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Abstract 

In the modeling of failure mechanisms the application of advanced theoretica! and 

numerical methods is indispensable. In the present study continuurn damage 

mechanics (CDM) is adopted to describe these mechanisms. CDM is a branch in 

continuurn mechanics, which is characterized by the introduetion of a continuons 

damage variabie that represents the local distribution of microdefects. The 

introduetion of the damage variabie requires the establishment of an additional 

equation, the so-called (damage) evolution equation, that expresses how the 

damage changes. In CDM a continuons coupling between damage and deformations 

is obtained. General expressions for the constitutive equations, i.e. the stress-strain 

relation and the evolution equation, can he derived from two potentials: the 

Helmholtz free energy and the dissipation potential. 

The present research focuses on brittie failure mechanisms, implying that 

damage evolution is the predominant dissipative mechanism. Additionally, the 

current state does not depend on the rate at which this state has been realized. A 

distinction, which is based on the criterion for damage growth, is made between 

brittie and fatigue damage. Models are developed for both mechanisms. The model 

for brittie damage is capable of descrihing the behaviour of concrete and polystyrene 

in simple loading situations. The model for fatigue can he reduced to some widely 

accepted cumulative damage models. Anisotropic damage is considered by taking 

the directional nature of damage into account with dyadic vector products. 

For a complete description of failure mechanisms, the evolution equation and 

the initia! damage must he supplied. To characterize the parameters in the 

evolution law, it is hypothesized that microcrack growth and macrocrack growth are 

given by identical relationships. Then, the evolution equation can he derived using 

concepts from fracture mechanics. Based on the fact that failure processes actually 

are stochastic processes, it can he argued that the initia! damage is a random 

quantity. By associating the initia! damage with a characteristic size, the so-called 

elementary cell, its statistica! properties can he established. The validity of the 

developed statistkal model is demonstrated for fatigue in rubbers and polystyrene. 

For practical applications the equilibrium equation and the constitutive 

equations are solved numerically. Based on the principle of weighted residuals, an 

iterative procedure is derived for the solution of the nonlinear equations. A 

substantial reduction in computing time is obtained by the application of an 

adaptive stepsize algorithm for the numerical integration of the evolution equation 
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and by uncoupling the constitutive equations. 

Simulation techniques are applied to analyze stochastic failure processes. The 

simulations consist of finite element calculations for different realizations of the 

initial state. The statistics of the failure processas follow from the total of responses. 

The simulations learn that the solutions obtained with the coupled and uncoupled 

constitutive equations display only small deviations. Moreover, the influence of the 

mesh on the solutions is reduced by the elementary cell. 

In CDM crack growth is equivalent to the development of a zone of completely 

darnaged elements. Both initiation and propagation of cracks are predicted. 

viii 



Notation 

Quantities 

A 

A,4A 

A 
"' 
A 

A 

Operations and functions 

Ä. B, A B, Ä. B, A B 
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det(A) 

A 
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vector 

second, fourth order tensor 
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matrix 

stochastic quantity 

second, fourth order unit tensor 
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dyadic product 

inner product 
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inversion 

transposition 

matrix product 

magnitude 
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material time derivative 

gradient operator 
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1 Introduetion 

1.1 Soope of the work 

Structural design is concerned with developing structures of improved performance. 

At any stage of the development trade-offs must he made between performance and 

reliability on the one hand and performance and cost on the other. How such 

trade-offs are made and the criteria on which they are based, strongly depends on 

the operating conditions, which can he divided into mechanical loadings and 

environmental effects. Sometimes an improved performance is obtained by trial and 

error. Quite frequently this is unfeasible from a practical and economical point of 

view. Then, an improved performance should be attained through extensive analysis 

in the conceptual design phase. A promising approach is to apply optimization 

techniques, where some objective function, for instanee the weight of a structure, is 

optimized. The objective function depends on several design variables. In many 

problems the values of the design variables are subject to some constraints, for 

instanee the weight must have a non-negative value. In many cases the objective 

function can not be derived straightforwardly. Experimental design methods are 

helpful to determine which parameter studies should he carried out in order to 

establish the relationships between objective functions and design variables. The 

parameter studies are usually based on finite element calculations (Schoofs 1987). 

Minimization of the objective function with respect to the chosen design variables 

yields an optimal design. 

As failure criteria in structural design are usually simple static criteria, the 

reliability of a design requires thorough investigation. In situations, where failure 

occurs aftera long period of time, such as fatigue, an ubiquitous problem is ha ving a 

limited time to oomplete testing. Various procedures are used to accelerate lifetests. 

Roughly, accelerated lifetests can he divided into two categories: compressed-time 

tests and advanced stress tests. In oompressed-time tests the amplitudes of the 
loadings are maintained at the level expected in normal use, but the loading 

frequencies are much higher. In advanced stress tests increased loads and harsher 

environments are applied. Accelerated testing is useful, but it must he carried out 

with care to ensure that the results are not erroneous, since the failure mechanisms 

that are dominant at high loading levels or frequencies may no longer be important 

at nominal conditions. 
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An example of the design phases mentioned above can be found in the heart 

valve research project at the Eindhoven University of Technology. This project aims 

at the development of a heart valve prosthesis with synthetic (fibre rcinforced) 

leaflets. It was founded upon the opinion that specifications for an improved design 

must be obtained by a detailed analysis of the behaviour of a natural aortic valve. 
Early studies (Van Steenhoven 1979, Sauren 1981) revealed stress reducing 

mechanisms in natural valves, such as gradual valve closure, leaflet reinforcement 

and flexible leaflet suspension. In a follow-up study by Rousseau (1985) a valve 
prosthesis was analyzed, which exhibited the main characteristics of the natural 

aortic valve. In order to specify an optimal design, the effects of geometry and 

material properties on the stress distribution in the teaflets were evaluated for static 

toading in the closed phase. It is questionable, whether this approach really leads to 

a valve prosthesis that performa well, since another unfavourable situation occurs, 

when the valve is opening or closing. During these phases the teaflets are bended 

and wrinkled, which may cause microcracks in combination with leaflet 

calcification. In fact, an optimal design must account for both phases. Naturally, 

this leads to conflicting demands, which are to design a valve prosthesis that 

behaves like the natural vatve on the one hand and that shows a high reliability on 

the other. For this purpose a better insight into the faiture mechanisms involved is 

essential. This can be obtained with the aid of experimental methods (compressed­

time tests) in combination with advanced theoretica! and numericail methods to 
predict the observed physical phenomena. 

A suitable theory shoutd incorporate the fact that within a soli:d all sorts of 

microdefects are present, whose dimensions depend on the material, the production 

process and the environment. From experience it is known that increased loadings 

and larger defects will accelerate faiture processes. Hence, it is stated that defect 

growth depends on the stress state and the defect dimensions. Since the exact 
positions and dimensions of the microdefects are unknown, local stress states are 
unknown as well. Consequently failure processes are stochastic processes. 

In this thesis faiture mechanisms are modeled by representing the locat 

distribution of microdefects as internat state or rather damage variables. The 

introduetion of the damage variables requires the establishment of an additional 

equation, the so-called (damage) evolution equation, that describes how the damage 
state changes. This phenomenotogical approach is called continuurn damage 

roeebanies (CDM). In CDM a continuous coupling between local damage processes 

and local deformations is obtained. The application of CDM bas various attractive 
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features: 

- CDM bas a sound thermodynamical basis, 

- internat variables can be used to characterize various dissipative mechanisms, 

complex material behaviour, involving geometrical and physical nonlinearities 

and anisotropic damage, can be taken into account, 

- experimental characterization of the parameters in the damage evolution 

equation is feasible, 

- both initiation and propagation of macrocracks can be predicted, 

- CDM is based on continuurn mechanics, such that implementation in existing 

finite element codes is relatively straightforward; advantage can be taken of 

similarities withother dissipative mechanisms such as plasticity. 

1.2 Further considerations 

In the foregoing CDM was selected as a tooi for the analysis of failure mechanisms. 

Particular interest is directed towards fatigue. In fatigue, damage evolution is the 

predominant dissipative mechanism and the current state does not depend upon the 

rate at which this state bas been realized. The evolution equation and a criterion 

which indicates, whether the current state changes, must be specified. Most of the 

existing models for fatigue were developed for metals (Lemaitre 1986a, Chaboche 

and Lesne 1988). The application of these models to polymer materials may produce 

incorrect results, since different microstructural mechanisms may be prevalent. For 

example, the model derived by Lemaitre (1986a) is based on the presence of micro 

plasticity. This mechanism, however, is unlikely to occur in polymer materials. 

Since no suitable models were found in literature, part of this work focuses on the 

development of brittie damage models. 

With regard to the experimental characterization the number of model 

parameters should be kept as low as possible. Lemaitre and Dufailly (1987) stated 

that due to the localization of damage, conventional methods are not suitable for 

damage characterization, since these methods are based on measuring variations in 

global material properties, such as the Young's modulus, density and electrical 

resistance. The Jack of experimental methods for damage measurements in case of 

fatigue and the resulting scarcity of experimental data encourages for contributions 

in this field. 

Due to the presence of microdefects with unknown dimensions and positions, 

failure processes are stochastic processes. As yet the random nature of damage bas 
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not been under much investigation. In fact, in CDM this randomness is neglected by 

assuming that initially a material is in a perfect state, resulting in a deterministic 

analysis. In this work the randomness in the initial state is taken into account and it 

is endeavoured to develop a theory for determining its statistica! dist:ribution. The 

probability distribution function (PDF) of the initial damage together with an 

evolution equation enable us to predict lifetime distributions. Another interesting 

application can be found in the experimental field. Suppose that an experimental 

lifetime distribution and an evolution equation are available. Then, it is possible to 

determine the initial damage distribution. With respect to the establishment of the 

evolution equation it is assumed that microcrack growth and macrocrack growth are 

expressed by identical relationships. A sound basis for this assumption is given in 

this thesis. Provided that a relationship between the local defect state and the 
damage variabie is available, an evolution equation can be derived. This assumption 

has the additional advantage that data from fracture mechanics can be used. 

Besides reflections on the theoretica! and experimental facets of failure 

mechanisms, an important issue is the numerical solution of the resulting equations. 

Currently much effort is spent on the modeling of macrocrack initiation and 

propagation using so-called local approaches. In a local approach to fracture the 

crack tip is a process zone in a finite element mesh in which the damage state 

increases, resulting in a decrease of the rigidity. Crack growth is identified with the 

evolution of a completely damaged zone with recalculation of the stresshltrain state. 

Although CDM provides a viabie tooi to model fracture, a more genetal use of the 

local approaches is delayed by the cost of the calculations and the dependenee on 

the finite element modeling (Chaboche 1988). On the subject of fatigue Lemaitre 

(1986b) states in a review paper that "only few papers deal with fatigue, which 

means that we have to work hard in this field! But the difficulty is that fatigue is 

much more localized than other kinds of damage". This remark gives rise to further 

research on the numerical aspects of damage models concerning computing times, 

the influence of the mesh on the results (mesh sensitivity) and damage localization. 

The key to developments on the mesh sensitivity and damage localization in 

failure processes is bidden in the stochastic nature of damage. By associating the 

PDF of the initial damage to a characteristic size, which is independent of the 

element dimensions, the mesh sensitivity is reduced. Additionally, the evolution 

equation, which displays a sudden explosive increase in the damage, causes a natural 

localization of the failure process. Because of the randomness in the initial damage, 

a localization can be found even in nearly homogeneons stress fields. 
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A substantial rednetion in computing time can be obtained by the application 

of an adaptive stepsize algorithm. In situations where an explosive increase in the 

damage state is observed, it is convenient to uncouple the constitutive equations. 

The solutions obtained with this approach show small deviations from the solutions 

obtained with the coupled equations, however with much less computational effort. 

Finally, it is noted that polymer materials may ruchibit large deformations. Hence, a 

viabie numerical tool must provide for geometrical nonlinearities. 

1.3 Contents of the thesis 

In this thesis the following subjects will be discussed. 

In chapter 2 the basic equations in continuurn mechanics are presented and 

internat variables are introduced to represent dissipative mechanisms. Some 

concepts in formulating damage variables are discussed in chapter 3. A model is 

developed for the analysis of brittie failure mechanisms. A distinction, which is 

based on the formulation of the damage criterion, is made between brittie and 

fatigue damage. Besides isotropie damage, anisotropic damage is considered as well 

using dyadic vector products. In all cases a criterion for damage evolution and an 

evolution equation, indicative of the mechanisms involved, must be supplied. 

The stochastic nature of damage is discussed in chapter 4. A theory is 

developed for characterizing the statistkal distribution of the initial damage, which 

is an essential quantity in the prediction of fatigue mechanisms. The validity of the 

model is examined for fatigue in rubbers and glassy polymers. 

The numerical elaboration of the theory is exposed in chapter 5. Based on the 

principal of weighted residuals a plane stress element is derived. Methods for the 

reduction of computing times are presented involving the application of an adaptive 

stepsize control algorithm and the uncoupling of the constitutive equations. To 

demonstrate the capabilities of the numerical tool, simulations concerning the 

stochastic aspects of damage and the initiation and propagation of macrocracks are 

carried out in chapter 6. In chapter 7 the conclusions of the present research are 

given and some recommendations for future research are put forward. 
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2 Thermodynamica! framework 

2.1 Introduetion 

In this chapter a general framework of the theory used in this thesis is presented. In 

section 2.2 some important kinematica! quantities are defined. In section 2.3 the 

so-called balance laws are introduced. In order to determine all variables in the 

balance laws, constitutive equations, which characterize the material behaviour, are 

required. In section 2.4 some widely accepted constitutive principles are discussed, 

which restriet the possible forms of the functional dependenee on the assumed 

independent variables in the constitutive equations. Insection 2.5 some assumptions 

concerning the constitutive equations are made. It is assumed that the state of a 

continuurn can be described completely by the instantaneous valnes of the 

independent variables together with a set of internal independent variables. The 

consequences of the introduetion of the internal variables with respect to the 

Clausius-Duhem inequality will be considered. This leads to the introduetion of a 

dissipation potential by which the generalized fluxes can be determined as functions 

of the conjugate generalized forces. 

2.2 Kinematica} quantities 

In this section some important kinematica! quantities used in continuurn mechanics 

are defined. Each material point of a body can be identified by a column e of three 

material coordinates. The set of columns e for all material points of the body is 

denoted by B. Let ~ = ~( e, t) be the current position vector of e E B. It is assumed .. 
that x is differentiable with respect to both e and t. The position vector of { E B in 

the reference configuration is written as ~o = ~( e, t 0 ). Defining the ra te à of a 

quantity a= a(e, t) as the time derivative of a for fixed valnes of e, the velocity 

vector ~ of a material point is denoted as 

.. ~ ~ 
v(e, t) = x(e, t) = or 

The deCormation of the body is characterized by the deCormation tensor F 

.. (V .. _;)c F = F(xo,t) .., .. 

(2.2.1) 

(2.2.2) 
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.. 
where V0 is the gradient operator with respect to the reference configuration. The 

deformation tensor is regular and its determinant J is positive and describes the 

change in volume of an infinitesimal material element 

J = det(F) = ~ ~o > 0 (2.2.3) 

The deformation tensor can be decomposed uniquely into the product of a rotation 

tensor R and a symmetrie positive definite tensor U, the so-called stretch tensor 

F=R·U (2.2.4) 

A useful measure for the deformations in a body is the Green-Lagrange strain 

tensor, which is defined as 

(2.2.5) 

The ra te of deformation tensor F.F-1, which is independent of the reference 

configuration, can be written as the sum of the symmetrie deformation rate tensor D 
and the skew-symmetric spin tensor n 

(2.2.6) 

2.3 Balance laws 

At every instant during the deformation of a continuum, the balance laws must be 
satisfied. If polar media are left out of consideration, the laws of conservation of 

mass, momentum, moment of momenturn and energy (first law of thermodynamics) 

can be written in the following local forms 
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p 

.. .. .. 
V·u + pb = pv 

(2.3.1) 

(2.3.2) 

(2.3.3) 



pé=u:D+pr-V·h (2.3.4) 

Here p, u, b, e, r and h denote, respectively, the density, the Cauchy stress tensor, 

the specific (i.e. per unit mass) load vector, the specific internal energy, the specific 

heat production and the heat flow vector. 

The second law of thermodynamics states, that every thermomechanical 

process has a direction, such that not every conceivable state can be reached from 

the current state. In a more forma! way, it is stated that the local rate of entropy 

production of any volume element in a continuurn is positive regardless of the 

nature of the process, leading to (Malvern 1969) 

(2.3.5) 

where r is the specific internal entropy production rate, 0 is the absolute 

temperature and 11 is the specific entropy. The inequality implies internal entropy 

production in au irreversible process, the equality holds fora reversible process. 

The Helmholtz free energy 1/J is introducedas 

(2.3.6) 

Using the first law of thermodynamics (2.3.4) and (2.3.6), the second law of 

thermodynamics is expressedas 

(2.3. 7) 

The state of a body is known when for any material partiele the density p, the .. 
position vector x and the absolute temperature 0 are known for the whole time 

interval under consideration (Müller 1984). According to eq. (2.3.1), the density can 

be expressed in terrus of the position vector ~- Although the number of the 

remaining equations of balance is seven, the position vector field and the .. 
temperature field can not be determined, sirtee new variables 17, 1/J, q and h have 

appeared (it is tacitly assumed that r and b are known). Thus the system 

(2.3.2)-(2.304) is underdetermined. However, the so--called constitutive variables 1J, .. 
1/J, q and h are related to the independent variables through constitutive equations. 

Thus, in order to close the system of equations (2.3.2)-(2.3.4) it is necessary to 
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determine the constitutive equations for q, t/J, u and h. The constitutive variables 

have to satisfy a number of principles, which will be discussed in the next section. 

2.4 Constitutive principles 

It is recalled that a constitutive variabie C at a material partiele e can only depend 

on the histories of the position vector field~ and temperature field 0 

C(e, t) = C(~((, r), 0((, r); T $ t, ( c B) (2.4.1) 

In this section some widely accepted constitutive principles will be discussed, which 

restriet the possible forms of the functional dependenee on the independent variables 

in (2.4.1). Details of these principles can be found in Malvern (1969) and Müller 

(1984). The principle of local action states that the current values of the 

constitutive variables in a material point are determined completely by the history 

of the independent variables in the neighbourhood of that point. Materials satisfying 

this principle are called simple materials. As a result of this principle the 

constitutive variables at e are determined by the histories of~. F, 0 and vo at e. 
The principle of equipresence states that each of the constitutive variables is a 

function of all independent variables until proven otherwise, hence 

(2.4.2) 

For brevity the dependenee on the material coordinates will not be written 

explicitly below. The principle of objectivity states that constitutive equations must 

be invariant under changes of the frame of reference. From this principle it 

immediately follows that the spatial position ~ of a material point cannot be an 

independent variabie (Müller 1984). Then, the constitutive equations are given by 

1 .. 
u(t) = J F(t) · P[E( r), 0( r), g0 ( r); T $ t]· Ji'C(t) (2.4.3) 

.. 1 .. .. 
h(t) = J F(t)·h0 [E(r), O(r), g0 (r); T $ t] (2.4.4) 

t/J(t) = t/J[E( r), 0( r), g0 ( r); T $ t] (2.4.5) 

q(t) = q[E( r), 0( r), g0 ( r); T $ t] (2.4.6) 
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.. .. ~ 

where g0 = V0 /J == f'C·vO and Pis called the second Piola-Kirchhoff stress tensor. 

