3.19)

Ey = cBx = cBz = 0, (3.20)

in which

I1 ≡
ˆ 1

0

exp
(
− (kw0)2b2

4

)(
1 +
√

1 − b2
)

sinφJ0(Xb)bdb;

I2 ≡
ˆ 1

0

exp
(
− (kw0)2b2

4

)
1√

1 − b2
sinφJ1(Xb)b2db;

I3 ≡
ˆ 1

0

exp
(
− (kw0)2b2

4

)
1√

1 − b2
sinφJ0(Xb)b3db;

I4 ≡
ˆ 1

0

exp
(
− (kw0)2b2

4

)(
1 +

1√
1 − b2

)
cosφJ1(Xb)b2db;

φ ≡ T − Z
√

1 − b2 + φ0,

and where φ0 is the phase offset of the optical field. These expressions describe a
Gaussian beam which propagates along the z-direction, is polarized in the x-direction,
and is focused to a waist of size w0. The fields above are multiplied by an envelope
function cos2 (πη/(2ωτL)) to obtain a laser pulse of length τL instead of a full beam.
To evaluate the field intensity a2 in the averaged equations (3.5-3.10), the simpler
paraxial approximation is used according to
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a2 =
[
amax

w0

w
exp
(
−w

2
0

w2
X2

)
cos2

(
πη

2ωτL

)]2
; (3.21)

w ≡ w0

√
1 + 4

Z2

(kw0)4
.
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4

Polarization-dependent ponderomotive gradient force

in a standing wave

Abstract - The ponderomotive force is derived for a relativistic charged parti-
cle entering an electromagnetic standing wave with a general three-dimensional
field distribution and a nonrelativistic intensity, using a perturbation expansion
method. It is shown that the well-known ponderomotive gradient force expression
does not hold for this situation. The modified expression is still of simple gradient
form, but contains additional polarization-dependent terms. These terms arise be-
cause the relativistic translational velocity induces a quiver motion in the direction
of the magnetic force, which is the direction of large field gradients. Consistent
perturbation expansion of the equation of motion leads to an effective doubling
of this magnetic contribution. The derived ponderomotive force generalizes the
polarization-dependent electron motion in a standing wave obtained earlier [A.E.
Kaplan and A.L. Pokrovsky, Phys. Rev. Lett. 95, 053601 (2005)]. Comparison
with simulations in the case of a realistic, non-idealized, three-dimensional field
configuration confirms the general validity of the analytical results.

Publication status - The work described in this chapter has been published by
P. W. Smorenburg, J. H. M. Kanters, A. Lassise, G. J. H. Brussaard, L. P. J. Kamp,
and O. J. Luiten in Phys. Rev. A 83, 063810 (2011).
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4.1 Introduction

The ponderomotive force is a time-averaged force experienced by a charged particle
in an oscillating electromagnetic (EM) field that is spatially inhomogeneous. In the
standard perturbative approach [157, 158], it is shown that a charged particle in
an oscillating EM field attains an oscillatory quiver momentum superimposed on a
slowly varying guiding center momentum p. The latter is subject to the classical
ponderomotive force Fp:

dp

dt
= Fp = − e2

2ε0mcω2
∇I(x), (4.1)

where m is the mass of the particle, e its charge, ε0 the permittivity, ω the fre-
quency of the EM field and I(x) the position-dependent field intensity. The classical
ponderomotive force is of gradient form, and always directed toward regions of low
field intensity. The ponderomotive force is observed and exploited in a wide range
of contexts. In laser-plasma physics, the ponderomotive force drives the formation
of laser wakefields that are used for next generation electron accelerators [159–162].
Ion beams are produced by intense laser irradiation of thin foils, in which the pon-
deromotive force plays an essential role [163, 164]. Schemes have been proposed for
ponderomotive laser-vacuum acceleration of electrons [165, 166]. In Paul traps, ions
are confined by a ponderomotive potential [167]. In electron beam diagnostics, the
length of electron bunches is measured by sequentially scattering different sections of
the bunch using the ponderomotive force of a laser pulse [168, 169].

The field gradients that can be obtained in a single laser pulse are set by the
laser pulse duration longitudinally and the focal spot transversely. For many appli-
cations of the ponderomotive force this means that, in order to obtain a sufficiently
strong force, field intensities are required that are large enough to cause a relativistic
quiver motion (which happens if the normalized amplitude of the vector potential,
a ≡ eA/mc = e

√
2I/(ε0c)/(mcω) � 1, i.e. I � 2 · 1018 W/cm2 for a wavelength

of 800 nm). Relativistic field intensities necessitate more complicated descriptions
of the average EM force [170–172], or at least restricts the domain of validity of Eq.
(4.1) [173, 174]. An intermediate situation occurs when an already relativistic particle
enters an EM field with nonrelativistic intensity. A relativistic derivation [175] shows
that this introduces an additional factor

√
1 + p2/(mc)2 + a2/2 in the denominator

of Eq. (4.1), resulting in an accurate description for practical situations [176].

An alternative to the application of a relativistic laser pulse is the use of a standing
wave. In this configuration the nodes and antinodes are spaced on the scale of the
wavelength, resulting in large field gradients. For example, a standing wave produced
by two counterpropagating EM waves with wavelength λ = 800 nm and a very mod-
est, nonrelativistic peak field intensity of 1015 W/cm2, already causes ponderomotive
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Figure 4.1: Charged particle with initial velocity v0, which is deflected by
the ponderomotive force of a standing EM wave oriented with its nodal planes
parallel to the (x, y)-plane. The dashed arrow indicates the polarization direction
for the case considered in Section 4.3.1.

forces of the order of Fp/e ∼ 1 GV/m. For this reason, a number of applications of
the ponderomotive force have been proposed that take advantage of the large field
gradients in a standing EM wave. Hebeisen et al. [177] suggested a table-top standing
wave version of the bunch length measurement setup mentioned previously. Following
an earlier idea [178], Balcou proposed a novel X-ray free electron laser based on the
wiggling of electrons in the ponderomotive potential of a standing wave [179]. Faure
et al. used a standing wave formed by colliding laser pulses to pre-accelerate electrons
ponderomotively in a laser-wakefield setup [180], demonstrating that the production
of monoenergetic electron beams can be made stable and reproducible in that way
[181–183]. Baum and Zewail proposed to create attosecond electron pulse trains by
bunching of an electron beam due to a co-moving ponderomotive beat potential be-
tween laser pulses of different frequencies [184].

In view of all these important technological applications, a thorough understanding
of the ponderomotive force in a standing wave is essential. The scattering of charged
particles by a standing EM wave was first described in a quantum-mechanical con-
text by Kapitza and Dirac [185], and since then many papers have appeared on this
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subject [186–190]. Nevertheless, there are only few classical electrodynamical stud-
ies on the standing wave ponderomotive force [191–194]. Most publications on the
ponderomotive force have concentrated on propagating EM waves, establishing the
validity of Eq. (4.1) in that context [157, 158, 175]. Eq. (4.1) is also applied to the
standing wave configuration, implicitly assuming that it remains valid in that case
as well. In 2005, however, Kaplan and Pokrovsky [195, 196] calculated the time-
averaged equation of motion of an electron in a standing wave for a number of field
polarizations, and their results showed that the ponderomotive force depends on the
polarization. Most notably, the ponderomotive force can even change its direction to-
ward high field regions for certain situations. Clearly, these results are in conflict with
the polarization-independent Eq. (4.1) that is commonly used. Kaplan and Pokrovsky
did not provide an alternative expression for the ponderomotive force, however.

We would now first like to show, on the basis of simple arguments, that it can
be understood that the ponderomotive force in a standing wave is polarization-
dependent. Consider Fig. 4.1, showing a particle with charge e and initial velocity v0

parallel to the x-axis, incident on a standing wave with electric field E and magnetic
field B. The wave is oriented with its nodal planes parallel to the (x, y)-plane, so
that the spatial variation of the field is much more rapid in the z-direction than in
the transverse direction. This is the typical system considered in this chapter. When
the particle enters the EM field, it will start to quiver in the polarization direction in
response to the oscillating electric force eE. This ’electric quiver’, combined with the
Lorentz force equation, leads to the well-known average force, Eq. (4.1), independent
of the polarization direction. However, the incident particle will also quiver in re-
sponse to the magnetic force ≈ e(v0 ×B). This ’magnetic quiver’ can be comparable
in magnitude to the electric quiver for relativistic particles. Because the magnetic
quiver is in the z-direction, the particle samples a large field gradient, leading to an
additional contribution to the ponderomotive force that is comparable to the electric
one. And since the magnetic force and hence the amplitude of the magnetic quiver
depend on the angle between v0 and B, the magnetic contribution is dependent on
the polarization direction.

In this chapter, the ponderomotive force is derived for a relativistic particle enter-
ing a nonrelativistic standing wave with a general three-dimensional field distribution.
It is shown that indeed Eq. (4.1), or the relativistic equivalent, does not hold for
this situation. This may have important implications for experiments and proposals
based on the standing wave ponderomotive force. The main result of this chapter, Eq.
(4.21), shows that the modified ponderomotive force is still of simple gradient form,
but contains additional polarization-dependent terms. We thus generalize the re-
sults of Kaplan and Pokrovsky, which follow naturally from our ponderomotive force
expression. This chapter is structured as follows. In Section 4.2, the polarization-
dependent ponderomotive gradient force in a standing wave, Eq (4.21), is derived
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using a perturbation expansion method. The origin of the additional polarization-
dependent terms is discussed. Next, Eq. (4.21) is applied in Section 4.3 to calculate
the averaged equation of motion of an electron in specific standing wave geometries,
reproducing the results obtained by Kaplan and Pokrovsky. In Section 4.4, we vali-
date our ponderomotive force expression by testing it against numerical simulations
of electron trajectories in a realistic, non-idealized field configuration.

4.2 The polarization-dependent ponderomotive force

4.2.1 Assumptions

First consider the idealized case of two plane EM waves of equal frequency ω that
counterpropagate along the z-axis and add to form a standing wave. In the Coulomb
gauge, the vector potential A of this ideal standing wave is then purely harmonic in
time t and position z, i.e.

(
∂2/∂t2 + ω2

)
A = 0 and

(
∂2/∂z2 + k2

)
A = 0, where

k = ω/c with c the speed of light. Furthermore, the vector potential satisfies Az = 0
and ∇⊥Ai = 0, where i = x, y.

In practical applications, however, an EM standing wave differs from this idealized
situation in two ways. First, the standing wave has a finite transverse extent, leading
to a small but nonzero transverse gradient ∇⊥Ai and a small longitudinal component
Az. These two quantities are related by the gauge condition ∇ · A = 0, and scale
analysis of the latter shows that, symbolically,

Az

A⊥
∼ ∇⊥
∂/∂z

∼ ε. (4.2)

Here, ε � 1 is a small parameter measuring the magnitude of the field inhomogene-
ity, and will be used as the expansion parameter in the derivation that follows. For
example, in Gaussian laser beams focused to a waist of size w0, this parameter is
ε ∼ (kw0)−1.

Secondly, the standing wave has a finite lifetime, so that the vector potential is
only quasi-monochromatic:

∂2A

∂(ωt)2
+ A = O(δA);

∂2A

∂(kz)2
+ A = O(δA), (4.3)

where δ � 1 is another small parameter measuring the monochromaticity. For a
standing wave produced by counterpropagating laser pulses of temporal length σ, for
example, this parameter is δ ∼ (ωσ)−1.
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In addition, in this chapter the EM field is assumed to be of nonrelativistic inten-
sity, which means that

eA

mc
≡ a� 1. (4.4)

For reasons of clarity, for the moment it is assumed that a ∼ ε. However, the derivation
below can be generalized straightforwardly to other field strengths such as a ∼ ε2 or
a ∼ ε1/2, leading to the same result. Appendix 4.B gives a short description of the
generalized derivation.

4.2.2 Perturbation expansions

Before considering the dynamics of a charged particle in a standing wave in detail, let
us first determine what time scales are involved. First, there is the time scale of the
quiver motion, which is the optical time scale ω−1. Second, there is the time scale
on which the motion of the guiding center changes. Substitution of an ideal standing
wave A = A0ex cos kz sinωt in Eq. (4.1) and integrating yields oscillatory motion in
the z-direction, with a typical frequency Ω = eA0ω/(

√
2mc). Thus the guiding center

motion in the z-direction changes on a second, longer time scale (aω)−1 ∼ (εω)−1.
Finally, in a realistic standing wave, the nonzero transverse field gradient causes trans-
verse ponderomotive forces, which in view of Eqs. (4.1) and (4.2) are weaker than
the longitudinal ponderomotive forces by a factor ε. Therefore the transverse guiding
center motion changes on a third, still longer time scale (ε2ω)−1.

Having established the three time scales of the problem, next consider the equa-
tions of motion of a charged particle in the standing wave [197]:

d

d(ωt)

(
p

mc
+
eA

mc

)
=

1
γ

(
λ∇
2π

eA

mc

)
· p

mc
; (4.5)

d(kx)
d(ωt)

=
1
γ

p

mc
, (4.6)

in which γ =
√

1 + p2/(mc)2 is the Lorentz factor, and the dyadic notation ∇A has
been used [198]. Eqs. (4.5)-(4.6) have been made dimensionless by dividing the usual
equations by mcω and c respectively. Below, these equations are solved by expressing
the various quantities in perturbation expansions in terms of ε. Subsequently, terms
of like order in ε will be collected and equated [199]. We use the symbol ’Os’ to de-
note ’on the order of’, i.e. f = Os(εi) means 0 < limε↓0 f/εi <∞, in distinction with
f = O(εi) which is equivalent to 0 ≤ limε↓0 f/εi < ∞. Superscripts in parentheses
denote the order of the terms.
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First, the momentum is expanded as

p =
∞∑

i=0

p(i); p(i) = Os(εi). (4.7)

Note that p(0) would be the momentum in the absence of the standing wave field,
that is, the initial momentum, since p → p(0) as a ∼ ε ↓ 0. Next, each order p(i)

is decomposed into a slowly varying guiding center part p(i) = 〈p(i)〉 and a rapidly
varying quiver part p̃(i) = p(i) − 〈p(i)〉. Here, 〈·〉 denotes time-averaging on the
time scale ω−1. Upon substitution of this decomposition in the left-hand side of
Eq. (4.5), each term is differentiated with respect to ωt. This preserves the order
of magnitude of the fast quantities p̃(i), since these vary on the time scale ω−1, i.e.
dp̃(i)/d(ωt) = Os(εi). However, from the discussion above, the slow quantities p(i)

z

and p
(i)
⊥ vary over longer time scales, so that differentiation increases their order ac-

cording to dp
(i)
z /d(ωt) = Os(εi+1) and dp

(i)
⊥ /d(ωt) = Os(εi+2) respectively. More

formally, these order relations may be established using the multiple scale technique
[199], considering pz a function of the two variables ωt and εωt and considering p⊥ a
function of the two variables ωt and ε2ωt. Multiple scale analysis has been applied in
a relativistic derivation of the ponderomotive force in propagating EM radiation [172].

Next, the expansion (4.7) is substituted in the reciprocal Lorentz factor 1/γ. Ex-

tracting the zeroth order part γ(0) =
√

1 +
(
p(0)
)2
/(mc)2, this gives

1
γ

=
1

γ(0)

√
1 +
(
mcγ(0)

)−2 (2p(0) · p(1) +O(ε2)
)

=
1
γ(0)

− p(0) · p(1)

(mc)2
(
γ(0)
)3 +O(ε2) ≡

(
1
γ

)(0)

+
(

1
γ

)(1)

+O(ε2). (4.8)

The quantity (1/γ)(1) is the first-order time-dependent variation of the reciprocal
Lorentz factor with respect to the constant value (1/γ)(0). As will be shown below,
this variation leads to an additional contribution in the final ponderomotive force
expression.

Finally, below it will be required to take the time average of expressions involving
powers of A or its derivatives. These time averages need to be taken along the
trajectory of the particle; that is, in the average 〈A (x(t), t)〉, the vector potential is
to be evaluated at x = x(t). To bring out this position dependence explicitly, the
position is also expanded in a perturbation expansion in terms of ε:
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x =
∞∑

i=0

x(i);
dx(i)

dt
= Os

(
p(i)
)

= Os(εi). (4.9)

Again, each order x(i) is decomposed into a slowly varying guiding center part x(i) =
〈x(i)〉 and a rapidly varying quiver part x̃(i) = x(i)−〈x(i)〉. Then the vector potential
can be expanded in a Taylor series around x =

∑
x(i) ≡ x,

A (x(t), t) = A + z̃(1)(t)
∂A

∂z
+O(ε3). (4.10)

Here and in the remainder of the chapter, an overbar on the vector potential denotes
evaluation at the guiding center position, i.e. A ≡ A (x, t). In writing the series in
Eq. (4.10), it has been anticipated that x̃(0) = 0, as will be shown below.

4.2.3 Order-by-order solution of equation of motion

Substitution of the expansions (4.7)-(4.10) in the equations of motion (4.5)-(4.6),
and collecting terms of equal order in ε, results in two equations at each order of ε.
These order equations are listed in Appendix 4.A. Order-by-order solution, balancing
in each equation the averaged parts and the oscillating parts separately, yields the
zeroth order quantities

p(0) = p0; (4.11)

p̃(0) = 0; (4.12)

dx(0)

dt
=

p0

mγ(0)
; (4.13)

x̃(0) = 0, (4.14)

in which p0 is the initial momentum. As expected, at zeroth order (that is, in the
limit a ∼ ε ↓ 0 where both the field strength and field inhomogeneity are zero) the
motion is equal to what it would be if the EM field were absent. For the first order
quantities, it is found that

p̃
(1)
⊥ = −eA⊥; (4.15)

dp̃
(1)
z

dt
=

e

mγ(0)

∂A⊥
∂z

· p0⊥; (4.16)

dz̃(1)

dt
=

1
mγ(0)

(
p̃(1)

z +p0z
eA⊥ ·p0⊥ − p0z p̃

(1)
z(

mcγ(0)
)2

)
; (4.17)

dz(1)

dt
=

p
(1)
z

mγ(0)
. (4.18)
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Eq. (4.15) expresses the well-known result that, in an oscillating EM field, at lowest
order the quiver momentum balances the vector potential, such that the canonical
momentum p + eA is conserved. Eq. (4.18) will be used in Section 4.3 for the
description of the guiding center motion. Eqs. (4.16)-(4.17) describe the quiver motion
in the direction normal to the plane of polarization of the standing wave, which is the
direction of strong field gradient. This is the magnetic quiver motion described in the
Introduction. Time differentiation of Eq. (4.17) and substitution of Eq. (4.16) yields

d2z̃(1)

dt2
=

e

(mγ(0))2

(
(1 − β2

0z)
∂A⊥
∂z

+
β0z

c

dA⊥
dt

)
· p0⊥, (4.19)

where β0 = p0/(mcγ(0)) is the initial velocity divided by c. We now restrict to the
situation that β0z is sufficiently small so that the second term in parentheses in Eq.
(4.19) is negligible, which is the case if β0z � 1. Then, in addition, using Eq. (4.3)
the full time derivative may be written d2/dt2 = (∂/∂t+ v · ∇)2 = −ω2 +O(ε, δ, β0z),
so that double time integration yields

z̃(1) = − e(
mγ(0)

)2
ω2

∂A⊥
∂z

· p0⊥ [1 +O(δ, β0z)] . (4.20)

The bracketed factor expresses the error introduced by the integration. Eq. (4.20)
clearly shows that the amplitude of the magnetic quiver motion is polarization-
dependent: if p0⊥ is parallel to A⊥, this amplitude may be substantial, while for
p0⊥ perpendicular to A⊥, it vanishes at first order. This reinstates the argument
made in the Introduction: if p0⊥ ‖ A⊥, the momentum is largely perpendicular to
the magnetic field, resulting in a substantial magnetic force and quiver amplitude.
Conversely, if p0⊥ ⊥ A⊥, the momentum is largely parallel to the magnetic field,
with vanishing magnetic force and quiver amplitude.

As a final step, we substitute Eqs. (4.11)-(4.15) and (4.20) in the right-hand
sides of the remaining order equations (4.33)-(4.34), and take the time average of
these equations. Then the left-hand sides reduce to the rate of change of the first
order guiding center momentum, dp(1)/dt. The right-hand sides reduce to a single
gradient:

dp(1)

dt
≈ − e2

2mγ(0)
∇
〈

A
2

⊥ − (β0⊥ · A⊥
)2

+

(
∂
(
β0⊥ · A⊥

)
∂(kz)

)2〉
. (4.21)

This is the polarization-dependent ponderomotive force in a nonrelativistic standing
wave for a particle with β0z � 1; it is the main result of this chapter. The approx-
imate sign expresses a relative error of the order of β0z + δ. In the limit β0⊥ → 0,
Eq. (4.21) reduces to the well-known polarization-independent ponderomotive force,
Eq. (4.1), with the relativistic factor γ(0) ≈

√
1 + p2/(mc)2 + a2/2 included in the
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denominator. For β0⊥ 
= 0, however, the two polarization-dependent terms of Eq.
(4.21) become significant.

The term in Eq. (4.21) proportional to
(
∂
(
β0⊥ · A⊥

)
/∂kz

)2
originates from

including the magnetic quiver motion, Eq. (4.20), in the Taylor expansion of the
vector potential, Eq. (4.10). It accounts for the fact that the z-position oscillates in
phase with the temporal oscillation of the field. Therefore, when a field gradient in
the z-direction is present, the particle systematically samples higher fields at selected
phases of the electric quiver motion in the direction of A⊥, and lower fields at other
phases. The induced nonzero average force is negligible in most applications of the
ponderomotive force. But in a standing wave the derivative in ∂2/∂(kz)2 is of order
unity, so that this term is comparable to the other terms in Eq. (4.21).
The origin of the term in Eq. (4.21) proportional to

(
β0⊥ · A⊥

)2
can be traced back

to including the first order term (1/γ)(1) in the expansion of the Lorentz factor, Eq.
(4.8), rather than approximating γ ≈ γ(0) throughout.

4.2.4 Time-averaged Hamiltonian

The ponderomotive force on a charged particle in an electromagnetic field can also
be derived using a Hamiltonian description, showing that this force is essentially the
gradient of the time-averaged Hamiltonian of the particle [200]. Indeed, the right
hand side of Eq. (4.21) can be written as such. To see this, note that combination of
Eqs. (4.15)-(4.16) and (4.20) gives

dp(1)

dt
≈ −∇

〈
γ0mc

2 +

(
p̃(1)
)2

2γ0m
−
(
p0 · p̃(1)

)2
c2

2(γ0mc)3

〉
, (4.22)

where the term ∇(γ0mc
2) ≡ 0 has been added for convenience. The quantity within

angular brackets is just the average of the Hamiltonian H =
√
m2c4 + p2c2, in which

the momentum p and the square root have been expanded up to second order in ε.

4.3 Wiggling motion in a standing wave

The last term of the z-component of Eq. (4.21) may be rewritten by performing the
z-differentiations and using Eq. (4.3), after which Eq. (4.21) becomes

dp
(1)
z

dt
≈ − e2

2mγ(0)

∂

∂z

〈
A

2

⊥ − 2
(
β0⊥ · A⊥

)2〉
. (4.23)

We now evaluate Eq. (4.23) for the linearly and circularly polarized standing waves
considered by Pokrovsky and Kaplan.

70



Polarization-dependent ponderomotive gradient force

4.3.1 Linear polarization

Let the standing wave be produced by two counterpropagating plane waves of equal
amplitude and frequency that are collinearly polarized in the direction ep = ex cosφ+
ey sinφ, as is indicated in Fig. 4.1 by the dashed arrow. Then the vector potential
is A = A0ep cos kz sinωt. Suppose that a charged particle enters the standing wave
parallel to the x-axis with initial velocity β0. Differentiating Eq. (4.18), and substi-
tuting Eq. (4.23), gives the equation of motion for the guiding center of the particle
in the z-direction:

d2kz

d(ωt)2
− a2

0

1 − 2β2
0 cos2 φ

4
(
γ(0)
)2 sin(2kz) ≈ 0, (4.24)

in which a0 = eA0/(mc). Eq. (4.24) shows that the guiding center makes pendulum-
like oscillations in the z-direction (it wiggles in the ponderomotive potential), with
equilibrium points at kz = nπ/2 and a small-amplitude frequency
Ω = a0ω

√|1 − 2β2
0 cos2 φ|/(√2γ(0)).

First, consider polarization parallel to the initial velocity, that is, cosφ = 1. Then
Eq. (4.24) reduces to Eq. (40) of Ref. [196] after rewriting β0 = p0/(mcγ(0)). As was
noted in Ref. [196], the most striking feature of this configuration is that the guiding
center oscillations vanish for β0 = 1/

√
2; in terms of the guiding center motion, the

standing wave is invisible to the particle for this value of initial velocity. When β0

is increased above 1/
√

2, the stable and unstable equilibrium points of Eq. (4.24)
reverse their positions, i.e. the ponderomotive force changes direction towards high
field regions. This is the relativistic reversal described in Ref. [196].

For polarization perpendicular to the initial velocity of the particle, cosφ = 0.
Then Eq. (4.24) becomes identical to Eq. (52) of Ref. [196]. For this polarization,
the magnitude of the ponderomotive force and the wiggling frequency are independent
of the initial velocity, and the relativistic reversal effect is absent.

4.3.2 Circular polarization

If the standing wave is produced by two counterpropagating plane waves that are
circularly polarized with opposite helicities, the vector potential is equal to A =
A0 cos kz (ex cosωt+ ey sinωt). Thus the standing wave has equally spaced nodes
and antinodes along the z-axis, while locally the field direction rotates around the
z-axis with time. Again combining Eqs. (4.18) and (4.23) and substituting the vector
potential now gives

d2kz

d(ωt)2
− a2

0

2
(
γ(0)
)4 sin(2kz) ≈ 0, (4.25)
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which equals Eq. (56) of Ref. [196] taking into account that the field amplitude used
there is A0/

√
2. Thus, in this configuration the equilibrium points are the same as

in the linearly polarized case described by Eq. (4.24) for cosφ = 0, although the
magnitude of the ponderomotive force is a factor

(
γ(0)
)2

weaker.

For counterpropagating circularly polarized waves of equal helicity, the vector
potential reads A0 sinωt (ex sin kz + ey cos kz). In this case, the standing wave is
polarized in a helix along the z-axis. Eqs. (4.18) and (4.23) yield

d2kz

d(ωt)2
+

a2
0β

2
0

2
(
γ(0)
)2 sin(2kz) ≈ 0, (4.26)

which is the same as Eq. (62) of Ref. [196] after rewriting β0 = p0/(mcγ(0)) and tak-
ing into account the different definition of the field amplitude. As was noted in Ref.
[196], the field intensity is homogeneous along the z-axis, so that Eq. (4.1) predicts
zero ponderomotive force. However, the modified ponderomotive force expression,
Eq. (4.21), shows that this force is nonzero, so that Eq. (4.26) still yields wiggling
motion of the guiding center.

In summary, all the equations of motion (4.24)-(4.26) can be derived from a sin-
gle ponderomotive force expression, Eq. (4.21). We have therefore generalized the
results of Kaplan and Pokrovsky, who started from the Lorentz force equation for
each individual case. Moreover, Eq. (4.21) also gives the transverse component of
ponderomotive force, which was not considered in Ref. [196].

4.4 Comparison with simulations

In this section, Eq. (4.21) is tested against numerical simulations of electron trajec-
tories in a realistic, non-idealized standing wave field. We have used the GPT code
which uses an embedded fifth order Runge-Kutta method with adaptive stepsize con-
trol [201]. For comparison with the simulations, Eq. (4.21) is needed in terms of
the electric field rather than the vector potential. From Eq. (4.3), the potential is
approximately harmonic in time, so that 〈A2

⊥〉 ≈ ω−2〈E2

⊥〉. Therefore A⊥ may be
effectively replaced by E⊥/ω in Eq. (4.21).

We consider again the configuration shown in Fig. 4.1, this time with two identical
Gaussian laser beams in the fundamental mode that counterpropagate along the z-
axis, have a central wavelength λ = 800 nm and a peak intensity I0 = 2.0 · 1014

W/cm2, and are focused in a common waist of size w0 = 12.5 μm at z = 0. For these
parameters, ε ∼ (kw0)−1 = 0.01 and a = 0.01 so that the theory of Section 4.2 is
valid. The beams are assumed to be pulsed with a Gaussian pulse shape of length
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σ = 85 fs, and timed such that the centers of the pulses coincide at z = 0 at time
t = 0. This configuration yields a standing wave around the origin with length ∼ cσ

and width ∼ w0, and with a lifetime ∼ σ around t = 0. Furthermore, we assume that
the pulses are collinearly polarized in the direction ep = ex cosφ + ey sinφ, similar
to the case considered in Section 4.3.1. In each of the following cases, the trajectory
is calculated of an electron entering with initial velocity β0 = β0ex for t � −σ,
and with the initial position chosen such that, at t = 0, the position of the electron
would be (x, y, z) = (0, w0/2, λ/8) in absence of the laser fields. Then the electron
meets the standing wave close to the origin, has interaction with it for some time
∼ σ, and leaves the interaction region in a deflected direction. The initial position
has been chosen such that the electron samples the highest available field gradients
both in the z-direction and in the perpendicular direction, in order to maximize the
ponderomotive effects.

Figure 4.2: Trajectory of an electron incident on a standing wave that is
polarized in the y-direction (out of plane), for three different initial velocities β0.
The color map shows the field intensity of the standing wave in the (z, x)-plane at
time t = 0. For each initial velocity, the plot actually includes three trajectories,
calculated with the methods GPT, OLD, and NEW respectively; in each case all
three lines overlap to within the linewidth.
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In Figs. 4.2 and 4.3, the trajectory of the electron is shown as viewed from the
negative y-axis, for several values of β0 and for two different polarizations. Trajectories
were calculated using three different methods:

• (GPT) numerical integration of the exact equations of motion using the GPT
code (solid lines);

• (OLD) calculation according to the classical ponderomotive force, Eq. (4.1)
(dashed lines);

• (NEW) calculation according to our polarization-dependent ponderomotive force,
Eq. (4.21), with A⊥ replaced by E⊥/ω (dash-dotted lines).

Standard paraxial field expressions have been used [176]; these are listed in Appendix
4.C for reference.

Fig. 4.2 shows the configuration in which the polarization is perpendicular to the
initial velocity. In this case the polarization-dependent terms of Eq. (4.21) vanish,
and Eq. (4.21) reduces to the classical expression, Eq. (4.1). Indeed, for all three
initial velocities the three descriptions yield identical trajectories to within the width
of the lines, showing that the classical expression gives an excellent description of the
averaged motion of the electron. The usual behavior can be seen in which the electron
is deflected towards low-intensity regions.

In Fig. 4.3, however, the situation is very different. Here, the polarization is
parallel to the initial velocity, so that the polarization-dependent terms of Eq. (4.21)
become important. Because of this, in Fig. 4.3(a) the magnitude of the pondero-
motive force is smaller than in the corresponding case of Fig. 4.2 (β0 = 0.5), the
ponderomotive force vanishes in Fig. 4.3(b), and it even changes direction towards
the high-intensity region in Fig. 4.3(c). In all of these cases, the resulting trajecto-
ries are excellently predicted by Eq. (4.21). Fig. 4.3 demonstrates the relativistic
reversal described in Ref. [196] and Section 4.3.1. Meanwhile, Eq. (4.1) is insensitive
to the polarization direction, so that the trajectories (dashed lines) are incorrectly
predicted to be identical to the corresponding cases in Fig. 4.2. The insets of Fig.
4.3 are close-ups of the solid lines, showing that these actually consist of the smooth,
time-averaged trajectory predicted by Eq. (4.21) (dash-dotted line), and the GPT
trajectory. The latter contains also the quiver motion, which has components in the
x-direction (Eq. (4.15)) and the z-direction (Eq. (4.20)) and is therefore visible in
the plane of drawing of Fig. 4.3. The frequency of this quiver motion is ω while the
electron moves forward with a velocity βx ≈ β0x, so that the spatial period of the
quiver motion is 1/(β0xλ). This has been made visible by scaling the x-axes of the
insets. In Fig. 4.2, the quiver motion would not be visible in a close-up because it
is perpendicular to the plane of drawing, since A⊥ · p0⊥ = 0 in Eq. (4.20) and the
z-component of the quiver motion vanishes.
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Figure 4.3: Trajectory of an electron incident on a standing wave that is polar-
ized in the x-direction (left-right), for an initial velocity β0 equal to (a) 0.5; (b)
0.707 ≈ 1/

√
2; (c) 0.9. The color map shows the field intensity of the standing

wave in the (z, x)-plane at time t = 0. In each plot, the trajectory has been
calculated with the methods GPT (solid line), OLD (dashed line) and NEW
(dash-dotted line).
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In order to show some ponderomotive effects in the perpendicular direction as
well, in Fig. 4.4 a sideview is given of the trajectories of Fig. 4.3(a), as seen from
the positive z-axis. Note from the vertical scale that in this direction the deflection
of the electron is very small due to the very small field gradient. Nevertheless, again
it is clear from the figure that Eq. (4.21) accurately predicts the electron trajectory,
contrary to the classical expression. Thus Eq. (4.21) gives a precise description of the
three-dimensional electron trajectory in a realistic, non-idealized field configuration.
We have also repeated the simulations for combinations of ε and a other than a ∼ ε.
Whenever both ε and a are less than about 0.1, consistent with the assumptions
a, ε � 1 made in Section 4.2, we find the same level of agreement with the GPT
results.
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Figure 4.4: Sideview from the positive z-axis of the trajectories shown in Fig.
4.3(a). The trajectories has been calculated with the methods GPT (solid line),
OLD (dashed line) and NEW (overlapping with GPT).