The constitutive variables P, h0 , '1/J and 'Tl are invariant quantities (Van Wijngaarden 

1988). A convenient property of invariant quantities is, that their material time 

derivatives are also invariant. 

From the constitutive equations (2.4.3)-(2.4.6) it follows, that the state of a 

body can not be determined, unless the histories of the independent variables are 

known up to the current time t. In order to avoid the inconveniences of such a 

formulation in terms of functionals, an alternative point of view will be adopted in 

the nex:t section by the introduetion of internal variables. 

2.5 Intemal variables 

From a purely mathematical point of view, the introduetion of a fini te number of 

internal variables of scalar, vectorlal or tensorlal nature can be regarcled as a 

strategy adopted for the purpose of parametrizing the histories of the independent 

variables in the constitutive equations (Coleman and Gurtin 1967, Rice 1970, Kestin 

and Bataille 1977, Germain et al. 1983). The resulting gain in simplicity is purely 

formal unless it is possible to identify the parametrization with a clear physical 

meaning. Internal variables have the common property that they describe micro­

structural changes or rather dissipative mechanisms. Experimental investigations 

have led to the identification of a wide variety of internal variables, e.g. reflecting 

the extent of a chemica! reaction, the growth of dislocations or microcrack growth. 

Next two assumptions are made concerning the constitutive equations. The 

first assumption is about the class of materials to be considered. It is proposed, that 

the state of a body can be described completely by the instantaneous values of E, Ë, .. 
0, g0 and a set of internat variables for the rnadeling of history dependent material 

behaviour (Van Wijngaarden 1988). The strain rate dependenee will be useful at a 

later stage in the rnadeling of brittie failure mechanisms. For convenience all 

internal variables are stored into a column z 
N 

.. T 
z={s,s,S} 
1\1 N N N 

(2.5.1) 

that contains scalar, vectorial and tensorlal variables. Then the constitutive .. 
variables P, h0 , '1/J and 'Tl are denoted as 

. .. T 
C = c (w); !1:1 = {E(t), E(t), O(t), go(t), ~(t)} (2.5.2) 
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For notational simplicity the dependenee on the current time will not be written 

explicitly in the sequel. The fact that the internal variables must account for the 

influence of the past on the current values of the constitutive variables, leads to the 

second assumption: the rate of the internal variables and the constitutive variables 

P, ho, 1/J and 17 depend on the samevariables (Coleman and Gortin 1967), hence 

i= i (w) 
"' "' "' 

(2.5.3) 

The Clausius-Duhem inequality (2.3. 7) places forther restriet i ons on the 

possible forms of the constitutive equations (Malvern 1969). For the particular set 

of independent variables in (2.5.2) the consequences of the restrictions with respect 

to the Clausius-Duhem inequality will be investigated. If u, D, h and VO are 

replaced by the invariant quantities P, È, h0 and g0 , the Clausius-Duhem 

inequality becomes 

(2.5.4) 

The rate of the free energy is given by 

(2.5.5) 

where the symbol ® denotes a product operator according to 

(2.5.6) 

Substitution of (2.5.5) into the Clausius-Duhem inequality yields 

[ P - Po !li!_ ] : È - Po~ : Ë + Po [- Tf - !li!_ ] Ó + 
öE öE ö() 

(2.5.7) 
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The quantities È, Ë, 0 and go fonn a set of independent variables, whereas ~ 
. .. 

depends among others on E and g0 • Requiring that the Clausius-Duhem inequali ty 

must hold for all possible choices of the aforementioned quantities we must have 

!!i.= 0 
ÖÈ 

; TJ = gj_ 
öO 

Inequality (2.5.9) is satisfied for 

(2.5.8) 

(2.5.9) 

(2.5.10) 

(2.5.11) 

Inequality (2.5.11) contains two terms, respectively, a term due to irreversible heat 

conduction in the presence of a thermal gradient and a term due to the internal 

work of the internal variables. The quantities entering the Clausius-Duhem 

inequality are often called generalized irreversible forces ~ and generalized fluxes l· 
The generalized forces and fluxes in the formulation of (2.5.11) are given by 

T .T -+ t = [ ~ , ho] (2.5.12) 

Then (2.5.11) is expressedas 

(2.5.13) 

According to (2.5.12)2 the generalized fluxes depend on all independent 

variables. The generalized fluxes can be expressed in a manner, such that the 

preceding inequality is always obeyed. The basic step in the derivation of a general 

solution for (2.5.13) is the assumption that the generalized fluxes and forces are 

13 



rela.ted to ea.ch other by functions, which conta.in as parameters the independent 

variables (Germa.in et a.I. 1983). This leads to 

(2.5.14) 

where the restrietion (2.5.14)2 has a physical background, since without a driving 

force, the fluxes are zero, e.g. no heat conduction occurs without a thermal gra.dient. 

The solution of inequa.lity (2.5.14)1 consists of two parts, respectively, a 

non-dissipative part, which does not influence the production of entropy and a 

dissipative part, which contributes a term in the entropy production and which is 

derivable from a so-ca.lled dissipation potential <jl. Mathematically this implies that 

every solution lof (2.5.14) of class C1 in ~ and of class C0 in Ij must be of the form 

l(~, W) = ~x<ll(~, W) + !J(~, ij) (2.5.15) 
N 

where U(X, w) is a vector function, which sa.tisfies the conditions 
N N N 

XT® U(X, w) = 0 ; U(O, w) = 0 
N NNN NNN N 

(2.5.16) 

Hence the entropy inequa.lity (2.5.14 )t beoomes 

~T® ~x<ll(~, Ij) ~ o (2.5.17) 
N 

From (2.5.17) it follows that the dissipation potentia.l <jJ must possess a 

non-nega.tive radial derivative and an absolute minimum at~ = Q. In literature the 

non- dissipative part '!J in (2.5.15) is disregarded (Krajcinovic 1983, Lemaitre 

1986a, Chaboche 1988), yielding 

l(~, ij) = îx<ll(~, w) (2.5.18) 
N 

This form is accepted throughout this thesis for the modeling of damage phenomena. 

To coneinde this chapter, it is stated that general expressions for the 

constitutive equations were obtained from a thermodynamica} framework by the 

. introduetion of the free energy potential and the dissipation potential. 
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3 Damage modeling 

3.1 Introduetion 

The mechanica! properties of materials depend on the damage state, whlch can be 

defined by the existing density, distribution and type of microdefects. Depending on 

their sizes and orientations some of the microdefects will start growing under certain 

toading conditions. In this chapter these phenomena are treated from a phenomeno­

logical perspective. An attractive theory is offered by continuurn damage mechanica. 

CDM is a branch of continuurn mechanics, which is characterized by the 

introduetion of internat field or rather damage variables that represent the local 

distribution of microdefects in an averaged sense (Krajcinovic 1984). In section 3.2 

some concepts in formulating damage variables are discussed. In section 3.3 brittle 

failure mechanisms are modeled, implying that damage evolution is the predominant 

dissipative mechanism and that the current state does not depend on the rate at 

which this state has been realized. A restrietion is made to isotropie damage states. 

A distinction, which is based on the formulation of the criterion for damage 

evolution, is made between brittie and fatigue damage. In section 3.4 anisotropic 

damage is considered. In this case the directional nature of damage is taken into 

account using dyadic products of vector variables. 

3.2 Da.ma.ge variables 

The practical utility of the selected damage variable, depends on its description of 

the macroscopie effects. If the damage is distributed isotropically in a representative 

volume element, a scalar variabie will produce satisfactory results (Davison et al. 

1977, Chaboche 1988, Billardon and Moret-Bailly 1987, Paas et al. 1990a,b,c). For 

highly directional fields a better description may be obtained by the introduetion of 

a vector variabie (Davison and Stevens 1973, Krajcinovic and Fonseka 1981, Talreja 

1985) or a. tensorial variabie (Simo and Ju 1987, Murakami 1988, Weitsman 1988). 

In literature three methods can be distinguished in the modeling of damage. 

1 Taylor series expansions of constitutive equations 
Using the theory of invariants (Spencer 1971) the restrictions, placed on the 

constitutive equations by the assumption of some material symmetry, are taken into 

account. Once a suitable damage variabie is chosen, a basis of scalar invariants of 
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the independent variables, reflecting the symmetries characteristic of the material, 

can be determined. The constitutive equations are obtained by Taylor series 

expansions in the scalar invariants. This approach bas a great generality, since it is 

not confined to small deformations. However, without further simplifications of the 

constitutive equations the experimental characterization is unfeasible due to the 

large number of model parameters. For this reasou in literature an evolution 

equation is either disregarded (Talreja 1985, Murakami 1988), given only in a 

symbolic form (Davison and Stevens 1973, Allen et al. 1987, Weitsman 1988a,b) or 

elaborated for simple toading situations (Krajcinovic and Fonseka 1981, Simo and 

Ju 1987). In section 3.4 a procedure for the modeling of anisotropic damage states 

using dyadic vector products is discussed. 

2 Micromechanical approach 
For infinitesimally small deformations, it is convenient to adopt a micro­

mechanical approach, in which the underlying physics of the failure mechanisms is 

reflected (Krajcinovic and Sumarac 1989, Singh and Digby 1989). The damage state 

is characterized with effective field theories (Budianski and O'Connel 1976, Laws 

and Brockenbrough 1987), which determine the effects of microcrack systems on the 

material behaviour. The criteria for damage evolution and the evolution equations 

are derived using linear elastic fracture mechanics on the microscaler Since many 

materials in structural design, like composites, ceramics and concret~, show linear 

elastic behaviour further study in this direction seems worthwhile. Extensions to 
' 

nonlinear models can he made in combination with Taylor series expansions of the 

constitutive equations. 

3 Effective stress concept 
Consider the representative volume element (RVE) in Fig. 3.1. A surface of .. 
intersec ti on óS is defined by the normal n. Due to the formation of microdefects in 

the RVE the effective load-earrying area, associated with the direction of the .. 
normal n, is reduced from óS to óSe. The damage variabie associated with the .. 
direction of n can bedefinedas (see section 3.4) 

óS Dn = 1-jf (3.2.1} 

If the damage state is isotropic, Dn does not depend on the direction of the 

normal ~ and the damage can be characterized by a scalar quantity D D(~,t), for 

16 



~ ~ 

which D = D(x,t0 ) ;;::: D0 ~ 0 corresponds to the initia! state and D ;;::: D(x, te) ;;:::: De 

< 1 corresponds to complete local rupture. The effective stress tensor can be related 

to the Cauchy stress tensor by (see e.g. Chaboche 1988 and Murakami 1988) 

' 0' 
u= I=u (3.2.2) 

The preceding equation is referred to as the effective stress concept. Considerable 

effort bas been put in the extension of the effective stress concept to a.nisotropic 

damage (Ka.chanov 1986, Murakami 1988). 

Figure 3.1 Da.maged volume element 

The effective stress concept is commonly a.pplied in combination with the 

hypothesis of stra.in equivalence (Lema.itre 1986a., Chaboche 1988). The hypothesis 

of strain equiva.lence states that the effective stress tensor for a damaged material 

can be derived from the sa.me Helmholtz free energy as for a virgin material, i.e. 

'1/P(E) = 1/'(E, D = 0). Using (2.5.10) and (3.2.2) the second Piola.-Kirchhoff stress 

tensor is written as 

P = (1- D)P 
• !li!_O 
P =Po 

OE 
(3.2.3) 

For isotropie damage the effective stress concept and the hypothesis of strain 

equivalence render an easy to use stress-stra.in rela.tion, that is generally a.ccepted in 

the field of CDM. In the next section we will adopt these concepts for the modeling 

of brittie failure mechanisms. 
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3.3 Brittie failure mechanisms 

3.3.1 General theory 

In the following we are concerned with the modeling of brittie failure mechanisms. 

These mechanisms are characterized by the fact that damage evolution is the 

predominant dissipative mechanism. Additionally, the current damage depends on 

the deformation path, but not on the rate at which this path has been followed. 

Then, in the integration of the evoiution equations time acts as a pseudo variabie 

(time-independent behaviour ). 

In the ensuing subsections we distinguish between brittie and fatigue damage. 

Brittie damage develops if relatively large loadings are applied resulting in a small 

number of Ioading reversals until faiture occurs. Modeis for brittie damage have 

been developed for rock and concrete (Krajcinovic and Fonseka 1981, Mazars 1982, 

Simo and Ju 1987, Singh and Digby 1989) and for spalling in case of impact loading 

(Davison and Stevens 1973). For Ioadings well below the material strength, leading 

to a large number of Ioading reversals until failure, different processes are prevalent. 

Throughout, these processes are designated as fatigue damage. Next, the compulsory 

specifications for a complete description of brittie mechanisms are given. 

Independent variables 
A restrietion is made to isotropie damage. Neglecting thermai effects, the 

independent variables are given by the Green-Lagrangestrain tensor E, its material 

time derivative È and a scalar internal field variabie D, that represents the damaged 

state. According to the principle of equipresence, the dependent variables P, 'Ij; and 

D depend on all independent variables 

. . T • 
P = P()6'); 'Ij;= '1/J(ft); D = D()6'); )6' = {E, E, D} (3.3.1) 

Following the theory insection 2.5 (see (2.5.8)-(2.5.11)) we obtain 

p = p)!!l!. ; ~ = 0 
oE OE 

o·'· . . -~D=XD>O 
OD - (3.3.2) 

Stress-strain relation 
The stress-strain relation (3.3.2)t can be refined by accepting the effective stress 
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concept and the hypothesis of strain equivalence, yielding 

P Po (1 - D) !!3/!.
0 

8E 

Then the generalized irreversible force X is given by 

Damage growth criterion 

0 

Figure 3.2 Damage criterion instrain space 

(3.3.3) 

(3.3.4) 

The formulation of a damage model requires the establishment of a criterion for 

damage growth. Here the existence of a reversible domain n in strain space is 

proposed, which contains the origin and which is bounded by the surface r. The 

damage does not change if E E n , but may evolve if E lies on the boundary r or 

outside the domain n. Formally the domain n and its boundary r can be expressed 

as (Fig. 3.2) 

n { El g{E, n) < o} ; r = {El g{E, n) = o} (3.3.5) 

where ". is a parameter that serves as a threshold. In general its value depends on 

the deformation history and the materiaL The following set g is chosen 

g{E, ".) = f'(E)- n 5 0 (3.3.6) 
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where ( is an equivalent strain. In section 3.3.3 "f will be specified. 

Damage evolution equation 
According to the theory in section 2.5, (3.3.2)a is satisfied under the assumption 

that the evolution equation can be derived from a dissipation potentia~ 

Î> = V x<ll(X, I;!J) (3.3.7) 

whlch must be a monotonic increasing function of X. In brittie mechanisms the 

current state does not depend upon the rate at which this state has been realized. 

Then, the evolution function {3.3.7) must be positively homogenrous of degree 1 

with respect to É 

Vx<jl(X, ÀÉ, E, D) =À Vx<jl(X, É, E, D) V À~ 0 (3.3.8) 

Additionally, it is required that the current state can only change if the equivalent 

strain rate is positive. Then, the following evolution equation is proposed, which 

satisfies the aforementioned requirements 

P,= 
[ 

0 

A(E): É 

if g < 0 V (g > 0 A g < 0) 

if g = 0 V (g > 0 A g > 0) 

(3.3.9) 

In the next subsections a detailed discussion concerning the specific choices of the 

dissipation potential and damage criterion is presented for brittie and fatigue 

damage. 

3.3.2 Brittie damage 

For brittie damage it is assumed that the boundary r can not be crossed, thus 

E(t) E { nu r }. The current state can only change if E(t) E r. Then, using (3.3.6), 

the following consistency condition must be satisfied on r 

(3.3.10) 
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This condition describes how the boundary r changes. In fact it states that the 

damage may grow, when the equivalent strain "l reaches the current threshold "'· If 

the material property K.o denotes the initial threshold before any loading is applied, 

we must have that "' ~ K.0 • Combining (3.3.9) and (3.3.10) the evolution law is 

expressedas 

(3.3.11) 

If g < 0 the damage criterion is not satisfied. Accordingly jJ = 0 must hold and the 

damage does not alter. If on the other hand g = 0 further damage may develop (jJ ~ 
0). Without a supplementary specification of the scalar function jJ the damaged 

state can not be determined. For this reason we propose 

A 
{)(. 

{)E 
if g = !J = 0 

Using (3.3.6), (3.3.11) and (3.3.12) the damage evolution equation beoomes 

iJ = { : J{X, E, D) ; 

if ( < K. 

if ( = ,. 

(3.3.12) 

(3.3.13) 

where the current boundary r must be determined by integration of the consistency 

condition (3.3.10). 

Frequently, there is no need for distinction between tensile and compressive 

loadings and it suffices to formulate a damage criterion in the generalized force 

space, hence g g(X, X) with X the current threshold. Then, the evolution equation 

can be rewri t ten as 

iJ= { :x~(X, E, D) X 
if x <X 

if x =X 
(3.3.14) 

The damage variabie is obtained by integration of (3.3.14), which requires the 

precise nature of the damage criterion and the potential ~ to be specified. Taking 

into account that this potential must be a monotonic increasing nmction of X, we 

choose 
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(3.3.15) 

where d f. -1 and c, e ~ 0 and De is a critical damage. Using (3.3.15) and (3.3.12) 

the evolution law is written as 

(3.3.16) 

Integration of the evolution law between the initial threshold X0 and the maximum 

generalized force X yields. 

1 

D =De- [(De- Do) a- (J(X 1- XJ)] ä (3.3.17) 

where a = l+e, 'Y = d+1 and (J = ca'Y-1• Using De = D(X = Xe), with Xe the 

generalized force at complete rupture, we obtain 

V 1 

[
xJ- x1 ]ä D = De-(De-Do) 
xJ- xz 

Damage in uni-axial tests 

(3.3.18) 

The developed damage model will be illustrated with two examples concerning the 

mechanical behaviour of concrete and polystyrene (PS). These materials show linear 

elastic behaviour. In one-dimensional situations, the generalized force X and the 

stress-strain relation are written as 

u= (1-D) av; = (1-D)E0 c ~ ~ = (1-D) ~ OË J:Jo/'ï,e ,..e 

(3.3.19) 

where Eo is the Young's modulus of the virgin materialand 1'ï,c is the rupture strain. 

Substitution of (3.3.19)1 into (3.3.18) yields 
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(3.3.20) 

where Ko is the threshold strain below which no damage growth occurs and e is the 

maximum strain that has been reached during the loading process. In accordance 

with most of the literature on CDM we take Do 0 in the initial state and De 1 

in the final ruptured state. 

Concrete is known to behave as a brittie material that contains numerous 

microcracks and microvoids. From experimental observations, failure in concrete is 

a continuous process, that initiates at low loading levels, with an increasing amount 

of damage for increasing loading levels. The model parameters are listed in table 3.1 

for two different types of concrete (type I and 11). The parameters E0 , ~>o and Kc for 

tension and compression were obtained from Mazars (1982), and Krajcinovic and 

Fonseka (1981) respectively. A typical stress-strain curve for tension loading is 

depicted in Fig. 3.3. (Mazars 1982) together with the model curve resulting from 

(3.3.19) and (3.3.20). In Fig. 3.4 the normalized stress-strain curve for compressive 

loadings, as determined with the present model, is shown. The experimental results 

from Krajcinovic and Fonseka (1981) are marked also, showing good agreement with 

the model curve. 
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Figure 3.3 Concrete under tensile loading 
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Figure 3.4 Concrete under compressive toading 
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Figure 3.5 PS under tensite toading 

Polystyrene (PS) is an amorphous glassy polymer. The tensile behaviour of PS 

bas been the subject of extensive investigations and in particu1ar the role of erazing 

in fracture bas been studiedindetail (Rabinowitz et al. 1973, Chen et al. 1981). The 

breakdown of the craze structure to form a macrocrack is modeled by (3.3.20). The 

data for PS under tension toading are given in table 3.1, where Eo, no and 10c were 

obtained from Rabinowitz (1973). In Fig. 3.5 the stress-strain curve according to 

the present model is shown together with an experimental curve (Rabinowitz 1973). 
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Table 3.1 

Concrete I Concrete II PS 

tension compression tension 

Eo 38 GPa 27.5 GPa 3.3 GPa 

Xo .71·10·4 0 0 

~ 1·10·3 - 6·10·3 2.04·10·2 

a 1 1.25 3.25 

Î -1 1.5 1.5 

From these results it may be sta.ted that a reasonably accurate description of brittie 

da.mage under uni-axialloadings is provided by (3.3.19) and (3.3.20). 