4.5 Conclusion

The classical polarization-independent ponderomotive force is commonly used to de-
scribe the time-averaged motion of charged particles in an inhomogeneous oscillating
EM field. It is generally assumed that this is an accurate description, at least for
nonrelativistic intensities. However, we have shown that this is not always true. If
the field configuration possesses a direction in which the field changes on the scale of
the wavelength, i.e. in a standing wave, and in addition the charged particle is rela-
tivistic, the ponderomotive force is modified. In particular, it becomes dependent on
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the polarization of the field. Because of this, the ponderomotive force may even van-
ish, or change direction toward high field regions, as was found earlier [195]. We have
derived the modified ponderomotive force expression for these configurations, which
is of gradient form like the classical expression. Comparison with simulations in the
case of a realistic, non-idealized, three-dimensional field configuration confirmed the
general validity of the analytical results.

The modifications of the ponderomotive force derived here may have important
implications for applications that involve the ponderomotive interaction of relativistic
charged particles and standing EM waves. For example, in the electron bunch length
measurement based on ponderomotive scattering of the electrons by a standing wave
[177], the polarization of the wave is essential for an optimal design of the experimen-
tal setup. In the proposed X-ray free electron laser relying on the wiggling motion of
electrons induced by the ponderomotive force in a standing wave [179], the frequency
of wiggling and hence that of the stimulated radiation directly depend on the polariza-
tion. Experimental tests involving the controlled scattering of electrons by a standing
wave have confirmed the classical ponderomotive force expression [186] and Kapitza-
Dirac diffraction [187] using nonrelativistic electrons. It would be very interesting to
extend these experiments to relativistic electrons to test the polarization-dependent
ponderomotive force, Eq. (4.21), in the classical limit, and to study the polarization-
dependence of Kapitza-Dirac diffraction.

Appendix 4.A Order equations

Substitution of the expansions (4.7)-(4.10) in the equations of motion (4.5)-(4.6), and
collecting terms of equal order in ε, results in the following order equations. The
components of the vector potential and the spatial derivatives have been treated as
eA⊥/(mc) = Os(ε), eAz/(mc) = Os(ε2), λ∇⊥ = Os(ε) and λ∂/∂z = Os(1) consistent
with Eq. (4.2) and the assumption a ∼ ε. For reasons of clarity, the equations are
displayed in dimensional form.

Os(1) :

dp̃(0)

dt
= 0; (4.27)

d (x + x̃)(0)

dt
=

(p + p̃)(0)⊥
mγ(0)

. (4.28)
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Os(ε) :

dp̃
(1)
⊥
dt

+ e
dA⊥
dt

= 0; (4.29)

d
(
p
(0)
z + p̃

(1)
z

)
dt

=
e

mγ(0)

∂A⊥
∂z

· (p + p̃)(0)⊥ ; (4.30)

d (x + x̃)(1)

dt
=

(p + p̃)(1)

mγ(0)
− (p + p̃)(0) · (p + p̃)(1)

(mcγ(0))2
(p + p̃)(0)

mγ(0)
. (4.31)

Os(ε2) :

d
(
p

(0)
⊥ + p̃

(2)
⊥
)

dt
=

e

mγ(0)

(∇⊥A⊥
) · (p + p̃)(0)⊥ ; (4.32)

d
(
p
(1)
z + p̃

(2)
z

)
dt

+ e
dAz

dt
=

e

mγ(0)

[
z̃(1) ∂

2A⊥
∂z2

· (p + p̃)(0)⊥ +
∂A⊥
∂z

· (p + p̃)(1)⊥ (4.33)

+
∂Az

∂z
(p+ p̃)(0)z − (p + p̃)(0) ·(p + p̃)(1)

(mcγ(0))2
∂A⊥
∂z

·(p + p̃)(0)⊥

]
.

Os(ε3) :

d
(
p

(1)
⊥ + p̃

(3)
⊥
)

dt
=

e

mγ(0)

[
z̃(1)

(
∇⊥

∂A⊥
∂z

)
· (p + p̃)(0)⊥ +

(∇⊥A⊥
) · (p + p̃)(1)⊥

+
(∇⊥Az

)
(p+ p̃)(0)z − (p + p̃)(0) · (p + p̃)(1)

(mcγ(0))2
(∇⊥A⊥

) · (p + p̃)(0)⊥

]
.

(4.34)

Appendix 4.B General field strength

The ponderomotive force, Eq. (4.21), has been derived under the assumption that
a ∼ ε. Since this expression is the result of balancing terms of equal order in the
equations of motion, one might expect that it would be affected by changing the
order of magnitude of the vector potential to, for instance, a ∼ ε2. This is not the
case, however. We only give a sketch of the generalized derivation for arbitrary a� 1.

Repeating first the order expansion method for the case a ∼ εn, n ≥ 1, it is not
difficult to find the lowest order slowly varying term and the lowest order rapidly vary-
ing term of the expansions of p and 1/γ. Also, the first two terms of the expansion
of A follow straightforwardly. The right-hand side of the equation of motion (4.5)
is then formed by factoring out the product of these three expansions. Taking the
time average of the result, it is found that the lowest order terms that are nonzero on
average are precisely those that form the ponderomotive force given by Eq. (4.21).
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In terms of the corresponding set of order equations analogues to those in Appendix
4.A, the first 2n − 1 orders of the momentum equations yield zero right-hand sides
upon averaging, while the 2n-th and (2n + 1)-th orders evaluate to respectively the
z-component and perpendicular component of Eq. (4.21).

Also the opposite situation in which 1 � a ∼ ε1/n, n ≥ 1, is possible. Since in
this case factors of A in the equations of motion lead to terms of fractional order in
ε, it is appropriate to expand all quantities in power series in terms of ε1/n rather
than ε. This is effected by using the same power series expansions as before, with the
understanding that p(i) = Os(εi/n) rather than p(i) = Os(εi), for example. Except
for this modification, the derivation of the ponderomotive force is analogous to that
for the case a ∼ εn considered above, and again Eq. (4.21) is found. Thus Eq. (4.21)
is valid for arbitrary a� 1.

Appendix 4.C Fields used in numerical calculations

The solid lines in Figs. 4.2-4.4 have been calculated by numerical integration of the
equations of motion

dp

dt
= e

(
E +

1
γ

p × B

)
; (4.35)

dx

dt
=

p

mγ
, (4.36)

using for E and B the following paraxial Gaussian beam fields [176]. For polarization
in the x-direction (φ = 0),

E = E+ exp
(
− (z + ct)2

4(cσ)2

)
+ E− exp

(
− (z − ct)2

4(cσ)2

)
; (4.37)

B = B+ exp
(
− (z + ct)2

4(cσ)2

)
+ B− exp

(
− (z − ct)2

4(cσ)2

)
; (4.38)

E± = E0
w0

w

(
ex cosψ± ± xw0

zRw
ez sinχ±

)
; (4.39)

B± =
E0

c

w0

w

(
∓ey cosψ± − yw0

zRw
ez sinχ±

)
, (4.40)

in which E0 =
√

2I0/(ε0c) is the peak electric field amplitude, w = w0

√
1 + z2/z2

R is
the beam waist, zR = kw2

0/2 is the Rayleigh length, and the Gouy phases are
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ψ± = ωt±
(
kz − arctan

z

zR
+

z

zR

x2 + y2

w2

)
; (4.41)

χ± = ωt±
(
kz − 2 arctan

z

zR
+

z

zR

x2 + y2

w2

)
. (4.42)

The dashed lines in Figs. 4.2-4.4 have been calculated according to Eq. (4.1) with
I(x, t) = ε0c〈E2

x〉 using Eq. (4.37) for Ex. The dash-dotted lines have been calculated
according to Eq. (4.21) with A⊥ replaced by Ex/ω. For polarization in the y-direction
(φ = π/2), replace x→ y and y → −x in the expressions above.
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5

Heating mechanisms

in radio frequency driven ultracold plasmas

Abstract - Several mechanisms by which an external electromagnetic field influ-
ences the temperature of a plasma are studied analytically and specialized to the
system of an ultracold plasma (UCP) driven by a uniform radio frequency (RF)
field. Heating through collisional absorption is reviewed and applied to UCPs.
Furthermore, it is shown that the RF field modifies the three body recombina-
tion process by ionizing electrons from intermediate high-lying Rydberg states and
upshifting the continuum threshold, resulting in a suppression of three body re-
combination. Heating through collisionless absorption associated with the finite
plasma size is calculated in detail, revealing a temperature threshold below which
collisionless absorption is ineffective.

Publication status - The work described in this chapter has been published by
P. W. Smorenburg, L. P. J. Kamp, and O. J. Luiten in Phys. Rev. A 85, 063413
(2012).

85



Chapter 5.

5.1 Introduction

Conventional plasmas are formed when atoms are ionized by strong electric fields
or collisions with other particles. Due to the large excess energy inherent in such
ionization processes, the resulting electron temperature is typically comparable to the
ionization potential, which is on the order of an electronvolt, equivalent to some 104 K.
In marked contrast, ultracold neutral plasmas (UCPs), created by photo-ionization
of a cloud of laser-cooled atoms [202], have an electron temperature close to 1 K.
UCPs typically consist of some 108 singly-ionized atoms localized in a millimeter-
sized cloud of Gaussian density profile, with a correspondingly low particle density
[203]. The combination of low temperature and low density makes UCPs unique
plasma systems. They can be close to the strongly-coupled regime where the Coulomb
interaction energy between the particles exceeds the thermal energy, as is quantified
by the coupling parameter

Γ =
e2

4πε0rwkBT
(5.1)

exceeding unity, where e is the electron charge, ε0 the vacuum permittivity, kB Boltz-
mann’s constant, T the plasma temperature, and rw = [3/(4πn)]1/3 the Wigner-Seitz
radius with n the number density. Due to their high coupling parameter, UCPs be-
have in many respects similar to strongly-coupled plasmas near solid state density,
such as laser-ionized atomic clusters [204] or thin films [205], inertial confinement
fusion targets [206] and astrophysical plasmas [207]. The dynamics of solid state den-
sity plasmas, however, takes place at the time scale of the inverse plasma frequency,
which lies in the attosecond to femtosecond regime. This seriously complicates diag-
nostics. In contrast, UCPs evolve on the time scale of picoseconds to microseconds.
This enables excellent time-resolved diagnostic techniques, including charged particle
detection [208], absorption imaging [209] and fluorescence monitoring [210]. In addi-
tion, the careful preparation and ionization of atomic clouds allows accurate control
over the initial temperature, density profile, and ionization state. UCPs may there-
fore serve as versatile and experimentally accessible model systems for high-density
plasmas that are difficult to diagnose.

An important class of experiments on solid state density plasmas involves plasmas
created by laser irradiation of atomic clusters in a gas jet. Characteristic of these
experiments is that the laser pulse length is comparable to the lifetime of the plasma.
Therefore the studied system typically consists of a cluster plasma that is not only
near to strongly-coupled, but is also strongly driven by a radiation field. This leads
to complicated dynamics that is difficult to unravel [204]. Research on laser-cluster
interaction would therefore benefit from UCP experiments in which this interaction is
mimicked. Since atomic clusters are typically smaller than the laser wavelength, the
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appropriate model system is an UCP driven by a strong radio-frequency (RF) field.
Interpretation of observations in such experiments on RF driven UCPs, however, re-
quires a detailed understanding of the mechanisms by which the RF field and the
UCP interact. In this chapter, we consider how the RF field influences the plasma
temperature, both directly through RF energy absorption mechanisms and indirectly
through modification of the three body recombination process, the latter being a main
heat source in UCPs.

In current UCP experiments, RF fields are used in a diagnostic way to probe
plasma modes. Plasma resonance can be detected as an increased yield of electrons
leaving the UCP [211]. Combined with knowledge of the mode properties [212], this
can be used to determine the plasma density and expansion as a function of time. Us-
ing the same technique, the presence of acoustic or Tonks-Dattner modes in an UCP
has been observed in addition to the fundamental mode [213]. In these experiments,
the collective response of the plasma electrons to the RF field has been studied in
quite some detail. However, the RF amplitude is kept low to avoid disturbances other
than plasma resonances, and little attention is paid to other interaction mechanisms.
Nevertheless, as we will describe in this chapter, the RF field influences the plasma
also via incoherent processes. In their Tonks-Dattner modes experiment, Fletcher et
al. [213] indeed observe the onset of field-induced effects at large probing amplitudes.
Although lower RF amplitudes justify the use of standard plasma quantities, such
as the Spitzer collision frequency applied in the interpretation of the fundamental
plasma resonance measurements [212], or the Debye length mentioned in support of
the analysis of the Tonks-Dattner modes [213], one should be aware of the possible
high-amplitude modifications of such quantities induced by the RF field. Finally, the
expansion of an UCP is driven by the thermal pressure of the electrons. It is therefore
important to understand the various ways in which the RF field contributes to the
heat budget of the plasma.

In this chapter, we take the electric field strength E0 in the plasma as a given quan-
tity, and consider what influence this field has on several microscopic processes. For
underdense plasmas, E0 is approximately equal to the externally applied RF field. For
denser plasmas, E0 may be significantly enhanced by the polarization field generated
by the plasma itself. This is particularly relevant under conditions of resonance with
plasma modes, in which case the absorption of RF energy by the UCP is dominated
by the strong dependence of E0 on the driving frequency [214]. The determination of
the frequency response of the UCP, and hence the polarization fields, is actively being
studied [212–215], but is outside the scope of this thesis. Nevertheless, our results
may be directly applied once E0 is known.
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This chapter is organized as follows. We consider two mechanisms by which the
UCP can directly absorb energy from the RF field: collisional absorption and colli-
sionless absorption due to the finite size of the plasma. The first of these has been
studied extensively already in other contexts [216–226]. In Section 5.2, we therefore
only cite the main results from literature and discuss their relevance for RF driven
UCPs. In Section 5.3, we study the process of three body recombination in the pres-
ence of an RF field, and show that the recombination rate can be strongly suppressed
by the field. Next, in Section 5.4, we consider the collisionless absorption mechanism
mentioned above, which has been mainly studied in the context of solid-state density
plasmas [227–234]. We show that the approximations usually adopted are not appro-
priate for UCPs. We provide an improved description by specializing a derivation of
the collisionless absorption rate due to Zaretsky et al. [231] to the case of UCPs. We
conclude and summarize in Section 5.5.

5.2 Collisional absorption

5.2.1 Collision frequency

At low to moderate RF field strengths, the energy absorption of a plasma is dominated
by collisional absorption, or inverse Bremsstrahlung [235]. The physical cause of the
absorption is that individual electrons, oscillating due to the RF field, deflect in the
Coulomb fields of the approximately stationary ions, resulting in a net energy gain.
The average effect of the Coulomb fields can be described phenomenologically as an
effective frictional force F = −mνeiv in the equation of motion of the electron, and
the energy absorption rate per electron by the power Pei = −〈F · v〉. Here, m is the
electron mass, νei is the effective electron-ion collision frequency, and v is the electron
velocity. Expressing the velocity in terms of the driving electric field gives [216]

Pei = 2νeiUp, (5.2)

where Up = (eE0)2/(4mω2) is the quiver energy, or ponderomotive potential, in the
RF field with amplitude E0 and frequency ω. Here and in the remainder, we assume a
linearly polarized RF field, and absorb any field enhancement due to plasma resonance
in the magnitude E0. Importantly, Eq. (5.2) defines the collision frequency as merely
a scaled absorption rate, rather than predicting the absorption from a predetermined
collision frequency. Consequently, νei is not necessarily equal to the Spitzer collision
frequency [236]

νS =

√
2

3π
ωpΓ3/2 ln Λ, (5.3)

which is commonly used for plasmas without RF fields. Nevertheless, the collision
frequency Eq. (5.3) is sometimes used for driven plasmas as well, and also in the
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context of RF absorption by UCPs [212, 237]. In Eq. (5.3), singly ionized atoms are
assumed, ωp is the plasma frequency, and ln Λ is the Coulomb logarithm that will be
discussed below.

Underlying any calculation of the collisional absorption rate is some model for the
scattering of an electron by the Coulomb field of an ion, which generally depends on
the electron velocity. Because two velocity scales are involved, namely the thermal
velocity vth =

√
kBTe/m and the quiver velocity magnitude vosc = eE0/(mω), the

collision frequency depends on the ratio vosc/vth. Here, Te is the electron temperature
of the plasma. The effective collision frequency has been calculated first by classical
kinetic theory using the Landau collision integral [216, 217]. The result can be written
as [222]

νei = νS · F2 2

(
3
2
,

3
2

; 2 ,
5
2

;− v2
osc

2v2
th

)
, (5.4)

where F2 2 denotes the generalized hypergeometric function [238] that has the limiting
forms

F2 2(. . . ) ≈
{

1 vosc � vth

6
√

2
π

(
vth
vosc

)3 [
ln
(

vosc
2vth

)
+ 1.0

]
vosc � vth.

(5.5)

More advanced and alternative calculations largely confirm these results [218–223].

The collision frequency of Eq. (5.4) is plotted in Fig. 5.1 as a function of the
velocity ratio. In RF experiments with UCPs, this ratio can vary over the full range
vosc � vth to vosc � vth [211]. The decrease of the collision frequency for increas-
ing vosc can be understood from the well-known fact that the Rutherford scattering
cross section for an electron by an ion is inversely proportional to the fourth power
of the relative velocity, so that driving the plasma stronger makes the electrons less
susceptible to deflections and hence to energy gain. Note that the Spitzer frequency
Eq. (5.3) with Eq. (5.1) substituted is proportional to v−3

th , while the second line
of Eq. (5.5) contains the factor (vth/vosc)

3. Effectively, therefore, and apart from a
logarithmic factor, the content of Eq. (5.4) is that the thermal velocity is replaced
by the quiver velocity in the collision frequency when vosc � vth. In fact, this effect
is such that the collision absorption rate Pei given by Eq. (5.2) decreases with field
strength as E−1

0 rather than increases, which is a well-known phenomenon in laser-
plasma physics [235]. This behavior is not only relevant when large RF field strengths
are applied, but also when UCPs are driven resonantly. This is because the electric
field is strongly enhanced at densities for which the plasma frequency equals the RF
frequency. In particular, the amplitude of the electron oscillations is then limited
by the dominant damping mechanism, which in view of Fig. 5.1 may no longer be
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Figure 5.1: Effective electron-ion collision frequency for collisional absorption
scaled to the Spitzer collision frequency, as a function of the ratio of quiver
velocity to thermal velocity. Solid green line: theoretical collision frequency Eq.
(5.4); dash-dotted blue line: weak field limit vosc � vth given by Eq. (5.5);
dashed red line: strong field limit vosc � vth given by Eq. (5.5); black error
bars: collision frequency according to numerical simulations.

collisional absorption. For sufficiently small νei, excitation of plasma waves can be-
come important [239], although this is outside the scope of this thesis. In Section 5.4
another competing damping mechanism is presented.

We have performed numerical simulations in order to verify that the theoretical
result Eq. (5.4) indeed continues to hold in the rather exotic case of UCPs. In
the simulations, an UCP was modeled by 4000 electrons and 4000 singly-charged
ions, randomly placed within a spherical region. Subsequently, the trajectories of
all particles under the influence of both a homogeneous oscillating external electric
field and the instantaneous interparticle Coulomb forces were calculated using the
GPT particle tracking code [240]. This was done for various values of the external
electric field amplitude E0; more details can be found in Refs. [241]. For each run,
the total (kinetic plus potential) energy Utot present in the system was evaluated as a
function of time. Apart from the collective oscillations associated with the forcing by
the external field, which can be removed using Fourier techniques [241], Utot increased
monotonically in each case. This could be attributed to collisional absorption. By Eq.
(5.2), the observed rate of increase in Utot yields a numerical evaluation of the collision
frequency equal to νei = (2NUp)−1dUtot/dt, where N is the number of electrons
participating in the heating process. These numerical results are shown in Fig. 5.1
in black. The quantities vth and νS required for scaling were taken according to the
temperature corresponding with Utot. For N , the number of electrons present within
a sphere concentric with the plasma and having twice the initial plasma radius was
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taken, thereby discarding escaped electrons that could not have interacted with the
plasma ions. The error bars in Fig. 5.1 represent the uncertainty in the temperature
due to the variation in Utot during the simulated time interval, which increases with
E0 and hence with vosc. In the figure, the agreement between the numerical and
theoretical results is excellent. This confirms that Eq. (5.4), which has been derived
in the context of more conventional plasmas, continues to be valid in case of ultracold,
finite-sized case of UCPs.

5.2.2 Coulomb logarithm

A second important consequence of the RF field is that the Coulomb logarithm ln Λ in
Eq. (5.3) is modified. This is particularly relevant for UCPs because the traditional
expression ln Λ = ln

(
Γ−2/3

)
looses its validity in case of strong coupling Γ � 1. The

Coulomb logarithm arises from cutting off the Coulomb collision integral at both large
and small impact parameters in elementary calculations of the scattering cross section
of an electron by an ion [242]. However, the physical arguments used to choose these
cut-offs are traditionally based on thermal electron velocities only, and the cut-offs
will change when in addition the quiver velocity is taken into account. This can be
confirmed by explicit calculation [220], yielding ln Λ ≈ ln (bmax/bmin), with

bmax =
veff

max (ω, ωp)
; (5.6)

bmin =
e2

4πε0mv2
eff

; (5.7)

veff ≡
√
v2
th + v2

osc. (5.8)

Here the classical limit veff < e2/(2ε0�) has been assumed, where 2π� is Planck’s
constant. Eqs. (5.6)-(5.8) show that also in the Coulomb logarithm, as before, the
quiver velocity effectively takes over the role of the thermal velocity in the limit
vosc � vth. This suggests more generally that kinetic processes in UCPs that depend
on the electron temperature may be strongly modified by the presence of an RF field.
In the next section, we further validate this notion by showing that the three body
recombination rate in an UCP can be strongly suppressed by an RF field.

5.3 Three-body recombination

In the process of three body recombination (TBR), an electron recombines with an
ion, while the excess potential energy is carried away by a second electron. In UCPs,
TBR is the dominant recombination channel [203] due to the strong scaling of the
TBR rate R with temperature, which is R ∝ T

−9/2
e according to conventional the-

ory [243, 244]. However, the unphysical divergent behavior of the rate as Te → 0
indicates that this scaling must break down at sufficiently low temperatures. Modifi-
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cations of the rate associated with the nonideality of strongly coupled plasmas have
been demonstrated analytically [245–248] and with molecular dynamics simulations
[249, 250]. Also quantum effects associated with the wave character of the electrons
can play a role at sufficiently low temperatures, if the electronic De Broglie wavelength
becomes noticeable on the spatial scale of the TBR process [251]. On the other hand,
in current experiments UCPs remain mainly outside the strongly coupled regime [252],
so that numerical models of the expansion dynamics of UCPs that are based on the
conventional TBR rate are able to accurately describe experimental results [253]. We
will show now that, in addition to any possible strong coupling effects, the presence
of an RF field suppresses the TBR rate to a temperature scaling of R ∝ T−1

e , which
is much milder than the conventional R ∝ T

−9/2
e dependency. We do not consider

the mentioned quantum effects, which are presumably small since the quiver motion
of the electrons ensures a small De Broglie wavelength.

We determine the TBR rate along the lines of an elementary analytical derivation
by Hinnov and Hirschberg [243], adapted to the situation in which vosc � vth. The
TBR rate found by Hinnov and Hirschberg has been confirmed by extensive Monte
Carlo simulations [244] to within a factor of order unity, showing that their model
captures the essential physics despite its simplicity. To exhibit the RF field effects
clearly, we therefore choose to use this simple analytical model rather than performing
a detailed numerical study, although the latter will be important to test the results
derived here. Let us first briefly review the conventional case where the RF field is
absent. Quantum mechanically, a TBR event may be described as an electron making
a cascade of transitions between adjacent energy levels of an atom until it reaches the
deeply bound states. Under conditions applicable to UCPs, these transitions are
mainly effected by collisions with other, free electrons. The process is illustrated in
the left panel of Fig. 5.2. Considering an electron at any particular energy level
Ui < 0, there is both a finite probability that the next collision will result in an
upward transition, and a finite probability that a downward transition results. It
can be shown [243] that the upward transition probability increases with respect
to the downward transition probability as Ui grows closer to the continuum, and
that upward transitions dominate for levels less than an energy ∼ kBTe below the
continuum. Any electron ending up in the energy band −kBTe < Ui < 0, shown in
gray in Fig. 5.2, is therefore likely to re-ionize, while electrons below this band are
likely to fully recombine. Hence, as far as TBR is concerned, one may qualify the levels
−kBTe < Ui < 0 as effectively unbound, and approximate the amount of eventually
recombining electrons with those electrons that skip this band altogether by making
a direct collisional transition from the continuum to anywhere below the bottleneck
level −kBTe. The validity of this approximation has been confirmed by simulations
[244]. Summing the probabilities of such transitions over all possible initial and final
energies of the recombining electron and over all possible energies of the free electron,
one finds indeed the usual TBR rate proportional T−9/2

e [243].
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Figure 5.2: Energy diagram of three body recombination with and without
RF field. The gray bands show energies from which re-ionization is likely. An
arbitrary high energy level Uk < 0 has been drawn; on the sides the energy scale
has been indicated. The bottleneck level is moved by the RF field (a). The
RF field induces a Stark shift of the continuum threshold (b), Stark splitting
of highly excited levels (c); and much smaller shifts of deeply bound states (d).
(e): electron that re-ionizes after a collisional transition from the continuum to
above the bottleneck level; (f): electron that recombines by making a cascade to
deeply bound states after a collisional transition to below the bottleneck level.

When an RF field is present, two essential modifications must be made to this pic-
ture, as illustrated by the right panel of Fig. 5.2. First, the RF field interferes with
the collisional cascade towards deeply bound levels, because it can ionize electrons
from highly excited levels. It is well-known that the character of a field ionization
process depends upon the applied field strength and frequency in relation to the bind-
ing energy of the electron; accordingly different regimes such as multiphoton- and
tunneling ionization may be identified. We consider microwave or lower frequencies
and kV/m field strengths, in which case field ionization from highly excited levels
is well-described by classical over-the-barrier ionization in a quasistatic electric field
[254]. This has also been verified experimentally [255–257]. Accordingly, the com-
bined potential U = −e/(4πε0r) − E0z of the ion and the external field has a saddle
point along the z-axis of height

√
e3E0/(πε0) ≡ −Uion, and any electrons with ener-

gies Ui > −Uion will rapidly escape from the ion by going over this saddle point. Such
a static description is valid because, in the case at hand, the applied frequency ω is
much smaller than the classical Kepler frequency ωi of the energy levels Ui close to
−Uion. Also the inverse process, in which free electrons enter the vicinity of the ion
in the presence of a low-frequency field and which is the low-frequency equivalent of
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stimulated radiative recombination, has been observed [258, 259]. The lowering of the
Coulomb barrier to −Uion due to the external field thus defines a range of energies
U > −Uion that are effectively unbound. Regarding the three body recombination
process, any electron ending up in this energy range is more likely to ionize than to
proceed with a downward collisional cascade. Thus, analogous to the field-free case,
only free electrons that make a direct collisional transition to states below the bottle-
neck level −Uion will contribute to the TBR rate, but now the bottleneck level is set
by the field and no longer by the plasma property −kBTe.

A second influence of the RF field is the fact that the energy of both free and
bound electrons will change due to the field. For free electrons, the energy increment
is just the quiver energy Up = mv2

osc/4. As a result the continuum threshold shifts up
by Up as well (see Fig. 5.2), which is a well-known effect in multiphoton ionization
experiments [260]. This upshift is important for the TBR process since free electrons
will now have to loose an additional energy Up in order to recombine with an ion.
Combined with the adapted bottleneck, the minimum energy loss to effect a TBR
event has thus increased from kBTe in the field-free case to Up +Uion in the case with
field, as is illustrated in Fig. 5.2 by the gray bands. This suppresses the TBR rate
significantly. Finally, the energy change of the bound levels due to the RF field is the
AC Stark shift. However, the energy levels that are available for TBR are the levels
below −Uion, for which the shift is approximately equal to the DC Stark shift because
ωi � ω. For states just below −Uion, the electric field exceeds the Inglis-Teller limit,
which means that the Stark splitting of the manifolds with principal quantum num-
ber k is large enough to fill the energy space with states more or less homogeneously
[254]. An additional observed effect due to this strong Stark mixing in an AC field
is that electrons may ionize from below −Uion via subsequent upward Landau-Zener
transitions [254]. We neglect this effect because it is a much slower process than direct
over-the-barrier-ionization [261]. Resonant atomic transitions that might be induced
by the RF field are not included either, although they may have an effect on the
collisional cascade.

We now recalculate the TBR rate in the presence of an RF field, taking account
of the field modifications described above. By the method of detailed balance, under
the hypothetical condition of thermal equilibrium the rate of collisional transitions
from the continuum U > Up to the bound energy level Ui < Uion is equal to the
rate of the inverse process, which are ionizing transitions from the bound level to
the continuum caused by electron impact. From the well-known [243] cross section
Si(U) for a collisional energy transfer of at least |Ui| + Up from a moving electron
with energy U to a stationary electron, the rate of collisional ionization from level Ui

per unit plasma volume is
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Ri =
ˆ ∞

|Ui|+Up

ninevSi(U)f(U)dU. (5.9)

Here, f(U) is the energy distribution function of free electrons, v is the electron
velocity corresponding to energy U , and ni is the density of electrons in level Ui. The
rate of TBR via level i, which is the inverse process, is obtained by substituting for
ni the equilibrium value from the Saha equation [242], because the two rates must
be equal at equilibrium. Let us first consider the case where Up � Uion, that is, for
relatively high frequencies or low fields, and denote the corresponding TBR rate by
R0. In this case U � Up in the whole integration domain of Eq. (5.9), so that f(U)
may be approximated by an ordinary Boltzmann distribution without the need to
correct it for the quiver motion. Evaluating the integral in Eq. (5.9), substituting the
Saha value for ni, and summing over all energy levels below −Uion, gives the total
TBR rate

R0 =
∑

i

Ri ≈ e4�
3n3

e

4gε20m2 (kBTe)3

ˆ −Uion

−∞
F

(
U

kBTe

)
D(U)dU, (5.10)

where F (x) ≡ exp(−x) Ei(x)− 1/x with Ei the exponential integral [262] and g is the
degeneracy of the ionic ground state. The sum over states has been approximated by
an integral over the bound energy, resulting in the density of states D(U) as a factor.
Approximating the atomic potential with that of hydrogen, D(U) ≈ 1/2 Ry3/2 |U |−5/2,
where Ry = 13.6 eV is the Rydberg energy. For kV/m field strengths, |U | /(kBTe) � 1
over the whole integration domain of Eq. (5.10), so that the function F can be
approximated by its asymptotic value F ≈ (kBTe/U)2. Then the remaining integral
contains the field effects, but is independent of the temperature. This means that the
temperature scaling of the TBR rate that is derived here is insensitive to errors due to
our approximate description of the energy Uion and the Stark shift structure, although
the prefactor may change somewhat in a more detailed calculation. Integration of Eq.
(5.10) gives

R0 ≈ π2

7g

√
2
m

(
e2

4πε0

)5
n3

e

U
7/2
ion kBTe

≈ 2.6 · 10−27 n3
e[cm−9]

U
7/2
ion kBTe[eV9/2]

cm−3 s−1, (5.11)

assuming g = 2. Within a factor of order unity, this three body recombination rate
is equal to the accepted result for the case without RF field [244], except that 7/2
powers of kBTe have been replaced by the energy Uion characterizing the applied field.
This reduces the strongly divergent behavior R ∝ T

−9/2
e to the much milder depen-

dency R ∝ T−1
e . Thus three body recombination may be significantly suppressed by

application of an RF field. A similar field-induced suppression of the TBR rate has
been considered before [247], although in that work the so-called plasma microfield
was accounted for rather than an externally applied field. The calculated TBR rate
for singly charged ions was 1.4 · 10−31ΓZn

7
pn

3
e/(kBTe) in the units of Eq. (5.11), with
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ΓZ ≈ 2 and np the principal quantum number at the bottleneck level defined in Ref.
[247]. Using our bottleneck level instead by substituting np =

√
Ry /Uion precisely

gives Eq. (5.11), including the correct numerical factor, showing that both results
agree.

Eq. (5.11) is valid for Up � Uion only. However, the calculation is easily gen-
eralized to arbitrary Up by including the quiver motion of the free electrons in the
calculation. The details are given in Appendix 5.B; the result is

R = R0G

(
Up

Uion

)
, (5.12)

where R0 is the rate given by Eq. (5.11) and G is a correction factor. The latter is
given by Eq. (5.34) and is approximately equal to

G(x) ≈
[
1 + (βx)1/α

]−5α/2

, (5.13)

with α = 1.137 and β = (2/7)2/5.