3.3.2 Fatigue damage 

Damage evolution equation 
Under a.lterna.ting loa.ds materials will fa.il at stress levels much lower than they can 

withstand under monotonic loading conditions. This phenomenon is called fatigue. 

Since the number of toading reversals until failure occurs, usually is very large, it is 

also referred to as high cycle fatigue. Fatigue failure involves initiation and growth 

of a da.maged zone, generally developing from a stress concentration site at the 

surface. This is foliowed by the initiation of a macrocrack with subsequent crack 

propagation untill some critical crack size is reached at whlch cata.strophic fracture 

occurs (Sauer and Richardson 1980, Lemaitre 1986a). 

A general theory for the modeling of brittie mechanisms was presented in 

section 3.3.1. In the following the da.mage growth criterion and the evolution 

equation are specified. In fatigue it is assumed that the boundary r of the domain fl 

is not influenced by the deforma.tion history a.nd tha.t the da.mage state changes if E 

~ fl. The damage criterion (3.3.6) now becomes 

g= t(E)- Xo (3.3.21) 

where Xo is a fixed threshold, which is a true material property. We further a.ssume 
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that (3.3.12) holds, whence the evolution law (3.3.9) takes the form 

(3.3.22) 

In this equation the so--called McAuley brackets have been introduced, which are 

defined as 

(x)={: if x~ 0 

if x< 0 
(3.3.23) 

The McAuley brackets express that the current state can only change if the 

equivalent strain is increasing. A close similarity between the models for brittie and 

fatigue damage can be observed. In fact the only distinction is caused by the 

damage surface r, which in case of fatigue is fixed, whereas for brittie damage r is 

determined by the consistency condition (3.3.10). For notational simplicity, (3.3.22) 

is rewritten as 

where H( ·) is the Heaviside step function, which is defined as 

{

0 if x<O 
H(x) = 

1 if x~ 0 

(3.3.24) 

(3.3.25) 

A proper evolution law for fatigue damage should display the following features: 

- in conneetion with experimental characterization the number of model 

parameters should be kept as low as possible, 

- the contribution of tensite and compressive loadings is different. 

Based on these characteristics ~ is chosen as 

(3.3.26) 

where o, /3, 1 ~ 0 are material parameters. Using (3.3.24) and (3.3.26) the evolution 
equation is written as 
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(3.3.27) 

Chaboche and Lesne (1988), who studied fatigue mechanisms in metals using an 

evolution law in which the term oP also occurred, found that the material 

parameter {J may depend on the loading. 

With regard to the choice of the equivalent strain it is noted that for brittie 

materials this quantity should express the important part played by tension strains. 

Therefore, the equivalent strain is defined as 

(3.3.28) 

where ti are principal strains and h is a parameter, which expresses the fact that 

compressive strains are less harmful to damage growth than tensile strains. In Fig. 

3.6 the influence of h on the damage surface as defined by (3.3.21 ), is demonstrated 

for Ko = 1.7 ·10·2 and <:a= 0. 
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it 

Figure 3.6 lnfluence of h on the damage surface 

Damage growth per cycle 
In case of fatigue one is interested in the damage growth per loading cycle. 

Integration over one period [ti-t. ti] with D(tt) =Di yields 
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Di ti 

f D-~dD = f aH(i -n0 ) i'Y ( Ï) dr: 6 (3.3.29) 

Di-l ti-l 

The preceding equation is rewri t ten as 

1 [[t + LlDï ]t-~ 1]- 6D~-l ï=j1 ~ - - I-1 (3.3.30) 

Bearing in mind that {J LlD~i « 1 with LlDi Di - Dï-b the left-hand side of 
1 -1 

(3.3.30) is linearized, yielding 

~ LlDi = 6 Dï-1 (3.3.31) 

The damage after N cycles must be computed by summation over all previous 

cycles. This can be circumvented by rewriting the incremental damage growth per 

cycle (LlN = 1) as 

(3.3.32) 

where f is the frequency of the periodical loading. Then the recurrence equation 

(3.3.31) is replaced by a differential equation for D(N), where N acts as a 

dimensionless time. 
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Figure 3. 7 Block toading Figure 3.8 i as a function of time 
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Consider a body that is loaded in blocks. A block is defined as a series of loading 

reversals between two fixed amplitudes. The kth loading block takes place for N k-1 ~ 

N < Nk cycles with k = l, ... ,n (Fig. 3. 7). The damage evolution in block k is 

expressed as an initial value problem 

dD _ ~ D~k m- Uk 

ti 

Ók = J a H(1- "o) 11 ( i ) dr 

ti -1 

(3.3.33) 

where Dk-1 is the initial value at the start of block k. The integral 6k must he 

calculated for specific loading situations. Consider, for example, the effective strain 

as sketched in Fig. 3.8. Wethen have 

<klfm1 <klfm2 

6k = J a ë1 de+ J a ë1 dé = 

Ko Ko 

a ( -1+1 -1+1 2 1+1 ) 1+l !k)fm1 + <klfm2 - Ko (3.3.34) 

In order to solve the evolution equation, the initial damage D(N=O) = D0 is 

required. This quantity depends on the local microstructure. If the damage is 

homogeneously distributed in a testing specimen, its effects are apparent on a global 

scale. Thus damage growth can he detected by measuring variations in material 

properties, such as the Young's modulus and the density. Due to the localization of 

damage in fatigue, the characterization of the initial damage D0 becomes a difficult 

task. This problem is tackled in chapter 4 by regarding D0 as a random variable, 

whose probability distribution function is established with statistics of extremes. 

Uncoupled constitutive equations 
Under the assumption that the stress tensor is not influenced by the damage, until a 

critica! damage De has been reached at which local rupture occurs, we write 

P = [1 De H(D De)] P (3.3.35) 
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As a result of (3.3.35) the stress-strain relation and the evolution equation have 

become uncoupled. Since the stress-strain relation is not influenced by the damage 

growth, the deformation state is left unaltered during the failure process, implying 

that (3.3.33) can he solved analytically. Then, the damage after Nk = Nk-1 + L.lNk 
cycles is obtained as 

(3.3.36) 

The number of cycles to failure for loading in one block is obtained hy substitution 

of LlNk =Nek, Dk-1 =Do and Dk =De into (3.3.36) 

Consider a loading in two blocks (k = 1, 2). The damage after N 

cycles is obtained as 

(3.3.37) 

(3.3.38) 

Application of the loading in reversed order, first block 2 and then block 1, yields 

(3.3.39) 

If L.lN1 = L.lN2 the damage at N = L.lN1 + L.lN2 cycles will have different values for 

both loading regimes. Thus, the order in which the loading is r applied influences the 

current state. If the parameter f3 does not depend on the loading (/31 = fh) the 

damage is given by 

(3.3.40) 
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If 8N1 = 8N2 identical final damage statea are reached for both regimes. For 

toading in n blocks and constant {J, it can readily be shown that {3.3.36) takes the 

form 

{3.3.41) 

Let the initial damage be given by Do = 0 and the critica! damage by De = L Then 

{3.3.41) reduces to 

[ 
n ]* D{N) = ~ 8Nk/Nq ; {J €[0,1) 

k=l 
{3.3.42) 

It is noted that if D0 = 0, we must have {J f [0,1), since the left-hand side integral 

in {3.3.36) is divergent for {J ~ L In literature the preceding equation is referred to 

as the modified Palmgren-Miner rule {Hwang 1986). If {J 0 {3.3.42) reduces to 

Palmgren-Miner1s linear damage rule 

(3.3.43) 

Because this rule does not require extensive information about the particular 

material being considered, it bas found a widespread application in modern 

engineering science. 

3.4 Anisotropic da.mage 

Introduetion 
In the previous section isotropie damage states were modeled using scalar quantities. 

In case of highly directional damage fields more accurate descriptions of the 

material behaviour are obtained by the introduetion of vectorial or tensorial damage 

variables. The resulting anisotropic damage models can be used to study the 

constitutive behaviour of composite materials {Talreja 1985, Allen et al. 1987, 

Weitsman 1988b, Allix et al. 1987), concrete (Krajcinovic and Fonseka 1981, Simo 

and Ju 1987, Singh and Digby 1988) and metals (Murakami and Ohno 1981). At the 

present state of the development there is no concensus about the choice of a proper 

damage variable. On the one hand a damage variabie should be capable of 
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descrihing the most salient features of damage, on the other hand experimental 

validation of the resulting models should be possible. Furthermore the numerical 

implementation should also be taken into account. Even though an anisotropic 

damage model is to be preferred to an isotropie model on physical grounds, the 

latter may have definite advantages with regard to the numerical solution process. 

Below, the damage formulation and the basic steps in the derivation of a theory for 

anisotropic damage are discussed. 

Damage lormulation 

b, = oA,n, 

Figure 3.9 Vector representation of damage 

Consider a representative volume element d V, situated around a point with .. 
momentary position vector x (Fig. 3.9). Let this volume contain m planar cracks. .. .. 
Each microdefect is characterized by a vector bï(X, t), i = l, ... ,m, whose direction is 

perpendicular to the plane of the microdefect and whose magnitude is a function of 

the defect geometry. It is assumed that the effect of the defect geotnetry can be 

storedintoa single parameter, the effective defect area Mï= 

(3.4.1) 

where ~i is a unit vector normal to the ith defect. If n defect plane orientations in 

dV, each containing ks ·cracks, can be distinguished, then for each :orientation a .. 
vector ds with s = l, ... ,n is defined such that 

ks ks 

~(i,t) I bi = ~sI bi = ds ~s (3.4.2) 
i=l i•l 
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Due to the paucity of detailed information regarding the exact size and location of 

the microdefects, it is proposed that bi = fJA1. Consequently, the joint effect of the 

defects is accounted for by means of the sum of all effective defect areas contained in .. 
the defect plane, thus ds = !: Mi = Ms. From (3.4.2) it follows that d8 ·is not 

dimensionless. For infinitesimally small deformations, this measure can be 

nondimensionalized through division by a characteristic area éS, e.g. any one of the 

walls of the volume element (Weitsman 1988a,b ), teading to 

.. f!As .. éS-fJA .. .. 
ds = cg- ns = ~ ns = ds ns (3.4.3) 

where Me is the effective load-earrying area associated with the direction of the ... 
normal n. If éS is the surface of intersection in the RVE (Fig. 3.1), this expression is 

equivalent to the definition given in (3.2.1) . 
... 

The vector d8 descrihing the defects in the deformed configuration is .. 
transformed to the vector Ds, belonging to the reference configuration. Consider a .. 
defect plane, in which the effective defect area Ms is spanned by two veetors dx and .. 
dy. The following transformations must hold 

(3.4.4) 

In the sequel the joint effect of the microdefects in all planes in the volume 

element is accounted for by representing the damage as a summation of dyadic 

products 

n n n 

A= l As= l ds~s = J F-e, l bsNs · F-1 (3.4.5) 
s=l s=l s=l 

From (3.4.5) the following symmetrie damage tensor can be derived 

(3.4.6) 

Dis an invariant quantity, since it is not influenced by rigid body rotations. 

33 



In case of isotropically distributed damage consisting of mieroderects of equal 

areas, (3.4.5) can be rewritten as 

n n 

A=lim~2 As=lim~2 d~s~s=~l (3.4.7) 
n-+oo s:t n-+oo s=l 

Hence, the damage tensor is no longer dependent on the direction of the normal ~ 
and the macrosymmetry of a material is not affected by homogeneously distributed 

microdefects. Since a vector representation does not satisfy this expectation, the 

dyadic representation is to be preferred. 

Constitutive theory 
For brittie damage and isothermal conditions, the independent variables are 

represented by the Green-Lagrange strain tensor E, its material time derivative È 

and the tensor D. Using the principle of equipresence the dependent variables P, 1/J 

and .ó are functions of all independent variables 

. . T • 
P = P(f8) ; 1/J = 1/J{~) ; D = D(f8) ; f8 = {E, E, D} {3.4.8) 

Following the theory described in section 2.5 (see (2.5.8)-(2.5.11 )), we ~btain 
I 

P Po!t!/!. 
oE 

!t!l!. = 0 
öÈ 

where X is the irreversible generalized force associated with the flux .ó. 

(3.4.9) 

Inequality (3.4.9)a is satisfied if a potential <1> exists, such that the damage 
evolution is given by 

(3.4.10) 

where <I> must possess a non-negative radial derivative and an absolute minimum at 

X = 0. The damage criterion and the evolution equation can be established 

analogously to the procedure foliowed in sections 3.3.1 and 3.3.2. The existence of a 

reversible domain fl in strain space is proposed, which can not be crossed. The 

damage state can only change for E E r (Fig. 3.2). The domain and its boundary 
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can be defined by (3.3.5) and (3.3.6). Since the boundary r can not be crossed, the 

following damage consistency condition holds 

(3.4.11) 

In correspondence with (3.3.11) the evolution law is written as 

(3.4.12) 

where jJ. is a scalar function that defines damage growth. If g < 0 the criterion 

(3.3.6) is not satisfied and hence jJ. = 0. If g = 0 damage growth may take place and 

using (3.3.12) the scalar function jJ. is defined by 

(3.4.13) 

Thus the evolution equation reads 

[ 

0 if ( < ,.. 

I) = V J (X, E, D) i i{( = ,.. 
(3.4.14) 

The current damage surface follows from integration of (3.4.11). 

The constitutive theory is completely defined by the stress-strain relation 

(3.4.9)t, the consistency condition (3.4.11) and the evolution equation (3.4.14). In 

Appendix A the stress-strain relation is elaborated for isotropie material behaviour 

by expanding the dependent variables into Taylor series of scalar invariants of the 

independent variables. It is demonstrated, that even for a linear stress-strain 

relation extremely complex roodels are obtained, which require drastic 

simplifications to accomplish the model characterization. 
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4 A stochastic approach to damage rnadeling 

4.1 Introduetion 

Due to the presence of flaws with unknown dimensions and positions, the strength 

and the lifetimes of solids act as statistkal variables. In structural design the 

modeling of the scatter in strength and in fatigue data is carried out with S()-{;alled 

statistkal strength theories (Weibulll953, Cassenti 1984, Sheikhand Ahmad 1987). 

In these theories faiture is commonly based on a weakest link assumption, which 

expresses that a structure will fail, if in some component a strength criterion is 

exceeded. Statistica} strength theories have been implemented in finite element 

metbod codes for analyzing brittie faiture mechanisms (Georgiadis 1984, Kam 1987, 

Van der Ven 1988). 

In CDM the randomness in the damage state is neglected by assuming that 

initially a material is in a perfect state, which results in a deterministic analysis. In 

this chapter the probabilistic aspects of failure processes are taken into account by 

consiclering damage as a stochastic quantity. The theory will be applied to fatigue. 

The characterization of the model parameters in the evolution law is discussed in 

section 4.2. For this purpose it is hypothesized that microcrack growth and 

macrocrack growth can be described by identical relationships. Hence, the concepts 

of classical fracture mechanics can be applied on a microstructurallevel. The effects 

of the cracks on the stress--strain relation are expressed by a scalar damage variable. 

Combining this relationship with concepts from fracture mechanics, a damage 

evolution law is obtained, which is a particularization of the form that was derived 

insection 3.3.3. The parameters in this law are explicit functions of constauts that 

emanate from fracture mechanics. 

In section 4.3 a model is developed for characterizing the statistkal 

distribution of the initial damage. For this purpose a solid is divided into cells, that 

contain random intrinsic damage. If the toading of the solid is globally 

homogeneous, its durability is limited by the largest initial damage of all cells. This 

maximum damage also is a random variable, whose distribution can be determined 

from the statistics of the damage in a single cell. Using experimental data, the 

best-fit values for the cell dimensions, the S()-{;alled elementary cell (EC), and the 

parameters in the damage distribution are obtained. The EC can be related to the 

scale at which micrograpbic damage measurements should be done. Additionally, in 

chapter 6 it will be demonstrated that in the numerical field, where CDM is used to 
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analyze the initiation and growth of macrocracks, the dependenee of the mesh on 

the results is reduced by the introduetion of the EC. 

Once the probability distribution of the initial damage and the evolution 

equation have been established, the damage state can be computed. The integration 

of the evolution equation can be performed either numerically with simulation 

techniques or analytically in case of uncoupled constitutive equations. The fatigue 

lifetime distribution of an elastomeric biomaterial (Biomer) is derived insection 4.4. 

The resulting distributions are compared with test data reported in literature. In 
section 4.5 fatigue in polystyrene (PS) is discussed. In contrast with Biomer, the 
observable phenomena in PS under static and dynamic loadings are different. This 

necessitates different approaches for characterizing damage. Finally, the damage 

growth according to the developed model is compared with optical measurements. 

4.2 AppJica.tion of fracture mechanics in CDM 

Brittle fracture 
With regard to the establishment of the damage evolution equation, some concepts 

of classical fracture mechanics will be discussed in this section. Classical fracture 

mechanics is concerned with the growth of cracks from pre-existing flaws in brittie 

solids. These flaws could be either scratches or cracks which both havie the effect of 

causing a stress concentration. This means that the local stress in the rncinity of the 

crack tip is higher than that applied to the body as a whole. 

The starting point in classical fracture mechanics is the energy balance 

criterion of Griffith (1920). According to this hypothesis a crack in a stressed elastic 

and infinitely extended body will increase if the loss of elastically stored energy 

occasioned by such growth exceeds the surface energy of the freshly created crack 

surface. The hypothesis can be stated quantitatively in the following terms 

(4.2.1) 

where U is the total elastically stored energy in the specimen, A is the interfacial 

crack area and S is the surface energy. Fora linear elastic material it is possible to 

evaluate the left-hand side of (4.2.1) by integration of the strain energy over the 
whole specimen containing the crack. In case of an elliptical crack of length 2Q in an 

infinitely extended plate, loaded at infinity by a stress O'o in the direction 

perpendicular to the direction of the crack, the Griffith criterion prediets that no 
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growth of the crack can occur under conditions where 

(4.2.2) 

It is noted that once the crack begins to grow, the stress necessary to rnaintaio 
growth is continually reduced. Under constant stress, therefore, catastrophic 

propagation should ensue. 

y 

Figure 4.1 Crack tip 

The theory of brittie fracture provides a good qualitative description of the 

fracture behaviour of brittie polymers such as PS and PMMA. However, the 

measured values of S are much larger than the theoretica! surface energies. This 

discrepancy arises because the Griffith approach assumes that the material does not 

undergo plastic deformation. It is known that even if a material appears to behave 

in a brittie manner there is invariably a small amount of plastic deformation at the 

tip of the crack. The energy absorbed during plastic deformation is much higher 

than the theoretica! surface energy. Therefore, the term 2S in ( 4.2.2) is replaced 

with Ge, which represents the total work of fracture. Thus, a crack will start to 

grow in an unstable manoer when 

( 4.2.3) 

Linear elastic fracture meehanics 
LEFM considers the fracture condition in relation to the geometry of a crack. In 

LEFM three different modes of near crack tip deformation can be distinguished, 
mode 1: opening, mode 11: in-plane sliding (shear), mode lil: antiplane sliding 
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(tearing). In the sequel we are concerned only with mode I loading, which is by far 

the most important case in practice. The stress distribution at the tip of the crack, 

i.e. for r -+ 0 in an infinite plate, is given by 

Oïj = O'o ~Q/2r Pïj(O) = JfJ_ Pij(O) 
.f2iiT 

( 4.2.4) 

where K1 is known as the mode I stress intensity factor (SIF), which is a parameter 

that determines the height of the stress distribution ahead of the crack tip. For 

brevity the subscript in the SIF will be omitted. The function Pij is independent of 

the geometry of the cracked body. Hence, the crack tip stresses and the deformation 

fields are fully determined by the SIF. For bi-axial stress conditions (4.2.4) takes 

the form (Broek 1986) 

{ 

0'11 l [( { 1-sin( 8/2)sin(3fl/2) l 
0'21 = --cos( 0/2) sin( fl/2)cos(38/2) 
0'22 {2iiT l+sin( 8/2)sin{3fl/2) 

(4.2.5) 

In LEFM two cracks are supposed to behave identically if they have the same SIF. 