5.4 Collisionless absorption

5.4.1 Absorption models

Even without the presence of electron-ion collisions, individual electrons in a plasma
can absorb energy from an applied electric field. For bulk plasmas, this collisionless
absorption effect is the well-known Landau damping [236], in which electrons can gain
net energy from a high-frequency propagating electric wave, despite the fact that the
high-frequency electric force tends to cancel out on the average. This is possible when
the thermal velocity of the electron is close to the velocity of the wave, so that the
electric field is approximately static in the electron frame of reference. Essential for
this mechanism is a resonance between thermal motion and applied field. In plasmas
of finite size, such as an UCP, the thermal motion of electrons is necessarily confined
by the plasma boundaries, so the assumption of rectilinear motion implicit in the
Landau damping mechanism of bulk plasmas is no longer appropriate. Rather, the
electrons perform quasi-periodic motion in the electrostatic potential of the plasma,
as is detailed below. Furthermore, the electric field in the plasma is homogeneous
rather than a propagating wave when the applied wavelength is much larger than the
plasma size, such as in the case of an RF field applied to an UCP. Nevertheless, elec-
trons may on the average gain energy, and this is again due to a resonance between
the thermal motion and the applied field. This is why the collisionless absorption of
finite plasmas has been called Landau damping as well [228, 263], although the char-
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acter of the correlation is quite different. In this section, we calculate the RF energy
absorption of an UCP by this mechanism. To avoid confusion, it should be noted that
the resonance between thermal motion and RF field that is meant here has nothing
to do with the more familiar plasma resonance. The electrons in the plasma have an
individual thermal motion superposed on a collective quiver motion; the resonance
meant here concerns the first of these, while plasma resonance relates to the latter.

First, we mention a number of other approaches to collisionless absorption and
argue why these are less appropriate for UCPs in RF fields. In the above description
of collisionless absorption, the applied field plays the role of a perturbation on the
thermal motion of the electrons. One may change perspective and look at the quiver
motion of the electrons as being the primary motion, perturbed by a thermal one.
Because the details of the thermal motion are determined by the details of the plasma
potential, this can be interpreted as an oscillating electron having interaction with the
plasma potential itself. This view is particularly appropriate when the potential can
be approximated by an infinitely deep well, so that the ’interaction with the potential’
simply becomes ’collisions with the plasma boundary’. Then the collision frequency
of electrons with the plasma boundary is on average

νp ∼ v

σ
(hard wall model), (5.14)

where σ is the plasma size, and v is the characteristic velocity of the electrons that is
taken to be the thermal velocity [231], a combination of thermal and quiver velocity
[230] or Fermi velocity [228] depending on the model used. On average the electrons
gain an energy 2Up per hard wall collision, in analogy with Eq. (5.2). The result (5.14)
also follows as a special case from the more general Landau damping approach when
specialized to a hard wall potential [231]. While a flat potential with hard walls, and
hence the resulting absorption rate 2vUp/σ, may be a good approximation for large
metallic clusters [228, 230], it is not for UCPs. In the process of creation of an UCP
from an atomic cloud, part of the electrons escape from the plasma immediately after
photoionization of the cloud. This continues until the accumulated charge imbalance
self-limits further loss of electrons. The resulting spherically symmetric Coulomb
potential of the UCP with a typical Gaussian density distribution is [203]

U(r) = U0

[
1 −

√
πσ

2r
erf
( r
σ

)]
, (5.15)

where erf(r/σ) denotes the error function [262], and r is the distance to the cloud
center. The depth of the potential saturates to U0 ∼ kBTe by nature of the charging
process. Clearly, the hard wall potential is not a very good approximation in this case
and a more detailed calculation of the energy absorption is necessary to account for
the smoothness of the potential.
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Another absorption mechanism that is considered important for large metal clus-
ters is the Brunel effect [229], in which electrons at the plasma boundary are pulled
out of the plasma by the applied electric field and then driven back into the plasma as
the field reverses direction. When the plasma is sufficiently overdense, the interaction
effectively stops once the electron has moved deeper into the plasma than the skin
depth, resulting in net energy gain because the electron cannot be brought back to rest
by the evanescent field. The resulting absorption rate, divided by 2Up for comparison,
gives again the hard wall collision frequency Eq. (5.14), with v the high-frequency
velocity. In an UCP, however, the Brunel mechanism is not in effect either, since
typically the skin depth, which is comparable to c/ωp with ωp the plasma frequency,
is much larger than the plasma size.

Finally, when the applied field is so strong that the oscillation amplitude of indi-
vidual electrons is comparable to or larger than the plasma size, one can hardly speak
of the applied field as a perturbation, and other descriptions of the electron motion
such as nonlinear oscillators [232–234] or scattering off the plasma potential [264] are
more appropriate. Here we do not consider such strong field effects.

5.4.2 RF absorption by electrons in a general potential

We now proceed to calculate the collisionless RF energy absorption by an UCP, taking
account of the smooth plasma potential shape shown in Eq. (5.15) rather than resort-
ing to a hard wall approximation. We make use of the calculational method developed
by Zaretsky et al. [231]. When forcing an UCP with an RF signal, the electric field
in the plasma consists of the external RF field, the polarization field caused by any
excited plasma modes, and the field corresponding to the plasma potential Eq. (5.15).
The combination of the first two fields may be considered a fast harmonic perturba-
tion on the latter field. Although UCPs behave entirely classically [203], a quantum
mechanical description of this situation proves best suited to calculate the RF energy
absorption. Accordingly, the electrons occupy bound states in the plasma potential,
and can change states by absorption or emission of an RF photon. The quantum
mechanical calculation of the absorption is given in detail in Ref. [231]. A spatially
homogeneous RF field is assumed, which rules out strong local field enhancements
such as those generated by plasma resonances. Therefore the following calculation
is restricted to underdense plasmas. In summary, perturbation theory is applied, in
which the transition probability of electrons between any pair of states is given by
Fermi’s Golden rule [265]. The number of RF photons absorbed by the plasma equals
the difference between the number of electron transitions to a higher state and those
to a lower state, and the absorbed RF energy is this amount multiplied by the photon
energy. Exploiting, in addition, the fact that the system dimension σ is much larger
than the typical De Broglie wavelength of the electrons, one can adopt the quasi-
classical or Bohr-Sommerfeld theory to approximate quantum mechanical quantities
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by their classical analogues [265]. Although results for a general three-dimensional
potential are available [231], we will use the one-dimensional analogs because then the
mathematics is much more transparent. This does not represent a major error since
the energy transfer from the RF field to the plasma proceeds via electrons that move
partially resonant with the applied field. This means that only one component of the
electron trajectories, namely the one that is parallel to the applied field, contributes
to the RF absorption, so that the problem is essentially one-dimensional. Explicit
calculation of the RF absorption in both the full three-dimensional and correspond-
ing one-dimensional hard wall potential [231] confirms that the latter captures the
general behavior.

Expressing as before the absorbed RF power Pp due to collisionless absorption in
terms of an effective frequency νp, it is found that [231]

Pp = 2νpUp; (5.16)

νp =
πmω3

ZkBTe

∞∑
s=0

[
|X(ε)|2
|dΩ/dε| exp

(
− ε

kBTe

)]
ε=εs

. (5.17)

Here, Ω(ε) is the oscillation frequency of the classical trajectory x(ε, t) of a particle
with energy ε in the unperturbed potential,

X(ε) =
Ω(ε)
2π

ˆ 2π/Ω(ε)

0

x(ε, t) exp (iωt) dt (5.18)

is the Fourier component of the classical trajectory at the frequency of the perturba-
tion,

Z =
ˆ

exp
(
− ε

kBTe

)
dε

Ω(ε)
(5.19)

is the partition function of the electron distribution over the energy states, which is
assumed a Boltzmann distribution here, and the sum in Eq. (5.17) is over energies
that are roots of the equation

(2s+ 1) Ω(εs) = ω. (5.20)

Without attempting to explain all details underlying Eqs. (5.17-5.20) here, it is noted
[231] that the only contributions to the absorbed energy come from those electrons
whose trajectory is in resonance with the applied field according to Eq. (5.20). This is
the correlation between thermal motion and applied field also characteristic for bulk
Landau damping. Furthermore, the contributions in Eq. (5.17) are proportional to
|X |2, the spectral content of the trajectory at the applied frequency. However, the
dominant frequencies in the spectrum of the trajectory will be on the order of the
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oscillation frequency Ω(ε). In a potential such as Eq. (5.15) with r replaced by x, this
frequency will be comparable to that of a harmonic oscillator potential with the same
curvature at x = 0, that is, to Ω ∼ √2U0/(3mσ2) ≡ ω0. Therefore, it is expected
that the RF energy absorption strongly depends on the ratio ω/ω0. In addition, the
ratio of particle energy ε and thermal energy kBTe appears in Eq. (5.17), the former
being limited to values smaller than the potential depth U0, so there will be some
weak secondary dependency on the ratio U0/(kBTe) as well. These properties are
indeed found below.

In the classical UCP system the energy level spacing is much smaller than kBTe,
therefore the sum in Eq. (5.17) may be approximated by integration. A subsequent
change of integration variable from s to εs introduces an extra factor (dεs/ds)−1,
which is the density of resonant states. This factor is obtained by differentiating Eq.
(5.20) with respect to s, yielding |dΩ/dε|ε=εs

· dεs/ds = 2Ω2/ω. Accordingly, Eq.
(5.17) becomes

νp ≈ πmω4

2ZkBTe

ˆ ∣∣∣∣X(ε)
Ω(ε)

∣∣∣∣2 exp
(
− ε

kBTe

)
dε, (5.21)

where the subscript s has been dropped.

5.4.3 RF absorption in a model plasma potential

Eq. (5.21) allows explicit calculation of the absorbed RF power, if the classical tra-
jectories in the potential are known analytically. However, for the particular potential
Eq. (5.15), closed expressions for the trajectories are not available. In order to still
make quantitative estimates for the energy absorption, instead of Eq. (5.15) we use
a model potential with the same general shape for which the trajectories are known
analytically:

U(x) =
mω2

1x
2

2

(
1 − x2

a2

)
, (5.22)

where a is a positive constant with units of length. Eq. (5.22) is the potential of a
Duffing oscillator commonly used to describe the motion of a mass on a cubic softening
spring. Although this potential differs from the actual UCP potential Eq. (5.15),
we note that from a physical point of view the most important characteristics of the
UCP potential are the temperature, which sets the potential depth U0, and the charge
density, which sets the curvature mω2

0 at the bottom of the potential. Therefore we
should obtain a reasonable estimate for the energy absorption by choosing the model
potential accordingly, setting the curvaturemω2

1 equal to mω2
0 and the potential depth

mω2
1a

2/8 ≡ U1 equal to U0. Important as well is that the infinitely differentiable UCP
potential is modeled by an equally smooth one, and that both potentials approach
their edge with vanishing slope. In Fig. 5.3 the two potentials are compared.
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A particle is bound by the potential Eq. (5.22) only if its energy ε is less than U1.
For such a bound particle the classical trajectory, starting at time t = 0 at position
x = 0, can be shown to be given by the periodic function [266]

x(ε, t) = a

√
u

2v
sn
(√

v

2
ω1t,

u

v2

)
, (5.23)

where sn(y,m2) is the Jacobi elliptic function with argument y and modulus m, and
u = ε/U1 is the particle energy in units of the potential depth, and v = 1 +

√
1 − u.

The frequency Ω with which the particle oscillates back and forth in the potential is
given by [266]

Ω(ε) =
π
√
v

2
√

2 K (u/v2)
ω1, (5.24)

where K(m2) is the complete elliptic integral of the first kind with modulus m. In the
limit of vanishing particle energy ε → 0, the trajectory (5.23) approaches harmonic
motion with frequency ω1, while the motion becomes anharmonic with the frequency
monotonically decreasing to zero as the energy grows to U1.

In Appendix 5.A the absorbed power is calculated by using Eqs. (5.23) and (5.24)
in Eq. (5.21). The exact result Eq. (5.30) for the effective collision frequency is

UCP
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Figure 5.3: Model potential (red dashed line, Eq. (5.22)) compared to the
actual UCP potential (black solid line, Eq. (5.15)). The parameters have been
set to ω1 = ω0 and a such that U1 = U0. The dotted parts of the model potential
are not used.
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Figure 5.4: Effective collision frequency νp for RF absorption due to the
finite plasma size, as a function of the ratio of the frequency characterizing the
potential ω1 to the RF frequency ω. A potential depth equal to kBTe has been
assumed. The inset shows the behavior for ω1/ω < 1 on a logarithmic scale,
comparing the exact result Eq. (5.30) (solid curve) to the approximate result
Eq. (5.25) (dots).

plotted in Fig. 5.4 as a function of ω1/ω, assuming a potential depth equal to kBTe.
Also plotted is the asymptotic approximation, valid for ω1/ω � 1,

(νp
ω

)
Model

= C (Y )
(
ω

ω1

)2

exp
(
−
√

2π
ω

ω1

)
, (5.25)

which fits the exact result very well. In a typical UCP, σ ∼ 1 mm and Te ∼ 1 K
[203], while in a typical RF experiment ω/(2π) > 1 MHz [211], so that usually the
asymptotic regime of Eq. (5.25) is in effect. The prefactor C (Y ) is given by Eq.
(5.31) and depends on the ratio Y = U1/kBTe. As argued previously, the choice of
model potential parameters that best represents the actual UCP potential is ω1 = ω0

and U1 = U0 ∼ kBTe , giving Y ∼ 1. The corresponding prefactor in Eq. (5.25) lies
in the range C = 20 − 35 for Y = 0.5 − 2.0.

From Fig. 5.4 and Eq. (5.25), it is clear that the collisionless RF absorption by
an UCP strongly depends on ω1/ω, that is, on the ratio of the frequency at which the
thermal motion of the UCP electrons takes place to the RF frequency. This strong de-
pendency was anticipated above from the fact that the collision frequency Eq. (5.17)
is proportional to the spectral content of the trajectory at the RF frequency: when ω1

and ω do not differ too much, the RF forcing and the electron motion take place on
more or less the same time scale, so that the electron motion contains an appreciable
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Fourier component at the RF frequency, resulting in resonant and efficient energy
transfer. Since all oscillation frequencies given by Eq. (5.24) are in fact less than
ω1, the average oscillation frequency will be less than ω1 as well, so that in Fig. 5.4
the peak in the energy transfer occurs at a somewhat higher value than ω1/ω = 1,
corresponding to a somewhat slower forcing.

An important feature of Fig. 5.4 and Eq. (5.25) is the threshold-like behavior
of νp: for ω1 � ω the absorption is significant, while for ω1/ω → 0 it decreases
exponentially. The inset shows that this decrease is very rapid, so that collisionless
absorption is completely negligible if ω1 � ω. This condition can be written as
1 � ω1/ω ∼ ω0/ω ≡ √2U0/(3mσ2ω2) ∼ vth/(σω). Physically, this corresponds to
the situation in which a low temperature yields by assumption a shallow potential
with slow electrons, so that almost no electrons traverse the plasma within one RF
oscillation. Combined with the lack of steep features in the smooth potential, this
means that there is almost no electron motion available at the RF frequency that is
susceptible to resonant absorption. One may thus define a critical temperature

kBTp = mω2σ2 (5.26)

that separates a temperature regime Te � Tp in which collisionless absorption is sig-
nificant and a regime Te � Tp where it is negligibly small. Note that this behavior
is not at all described by the hard wall approximation Eq. (5.14). The reason for
this is that an electron bouncing between hard plasma boundaries abruptly changes
its velocity at every wall collision, giving rise to high-frequency components essen-
tially regardless of the velocity. Therefore Eq. (5.14) predicts significant collisionless
absorption at any temperature, but is valid only for steep plasma potentials.

5.4.4 Validity for the actual UCP potential

As we just described, the collisionless absorption rate in the model plasma potential
exponentially decreases with the ratio vth/(σω). Since the physical arguments leading
to Eq. (5.26) are valid for any general smooth plasma potential, also in actual UCPs
the collisionless absorption rate will quickly decrease once the electron temperature
is below the critical temperature Tp. However, one may still ask whether the decay
constant of this decrease (i.e. the factor

√
2π in Eq. (5.25)) is also representative for

actual UCPs, or depends on the potential shape. Lacking analytical expressions for the
trajectories x(t) in the UCP potential, this cannot be verified by explicit calculation.
Nevertheless, the decay constant can be calculated by quantifying the asymptotic
behavior of the Fourier coefficients of the trajectories, using the so-called Darboux’s
Principle [267]. This however requires considering the analytical continuation of x(t)
to the complex t-plane. The details are rather technical and are relegated to Appendix
5.C. The main result is that the quantity |X(ε)|2 in Eq. (5.21) for the UCP potential
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contains an extra factor of approximately exp (2ω/ω0) as compared to the case of the
model potential, independent of the particle energy ε and for sufficiently large ω/ω0.
Including this extra factor in the result Eq. (5.25), the asymptotic rate of decrease of
the collision frequency is approximately equal to(νp

ω

)
UCP

∝ exp
[
−
(√

2π − 2
) ω

ω0

]
. (5.27)

Although the decay constant
√

2π − 2 is smaller than that of Eq. (5.25) and Fig.
5.4, it is still of the same order of magnitude. Also in the UCP case, therefore, the
collisionless absorption is negligible for ω0 � ω, or equivalently for temperatures
below Tp given by Eq. (5.26).

5.5 Discussion and conclusions

In this chapter, we considered three mechanisms by which an RF field influences the
temperature of an UCP. First, RF energy is absorbed through the well-known process
of collisional absorption, in which electrons gain energy during Coulomb collisions
with ions. Second, the RF field modifies the TBR rate by ionizing electrons from
intermediate high-lying Rydberg states. Third, resonance between the motion of
electrons in the plasma potential and the RF field may give rise to collisionless energy
absorption. For all of these processes, näıve extrapolations from well-known formulas
are inadequate for UCPs or strong RF fields. For example, the electron-ion collision
frequency Eq. (5.4) is much smaller than the Spitzer frequency for strong RF fields,
suppressing the collisional absorption rate. As we indicated, this is because the quiver
velocity effectively takes over the role of the thermal velocity, or equivalently, because
the temperature is replaced by the ponderomotive potential in the collision frequency.
Likewise, the TBR rate in strong RF fields is much smaller than expected from the
commonly used T−9/2

e -scaling, partly because the conventional TBR bottleneck level
characterizing the plasma is replaced by the energy Uion characterizing the RF field.
Figure 5.5 schematically shows the various heating regimes in terms of the RF field
amplitude and frequency; the strong-field effects apply to the area above the slanted
line. As discussed in the previous section, collisionless absorption is only relevant at
sufficiently high temperatures or low frequencies, as is represented by the area to the
left of the vertical line in Fig. 5.5.

We conclude this chapter by giving two numerical examples. The RF experi-
ment of Fletcher et al. [213] was well within the weak-field regime (a,b) of Fig.
5.5 according to the reported experimental values. Using these values in Eqs. (5.2-
5.8), (5.16) and (5.25) gives absorption rates per electron of Pei/kB = 3 K/μs and
Pp/kB = 0.002 K/μs at the highest frequency and amplitude reported in Ref. [213].
Considering the electron temperature of 100 K and the typical plasma expansion time
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Figure 5.5: Heating regimes for RF-driven UCPs in terms of the applied fre-
quency ω and field strength E0. (a,b): Collisional absorption rate according

to Spitzer collision frequency and TBR rate according to T
−9/2
e -scaling; (c,d):

Collisional absorption rate according to collision frequency Eq. (5.4) and TBR
rate according to Eq. (5.11). (a,d): Collisionless absorption relevant; (b,c):
Collisionless absorption negligible.

of microseconds, these low absorption rates will not influence the plasma temperature
and expansion much. For somewhat larger RF amplitudes, however, the collisional
absorption starts to become significant on the time scale of the plasma expansion,
which may be related to the high-field effects observed in the experiment.

As an example in the regime (c) of Fig. (5.5), consider an applied field with an
amplitude of 0.1 MV/m at a frequency of 28 GHz, which is currently available [268].
We deliberately choose this relatively high frequency because otherwise the oscilla-
tion amplitude of the plasma electrons would exceed the plasma size at such a large
field strength, which situation is outside the scope of this thesis. Choosing further
σ = 1 mm, Te = 1 K and n = 108 cm−3, Eqs. (5.2-5.8), (5.12),(5.16) and (5.25) give
Pei/kB = 4 · 102 K/μs and R/ne = 3 · 10−7 μs−1, while the collisionless absorption
rate is vanishingly small. Thus collisional absorption is expected to heat the plasma
to the 100 K scale during the expansion time of the plasma, while the chance that
an individual electron recombines is very small. Now compare these numbers to the
corresponding results obtained from standard expressions. Using the Spitzer collision
frequency instead of Eq. (5.4) would give Pei/kB = 4 · 105 K/μs, which would predict
immediate heating of the UCP to conventional eV plasma temperatures. According
to the usual T−9/2

e -scaling (Eq. (5.11) with Uion replaced by kBTe), the TBR rate
per electron would be R/ne = 50 μs−1. Assuming an energy release of ∼ kBTe per
recombination, this would result in a heating rate per electron on the order of 102

K/μs due to TBR alone, although of course this rate would be quickly quenched as
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the electron temperature rises. Based on the hard wall approximation Eq. (5.14) with
v = vth, the collisionless absorption rate would be Pp/kB = 1 · 103 K/μs rather than
exponentially small. From these numbers it is clear that it is essential to properly
take into account strong field effects on the one hand, and the smooth UCP plasma
potential on the other hand. For the application of a very strong microwave field to
an UCP, it changes the predicted effect from destroying the plasma immediately to
only heating it up moderately.

In summary, we have analytically studied well-known plasma heating mechanisms
and specialized them to the system of an UCP driven by a uniform, and possibly
strong, RF field. Benchmarking our results against molecular dynamics simulations
will yield valuable additional insights, and will also identify any additional RF effects
that were addressed here. Among these are, for example, plasma cloud deformations
expected when the electron oscillation amplitude becomes comparable to the plasma
size, relativistic effects, plasma waves and other instabilities. RF experiments aimed
at the detection of plasma resonances rely on adequate modeling of the UCP expansion
dynamics, which will benefit from detailed knowledge of RF heating mechanisms such
as those discussed in this chapter. Furthermore, in virtue of comparable coupling
parameters, RF-driven UCPs may be seen as millimetre-sized scale models of laser-
driven solid state density plasmas. Understanding the ways in which ultracold plasmas
interact with RF fields is therefore also relevant for such high-density systems.

Appendix 5.A Effective collision frequency

The Fourier series of the trajectory (5.23) equals [266]

x(ε, t) = 2a
Ω
ω1

∞∑
n=0

sin [(2n+ 1) Ωt]

sinh
[
(2n+ 1) π K(1−u/v2)

2K(u/v2)

] . (5.28)

Substituting Eq. (5.20) in Eq. (5.18), and comparing with (5.28), it follows that∣∣∣∣X(ε)
Ω(ε)

∣∣∣∣ =
a

ω1
csch

[
ω

ω1

√
2
v

K
(
1 − u/v2

)]
. (5.29)

Using this quantity in Eq. (5.21), and changing the integration variable to u = ε/U1,
results in

νpot

ω
= π2

√
2
ω3

ω3
1

Y

´ 1

0 csch2
[

ω
ω1

√
2
v K
(
1 − u/v2

)]
exp (−Y u)du

´ 1

0
v−1/2 K (u/v2) exp (−Y u) du

, (5.30)
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where Y = U1/kBTe. The integrations are over energies smaller than the potential
depth, corresponding to bound electrons, since transitions to the continuum do not
give rise to energy increase of the ensemble that is left behind. When ω1/ω is much
smaller than unity, to a good approximation cschZ ≈ 2 exp (−Z) in the numerator
of Eq. (5.30). Furthermore, the argument Z of the csch-function is smallest at
u = 1, so that the region around the upper integration limit will give the dominant
contribution to the integral in Eq. (5.30), and Z may be approximated by its Taylor
series around u = 1. This gives cschZ ≈ 2 exp

[−(π/
√

2)(ω/ω1) (1 + 3δ/16)
]
, where

δ = 1 − u. Similarly, in the integral in the denominator of Eq. (5.30), the elliptic
function diverges at u = 1, so that again the region around the upper integration limit
will give the dominant contribution, and the elliptic function may be approximated
by its asymptotic value [262]. This gives v−1/2 K

(
u/v2

) ≈ − ln (δ/64) /4. With these
approximations, the integrals in Eq. (5.30) can be solved analytically, yielding Eq.
(5.25), with

C (Y ) =
256π

3
Y 2

EinY + 6 ln 2 (expY − 1)
. (5.31)

Here, Ein denotes the modified exponential integral [262, 269].

Appendix 5.B TBR rate for arbitrary ratio Up/Uion

The energy distribution function of the free electrons in the presence of an RF field
may be approximated by the shifted Boltzmann distribution

f(U) =
2
√
U − Up√

π(kBTe)3/2
exp
(
−U − Up

kBTe

)
Θ (U − Up) ,

where Θ denotes the Heaviside step function and the shift Up accounts for the quiver
energy of the electrons. Substituting in Eq. (5.9) this distribution function, the cross
section Si(U) given in Ref. [243], and the rms velocity v =

√
2U/m corresponding to

energy U , and changing the integration variable to the thermal energy Uth = U −Up,
gives

Ri = Q

ˆ ∞

|Ui|

(
1

|Ui| + Up
− 1
Uth + Up

)√
Uth

Uth + Up
exp
(
− Uth

kBTe

)
dUth, (5.32)

with Q ≡ nineme
4/[2ε20(2πmkBTe)3/2]. For field strengths > 1 kV/m and typi-

cal UCP temperatures, |Ui| > Uion � kBTe, so that the exponent in Eq. (5.32)
falls off rapidly compared to the rate of variation of the pre-exponential factor; fur-
thermore the integrand is only significant close to the lower integration limit. The
pre-exponential factor may therefore be approximated by the first term of its Taylor-
expansion around Uth = |Ui|. Performing the integration with this approximation,
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substituting for ni the equilibrium value from the Saha equation [242], and sum-
ming as before the result over all energy levels below −Uion by means of the rule
R =

∑
Ri ≈ ´

RiD(Ui)dUi with D(Ui) the density of states, gives the total TBR
rate

R ≈ π2

7g

√
2
m

(
e2

4πε0

)5
n3

e

U
7/2
ion kBTe

G

(
Up

Uion

)
; (5.33)

G(x) ≡ 7
2x3

(
15 + 20x+ 3x2

3 (x+ 1)3/2
− 5 arcsinh

√
x√

x

)
. (5.34)

The relative error in the approximation for the function G(x) given in Eq. (5.13) is
less than 6% for any value of x.

Appendix 5.C Decay rate of νp for UCPs

We use the following theorem [267]:
The coefficients of the Fourier series

∑
an sin (nΩt) of a 2π/Ω-periodic function

y(t), which is infinitely many times differentiable, decay asymptotically as an ∝
exp (−Ωτn). The constant τ equals min |Im tj |, where tj denote the singularities of
the function y(t) in the complex t-plane.

Writing ω = (ω/Ω) ·Ω in Eq. (5.18) shows that X is essentially the ω/Ω-th Fourier
coefficient of the function x(ε, t), so that according to the theorem the integrand in
the collision frequency Eq. (5.21) is proportional to

|X |2 ∝ exp (−2ωτ) ; τ = min |Im tj | (5.35)

for large ω. This expression is easily checked for the model potential: the ellip-
tic function in the trajectories Eq. (5.23) has singularities along the lines Im t =
±ω−1

1

√
2/vK

(
1 − u/v2

) ≡ ±τ in the complex t-plane [266]. Substitution in Eq.
(5.35) yields the behavior of |X |2 for large ω, which coincides precisely with what is
found in Appendix 5.A, Eq. (5.29) by explicit calculation.

Applying Eq. (5.35) to the actual UCP potential requires explicit expressions
for the trajectories x(ε, t), however these are not known. Instead, the inverse func-
tion t(ε, x) may be obtained by integration of the equation of motion md2x/dt2 =
−dU(x)/dx, yielding

t(ε, x) =
√
m

2

ˆ x

0

dz√
ε− U(z)

. (5.36)

Here, the initial conditions x = 0 and dx/dt =
√

2ε/m at t = 0 have been assumed,
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and U(z) denotes the UCP potential Eq. (5.15) with r = z. Equation (5.35) requires
knowledge of the singularities tj of the functions x(ε, t), which may be categorized as
either poles, logarithmic branch points or algebraic branch points. (More pathological
singularities such as exp (1/z) at z = 0 are not considered here.) An algebraic branch
point in x(ε, t) corresponds to a critical point in the inverse function t(ε, x), at which
dt/dx = 0. Differentiating Eq. (5.36) with respect to x, it follows that U(z) must
diverge at such a point if the derivative dt/dx is to vanish. But the UCP potential
Eq. (5.15) is an entire function, so that this does not occur for any finite complex z,
hence x(ε, t) does not have any algebraic branch points.

Considering next poles and logarithmic branch points in x(ε, t), at such points
the position diverges while the complex time has some finite value. In terms of the
inverse function Eq. (5.36) then, there exist contours Cj in the complex x-plane from
the origin to infinity such that t(ε, x) → tj with |tj | < ∞ as x → ∞ along Cj . In
view of Eq. (5.35) we are interested in the contour that yields the time tj with the
smallest imaginary part. A complication in finding this contour is the presence of
the square root in Eq. (5.36), because of which the integrand has branch cuts in the
complex z-plane. Adopting the standard choice of letting the branch cuts coincide
with the points at which the argument of the root is real and negative, these cuts
start at the zeros of the function ε− U(z) and extend to ±i∞ without crossing. Fig.
5.6 shows the resulting branch cut structure for the case ε = U0/2; the integrand in
the lower half-plane is the complex conjugate of that in the upper half-plane. Also
drawn are two possible contours from the origin to infinity. Now, the potential U(z)
in Eq. (5.36) contains the error function erf (z/σ), which has the property [262] that
its value is close to unity for |z/σ| � 1 in the shaded sectors in Fig. 5.6, while its
amplitude grows superexponentially as z → ∞ in the non-shaded sectors. Therefore
the integrand in Eq. (5.36) will be essentially constant along parts of contours that
cross the shaded sector, such as C2, so that a large contribution to the integral is
accumulated along these parts. Hence we may expect that the contour yielding the
smallest possible value of tj is the contour that avoids the shaded sectors altogether,
that is, the contour C1 along the imaginary axis. With this conjecture, we calculate
τ in Eq. (5.35) by integrating Eq. (5.36) along C1 for several values of the particle
energy ε. The result is shown in Fig. 5.7, together with the analogous result for the
model potential. As is clear from the figure, for any particle energy τ for the UCP
potential is approximately one unit ω−1

0 less than that for the model potential. Hence,
asymptotically for large ω, the quantity |X |2 in Eq. (5.21) will contain an extra factor
exp (2ω/ω0) as compared to the case of the model potential, independent of ε. The
resulting rate of decrease of the collision frequency is given in Eq. (5.27).
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Figure 5.6: Branch cuts (black solid lines) of the integrand of Eq. (5.36)
in the complex z-plane, using u = 1. In the shaded sectors |arg z| < π/4 and
|π − arg z| < π/4, the error function behaves as erf (z/σ) → 1 as |z/σ| → ∞.
Two possible contours from the origin to infinity are shown.
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Figure 5.7: Decay constant τ in Eq. (5.25) as a function of particle energy.
Solid line: analytical result for the model potential Eq. (5.15) assuming ω1 = ω0

and U1 = U0; dots: numerical result for the UCP potential (5.22).
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Ponderomotive manipulation

of cold subwavelength plasmas

Abstract - Ponderomotive forces (PFs) induced in cold subwavelength plasmas
by an externally applied electromagnetic wave are studied analytically. To this
end, the plasma is modeled as a sphere with a radially varying permittivity, and
the internal electric fields are calculated by solving the macroscopic Maxwell
equations using an expansion in Debye potentials. It is found that the PF
is directed opposite to the plasma density gradient, similarly to large-scale
plasmas. In case of a uniform density profile, a residual spherically symmetric
compressive PF is found, suggesting possibilities for contactless ponderomotive
manipulation of homogeneous subwavelength objects. The presence of a surface
PF on discontinuous plasma boundaries is derived. This force is essential for
a microscopic description of the radiation-plasma interaction consistent with
momentum conservation. It is shown that the PF integrated over the plasma
volume is equivalent to the radiation pressure exerted on the plasma by the
incident wave. The concept of radiative acceleration of subwavelength plas-
mas, proposed earlier, is applied to ultracold plasmas. It is estimated that
these plasmas may be accelerated to keV ion energies, resulting in a neutralized
beam with a brightness comparable to that of current high-performance ion sources.

Publication status - The work described in this chapter has been published by
P. W. Smorenburg, L. P. J. Kamp, and O. J. Luiten in Phys. Rev. E 87, 023101
(2013).

117



Chapter 6.

6.1 Introduction

Finite-sized plasmas driven by electromagnetic radiation are the subject of active
studies in various research fields. Ultracold plasmas [270], which are created by photo-
ionization of a cloud of laser-cooled atoms, are an exotic example of such finite-sized
plasmas. They have an electron temperature as low as Te ∼ 10 K, an electron density
in the range of ne ∼ 1015 − 1016 m−3, and consist of singly-ionized atoms. Ultracold
plasmas are routinely probed with RF and microwave fields, enabling the observation
of phenomena such as plasma oscillations [271, 272], Tonks-Dattner resonances [273],
and modes associated with nonneutral plasmas [274, 275]. These observations in turn
yield valuable fundamental insights into the plasma dynamics in the ultracold regime.
Laser-irradiated nanoplasmas [276, 277] constitute another class of finite-sized plas-
mas driven by electromagnetic radiation. Laser-driven atomic clusters are utilized as
novel sources of intense pulses of electrons [278, 279], ions [280], and extreme ultravio-
let [281, 282] and x-ray [283] radiation. Directional proton beams can be produced by
laser-irradiation of dense sub-micrometer-sized plasmas created from water droplets
[284]. Because the plasma frequency ωp ∝ √

ne in nanoplasmas is a factor ∼ 105

higher than in ultracold plasmas, nanoplasmas are usually subjected to optical rather
than RF and microwave radiation. It is interesting that, despite the vastly differ-
ent parameter regimes, ultracold plasmas and nanoplasmas have in common that the
plasma size is smaller than the typically applied wavelength λ ∼ 2πc/ωp.

As long as the fields driving a finite-sized plasma are not so large that the ex-
cursions of the oscillating plasma electrons become comparable to the plasma size,
escape of electrons and the resulting subsequent Coulomb expansion of the plasma
are relatively unimportant [285]. In this so-called ambipolar or quasi-neutral regime
(usually at electric field strengths below 1 MV/m for microwave radiation or at laser
intensities I � 1020 W/m2 for optical frequencies), the plasma dynamics can be de-
scribed hydrodynamically. In the one-fluid plasma model [286], the plasma dynamics
is governed by two force density contributions. The first of these is the well-known
hydrodynamic force density −∇p, with p = nekBTe the plasma pressure and kB

Boltzmann’s constant, which is present regardless of whether or not an external field
is applied. The other is the ponderomotive force density,

f = −ne∇ e2E2

4meω2
≡ −ne∇φp, (6.1)

induced by the external field. Here, e is the elementary charge, E the electric field
strength, me the electron mass, ω the applied frequency, and φp is the so-called pon-
deromotive potential. The force Eq. (6.1) was originally derived for single electrons
in an inhomogeneous ac field [287, 288], and later extended to plasma media on the
basis of the plasma fluid equations [289, 290].

118



Ponderomotive manipulation of cold subwavelength plasmas

Eq. (6.1) is a time-averaged force density nonlinear in the field strength, and is
therefore distinctly different from instantaneous linear forces that dominate in driven
finite-sized plasmas under conditions of plasma resonance. The latter situation has
been studied in earlier work [271–275], emphasizing the resonant absorption of energy
and a considerable emission of electrons from the plasma. In contrast, the focus of
this paper is on underdense plasmas where such resonant effects are absent, and the
nonlinear force Eq. (6.1) becomes significant.

The relative importance of the hydrodynamic and ponderomotive forces, as is ex-
pressed in the ratio η ≡ |−∇p| / |f | ∼ kBTe/φp, differs in nanoplasmas and ultracold
plasmas in the quasi-neutral regime. Nanoplasmas have a temperature of at least
∼ 1 keV, so that η � 1 in the quasi-neutral regime, and hydrodynamic forces play
an important role. Nevertheless, is has been recognized that ponderomotive forces
can significantly modify the plasma dynamics even at relatively low intensities of
I ∼ 1019 W/m2 [291]. This reflects the complicated macroscopic behavior of dense
finite plasmas, in which the hydrodynamic and electromagnetic effects are intertwined
and difficult to study separately. In contrast, hydrodynamic forces are very small in
ultracold plasmas. For ω/2π = 1 GHz and Te = 10 K, the force ratio η < 10−2 already
for field strengths E > 10 kV/m. In moderately to strongly driven ultracold plasmas,
therefore, hydrodynamic forces are negligible compared to ponderomotive forces, con-
trary to the case of laser-excited nanoplasmas. This makes ultracold plasmas unique
systems that can exhibit ponderomotive effects that are obscured in high-density plas-
mas.

In this chapter, we study the ponderomotive forces induced in a finite-sized plasma
by an applied electromagnetic wave, which are particularly important in the dynamics
of ultracold plasmas, but are relevant to finite-sized plasmas in general. We concen-
trate on the typical circumstance that the plasma is smaller than the applied wave-
length. The plasma is modeled as a sphere with a radially varying permittivity, and
the electric field distribution is calculated by solving the macroscopic Maxwell equa-
tions in terms of an expansion in Debye potentials. This approach is commonly used to
study the far field scattering properties of finite objects [292–299], with little attention
for the electromagnetic fields inside the object. An exception is a recent calculation
of resonance absorption in dense atomic clusters based on the internal fields [300].
Here, we apply the technique to describe the opto-mechanical forces induced by the
applied wave in the plasma itself. In view of the compressibility of the plasma, these
forces form an essential part of the interaction dynamics. The following properties
are found. First, the ponderomotive force in the plasma bulk is directed outwards for
natural profiles dne/dr < 0 and inwards for ’inverted’ profiles dne/dr > 0, where r
is the radial coordinate. Although this is similar to well-studied large-scale plasmas
[289], there are also differences due to the subwavelength character of the system.
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Moreover, we find a spherically symmetric compressive ponderomotive force even in
case of a completely uniform density. The latter suggests possibilities for contactless
ponderomotive manipulation of subwavelength objects, which is not limited to plas-
mas but extends to other media with a well-defined uniform density. Second, we show
that sharp plasma boundaries give rise to a ponderomotive surface force in a addition
to the volume force corresponding to Eq. (6.1). This surface force proves to be an
essential ingredient in a correct local description of the interaction of electromagnetic
waves with subwavelength objects that is consistent with momentum conservation.
Third, we consider the total ponderomotive force integrated over the plasma volume
and show that it is equivalent to the radiation pressure exerted on the plasma by the
incident wave. In the past, it has been proposed to accelerate subwavelength plasmas
with this radiation pressure [301, 302]. Here, we assess the feasibility of this scheme
for ultracold plasmas. We estimate that these plasmas may be accelerated to keV ion
energies thanks to their extremely low temperature and correspondingly weak ten-
dency to expand.

This chapter is organized as follows. In order to properly describe the effects
mentioned above, the electromagnetic fields and ponderomotive forces in the plasma
are first formulated analytically in general terms in sections 6.2 and 6.3 respectively.
These sections therefore have a mathematical character. Explicit results for the de-
rived ponderomotive forces are summarized in section 6.3.2, Eqs. (6.24)-(6.26). These
results are subsequently applied to concrete examples of plasmas in sections 6.4 to
6.6. In section 6.4, a plasma with uniform density is considered, the compressive
ponderomotive force is found, and the role of the ponderomotive surface force in the
radiation pressure on the plasma is elucidated. Section 6.5 concerns numerically cal-
culated ponderomotive forces in inhomogeneous plasmas, exhibiting distinct bulk and
surface contributions. In section 6.6, radiative acceleration of ultracold plasmas is
discussed. Section 6.7 concludes this chapter.

6.2 Fields

6.2.1 Expansion in Debye potentials

We consider a collisionless, unmagnetized, cold, spherical plasma with radius b, in
interaction with an incident linearly polarized plane wave with electric field Eext =
E0ex exp(ikz−iωt) and magnetic field cBext = E0ey exp(ikz−iωt). In this section, we
discuss the electromagnetic field distribution in such a plasma. This field is in general
different from the externally applied field due to the presence of oscillating plasma
electrons, which act as field sources themselves. However, it is well-known [303] that
the oscillating electrons plus the neutralizing ion background can be represented by a
harmonically varying dipole density or polarization P . Accordingly, the plasma can be
treated as a lossless dielectric medium with relative permittivity ε = 1−ω2

p/ω
2, where
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ωp(r) =
√
nee2/(meε0) is the local plasma frequency associated with the electron

density ne(r) at radius r, and ε0 is the vacuum permittivity. The electromagnetic
fields in the plasma thus satisfy the homogeneous macroscopic Maxwell equations
[304]. Solution of these equations is analogous to the classical Mie scattering problem
[305], generalized to an object with a radially varying permittivity ε = ε(r). This
generalization has been worked out previously [292, 293, 295, 297]; we reproduce the
results here. The fields in the region r < b inside the plasma can be decomposed
[304] into an electric (transverse magnetic) part (E,B)e with Be

r = 0 and a magnetic
(transverse electric) part (E,B)m with Em

r = 0. These fields can be written in terms
of two scalar Debye potentials Πe,m(r) as [306]

Em = E0r ×∇Πm; iωBm = ∇× Em;
−cBe = E0r ×∇Πe; −iωDe = ∇× He,

(6.2)

where De = ε0εE
e and He = Be/μ0 with μ0 the vacuum permeability, and factors

exp(−iωt) have been suppressed. In spherical coordinates (r, θ, ϕ), the potentials
evaluate to Πe,m =

∑∞
n=1 Πe,m

n with

Πe,m
n = in

2n+ 1
n(n+ 1)

fe,m
n (r)P 1

n (cos θ)Φe,m(ϕ), (6.3)

in which Φe = cosϕ, Φm = sinϕ, and P 1
n denotes the associated Legendre function

[307]. The radial functions fe,m
n satisfy the differential equations

Le,m
n [rfe,m

n ] = 0; (6.4)

Le,m
n ≡ d2

dr2
+
d(ln δe,m)

dr

d

dr
+ k2ε− n(n+ 1)

r2
, (6.5)

with δe = ε−1 and δm = 1, and the boundary conditions

fe,m
n regular at r = 0; (6.6)

fe,m
n (b) =

[
jn + ae,m

n h(1)
n

]
r=b

; (6.7)

δe,m (rfe,m
n )
dr

∣∣∣∣
r=b

=
d

dr

[
rjn + ae,m

n rh(1)
n

]
r=b

. (6.8)

The quantities ae,m
n in Eqs. (6.7)-(6.8) are constants, and jn and h

(1)
n denote the

spherical Bessel and Hankel functions of the first kind [307] with argument kr, re-
spectively. Eqs. (6.7)-(6.8) ensure proper matching of the internal and external fields
at the plasma boundary. In Eqs. (6.2)-(6.3), each partial potential Πe,m

n with the cor-
responding electric field Ee,m

n induces a particular oscillation mode of the electrons
in the plasma [305], which has a current distribution Je,m

n ∝ Ee,m
n . The radiation

emitted from the plasma by the current Je,m
n has the form of nth-order electric (e)

or magnetic (m) multipole radiation, with an amplitude proportional to ae,m
n .
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6.2.2 Quasistatic limit

In sections 6.4 and 6.5, we will calculate ponderomotive forces for concrete examples
of subwavelength plasmas, based on the fields formulated in section 6.2.1. However,
for kb� 1 the electric field inside the plasma can be approximated [305] by the qua-
sistatic field Eqs exp (−iωt), where Eqs is the self-consistent field that would result
in the plasma if the applied field Eext were replaced by the static field E0ex. Here,
we therefore briefly describe this quasistatic field as well, so that the corresponding
ponderomotive forces can be compared to the forces based on the full-wave electric
field of section 6.2.1. We find that both approaches often agree very well, as expected,
which makes the quasistatic description a useful way to quickly gain an impression
of the fields and forces in a subwavelength plasma. However, we will also show that
certain important physical effects are completely missing from the quasistatic descrip-
tion. One should therefore always be careful when using this approximation, as the
full-wave approach is imperative to reveal all aspects of the interaction of the plasma
with the applied wave.

The field Eqs satisfies the static Maxwell equations ∇·(εEqs) = 0 and ∇×Eqs = 0.
Substituting in these equations

Eqs = −E0∇φ (6.9)

results in a partial differential equation for φ that can be separated in spherical coor-
dinates by writing φ = ψ(r)Y (θ, ϕ). Solutions for the angular part are the spherical
harmonics, of which only the particular harmonic Y = sin θ cosϕ suits the symmetry
of the problem. Accordingly,

φ = ψ(r) sin θ cosϕ, (6.10)

where the radial function ψ(r) is determined by the differential equation[
d2

dr2
+
(

2
r

+
1
ε

dε

dr

)
d

dr
− 2
r2

]
ψ = 0. (6.11)

The accompanying boundary conditions are that ψ be regular at r = 0, that both
ψ and εdψ/dr be continuous at r = b, and that −E0∇φ → E0ex as r → ∞. These
conditions evaluate to

ψ(0) regular at r = 0; (6.12)(
ε
dψ

dr
+

2ψ
r

)
r=b

= −3. (6.13)

The quasistatic solution (6.9)-(6.13) also follows directly from the more general results
of the previous section by taking the appropriate limits; see Appendix 6.A.
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6.2.3 Real and imaginary parts of f e,m
n

Although the quasistatic field Eqs. (6.9)-(6.13) is generally a good approximation
when kb � 1, it lacks certain features that are essential to describe a number of
physical effects. As we will show later, the latter include the presence of a nonzero
radiation pressure on the plasma and a compressive ponderomotive force in case of
a uniform density profile. The description of these effects requires the use of the
full-wave solution of Section 6.2.1. In particular, the boundary conditions Eq. (6.7)-
(6.8), and hence the functions fe,m

n , are in general complex-valued. The presence of
the nonzero imaginary parts of fe,m

n leads to phase shifts in the corresponding fields
contributions, and these phase shifts give rise to the mentioned physical effects. To
describe these effects adequately in the next sections, we derive here a new represen-
tation for the functions fe,m

n in which the real and imaginary parts are conveniently
separated. Eliminating the constants ae,m

n from Eqs. (6.7)-(6.8) gives, at r = b,

δe,m d (rfe,m
n )
dr

− d(rh(1)
n )

dr

fe,m
n

h
(1)
n

= rh(1)
n

d(jn/h
(1)
n )

dr
. (6.14)

Replacing the Bessel functions in Eq. (6.14) by their limiting value for small argument
[307], it is apparent that the imaginary part of fe,m

n is very small. This suggests to
define auxiliary functions ge,m

n that, like fe,m
n , are regular solutions of the differential

equation

Le,m
n [rge,m

n ] = 0, (6.15)

but instead with a real-valued boundary condition that at r = b[
δe,m d

dr
−
(

1
b

+
d

dr
ln
∣∣∣h(1)

n

∣∣∣)] rge,m
n = − yn

kb
∣∣h(1)

n

∣∣2 . (6.16)

Here, yn denotes the spherical Bessel function of the second kind [307] with argument
kr. Eq. (6.16) has been obtained by replacing fe,m

n → ge,m
n in Eq. (6.14) and taking

the real part of the equation assuming real ge,m
n . By construction, solution of Eqs.

(6.15)-(6.16) yields real-valued functions ge,m
n that approximate the real part of fe,m

n

for small kb. The imaginary part of fe,m
n can be extracted from ge,m

n as follows.
Since fe,m

n and ge,m
n satisfy the same differential equations but different boundary

conditions,

fe,m
n = γe,m

n ge,m
n , (6.17)

where γe,m
n are constants. To determine these constants, we substitute Eq. (6.17) in

Eq. (6.14), simplify the result by using Eq. (6.16), and solve for γe,m
n . This gives
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γe,m
n = 1 +

(jn − ge,m
n ) (ge,m

n + iyn)
y2

n + (ge,m
n )2

∣∣∣∣
r=b

(6.18)

= 1 + i
jn − ge,m

n

yn

∣∣∣∣
r=b

+O
[
(kb)4n+2

]
. (6.19)

Eqs. (6.17)-(6.19) give the real and imaginary parts of fe,m
n separately.

6.3 Forces

6.3.1 Ponderomotive volume and surface forces

Gradients in the electric field formulated in section 6.2 give rise to a ponderomotive
volume force density according to Eq. (6.1). In addition to this well-known volume
force, there can also exist a ponderomotive surface force density or pressure πp acting
on the boundary of the plasma. The presence of a surface force is easily estabished
from Eq. (6.1). Suppose that at r = b the plasma density changes discontinuously
from a finite value to zero, such that the permittivity discontinuously increases to
unity. Then, because of the boundary conditions that both the perpendicular com-
ponent of εE and the tangential component of E be continuous at r = b, the squared
magnitude E2 in Eq. (6.1) must be discontinuous and ∇E2 must behave like a delta
function. This singular feature represents an infinitely large volume force density
present in a shell with infinitesimally small volume, that is, a surface force density.
To evaluate this surface force density, we consider the total, integrated ponderomotive
force F acting on the plasma. The integration volume V is chosen to be a sphere
with radius b+ ≡ limΔ↓0(b + Δ) concentric with the plasma. Then, V is split in two
contributions as

F =
ˆ

f dV − +
¨ b+

b−
fr2drdΩ, (6.20)

where b− ≡ limΔ↓0(b − Δ), the volume V − is a sphere with radius b−, and
´
dΩ

denotes integration over the angular coordinates. In this way, the singularity in the
ponderomotive force density is contained in the second integral of Eq. (6.20), so that
this term will give the surface contribution to F , while the first integral represents
the ordinary ponderomotive volume forces. Furthermore, f may be written as the
time-average of the divergence of a tensor [290]:

f =
〈
∇ ·
(
ε0εEE +

1
μ0

BB − UI
)〉

≡ 〈∇ ·T〉 , (6.21)

where I is the identity tensor, U = (ε0E2 + μ−1
0 B2)/2, and μ0 is the vacuum per-

meability, and angular brackets denote time-averaging. Using Eq. (6.21) and Gauss’
theorem for tensors [308], the second integral of Eq. (6.20) may be rewritten as
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¨ b+

b−
fr2drdΩ =

〈ˆ
dΩ+ ·T −

ˆ
dΩ− ·T

〉
, (6.22)

where Ω± are spherical surfaces at r = b± with outward normal. Writing out the
tensors in Eq. (6.22), and using the boundary conditions for the fields to express all
field components in terms of those at r = b−, gives

F =
ˆ

f dV − −
ˆ
πp dΩ−, (6.23)

in which πp = −ε0 (ε− 1)2E2
r/4. The quantity πp represents an additional pondero-

motive pressure that acts on the surface of a plasma with an abrupt plasma boundary.
This pressure is always negative, corresponding to a surface force density in the out-
ward direction. A surface force similar to Eq. (6.23) has been obtained earlier for the
special case of a plane wave refracted by a plane plasma boundary [309].

To some extent, the surface force density found here may appear to be an artifact
of the ponderomotive force expression Eq. (6.1). After all, in the plasma context this
expression has originally been derived from a perturbation expansion of the equation
of motion of single electrons [287, 288], and in that sense seems to be an approximate
quantity. However, the force Eq. (6.1) follows identically [290] from the tensor in Eq.
(6.21), which in turn follows strictly from the thermodynamics of continuous media
[310]. Moreover, we have checked that integration of the arguably more fundamen-
tal averaged Lorentz force density 〈ρE + J × B〉 gives the same result Eq. (6.23).
Furthermore, momentum conservation requires that the total force Eq. (6.23) on
the plasma balances the rate of momentum loss from the radiation field. As we will
show in the next section, this is only the case in presence of the surface force density.
Therefore, Eq. (6.23) is the best that can be done within a continuum model of the
plasma medium.

6.3.2 Evaluation of the forces

In order to facilitate practical application of the derived analytical results, we sum-
marize the previous sections by listing explicit expressions for the various forces used
in the remainder of the chapter. Substituting the electric field Eqs. (6.2)-(6.3) in Eq.
(6.1), and performing all differentiations, gives the following spherical components of
the ponderomotive force density:

fj = χε0kE
2
0

∞∑
n=1

∞∑
m=1

{
Re
(
im−nγm∗

n γm
m

)
Rj1

nmS
j1
nm (6.24)

+ Re
(
im−nγe∗

n γe
m

) [
Rj2

nmS
j2
nm +Rj3

nmS
j3
nm

]− Im
(
im−nγe∗

n γm
m

)
Rj4

nmS
j4
nm

}
,
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where j = r, θ, ϕ and χ ≡ ε− 1 = −ω2
p/ω

2. The functions R = R(r) and S = S(θ, ϕ)
are listed in Appendix 6.B. Note that the magnitude of the various contributions
to the force essentially depend on the phase of the factors γe,m

n , which makes the
formulation of section 6.2.3 particularly convenient for force calculations. Evaluation
of the total ponderomotive force Eq. (6.23) requires integration of Eq. (6.24) over the
plasma volume. The angular integrations can be performed analytically, and most
terms in Eq. (6.24) integrate to zero. The cartesian x- and y-components of F vanish
completely in the integration over ϕ. In the remaining z component, only terms with
particular combinations of n and m survive the integration over θ, which is shown in
Appendix 6.B. The resulting total volume force is
ˆ

f dV − = − πε0E
2
0

k2
ez (6.25)

×
∞∑

n=1

[
Im
(
γm∗

n γm
n+1

)
Y 1

n + Im
(
γe∗

n γe
n+1

) (
Y 2

n + Y 3
n

)
+ Im (γe∗

n γm
n )Y 4

n

]
,

where the quantities Y 1,2,3,4
n are one-dimensional integrals over r = 0 to b− involving

the functions ge,m
n ; these integrals are given in Eqs. (6.58)-(6.61). From Eq. (6.25)

it is apparent that only modes in the combinations (Ee
n,E

e
n+1), (Em

n ,E
m
n+1), and

(Ee
n,E

m
n ) give nonzero contributions to the total ponderomotive volume force. That

is, these are the combinations that give rise to a force density with a preferred direc-
tion. The surface force in Eq. (6.23) involves only the electric (transverse magnetic)
modes Ee

n since these are the only ones having a nonzero radial electric field com-
ponent Er. Analogous to the volume force above, in the angular integrations of Eq.
(6.23) all terms in E2

r vanish except for products Ee∗
n,rE

e
n+1,r, resulting in

ˆ
πp dΩ− =

[
πε0E

2
0

k2
ez

(ε− 1)2

ε2

∞∑
n=1

n(n+ 1)(n+ 2) Im
(
γe∗

n γe
n+1

)
ge

ng
e
n+1

]
r=b−

. (6.26)

6.4 Homogeneous plasma

In the previous two sections, the fields and force densities induced by an electromag-
netic wave in a spherical plasma with arbitrary ε(r) were formulated. In the remainder
of this chapter, we apply the results to a number of practical density profiles. Here,
we start with plasmas with uniform density, which is one of the few density profiles for
which analytical expressions for the fields are available. This will enable us to validate
the results of the previous sections. In addition, the limit of small radius allows for
simple analytical expressions for both the ponderomotive force density and the total
force. This yields some interesting new insights in the way radiation interacts with
subwavelength objects.
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6.4.1 Fields

We first verify the field expressions of section 6.2. For a uniform plasma density
giving a constant relative permittivity ε1, Eq. (6.4) reduces to the spherical Bessel
differential equation, and the expressions of section 6.2.1 reduce to the well-known
Mie results [305]. For the quasistatic case kb� 1 of section 6.2.2, Eq. (6.11) reduces
to the Euler differential equation, and it is found that ψ = −3r/(ε1 + 2). This gives
Eqs = 3E0ex/(ε1+2), which is the well-known constant electric field in a homogeneous
material sphere placed in a uniform static field [304], or the Mie solution in the
Rayleigh limit kb→ 0 [305].
Using the functions ge,m

n of section 6.2.3 to evaluate the fields yields

ge,m
n = Ae,m

n jn(
√
ε1kr), (6.27)

where the constants Ae,m
n are obtained from the boundary condition Eq. (6.16). Ex-

plicit expressions are given in Appendix 6.C. It is also shown there that the functions
fe,m

n = γe,m
n ge,m

n , from which the potentials Eq. (6.3) are generated, are equal to

fe
n =

√
ε1dnjn(

√
ε1kr); fm

n = cnjn(
√
ε1kr), (6.28)

where cn and dn are the coefficients of the internal field of the Mie solution in the
customary formulation [305]. Comparison of the field definitions Eqs. (6.2)-(6.3) with
those of the Mie solution [305] indeed confirms Eq. (6.28). All results of section 6.2
thus correctly reduce to the Mie solution in the special case of uniform permittivity.

6.4.2 Ponderomotive compression

For a homogeneous plasma, the ponderomotive force density Eq. (6.24) is readily
evaluated by substituting Eq. (6.27), using the results Eqs. (6.62)-(6.63) for Ae,m

n

and γe,m
n . For the general case, this gives a series of elaborate expressions in terms

of Bessel functions. A more manageable result is obtained in the small radius limit
kb � 1, where the first few terms of the power series expansions Eqs. (6.66)-(6.73)
for Ae,m

n and γe,m
n suffice. Using the latter in Eq. (6.24) gives, after considerable

but straightforward algebra, the following lowest-order cartesian components of the
ponderomotive force density:

f = −χ
2
1ε0k

2E2
0 (uxex + vyey + wzez)

10 (ε1 + 2)2 (2ε1 + 3)2 (3ε1 + 4)
+ . . . ; (6.29)

u = 458 + 807ε1 + 432ε21 + 43ε31 − 15ε41;

v = 3 (2ε1 + 3)2 (18 + 13ε1) ;

w = 416 + 794ε1 + 469ε21 + 61ε31 − 15ε41,
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where χ1 = ε1 − 1 and the dots represent terms of order O(b3, r3). Interestingly, Eq.
(6.29) shows that a ponderomotive force density is present in the plasma which scales
linearly with position in all three (x, y, z)-directions. Figure 6.1 shows the correspond-
ing three ’spring constants’ dfx/dx, dfy/dy, dfz/dz as function of ε1. Remarkably, the
magnitude of the force density is almost equal in all directions irrespective of ε1.
This is despite the fact that the exciting electromagnetic wave is not at all spheri-
cally symmetric, but propagates in the z-direction and is polarized in the x-direction.
Moreover, the sign of each force component is opposite to that of the corresponding
coordinate. Eq. (6.29) thus represents an almost isotropic, compressive ponderomo-
tive force. In Fig. 6.1, the force correctly vanishes for ε1 ↑ 1, that is, in the limit of
an infinitely rarified plasma. We deliberately displayed only underdense plasmas to
avoid the complication of plasma resonances. The latter necessitate a more detailed
model of the permittivity including damping, which is outside the scope of this thesis.
However, since no assumptions about the particular form of ε1 have been made in
deriving Eq. (6.29), this expression is valid as well for more detailed descriptions of
the plasma medium.
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Figure 6.1: Cartesian x- (black solid), y- (blue dashed) and z- (red dash-dotted)
components of the ponderomotive force Eq. (6.29), divided by the corresponding
coordinate, as a function of the permittivity of the plasma.

Note that any compression is completely absent in the quasistatic description,
which predicts a perfectly constant electric field in the plasma and hence a vanishing
ponderomotive force. The full-wave description of section 6.2.1 is therefore essential
to obtain Eq. (6.29). We also remark that Eq. (6.29) has some analogy with the mag-
netic pinch force familiar from stationary currents, which is due to the self-generated
magnetic field. In the case of our small driven plasma, a representative magnitude of
the current densities present in the plasma is that of the electric dipole mode, which is
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Je
1 ≈ −3iε0χ1ωE0ex/(ε1 + 2). According to the Biot-Savart law [304], a hypothetical

spherical medium carrying a stationary current density Je
1 would generate a magnetic

field equal to μ0J
e
1 × r/3. The resulting Lorentz force density would be directed to-

ward the x-axis and would have a magnitude of −3ε0χ2
1k

2E2
0

√
y2 + z2/(ε1 +2)2. The

similarity with Eq. (6.17) is evident, both regarding the magnitude and the propor-
tionality with position. The driven plasma we consider, of course, is more complex
than this crude model because the currents are both time-varying and have more
structure than Je

1 . In addition, electric forces play an equally important role. For
these reasons, the ponderomotive force turns out to be Eq. (6.29) rather than the
force just described, that is, the force is approximately radially compressive rather
than pinching toward a single axis.

Ponderomotive compression by means of the force Eq. (6.29) seems interesting for
technological applications such as confinement of spherical subwavelength plasmas.
However, Eq. (6.29) is in fact the lowest-order correction to the ponderomotive force
due to the quasistatic field, which coincidentally vanishes for the special case of a ho-
mogeneous plasma. For other than uniform density profiles, the ponderomotive force
is dominated by the inhomogeneous quasistatic field, as we will show in the next sec-
tion. Therefore the applicability of Eq. (6.29) to practical plasmas is limited. On the
other hand, Eq. (6.29) is very relevant in scattering experiments where other media
with a well-defined constant density, such as water droplets, are subjected to elec-
tromagnetic radiation [311–313]. In addition, delicate physical processes that require
contact-free observation of levitated droplets, such as surface vibrations [314], ice nu-
cleation [315], and crystallization of salts [316], may be manipulated ponderomotively
by application of an electromagnetic wave.

6.4.3 Total ponderomotive force

We next consider the total force on the plasma caused by the interaction with the
incident wave. In scattering theory, the total force due to an incident wave is usually
not formulated in terms of force densities, but rather is derived by calculating the
rate at which momentum is carried away by the scattered radiation in the far field.
This rate is identified with the total force on the body on account of momentum
conservation [317]. In terms of the scattering coefficients ae,m

n in Eqs. (6.7)-(6.8), the
force reads [292, 306]

F =
2π
k2

I

c
ez (6.30)

× Re
∞∑

n=1

[
(2n+ 1) (ae

n + am
n ) − 2n(n+ 2)

n+ 1
(
ae∗

n a
e
n+1 + am∗

n am
n+1

)− 2(2n+ 1)
n(n+ 1)

ae∗
n a

m
n

]
.
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In case of a small dielectric spherical scatterer with uniform permittivity ε1 and radius
b� k−1, Eq. (6.30) gives the following expansion [292, 306]:

F =
8πk4b6

3
χ2

1

(ε1 + 2)2
I

c
ez

(
1 − 120 + 34ε1 − 29ε21 + ε31

(ε1 + 2)(2ε1 + 3)
(kb)2 + . . .

)
. (6.31)

Although certainly correct, this derivation of Eq. (6.31) does not give any information
about the distribution of the force over the scatterer. This is contrary to calculating
F by integrating force densities such as in Eq. (6.23), where one starts from the
force distribution itself. In particular, it becomes clear that only part of the force is
acting on the bulk, the remainder presenting itself in the form of a surface force. To
our knowledge, such a direct analytical evaluation of the force on a scattering sphere
from the local fields has never been given, although the force Eq. (6.31) has been
reproduced for special cases by numerically integrating the Maxwell stress tensor over
the surface of the sphere [318], and by adding numerically calculated forces on a grid
of dipoles representing the sphere [319]. Nevertheless, the force integration Eq. (6.23)
also correctly leads to Eq. (6.31). Namely, substituting Eq. (6.27) together with the
results (6.66)-(6.73) in the force expressions Eqs. (6.25)-(6.26), it is found that

ˆ
f dV − =

8πk4b6

3
χ2

1

(ε1 + 2)2
I

c
ez

(
ε1 + 4
2ε1 + 3

− Q1(kb)2

210(ε1 + 2)(2ε1 + 3)2
+ . . .

)
; (6.32)

−
ˆ
πp dΩ− =

8πk4b6

3
χ2

1

(ε1 + 2)2
I

c
ez

(
χ1

2ε1 + 3
− χ1Q2(kb)2

70(ε1 + 2)(2ε1 + 3)2
+ . . .

)
, (6.33)

with

Q1 ≡ 6720 + 3342ε1 − 1055ε21 − 215ε31 + 28ε41;

Q2 ≡ 560 + 78ε1 − 185ε21.

Adding Eqs. (6.32)-(6.33) reproduces the total ponderomotive force Eq. (6.31) that
was derived from momentum conservation. This confirms the validity of Eq. (6.23).

In Eqs. (6.32)-(6.33), the first terms in the large braces are dominant for small kb.
Interestingly, the volume and surface contributions to the total force act in opposite
directions, since χ1 is negative for plasmas. Furthermore, the division of the total
ponderomotive force into the volume and surface contributions is dependent on ε1,
which is shown in Fig. 6.2. As before, the forces correctly vanish in the limit ε1 ↑ 1 of
an infinitely rarified plasma. The ratio of the magnitude of the surface contribution
to that of the volume contribution grows as ε1 drops, increasing to as much as 1/4
for ε1 = 0. This shows the ponderomotive surface force derived in section 6.3.1 is not
merely a small correction to the conventional volume ponderomotive force, but rather
is an essential ingredient in a correct local description of the radiation pressure on
subwavelength objects.
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Figure 6.2: Division of total ponderomotive force Eq. (6.23) (black solid) into
the volume contribution Eq. (6.32) (blue dashed) and surface contribution Eq.
(6.33) (red dash-dotted) as a function of the permittivity of the plasma, for
sufficiently small kb.