It is convenient to express the fracture conditions in terros of a critical value of the 

SIF. Thus, sudden crack growth occurs when K = Kc, where the critica.l value Kc is 

considered as a material constant. The constraints imposed by the edkes in a finite 

specimen will actually make the value of the SIF larger than is predicted from the 

infinite plate assumption. Then K is a function of the ratio Q/W, where W is the 

width of the plate. It is customary to write the definition of Kin the form 

K= YuoiQ (4.2.6) 

where Y = f(Q/W), so that Y = .fi for Q/W-+ 0. The valnes of the shape factor Y 

can be obtained either experimentally or by means of stress analysis. The LEFM 

solutions predict infinite stresses at the crack tip. Since real matcrials yield at finite 

stresses, the LEFM solutions loose their validity in the immediate vicinity of the 

crack tip. However, the basic assumptions of fracture roeebanies rerhain valid, if 

yielding is confined to a very small plastic zone at the crack tip surrounded by an 

elastic region in which the stress field is governed by eq. (4.2.4). 

In fracture roeebanies fatigue crack growth is described by the empirical Paris 

law (Williams 1984) 
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(4.2.7) 

where D.K = Kmax - Kmin is the SIF range and a and b are material constants. 

Damage evolutîon equation 
The evolution equation (3.3.33) contains three parameters. With respect to the 

characterization of these parameters it is hypothesized that microdefect growth and 

macrocrack growth can be represented by identical relationships. Consequently, the 

theory of fracture mechanics can be applied to describe microdefect growth and 

possibly da.rnage growth, if a relation between the da.rnage variabie and the 

microcrack configuration is a vailable. Several reasons in support of this assumption 

can be given. 

Due to the localization of damage the conventional experimental methods, which 

measure variations in global material properties, are not suited. 

Measurements are disturbed by the uncertainty in the initia! da.rnage state. 

- The resulting model forms a particularization of eq. (3.3.33). The model 

parameters are explicit functions of the constantsin the Paris law, such that the 

model characterization becomes a straightforward task. 

- Andrews (1969) succesfully applied this assumption to microcrack growth in 

polymers. 

- In sections 4.4. and 4.5 its validity is demonstrated for real materials. 

From optica! measurements an identical damage evolution is observed (see 

section 4.5). 

Next, the relation between the damage variabie and the microdefect 

configuration is discussed. For specimens containing microcracks, the stress-strain 

relation is influenced, resulting in a stiffness rednetion in comparison with a virgin 

specimen. Effective field theories have been developed to determine the dependenee 

of the crack density and the crack geometry on the mechanical behaviour 

(Budianski 1976, Horii 1983, Laws 1987). For a small density of isotropically 

distributed microcracks, the SIF and displacement jumps of each crack are given 

accurately by those of one crack in an infinite medium. In case of an array of m 

randomly oriented cracks of constant length 2Q in the surface element t5S, and 

consirlering plane loading conditions, the material deterioration is expressed as 

(Budianski 1976) 

D~ (4.2.8) 
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For the procedure to be employed, the damage variabie is written as 

(4.2.9) 

where an equivalent crack length c is introduced, which must he thought of as the 

crack that has the same effect as the ensemble of smaller cracks within the surface 

element 68. Using {4.2.8) and (4.2.9) the effective defect size for cracks of constant 

length 2Q must necessarily be given by 

{ 4.2.10) 

Using ( 4.2. 7) to predict the microdefect growth in a surface element 8S tagether 

with {4.2.9), the damage evolution becomes 

{4.2.11) 

In sections 4.4. and 4.5 it is demonstrated that elaboration of this equation leads to 

particularizations of the damage growth equation (3.3.33). The evolution equation 

actually is an initia! value problem requiring an initia! value. Next, attention is 

given to the characterization of the initia! damage. 

4.3 The stochastic nature of damage 

A characteristic of fatigue failure processes is that a scattering in lifetimes will be 

observed for identically shaped materials under identical loading conditions. This 

phenomenon is caused by different initia! damage states, i.e. the exact positions and 

dimensions of microdefects in the material are unknown. The resulting stochastic 

failure processes can he modeled by consirlering the damage and consequently the 

effective defect size as stochastic variables. In the following a model is developed for 

determiniiig the corresponding probability distribution functions. In order to 

distinguish between deterministic variables and stochastic variables, the latter are 

marked with an underscore. Consider a body that is divided into n cells with surface 

é'Si (i = 1,2, ... ,n). According to eq. (4.2.9) the relation between the damage and the 

effective defect size in cell i is written as 

( 4.3.1) 
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In a globally homogenrous stress field failure is initiated in the cell with the 

largest initial defect size. The magnitude of the largest defect size is a stochastic 

variabie as well, which is denoted as fm· The cumulative distribution function 

(CDF) of the maximum defect size is expressed in terms of those of the fi by 

realizing that 

If the defect sizes are independent ( 4.3.2) can be written as 

F~m(c) = P(Qt ~ c)P(f.2 $ c) ... P(Qn ~ c) 
n 
Il Fe 
i. 1 -i 

( 4.3.2) 

( 4.3.3) 

If all the fi are identically distributed, the CDF of the defect size in a cell with area 

éSi is given by 

c 

F~i(c) = F~(c; éSï) = Jf~(c; éSï) de ( 4.3.4) 
0 

where f& is the probability distribution function (PDF) of each of the Ci. The cell 

surface éSi acts as a parameter in the PDF. If, in addition, the body consists of n 

equally sized cells, ( 4.3.3) reduces to 

( 4.3.5) 

In this expression F ~ is referred to as the parent distribution and F ~m is the 

maximum extreme-value distribution of the effective defect sizes (Augusti 1984). 

The PDF of fm is obtained by differentiating (4.3.5) with respect to c 

( 4.3.6) 

The PDF of .Q is determined by the following transformation 

fc(c) ~~~ 
- dD 

(4.3.7) 

Combining (4.3.7) and (4.3.6) the PDF of the maximum damage in a body of n cells 
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is given by 

fD (D) = n[Fc(c)] 0
-
1 fc(c) ~~~ 

_m - - dD 
(4.3.8) 

Let the PDF of the damage in a cell be distributed exponentially 

(4.3.9) 

This choice is a particularization of the parent distribution function fpr a so-called 

Gumbel or type I maximum extreme value distribution (Lewis 1987}, which results 

from letting n in (4.3.6) become large. Using (4.3.9), (4.3.1) and (4.3.7), we obtain 

fc(c; >.,óS) = (2c>.fóS)exp(->.c2/óS) (4.3.10) 

From (4.3.4) it follows that the CDF of the defect size is given by 

F~(c; >.,óS) = 1- exp(->.c2/óS) (4.3.11) 

After substitution of (4.3.10) and (4.3.11) into (4.3.6) the PDF for rhe maximum 

defect size distribution in a body containing n cells is given by 

[1-exp(->.c2/óS)] 0
-
1 ; n=A/óS ( 4.3.12) 

where A is the specimen area. Using (4.3.8) and (4.3.9) the PDF of the maximum 

damage in a specimen is obtained as 

fDm(D; >.,n) = n>.exp(->.D)[1- exp(->.D)] 
n-1 

( 4.3.13} 

The PDF (4.3.12) contains two unknown model parameters {>., óS}, which 

need to be determined from experimental observations. Suppose an experimental 

distribution f is available, then the best-ftt parameters >. = ~ and óS = Aec are 
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obtained by minhnizing the merit function 

(4.3.14) 

that measures the agreement between the experimental frequency distribution f and 

the theoretica! PDF. The best-fit parameter Aec is referred to as the elementary cell 

(EC) size. The minimization is carried out with a Levenberg-Marquardt algorithm 

for nonlinear optimization probierus {Press et al. 1986). 

The derivation of the experimental frequency distribution for the maximum 

defect size is feasible only if the material shows localized failure under both static 

and dynamic loadings. For rubbery matcrials this condition holds. For glassy 

polymers, however, significant discrepancies between the failure processes under 

static and dynamic loadings may arise. For example, PS under static loadings 

exhibits a global decrease in rigidity (see Fig. 3.5), whereas in fatigue processes 

localized failure occurs. Under these circumstances the minimization procedure 

should be applied to lifetime distributions. Both procedures will be discussed in the 

next sections. 

4.4 Fatigue in rubbers 

lnitial damage distributton 

Î # 
"' 

f------7 
~ w 

I I ~ 

~ .. ~ 
<E----------- L 

Figure 4.2 Testing specimen divided into n cells with area bS 

In this section fatigue mechanisms in rubbers are discussed. Rubbers are highly 

flexible crosslinked networks. In common with other crosslinked polymers rubbers 

fracture in a brittie manner in the sense that any plastic flow is very local, but this 

is accompanied by large elastic deformations (Young 1983). Rubbers exhibit 

localized failure under both static and dynamic loadings. Then static tests can be 
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carried out to derive the experimental distribution of the maximum defect size in 

the specimen. 

The experimental CDF of the maximum defect size follows from the fact that 

for any perfectly brittie material the breaking strength is controlled by the size of 

the defects present in the structure. The strength of a body can be increased by 

reducing the size of these defects. The reduction of the size of artificially induced 

cracks clearly also causes an increase in the strength of materials. When the crack 

size is reduced below a critica! level, the breaking strength shows no further 

increase. The materials therefore behave as if they contain natura! defects of these 

critica! sizes. Two tests are required for the derivation of the experimental CDF. 

1 A test, in which the distribution of the breaking strength gu in a population of 

virgin specimens is determined. To apply the theory of section 4.3 this test must 

be carried out under homogeneous loading conditions (Fig. 4.2). 

2 A test, in which arelation between the breaking strength ub and the maximum 

effective defect size Cm is determined by varying the size of artificially induced 

cracks. 

Combining the results of both tests, the experimental distribution of the maximum 

defect size in a specimen is expressed as 

( 4.4.1) 

An experimental maximum initia! defect size distribution was obtained for the 

biomaterial biomer by Gadkaree and Kardos {1984). The specimen dimensions were 

L = 25.4 mm and W = 6.6 mm (Fig. 4.2). The specimen strength was described by 

a normal distribution with mean p = 41.12 Nmm·2 and standard deviation s = 1.393 

Nmm·2. The results of the second test are depicted in Fig. 4.3. The model 

distribution (4.3.12) was used to fit the experimental distribution. The best-fit 

model parameters were obtained as ,\ = 437.8 and Aec = .385 mm2. The (parent) 

distribution of the initia! defect size in an EC (4.3.10) and the maximum initia! 

defect size distribution (4.3.12) are plotted in Fig. 4.4. The effect of the cell area on 

the damage state is demonstrated in Fig. 4.5, where the PDF of the maximum 

damage in a cell with dimensions kAec (k = 1,2, ... ,n = A/Aec = 436) is plotted for 

five distinct values of k. The values k = 1 and k 436 correspond to the parent and 

the extreme value distribution in Fig. 4.4. It is noted that the dimensions of an EC 

are within the scale fora representative volume element (RVE), which for polymers 

ranges from 0.1 mm to 1 mm. Up to the present the scale of an RVE was 
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determined through micrographic measurements, which may lead to ambiguous 

results. The developed procedure can be used to compute the dimensions of an RVE, 

which might solve the question of scale as discussed by Lemaitre (1987). 
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Figure 4.3 Breaking strength vs crack length from Gadkaree and Kardos (1984) 
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defect sizes in Biomer 
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Figure 4.5 PDF of damage for different cell dimensions kAec 

Failure of the specimen in Fig. 4.2 occurs, if the damage reaches a critica! 

value De. in one of the cells. Two failure definitions, which only differ in the choice 

of the cell size, are stuclied for both coupled and uncoupled constitutive equations. 

(1) 
(2) 

Failure occurs if the damage in an EC reaches a critica! value, thus óS = Aec. 
Failure occurs if the damage in a strip with dimensions w·~ (Fig. 4.2) bas 

reached a critica! value. This event corresponds to total rupture. Under these 

circumstances the Marquardt minimization is performed with a fixed cell size 

óS = w~, yielding ,\ = 2920. 

Damage evolution law 
Because Griffith's criterion for crack propagation assumes linear elasticity, it can 

not be directly applied to materials which display large strains and nonlinear 

stress-strain behaviour. The so-called tearing energy approach, which bas been 

worked out by Rivlin and Thomas (1953), gives a result more general than, but 

inclusive of, the Griffith criterion. It is still limited toelastic materials, but requires 

neither linearity nor small strains. For elastomeric materials the Paris law for 

fatigue crack growth is expressed as 

( 4.4.2) 
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where a and bare crack growth constauts and nT is the range of the tearing energy 

in a cycle. In what follows the minimum tearing energy is taken zero, i.e. loading 

between fi 0 and fm L Following Gadkaree and Kardos (1984) the tearing 

energy for a crack in a specimen under uni-axial tension is taken as 

T = 2B c '1/f'(t) ( 4.4.3) 

where '1/f is the elastic potential of the undamaged material and B is a slowly 

varying function of strain, decreasing from its classica! value of 1r at infinitesimal 

strains to a value around unity at very large extensions (Williams 1984). Using 

(4.2.9) and (4.4.3), the crack growth law (4.4.2) can he transformed to 

( 4.4.4) 

where f3 = !{b+1) and p = 2b+1a Bb óSif-1. 

The constitutive equation for the damaged material is expressedas (see (3.3.19)) 

( 4.4.5) 

where t is the natural (logarithmic) strain and e and mare material constants. 

Using ( 4.4.5) the evolution law is expressed as 

( 4.4.6) 

w= b(m+l) 
m 

This evolution law is a particularization of eq. (3.3.33). The parameters /3, 'fJ and w 
are given explicitly in terms of the constants a, b in the Paris law and e, m in the 

free energy potential. The data for Biomer are given in table 4.1 (data in first 

column from Gadkaree and Kardos 1984). 

Tests were performed at (J = 10.89 Nmnr2, thus 77 = 0.1 for failure according 

to definitiori ( 1) and 77 = 0. 768 for failure according to definition (2 ). It is remarked 

that with the evolution law and the initial damage distribution, all ingredients for 

the computation of lifetime distributions are available. 
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Results 

Table 4.1 Data for Biomer 

B = 1.6 

e = 11.1 Nmm-2 

m = 1.54 

b= 2.5 

éS = .385 mm2 

À= 437.8 

f3 = 1.75 

w = 4.123 

In what follows, the lifetime distri bution of a. population of Biomer specimens is 

deterrnined. The CDF of the number of cycles to failure is defined as 

Ne 
FN (Ne):: 1- R(Nc) = f fN (N) dN 

_e 
0 

_e 
(4.4.7) 

where Ris called the reliability. If the damage growth is.described by the nonlinear 

differential equation (4.4.6), i.e. the constitutive equations are couple~, the lifetime 

distribution must he computed with simulation techniques. The solution process 

then consists of performing a series of numerical experiments. In each experiment a 

realization of the intrinsic damage is chosen as an input quantity. Th$! the damage 

is computed by a deterministic analysis. Finally, the lifetime distri bution is 

obtained from the total of responses. 

Using the data in table 4.1, eq. (4.4.6) is solved for three different maximum 

stresses with initial value Do = 1.46·10-3 (see Fig. 4.6). The results confirm that it 

is extremely difficult to characterize the damage through variations in global 

material properties. Furthermore, the dominant role of the stresses in the failure 

process is demonstrated. 

An analytical solution for the lifetime distribution can be derived, if the 

constitutive equations are uncoupled. In this case we have an explicit relation 

between the number of cycles to failure and the intrinsic damage Ne = Nc(D0 ). 

Hence, the PDF for the number of cycle'S to failure is given by 

( 4.4.8) 
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Using (4.3.13) and (4.4.8), (4.4.7) reads 

De 

F!ic(Nc) = J f!!m(Do) dDo 
Do(Nc) 

= [1 
n n 

exp(-.\Dc)] - [1- exp(-.\D0 )] 

Using (3.3.37) and exp(-.\Dc) << 1, (4.4.9) reduces to 

[ [ 
1-~ 1 ] ] n F!ic(Nc) = 1- 1- exp -À[ De - (1-,8)8 Nc]l-[} 

(4.4.9) 

( 4.4.10) 

The uncoupling is advantageous, since no computational effort has to be put in 

performing numerical experiments. However, the main benefit of this approach is 

that the derived lifetime distributions can be used in the characterization of the 

parameters in the damage distributions. The uncoupling is required if static loadings 

display nonlocal damaging. Therefore, it will be adopted in the next section, which 

deals with fatigue processes in polystyrene. 
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Figure 4.6 D as a function of N 

Four situations were studied: faiture according to definition {1) and (2) using 

either. coupled or uncoupled equations. The CDF of the number of cycles to failure 
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for the coupled equations is calculated by perfornling 50 numerical experiments. The 

resulting lifetimes are fitted toa two-parameter Weibull distribution 

(4.4.11) 

It is found that v 6.1 and No= 193 for definition (1) and v = 4.9 and N0 254 

for definition (2). The CDF for the uncoupled equations is given by eq. (4.4.10). The 

CDF's are depicted in Fig. 4.7. The results are compared with data from tensile 

fatigue experiments on Biomer specimens (Gadkaree and Kardos 1984). In these 

experiments 10 virgin specimens were loaded sinusoida.lly at a frequency of 0.1 Hz 

between 0 and 10.89 MPa, yielding curve 1 in Fig 4.7. It may be stated, that for 

failure according to definition (2) the CDF of the uncoupled constitutive equations 

shows only slight deviations from the CDF of the coupled constitutive equations, 

whereas for failure according to definition (1) larger deviations are observed. 

Besides, the conservative estimate of the lifetime distribution is improved by the 

uncoupling. 
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A Kolmogorov-Smirnov test of goodness of fit (Augusti et al. 1984) is used to 

investigate whether the lifetime distributions (4.4.10) and (4.4.11) are capable of 

predicting the experimental distribution. To apply the test, the experimental CDF 

as well as the theoretica! CDF must he evaluated for each distinct observation. The 

distri bution Q of the maximum value of the absolute differences ~ between the two 

distributions is calculated giving the significanee of any observed non-zero value of 

~- Consiclering the curves 1 and 3 we compute ~ 0.2 at Ne = 279. For n 10 the 

significanee level is P(~ < 0.2) = Q(v'ITJ·0.2) = 0.82 (see Appendix B). Since the 

significanee level is sufficiently large, there is no reason to reject the hypothesis that 

CDF (4.4.11) does describe the lifetime distribution. Similar tests can be performed 

on the curves 2, 4 and 5. 