Finally, we note that we have only considered the limit kb � 1 here. It would be
interesting to show analytically the equality of Eq. (6.23) with the general expression
Eq. (6.30) for arbitrary kb. It is encouraging that the products of scattering coeffi-
cients in the second line of Eq. (6.30) represent the same combinations of modes that
contribute to the integrated ponderomotive volume force Eq. (6.25). On the other
hand, the single coefficients in the first line of Eq. (6.30) do not have an analogue
in Eq. (6.25), which suggests that it is probably necessary to use certain special
properties as well as recurrence relations for the Mie coefficients [320].

6.5 Inhomogeneous plasmas

The homogeneous plasma considered above allowed us to validate the analytical re-
sults of sections 6.2 and 6.3. In this section, we proceed to plasmas with radially
varying density profiles. Lacking analytical solutions to the differential equations
(6.15) that determine the fields, the results will be necessarily numerical. Experi-
mentally, nanoplasmas that are field-ionized by laser pulses usually exhibit a natural
density profile in which dne/dr < 0 everywhere. In contrast, ultracold plasmas may
be created with any desired density profile by photo-ionizing an atomic cloud using
imaging techniques [321]. In particular, ’inverted’ profiles in which dne/dr > 0 in
some range of r are possible. Such an inverted profile also results naturally when
using sufficiently dense atomic clouds, that in their central region are optically thick
for the excitation laser involved in the ionization scheme.
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6.5.1 Ponderomotive force distribution

We have calculated the distribution of the ponderomotive force density for several den-
sity profiles by numerically solving the boundary value problem Eqs. (6.15)-(6.16) for
the first few modes, and subsequently evaluating Eq. (6.24) truncated at n ≤ 3,m ≤ 3.
We have concentrated on subwavelength plasmas with kb ∼ 0.1, so that the truncated
series proved to be sufficient to approximate the exact force density accurately. A
shooting method was used to solve Eqs. (6.15)-(6.16), in which the numerical stabil-
ity was improved by switching variables from ge,m

n to xe,m
n = ge,m

n /(kr)n, and avoiding
the singular point at r = 0 by imposing the condition dxe,m

n /dr = 0 at a finite radius
r = r0 � b. Decreasing r0 to 0.01b yielded sufficiently converged results.

In order to test our numerical code, we have calculated the force density in a
homogeneous plasma with a smoothed edge according to the density profile ne(r) =
{1 − tanh [α (r/b − 9/10)]}n0/2 ≡ n1(r), where α is a dimensionless parameter. Choos-
ing kb = 1/9, this profile represents a plasma with density n0, which at radius 1/(10k)
drops smoothly to zero within a small distance of about 4/(αk). In Fig. 6.3(a), this
profile is shown as the red dash-dotted line, with the corresponding vertical axis on
the right of the figure. Since the calculational domain extends to r = b, the force
density is thus evaluated up to radii outside the plasma, rather than up to an arbi-
trary point somewhere in the edge region r ≈ 1/(10k). The benefit of this approach
over using the simpler discontinuous profile ne(r) = n0Θ (r − b) is that it is possible
to study the volume force density in the edge region, which must tend to the surface
force density in Eq. (6.23) as α→ ∞. In the calculations, the plasma density n0 was
chosen such that ε1 ≡ 1 − n0e

2/(ε0meω
2) = 0.19. In Fig. 6.3, the radial component

of the volume force density Eq. (6.24) along the positive x-axis is shown by the black
solid line, for α = 200. We have deliberately chosen to present the x-direction, which
is the polarization axis of the incident wave, because in this direction there is a strong
radial electric field component Er. Hence the surface force density defined in Eq.
(6.23) is clearly exhibited, in contrast to some other directions such as the y-axis in
which the surface force vanishes. It was derived in section 6.4.2 that, in the bulk of
the plasma, the ponderomotive force density should be compressive and proportional
to r, and given by Eq. (6.29). The latter result is indicated in Fig. 6.3(a) by the
blue dots. The numerical data closely follow the analytical result, which validates our
numerical code. The black dashed line in Fig. 6.3(a) show the force density according
to the quasistatic electric field, which is determined by Eq. (6.9)-(6.13). As expected,
the linear ponderomotive force is absent from the quasistatic description because the
latter predicts a uniform electric field in the plasma bulk.

In Fig. 6.3(a) near the plasma edge at kr = 1/(10k), the ponderomotive force
density exhibits a steep positive peak. Fig. 6.3(b) is a close-up of the edge region,
showing that this peak is positioned just on the inner side of the plasma edge. Note
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Figure 6.3: Radial component of the ponderomotive force density along the line
y = z = 0, for a homogeneous plasma with smoothed edge. (a) Force density in
the plasma bulk according to numerical evaluation of Eq. (6.24) assuming the
full field (black solid), numerical evaluation of Eq. (6.1) assuming the quasistatic
approximation (black dashed), and the analytical result Eq. (6.29) (blue dots).
For orientation, the plasma density (red dot-dashed line) is shown together with
the results. (b) Close-up of the edge region indicated by the vertical dashed lines
in the upper panel. The dashed and solid curves overlap. The inset is a close-up
of the horizontal axis, showing also the force Eq. (6.1) assuming the field of an
equivalent electric dipole (blue dashed).

that the quasistatic field is also sufficient to correctly describe this feature, since the
solid and dashed curves overlap perfectly. We found that for increasing values of α, the
peak becomes ever higher and narrower, but the energy density defined by the surface
area below the peak u0 =

´
frdr stays approximately constant. This suggests that

the peak will tend to the surface force density in Eq. (6.23) as α → ∞. The surface
area u1 represented by the latter is obtained by writing the surface force density
πper at position (x, y, z) = (b, 0, 0) as the volume force density fp ≡ πpδ (r − b) er.
Integrating fp,r, and using the quasistatic approximation Er ≈ 3E0/(ε1 +2), gives for
the present case
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u1 =
ˆ b+

b−
fp,rdr =

9ε0χ2
1E

2
0

4(ε1 + 2)2
= 0.308ε0E2

0 . (6.34)

Numerical integration of a spline interpolation of the peak in Fig. 6.3(b) gives
u0 = 0.307ε0E2

0 , in excellent agreement with Eq. (6.34). This confirms that the
peaked volume force is the analogue of the surface force present in the limit of a dis-
continuous plasma boundary. The outward ponderomotive force in the plasma edge
region is reminiscent of a similar force that is found in case of a one-dimensional strat-
ified plasma layer irradiated by a plane wave [289]. However, the latter force is usually
obtained by resorting to the WKB approximation to find the electric field, which is
valid only when the plasma scale length is much larger than the wavelength. This is
clearly not applicable for the subwavelength plasmas considered here. Furthermore,
in the one-dimensional large scale length case, the force is proportional to −∇ne [289].
This is not found in our case either, as evidenced by the fact that the peak in Fig.
6.3(b) does not coincide with the inflection point of the density at kr = 0.1.

In Fig. 6.3(b), at the right side of the peak the force has a small overshoot to
negative values, which is shown in the inset. The overshoot is visible as well in
Fig. 6.3(a). The overshoot is caused by the inhomogeneous electric field outside the
plasma, which is approximately that of an oscillating electric dipole [304]. Since the
plasma density has not yet completely vanished around kr = 0.1014, the electric field
gradient present there leads to a small but finite negative ponderomotive force den-
sity. The blue dashed line in the inset of Fig. 6.3(b) shows the force density Eq. (6.1)
assuming the mentioned dipole field. The numerical result indeed approaches this line.

Figure 6.4 shows the ponderomotive force density for the plasma profiles ne(r) ={
3 ± [1 − 200(kr)2

]}
n1(r)/4, where n1(r) was defined above, again evaluated along

the positive x-axis. The profile with a plus (minus) sign represents a plasma with a
quadratic bulge (dip) of the density in the central region, but with the same smoothed
edge as in Fig. 6.3. The most important difference with respect to the flat profile
discussed above is that the force density in the bulk is significantly larger than the
linearly varying force density shown in Fig. 6.3(a). This is because already in the qua-
sistatic approximation, the electric field for the profiles of Fig. 6.4 is inhomogeneous,
whereas in the plasma of Fig. 6.3 it is constant. Therefore, the ponderomotive force
depicted in Fig. 6.3 consists of merely small corrections to the vanishing contribu-
tion of the quasistatic field, whereas in Fig. 6.4(a) and 6.4(c) the force is completely
dominated by the gradient of the quasistatic field itself. This is confirmed by the fact
that the quasistatic and exact results in Fig. 6.4 overlap perfectly.

Interestingly, the direction of the ponderomotive force in Figs. 6.4(a) and 6.4(c)
depends on the type of plasma profile: for natural profiles with dne/dr < 0, the force
is directed outward; for inverted profiles with dne/dr > 0, it points inward. This
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suggests that it is possible, at least in the plasma bulk, to tailor the force distribution
by choosing a suitable initial density profile. For instance, it may be possible to devise
a plasma in which ponderomotive forces balance hydrodynamic forces locally, which
would mean that the plasma is stabilized rather than disturbed by application of an
electromagnetic wave. However, the freedom to manipulate the ponderomotive force
density is much more restricted in the edge region. Regardless of the type of density
profile, at the plasma boundary the steep gradient in the plasma density invariably
leads to the strongly peaked and outward ponderomotive force density found before, as
is illustrated by Figs. 6.4(b) and 6.4(d). Obviously, this outward force is unfavorable
for the stability of the plasma as it will tend to push electrons outwards.

6.5.2 Total ponderomotive force

We have calculated the total ponderomotive force acting on the plasmas considered
in the previous section, by numerically evaluating the volume force integration Eq.
(6.25) truncated at n ≤ 3. The resulting forces are shown in Fig. 6.5 as a function of
the permittivity ε1. Crosses represent the data according to Eq. (6.25). As a check,
the forces have been calculated alternatively in terms of the scattered radiation, by
numerically evaluating the scattering coefficients with Eq. (6.7), and substituting
these coefficients in Eq. (6.30). The resulting forces are shown in Fig. 6.5 as open
squares. Evidently, both methods agree very well, confirming the validity of Eq.
(6.25) for arbitrary density profiles.

For a given value of ε1, the total force on the plasma with a quadratic dip (D)
is systematically smaller than that on the homogeneous plasma (H) with the same
radius, and the force on the plasma with a quadratic bulge (B) is still smaller. This
is easily explained in terms of the radiation scattered from the incident wave by the
three plasmas. At the chosen plasma size kb = 1/9, the electrons in the plasma
move more or less coherently, so that the scattered radiation is predominantly electric
dipole radiation with the radiated power proportional to the number N of electrons
squared. By conservation of momentum, the momentum lost from the incident wave
and therefore the resulting total force on the plasma are proportional to N2 as well.
For the three plasmas considered in Fig. 6.5, equal ε1 implies equal densities n0, re-
sulting in squared numbers of electrons in the ratios N2

H : N2
D : N2

B = 1 : 0.64 : 0.49.
These ratios roughly fit the relative heights of the curves in Fig. 6.5. However, the
coherent model just given is not precise, first because both higher order multipole
moments and directional asymmetry in the scattered radiation have been neglected,
and second because profile dependent resonant behavior for ε1 near 0 has been disre-
garded. Nevertheless, we have numerically confirmed that the relative amplitudes of
the total force on the three considered plasmas indeed tend to N2

H : N2
D : N2

B in the
limits kb→ 0 and ε1 → 1 where the coherent model becomes exact.
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Figure 6.4:
Radial component
of the ponderomo-
tive force density
along the line
y = z = 0, for den-
sity profiles with
a smoothed edge
and a quadratic
bulge (a),(b) and
dip (c),(d).
For further details,
see Fig. 6.3.
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Figure 6.5: Total ponderomotive force as a function of the permittivity at the
density n0, according to scattering theory (numerical evaluation of Eq. (6.30),
open squares), integration of the volume force Eq. (6.25) (crosses), and Eq.
(6.30) using the well-known Mie-coefficients (black solid line). Results are shown
for a uniform profile (black, ’H’) and profiles with a quadratic bulge (red, ’B’)
and dip (blue, ’D’); these profiles were defined in section 6.5.1 and have been
sketched in the insets.

6.6 Acceleration of ultracold plasmas

In the previous sections, we have carefully examined both the distribution of pondero-
motive force in an electromagnetically driven subwavelength plasma, and the total
resultant force derived from it by volume integration. In summary, it was found that
in the plasma bulk the ponderomotive force is directed radially inwards for inverted
density profiles, that a strongly localized outward force dominates near the very edge
of the plasma, and that the total force on the plasma is approximately proportional
to N2. We are now in the position to assess the feasibility of practical acceleration
of subwavelength plasmas based on the total ponderomotive force. This concept was
put forward in the past by Veksler [301] and reviewed by Motz and Watson [302].
The original formulation [301] of the acceleration mechanism was that subwavelength
plasmas should scatter incident radiation at an energy rate of N2 times the single
electron value σT I, where σT = e4/(6πε20m

2
ec

4) is the Thomson cross section. By con-
servation of momentum, this leads to a rate of momentum transfer to (or accelerating
force on) the plasma of N2σT I/c. Indeed, the total force Eq. (6.30) derived from the
scattered radiation reduces to this force in the appropriate limits [302]. What we have
shown in this chapter is that this force is equivalent to the integrated ponderomotive
force in the plasma.
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Acceleration experiments in the 1960s based on the above scheme have produced
ions with keV energies [322, 323]. However, static magnetic fields were necessary to
confine the plasma in the transverse direction, and the exact acceleration mechanism
was not very well understood [302]. Moreover, the very large energy spread of the ions
showed that the plasma was not accelerated as a compact bunch but rather completely
dispersed over the length of the accelerator. These experiments were therefore discon-
tinued in favor of more promising acceleration schemes. The reason why the radiative
method can at the present time be more viable is the current availability of ultracold
plasmas. Because the electron temperature of these plasmas is extremely low (∼ 10
K), hydrodynamic forces are very small, so that any violent plasma expansion is ab-
sent. Moreover, as mentioned before, the density distribution of ultracold plasmas can
easily be tailored to an inverted profile, either by means of imaging techniques or by
using optically thick atomic clouds. As we have shown, the bulk ponderomotive force
is compressive for inverted profiles, which could further reduce the plasma expansion.

Let us consider the velocities attainable by radiative acceleration. For this pur-
pose, it is important to realize that in practice the plasma is not a rigid object, but
will in general expand, so that not only b, but also the density and hence ε will vary
with time. The number of particles N , on the other hand, remains approximately
fixed. The accelerating total force will therefore depend on b both directly through
the coherence properties of the plasma and indirectly through its dependence on ε(b).
Figure 6.6 shows this dependency for three different N , assuming a driving frequency
of ω/2π = 1.3 GHz (standard L-band microwaves) and a uniform density profile for
which ε(b) = ε1 = 1 − 3N/(4πε0meω

2b3). Immediately apparent is the plateau in the
force at Fz/N

2 = σT I/c, indicated by the horizontal dashed line, which corresponds
to the force proposed by Vesksler [301]. At the high kb side, the force decreases
rapidly once kb � 1 because the plasma electrons do no longer scatter incident radi-
ation coherently at such larger plasma sizes. As this effect is a geometrical one, it is
not dependent on the number of particles. At the low kb side, each curve in Fig. 6.6
strongly increases around the plasma radius bm at which the Mie resonance ε1 = −2
occurs. This is where the driving frequency matches the eigenfrequency of oscillations
of the whole electron cloud of the plasma in the field of the ion cloud [277]. Since
ε1 depends on N , the radius bm is different for the three cases in Fig. 6.6, indicated
by the vertical dashed lines. We have also calculated the total force for the other
density profiles considered in this chapter. This gives practically the same results on
the scales of Fig. 6.6, although minor differences are found close to bm due to different
resonance properties, and for kb � 1 due to different coherence properties. However,
the plateau in the force is exactly the same, in accordance with the observation in
section 6.5.2 that Fz ∝ N2 for all profiles if ε1 is close to unity, that is, away from the
Mie resonance.
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Figure 6.6: Total ponderomotive force as a function of plasma radius, when
the particle number is fixed at N = 104 (black solid line and dots), N = 107

(red dashed line and squares), and N = 5 × 1010 (blue dash-dotted line and
triangles) according to Eq. (6.30) using the well-known Mie-coefficients (lines)
and integration of the volume force Eq. (6.25) (symbols). A uniform profile and a
driving frequency of ω/2π = 1.3 GHz have been assumed. The horizontal dashed
line represents the force according to coherently enhanced Thomson scattering;
the vertical dashed lines indicate the radius at which Mie resonance occurs. The
datapoint indicated by the arrow is discussed in the main text.

Now, for acceleration purposes the plasma size should presumably be in the
’plateau range’ of Fig. 6.6, in order to both have a significant acceleration and at
the same time avoid plasma resonances. Experimentally, the latter invariably lead to
significant electron loss and heating in both nanoplasma [277] and ultracold plasma
[271, 274] experiments, and should therefore be avoided despite the greatly enhanced
accelerating force. Secondly, the number of particles N should be chosen as large as
possible to maximize Fz . However, for too large N the plateau range disappears as
the resonance radius bm grows larger than k−1. The dash-dotted curve in Fig. 6.6
represents about the largest N that allows for a plasma that is both coherent and non-
resonant at the chosen driving frequency of 1.3 GHz. Incidentally, the corresponding
value N = 5 × 1010 is also one of the largest numbers of atoms that have actually
been magneto-optically cooled and trapped [324]. In that experiment, the atomic
cloud consisted of sodium. Let us estimate what energies may be attained when this
particular cloud is ionized and accelerated by 1.3 GHz microwave radiation. A suit-
able plasma radius, indicated in Fig. 6.6 by the data point with an arrow, would
be 1.5 cm (even larger atomic clouds with sizes up to a few centimeters have been
successfully produced [325]). Existing L-band klystrons [326] can produce microwave
pulses with length τ = 1.5 ms at a power exceeding 10 MW. At this power and with
diffraction-limited focusing, the intensity is about I = 35 kW/cm2. The resulting
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electron oscillation amplitude is still much smaller than the plasma radius, so that
the plasma should still behave as a dielectric as has been assumed in this chapter.
Assuming that kb remains smaller than unity throughout the microwave pulse, the
momentum transferred to the plasma is p = τN2σT I/c. The corresponding kinetic
energy per ion is U = (p/N)2/(2mi) = 2.7 keV, where mi = 3.8 × 10−26 kg is the
atomic mass of sodium. Thus the energies reachable by radiative acceleration are
quite substantial.

Although keV energies are nowhere near those attained in conventional accelera-
tors, it should be emphasized that an accelerated ultracold plasma is still an object
with very special properties. First of all, it is an accelerated neutral beam, whereas
other acceleration methods involve charged beams. An exception to some extent
is acceleration of partially neutralized ion beams from laser-irradiated foils [327].
However, in the latter method beam properties such as the energy spread are still
poor (∼ 10%). An accelerated ultracold plasma, on the other hand, may have re-
markable beam quality. For ions at nonrelativistic energies, such as in the field of
focused ion beams [328], beam quality is usually expressed [329] in terms of the re-
duced brightness Br = eIpeak/(2π2ξ2mic

2), where Ipeak is the peak ion current and
ξ = b

√
kBTi/(mic2)/2 is the transverse thermal emittance with Ti the ion temper-

ature. Present state-of-the-art ion beams, produced using liquid-metal ion sources
[328], have a brightness up to Br = 106 A/m2srV at a current in the picoampere to
nanoampere range. In case of our ultracold plasma, the temperature of the ion com-
ponent usually equilibrates to a few Kelvin [270], resulting in an emittance of ξ < 1
nm. The peak ion current is Ipeak = πb2enev = 0.06 A, where v = p/(Nmi) is the
velocity of the plasma, yielding a brightness of Br > 105 A/m2srV. The brightness of
the ions of an accelerated ultracold plasma may thus be comparable to that of existing
high-performance ion sources, but at a much higher current, and with the important
difference that an ultracold plasma is a neutralized beam. This combination of prop-
erties puts an accelerated ultracold plasma in a yet unexplored parameter regime,
which may well enable new applications. In particular, a neutral beam does not suffer
the space charge problems usually associated with high brightness charged particle
beams. In ion milling applications [328], a neutral beam would alleviate problems due
to charging of insulating samples.

The above estimates being encouraging, it is important to realize that they are
based on the assumption that the plasma stays coherent throughout the ms microwave
pulse, that is, that kb � 1. However, one may expect that the low but finite electron
temperature of the plasma leads to some plasma expansion due to the hydrodynamic
pressure gradient ∇nekBTe. On the other hand, for inverted plasma density profiles
in which dne/dr > 0, this gradient can be directed inwards, leading to compression
rather than expansion. Moreover, as mentioned before, the ponderomotive force is
directed inwards as well for inverted profiles, giving an additional compressive action.
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To fully assess the time-dependence of the plasma size, therefore, one should study
the evolution of the density profile under influence of the self-consistent hydrodynamic
and ponderomotive forces. Such an analysis is outside the scope of this thesis. We do
note that the characteristic hydrodynamic expansion rate of usual undriven, Gaussian
ultracold plasmas is db/dt ∼√kBTe/mi [270]. If the plasma considered above would
expand at this rate with Te = 10 K, it would still take some 0.4 ms before the plasma
grows larger than kb = 1. The interaction time τ assumed above is of the same order
of magnitude and therefore seems reasonable.

Another assumption made above is that the plasma does not appreciably heat
up due to the microwave interaction. In absence of plasma resonances, the most
important heating mechanism [330] is inverse Bremsstrahlung due to electron-ion col-
lisions. In the strong-field regime e2E2

0/(4meω
2) � kBTe under consideration here,

the electron-ion collision rate is νei ∼ neemeω
3/(π2ε20E

3
0) [331], and the resulting

heating rate per electron is Pei = νeie
2E2

0/(2meω
2). In the example above, νei ∼ 3

s−1 only, giving Pei = 10−19 W. This corresponds to a temperature increase of only
Pei/kB = 8 K/ms. The plasma should therefore indeed remain ultracold during the
acceleration process.

Finally, we should mention the strongly peaked outward ponderomotive near the
edge of the plasma, which is of course disadvantageous for the stability of the plasma.
Initially, the electrons in the edge region will probably be expelled from the plasma by
this force. However, very soon, after a sufficient number N1 of electrons has escaped,
the resulting charging of the plasma will prevent any further electron loss. This
happens as soon as the Coulomb potential UC = N1e

2/(4πε0b) of the plasma is larger
than the kinetic energy U1 that can be supplied to an electron by the ponderomotive
force peak. The latter equals U1 = u1/ne, where u1 is given by Eq. (6.34) for
a homogeneous plasma. For the plasma considered in this section, the condition
UC = U1 gives N1/N = 0.3% only. Electron loss due to the ponderomotive force peak
at the plasma edge should therefore remain relatively unimportant. Particle tracking
simulations are necessary to further elucidate the behavior of electrons near the very
plasma edge.

6.7 Conclusions

In this chapter, we have studied the ponderomotive forces induced in a subwavelength
plasma by an externally applied electromagnetic wave. We found that the pondero-
motive force in the plasma bulk is directed outwards for natural profiles dne/dr < 0
and inwards for ’inverted’ profiles dne/dr > 0. For a completely homogeneous plasma,
a spherically symmetric compressive ponderomotive force remains, suggesting possi-
bilities for contactless ponderomotive manipulation of homogeneous subwavelength
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objects. Furthermore, we showed that the force in the plasma bulk is accompanied by
a strongly peaked outward ponderomotive force near sharp plasma edges. In the limit
that the plasma boundary tends to a discontinuous step in the density, this force peak
tends to a ponderomotive surface force, which in turn makes an essential contribution
to the total radiation pressure on the plasma. Finally, we have discussed the feasibil-
ity of radiative acceleration of ultracold plasmas. Based on existing technologies and
conservative estimates, we estimated that these plasmas may be accelerated to keV
ion energies, resulting in a neutralized beam with a brightness comparable to current
high-performance ion sources.

Subsequent fluid simulations should address the plasma dynamics and the self-
consistent evolution of the density profile. Furthermore, in this chapter we have
adopted a continuum model of the plasma medium, which of course must break down
at some point. We expect granularity effects to become first apparent near the plasma
boundary, where the Debye length becomes comparable to the scale length of the
plasma. Adequate modeling of the behavior of particles near the very plasma edge
should therefore be based on particle tracking simulations invoking the full-wave ex-
pansion Eq. (6.2)-(6.3) of the fields. Extension of our results to plasma sizes compa-
rable to or larger than the wavelength will be very interesting as well. It is clear that
ponderomotive forces play an important role in electromagnetically driven finite-sized
plasmas in general, and in ultracold plasmas in particular. A thorough understanding
of these forces will enable opportunities for active ponderomotive plasma manipula-
tion, including the compression and acceleration of ultracold neutral plasmas.

Appendix 6.A Quasistatic limit from general field expressions

We first estimate which potential Eq. (6.3) becomes dominant in the quasistatic limit.
As mentioned in 6.2.3, fe,m

n ∼ (kb)n if kb� 1. Consequently, the lowest-order modes
Πe,m

1 are dominant, the high-order modes being progressively smaller. Furthermore,
assuming in Eq. (6.2) that symbolically ∇ ∼ b−1, it follows that |Ee

n| � |Em
n |. Hence,

the dominant contribution to the electric field is the electric dipole mode, which is
equal to

E ≈ Ee
1 ≈ E0∇

(
3

2kε
d(rfe

1 )
dr

sin θ cosϕ
)
. (6.35)

Here, the identity

1
kε

∇× (r ×∇Πe) = −1
k
∇
(

1
ε

∂(rΠe)
∂r

)
− krΠe (6.36)

has been used. Comparison of Eqs. (6.9) and (6.35) shows that the function ξ =
−(3/2kε)d(rf e

1 )/dr must reduce to ψ in the quasistatic limit, the latter being defined
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by the boundary value problem (6.11)-(6.13). This can be shown by noting that in Eq.
(6.4) the propagation term k2ε is much smaller than the other terms in the quasistatic
limit. Neglecting the propagation term, taking n = 1, and multiplying Eq. (6.4) by
d/dr + 2/r, yields

0 =
[
d2

dr2
+
(

2
r

+
1
ε

dε

dr

)
d

dr
− 2
r2

]
ξ. (6.37)

Similarly, multiplying Eq. (6.14) by −3/kb and taking n = 1, approximating the
Bessel functions by their limiting value for small argument, and rewriting fe

1 (b) using
Eq. (6.4), gives

−3 =
(
ε
dξ

dr
+

2ξ
r

)
r=b

. (6.38)

From Eqs. (6.11), (6.13), (6.37) and (6.38), ψ and ξ satisfy the same differential
equation and the same boundary conditions, which shows that ξ ≈ ψ when kb � 1.
Hence the general solution for the electric field given in the section 6.2.1 approaches
the quasistatic field given in section 6.2.2.

Appendix 6.B Explicit expressions for ponderomotive forces

In the ponderomotive volume force density Eq. (6.24),

Rr1
nm =

d(rRθ1
nm)

dr
=

2 − δnm

k

(
gm

n

dgm
m

dr
+ gm

m

dgm
n

dr

)
; (6.39)

Rr2
nm =

d(rRθ2
nm)

dr
= n(n+ 1)m(m+ 1)

2 − δnm

(kr)3ε2
(6.40)

×
[
ge

n

d(rge
m)

dr
+ ge

m

d(rge
n)

dr
− 2
(

2 +
r

ε

dε

dr

)
ge

ng
e
m

]
;

Rr3
nm =

d(rRθ3
nm)

dr
=

2 − δnm

(kr)3ε2

{[
n(n+ 1) − ε(kr)2

]
ge

n

d(rge
m)

dr
(6.41)

+
[
m(m+ 1) − ε(kr)2

]
ge

m

d(rge
n)

dr
− 2

d(rge
n)

dr

d(rge
m)

dr

}
;

Rr4
nm =

d(rRθ4
nm)

dr
=

2
(kr)2ε

{
d(rge

n)
dr

d(rgm
m)

dr
(6.42)

−2gm
m

d(rge
n)

dr
+
[
n(n+ 1) − ε(kr)2

]
ge

ng
m
m

}
;

Rθ1
nm = Rϕ1

n,m =
2 − δnm

kr
gm

n g
m
m ; (6.43)

Rθ2
nm = Rϕ1

n,m = n(n+ 1)m(m+ 1)
2 − δnm

(kr)3ε2
ge

ng
e
m; (6.44)
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Rθ3
nm = Rϕ1

n,m =
2 − δnm

(kr)3ε2
d(rge

n)
dr

d(rge
m)

dr
; (6.45)

Rθ4
nm = Rϕ1

n,m =
2

(kr)2ε
gm

m

d(rge
n)

dr
; (6.46)

Sr1
nm =

(2n+ 1)(2m+ 1)
n(n+ 1)m(m+ 1)

(
P 1

nP
1
m

sin2 θ
cos2 ϕ+

dP 1
n

dθ

dP 1
m

dθ
sin2 ϕ

)
; (6.47)

Sr2
nm =

(2n+ 1)(2m+ 1)
n(n+ 1)m(m+ 1)

P 1
nP

1
m cos2 ϕ; (6.48)

Sr3
nm =

(2n+ 1)(2m+ 1)
n(n+ 1)m(m+ 1)

(
dP 1

n

dθ

dP 1
m

dθ
cos2 ϕ+

P 1
nP

1
m

sin2 θ
sin2 ϕ

)
; (6.49)

Sr4
nm =

(2n+ 1)(2m+ 1)
n(n+ 1)m(m+ 1)

(
dP 1

n

dθ

P 1
m

sin θ
cos2 ϕ+

P 1
n

sin θ
dP 1

m

dθ
sin2 ϕ

)
; (6.50)

Sθj
nm =

∂Srj
nm

∂θ
; (6.51)

Sϕj
nm =

1
sin θ

∂Srj
nm

∂ϕ
, (6.52)

where δnm is the Kronecker delta, and j = 1 . . . 4. In Eqs. (6.41)-(6.42), the differen-
tial equation (6.15) has been applied to rewrite second derivatives.

The z component fz of Eq. (6.24) consists of terms that are proportional to
Xj

nm = Rrj
nmS

rj
nm cos θ −Rθj

nmS
θj
nm sin θ, with j = 1 . . . 4. In the volume integration of

fz in Eq. (6.23), integrating by parts the second term of Xj
nm with respect to θ, and

using the functional relations in Eqs. (6.39)-(6.42) and (6.51), transforms the angular
integrations to

ˆ
Xj

nm dΩ =
d(r3Rθj

nm)
dr

ˆ
Srj

nm cos θdΩ. (6.53)

The remaining four integrals j = 1 . . . 4 on the right side of Eq. (6.53) are equal to
[332]

ˆ
Sr1

nm cos θdΩ =

⎧⎨⎩
2πq2(q+1)(q+2)2

(2q+1)(2q+3)

0

m = n± 1;

m 
= n± 1;
(6.54)

ˆ
Sr2

nm cos θdΩ =

⎧⎨⎩
2πq(q+1)(q+2)
(2q+1)(2q+3)

0

m = n± 1;

m 
= n± 1;
(6.55)

ˆ
Sr3

nm cos θdΩ =
ˆ
Sr1

n,m cos θdΩ; (6.56)
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ˆ
Sr4

nm cos θdΩ =

⎧⎨⎩ 2πn(n+1)
2n+1

0

m = n;

m 
= n,
(6.57)

with q = min(n,m). The resulting total volume force is given in Eq. (6.25), in which

Y 1
n =

n(n+ 2)
n+ 1

ˆ b−

0

χ
d

dr

[
(kr)2gm

n g
m
n+1

]
dr; (6.58)

Y 2
n = n(n+ 1)(n+ 2)

ˆ b−

0

χ
d

dr

[
ge

ng
e
n+1

ε2

]
dr; (6.59)

Y 3
n =

n(n+ 2)
n+ 1

ˆ b−

0

χ
d

dr

[
1
ε2
d(rge

n)
dr

d(rge
n+1)
dr

]
dr; (6.60)

Y 4
n =

2n+ 1
n(n+ 1)

ˆ b−

0

χ
d

dr

[
krgm

n

ε

d(rge
n)

dr

]
dr. (6.61)

Appendix 6.C Radial functions for homogeneous sphere

Solving Eqs. (6.15)-(6.16) for a homogeneous sphere with permittivity ε1 gives ge,m
n =

Ae,m
n jn(

√
ε1kr), with

Ae,m
n =

yn

kb
∣∣h(1)

n

∣∣2Ge,m
n

; (6.62)

Ge,m
n ≡ δe,m(nj̃n−√

ε1kbj̃n−1)+
(

1 + b
d

dr
ln
∣∣∣h(1)

n

∣∣∣) j̃n,
where j̃n denotes the spherical Bessel function with argument

√
ε1 kb and jn, yn, h

(1)
n

are spherical Bessel functions with argument kb. Substituting ge,m
n in Eq. (6.18) and

expanding braces yields

γe,m
n =

kb
∣∣h(1)

n

∣∣2h(2)
n Ge,m

n

yn

[
j̃n − ikb

∣∣h(1)
n

∣∣2Ge,m
n

] , (6.63)

with h
(2)
n the nth-order spherical Hankel function of the second kind [307] and ar-

gument kb. Multiplying in Eq. (6.63) the term j̃n by the identity 1 = (jn+1yn −
jnyn+1)(kb)2, and simplifying the denominator, gives
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Ae
nγ

e
n =

i(kb)−2

√
ε1h

(1)
n j̃n+1 − h

(1)
n+1 j̃n

; (6.64)

Am
n γ

m
n =

i(kb)−2

h
(1)
n j̃n+1√
ε1

− h
(1)
n+1j̃n +

(n+ 1)χ1

ε1kb
h

(1)
n j̃n

. (6.65)

Eqs. (6.64)-(6.65) are equal to cn and
√
ε1dn respectively, where cn and dn are the

internal Mie coefficients [305]. Taylor expansions about kb = 0 of Eqs. (6.62)-(6.63)
are

Ae
1 =

3
√
ε1

ε1 + 2

(
1 +

χ1(ε1 + 10)
10(ε1 + 2)

(kb)2 + . . .

)
; (6.66)

Ae
2 =

5
3(2ε1 + 3)

(
1 +

χ1(2ε1 + 7)
14(2ε1 + 3)

(kb)2 + . . .

)
; (6.67)

Ae
3 =

7ε−1/2
1

(3ε1 + 4)

(
1 +

χ1(5ε1 + 12)
30(3ε1 + 4)

(kb)2 + . . .

)
; (6.68)

Am
1 =

1√
ε1

(
1 +

χ1

6
(kb)2 + . . .

)
; (6.69)

Am
2 =

1
ε1

(
1 +

χ1

10
(kb)2 + . . .

)
; (6.70)

γe
1 = 1 +

2iχ1(kb)3

3(ε1 + 2)

(
1+

3(ε1 − 2)
5(ε1 + 2)

(kb)2+ . . .

)
; (6.71)

γe
2 = 1 +

iχ1(kb)5

15(2ε1 + 3)
+ . . . ; (6.72)

γm
1 = 1 +

iχ1(kb)5

45
+ . . . . (6.73)

The imaginary part of other γe,m
n are of order O[(kb)7].
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7

Direct generation of terahertz

surface plasmon polaritons on a wire

using electron bunches

Abstract - We propose to generate terahertz Surface Plasmon Polaritons (SPPs)
on a metal wire by launching electron bunches onto a tapered end of the wire. To
show the potential of this method we solve Maxwell’s equations for the appropriate
boundary conditions. The metal wire tip is modeled by a perfectly conducting
semi-infinite cone. It is shown that the SPPs can be recovered from the idealized
fields by well-known perturbation techniques. The emitted radiation is strongly
concentrated into a narrow solid angle near the cone boundary for cones with a
small opening angle. We calculate that, using currently available technology, sub-
picosecond SPPs with peak electric fields of the order of MV/cm on a 1 mm diameter
wire can be obtained.

Publication status - The work described in this chapter has been published by
P. W. Smorenburg, W. P. E. M. op ’t Root, and O. J. Luiten in Phys. Rev. B 78,
115415 (2008).
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7.1 Introduction

Terahertz Surface Plasmon Polaritons (THz SPPs) on a metal wire recently received
a lot of attention [333–342]. It has been shown that these SPPs can efficiently be
focused below the diffraction limit by periodically corrugating the wire [339, 340], or
tapering the wire into a tip [341]. This leads to electromagnetic THz pulses that are
both very strong and highly localized, making it possible to study materials at THz
frequencies with sub-wavelength spatial resolutions [343, 344]. Applications include
near-field optical microscopy [345, 346], imaging of semiconductor structures [347, 348]
or biological tissues [349, 350], single particle sensing [351, 352] and THz spectroscopy
[353, 354]. Another benefit of the wire geometry is that it acts as an efficient waveg-
uide for THz SPPs. Recently it has been shown that THz SPPs can propagate along a
wire over long distances with low attenuation and dispersion [333–337]. This enables
endoscopic delivery of THz radiation to samples in applications where line-of-sight
access is not available [333]. Several other structures have been proposed as waveg-
uides for THz SPPs, including coaxial lines [355], metal tubes [356] and non-metallic
guides [357, 358]. However, the feasibility of these guides is limited by either high
attenuation or high dispersion. An exception is the parallel-plate waveguide [359], but
in this case the large cross-sectional area may be a problem for many THz applications.

Despite the promising properties of THz SPPs guided by a metal wire, it has proven
difficult to efficiently generate SPPs of appreciable amplitude. In contrast, over the
last years several sources have become available that generate intense free-space THz
radiation pulses, with broad bandwidth and peak electric fields that approach the
MV/cm regime. Technologies of the latter include accelerator-based sources generat-
ing coherent radiation [360–362] and table-top systems producing radiation by optical
rectification of femtosecond laser pulses [363]. However, up to now efficient coupling
of these free-space THz pulses into the guided mode on a wire has been difficult. Cur-
rently, THz SPPs are generated by scattering the linearly polarized free-space waves
into a radially polarized wave, which is then coupled onto the wire [333]. However, due
to the poor spatial overlap between the free-space radiation waveform and the SPP
waveform, the coupling efficiency is very low (typically less than 1% [364]). Hence
the attainable SPP electric field strength is limited to the kV/cm range by current
methods. A proposed method to overcome this low coupling efficiency is to create
radially polarized THz radiation using a radially symmetric photoconductive antenna
[364].

In this chapter, we propose a novel method to generate THz SPPs on a wire di-
rectly, that is, without the creation of free-space THz radiation as an intermediate
step. Similar to the method proposed in Ref. [364], in our method the guided mode
on the wire is excited by a radially polarized field, thereby avoiding the poor coupling
efficiency described above. We propose to generate THz SPPs by launching electron
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Figure 7.1: Principle of THz SPP (blue pulse) generation on a wire by launch-
ing electron bunches (red) onto a conical tip.

bunches onto a metal wire which is tapered into a conical tip, as is illustrated in
Fig. 7.1. When passing the conical vacuum-metal boundary, the bunch will generate
a radially polarized coherent transition radiation (CTR) field, of which THz SPPs
along the boundary are part. These excited SPPs will propagate onto the wire subse-
quently. We calculate that, with currently available electron bunches, sub-picosecond
SPPs with peak electric fields of the order of MV/cm could be created on a 1 mm
diameter metal wire.

Transition radiation is generated when an electron passes a vacuum-metal bound-
ary [365–367], and the radiation is radially polarized due to the radial polarization of
the Coulomb field of the electron [368]. The radiated energy from a single electron
is very small. However, when N electrons pass the boundary and radiate coherently,
they produce N2 as much energy as a single electron. In the latter case, the radi-
ated energy can be considerable. Because the radiation profile and spectrum depend
on the bunch form, CTR is a well-known diagnostic tool to characterize the spatial
distribution of electron bunches [369–373]. Note that in this chapter we use the term
’coherence’ as it is commonly used in classical electromagnetism, that is, referring
to the constructive interference of the electromagnetic field contributions from dif-
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ferent parts of the source. Such coherent field addition takes place if the electrons
are compressed into a bunch of dimensions less than the wavelength, which means
that bunches of size ∼ 300 μm radiate coherently at frequencies up to about 1 THz.
Recently, such generation of intense free-space THz radiation by CTR emitted at a
planar interface has been demonstrated, using linac [374] or laser-wakefield [375] ac-
celerated bunches and resulting in electric fields of the order of MV/cm after focusing
of the radiation.

We propose to generate THz SPPs directly by launching electron bunches onto
a tapered wire tip, instead of coupling free-space CTR emitted at a planar interface
onto a metal wire. This has a two benefits; first, electrons are capable of exiting SPPs
directly, in contrast to photons where an additional coupling medium is necessary to
match the wave vectors of the photons and SPPs. Second, for sharp tips the electrons
pass the vacuum-metal boundary at grazing incidence, which enhances the transition
radiation due to an increased radiation formation length [376].

It is well known that the radiated power of transition radiation is proportional to
log γ [365], where γ = (1 − β2)−1/2 is the relativistic factor of the electron bunch.
Therefore, in principle there is no need to accelerate the bunch to high energies; typi-
cally γ = 5−10, i.e. an electron energy of 2-5 MeV, is sufficient for transition radiation
methods. Furthermore, it has been shown previously that mildly relativistic bunches
of the required size can be made using a table-top setup [377–380]. Thus, a techno-
logical benefit of our method is that it can be applied using an overall table-top system.

In this chapter we calculate analytically what THz SPP electric fields can be ob-
tained by launching electron bunches onto a tapered metal tip. Hence a considerable
part of this chapter will be devoted to an analytical calculation of the transition ra-
diation that is produced by the bunch impinging on the conical tip in Fig. 7.1. This
calculation amounts to finding a solution of Maxwell’s equations for the electric field.
This field should be consistent with the presence of the electron bunch and should
satisfy appropriate boundary conditions at the metal surface. However, fully solving
Maxwell’s equations for a conical geometry is notoriously difficult. The problem is
greatly simplified by assuming that the metal is an ideal conductor, so that the elec-
tric field is perpendicular to the metal surface outside the tip and is zero inside the
tip. In making this assumption, however, one inherently neglects the possibility of
the existence of SPPs. Nevertheless, for good conductors, the SPPs can be recovered
from the idealized field by well-known perturbation techniques. This is the approach
followed in this chapter. Furthermore, since we are only interested in the SPPs that
result at distances from the tip that are large compared to the wavelength, we have
applied far field approximations, which greatly simplify the calculations.
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The remainder of this chapter is organized as follows. In section 7.2, it is shown
how the SPP field may be obtained from the idealized field. Having this connection
established, we proceed to calculate the transition radiation field of a point charge
impinging on an ideally conducting conical tip in section 7.3. In section 7.4 the re-
sults of this calculation are presented for a number of concrete cases for the opening
angle of the tip. It will be shown that for sharp tips the transition radiation strongly
concentrates into a narrow bundle grazing the tip surface, leading to very intense SPP
fields. In section 7.5 it is shown that the calculated field expressions exactly agree with
closed analytical expressions obtained by different methods for the limiting cases of a
tip with a very large opening angle (that is, a planar surface) and that of a tip with a
very small opening angle (that is, a semi-infinite line). The results for the single point
charge are then extended to the case of electron bunches in section 7.6. This allows
calculation of the SPP field that can be readily obtained in practical applications,
which is shown in section 7.7. The final section summarizes the conclusions of this
chapter.

Nearly all quantities in this chapter are expressed in Fourier transformed form
according to X ≡ X(ω) ≡ (2π)−1/2

´∞
−∞X(t)eiωtdt. Time-domain quantities will be

denoted explicitly like X(t).

7.2 SPPs as perturbation of radiation field at ideal conductor

Considered throughout the chapter is a semi-infinite metal cone with an opening angle
of 2δ placed along the negative z-axis of a spherical coordinate system, and a charge q
moving along the positive z-axis towards the cone tip, as shown in Fig. 7.2. Suppose
that, using the idealization that the metal is a perfect conductor, the magnetic field
can be calculated analytically for every point P outside the cone. In the case of a
good, but not perfect conductor this idealized field can be extended into the conductor
by approximate methods. This is common practice in resonant cavity and waveguide
design and yields the well-known skin field [381]

E skin ≈ (1 − i)
√

ω

2μσ
e(1−i) ξ

Δ (n ×B‖), (7.1)

with

Δ =
√

2
μωσ

(7.2)

the skin depth. Here, B‖ is the idealized magnetic field at the surface (which is paral-
lel to the surface). Further, n denotes the outward normal vector at the metal surface
and ξ a coordinate along this vector, μ the permeability and σ the conductivity of
the metal. As is typical for good conductors, the skin field decreases exponentially
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Figure 7.2: Definition of coordinates.

with the depth −ξ into the metal. In the following sections, the idealized fields are
calculated, from which the skin field (7.1) can be determined for every point on the
cone surface. This skin field and the accompanying magnetic field can be seen as elec-
tromagnetic disturbances in the metal skin with a forced distribution B‖(r, π − δ, φ).
They will propagate independently as SPPs along the cone surface and onto a wire
only if their waveform matches that of the SPPs, that is, if the field (7.1) is matched
with freely propagating surface waves. To see whether this is true, the electric SPP
field ESPP on a non-ideal cone has to be calculated and compared to the skin field
(7.1).

The field ESPP is a solution of the homogeneous Helmholtz equation

(∇2 + k2)ESPP = 0 , (7.3)

with boundary conditions appropriate to the conical geometry of Fig. 7.2. Unfor-
tunately, no closed-form solutions exist for this. However, the eikonal or WKB-
approximation may be used to approximate ESPP for small opening angle cones [341].
This is shown in Appendix 7.A. Applying the Drude model [382] for the permittivity
of the metallic cone, the result is that
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ESPP ≈ (1 − i)
√

ω

2μσ
exp
[
(1 − i)

ρ− |z| tan δ
Δ

]
B0e

ikzzez (7.4)

is an approximate solution of Eq. (7.3), provided that

k|z| � 1; (7.5)

|z| tan δ
Δ

� 1; (7.6)∣∣∣∣ dda 1
kz(a)

∣∣∣∣ tan δ � 1. (7.7)

In Eq. (7.7), kz(a) denotes the propagation constant of SPPs along a cylinder with
radius a, which is discussed in Appendix 7.A. Comparison of Eqs. (7.1) and (7.4)
shows that the skin field obtained from a calculation of the idealized field outside
the cone is of the same form as the field of freely propagating SPPs, identifying the
amplitude B0 with |B‖|. Of course, this is only true if the idealized field is polarized
in the φ-direction, but this is exactly the property of transition radiation that we
exploit using the cone geometry.

Therefore, we can conclude that the amplitude of the transition radiation field
at the cone surface, calculated under the assumption of an ideally conducting cone,
can be identified with the amplitude of the excited SPPs, as long as conditions (7.5)-
(7.7) apply. Thus we proceed by calculating the idealized field in the next sections,
returning to the SPP field in the final section of this chapter.

7.3 Radiation field calculation

7.3.1 Dyadic Green’s function

To calculate the electric radiation field generated by the moving point charge in Fig.
7.2, we use a dyadic Green’s function method. Dyadic Green’s functions are an im-
portant tool in electromagnetic theory [383, 384] and are often used to calculate how
incoming electromagnetic radiation is scattered by some given body [385]. In contrast,
the incoming field considered here is that of a moving physical charge; in particular,
the field propagates in the negative z-direction with a speed less than that of light.
Considering the idealized situation of a perfectly conducting cone embedded in vac-
uum, the total electric field outside the cone satisfies the inhomogeneous Helmholtz
equation

(∇2 + k2)E = ε−1
0 ∇ρ− iωμ0J for 0 ≤ θ < π − δ, (7.8)

where ρ is the charge density, J the current density and ε0 and μ0 the permittivity and
permeability of vacuum. At the cone, the field is subject to the boundary condition
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n ×E = 0 at θ = π − δ. (7.9)

Furthermore, we are interested in the far field part of the electric field, that is, in that
component which represents electromagnetic radiation. This component ET is the
transverse part [381] of the vector field E such that

∇ ·ET = 0. (7.10)

As is known, while applying a Green’s function method one first calculates the field
response at some position r due to a unit point source at another position r0, and
then integrates the result over the full source distribution to obtain the full field. More
exactly, the method is as follows [383]. Suppose that a dyadic (i.e. nine-component)
function G of two coordinate vectors r and r0 can be found, such that

(∇2 + k2) G(r , r0) = I δ3(r − r0) for 0 ≤ θ < π − δ, (7.11)

where I is the identity dyadic or idemfactor and δ3 is the three-dimensional Dirac
delta function. Suppose further that, at the cone, G satisfies the boundary condition

n × G = O at θ = π − δ, (7.12)

with O the zero dyadic. Then it can be shown that the transverse part of the electric
field that satisfies Eqs. (7.8)-(7.9) is given by

ET (r) = −iωμ0

˚
V0

GT (r , r0) · J (r0) dV0, (7.13)

where V0 is the entire space outside the cone. Here, the dyadic GT is the transverse
part of G [383], i.e. the part of G for which

∇ · GT = 0 . (7.14)

Eq. (7.13) can be derived by manipulation of Eqs. (7.8)-(7.12) and depends on the
vanishing of several surface integrals; this is shown in Appendix 7.B. Note in partic-
ular the well-known result that the far field only depends on the current density and
not on the charge density.

With Eq. (7.13), the problem of finding the radiation field generated by the point
charge in Fig. 7.2 is reduced to evaluation of the dyadic Green’s function GT and
current density J and a three-dimensional integration. The time-domain and Fourier
transformed current densities of a point charge that moves along the z-axis in the
negative direction with velocity βc, and passes the origin at time t = 0, are given in
Cartesian coordinates by
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J (t) = −qβc δ(x)δ(y)δ(z + βct)ez, t < 0; (7.15)

J (ω) = −(2π)−1/2q δ(x)δ(y) exp
(
−i k
β
z

)
ez, z > 0. (7.16)

Thus, in the Fourier domain the current takes the form of a line distribution along the
positive z-axis. The dyadic Green’s function G of course depends on the geometry of
the volume V0, that is, on the angle δ. Several representations for G are known, one of
which takes the form of an expansion in terms of dyadic products of the eigenfunctions
of the vectorial Helmholtz equation [383, 384]. This expansion is shown in full in
Appendix 7.C. Taking the transverse part GT of this representation as specified by
Eqs. (7.13) and (7.14), and keeping only terms that yield a nonzero contribution to
the integral in Eq. (7.13), reduces the Green’s function to a simpler form. This is
shown in Appendix 7.C; the result is

GT = −ik
∑

σ

α2
σ

σ(σ + 1)

{
N (1)

σ (r)N (3)
σ (r 0) r < r0

N (1)
σ (r0)N (3)

σ (r) r > r0
, (7.17)

where the eigenvalues {σ} are the solutions of Eq. (7.84), ασ and N σ are given by
Eqs. (7.79) and (7.83) respectively, and subscripts m = 0 have been omitted.

7.3.2 Field quantities in the far zone

Substitution of the current (7.16) and the Green’s function (7.17) in Eq. (7.13) yields
an expression for the transverse electric field generated by the moving point charge.
As is shown in Appendix 7.D, in the far zone kr → ∞ this expression reduces to

ET ≈ μ0ωq√
2π

eikr

kr

∑
σ

α2
σe

−iσ π
2 Iσ(β)P 1

σ (cos θ)eθ, (7.18)

with

Iσ(β) ≡
√
π Γ(σ)

2Γ(σ + 3
2 )
e−iσ π

2

(
β

2

)σ

F2 1

(
σ

2
,
σ + 1

2
;σ +

3
2

;β2

)
. (7.19)

Here, Γ denotes the Gamma function and 2F1 is the hypergeometric function. The
curl of the electric field yields the magnetic field in the far zone:

B =
1
iω

∇×ET ≈ μkq√
2π

∑
σ

α2
σe

−iσ π
2 Iσ(β)P 1

σ (cos θ)
eikr

kr
eφ. (7.20)

The (time-integrated) energy flow per unit of surface area per unit of frequency is
given by the spectral Poynting vector [368]
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S(ω) =
2
μ

Re [ET (ω) ×B∗ (ω)] , (7.21)

here defined such that a · ´∞
0

S(ω)dω gives the energy flow per unit of area in the
direction of a unit vector a . The spectral brightness, defined as the energy flow W

per unit of frequency ω per unit of solid angle Ω, is

∂2W

∂ω∂Ω
= r2er · S(ω), (7.22)

which yields

∂2W

∂ω∂Ω
=

q2

4πε0c

∣∣∣∣∣∑
σ

2α2
σe

−iσ π
2 Iσ(β)P 1

σ (cos θ)

∣∣∣∣∣
2

. (7.23)

This is the transition radiation generated by the moving point charge in Fig. 7.2 as
it passes from vacuum into the perfectly conducting cone at the cone tip, resolved
into the spectral components ω and the observation angle θ. Note that the brightness
does not depend on the frequency, which is characteristic for transition radiation from
a point charge [365]. Of course, for a physical metal, the permittivity is frequency
dependent, so that the brightness quickly decreases as the frequency approaches the
metal’s plasma frequency. Therefore the total radiated energy

˜
∂2W
∂ω∂Ω dωdΩ remains

finite. However, here we are interested in THz frequencies, which are well below
typical plasma frequencies.
Finally, to obtain the radiated energy per unit of frequency, or spectral intensity, the
spectral brightness is integrated over the angular coordinates. This gives

∂W

∂ω
=

q2

πε0c

∑
σ

(
α4

σ0

α2
σ1

|Iσ|2 + 2 Re
∑
τ>σ

α2
τ0α

2
σ0e

−i(τ−σ) π
2 Iτ I

∗
σpτ,σ

)
, (7.24)

with ασ0 and ασ1 given by Eq. (7.79), and [386]

pτ,σ =
2π sin δ

τ(τ + 1) − σ(σ + 1)
(7.25)

× [P 1
τ (− cos δ)P 2

σ (− cos δ) − P 1
σ (− cos δ)P 2

τ (− cos δ)
]
,

and where the asterisk denotes complex conjugation.

7.3.3 Spectral brightness in the narrow-angle cone limit

To validate the results of the previous section with alternative analytic methods later
on, the behavior of the spectral brightness in the narrow-angle cone limit will be
discussed. In order to obtain this behavior, we study the form of the dyadic Green’s
function (7.17) in this limit. The Green’s function depends on the cone opening
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angle δ via the set of eigenvalues {σ}, which are the solutions of Eq. (7.84). Its
angular dependency is described by the Legendre functions in Eq. (7.83), and from
the previous section it is apparent that only the component

ez0 · GT · eθ = −ik
∑

σ

α2
σ

(
ez0 ·N (1)

σ (r0)
)(

eθ ·N (3)
σ (r)

)
(7.26)

of the Green’s function contributes to the spectral intensity (7.23). In Ref. [387] a
similar series is studied and the following results are obtained.
As δ → 0, (the cone approaches a half-line), the eigenvalues approach the integers
from above, such that

σn = n+ n0; n0 → 1
2 ln 2

δ

(7.27)

as δ → 0, with n ∈ N. The terms eθ ·N (3)
σ (r) in Eq. (7.26) contain non-integer degree,

first order Legendre functions. These grow very rapidly near the cone boundary if
δ � 1, because then the argument cos θ approaches the singularity limx→−1 P

1
σ (x) =

∞. The functions may be approximated by

P 1
n+n0

(cos θ) ≈ P 1
n(cos θ) + (−1)n+1 2n0

sin θ
for n0 � 1. (7.28)

On the other hand, the terms ez0 · N (1)
σ (r0) in Eq. (7.26) contain zeroth order

Legendre functions which are evaluated at θ0 = 0. This is because the source current
(7.16) is confined to the z-axis where ez0 = er0 . Hence

Pn+n0(cos θ0) = Pn(cos θ0) ≡ 1 (7.29)

irrespective of n0. Finally, the scale factors ασ are approximately equal to

α2
n+n0

≈ α2
n =

2n+ 1
4π

. (7.30)

Note that Eq. (7.28) splits the non-integer degree Legendre functions in a regular
term P 1

n(cos θ) and an additional term (−1)n+12n0/ sin θ. The latter strongly grows
near the cone boundary, where π− θ � 1, but is small otherwise due to the smallness
of n0. The extent of the angular regime in which the second term is dominant may be
characterized by the angle at which this term becomes larger than the regular term.
For each n ≥ 1, this angle is larger than

θc = π −
√

1
ln 2

δ

. (7.31)
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In Eq. (7.28), the regular term vanishes altogether for n = 0 since P 1
0 (x) ≡ 0, but also

in this case Eq. (7.31) is a convenient measure for the angular extent of the second
term since the latter grows larger than unity at this angle.
Substituting Eqs. (7.27)-(7.30) in the series (7.26), it is found that the Green’s func-
tion component resembles

ez0 · GT · eθ ≈ −ik
∞∑

n=1

α2
n

(
ez0 ·N (1)

n (r0)
)(

eθ ·N (3)
n (r)

)
(7.32)

in the regime 0 ≤ θ < θc, while it grows as

ez0 · GT · eθ ∝ 1
π − θ

(7.33)

in the regime θc < θ < π − δ, that is, close to the cone boundary. Now, Eq. (7.32)
may be recognized as the appropriate component of the dyadic Green’s function for
free space [383]. Therefore, for a narrow-angle cone and in the regime 0 < θ < θc, the
transition radiation profile (7.23) resembles the radiation that the point charge in Fig.
7.2 (which travels along half the z-axis and disappears in the origin) would produce
without the presence of the cone. On the other hand, in the regime θc < θ < π − δ

the electric field is proportional to (π − θ)−1 by Eqs. (7.33) and (7.13), so that the
spectral brightness grows as

∂2W

∂ω∂Ω
∝ 1

(π − θ)2
for θc < θ < π − δ (7.34)

near the cone boundary. In the very limit that δ → 0, Eq. (7.31) yields that θc →
π. Thus, in this limit, the transition radiation is composed of two contributions:
(i) the radiation pattern produced by a point charge moving in free space along
half the z-axis, and (ii) an infinitesimally thin, infinitely high radiation peak along
the negative z-axis. The latter may be seen as the contribution of a surface wave
propagating along the infinitesimally thin cone, which will be shown in section 7.5
using an alternative method. First, however, the results (7.23)-(7.24) for the spectral
brightness and intensity will be presented in the next section.

7.4 Numerical results

In Fig. 7.3 the spectral brightness (7.23) has been plotted for several values of the cone
opening angle. For the charge velocity a relativistic factor of γ ≡ (1 − β2)−1/2 = 5
has been taken. The series has been truncated after 30 terms in each case. The same
truncation has been used in the remaining figures of this chapter.
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Figure 7.3: Angular spectral brightness profile for several cone opening angles,
generated by a point charge moving with γ = 5. The vertical lines represent the
cut-off of the fields at the cone boundary θ = π− δ. The series of Eq. (7.23) has
been truncated after 30 terms in the numerical evaluation.

Figure 7.4: Angular spectral brightness profile near the cone boundary for a
narrow-angle cone (δ = 1o). As a reference, the spectral brightness for a 25o

cone has been plotted in both Fig. 7.3 and this figure. See also the comments
below Fig. 7.3.
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Apparent from Fig. 7.3 is that (i) The brightness profile contains a ’specular’
peak near θ = π − 2δ, which moves towards the cone boundary as the opening angle
decreases; (ii) as the opening angle decreases, the brightness profile develops a ’sur-
face’ peak at the cone boundary; (iii) this surface peak rapidly grows with decreasing
opening angle and dominates the specular peak when δ < 25o.

The first radiation peak mentioned above is called ’specular’ since it is analogous
to the specular reflection that would be observed at θ = π − 2δ if free electromag-
netic radiation would be axially incident on the cone instead of a point charge. In
the present case, however, the incident Coulomb field propagates in the negative z-
direction with a speed less than that of light. Therefore a Fourier decomposition of
the field differs somewhat from a superposition of free e.m. waves with the wave
number k = ω/c, causing the deviation of the specular peak from the angle π − 2δ.
Indeed, the specular peak tends to this angle when high values of γ are chosen.

The development of the surface peak with decreasing opening angle clearly shows
the result of section 7.3.3 that the spectral brightness becomes peaked near the cone
boundary in the narrow-angle cone limit. To study the surface peak in this limit, the
spectral brightness has been plotted on a doubly logarithmic scale in Fig. 7.4 for a
half opening angle of δ = 1o. Note from the scales that the peak height has increased
very rapidly as compared to the δ = 25o case. Also, the peak is very narrow with a
FWHM of about 0.5o. The peak shows the asymptotic narrow-angle cone behavior
given by Eq. (7.34), which is indicated in Fig. 7.4 by the red dashed line. The
estimate (7.31) for the left bound of the regime that is dominated by the surface peak
gives θc = 2.7 for δ = 1o. Indeed, around this value of θ the surface peak shown in
Fig. 7.4 rapidly grows larger than unity and starts to dominate the brightness profile.
The ∝ (π−θ)−2-behavior sets in at somewhat larger angles since Eq. (7.31) is a lower
estimate.

As has been discussed in section 7.2, to estimate the amplitude of SPPs the tran-
sition radiation field will excite, the quantity of interest is the magnetic field at the
cone boundary. Thus, in the light of THz SPP generation by transition radiation,
another very important advantage of the cone geometry is evident: the excited SPPs
can be increased by orders of magnitude by tapering the tip into a very narrow cone.
This is illustrated once more in Fig. 7.5, in which the spectral brightness evaluated at
the cone boundary has been plotted as a function of half opening angle. The spectral
brightness increases four orders of magnitude over the range δ = 90o → δ = 1o, cor-
responding to an increase of two orders of magnitude in the magnetic field and SPP
amplitude.
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Figure 7.5: Spectral brightness at the cone boundary as a function of half cone
opening angle, generated by a point charge moving with γ = 5. The Ginzburg-
Frank result Eq. (7.35) for a planar boundary has been plotted as well.
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Figure 7.6: Spectral intensity as a function of half cone opening angle, gen-
erated by a point charge moving with γ = 5. The Ginzburg-Frank result for a
planar boundary, given by Eq. (7.35) integrated over the angular coordinates,
has been plotted as well.
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Of interest as well is the spectral intensity (7.24). This quantity has been plotted
in Fig. 7.6 as a function of half opening angle. The intensity increases only a factor
of four over the range δ = 90o → δ = 1o, in contrast to the rapid growth of the
brightness near the cone boundary. Thus, the primary effect of a small opening angle
is not so much that more radiation energy is generated, but rather that the radiation
strongly concentrates into a narrow solid angle grazing the cone boundary.

7.5 Validation

In order to validate the results obtained in the previous sections, we compare the
result (7.23) for the spectral brightness with results obtained by alternative methods,
in both the limit of a large cone opening angle (planar boundary or δ = 90o) and the
limit of a narrow cone opening angle (semi-infinite line or δ → 0).

7.5.1 Planar boundary limit

The transition radiation field generated by a point charge that is normally incident on
a planar boundary between different media has been calculated in closed exact form
by Ginzburg and Frank [365]. In the special case that one of the media is a perfect
conductor and the other is vacuum, their result for the spectral brightness reduces to

∂2W

∂ω∂Ω
=

q2

4πε0c

(
β sin θ

π(1 − β2 cos2 θ)

)2

. (7.35)

A plot of this expression as a function of θ proves identical to the black graph in Fig.
7.3 for the planar boundary. Likewise, the Ginzburg-Frank results that are shown
as well in Figs. 7.5 and 7.6 are equal to the corresponding values calculated with
our theory. Thus, the result (7.23) for the spectral brightness is in exact agreement
with the closed form result (7.35) of Ginzburg and Frank. This equivalence can also
be obtained analytically as we will show now. For a planar boundary δ = π/2, the
eigenvalues σ defined by Eq. (7.84) reduce to the odd positive integers. This makes it
possible to use the integral representation of the integer order spherical Bessel function
[388],

j 2n+1(kz0) = (−1)n̂
π/2

0

sin (kz0 cos s)P2n+1 (cos s) sin s ds, (7.36)

in the definition Eq. (7.93) of the quantities I2n+1(β). This gives

I2n+1(β) = (−1)n

ˆ π/2

0

H(s)P2n+1 (cos s) sin s ds, (7.37)
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with

H(s) ≡
ˆ ∞

0

sin (kz0 cos s) e−i k
β z0

z0
dz0. (7.38)

Substitution of Eqs. (7.37)-(7.38) in the electric field Eq. (7.18) yields

ET ≈ μ0ωq

(2π)3/2

eikr

ikr
eθ

d

dθ

∞∑
n=0

c2n+1P̃2n+1 (cos θ) ; (7.39)

c2n+1 ≡
ˆ π/2

0

H(s)P̃2n+1 (cos s) sin s ds. (7.40)

Here, P̃2n+1(cos θ) ≡ √
2πα2n+1P2n+1(cos θ) denote Legendre polynomials normalized

such that
´ π/2

0 [P̃2n+1(cos θ)]2 sin θdθ = 1; furthermore the property P 1
2n+1(cos θ) =

(d/dθ)P2n+1(cos θ) was used. The sum in Eq. (7.39) can be recognized as an expansion
of the function H(θ) in terms of the orthonormal functions P̃2n+1 on the domain θ ∈
(0, π/2) with weighting function sin θ. Replacing this sum accordingly by Eq. (7.38)
with s → θ, and performing successively the differentiation d/dθ and the integration
with respect to z0, gives

ET =
μ0ωq

(2π)3/2

eikr

kr

β sin θ
1 − β2 cos2 θ

. (7.41)

The spectral brightness corresponding to this electric field equals Eq. (7.35). The
brightness Eq. (7.23) for general cone angles δ thus correctly reduces to the Ginzburg-
Frank result in the planar boundary limit δ → π/2.