4.5 Fatigue in glassy polymers 

Damage phenomena 
In this section the fatigue behaviour of polystyrene (PS) will be investigated. The 

fatigue phenomena in PS are illustrated with experiments conducted by MeMaster 

et al. (1974). The testing specimens were cylindrical and had a reduced diameter 

section. The tests were conducted in reversed tension-compression at 26 Hz. At this 

frequency the specimens could be tested without excessive heating. A typical fatigue 

fracture surface is sketched in Fig. 4.8. There are four distinct regions visible. 

Region Rl, a region of slow stable crack growth, is a small, more or less 

semi-eireular area surrounding the fracture source, generally a surface defect. 

Region R2, is a smooth region of increasing crack velocity. As the crack advances, 

the average stress rises and many erazes occur ahead of the crack tip, resulting in 

the much rougher zone R3. The line of demarcation between R3 and R4 represents 

the furthest penetratien of the fatigue crack before catastrophic failure occurs. 

In section 4.4 the experimental initia! defect size distribution was derived from 

static experiments. This procedure worked because rubbers under static or dynamic 

loadings show localized damaging. For PS specimens in static tension tests, there is 

an extensive erazing over the entire specimen prior to fracture (Sauer and 

Richardson 1980). Phenomenologically the darnaging of PS specimens under static 

tensile loads results in a global stiffness reduction (see Fig. 3.5), which is in 

contradiction with the local damage processes in fatigue. For this reason the PDF of 

the maximum initial damage can not be determined by performing static tests as 

was discussed in the previous section. In this section a different approach is applied. 
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In genera!, it is required to settie on an expression in which the parameters 

characteristic for the initial damage distribution occur. Such an expression is 

provided by eq. (4.4.10). lt is noted that this CDF is valid for uncoupled 

constitutive equations. Using this expression in combination with data on lifetimes, 

a minimization procedure can be carried out to obtain the best-fit parameters. 

Choosing De = 1, the CDF contains four model parameters À, n, P and o. The 

parameters À and n originate from the initia! damage distribution and P and o 
originate from the evolution law (3.3.33). Before computing the initia! damage 

distribution, the parameters P and o must be characterized. 

Figure 4.8 Fatigue fracture surface of PS specimen 

Damage evolution law 
The fatigue life of glassy polymers is controlled by the events teading to crack 

initiation and by the fatigue crack propagation in region RL In fact the number of 

cycles spent in regions R2 to R4 amounts to a small fraction of the total life. The 

fracture source, which is situated at the specimen surface, can be modeled as an 
elliptical surface crack. In this case the mode I SIF is given by (Williams 1984) 

(4.5.1) 

( 4.5.2) 

where c and q are the minor and major axes of the ellipse and <p is a parametrie 

angle, which is related to the real angle fJ by tanfJ = (cfq) tan<p (see Fig. 4.1). For 
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reasoos of simplicity semi-eireular cracks ( cf q = 1) are considered, thus ( 4.5.1) 

takes the form 

(4.5.3) 

Since the crack size c is many times smaller than the specimen diameter, the SIF 

will approach the value predicted by (4.5.3). Substitution of (4.5.3) into (4.2.11) 

yields the damage evolution for loading between 0) = 0 and O'm = q 

dD - R b - b+l -b j)-1 
ON = t5 DP u ; P = ih+l ; t5 = 2 11' Y a fJS (4.5.4) 

As this relation is a particularization of evolution equation (3.3.33), the parameters 

in the evolution law have become explicit functions of the constants in the Paris 
law, which for PS specimens, loaded at a frequency of 10 Hz, were determined by 

Skibo (1976) (see table 4.2). 

Table 4.2 Data for Polystyrene 

Aec = 30.21 mm2 

À= 96311 

P.n = 2.65 .w-s 

a= 1.347 ·10-s w3·6mm-H 

Initial damage distrilJUtion 

b 3.6 

h = 0.42 

O'f = 0 

The maximum initial damage distribution is derived by dividing the testing 

specimen into cylindrical cells, which contain random surface defects. If the initial 
damage in one cell is distributed exponentially, the maximum initial defect size 

distribution is given by (4.3.12), whence the CDF for the lifetime is given by 

( 4.4.10). The experimental lifetime distribution was obtained from Sauer et aL 

(1976). Now that we have disposal of an experimental lifetime distribution and a 

model distribution function, the minimization procedure can be carried out. For 

loadings ranging from O'm = 34.4 MPa to 01 = 0 the best-fit model parameters are 
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derived as A = 96311 and Îl = 6. 708. In Fig. 4.9 the parent distri bution of the initia! 

defect size (4.3.9) together with the maximum initia! defect size distribution 

( 4.3.12) are shown. The mean maximum defect si ze is Jtc = 2.83 · 10-2 mm and the 

conesponding mean value of the maximum damage is given in table 4,2. This defect 

size agrees well with the maximum intrinsic defect size in a kindred glassy polymer 

PMMA, which was estimated to range bet ween 3-3.5 · 10-2 mm ( Andrews 1969). 

In order to investigate the magnitude of intrinsic defects in PS, artificial 

defectsof various depthwere made in the specimens by MeMaster et al. (1974). The 

specimens were tested in reversed tension-compression at a stress ranging from 

-17.2 MPa to 17.2 MPa. Below a certain threshold defect size, i.e. the maximum 

initia! defect size, no further increase in lifetime was possible. This threshold defect 

size corresponds to the mean defect size in unnotched specimens. MeMaster et al. 

(1974) found J.Lc = 0.021 mm, which agrees well with the initia! defect size that was 

derived from the minimization procedure. 
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Figure 4.9 Parent PDF (curve 1) and extreme value PDF (curve 2) of 

initia! defect sizes in PS 

Effects ofmean stress 

The influence of the mean stress U meao = •12( Urn + u1) on the fatigue lifetime was 

studied by Sauer et al. (1976). The alternating stress ua = •h(um - 0'1) remained 

constant at 17.2 MPa during the experiments. The maximum stress acting on the 

specimen varied from 17.2 MPa to 34.4 MPa. In Fig. 4.10 the mean stress versus the 

number of cycles to failure is shown. In addition, calculations were carried out with 
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the data in table 4.2. Using (3.3.37) the fatigue lifetime for loading between two 

stress amplitudes is given by 

- 1-j3 --· Ne = Ne [1 - Do ] ; Ne = (1 - /3) 6 (4.5.5) 

Extension of ( 4.5.4) to compressive loadings can be performed using (3.3.28) and 

(3.3.34). Then, we find 

(4.5.6) 

The effects of the compressive stresses on damage evolution are accounted for by the 

factor h. The theoretica! results are depicted in Fig. 4.10. As the mean stress 

increases, the number of cycles to faiture decreases, which is predicted by the model. 

lt is noted that for different mean stresses the deviations from the experimental 

results are small. This indicates that the parameters in the evolution equation are 

independent of the loading amplitudes. Hence, at every instant the current damage 

is represented by eq. (3.3.41). 

20r--~-~---~-~-~---, 

18 

16 

14 

~ 12 

! 10 

I : 
4 

2 

• : present research 
o : Sauer el al. (1976) 

%~--o~.s--T-~1.5,-~2-~~~~~ 

N[-1 x104 

Figure 4.10 mean stress vs N 

An optical method for damage measurements 
In the foregoing it was assumed that microcrack growth and macrocrack growth are 

ruled by identical relations. Then damage evolution equations were derived from 

fracture mechanics. In the following the consequences of this assumption are set 

against optical measurements performed by Chen et al. (1981), who used a reflected 
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light metbod to determine the onset and growth of erazes during fatigue loading. 

Since PS is transparent and since erazes tend to form at right angles to the applied 

stress direction, the erazes act as a reflecting mirror and a beam of light will be 

transmitted if it does not meet any crack. Fig. 4.11 (a) shows the reflected light 
intensity for a PS specimen during fatigue loading as a function of the number of 

cycles. The test was conducted in completely reversed tension-compression at a 

stress level of 17.2 MPa and a frequency of 21 Hz. In this particular PS sample the 

first surface craze was detected at about 45% of the cycles required for fracture, 

which occurred at approximately 11800 cycles. Visual examination of the specimens 

during cycling and after fracture showed that erazing had developed in only one 

local area. 

Using (3.3.41) the damage is computed as a function of the number of cycles. 

In this particular problem the initial damage value is chosen as Do = 2. 7 ·10-4. The 

results are shown in Fig. 4.11 (b) for D $ 10-1. A close similarity between the 

reflected light intensity curve and the damage evolution curve can be observed. 
Indeed, it can be verified that the damage evolution is proportional to the increase 

in the reflected light intensity. This renders further evidence for the correctness of 

the developed theory. It is stated that reflected light measurements are appropriate 

for characterizing damage evolution. Optical measurements are non-destructive and 

easily carried out, while giving information about the local damag~ state. Their 

application, however is limited to translucent materials. In case of non-translucent 

materials ultrasonic waves measurements should be utilized. 
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5 Numerical procedurffi 

5.1 Introduetion 

For practical applications involving inhomogeneons deformations the equilibrium 

equation and the constitutive equations must be solved numerically. Since 

dissipative mechanisms take place, a partienlar analysis includes path dependent or 

time dependent phenomena. Dissipative mechanisms will be represented by a set of 

scalar internal variables. Throughout the complete history of load application, the 

equilibrium relation must be satisfied. The equilibrium state is susceptible for 

variations in the current values of the internal variables. The evolution equations 

for the internal variables in turn depend on the current state. 

The response calculation is carried out by transforming the equilibrium 

relation into an integral form, using the principle of weighted residuals. Then, the 

time domain is discretized and an incremental solution process is applied. Here it is 

assumed that the solution for the discrete time tn is known and that the solution for 

time tn+t is required. After linearization of the integral equation an iterative 

procedure for the calculation of the position vector field at tn+t is derived, which is 

exposed in section 5.2. 

The current values of the internal variables are evaluated by integration of the 

rate equations, which is discussed in section 5.3. In the first iteration an estimate for 

the internal variables is computed with an explicit integration method. In the next 

iterations the successive corrections to this estimate are computed with an implicit 

method. In order to deal effectively with computing times, an automatic stepsize 

selection procedure is used. 

In section 5.4 the iteration equation is discretized with the finite element 

metbod and an isoparametrie plane stress element is derived. The solution process 

for the coupled equations consists of the following stages. In each iteration the 

evolution equations are integrated in order to evaluate the corrections to the 

internal variables. Then, the finite element equations are solved in order to evaluate 

corrections to the iterative changes of the nodal point positions. If some convergence 

criterion is satisfied the iterative procedure is terminated and the solution process is 

continued at the next time. Other solution strategies accept a weak coupling or use 
uncoupled equations. In section 5.5 the solution process is ciarifled for fatigue 

processes. In section 5.6 a test analysis is carried out to investigate some numerical 

aspects concerning accuracy and computing times. 
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5.2 Discretized equilibrium 

Governing equations 
Before descrihing the numerical solution process, the relevant equations are recalled. 

Omitting inertial effects and body forces the local balance equation of momenturn 

(2.3.2) is given by 

.. .. 
V·u=O (5.2.1) 

The constitutive equation for the stress tensor is given by 

(5.2.2) 

The rate equation for the internal variables is expressedas an initial v~lue problem 

. T . 
z = m w) ; z(t = 0) = z0 ; w = { E, E, z } 
N ~\N N N N N 

(5.2.3) 

Weigthed residuals 
In order to establish a suitable form for the equilibrium equation the principle of 

weighted residuals is used, resulting in an integral equation, which forms the basis 

for the finite element approximations at discrete times in the loading history. 

According to the principle of weighted residuals the equilibrium equation is 

equivalent to the requirement that at every instant and for all admissible weighting 

functions .;., the following integral equation must be satisfied (Zienkiewicz 1977) 

J 
.. .. 
w • (V· u) d V= 0 ( 5.2.4) 

V 

where V is the current volume of the body. Using integration by parts and Gauss' 

theorem, the so-called weak form of the principle of weighted residuals is obtained 

J .... c ! .. .. 
(Vw) : u d V = w · p dS (5.2.5) 

V s 

.. .. .. 
where p = u·n is the external force on the deformed surfaceS and nis the outward 
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unit normal on S. Here the admissible weighting functions must be piecewise 

differentiable. Since the current configuration is unknown the integrals can not be 

evaluated. Therefore, all quantities will be formulated with respect to the initial 

configuration. Using (5.2.2) and the transformations 

(5.2.6) 

where the subscript 0 denotes that the quantities are defined with respect to the 

initial configuration, (5.2.5) takes the form 

.. 
Vw (5.2.7) 

Vo So 

Time discretization and linearization 
The requirement that the principle of weighted residuals must be satisfied at every 

instant will be relaxed and replaced by the requirement that this must be true for a 

discrete number of times t = t0, t1, ••• , t 0 • The time discretization results in an 

incremental solution process. It is assumed that the solutions up to time tn are 

known and that the solution at tn+l = tn + t.tn is to be determined. 

At time tn+l the integral equation (5.2.7) is solved numerically. An iterative 

procedure, for determining the position vector field and its related quantities, is 

derived by writing all unknown quantities as the sum of an approximation of and a 

deviation from the exact solution. In the sequel we denote the real value of a 

quantity qat time tn+t by q(tn+t). An approximation for q(tn+t) obtained in the ath 

iteration is denoted as q:+t and the corresponding deviation is denoted as 5q. The 

final computed value at tn is denoted as Qn· Thus, we have 

.. .. .. 
Po(tn+t) = P~n+l + DPo (5.2.8) 

Using (2.2.2) and (5.2.8) the deformation tensor is reeast as 

.... c + -+c .. +c 
F(tn+t) = (VoX~+t) + (Voóx) = F~+t + (Voóx) (5.2.9) 

Using (2.2.5) the linearized iterative change of the Green-Lagrange strain tensor is 

expressed as 
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(5.2.10) 

Then, the linearized iterative change in the second Piola-Kirchhoff stress tensor óP 

reads 

(5.2.11) 

Approximations for the current values of the internal variables are obtained by 

integration of the rate equations (5.2.3), which will be discussed in the next section. 

Since it is impossible to give a general procedure for representing the deviations of .. 
the boundary forces in terms of óx, this term is omitted in the weighted residuals 

formulation. Using (5.2.8)-(5.2.11) the integral equation (5.2.7) is linearized to the 

following expression 

Vo 

(5.2.12) 

Vo So 

where 4N is defined by 

(5.2.13) 

.. 
After having solved 5x from the integral equation (5.2.12), a new 

approximation for the position vector field is derived. If the right-hand side of the 

integral equation is sufficiently small, the approximate solution ·is considered 

accurate enough. Then the iterative process is terminated and the solution process is 

continued at the next discrete time. If such is not the case the iterative process is 

continued, resulting in new approximations for the internal variables by integration 

of (5.2.3). 
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5.3 Integration of the evolution equations 

In this section tbe numerical integration of tbe evolution equations is discussed. Eq. 

(5.2.3)1 can readily be written in integral form as 

tn+l 

~(tn+l) = ~(tn) \[ f (~ r))dr (5.3.1) 

This integral equation can be evaluated witb a large number of integration 

procedures. In practice care sbould be taken tbat an efficient metbod is employed. 

An implicit integration metbod is cbosen in order to account for changes in tbe 

variables due to tbe coupling with the weigthed residuals tormulation (5.2.12). A 

furtber advantage of impHeit methods is their unconditional stability (Quinney 

1985), implying that errors in intermediate results have little influence on the final 

result for any stepsize !lt. Therefore, the stepsize needs to be selected only on 

considerations of accuracy. 

Consider a solution process that has been completed up till time tn. If tbe 

function f is approximated by a linear polynomial between tbe successive times tn 

and tn+l, tbe so-called trapezium rule is obtained 

(5.3.2) 

Since f must be evaluated at tbe current time, tbe trapezium rule is an impHeit 

method. Tbe trapezium rule bas secoud order accuracy, wbicb means tbat the 

truncation error per step is O(flt3). An initia! estimate for the internat variables at 

tn+l is obtained by substitution of tbe quantities at tn in the trapezium rule 

(5.3.3) 

If the integration procedure (5.3.3) is used exclusively to evaluate (5.3.1 ), it is 

commonly referred to as Euler's metbod. Euler's metbod is an explicit metbod witb 

first order accuracy, i.e. tbe local truncation error is 0(flt2). 

Stepsize selection 
In order to deal efficiently witb computing times, some mechanism for 
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automatically changing the stepsize as the integration proceeds, should be 

employed. Intuitively, if the salution is changing very slowly, then one can use a 

large stepsize, whereas in regions where the salution is changing rapidly a small 

stepsize must be used. The stepsize should be selected befare the start of the next 
integration step. The usual approach is to estimate the truncation error for a step 

and, depending on its value, adjust the current stepsize either upward or downward. 

The local truncation errors for ,t(tn+t) are defined by 

(5.3.4) 

The calculation of the truncation error f(tn+t) is based on approximations of 

the internal variables for time tn+l· Since at tn no information is available 

concerning the quantities at tn+t. explicit integration methods should be used to 

calculate approximations of the internal variables. A straightforward explicit 

metbod is to expand ,t(t) into a Taylor series in the neighbourhood of ~n, thus 

k 
k ~ 1 { pl p 
,tn+t = l pr ~n (.t>tn) 

p=O 
(5.3.5) 

where z~ pJ is the pth derivative with respect to time. An approximatipn of the local 
"' 

truncation error fn+t of this kthorder integration metbod is found by oomparing the 

integration metbod with a higher order method, e.g. one of order k+I 

k k 1 Ik)( )k+t fn+l = +l~n+l - ~n+l = (k+l)! fn litn (5.3.6) 

Since the components of ,t require different stepsizes, the stepsize must be 

determined to the needs of the worst-offender equation. The most critical 

component of~ is denoted as Z and the conesponding evolution function is denoted 

as T. Because Z may vary enormously in magnitude, a suitable criterion for the 

stepsize selection is obtained by requiring that the relative errors have a constant 
value e. Thus, we write 

(5.3.7) 

where Mn+t should be considered as the desired, i.e. highest admissible, truncation 
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error. Using (5.3.6) a.nd (5.3.7) the stepsize is given by 

[ 
( kl ·t]_L 

6tn = e(k+ 1 )! I k+tzn I I Tn I li:+r (5.3.8) 

The preceding equation ca.n be cast into a.n equivalent form. Suppose we take 

the last step, i.e. 6t = 6t0 • 1 , a.nd produce alocal error M. Using (5.3.6) the step 6t0 , 

which would have given the desired truncation error Mn+t, is calculated as 

(5.3.9) 

If M is larger tha.n Mn+t, the preceding equation calculates how much to decrease 

the stepsize when the present step is retried, otherwise it calculates how much the 

stepsize ca.n be increased safely for the next step. 

5.4 Finite element equations 

Using the principle of weighted residuals, a.n iterative procedure in integral form was 

derived in section 5.2. The integral form permits the solution of the unknown 

position vector field to be approximated with the finite element method. This 

metbod is based on separating a continuurn into a finite number of elements. The 

elements are assumed to be interconnected at a discrete number of nodal points 

situated on their boundaries. A set of interpolation functions is chosen to define 

uniquely the position vector field and the weighting functions within each element 

in terms of their nodal values. The weighting functions are chosen according to the 

Galerkin metbod (Zienkiewicz 1977), which implies that the weighting functions a.nd 

the position veetors are interpolated identically, thus giving 

(5.4.1) 

.. .. 
where ~e a.nd !e are columns containing the nodal position veetors a.nd weighting 

functions of element e, a.nd fé is the corresponding column of interpolation functions. 