7.5.2 Semi-infinite line limit

One approximate method to obtain the scattered electromagnetic field, which results
if some known field is incident on a conducting object, is the Physical Theory of
Diffraction (PTD) method. The method is commonly used in antenna theory [389].
The primary approximation in the method is to suppose that the surface current
density K on the conductor surface satisfies the boundary condition

μ0K = 2n ×B in rather than μ0K = n ×B tot (7.42)

where B in is the (unperturbed) incident magnetic field and B tot the total (incident
plus scattered) magnetic field. Thus, the magnetic field contribution at the surface
induced by the surface current is assumed to be equal to the incident field. From
the resulting approximate surface current distribution, the scattered electromagnetic
fields may be calculated by evaluation of the standard electromagnetic vector poten-
tial.
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The PTD method has been subjected to some criticisms [389]. The most im-
portant objection in the case of a cone as a scatterer is that the curvature of the
surface is infinite at the tip, which in general makes Eq. (7.42) a poor approximation.
However, the method has been successfully applied to accurately calculate the radar
cross section of a narrow-angle, semi-infinite cone [385, 390, 391]. Moreover, rigorous
expansions of the surface current density exist that are in good agreement with the
PTD approximation near the cone tip [392]. Therefore, we proceed by applying the
PTD method to the transition radiation problem, and the results will show to be in
perfect agreement with the results obtained in section 7.3.3.

In the present case, the incident field B in is that generated by the moving point
charge, extended into the region z < 0. The current distribution J of this charge
is given by Eq. (7.16). Now, the current J generates B in, and this field in turn
generates the current K according to Eq. (7.42). Because of the symmetry that both
currents J and K are confined to the z-axis, it follows from Eq. (7.42) that simply

K = 2J for z < 0, (7.43)

which is the current of a uniformly moving point charge 2q. Now, the total electric far
field is the radiation field produced by K at z < 0 and J at z > 0 combined. From this
combination we may remove a common charge q moving along the complete z-axis,
since the latter will not radiate at all. Thus, the effective radiation source reduces to
a point charge q moving along the negative z-axis and surrounded by free space. This
confirms the first contribution predicted at the end of section 7.3.3.
To obtain the fields in some more detail, we consider the current distribution I(z) of
the effective source, which is

I(z) = −(2π)−1/2qe−i k
β z for z < 0. (7.44)

Note that I(z) has the units of a Fourier transformed current. One may proceed
by calculation of the vector potential generated by this current distribution, which
involves transformation to the k-domain and contour integration techniques [393].
However, the electromagnetic fields can be obtained directly in a more elegant way,
by recognizing Eq. (7.44) as the current distribution of a linear traveling wave an-
tenna of the slow type [394] with one of the endpoints placed at infinity. Traveling
wave antennas carry a linearly phased current, as given by the factor e−i k

β z, while
’slow’ refers to the fact that the propagation velocity βc is less than that of light in
vacuum. Recently, a similar antenna model has been successfully used to describe the
radiation from a metal tip coupled to THz pulses generated with a photoconductive
switch [395]. An important property of traveling wave antennas is that they gener-
ate two distinct electromagnetic field contributions, namely (i) they carry a radially
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Figure 7.7: Linear slow wave antenna with the endpoints at z = ±L/2, radi-
ating in the direction θ. Both endpoints radiate spherical waves, which acquire
mutual phase differences at the shown wavefront due to different optical path
lengths. The direction of wave propagation along the different paths has been
indicated by arrowheads, together with the associated phase factor introduced
in the field expression (7.45).

evanescent electromagnetic field along their length, that is, a surface wave; and (ii)
they radiate from their endpoints only. Regarding the current (7.44) as a limiting
case of a slow wave antenna, the first of these contributions carries energy into an
infinitesimally small solid angle around θ = π. This contributes an additional peak to
the spectral brightness profile at θ = π that is infinitesimally thin and infinitely high.
This confirms the second property predicted at the end of section 7.3.3.

Summarizing, by qualitative arguments the Green’s function method of section
7.3 agrees with the PTD method and antenna theory used above. As an additional
and a more quantitative check, we now calculate the spectral brightness using the
antenna model. Fig. 7.7 shows a linear slow wave antenna with a current distribution
I(z) = I0e

−i k
β z and with the endpoints at z = ±L/2, radiating in the direction θ.

The electric radiation field of this antenna in the far zone is given by [394]

ET = −I0μ0c

4π
eikr

r

β sin θ
1 + β cos θ

(
eik L

2 (cos θ+β−1) − e−ik L
2 (cos θ+β−1)

)
. (7.45)

Now, the traveling wave e−i k
β z along the antenna gives a harmonic excitation of the

endpoint in z = ±L/2 with a phase of e∓i kL
2β with respect to the origin, so that it will

radiate spherical waves with this phase. The waves from both endpoints subsequently
add in the far field with an additional phase e∓i kL

2 cos θ due to the path difference in-
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duced by the orientation of the antenna with respect to the direction of propagation.
The different phase factors in the two field contributions are indicated in Fig. 7.7.
Observe in Eq. (7.45) that the phase factors in large braces correspond exactly to
those just described, so that factor in front of the braces may be interpreted as the ra-
diation generated by a single endpoint. This is also noted in Ref. [393] for the case of
a strip carrying a traveling wave. From the symmetry of the problem and the fact that
the first line of Eq. (7.45) changes sign under the substitution (β, θ) → (−β, π − θ),
the endpoints have equal radiation patterns but with opposite sign, hence the minus
sign in the second line.

Returning to the semi-infinite antenna represented by the current (7.44), only the
radiation from the endpoint at z = 0 contributes to the far field at observation angles
θ 
= π, since the other endpoint is placed at an infinite distance. From Eq. (7.45)
with I0 ≡ −(2π)−1/2q, the electric field in the far zone is

ET =
μ0qc

2(2π)
3
2

eikr

r

β sin θ
1 + β cos θ

. (7.46)

Applying Eqs. (7.20)-(7.22) to this field yields the spectral brightness

∂2W

∂ω∂Ω
=

q2

4πε0c

(
β sin θ

2π(1 + β cos θ)

)2

. (7.47)

Now, Eq. (7.45) gives the free-space radiation field and does not include the surface
wave traveling along the antenna. Therefore, in order to make a proper comparison
of Eq. (7.47) with the result Eq. (7.23) obtained by the Green’s function method,
we have to consider the latter in the limit δ → 0 and take the free-space radiation
part only. In terms of the regular regime 0 < θ < θc and the regime θc < θ < π

where the brightness is peaked considered in section 7.3.3, this is equivalent to letting
θc approach π as δ → 0 and remove the resulting radiation peak along the z-axis.
This is easily effected by enforcing n0 ≡ 0 in Eq. (7.28), that is, by using in the
expansion (7.23) integer degree Legendre functions. The resulting adapted series has
been plotted in Fig. 7.8. Indeed, the remaining spectral brightness thus obtained is
exactly the same as that given by Eq. (7.47).

In summary, the Green’s function result for the spectral brightness is in exact
agreement with both the Ginzburg-Frank result for the planar boundary limit and
the PTD method for the narrow-angle cone limit. Therefore we are confident that
the results obtained for the intermediate opening angles are reliable.
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Figure 7.8: Angular spectral brightness profile in the limit that δ → 0. The
limit has been taken by choosing the integers for the set of eigenvalues {σ} in
the series of Eq. (7.23). A point charge moving with γ = 5 has been assumed
and the series has been truncated after 30 terms in the numerical evaluation.

7.6 Extension to electron bunches

In the introduction of this chapter we proposed to excite very strong SPPs using
bunched electrons rather than a single point charge. To study the effect of such an
extended source charge, we now replace the point charge in Fig. 7.2 by a general charge
distribution that moves as a whole towards the cone tip without deforming, that is,
by an electron bunch. Since different parts of the bunch will generate transition
radiation at different times, the extent of the bunch in both the longitudinal and
transverse direction will determine the magnitude of the radiation field by coherence
effects. Below, the effects of the longitudinal and transverse extent of the bunch will
be calculated separately. In the next section, the results will be combined to estimate
the radiation field and SPP intensities generated by an electron bunch that can be
readily obtained with present technology.

7.6.1 Bunches of finite length

The point charge of Fig. 7.2 passes the cone boundary at the origin at time t = 0. If
instead a point charge is considered that passes the origin at some other time t1 
= 0,
Eqs. (7.16) and (7.18) for the current distribution and electric field respectively are
multiplied by a phase factor ei k

β z1 , where z1 = βct1 is the position of the charge on
the z-axis at t = 0. Therefore, composing at t = 0 a line charge distribution λ(z) on
the z-axis from individual point charges and adding their electric fields yields
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ET =
1
q

(ˆ ∞

−∞
λ(z1)ei k

β z1dz1

)
ET0 ≡ FLET0. (7.48)

Here, ET is the electric transition radiation field generated by the line distribution,
q is the total charge of the distribution and ET0 is the field that would be produced
by a point charge of magnitude q. The quantity FL appears frequently in radiation
problems and is called the (longitudinal) form factor [396]. From Eqs. (7.20)-(7.22),
the spectral brightness produced by the charge distribution is

∂2W

∂ω∂Ω
= |FL|2 ∂

2W0

∂ω∂Ω
, (7.49)

where ∂2W0/∂ω∂Ω is the spectral brightness produced by a point charge of magnitude
q. Evidently, the form factor decreases rapidly as |kz1/β| grows larger than unity in
the integral of Eq. (7.48), corresponding to incoherent contributions to the radiation
field from the different parts of the charge distribution. If, on the other hand, the
distribution is not much longer than a single wavelength of interest, the radiation
contributions add coherently, leading to very strong electric fields.

7.6.2 Bunches of finite transverse extent

To study the effect of the transverse extent of the charge distribution impinging on
the cone tip, we consider an infinitesimally thin and homogeneously filled disk of
charge with radius a and total charge q, with its center at the z-axis. The Fourier
transformed current density of this disk is

J (ω) = −(2π)−1/2 q

πa2
e−i k

β zΘ(a− ρ)ez , (7.50)

where Θ denotes the Heaviside step function. Substitution of this expression and the
dyadic Green’s function (7.17) in Eq. (7.13) yields an expression for the transverse
electric field generated by the charged disk. Similar to the electric field generated by
a point charge considered in Appendix 7.D, in the far zone kr → ∞ this expression
reduces to

ET (r ) ≈ μ0ωq√
2π

eikr

kr

∑
σ

α2
σe

−iσ π
2

σ(σ + 1)
Qσ(β, ka)P 1

σ (cos θ)eθ; (7.51)

where now

Qσ(β, ka) ≡ k

πa2

˚
V0

e−i k
β z0ez ·N (1)

σ (r0)dV0. (7.52)

Because of the step function in Eq. (7.50), the integration volume V0 in Qσ is con-
fined to a semi-infinite cylinder with a conical cut-out, as is shown in Fig. 7.9. In
Appendix 7.E, the quantity Qσ is analyzed further. It is shown that Eq. (7.52) can be
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Figure 7.9: Integration volume V0 to be used in Eq. (7.52).

reduced to a one-dimensional integral using the properties of the functions N σ. The
expression thus obtained is checked by taking the limit ka→ 0, which yields the cor-
rect equivalent expression for a point charge. Finally, the remaining integration path
is deformed in the complex s-plane in order to substitute exponential behavior for
oscillatory behavior of the integrand along the path, which enables efficient numerical
evaluation of Eq. (7.52). For any choice of the cone opening angle and the dimen-
sionless disk size ka, Eq. (7.51) now permits numerical evaluation of the electric far
field. As usual, Eqs. (7.20)-(7.22) translate the electric field to the spectral brightness.

As an example, Fig. 7.10 shows the spectral brightness profile thus obtained
for a δ = 45o cone and several values of ka. As the disk grows larger than about
a = k−1 = λ/(2π), radiation from different parts of the disk start to become incoher-
ent, decreasing the spectral brightness magnitude. The surface peak decreases more
rapidly with ka than the specular peak, which can be observed for other opening
angles as well.
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Figure 7.10: Angular spectral brightness profile for a δ = 45o cone and several
disk sizes ka. The same conditions as in Fig. 7.3 have been used. The black
curve (ka → 0) has been obtained using the point charge result Eq. (7.23).

To study the effect of the disk size on the spectral brightness in more detail, the
spectral brightness at the cone boundary and the spectral intensity have been plotted
as a function of ka in Figs. 7.11 and 7.12 respectively for several values of the opening
angle. In the case of a planar boundary, extending a point charge to a disk has little
effect on the considered quantity in both figures, until the disk radius grows larger
than about ka = 1 after which the curves quickly decrease. One effect of choosing
a smaller opening angle is that the coherence starts to break down at smaller disk
radii, which is a disadvantage of the use of small opening angle cones. However, this
effect is more than compensated by the greatly increased spectral brightness shown
in Fig. 7.5. Moreover, for ka >∼ 1, small opening angle cones yield more coherent
radiation compared to a planar boundary. This can be a significant advantage when
it is technologically difficult to reduce the transverse bunch size.
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������

Figure 7.11: Spectral brightness at the cone boundary as a function of dimen-
sionless disk size ka. It has been assumed that γ = 5. The curves have been
normalized to their corresponding point charge result shown in Fig. 7.5. The
solid line represents the analytical result for a planar boundary adjusted by the
disk form factor (Eq. (7.55)).

������

Figure 7.12: Spectral intensity as a function of dimensionless disk size ka.
It has been assumed that γ = 5. The curves have been normalized to their
corresponding point charge result shown in Fig. 7.6. The solid line represents
the analytical result for a planar boundary, adjusted by the disk form factor (Eq.
(7.56)).
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As before, the results for the planar boundary δ = 90o can be checked with the
Ginzburg-Frank result Eq. (7.35). Analogous to the effect of a longitudinal extent
of the charge distribution shown by Eq. (7.49), in the case of the disk the spectral
brightness should by multiplied by a transverse form factor |FT |2, with [396]

FT =
1
q

2πˆ

0

∞̂

0

σ(ρ, φ)eikrρ cos φρdρdφ, (7.53)

where σ(ρ, φ) is the surface charge distribution of the disk and kr = k sin θ is the
radial component of the wave vector of the radiation under consideration. For the
disk considered here, Eq. (7.53) yields

FT =
2J1(ka sin θ)
ka sin θ

, (7.54)

where J is the cylindrical Bessel function. Thus, Ginzburg-Frank theory predicts a
spectral brightness at the cone boundary θ = π/2 proportional to

∂2W

∂ω∂Ω
∝
(
J1(ka)
ka

)2

, (7.55)

while the spectral intensity is proportional to

∂W

∂ω
∝
ˆ π/2

0

(
J1(ka sin θ)

ka(1 − β2 cos2 θ)

)2

sin θdθ. (7.56)

In Figs. 7.11 and 7.12 these results have been plotted as well, and they are in excellent
agreement with the numerical results.

7.6.3 Three-dimensional bunches

Combining the above results for the longitudinal and transverse extent of the source
charge distribution to obtain the transition radiation from three-dimensional electron
bunches is straightforward. Consider a bunch with a cylindrically symmetric charge
density distribution τ(ρ, z) at time t = 0. Of course, the bunch may be thought of as
composed of transverse slices of infinitesimal thickness dz and charge

dq(z) = dz × 2π
ˆ ∞

0

τ(ρ, z)ρdρ ≡ λeff(z)dz, (7.57)

and for each one of them the electric far field can be calculated by the method of
section 7.6.2. Note that any charge distribution of the slice other than homogeneous
will introduce additional factors in the integrand of Eq. (7.52), requiring additional
numerical effort. The resulting field of the slice will always be less than that of a point
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charge of equal magnitude dq due to the extent of the charge within the slice. To
obtain the electric field produced by the complete bunch, the fields of the individual
slices must be added. While doing so, the phase differences due to the longitudinal
positions of the individual slices within the bunch have to be accounted for as was
done in Eq. (7.48). Combining Eqs. (7.51) and (7.57) and including a longitudinal
phase factor yields the electric far field of the bunch:

ET (r) ≈ μ0ωq√
2π

eikr

kr
eθ

∑
σ

α2
σe

−iσ π
2

σ(σ + 1)
P 1

σ (cos θ)
ˆ ∞

−∞
Qσ(z1)

λeff(z1)
q

ei k
β z1dz1. (7.58)

Here, q is the charge of the whole bunch, and Qσ(z1) is an integral similar to Eq.
(7.52) that accounts for the transverse extent of charge within the slice at z = z1 in the
bunch. In the case that each transverse cross section is a homogenously charged, hard-
edged disk as in the previous section, Qσ(z1) ≡ Qσ(β, ka(z1)) is given exactly by Eq.
(7.52), where a(z1) is the radius of the slice at z = z1. If in addition each slice is equal,
the bunch has the somewhat artificial form of a hard-edged, homogenously charged
cylinder with radius a and some length 2b. In this case Qσ becomes independent of
z1, so that Eq. (7.58) reduces to Eq. (7.51) multiplied by an effective longitudinal
form factor FL,eff. The latter is given by Eq. (7.48) with λ = λeff and equals

FL,eff = sinc
(
kb

β

)
. (7.59)

7.7 Obtainable SPPs in the time domain

We now return to the experimental setup of Fig. 7.1 we propose to generate SPPs
on a wire. In sections 7.3 through 7.6 we modeled the metal tip of the wire by a
semi-infinite, perfectly conducting cone and showed how the radiation field generated
by charge impinging on it can be calculated. Now, we will choose realistic electron
bunches and apply the theory to them. As a realistic setup we choose a copper wire
with radius R = 0.5 mm tapered into a δ = 5o tip, which is sharp enough to benefit
from the strong increase in the field amplitude shown in Fig. 7.5, but which is still
easy to manufacture. For THz frequencies, it is easily verified that conditions (7.5)
and (7.6) hold at the position where the conical tip smoothly evolves into the cylin-
drical wire (i.e. at r = R/ sin δ, or |z| = R/ tan δ in Eqs. (7.5) and (7.6)). Analysis
of the longitudinal wave vector kz(a) as a function of local radius a = |z| tan δ shows
that also condition (7.7) holds at this position [335]. So if in the setup of Fig. 7.1
the tip smoothly evolves into the wire, we can estimate the field strength of the gen-
erated SPPs propagating along the wire by evaluating our theory at radial position
r = R/ sin δ.
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For the bunch form we choose homogeneously charged, hard-edged ellipsoids.
Theoretically, such ’waterbag’ bunches are the ideal particle distributions for con-
trolled, high-brightness charged particle acceleration. Because of their linear internal
fields they do not suffer from brightness degradation caused by space-charge forces
[397, 398]. A practical recipe has been developed which results in almost ideal ellip-
soidal bunches [377–380] using a table-top setup. The bunches are characterized by
their charge q, their transverse half axis a and their longitudinal half axis b = βcT/2.
We consider three bunches:

1. A ’conventional’ bunch with q = 100 pC, T = 500 fs and a = 200 μm that we
can presently make in the lab;

2. A ’short’ bunch with q = 100 pC, T = 100 fs and a = 140 μm. Detailed
numerical simulations have shown that such a bunch may readily be obtained
by longitudinal compression of bunch 1 using a two-cell booster compressor
[379];

3. A ’short and slim’ bunch with q = 100 pC, T = 100 fs and a = 50 μm that
is obtained by additional compression of bunch 2 in the transverse direction,
which may be achieved in the near future.

For the three bunches above, we have calculated the electric field as a function of
frequency, generated at the cone boundary a distance r = R/ sin δ from the cone tip.
For this purpose the bunches were approximated by 100 cylindrical slices, so that
the integrals in Eq. (7.58) were approximated by summations over the slices. To
validate the numerical results, we compared the calculated spectra ETθ(ω) with those
generated by cylindrical bunches with the same parameters q, a and b. The latter
electric fields are given by the product of Eqs. (7.51) and (7.59). These fields may
be seen as ’worst case’ approximations for those generated by the ellipsoidal bunches,
since the average distance between the charges within a cylindrical bunch is larger than
that within the corresponding ellipsoidal bunch, leading to less coherent radiation.
The calculated squared field amplitudes are shown in Fig. 7.13. The spectra have
been normalized to the field E0 generated at the same position r = R/ sin δ by a point
charge of equal magnitude q = 100 pC, given by

E2
0 ≡ sin2 δ

2ε0cR2

∂2W

∂ω∂Ω

∣∣∣∣
θ=π−δ

, (7.60)

with ∂2W/∂ω∂Ω given by Eq. (7.23). As expected, the field generated by an el-
lipsoidal bunch is greater than that of the corresponding cylindrical bunch for all
frequencies. This difference is only slight, however, which means that the maximum
transverse and longitudinal cross sections of the bunch are decisive for the coher-
ence. The spectra are coherent up to the THz regime, which reflects the fact that
the bunch dimensions have been brought down to the order of the 1 THz wavelength
2πk−1 ≈ 300 μm ≈ c · 1 ps by current technology.
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Figure 7.13: Squared electric field amplitude at the cone boundary, generated
by the three bunches considered in section 7.7 (dots) and that of corresponding
cylindrical bunches with the same charge and dimensions (solid lines). A rela-
tivistic factor of γ = 5 and a cone opening angle of δ = 5o have been assumed.
The curves have been normalized to the field amplitude generated by a point
charge of equal magnitude as the bunches. The inset shows the approximate
form of the curves used in section 7.7 to make time-domain estimations.

In order to find the pulse form of the SPPs that will be measured in practice
in the setup of Fig. 7.1, the inverse Fourier transforms of the electric fields of Fig.
7.13 have to be calculated. A rigorous treatment of this is beyond the scope of this
thesis. However, the field spectra raise the question whether the time domain pulse
is governed by the THz regime, that is, whether the spectra do indeed represent sub-
picosecond SPPs. In order to verify this, we approximate the inverse Fourier transform
of the field spectra of Fig. 7.13. For this purpose the spectra are approximated by
straight line segments, as is indicated in the inset of the figure. In Appendix 7.F the
inverse Fourier transform of these approximate spectra is calculated. This yields an
estimate of the peak electric field E(t)max of the SPP pulse at the wire surface, and
the pulse duration τ , which is defined as
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τ ≡ 1
E(t)max

ˆ ∞

−∞
E(t)dt. (7.61)

Table 7.1 shows the estimated peak electric field and duration of the SPP pulse as
defined above, generated by the three considered bunches. As can be seen, the SPP
pulse is governed by the high-frequency part of the field spectra, since τ < 1 ps. From
the table, the potential of the method we propose to generate THz SPPs is clear. First,
by using currently available electron bunches, it is possible to excite sub-picosecond
pulses, that is, SPPs with THz bandwidth can be generated on a wire. Second, these
SPPs carry peak electric fields in the order of MV/cm. Such fields are several orders
of magnitude higher than any SPP field that can currently be obtained by coupling
free-space THz radiation onto a wire.

Table 7.1: Time-domain estimates of the peak SPP electric field E(t)max (Eq.
(7.108)) and pulse duration τ (Eq. (7.61)), using the parameters ω1 and ω2 in
the field model (7.105).

Bunch ω1 (THz) ω2 (THz) E(t)max (MV/cm) τ (ps)

1 1.1 · 10−2 2.0 0.35 0.64
2 1.3 · 10−2 5.0 0.82 0.27
3 4.7 · 10−2 8.2 1.4 0.16

7.8 Experimental verification

At the Eindhoven University of Technology, the generation of THz SPPs on a wire
using electron bunches has been demonstrated experimentally [399]. To this end,
electron bunches where created and accelerated to 3.1 MeV using an RF-photogun
[400], after which they were fired at the tapered tip of an aluminum wire with a ra-
dius of 0.75 mm. The half opening angle of the tip was δ = 4o. A ZnTe crystal was
mounted on top of the wire 8 cm from the tip in order to measure the electric field by
time-resolved electro-optical detection [401]. The bunch possessed a charge of q = 160
pC, an rms transverse size of a = 0.2 mm, and an estimated length of T = 5.4 ps.
At the position of the ZnTe crystal, pulsed electric fields were measured with a peak
strength of E(t)max ≈ 0.005 MV/cm and a pulse length of τ ≈ 6 ps. It was confirmed
that the detected pulses indeed represented surface waves by verifying that the field
had the expected radial dependence, and moreover that the pulses followed the wire
along a bend introduced further downstream. More details can be found in Ref. [399].

The electron bunches in this experiment were of the same transverse size as bunch
1 of the previous section, but were a factor of ten longer and contained some more
charge. In order to compare the measured results with those of section 7.7, we note
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that 1) for a fixed bunch length and width, the generated electric field E(t)max should
be proportional to the bunch charge; 2) for a fixed transverse size, the pulse length
τ should be proportional to the bunch length; and 3) it may be observed from Table
7.1 that the product E(t)maxτ = 0.22 psMV/cm in all three cases, that is, appar-
ently this product is nearly independent of the bunch shape. Based on these rules
and the data of bunch 1, we should therefore expect the measured pulse length to be
τ = 10 × 0.64 = 6.4 ps, the mentioned product to be E(t)maxτ = 1.6 × 0.22 = 0.35
psMV/cm, and hence the electric field to be E(t)max = 0.35/6.4 = 0.05 MV/cm. The
measured pulse length agrees very well with these estimates. The measured electric
field, however, is an order of magnitude weaker than expected. Nevertheless, it should
be stressed that the observed pulses are still orders of magnitude more intense than
those observed so far in other experiments [333, 364]. This is apparent from the fact
that the detection of terahertz surface waves normally requires signal integration over
many repetitions [333, 364], while in the current experiment a single shot is sufficient.

The discrepancy between the expected and observed electric field may be caused by
imperfect alignment of the bunch trajectory with the wire axis, which was difficult to
monitor in the experiment. Another possible cause for the discrepancy was identified
as well [399]. Namely, the relativistic electrons impinging on the metal tip will be
subjected to multiple scattering by the aluminum atoms; in addition they will excite
secondary electrons. This causes a substantial amount of electrons to scatter out
of the metal before all kinetic energy of the incident bunch has been dissipated.
This picture is confirmed by a measured small removal of electrons from the wire
upon impact of the electron bunch, rather than an increase. The scattered electrons
emerging from the metal generate their own transition radiation that is detrimental for
the main pulse propagating along the wire. However, assessing the significance of this
mechanism quantitatively would require detailed modeling of the multiple scattering
process. This is outside the scope of this thesis.

7.9 Conclusion

In conclusion, we propose a method to excite THz SPPs on a wire by launching elec-
tron bunches onto a conically tapered end of the wire. We have calculated analytically
the radiation field generated by these bunches assuming a perfectly conducting semi-
infinite cone. We have linked the results to the electric field strength and duration
of the SPPs that are excited and propagate along the wire in a realistic setup. We
have shown that, using currently available electron bunches, it is possible to generate
sub-picosecond SPP pulses with peak electric fields of the order of MV/cm on a 1
mm diameter wire. Focusing of such Terahertz Surface Plasmon Polaritons may yield
electromagnetic THz fields that are both very strong and highly localized, enabling
non-linear THz experiments with sub-wavelength spatial resolution.
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Appendix 7.A SPP field in conical geometry

Using the eikonal method to approximate the SPP electric field in a conical geometry
[341], it is recognized that a thin slice of the cone at z = z0 < 0 resembles part of a
cylinder with radius a = |z0| tan δ, so that locally the SPP fields resemble the fields
of a surface wave propagating along such a cylinder. Hence, the SPP electric field in
the conical geometry is approximated by

ESPP(r) = E cyl(r) exp [iψ(z)] , (7.62)

where ψ(z) is a phase function to be determined, and E cyl(r) is the field of a surface
wave along a cylinder with radius a. The latter is given in cylindrical coordinates
(ρ, φ, z) by [402] ⎛⎝ Ecyl,ρ

Ecyl,φ

Ecyl,z

⎞⎠ =

⎛⎝ kzI1(κρ)
0

iκI0(κρ)

⎞⎠ c

εrk

B0(z0)
I1(κa(z0))

, (7.63)

in which Im denotes the mth-order modified Bessel function of the first kind, εr is
the relative permittivity of the cylinder material, k = ω/c the vacuum wavenumber
and B0 is an amplitude with units of magnetic field. Like a, the latter may depend
on the choice of z0 as is indicated in Eq. (7.63). The parameters kz and κ are the
propagation constant in the z-direction and the radial attenuation factor respectively,
and are related as √

k2
m − k2

z = i
√
|k2

m − k2
z | ≡ iκ (7.64)

with km =
√
εrk the wavenumber in the cylinder material. For each radius a, the

constant kz can be determined solving a transcendental dispersion relation [402] that
depends on ω and εr. For metals, applying the Drude model for the permittivity
[382], one can calculate that

kz ≈ k and κ ≈ 1 − i

kΔ
(7.65)

at THz frequencies. Substituting these approximations into Eq. (7.63) gives

E cyl ≈ (1 − i)
√

ω

2μσ
exp
[
(1 − i)

ρ− a(z0)
Δ

]
B0(z0)ez (7.66)

for a(z0) � Δ. In the cone geometry, the SPP field will decrease as r−1 as it diverges
from the cone tip, so that a form B0 ∝ (z0)−1 may be assumed for the field amplitude.
Using this form and Eq. (7.65), substitution of Eqs. (7.62) and (7.66) in Eq. (7.3) and
differentiation shows that Eq. (7.4) is an approximate solution of Eq. (7.3), provided
that Eqs. (7.5)-(7.7) hold.
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Appendix 7.B Derivation of Eq. (7.13)

Any vector field can be written as the sum of the gradient of some scalar field and
the curl of some vector field [381], which are called the longitudinal and transverse
part of the vector field respectively. Applying the Helmholtz operator (∇2 + k2) on
a vector field does not change its longitudinal or transverse property. Similarly, the
dyadic Green’s function in Eq. (7.11) may be split into longitudinal and transverse
components Glong and GT , such that

∇× Glong =∇0 × Glong = O; (7.67)

∇ · GT =∇0 · GT = 0 , (7.68)

with O the zero dyadic. It can be shown that application of the Helmholtz operator
on these dyadics gives [383]

(∇2 + k2)Glong = L(r , r0);

(∇2 + k2)GT = T(r , r0), (7.69)

where the dyadics on the right hand side have the properties
˚

L ·X (r0)d3r0 = X long(r);
˚

T ·X (r0)d3r0 = X T (r); (7.70)

L + T = Iδ3(r − r0),

for any vector field X . Taking the inner product of Eq. (7.8) with GT and that of
Eq. (7.69) with E(r0), subtracting and integrating over the exterior cone volume V0,
gives

˚
V0

[
E(r0) · ∇2

0GT − GT · ∇2
0E(r0)

]
dV0 (7.71)

= ET (r) −
˚

V0

GT · [ε−1
0 ∇0ρ(r0) − iωμ0J (r0)

]
dV0,

where Eq. (7.70) has been used. The left hand side of Eq. (7.71) can be written as
the following integral over the cone surface A0 using Green’s second theorem [383]:

¨
A0

[(n ×E0) · (∇0 × GT ) − (n × GT ) · (∇0 ×E0) (7.72)

+ (n · E0) (∇0 · GT ) − (n · GT ) (∇0 · E0)] dA0,
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in which E(r0) has been abbreviated as E 0. Since the boundary conditions (7.9) and
(7.12) apply at the cone surface, and GT satisfies Eq. (7.68), the first three terms in
this surface integral vanish. Furthermore, using that ∇ · E = ε−1

0 ρ, Gauss’s theorem
yields

¨
A0

(n · GT ) (∇0 · E0) dA0 = ε−1
0

˚
V0

GT · ∇0ρ(r0)dV0,

so that the last term in Eq. (7.72) cancels identically the contribution of the charge
density in Eq. (7.71). Therefore, Eq. (7.71) reduces to Eq. (7.13).

Appendix 7.C Green’s function for conical geometry

The dyadic Green’s function that satisfies

(∇2 + k2)G = (∇2
0 + k2)G = Iδ3(r − r0) for 0 < θ < π − δ, (7.73)

subject to the boundary condition

G × eθ = O at θ = π − δ, (7.74)

is [383, 384]

G(r , r0) = −ik(GL + GM + GN ), (7.75)

with

GL =
∑

σ

∞∑
m=0

α2
σm

{
L(1)

σm(r)L(3)
σm(r0)

L(1)
σm(r0)L(3)

σm(r)
; (7.76)

GM =
∑

ν

∞∑
m=0

α′2
νm

ν(ν + 1)

{
M (1)

νm(r)M (3)
νm(r0)

M (1)
νm(r0)M (3)

νm(r)
; (7.77)

GN =
∑

σ

∞∑
m=0

α2
σm

σ(σ + 1)

{
N (1)

σm(r)N (3)
σm(r0)

N (1)
σm(r0)N (3)

σm(r)
, (7.78)

where the upper rows apply when r < r0 and the lower rows apply when r > r0. The
scale factors α are given by [386]
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(ασm)−2 =

2πˆ

0

π−δˆ

0

|Pm
σ (cos θ)|2 sin θdθdφ (7.79)

=
2π sin δ
2σ + 1

(
∂Pm

σ (cos θ)
∂σ

∂Pm
σ (cos θ)
∂θ

)∣∣∣∣
θ=π−δ

;

(α′
νm)−2 =

2πˆ

0

π−δˆ

0

∣∣∣∣ ddθPm
ν (cos θ)

∣∣∣∣2 sin θdθdφ, (7.80)

where Pm
σ denotes the associated Legendre function of the first kind, degree σ and

order m. The vector functions constituting the dyadic products in Eqs. (7.76)-(7.78)
are given in spherical components (er, eθ, eφ) by

L(p)
σm(r) =

⎛⎜⎜⎜⎝
d
dr j

(p)
σ (kr)Pm

σ (cos θ)

j(p)
σ (kr)

r
d
dθP

m
σ (cos θ)

im
j(p)
σ (kr)

r
P m

σ (cos θ)
sin θ

⎞⎟⎟⎟⎠ eimφ; (7.81)

M (p)
νm(r) =

⎛⎜⎜⎜⎝
0

im
P m

ν (cos θ)
sin θ

− d
dθP

m
ν (cos θ)

⎞⎟⎟⎟⎠ j(p)
ν (kr)eimφ; (7.82)

N (p)
σm(r) =

⎛⎜⎜⎜⎝
σ(σ + 1) j(p)

σ (kr)
kr Pm

σ (cos θ)

1
kr

d
dr (rj(p)

σ (kr)) d
dθP

m
σ (cos θ)

im
kr

d
dr (rj(p)

σ (kr))P m
σ (cos θ)
sin θ

⎞⎟⎟⎟⎠ eimφ, (7.83)

in which j
(p)
σ is the spherical Bessel function of the p-th kind and order σ. Because

the functions are periodic in the azimuthal direction, m = 0, 1, 2, . . .. The sets of
eigenvalues {σ} and {ν} are such that the Green’s function satisfies the boundary
condition (7.74). Consequently, they are the solutions of

Pm
σ (− cos δ) = 0; (7.84)

d

dθ
Pm

ν (cos θ)
∣∣∣∣
θ=π−δ

= 0. (7.85)

Miscellaneous properties of the vector functions are

∇× L(p)
σm = 0 ; (7.86)

∇ ·M (p)
νm = ∇ ·N (p)

σm = 0; (7.87)

kN (p)
σm = ∇×M (p)

σm. (7.88)

187



Chapter 7.

Due to properties (7.86) and (7.87), the Green’s function (7.75) can easily be split
into a longitudinal part Glong and transverse part GT as

Glong = −ikGL; (7.89)

GT = −ik(GM + GN ). (7.90)

Since the current densities considered in this chapter are independent of φ, terms
having m 
= 0 in the expansion of GT integrate to zero in Eq. (7.13). Moreover,
the dyadic GM makes no contribution to the integral since M νm · J = 0 for m = 0.
Therefore, the relevant Green’s function to be used in Eq. (7.13) is given by Eq.
(7.17).

Appendix 7.D Electric field in the far zone

Substitution of Eqs. (7.16) and (7.17) in Eq. (7.13) yields

ET =
μ0ωkq√

2π

∑
σ

α2
σ (7.91)

×
⎛⎝N (3)

σ (r)

rˆ

0

jσ(kz0)
kz0

e−i k
β z0dz0 + N (1)

σ (r)

∞̂

r

h
(1)
σ (kz0)
kz0

e−i k
β z0dz0

⎞⎠,
where the vector functions N σ are given by Eq. (7.83). In the far field kr → ∞, the
second term in large braces vanishes. Furthermore, the asymptotic form of the vector
functions is

N (3)
σ ≈ P 1

σ (cos θ)e−iσ π
2
eikr

kr
eθ for kr � 1, (7.92)

so that in the far zone the electric field reduces to Eq. (7.18), in which the integral

Iσ(β) =

∞̂

0

jσ(kz0)
z0

e−i k
β z0dz0 (7.93)

is tabulated [403] and given by Eq. (7.19).

Appendix 7.E Analysis of Qσ in Eq. (7.52)

Using property (7.88) of the N -functions and Stokes’s theorem, integration in the
plane z = z0 yields
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2πˆ

0

aˆ

0

ez ·N (1)
σ (r0)ρ0dρ0dφ0 =

2πa
k

eφ ·M (1)
σ (r1), (7.94)

where the functions M σ are given by Eq. (7.82) with m = 0 and ν ≡ σ, and r1

denotes the spherical coordinates

(r1, θ1, φ1) =

(√
z2
0 + a2 , arccos

z0√
z2
0 + a2

, φ1

)
. (7.95)

Making use of the identity (7.94) and expression (7.82), Eq. (7.52) reduces to

Qσ =
2
ka

∞̂

−ka/ tan δ

e−i s
β P 1

σ

( s
R

)
jσ (R) ds (7.96)

+
2 tan δ
(ka)2

P 1
σ (− cos δ)

0ˆ

−ka/ tan δ

se−i s
β jσ

( −s
cos δ

)
ds;

R ≡
√
s2 + (ka)2, (7.97)

in which the substitution s = kz0 has been applied. Note that the first line of this
expression represents integration over a full semi-infinite cylinder, and the second line
represents integration over the conical cut-out that is subtracted from the integration
volume.
As a check on Eq. (7.96), the limit ka→ 0 will now be taken to obtain the equivalent
expression for a point charge. From the power series of the Bessel function [388], the
second line of Eq. (7.96) is proportional to (ka)σ as ka → 0, so that it vanishes in
the limit. In the first line, we use the identity [403]

Pμ+2
ν (x) +

2(μ+ 1)x√
1 − x2

Pμ+1
ν (x) = (ν − μ)(ν + μ+ 1)Pμ

ν (x) (7.98)

to rewrite

2
ka
P 1

σ

( s
R

)
=

1
s

[
σ(σ + 1)P 0

σ

( s
R

)
− P 2

σ

( s
R

)]
. (7.99)

Making use of this identity, taking the limit ka→ 0 of Eq. (7.96) yields

lim
ka→0

Qσ(β, ka) = σ(σ + 1)Iσ(β), (7.100)

where Iσ(β) is given by Eqs. (7.93) and (7.19). With this, the electric field (7.51)
generated by the charged disk correctly reduces to the field (7.18) generated by a
point charge when ka→ 0.
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Because the integrand in the first line of Eq. (7.96) is oscillatory, it is numerically
beneficial to deform the integration path in the complex s-plane. Denote the integrand
by Tσ(s). The integration path is along the real line with a negative finite lower
boundary and Tσ(s) has cuts in the complex s-plane along the parts of the imaginary
axis where |s| > ka, as shown in Fig. 7.14. Since lim

A→∞
ATσ(Aeiφ) = 0 in the quadrant

−π/2 < φ < 0,

∞̂

0

Tσ(s)ds = −i
ˆ

C

Tσ(s)ds, (7.101)

where the contour C is shown in Fig. 7.14. Denoting the limit to the lower cut from
the right by s = −it+ 0, t > ka, expression (7.97) becomes

R =
√

(−it+ 0)2 + (ka)2 = −i
√
t2 − (ka)2 ≡ −iR′, (7.102)

Im s

ika

Original  
integration path 

Re s
0

ika

C

1tan
ka

Figure 7.14: Original integration path in the first line of Eq. (7.96) and
contour C in Eq. (7.101) in the complex s-plane. The cuts and poles of Tσ(s)
are shown as well.
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while the Bessel function in Eq. (7.96) may be rewritten as [388]

jσ(−iR′) = e−iσ π
2

√
π

2R′ Iσ+ 1
2
(R′), (7.103)

where I denotes the modified cylindrical Bessel function of the first kind. Combining
Eqs. (7.101)-(7.103), the integration along the positive real line in Eq. (7.96) equals

∞̂

0

Tσ(s)ds = −ie−iσ π
2

√
π

2

∞̂

0

e−
t
β P 1

σ

(
t

R′

)
Iσ+ 1

2
(R′)

R′ 12
dt, (7.104)

by which the oscillatory behavior of the integrand is exchanged for exponentially
damped behavior.

Appendix 7.F Peak field and pulse duration

The approximate electric field spectrum, indicated in the inset of Fig. 7.13, has the
form

|ETθ(ω)| ≈ E0

⎧⎪⎪⎨⎪⎪⎩
1 ω < ω1√

ln ω2−ln ω
lnω2−lnω1

ω1 < ω < ω2

0 ω > ω2

(7.105)

with E0 given by Eq. (7.60). According to Eq. (7.58) the phase of the field equals

argETθ(ω) = kr + φ(ω), (7.106)

where the term kr is equivalent to a time shift r/c in the time domain, and φ(ω) is the
phase of the sum in Eq. (7.58). A Taylor expansion of the time domain field ETθ(t)
around t = r/c may now be obtained using the moments of the frequency domain
field, since [404]

dnETθ(t)
dtn

∣∣∣∣
t=r/c

= e−in π
2

√
2
π

Re

∞̂

0

ωneiφ(ω)|ETθ(ω)|dω. (7.107)

Here, it has been used that ETθ(−ω) = E∗
Tθ(ω) because ETθ(t) is real. If φ(ω) were

zero, the field ETθ(t) would be maximum at t = r/c, and its maximum value E(t)max

would be simply Eq. (7.107) with n = 0. Substituting Eq. (7.105), this would yield
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E(t)max ≈
√

2
π
E0ω2 ×

√
π

2

erf
(√

ln ω2
ω1

)
√

ln ω2
ω1

for φ = 0. (7.108)

The first factor on the right equals the amplitude that would result if the spectrum
of Fig. 7.13 were fully coherent up to the frequency ω2 and zero for ω > ω2, while the
second factor corrects for the slope in the spectrum. Analysis of the actual phase of
ETθ(ω) shows that it is not zero; however, it is approximately constant at φ ≈ −π/4
for all three cases. Evaluating a few more orders of Eq. (7.107) and the resulting
Taylor expansions of ETθ(t) shows that this nonzero phase does alter the symmetry
of the SPP pulse, but it does not affect the maximum value of field much. Therefore
Eq. (7.108) is a good approximation for the maximum electric field amplitude in the
time domain.
Finally, the duration τ of the time domain SPP pulse, which is defined by Eq. (7.61),
is equal to

τ ≡ 1
E(t)max

ˆ ∞

−∞
E(t)dt =

√
2πE0

E(t)max
. (7.109)
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Concluding remarks

In this thesis, we have performed an analytical study of phenomena occurring in
the interaction of bunches of charged particles with electromagnetic radiation. We
thereby concentrated on bunches smaller than the wavelength of the radiation, for
which coherent effects become significant. We identified novel physical phenomena
and considered the feasibility of experimental observation and technological exploita-
tion of them. In chapter 3, relativistic electron bunches in interaction with strong
laser pulses were considered. Modeling the bunch as a point particle, it was shown
that the radiation reaction force affects the bunch dynamics notably, even if this force
can still be treated as a small perturbation. Considering larger bunches containing
more charge, it was demonstrated that the radiation reaction effects may even become
strong enough to yield considerably accelerated and collimated electron beams. In all
cases, it proved essential to take into account the well-known ponderomotive force in
order to obtain an accurate description of the electron bunch trajectories. In chapter
4, we studied this ponderomotive force in more detail. It was shown that the standard
force expression is not valid in case there is a spatial direction present in which the
field strength changes on the scale of the wavelength, i.e. a standing wave, and in
addition the charged particle experiencing the force is relativistic. The ponderomotive
description was generalized to cover this circumstance as well, yielding a polarization
dependent ponderomotive force that may vanish or even change direction in certain
field configurations.

Motivated by the usually rapid Coulomb expansion of electron bunches, and the
correspondingly temporary nature of coherent effects, we then shifted attention to-
wards subwavelength cold plasmas as non-expanding alternatives. Chapter 5 con-
cerned heating mechanisms in ultracold plasmas driven by a radiofrequency field. We
concluded that the process of collisional absorption, which involves Coulomb collisions
with ions in the presence of the applied field, is the most important heating mechanism
in such plasmas. However, this heating can be sufficiently mild so that the plasma re-
mains ultracold for an extended period of time. In chapter 6, we concentrated on the
electromagnetic aspect of the interaction of radiation with cold subwavelength plas-

199



Chapter 8.

mas, and studied the ponderomotive forces induced in the plasma by the radiation.
Volume forces of a compressive or decompressive character were found depending on
the density profile. Furthermore, the presence of a ponderomotive surface force was
demonstrated, which proved to be essential to obtain results respecting conservation
of momentum. The presented ponderomotive forces still exhibited the radiation reac-
tion emphasized in chapter 3 on electron bunches, despite the fact that a completely
different analytical approach was used. Similarly to electron bunches, therefore, con-
siderable acceleration of ultracold plasmas due to radiation reaction is conceivable.
Finally, in chapter 7 a system was studied in which subwavelength electron bunches
act as a radiation source rather than a passive receiver of applied radiation. We pro-
posed the generation of terahertz surface waves on a metal wire by launching electron
bunches onto a tapered end of the wire. It was confirmed experimentally that this
indeed yields very intense pulses of terahertz bandwidth.

A number of directions for further analytical work can be mentioned. A rigourous
description of the self-consistent evolution of the bunch size and shape, including radi-
ation reaction effects, would be very valuable in case of the laser-accelerated electrons
of chapter 3, the driven subwavelength plasmas of chapters 5 and 6, and surface wave
generating electrons of chapter 7 alike. However, it is questionable whether such a
description is even possible without having to resort to a full 3D numerical integra-
tion of a system of fluid-like partial differential equations, in which case the benefits
of an analytical treatment are largely lost. In chapter 3, we tentatively applied the
common equation of motion including radiation reaction to the regime in which the
radiation reaction force dominates, although this equation is normally used for situ-
ations in which this force can be considered a small perturbation. A more detailed
investigation into the range of validity of the equation of motion would therefore be
relevant. Regarding the standing wave ponderomotive force of chapter 4, generaliza-
tion to fields with relativistic intensities or to relativistic transverse velocities would
be interesting. Studying plasmas in chapters 5 and 6, we deliberately avoided the
complication of plasma resonances by choosing sufficiently high driving frequencies,
that is, underdense plasmas. It would be valuable to extend our results to overdense
plasmas as well. In relation to ultracold plasmas, consideration of the heating mech-
anisms studied in chapter 5 under strongly coupled conditions would be of interest.
The dielectric description adopted in chapter 6 may be generalized to magnetized
plasmas [405] or relativistic quiver velocities [406]. The calculation of the obtain-
able terahertz surface waves in chapter 7 could be improved by inclusion of electron
scattering by the atoms in the metal wire tip. Finally, an interesting alternative to
proposed surface wave generation method, which involved electrons entering the wire
material, may be offered by the reverse process. That is, extraction of electrons out
of the wire tip, effected by photo-emission due to a subpicosecond laser pulse, would
generate terahertz surface waves just as well. This idea is encouraged by a recent
experiment demonstrating the propagation of an electric field transient along a wire
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that was irradiated obliquely by a high-power laser pulse [407]. Chapter 7 provides
the analytical framework to calculate the efficiency of such a scheme.

This thesis reported on completely analytical work. The benefits of such an ap-
proach are clear: analytical modeling allows for the identification of new physical
effects, explicit distinction and separation of coexisting phenomena, and closed math-
ematical expressions exhibiting the scalings involved. All of these are essential in
guiding both numerical simulations and the design of experiments. However, analyt-
ical treatment inherently involves the approximation of physical systems by idealized
(but mathematically tractable) model systems, warranting subsequent numerical and
experimental validation of the results obtained. The most substantial idealization
adopted throughout this thesis has probably been the description of collections of
discrete particles by continuous charged distributions. This neglect of granularity
excludes important issues such as escape of particles from the bunch, the velocity
distribution of the particles, and the study of interparticle processes like Coulomb
collisions beyond presupposed statistical rates. In order to assess the significance of
such processes, be it beneficial or detrimental, it would therefore be very valuable
to numerically simulate the systems of discrete particles studied in this thesis. As
mentioned, particularly important is the self-consistent evolution of the bunch size
and shape in the studied processes. Preferably, numerical validation consists of single
particle tracking simulations, since more macroscopic methods such as particle-in-
cell codes still involve some degree of idealization and arbitrariness in the modeling
assumptions. However, particle tracking simulation of the systems discussed in this
thesis is extremely demanding for two reasons. First, the radiation reaction effects
in chapter 3, the accelerating force in chapter 6, and the generation of surface waves
in chapter 7 all involve the transfer of momentum between the particles and the ra-
diation field. As we discussed in chapter 2, this transfer can only be consistently
described in terms of the Lorentz forces experienced by the individual particles when
these forces are based on the full retarded self-generated electromagnetic field. Most
particle tracking codes, however, approximate the self-generated field by the electro-
static field [408, 409], which is insufficient for our purposes. Codes based on the full
retarded field do exist [410], though. Second, the bunches we considered contain up
to 1010 particles. It is currently forbiddingly time consuming to simulate all pairwise
interactions of such a system, hence the bunch must be represented by one containing
fewer particles. Naturally, the more particles can be simulated, the more accurate
reality is simulated. A step in this direction is the use of graphics processing units
(GPUs) to parallelize and thereby speed up the computations [411].

Naturally, next to numerical simulations, experimental verification will be needed
in order to validate the results of this work. Throughout this thesis, we have taken
special care to stay within the technologically possible when choosing experimental
parameters in numerical examples. In chapter 3, for instance, we invoked optical
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lasers with ∼ 1019 W/cm2 intensity, CO2 laser pulses with kJ energy content, and
∼ 10−100 nm sized atomic clusters to predict measurable consequences of the coher-
ently enhanced radiation reaction force. All of this technology is presently available.
The electron trajectories through a standing wave presented in chapter 4 involved only
lasers with moderate ∼ 1014 W/cm2 intensities. The ultracold plasmas mentioned in
the numerical examples of chapters 5 and 6 contained at most 5 × 1010 atoms, which
number has already been achieved in atom traps, and these plasmas were subjected
to available microwave fields. The electron bunches assumed in 7 can be presently
obtained as well. At least in principle, therefore, all predictions made in this the-
sis could be experimentally verified. This has been done already for the terahertz
surface wave generation described in chapter 7. However, the experimental parame-
ters assumed in this work often corresponded to state-of-the-art technology, so that a
full experimental reproduction would require an expensive list of equipment including
high-power optical and CO2 lasers, a well-controlled gas jet expanding in a vacuum
chamber, a specially designed magneto-optical trap, and high-power custom-made
klystrons. On the other hand, down-sized experiments designed to merely detect the
presented effects, rather than produce technologically interesting beams etc., seem
to be practically feasible. Nevertheless, these would still involve challenging issues
such as subjecting an atomic cluster to a laser pulse in a controlled and reproducible
configuration, timing and aligning a pulsed electron beam traveling through a pulsed
standing wave, and feeding microwave power into an atom cooling setup.

In this thesis, we have identified a number of new technological possibilities that
may be enabled by the studied physical phenomena. In chapter 3, we showed that
the radiation reaction effects in dense electron bunches subjected to high-power laser
pulses may partially suppress the instability that normally impedes laser-vacuum ac-
celeration schemes [412], thereby enlarging the scope for effective bunch acceleration
schemes. In addition, the coherently enhanced radiation reaction of high-density elec-
tron bunches offers the interesting possibility to study, within an experimentally acces-
sible system, the fundamental topic of radiation reaction discussed in chapter 2. The
modifications of the ponderomotive force derived in chapter 4 may have important
implications for standing wave applications, such as existing electron bunch length
measurements based on ponderomotive scattering of the electrons by a standing wave
[413], and the proposed X-ray free electron laser relying on the wiggling motion of elec-
trons in a standing wave [414]. Moreover, like the standing wave ponderomotive force,
the related fundamental Kapitza-Dirac effect [415] may show polarization dependent
features when generalized to relativistic electrons. In chapter 6, we established the
existence of ponderomotive volume forces in homogeneous subwavelength dielectric
objects, which may used for manipulation of the object in contactless circumstances
[416–418]. Furthermore, it was estimated that ultracold plasmas may be accelerated
to keV ion energies, resulting in a neutralized beam with a brightness comparable to
current high-performance ion sources [419]. Finally, in chapter 7 we showed that it
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Concluding remarks

is possible to generate intense pulsed surface waves with terahertz bandwidth on a
metal wire, which was confirmed experimentally. Subsequent focusing of such sur-
face waves may yield intense and highly localized terahertz fields, enabling non-linear
experiments with spatial resolution below the diffraction limit [420–422].
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Summary

Coherent phenomena in the interaction

of pulsed particle beams and radiation

In this thesis, an analytical study is performed of phenomena occurring in the
interaction of bunches of charged particles with electromagnetic radiation. The work
concentrates on bunches smaller than the wavelength of the radiation, for which co-
herent effects become significant. Novel physical phenomena are identified and the
feasibility of experimental observation and technological exploitation is considered.

The studied system of a subwavelength body of charge emerges in a variety of
contexts in physics. The oldest one is probably that of classical electromagnetic mod-
els of charged particles. Derivations of the electromagnetic self-force of rigid charged
objects, as have been developed in such models, are reviewed in this thesis. The math-
ematical equivalence of the various dissimilar self-force expressions is demonstrated
explicitly. The position of the presented self-force calculations in the wider context of
classical electrodynamic descriptions of charged particles is discussed, as well as their
relevance to the description of macroscopic bunches of charged particles.

In modern high-power laser physics, phenomena associated with the electromag-
netic self-force are referred to as radiation reaction effects. In this work, the coherent
enhancement of such effects is considered and its influence on the motion of sub-
wavelength electron bunches in interaction with intense laser pulses is analyzed. It is
shown that the radiation reaction force behaves as a radiation pressure in the laser
beam direction, combined with a damping force in the perpendicular direction. Due
to Coulomb expansion of the electron bunch, coherent radiation reaction takes effect
only in the initial stage of the laser-bunch interaction while the bunch is still smaller
than the wavelength. However, this initial stage can have observable effects on the
trajectory of the bunch. By scaling the system to larger bunch charges, the radiation
reaction effects are strongly increased. On the basis of the usual equation of motion,
this increase is shown to be such that radiation reaction may suppress the radial in-
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stability normally found in ponderomotive acceleration schemes, thereby enabling the
full potential of laser-vacuum electron bunch acceleration to GeV energies. However,
the applicability of the used equation of motion still needs to be validated experimen-
tally, which becomes possible using the presented experimental scheme.

In order to obtain an accurate description of electron bunch trajectories in a laser
pulse, it proves to be essential to take into account the so-called ponderomotive force.
This is the time-averaged Lorentz force experienced by a charged particle in an inho-
mogeneous, harmonically oscillating electromagnetic field. In this thesis, this force is
studied in more detail for the special case of a relativistic charged particle entering
an electromagnetic standing wave with a general three-dimensional field distribution
and a nonrelativistic intensity. It is demonstrated that the standard ponderomotive
force expression is not valid in this case, and the correct force is derived using a per-
turbation expansion method. The modified expression is still of simple gradient form,
but contains additional polarization-dependent terms. These terms arise because the
relativistic translational velocity induces a quiver motion in the direction of the mag-
netic force, which is the direction of large field gradients. Consistent perturbation
expansion of the equation of motion leads to an effective doubling of this magnetic
contribution. The derived ponderomotive force generalizes the polarization-dependent
electron motion in a standing wave obtained earlier. Comparison with simulations in
the case of a realistic, non-idealized, three-dimensional field configuration confirms
the general validity of the analytical results.

Motivated by the usually rapid Coulomb expansion of electron bunches, and the
correspondingly temporary nature of coherent effects, subwavelength quasi-neutral
plasmas are considered in this thesis as alternatives in which the repulsive Coulomb
force is absent. However, plasmas expand as well, although the expansion is driven
by the thermal pressure. Therefore, several mechanisms by which an external elec-
tromagnetic field influences the temperature of a plasma are studied and specialized
to the system of an ultracold plasma driven by a uniform radio frequency field. Heat-
ing through collisional absorption is reviewed and applied to ultracold plasmas. It
is shown that the rf field modifies the three body recombination process by ionizing
electrons from intermediate high-lying Rydberg states and upshifting the continuum
threshold, resulting in a suppression of three body recombination. Heating through
collisionless absorption associated with the finite plasma size is analyzed, revealing a
temperature threshold below which collisionless absorption is ineffective.

In addition, also the electromagnetic aspect of the interaction of radiation with
cold subwavelength plasmas is studied, and the ponderomotive forces induced in the
plasma by the radiation are evaluated. To this end, the plasma is modeled as a sphere
with a radially varying permittivity, and the internal electric fields are calculated by
solving the macroscopic Maxwell equations using an expansion in Debye potentials. It
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is found that the ponderomotive force is directed opposite to the plasma density gra-
dient, similarly to large-scale plasmas. In case of a uniform density profile, a residual
spherically symmetric compressive ponderomotive force is found, suggesting possi-
bilities for contactless ponderomotive manipulation of homogeneous subwavelength
objects. The presence of a surface ponderomotive force on discontinuous plasma
boundaries is derived. This force is essential for a microscopic description of the
radiation-plasma interaction consistent with momentum conservation. It is shown
that the ponderomotive force integrated over the plasma is equivalent to the radia-
tion pressure exerted on the plasma by the incident wave. The concept of radiative
acceleration of subwavelength plasmas, proposed earlier, is applied to ultracold plas-
mas. It is estimated that these plasmas may be accelerated to keV ion energies,
resulting in a neutralized beam with a brightness comparable to that of current high-
performance ion sources.

Finally, in this thesis a system is studied in which subwavelength electron bunches
act as a radiation source, rather than a passive receiver of applied radiation. A novel
method is proposed to generate electromagnetic surface waves of terahertz bandwidth
on a metal wire, by launching electron bunches onto a tapered end of the wire. To
show the potential of this method, Maxwell’s equations are solved for the appropriate
boundary conditions. The metal wire tip is modeled as a perfectly conducting semi-
infinite cone. It is shown that the surface waves can be recovered from the idealized
fields by well-known perturbation techniques. The emitted radiation is strongly con-
centrated into a narrow solid angle near the cone boundary for cones with a small
opening angle. It is found that sub-picosecond surface waves with peak electric fields
of the order of MV/cm on a 1 mm diameter wire can be obtained using currently
available technology, which has been confirmed experimentally.
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Samenvatting

Coherente verschijnselen in de interactie

van gepulste deeltjesbundels en straling

Atomen, waaruit materie is opgebouwd, zijn te scheiden in negatief geladen elek-
tronen en positief geladen ionen. In dit proefschrift wordt een analytische studie
gedaan naar de wisselwerking tussen wolkjes van zulke geladen deeltjes en straling.
Straling bestaat uit zich voortplantende elektromagnetische golven, zoals zichtbaar
licht en microgolven, welke zich onderscheiden in hun golflengte. Dit werk concen-
treert zich op wolkjes kleiner dan de golflengte (gewoonlijk kleiner dan een centime-
ter), waarin zogenaamde coherente effecten belangrijk zijn. Dit zijn effecten waarin de
geladen deeltjes door hun onderlinge nabijheid elkaars invloed versterken. In dit proef-
schrift worden nieuwe fysische verschijnselen gëıdentificeerd, en de haalbaarheid van
experimentele observatie en technologische implementatie ervan worden overwogen.

Geladen objecten kleiner dan de golflengte komen voor in allerlei fysische contex-
ten. De oudste is waarschijnlijk die van het klassieke model van geladen deeltjes,
waarin men zich het deeltje, in tegenstelling tot de nu gangbare modellen, als een
starre geladen bol voorstelt. Omdat lading zowel een kracht ondervindt van elektro-
magnetische velden, als zelf zulke velden genereert, oefent een geladen bol ook een
kracht op zichzelf uit. In dit proefschrift worden eerder gemaakte afleidingen van
deze zelfkracht beschouwd, en de wiskundige gelijkheid van de gevonden zelfkrachten
aangetoond.

In de moderne fysica worden verschijnselen geassocieerd met de elektromagneti-
sche zelfkracht aangeduid als stralingsreactie-effecten. In dit werk wordt de coherente
versterking van zulke effecten behandeld, en wordt de invloed daarvan op de beweging
van elektronenwolken in wisselwerking met intense laserpulsen geanalyseerd. Aange-
toond wordt dat, als gevolg van stralingsreactie, de elektronen een kracht ondervinden
in de voortplantingsrichting van de laserpuls, en dat bovendien hun beweging in de
richting loodrecht daarop wordt gedempt. Echter, iedere elektronenwolk zal snel uit-
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dijen omdat deeltjes met gelijke lading elkaar afstoten. Daarom zal de wolk niet lang
kleiner dan de golflengte blijven, en is dus coherente versterking van stralingsreactie
van zeer tijdelijke aard. Toch blijkt de eerste korte coherente periode voldoende om
waarneembare effecten te veroorzaken. Voor wolkjes met een zeer grote hoeveelheid
elektronen kan stralingsreactie zelfs zorgen voor stabilisatie van krachtige elektronen-
versnelling met een laserpuls, wat tot nu toe nog niet mogelijk is gebleken. Voor
dit laatste geval is echter de geldigheid van de bewegingsvergelijking, waarmee deze
stabilisatie wordt aangetoond, nog onderwerp van discussie.

Wanneer een geladen deeltje zich bevindt in een trillend elektromagnetisch veld,
zal het zelf ook een trillende beweging gaan uitvoeren. Als bovendien de veldsterkte
varieert met de positie, dan ondervindt het deeltje tijdsgemiddeld een kracht, die
de ponderomotorische kracht wordt genoemd. In dit proefschrift wordt deze kracht
onderzocht voor het speciale geval van een elektromagnetische staande golf. Zo’n
staande golf bestaat uit een aaneenschakeling van posities met beurtelings een sterk
veld (een buik) en geen veld (een knoop), en ontstaat wanneer twee elektromagneti-
sche golven zich tegen elkaar in voortplanten. Algemeen wordt aangenomen dat de
ponderomotorische kracht altijd in de richting van afnemende veldsterkte staat, hier
dus richting de knopen. In dit werk wordt echter aangetoond dat dit voor geladen
deeltjes, die zich voortbewegen met bijna de lichtsnelheid, niet altijd het geval is. Een
gecorrigeerde uitdrukking voor de ponderomotorische kracht wordt afgeleid, die laat
zien dat de kracht niet alleen afhangt van de sterkte van het veld, maar ook van de
richting ervan. Als gevolg kan ponderomotische kracht zich naar de buiken richten,
of zelfs geheel verdwijnen.

Gemotiveerd door de snelle uitdijing van elektronenwolken, en de bijbehorende
tijdelijkheid van coherente effecten, worden in dit proefschrift ook plasmawolken
beschouwd. Een plasma bestaat namelijk uit zowel elektronen als ionen en is daardoor
ongeveer neutraal, zodat geen sterke afstoting plaatsvindt. Echter, een plasmawolk
dijt desondanks uit doordat de druk in de wolk hoger is dan daarbuiten, en de uitdi-
jing is sneller naarmate het plasma warmer is. Daarom worden diverse mechanismen
onderzocht via welke een elektromagnetische golf de temperatuur van een plasma-
wolk kan bëınvloeden, waarbij de nadruk op zogenaamde ultrakoude plasma’s wordt
gelegd. Dit zijn plasma’s die sinds kort uit lasergekoelde atoomwolken kunnen worden
gemaakt, en een temperatuur dichtbij het absolute nulpunt hebben.

Bovendien wordt ook het elektromagnetische aspect van de wisselwerking tussen
straling en plasmawolken kleiner dan de golflengte onderzocht. Dit aspect komt tot
uiting in de vorm van ponderomotorische krachten op de verschillende delen van de
wolk. De optische eigenschappen van de plasmawolk worden gebruikt om het daarin
heersende elektromagnetische veld in detail te berekenen, om zodoende deze pondero-
motische krachten af te leiden. Het blijkt dat de kracht meestal in de richting staat
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van afnemende deeltjesdichtheid. Voor plasma’s met een constante dichtheid com-
primeert de kracht de wolk in alle richtingen. Omdat de dichtheid van met name
ultrakoude plasma’s goed experimenteel controleerbaar is, suggereren deze resultaten
mogelijkheden voor doelbewuste ponderomotische plasma-manipulatie met straling.
Daarnaast wordt het bestaan van een ponderomotorische kracht werkend op het op-
pervlak van de wolk afgeleid. Aangetoond wordt dat deze oppervlaktekracht, tezamen
met de krachten in het inwendige van het plasma, leiden tot voortstuwing in de voort-
plantingsrichting van de elektromagnetische golf, en wel dezelfde als eerder voor elek-
tronenwolken in laserpulsen werd gevonden op basis van stralingsreactie. Het in het
verleden voorgestelde concept om plasma’s met deze voortstuwing te versnellen wordt
toegepast op ultrakoude plasma’s. Naar schatting zou dit een neutrale plasmabundel
kunnen opleveren met vergelijkbare kwaliteiten als momenteel haalbare ionenbundels.

Tenslotte wordt in dit proefschrift een systeem bestudeerd waarin geladen deeltjes
als een actieve stralingsbron fungeren, in tegenstelling tot bovengenoemde toepassin-
gen waarin de deeltjes min of meer passieve objecten waren reagerend op van buiten
opgelegde straling. Een nieuwe methode wordt voorgesteld waarmee elektromagne-
tische oppervlaktegolven op een metalen draad kunnen worden gegenereerd, door
elektronenwolken met hoge snelheid op het gepunte uiteinde van de draad te schi-
eten. De elektronen zullen dan in het metaal doordringen, en hun passage door het
metaaloppervlak gaat gepaard met de productie van een sterke stralingspuls. Een
deel van deze stralingspuls beweegt zich vervolgens als oppervlaktegolf langs de met-
alen draad voort. De geproduceerde straling wordt in detail berekend, waarmee de
te verwachten sterkte en lengte van de oppervlaktegolf kunnen worden geschat. De
voorspelde oppervlaktegolven zijn inmiddels ook experimenteel waargenomen.
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