As a result of this discretization eq. (5.2.12) can be written as a summation 

over all elements 
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e 

15e = f (Vo~) · (Pg+t· 4I + 4Ng.t) ·(Vo~T) d Vo 

v8 

~e = j(Vo~)·P~+l'Fg~t dVo 

v8 

(5.4.2) 

... ... 
where 15e denotes the element stiffness matrix and the columns ne and ~e 

respectively store the internal and external nodal forces of element e. Assemblage of 

all element stiffness matrices and internaland external element forces leads to 

... ... 

K·êx = r = fV N 
(5.4.3) 

... i 

In each iteration we calculate an out-of-balance load vector E an\1 the stiffness 

matrix 15, which yields an iterative change in the nodal point po~ition vectors. 

Then, new approximations of the quantities that depend upon the nodal point 

position veetors are calculated. With these approximations, new approximations for 

the internal variables are determined by numerical integration of the evolution 

equations. The iterative process is continued until the out-of-balarree load vector or 

the iterative changes in the position veetors are sufficiently small. 

A four-node isoparametrie element was chosen for the evaluation of the 

element stiffness matrix and the element nodal forces (Fig. 5.1). Plane stress 

conditions·were assumed. The interpolation functions are bilinear functions, which 

depend on the isoparametrie coordinates Ç1 and Ç2• In order to evaluate the integrals 

in (5.4.2) all quantities must be described as functions of the i isoparametrie 

coordinates, which involves some transformations (Bathe 1982) that will not be 

discussed in this thesis. The element was implemented in the HEEMP fini te element 

package (Rooyackers 1988). Some numerical simulations will be presented in the 

next chapter. 
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2 

Figure 5.1 The plane stress element 

5.5 Elaboration for fatigue 

In the following it is assumed that the stress-strain relation is linear and that 

fatigue is the prevailing failure process. Then, damage is the only dissipative 

mechanism. Furthermore, the damage evolution law is positively homogeneaus of 

degree one with respect to the strain rate, such that time can be considered as a 

pseudo variable. After integration of the evolution equation (3.3.24) over one 

loading cycle an incremental damage growth is obtained, which for computational 

convenience can be reeast into a continuous form. The coupled constitutive 

equations (5.2.2) and (5.2.3) take the forms 

(5.5.1) 

D: f ~ = T(c(E), D) D(t = 0) =Do 

where 4C0 is a constant symmetrie fourth order tensor. CDM is capable of rnadeling 

crack growth with a local approach to fracture (Lemaitre 1986b). Here a crack is 

represented as a zone in a finite element mesh, in which the damage has reached a 

critical level. Crack growth is identified with the growth of this zone. As will be 

demonstrated in the next section, it is convenient with respect to the reduction of 

computing time to uncouple the constitutive equations. Using (3.3.35) we obtain 
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(5.5.2) 

D = T(i = i(i), D) ; D(t = 0) = Do 

In this case T is a function of the current damage state and the deformation state at 

t = i with i derroting the last discrete time, at which a critica! damage level was 

reached in the solid. 

The desired stepsize is computed according to (5.3.8). Choosing k = 1 the 

stepsize is based on the truncation error that is made when the initial 

approximation for the damage state is carried out with Euler's metbod (5.3.3), thus 

[ 
2 ( 1) -1] 1 

lÜn= 2i DniTn I '1 (5.5.3) 

The first order derivative, that is determined for the stepsize selection, can be used 

to calculate an improved initial estimate for the damage at tn+1 

2 1 11 )2 ( 1) Dn+1 = Dn + lÜn Tn + 2\lÜn Tn 

( 5.5.4) 

According to the trapezium rule (5.3.2) the (a+l)th correction to the damage 

variabie at tn+1 is calculated as 

(5.5.5) 

In Appendix C the solution process is summarized for both coupled and uncoupled 

constitutive equations for times tn > 0. 

5.6 Test analysis 

The element, described in section 5.4, has been subjected to a number of tests, 

which can be divided into two categories. In the first category the correct 

implementation of the element is checked. Being relatively standard, these tests will 
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not be discussed in what follows. In the second category the performance of the 

algorithm for the numerical integration of the evolution equations is checked. In the 

following we will amplify on the integration of the evolution equation. 

q 
y 

x 

Figure 5.2 Plate subjected to uni-axialloading 

Consicter a plate of dimensions 25*25*0.5 [L3]. The plate is loaded at the free 

end by a distributed periodical force q, which ranges from 0 to qm (Fig. 5.2). The 

plate has an initial damage D0 • The external loading will cause the plate to 

deteriorate. Due to the imposed kinematic boundary conditions, the stress state in 

the plate is uni-axial. The deformation matrix is given by Fij = Ap5ih where Àj is 

the elongation factor with respect to direction j. The deformed state is represented 

exactly by the plane stress element of section 5.4. For an isotropie linear elastic 

material the stress--strain relation is given by 

[ Pul E [ 1-v v v ] [ Eu] 
0 = (1+v)( 1_ 2v) v 1-v v E22 
0 V V 1-v_ E33 

(5.6.1) 

From (5.6.1) we obtain 

. pll 
P u = I=U = E Eu (5.6.2) 

Using (5.2.2) the Cauchy stress O"u is obtained as 

• O"U \ \ -2 p· 
uu = r-=1J = "t "3 u (5.6.3) 

Using (5.6.2)2, (5.6.3) and uu = qfb = qj(A3b0 ) with b the thickness of the plate, 

the elongation factor A1 is determined by 
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(5.6.4) 

where x = (E/2q)b0 (1-D) = x(D). Substitution of u Àf-1 yield~ a third order 

equation 

(5.6.5) 

From the preceding equation the displacement field can he solved analytically. 

The equivalent strain is chosen according to (3.3.28). Since the deformation in 

thickness direction will hardly influence the growth of surface defects, its 

contribution to the damage evolution is neglected. Then the equivalent strain is 

written as 

ë = /1 +hzfl Eu ( 5.6.6) 

Let the damage evolution law he given by (3.3.33). For fixed loading amplitudes 0 

and qm during the complete history, the equivalent strain varies between 0 and ëm. 

Then, (5.5.1)2 takes the form 

(5.6.7) 

Through the parameter x the displacement field is dependent upon the current 

damage state. Thus calculation of the damage involves a nonlinear initia! value 

problem, for which in most cases no analytica! solution can he derived. When the 

elastic and dissipative mechanisms are uncoupled according to (5.5.2h, an analytica! 

solution is established as (see eq. (3.3.41)) 

D(N) = [ (1-/3) 8N + D~-.8]* (5.6.8) 

The material parameters used in the test example are summarized in itable 5.1. It is 

noted that most values were taken from the data acquired for PS. The calculations 

were accomplished for loadings ranging from 0 to qm = 17.2 Nmm·I. Using (5.6.5) 

the elongation factor is determined as Àt = 1.011, which exactly matches the finite 

element calculation. 
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Table 5.1 Material data 

E = 3·103 [FL-2] 
V= 0.25 

h = 0.2 
D0 = 2·4·10-5 

a= 5.35·105 

(J = 1.4 

-r= 2.6 

1\:o = 0 

In Fig. 5.3 the damage is depicted as a function of the number of cycles for 

different relative truncation errors e. For each e the numerical sohitions for the 

coupled and uncoupled equations are shown together with the analytica! solution for 

the uncoupled equations (5.6.8). It appears that the integration procedure works 

well, since the numerical and analytical solutions for the uncoupled equations 

almost coincide. The small deviations between the solutions for the coupled and 

uncoupled equations indicate that the application of the uncoupled equations should 
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be favoured with regard to computing times. This is illustrated further in table 5.2, 

where the computing times for both solution methods are shown for different e. The 

computing times are scaled to the smallest value, which is obtained in the 
uncoupled situation with e = 0.1. For a relative error e = 0.01 the numerical 

integration shows greatest accuracy, but with associated larger computational cost. 

Table 5.2 Relative CPU times 

e Coupled Uncoupled 

0.01 36.4 1.7 

0.025 27.1 1.3 

0.05 21.8 1.1 

0.1 18 1 

The stepsize selection procedure is illustrated for e = 0.025. In Fig. 5.4 the 

damage evolution is shown as a function of the number of cycles. The instants, at 

which the incremental analysis was carried out, are marked. In Fig. 5.5 the 

equivalent strain is depicted as a function of the number of cycles. For the 

uncoupled equations the equivalent strain bas a constant value until a critical 

damage level bas been reached. For the coupled equations the equivalent strain is a 

continuously increasing function that follows the damage evolution. 

In Fig. 5.6 the stepsize (in cycles) is shown as a function of the number of 
steps. The stepsize selection procedure performs very well, computing relatively 

large steps when the damage is changing slowly and continuously decreasing steps as 

the damage increases. The deviations between the stepsize selections for the coupled 

and uncoupled equations result from a different first derivative in (5.5.4)2, implying 

that a more conservative estimate for the stepsize must he made for the coupled 
equations due to the dependenee on the deformed state. This effect is most 

pronounced for large variations in the deformation state. 

The additional reduction in computational effort by the stepsize selection 
procedure can easily be imagined. Since without any stepsize selection procedure a 

correct description of the damage would require a stepsize, which is completely 

dictated by the explosive growth towards the end of the lifetime. Let us consider for 

example the stepsize selection of the uncoupled equations. 
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Figure 5.6 Stepsize vs number of steps ( e = 0.025) 

From Fig. 5.6 it follows that fora correct description of the constitutive behaviour, 

the stepsize should approximately be 5 cycles. Then without any stepsize control it 

is necessary to take 640 steps for failure at 3200 cycles. Compared to the 50 steps 

that were taken in the example at hand, an enormons rednetion in. CPU time is 

achieved solely on the basis of the stepsize selection procedure. For the coupled 

equations the rednetion in c.p.u. time is even more pronounced, since towards the 

end of the lifetime the stepsize must be chosen more carefully (see Fig. 5.6). 
In concluding this section it is worth remarking that the salution for the 

uncoupled equations leads to nearly as accurate solutions as for the coupled 

equations with much lesser computational effort. Thus for failure mechanisms, 

which show an explosive increase in the damage, the application of the uncoupled 

equations is highly recommended. Apart from these considerations, an enormons 

rednetion in computing time is achieved with the adaptive stepsize control, which 

therefore is to he favoured under all circumstances. 
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6 Numerical simulations 

6.1 Introduetion 

In the previous chapters a model for the description of fatigue processes was 

developed. Explicit forms for the stress-strain relation, the evolution equation and a 

criterion for damage growth, were derived in chapter 3. Since materials typically 

contain flaws of unknown dimeusions and positions, the initial damage should be 

considered as a stochastic quantity. In chapter 4 it was argued that this assumption 

accounts for the scattering in the observed lifetimes in fatigue. The numerical 

solution process was discussed in chapter 5. Points of issue were the establishment 

of a linearized set of equations, the numerical integration of the evolution equation 

and the rednetion of c.p.u. time. 

In this chapter simulation techniques are adopted to analyze stochastic failure 

processes. The simulations consist of finite element calculations for different 

realizations of the initial ( damage) state. The statistica of the failure processes (in 

terms of lifetimes) are derived from the computed responses. In section 6.2 this 

probabilistic analysis is applied to tensile loading and bending. The essential 

features of failure mechanisms in homogeneous and inhomogeneous deformations are 

highlighted. Case studies on the numerical solution process are performed 

concerning the application of coupled and uncoupled constitutive equations, the 

accuracy of numerical integration of the evolution equation and the influence of the 

element mesh on the results (mesh sensitivity). As regards the reduction of the mesh 

sensitivity the elementary cell (EC), introduced in chapter 4, is the key word. 

In sections 6.3 and 6.4 CDM is used to predict crack growth in fatigue loading 

by representing a crack as a zone of completely damaged elements. The 

corresponding failure processes are dominated by the local deformation state. This 

implies that identical crack patterns are obtained regardless of the initial state. As 

our main concern is the prediction of crack patterns, just one calculation is carried 

out. The initial damage in the elements is given by the expected values of the 

associated probability distribution functions (PDF). In section 6.3 a plate with an 

elliptical hole is analyzed. Under the given type of toading the development of the 

completely damaged zone, corresponding to macrocrack growth, is evident. In 

section 6.4 crack growth in a plate with an induced crack is studied for three 

distinct loadings. In this problem the crack pattern is uncertain a priori. 
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6.2 Probabilistic damage analysis 

6.2.1 Generation of the initial damage state 

In this chapter numerical studies on fatigue in materials displaying linear elastic and 

isotropie material behaviour are carried out. It is recalled that the relevant 

equations are given by the equilibrium equation (5.2.1) and the constitutive 

equations for stress-strain and damage growth. In case of coupled constitutive 

equations (5.5.1) is used, whereas (5.5.2) is used for the uncoupled equations. For 

periodical loadings that vary between zero to a positive extreme, the evolution 

equation is given by the following initial value problem 

I 
0 i f ( < Ko 

dD _ a [ - r+l r+l ] nP ON - ')'+1 fm - Ko 

oo ifë~Kc 

if Ko ~ (<Kc (6.2.1) 

D(N = 0) = D0 

The equivalent strain ë is defined according to (3.3.28). Compared ~ith (5.6.7) a 

static criterion has been added to the evolution law, indicating that linstantaneous 

rupture occurs if ë exceeds the equivalent strain threshold Kc· 

Owing to the presence of randomly distributed flaws in materials, failure 

processes actually are stochastic processes, which will be analyzed using simulation 

techniques. The simulations consist of finite element calculations for different 

realizations of the initial damage state. The statistics of the failure processes can be 

derived from the computed responses. 

In order to characterize the initial state each element in the finite element 

mesh is divided into four subareas Si , i E {1,2,3,4} as is shown in Fig. 6.1. The 

subareas are the Gauss point influence zones. The Gauss points comprise the points 

where the constitutive equations are evaluated. A subarea consists of ki = Si/ Aec 

elementary cells (EC). The stress gradients in Si are small, resulting in 

approximately homogeneous stress fields. Subsequently failure is initiated in the EC 

with the largest initial damage (see section 4.3), which therefore is the limiting 

factor in the reliability of Si. Hence, the PDF of the maximum initial damage in Si 

must be established. If the initial damage has an exponential parent distribution, 

the maximum damage in Si is distributed as (see (4.3.13)) 
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(6.2.2) 

1 

2 

Figure 6.1 Plane stress element divided into four subareas 

In each calculation a realization of the initial damage must be determined. For 

this purpose, the initial damage must be attributed to the Gauss points in the 

elements according to (6.2.2). The essential building block for generating probability 

distributions is a reliable random number generator (Press et al. 1986). The random 

number generator creates a uniform distribution, so that the probability of finding a 

number between x and x+dx is given by 

[ 

dx if O<x<l 
P.x.(x) dx = 

0 if x ~ 1 
(6.2.3) 

The PDF p"i of some function y(x) is determined by the transformation law of 

probabilities 

P/Y) = P.x.(x) ~~~ (6.2.4) 

If we want to generate the desired distribution function p"i = f
0

, then using (6.2.3) 

and (6.2.4), weneed to solve 

(6.2.5) 

where F D is the indefini te integral of f
0

, i.e. the cumulative dis tribution function 
- -
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{CDF). Inverting {6.2.5), the desired transformation, which takes a uniformly 

distributed random variabie x into one distributed as f
0

, is given by 

{6.2.6) 

Whether {6.2.6) can be used, depends on the existence of the inverse function. 

Î 

X 1n 1--------.:;./ 

0 ~~----~~--------~ 
Dout 

Figure 6.2 Transformation of random variables; the input values Xin ~e distributed 

uniformly, the output values Dout are distributed according to f
0 

A geometrie interpretation of the transformation involved is given in Fig. 6.2. 

A uniformly distributed random number Xin is determined between 0 and 1. Then, 

the value D = Dout is determined that has the fraction Xin of probability area to its 

left. lf the desired PDF is given by (6.2.2), the transformation of Xin is given by 

_ I ( 1/ kj 
Dout - I ln 1 -x in ) {6.2.7) 

In the following subsections the generation of the initia! damage is given by the 

preceding transformation. 

6.2.2. Uni-axial tension 

Consider the structure in Fig. 6.3 of dimensions 16*5*.1 [13]. The structure is loaded 

at x= 16 [L] by a distributed periodical force q1 ranging from 0 to ~ [F·L-t]. The 
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stress state in the structure is approximately homogeneous. The PDF of the 

maximum initial damage in a subarea Si is described by eq. (6.2.2.). The material 

dependent data used in this analysis are given in table 6.1. It is remarked that the 
parameters in the damage evolution equation, which are used throughout this 

chapter, are based on polystyrene (section 4.5). The remaining material data are 

chosen rather arbitrarily. Due to the paucity of experimental data on fatigue 

experiments no reference can be made to results from other studies. Nevertheless, 
the results of the computations are suited well for qualitative interpretations. 

---;;ii'" 

r-+--_r ___ -___ +_-___ -___ r-+--r-+ __ -___ ~--~ q1 
y ~ 

~>L--~--l---L-~--~--~~--~--7~ 
x 

Figure 6.3 Uni-axially loaded structure, discretized using 8 or 40 elements 

Table 6.1 

E = 103 [F· L-2] 
V= 0.25 

a= 3.69·104 

IJ= 1.4 

7 2.6 

h = 0.2 

De= 0.98 

~=0 

/'i,c = 4·10·2 

À = 5000 

Aec = 0.5 [12] 

In the following three case studies are carried out, involving the uncoupling of 

the constitutive equations, the integration accuracy and the mesh sensitivity. The 

integration accuracy is formulated in terms of the relative error e , which is defined 
by eq. (5.3. 7). The mesh sensitivity is tested either using a mesh with 8 elements or 

a mesh with 40 elements. In each case two simulations are compared (see table 6.2). 

Each simulations consists of 15 finite element calculations with different initia! 

states. In order to save computing time the calculations are, where possible, carried 

out for the uncoupled constitutive equations. 
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The first fa.ilure of any subarea is referred to as fa.ilure initiation or crack 

initiation. As the deterioration continoes more and more subareas fa.il, until finally 

no convergence can be achieved anymore by the solution process. This stage 

corresponds to structural instability. In the sequel complete fa.ilure is identified 

either with first fa.ilure of a subarea, corresponding to a weakest link hypothesis, or 

with structural instability. 

Table 6.2 Simulations for section 6.2.2 

case (Un)Coupled e De 

1 U/C 0.025 40 

2 u 0.025/0.05 40 

3 u 0.025 8/40 

1 Coupled versus uncoupled constitutive equations 
In the structure in Fig. 6.3 a progressive deterioration and corresponding stiffness 

reduction take place. In order to study these phenomena a relative elangation ufu0 

is introduced, where the subscript 0 refers to the maximum elangation in the first 

cycle. This definition is a good indicator of the damage, as can readily be seen in 

one--dimensional situations, where employing a linear stra.in definition we have 

U (. 1-go ( ) Un - =- = :=::? D = 1- 1-D0 ..c..>!. 
Uo f.o 1- u (6.2.8) 

In Figs. 6.4 and 6.5 the relative elongations are shown as a function of the number 

of cycles for the coupled and uncoupled constitutive equations respectively. The 

stochastic nature of the failure process is obvious through the scattering in lifetimes 

for the res'pective realizations. As a result of the continuous coupling between the 

stress-stra.in relation and the damage evolution equation a smooth increase in the 

elongations is obta.ined (Fig. 6.4). In case of the uncoupled equation,s interruittent 

changes in the elongations occur, if somewhere in the structure a critica! damage bas 

been reached (Fig. 6.5). At all times the computed damage variables take on larger 

values for the coupled constitutive equations. This is a direct consequence of the 

effective stress concept, which induces the damage to grow more rapidly. 

For every calculation the instant of failure initiation and structural instability 
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are recorded. Cumulative frequency distributions, giving the probability of failure as 

a function of the number of cycles, are obtained from the total of responses. These 

d.istributions are depicted in Fig. 6.6. Curves 1 and 2 show the distribution 

according to the weakest link hypothesis for the coupled and uncoupled equations 

respectively. The deviations between the curves are small. Curves 3 and 4 

correspond to structural instability for the coupled and uncoupled equations 

respectively. The deviations between the coupled and uncoupled solutions remain 

small as the failure process continues. 
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Figure 6.4 Relative elangation ufu0 vs N for the coupled equations 
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Figure 6.5 Relative elangation U/Uo vs N for the uncoupled equations 
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Figure 6. 7 Lifetime distributions for uni-axial tension (case 2) ; ----- e = 0.05, 
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2 lntegration accuracy 
The effects of the numerical integration on the solution accuracy are examined for 

two relative errors e = 0.025 and e = 0.05. The resulting lifetime distributions are 

plotted in Fig. 6. 7. Curves 1 and 2 show the distribution according to the weakest 

link hypothesis; curves 3 and 4 correspond to structural instability. The computed 
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lifetime distributions show small deviations. Thus, in practical applications it 

suffices to use the larger relative error e = 0.05. 

3 Mesh sensitivity 
In finite element calculations the Gauss point influence zone (subarea Si in Fig. 6.1) 

determines the dimensions of the completely damaged zone, representing the crack. 

However, there is no indication at all that these dimensions correspond to the 

characteristic dimensions of the failure mechanisms. The resulting mesh dependenee 

(mesh sensitivity) is a major drawback in a more general use of CDM. Several 

solutions to this problem have been proposed (Billardon and Moret:....Bailly 1987, 

Chaboche 1988, Bazant and Pijaudier--Cabot 1988). Billardon et al. (1987), 

proposed that local fracture occurs in a characteristic volume when the mechanica! 

dissipation, associated with the damage process and integrated over the whole 

toading history, reaches a critical value. However, the size of the characteristic 

volume is unknown. Further, because of the volume integration, the spatial 

variation of damage should at least display Co continuity throughout the mesh. 

There are some points of similarity between Billardon's approach and the present 

approach, which involve the choice of a characteristic size. In the present study the 

elementary cell (EC) is identified with the characteristic size. It is demonstrated 

that the notion of the EC leads to a reduction of the mesh sensitivity without 

imposing requirements on the continuity of the damage. 
In general, failure processes are influenced by the combined effects of damage 

and deformations. In order to completely focus on the mesh dependenee associated 

with damage, it is most convenient to investigate problems invalving homogeneaus 

deformations. Then, the crack initiation is completely dictated by the maximum 

initial damage in the structure (see section 4.3). The PDF of the maximum damage 

is independent of the finite element mesh and is fully controlled by the number of 

EC's in the structure: n = E E Sem / Aec = Sf Aec , with Sem the surface of subarea 
ne m 

m in element e and S the total surface of the mesh. Hence, the PDF of the time to 

crack initiation is independent of the mesh. 
Two parameter studies were carried out either using 8 or 40 elements (see 

table 6.2). The computed cumulative frequency distributions of the failure 

probability are shown in Fig. 6.8. Curves 1 and 2 represent the instauts of failure 

ini tiation ( weakest link hypothesis). The distributions show a reasonably good 

agreement. In case of uncoupled constitutive equations, an analytical solution is 

given by eq. (5.6.8). Then the CDF of the lifetimes according to the weakest link 
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hypothesis is given by eq. (4.4.10). This CDF is represented by curve 5. Curves 1 

and 2 agree fairly well with the analytica! solution, clearly demonstrating that the 

crack initiation is not influenced by the mesh. However, owing to the restricted 

number of calculations curves 1 and 2 do not perfectly match the analytica! 

solution. 

After failure initiation the deformation field is disturbed in the vicinity of the 

completely damaged zone and consequently the failure process is increasingly 

controlled by the local deformation state. Final failure is brought about by 

successive failure of subareas. Curves 3 and 4 show the cumulative frequency 

distributions for structural instability using 8- and 40--element meshes respectively. 

Regarding the number of cycles to failure the deviations amount to about 10 

percent. These discrepancies arise from overrating the local stress state in the 

8--element structure after failure initiation. 

The simulations show that the mesh sensitivity with respect to the (crack) 

initiation, the (crack) propagation and ultimate failure, is reduced byi the notion of 

the EC. It is noted that in processes, which produce smooth damage fields, such as 

plasticity coupled with damage, the energy criterion as proposed by Billardon and 

Moret-Bailly (1987) can be adopted by identifying the EC with the characteristic 

volume. 
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6.2.3 Bending 

In the following the effects of the local deforma.tion state on the fa.ilure process are 

discussed. The structure in Fig. 6.9 is loaded at x = 16 [LJ by a periodical force f/2, 

which ranges from 0 to 0.2 [F·L-t]. The effects of the local deformations, for both 

coupled a.nd uncoupled constitutive equations, as well . as the effects of the 

equivalent stra.in definition, through variation of the parameter h in (3.3.28), are 

examined (see table 6.3). All calculations are performed with a 4~lement mesh 

and a rela.tive error e = 0.025. 

Table 6.3 Simulations for section 6.2.3 

case (Un)Coupled h 

1 C/U 0.2 

2 u 0.2/1 

I I 
I I 

y I I 
~ I I 

x 

Figure 6.9 Structure loaded in bending 

1 Effects of the local deformation state 
In the previous subsection the loca.tion of failure initia.tion was a. probabilistic 

qua.ntity, which was determined by the maximum initial damage in the structure. If 
the sample size is large enough this loca.tion will show a uniform distribution. For 

the structure in Fig. 6.9 the deforma.tion field is inhomogeneous. Fifteen finite 

element calculations were carried out. In Fig. 6.10 the number of observed fa.ilures is 

given versus the fa.ilure loca.tion. Undoubtedly, the loca.l deformation state a.nd not 

the initial damage is the dominating qua.ntity in the fa.ilure process. Hence, ·for 
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inhomogeneons deformations the failure location nearly becomes a deterministic 

quantity. However, in two out of fifteen calculations failure occurs for 2 5 x < 4. A 

typical realization for failure between 2 5 x< 4 is considered in Figs. 6.11 and 6.12. 

In Fig. 6.11 the dimensionless end point deflection v /v0 , with v0 the maximum 

deflection in the first cycle, is shown as a function of the number of cycles. The 

characters (a), (b), (c), (d) mark subsequent stages in the failure process. In Fig. 

6.12 the corresponding states are visualized. The damage is characterized by various 

degrees in darkness; increasingly dark regions express increasing damage. In each 

plot the damage is scaled to the largest value that has been reached up till the 

current instant. Thus, the dark zones in Fig. 6.12 (b)-(d) represent the development 

of a crack. Fig. 6.12 illustrates that failure processes are controlled by the combined 

effects of deformations and damage, since failure initiation occurs in the subarea in 

which the conditions for accelerated damage growth are optimally satisfied through 

a relatively large initia! value in combination with relatively large defqrmations. 

In Fig. 6.13 the failure probability is shown as a function of ~he number of 

cycles. Curves 1 and 2 show the distribution according to the weakest link 

hypothesis for the coupled and uncoupled equations respectively. Curves 3 and 4 

correspond to structural instability for the coupled and uncoupled equations 

respectively. The deviations between the coupled and uncoupled solutions are small. 

The band between curves 1 and 2, and curves 3 and 4 is small comparrd to the band 

that was obtained for uni-axial loadings (see Fig. 6.6). These differences arise 

because local failures in approximately homogeneons deformation fields induce only 

minor perturbations in the local deformation state, thus giving a more gradual 

material deterioration. 

The instant of structural failure is controlled by the maximum initia! damage 

in the failure region. For homogeneons deformation fields the failure region 

oomprises the total structure, whereas for inhomogeneons fields its dimensions are 

controlled by the local deformations. Since fewer elementary cells are involved, the 

expected value of the maximum initia! damage in the local failure region is smaller 

than the expected value of the maximum initia! damage in the complete structure. 

Accordingly, for identical local deformation states a crack is likely ~o be initiated 

earlier in a homogeneously loaded structure because of a more ~erious initia! 

damage. Additionally, the PDF of the maximum damage associated with the failure 

region in inhomogeneons deformation fields bas a larger variance. Consequently, the 

scatter in observed Jifetimes is larger, which can be verified by comparing the CDF's 

in Figs. 6.6 and 6.13. 
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Figure 6.12 Successive stages in the failure process corresponding to Fig. 6.11 
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Figure 6.14 Lifetime distributions for bending (case 2) ; ----- h 0.2, 

h = 1 ; curves 1, 2 weakest link ; curves 3, 4 structural instability 

2 Effects of the equivalent strain definition 
Below, the effects of the equivalent strain definition (3.3.28) on the failure process 

are investigated by oomparing the results for h = 0.2 and h = 1. If h = 0.2 

compressive strains are less harmful to the failure process than tensile strains. This 

means that failure is most likely to be initiated at (0,5). For h = 1 the compressive 

and tensile strains are weighed equally, implying that failure may be initiated at the 
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origin (0,0) just as well as at (0,5). Naturally, this will cause a significant decrease 

in the observed lifetimes as is illustrated in Fig. 6.14. In most cases the structure 

fails directly after crack initiation, because the equivalent strains in adjacent Gauss 

points exceed the critica! threshold t>c for static failure (see {6.2.1)). 

6.3 Pla.te with an elliptical hole 

In this section crack growth initiation and propagation in a square plate with an 

elliptical hole is studied. The dimensions of the plate are 100*100*.1 [L3] and the 

major and minor axis of the ellipse are 20 [L] and 4 [L]. The plate is loaded at the 

horizontal edge by a distributed periodical force q(t), which ranges from 0 to 1.28 

[F · L ·t]. As there are two planes of symmetry only a quarter of the structure is 

analyzed (Fig. 6.15). The structure is modeled using 260 elements. The material 

data are given in table 6.4. 

q 
A 1\ A 

Figure 6.15 Plate with an elliptical hole and finite element discretization 

Table 6.4 

E = 3·103 [F·L·2] 
V= 0.25 

a= 1.93·106 

/3= 1.4 

"Y= 2.6 

h 0.2 

De= 0.995 

Ko 0 
Kb= 8·10·2 

À = 5000 

Aec = 0.3 [L2] 
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Solution strategy and FEM analysis 

In section 6.2.3 it was put forward that the local deformation state is, the dominant 

factor in crack growth problems. Then the crack pattem is invariable regardless of 

the initia! state. As the objective of the present example is directed towards the 

prediction of the crack pattem (completely damaged zone), just one calculation is 

carried out, in which the values for the initia! damage are given by the associated 

expected values of the PDF (6.2.2): Di = E(D; ki). Hence, the application of time 

consuming simulation techniques is avoided and an averaged structural behaviour is 

computed. Because of the local mesh refinement some elements become smaller than 

the EC. A conservative estimate for the initia! damage in these elements is given by 

the expected value for the damage in one EC: E(D; kï ~ 1) = E(D; kï = 1). Because 

the stress gradients in the elements are small, the instants of failure of the element 

subareas are about equal. This gives rise to adopting a weakest link assumption on 

element level, i.e. the complete element fails if one subarea fails. A further reduction 

in computing time can be obtained by employing this assumption. The calculation is 

performed with the uncoupled constitutive equations. 

Due to the high stresses in the vicinity of the hole, a crack starts to develop 

from this region along the boundary y = 0. The deformations in the completely 

damaged elements are large as a result of crack opening effects. For computational 

reasoos the element stiffness can not be decreased indefinitely. Fqr this reason 

residual stresses exist in the completely damaged zone. The residulil stresses are 

undesired since they influence the solutions. In the present example the initia! 

stiffness is reduced 200 times in the completely damaged zone (see table 6.4). In Fig. 

6.16 the stress component ayy is shown as a function of the position x at y = 0 for 

different times. The crack growth is characterized by the moving stress peaks. Small 

residual stresses remain in the damaged zone. For increasing crack lengths the 

residual stresses become larger due to crack opening effects. The values of the peak 

stresses strongly depend on the local mesh size. Therefore, the peak stresses tend to 

decay as a result of the increasingly rougher mesh with growing distance from the 

hole. This influences the damage evolution and ergo the time to failure. A solution 

to this problem would be to first carry out an exploratory calculation to study the 

crack pattem. A second calculation should be carried out with a refined mesh in the 

regions of the expected crack pattem. A more sophisticated solution is the 

application of mesh adaptation techniques. Then, crack opening effects can be taken 

into account correctly and the residual stresses vanish. Additionally, the local mesh 

refinement can be adapted as the crack proceeds, preventing the peak stresses from 

falling off. 
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Figure 6.17 Crack pattem and Von Mises stresses after N = 124 cycles (a) 

and N = 368 cycles (b) 
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Figure 6.18 Crack length vs N 

Two instants in the failure process are shown. Fig. 6.17 (a) shows the crack, 

which is expressed by the dark zone of failed elements, and the corresponding Von 

Mises stresses after N = 124 cycles. In Fig. 6.17 (b) the state after N = 368 cycles is 

depicted. In Fig. 6.18 the crack length is plotted as a function of the number of 

cycles, showing an almost linear relationship. Thus the crack propagation rate is 

constant. It is remarked that in the finite element analysis the crack growth rate for 

about N > 255 cycles is underestimated due to the increasingly rongher mesh as the 

crack proceeds. Accordingly, in reality the zone of constant crack propagation rate 

will be smaller. 

6.4 Plate with an induood crack 

In section 6.3 the direction of crack growth, perpendicular to the direction of the 

external force, was more or less evident. In this section we discuss a problem in 

which the direction of crack growth is uncertain in advance. Consider the plate of 

dimensions 130*130*.1 [L3] in Fig. 6.19. A crack of length 20/i [L] is induced at the 

origin at an angle of 45°. The plate is loaded in x-direction by a periodical force fh 

and in y-direction by a periodical force fJ2. The forces f/J. and fJ2 vary between 0 and 

q1 and q2• The plate is modeled with 718 elements (Fig. 6.19). The analysis is 

performed for the uncoupled constitutive equations. Again only one calculation is 

carried out using the expected valnes of the damage distribution (6.2.2). The 

material data are given in table 6.5. 
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Figure 6.19 Plate with an induced crack and fini te element discretization 

Table 6.5 

E = 3 ·103 [F · L ·2] 
V 0.25 

a= 1.93·106 

fJ = 1.4 

'Y = 2.6 
h = 0.2 

De= 0.995 

Ko = 0 

Kb= 4·10·2 

>. = 9.6·104 

Aec = 0.3 [L2] 

Crack initiation and crack growth are predicted for different types of loading. The 

toading is characterized by the ratio of the force amplitudes fJ Q2/Qt· The 

amplitude q1 is kept fixed at 96 [F·L-1]. Three cases were studied. 

1 fJ = 1 

As the toading is symmetrical and so are the boundary conditions, a crack will 

develop from the induced crack tip and proceed along the axis of symmetry. In 

Fig. 6.20 (a) the crack is modeled as a zone of completely damaged elements after 

N = 6.65·103 cycles. The conesponding Von Mises stresses are shown as well; 

dark regions mark the position of the current crack tip. 
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(a) 

(b) 

(c) 

Figure 6.20 Crack patterns and corresponding V on Mises stresses for {) = 1 (a), 

{) = 0 (b), and {) = 0.5 (c) 



2 '11= 0 

As a result of the non-symmetrical stress-state the crack initiation and 

propagation will occur to the left of the crack tip. In Fig. 6.20 (b) the crack and 

the corresponding V on Mises stresses are shown after N = 1.4·104 cycles. 

3 '11 = 0.5 
In this case we get a combination of the failure processes under 1 and 2 as is 

illustrated in Fig. 6.20 (c), where the crack and the corresponding Von Mises 

stresses are depicted after N = 1.4·104 cycles. In contrast with the cracks that 

have developed for '11 = 1 and {) = 0, the crack for '11 = 0.5 is not straight. Until 

some transition phase is reached the crack proceeds identically to the crack for 

loading in x-direction ( '11 0). Thereafter the crack proceeds in accordance with 

the crack for equal loading amplitudes ( '11 = 1). Most likely this process will 

repeat itself, as a result of which the crack will zigzag through the plate. 

To conclude this chapter, it is stated that CDM is well suited for the analysis 

of crack growth problems. Both crack initiation and propagation can be analyzed in 

a natura! manner by representing the crack as a zone of completely damaged 

elements. Although no reference can be made to other studies, the results of the 

simulations presented in this chapter can be qualified as promising. The mesh 

sensitivity is reduced by the notion of the elementary cell. Future investigations 

into the correct description of the stress state as the crack proceeds are 

recommended. This can be achieved using mesh adaptation techniques (Schreurs et 

al. 1986). 
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7 Discussion 

On the theory 

In the present study Continuurn Damage Mechanics was adopted to descrihe brittie 

failure mechanisms. The theory of CDM can be developed using thermodynamics 
with internal state variables. The introduetion of internat state variables to 

represent dissipative mechanisms requires the establishment of rate equations for 

these variables, the so-called evolution equations. The ensuing approach has a great 

generality, sirree all constitutive equations can be derived from two potentials: the 

Helmholtz free energy and the dissipation potential. Thus, different mechanisms 

such as plasticity, damage or creep, can he handled in a similar fashion. 

Brittie failure processes are characterized by the fact that damage evolution is 

the predominant dissipative mechanism. Additionally, time can be considered as a 

pseudo . variable. A complete description of the current state requires the 

establishment of the stress-strain relation and the damage evolution equation 
tagether with a criterion for damage growth. From the thermodynamical framework 

a natural coupling between the stress-strain relation and the evolution equation is 

obtained. The stress-strain relation was determined using the concepts of effective 

stress and strain equivalence. For isotropie damage states the correctness of these 

concepts can he demonstrated. The damage criterion encloses a surface in strain 

space. This requires the definition of an equivalent strain. The employed equivalent 

strain accounts for the fact that tensile and compressive loadings may contribute 

differently to the failure process. For instanee in fatigue tensile Ioadings are more 

harmful than compressive loaèings. Further research concerning the proper choice of 

the parameter that weighs the contribution of tensile and compressive strains, is 

recommended. Most likely this parameter is a true material property, which can be 

related to the tensile and compressive strength. 
A distinction, which is based on the formulation of the damage criterion, was 

made between brittie and fatigue damage. The model developed for brittie damage 

is capable of predicting the hehaviour of polystyrene (PS) and concrete. The model 

for fatigue darnage was kept as simple as possible to expedite the parameter 

characterization. Nevertheless, some widely accepted cumulative damage models, 

such as the Palmgren-Miner rule, could he derived from it. The parameters in the 

evolution law were considered as constants. This assumption is confirmed by the 
results in chapter 4 regarding the effects ·of the mean stress on the lifetime of 

polystyrene specimens. 

97 



Anisotropic damage models were considered. Problems concerning the choice 

of a proper damage variabie were signalled. The directional nature was taken into 

account using dyadic vector products. For isotropie damage the macro symmetry is 

left unaltered by this choice. Since this is not the case for the vector representation 

as applied by Talreja (1985), dyadic products are to be preferred. The constitutive 

equations were derived by Taylor series expansions of the independent variables. 

This straightforward elaboration, however, yields unworkable expressions. In case of 

small deformations it is advisable to derive the constitutive equations using a 

micromechanical approach (Krajcinovic and Sumarac 1989), which reflects the 

underlying physics of the failure process. 

On the experimental evaluation 
The experimental characterization of the evolution equation for fatigue is extremely 

difficult due to the high degree of damage localization. This implies that 

conventional methods, which measure variations in global material properties, are 

useless. In the present study a different metbod has been adopted. It was assumed, 

that microdefect growth and macrocrack growth can be represented by identical 

relations. Several reasons in support of this assumption were given in chapter 4. 

Further, a relation between an effective defect size and the damage variabie is 

proposed. Then, an evolution equation can be derived, which forms a particulari­

zation of the model developed in chapter 3. The parameters in this equation 

emanate from fracture mechanics. This is very convenient since numerous tests for 

characterizing fatigue crack growth are reported in literature (see e.g. Sauer and 

Richardson 1980, Williams 1984). 

Due to the preserree of microdefects with unknown positions and dimensions, 

damage evolution is a stochastic process. This phenomenon was accounted for by 

consirlering the initia! damage as a random variable. This is a new point of view, 

since in CDM it is assumed that initially a material is in a perfect state, resulting in 

a deterministic analysis. A procedure was developed to determine the probability 

distribution function (PDF) of the initia! damage. For this purpose the PDF of the 

initia! damage was associated with some characteristic size, the elementary cell 

(EC). Based on the fact that under homogeneaus loading conditions the reliability 

of a structure is determined by the largest damage, statistics of extremes was 

employed to render the PDF for the maximum damage in the structure. Two 

methods were presented for determining the parameters in the initia! damage 

distribution and the associated EC. In both methods these quantities are obtained 
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by mmtmtzmg the deviations between a model distribution function and an 

experimental distribution function. The choice between the methods is imposed by 

the question, whether local failure occurs in static loading. If this is the case, the 

experimental distribution of the maximum initia! damage can be determined from 

two static tests. In case of non-local darnaging in static tests, lifetime data are 

required. This metbod can be applied if the discrepancies between coupled and 

uncoupled solutions stay small, which is definitely true for fatigue as was 

demonstrated in chapters 4 and 5. Of course, the second metbod can be applied also 

if static loadings show local damaging. It is stated that the second metbod finds a 

broader applicability. Furthermore the data acquisition requires relatively little 

effort. 

Lifetime distributions of Biomer were predicted fairly well. A further point in 

support of the developed theory is that the dimensions of the EC were within the 

scale of the representative volume element (RVE) for polymers. Then, there might 

be a correspondence between the EC and the RVE, which can solve the problem of 

characterizing the scale of the RVE as discussed by Lemaitre and Dufailly (1987). 

Instead of using micrograpbic measurements, the scale follows directly from the 

present mini mi zation procedure. This, however, needs further investigations. 

Faiture processes in PS were investigated. The mean maximum initia! defect 
size resulting from the present model agrees well with the size as reported by 

MeMaster et al. (1974). The effect of the mean stress on the lifetime was tested. The 

results agreed well with data from Sauer et al. (1976). 

Chen et al. (1981) applied optical measurements to study faiture processes in 

PS. Optical measurements give direct information about the local damage state. A 

striking resembienee was observed between the reflected light intensity and the 

damage in fatigue loading. This similarity provides further evidence for the validity 

of the developed model. In addition, it makes clear that the evolution equation for 

fatigue can be characterized with optical methods. However, the major benefit of 

these measurements is that they can be applied to characterize different damage 
processes, which no longer satisfy the hypothesis of identical crack growth relations 

on the micro and macro level. For ex:ample, faiture processes in composite materials 

consist of different phases, involving matrix cracking, interface delamination, and 

fiber rupture. These mechanisms are very complex and require different evolution 

laws. Therefore, it is strongly recommended to further investigate the feasibility of 

optical and ultrasonic damage measurements. 
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On the numerical procedure 
The balance equation and the constitutive equations were solved numerically. Due 

to the continuons coupling between the constitutive equations large computing 

times may evolve for complex problems. A substantial rednetion of computing time 

is achieved by employing an adaptive stepsize algorithm. The algorithm is based on 

estimates for the local truncation error in the numerical integration of the evolution 

equation. It is noted that the time stepping algorithm is applied to the most critical 

damage evolution in the mesh. As the damage effects are localized, substructuring 

(Zienkiewicz 1976) may become an important device in the rnadeling of damage 

phenomena with less computational effort. A further rednetion in computing time is 

achieved by uncoupling the constitutive equations. In section 5.6 it was 

demonstrated that for failure mechanisms, which show an explosive increase in the 

damage state, the uncoupling produces satisfactory results. 

Stochastic failure processes were analyzed using simulation techniques. The 

simulations consist of finite element calculations for different realizations of the 

initial state. Lifetime distributions were predicted by performing calculations with 

different realizations of the initial state. Under homogeneons loading conditions 

failure is initiated in the element with the largest initial damage. Under 

inhomogeneons loading conditions the local deformation state is the dominating 

factor in the failure mechanism. 

An important issue is the dependenee on the finite element mbdeling (mesh 

sensitivity). Several solutions to this question were suggested. Chaboche (1988) 

states that the local mesh size has to be fixed in every application after checking a 

particular one. Another approach is to introduce a nonlocal definition for damage 

growth (Bazant and Pijaudier-Cabot 1988). Billardon et al. (1987) introduced an 

energy criterion which is associated with a characteristic size. In the present study 

the PDF of the initial damage was associated with the EC. The mesh sensitivity 

was studied under homogeneons loading conditions, because then the results are not 

disturbed by the local deformation state and crack initiation is completely dictated 

by the maximum initial damage in the structure. The PDF of the maximum initial 

damage and consequently the PDF for the time to crack initiation do not depend 

upon the finite element modeling. Insection 6.2.2 it was demonstrated that the time 

to complete failure displayed only a minor mesh sensitivity that originated from a 

less accurate description of the local deformation state in case of a small number of 

elements. Further investigations concerning the role of the EC as a characteristic 
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size in the reduction of the mesh sensitivity are highly recommended. 

In chapter 6 it was pointed out that CDM can be used to predict both crack 

initiation and propagation by representing the crack as a zone of completely 

damaged elements. Crack growth is modeled in a natura! way through growth of 

this zone. Hence, the crack tip is a process zone in which the damage continually 

changes. This should be compared to fracture mechanics, where given some stress 

state in the vicinity of a crack tip, it is checked, whether crack growth occurs. In 

crack growth problems the failure processes are dominated by the local deformation 

state leading to identical crack patterns for all realizations of the initia! state. As 

our main concern was directed towards the qualitative prediction of the crack 

pattern, only one calculation was carried out by attributing the expected values of 

the initia! damage distribution to the Gauss points in the mesh. This analysis yields 

an averaged structural behaviour. It is noted that in situations where the time to 

failure is of paramount importance, simulation techniques must be used. Crack 

propagation in a plate with an induced crack was studied for three distinct loadings. 

Although no reference can be made to other studies, the results are qualified as 

promising, since the computed crack patterns come up to our expectations. 

In the present study the meshes were kept fixed. Due to the fact that the 

interconnections between the elements are maintained, crack opening effects cause 

large deformations in the completely damaged zone. The rigidity of this zone can 

not be decreased indefinitely, since errors with respect to the solution of the 

linearized set of equations can be expected to be large if structures of widely varying 

stiffness are analyzed. As a consequence residual stresses may take on considerable 

values in the completely damaged zone. A solution to this problem is the application 

of mesh adaptation techniques. By adapting the local mesh refinement as the crack 

proceeds crack opening effects can be modeled correctly, thus ruling out residual 

stresses and the downward trend of the peak stresses at the crack tip. In future 

research attention should be given to mesh adaptation techniques. 

To conclude this thesis, it is stated that CDM provides for an attractive 

theory in the modeling of failure processes. The experimental characterization of 

damage is feasible through the stochastic nature of damage. lmplementation in 

finite element codes renders a powerful tooi for the analysis of (stochastic) processes 

involving crack initiation and propagation. However, the discussion above indicates 

a number of issues to be investigated further. For example in the characterization of 

damage states optica} measurements may contribute substantially. Investigations in 
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the numerical field are required with respect to the mesh sensitivity, the application 

of mesh adaptation techniques and substructuring. Priority, however, should be 

given to the implementation of the model into a standard finite element code. The 

implementation should be set up in a general way, such that damage processes can 

be analyzed by user supplied routines for the evolution equation and the darnage 

criterion. Advantage can be gained of common features that different dissipative 

mechanisms display. 
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Appendices 

Appendix A Elaboration for anisotropic damage 

The · constitutive theory in section 3.4 will be elucidated for isotropie material 

behaviour. In this case the constitutive equations are completely independent of the 

orientation of the coordinate reference system. Hence, the free energy potential must 

obey the following relation for any proper orthogonal tensor Q 

(Al) 

Using the representation theorems for isotropie scalar functions (Spencer 1971), it 

follows that the free energy cao only depend on a set of 10 scalar invariants 

(A2) 

Expanding 7P{E,D) in powersof E, terminating at the second power, we obtain 

(A3) 

where Ai = Aï(I4,1s,l6) for i = 1, ... ,12. In view of eq. (3.4.9)1 it follows that 

(A4) 

103 



If it is required that the body is stress free in the reference configuration, the 

following condition must be satisfied 

(A5) 

A~, A4 and As should reduce to the classical moduli in the absence of damage. Thus, 

we must have At = 0, A4 = Ào and As = 2J.i.O, where Ào and J.Lo are the so----called 

Lamé-constants. If it is assumed that the Ai do notdepend on the damage state the 

generalized force Xpq is given by 

(A6) 

After specification of the damage criterion (3.3.21) and the consistency condition 

(3.4.11), the constitutive theory is completely defined together with eqs. (A4), (A6) 
and (3.4.14). 
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Appendix B Kolmogorov-Bmirnov test of fit 

The Kolmogorov-Smirnov test is useful for testing whether two distributions are 

different. lt is based on the deviate ~ 

~ =max. [ F n(x)- Px(x)] 
x - -

(Bl) 

where F ~(x) is the cumulative frequency distribution of a sample of size n. F ~(x) is 

regarded as a discrete random variabie whose possible values are 0, 1/n, 2/n, ... ,l. 

Kolmogorov's theorem offers the possibility to estimate the distribution function of 

~. In particular if the CDF of ?f., P~(x), is continuous, the theorem states that 

(B2) 

which is a monotonic function with the limiting values Q(O) = 0 and Q(oo) = 1. 

Assume that a CDF P ::(x) has been guessed for ! and that F ~(x) has been built up 

from an observed sample. Then compute 

~ = max I Fn(x)- Px(x) I 
x - -

(B3) 

i.e. the realization of the random variabie corresponding to the observed sample. If 
the sample size is sufficiently largeit is possible to calculate from equation (B2) the 

significanee level of an observed value of~. 

(B4) 

Small values of P show that the CDF of F ~(x) is significantly different from P::(x). 

It should then he concluded that Px(x) cannot he used to describe the random 

variabie !· However, if P is sufficiently large, the calculated deviate ~ is a value 

that is likely to be found in a single test. In this case the sample test is not in 

conflict with the hypothetical CDF P~(x). 
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Appendix C Scheme of the solution process 

Intbis Appendix the solution strategy, which is employed for the coupled as well as 

the uncoupled set of equations is highlighted. For notational simplicity the damage 

column JJ = { tD, 2D, ... , 4niD} withUi the number of integration (Gauss) points, is 

introduced. Then, fortimes tn > 0 the solution procedure is as follows 

1 tn+1 1-- tn + .àtn 
a-1 

JJI+~ 

ij ( 3 jE {1, 2 ... , 4ni} I jDg+l > De) go to 2 
ij ( equations are uncoupled ) then 

.àtn 
go to 1 

else 

2 ~(:Sg+l! J;?:+t) 6:s = ,t(:S~+t, !?~+1) 

:s:+l - :S~+l + ~ 

.[:.~, ~~+!, E:i+t 
ij (l,tl< a) then 

.àtn 
go to 1 

else 

a-a+l 

!?g+l 
go to 2 

end ij 
end ij 
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Samenvatting 

In de modelvorming van faalmechanismen is de toepassing van geavanceerde 

theoretische en numerieke methoden onmisbaar. In dit onderzoek wordt continuurn 

damage mechanica (CDM) gebruikt om faalmechanismen te beschrijven. CDM is 

een tak van de continuürnsmechanica, waarbij de lokale verdeling van microdefecten 

wordt gekarakteriseerd met een continue (schade)variabele. Als gevolg van de 

introductie van de schadevariabele moet een extra relatie bepaald worden, de 

(schade)evolutievergelijking, die aangeeft hoe de schade verandert. In CDM wordt 

een continue koppeling tussen de schade en deformaties verkregen. Algemene 

uitdrukkingen voor de constitutieve vergelijkingen, te weten de spanninga-rek 

relatie en de evolutie vergelijking, kunnen worden afgeleid uit twee potentialen: de 

Helrnholtz vrije energie functie en de dissipatie potentiaal. 

In deze studie wordt vooral aandacht besteed aan brosse faalmechanismen, 
hetgeen betekent, dat schade-evolutie het overheersende dissipatieve mechanisme 

is. Verder hangt de huidige toestand niet af van de snelheid waarmee deze toestand 

bereikt is. Gebaseerd op de formulering van het criterium voor schadegroei, wordt 

een verder onderscheid gemaakt tussen brosse schade en schade door vermoeiing. 

Voor beide mechanismen zijn modellen ontwikkeld. Het model voor brosse schade is 

in staat om het gedrag van beton en polystyreen in eenvoudige belasting situaties te 

beschrijven. Het model voor vermoeiing kan desgewenst tot enkele algemeen 

aanvaarde cumulatieve schademodellen vereenvoudigd worden. Anisotrope schade 

wordt behandeld, waarbij de richtinga-afhankelijkheid wordt verdisconteerd met 
behulp van dyadische vector produkten. 

Voor een volledige beschrijving van faalmechanismen moeten de evolutie­

vergelijking en de initiële schade bekend zijn. Om de parameters in de evolutie­

vergelijking te karakteriseren wordt verondersteld, dat microscheur- en macro­

scheurgroei door identieke relaties beschreven worden. Vervolgens kan de evolutie­

vergelijking afgeleid worden met behulp van concepten uit de breukmechanica. Op 

grond van het feit dat faalprocessen in werkelijkheid stochastische processen zijn, 

kan beredeneerd worden dat de initiële schade een random variabele is. Door de 

initiële schade te associëren met een karakteristieke afmeting, de zogenaamde 

elementaire cel, kunnen de bijbehorende statistische eigenschappen bepaald worden. 

De geldigheid van het ontwikkelde statistische model wordt aangetoond voor 

vermoeiing bij rubbers en polystyreen. 

Voor praktische toepassingen zijn de evenwichtsvergelijking en de constitu-
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tieve vergelijkingen numeriek opgelost. Gebaseerd op het principe van de gewogen 

residuën is een iteratieve procedure ontwikkeld om de niet-lineaire vergelijkingen 

op te lossen. Aanzienlijke rekentijdwinst wordt verkregen door de toepassing van 

een adaptief stapgrootte algoritme bij de numerieke integratie van de 

evolutievergelijking en door ontkoppeling van de constitutieve vergelijkingen. 

Simulatie-technieken worden toegepast om stochastische faalprocessen te 

analyseren. De simulaties bestaan uit eindige elementen berekeningen voor 

verschillende begintoestanden. De statistische eigenschappen van de faalprocessen 

volgen uit het geheel van de responsies. De simulaties tonen aan dat de oplossingen, 

die verkregen zijn met de gekoppelde en ontkoppelde constitutieve vergelijkingen, 

slechts in geringe mate verschillen. Bovendien wordt de afhankelijkheid van de mesh 

op de resultaten verminderd door het concept van de elementaire cel. 

In CDM is scheurgroei equivalent aan de groei van een zone van volledig 

beschadigde elementen. Zowel de initiatie alsook de groei van scheuren worden 

voorspeld. 
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Stellingen 
behorende bij het proefschrift 

CONTINUUM DAMAGE MECHANICS 

WITH AN APPLICATION TO FATIGUE 

1) Met behulp van "continuum damage mechanics" kunnen de processen, die 

optreden bij vermoeiing en brosse breuk, op vrijwel identieke wijze 

gemodelleerd worden. 

- Marigo, J.J. 1985, Modelling of brittie and fatigue damage for elastic 

material by growth of microvoids, Eng. Fract. Mech. 21, 861-874. 

Dit proefschrift, hoofdstuk 3. 

2) Wanneer de microstructuur niet nauwkeurig bekend is, dient de initiële 

schade, een essentiële grootheid in de beschrijving van faalmechanismen, 

opgevat te worden als een stochast. 

- Dit proefschrift, hoofdstuk 4. 

3) De toepassing van een adaptief stapgrootte algoritme en (indien toelaatbaar) 

de ontkoppeling van de spannings-rek relatie en de schade-€volutie 

vergelijking leveren een enorme winst in rekentijd op bij de numerieke 

uitwerking van schademodeHeiL 

- Dit proefschrift, hoofdstuk 5. 

4) Continuum damage mechanics is niet alleen een methode om scheurinitiatie 

te voorspellen, maar is ook uitermate géschikt om scheurvoortplanting te 

beschrijven. 

Lemaitre, J. 1986, Local approach of fracture, Eng. Fract. Mech. 25, 

523-537. 

Dit proefschrift, hoofdstuk 6. 

5) Het concept van de elementaire cel en de hiermee geassocieerde kansdicht­

heidsfunctie van de initiële schade reduceren de mesh-afhankelijkheid bij 

bezwijkanalyses gebaseerd op de eindige elementen methode. 

- Dit proefschrift, hoofdstuk 6. 

6) Structurele modellen dienen slechts dan geprefereerd te worden boven 

fenomenologische modellen, als men beschikt over een gedetailleerd inzicht in 

de microstructuur en de zich op micro-niveau manifesterende processen. 



7) Optimaliseringsmetboden zijn van groot belang bij de ontwikkeling van 

constructies. Een zwak punt echter is de keuze van de ontwerpvariabelen en 

de te minimaliseren objectfunctie( s ). 

Vanderplaats, G.N. 1984, Numerical optimization techniques for 

engineering design, McGraw-Hill, New York. 

8) Het merendeel van de studenten in de technische wetenschappen beschikt 

over een gebrekkige kennis van gestructureerd programmeren. Als gevolg 

hiervan wordt programmeren door hen veelal gezien als een intuïtief te 

bedrijven ambacht. 

9) Onderzoek gehoorzaamt aan darwinistische pnnc1pes. Alleen de beste 

theorieën worden voortdurend verder ontwikkeld. Overbodige theorieën 

verdwijnen of leven voort binnen een geïsoleerde gemeenschap. 

10) De rustpols verstrekt belangrijke informatie omtrent de fysieke en mentale 

conditie. Fysieke enjof mentale overbelasting kunnen door een regelmatige 

registratie van de rustpols in een vroeg stadium worden opgespoord. 

11) De belangrijkste taak van een coach is de training zodanig in te richten, dat 

ieder individu het maximale rendement haalt uit de geleverde in~panning. 

12) Oost west, thuis werkt best. 

Eindhoven, september 1990 Michel Paas 


