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Monotonicity Conditions for Multirate and
Partitioned Explicit Runge-Kutta Schemes

W. Hundsdorfer, A. Mozartova, V. Savcenco

Abstract Multirate schemes for conservation laws or convection-dominated prob-
lems seem to come in two flavors: schemes that are locally inconsistent, and schemes
that lack mass-conservation. In this paper these two defects are discussed for one-
dimensional conservation laws. Particular attention willbe given to monotonicity
properties of the multirate schemes, such as maximum principles and the total vari-
ation diminishing (TVD) property. The study of these properties will be done within
the framework of partitioned Runge-Kutta methods. It will also be seen that the in-
compatibility of consistency and mass-conservation holdsfor ‘genuine’ multirate
schemes, but not for general partitioned methods.

1 Introduction

Several well-known multirate schemes for conservation laws that have appeared in
the literature have one of the following defects: there are schemes that arelocally
inconsistent, e.g. [1, 2, 13, 14], and schemes that arenot mass-conservative, e.g.
[19]. In this paper these two defects are discussed for one-dimensional conservation
lawsut + f (u)x = 0. We will mainly concentrate on time stepping aspects for simple
schemes with one level of temporal refinement. The spatial grids are assumed to be
given and fixed in time. Spatial discretization of a PDE (partial differential equa-
tion) then leads to a system of ODEs (ordinary differential equations), the so-called
semi-discrete system. Particular attention will be given to monotonicity properties
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of the multirate time stepping schemes, such as maximum principles and the total
variation diminishing (TVD) property. Different types of monotonicity, depending
on the norm or semi-norm being used, will lead to different stepsize restrictions.

In Section 2 we will present some multirate schemes with one level of refinement,
due to Osher & Sanders [14], Tang & Warnecke [19], Constantinescu & Sandu [1],
and Savcenco, Hundsdorfer & Verwer [15].

For the analysis of general multirate schemes it is convenient to write them in
the form of partitioned Runge-Kutta methods. Basic properties of these methods are
discussed in Section 3.

In Section 4 techniques of Higueras, Ferracina and Spijker [6, 9, 10, 18] will
be employed, with some suitable modifications, to obtain monotonicity results. It
will be seen that the step-size restrictions for maximum-norm monotonicity and
maximum principles can be more relaxed than for other norms or semi-norms.

2 Some multirate schemes of order one and two

2.1 Examples of simple schemes for the advection equation

Consider as a simple example the advection equation

ut +ux = 0 (1)

on a one-dimensional spatial region 0< x < 1 with given initial valueu(x,0), and
inflow boundary conditionu(0, t) or spatial periodicity. Spatial discretization is per-
formed with the first-order upwind scheme on cellsC j = (x j − 1

2∆x j ,x j +
1
2∆x j).

This gives a semi-discrete system

u′j(t) =
1

∆x j

(

u j−1(t)−u j(t)
)

for j ∈ I = {1,2, . . . ,m} , (2)

whereu′j(t) = d
HMVdtu j(t), andu j(t) approximatesu(x j , t) or the average value over

the surrounding cellC j .
Application of the forward Euler method with time step∆t gives the CFL stability

conditionν j ≤ 1 for all j, whereν j = ∆t/∆x j is the local Courant number. Suppose
this stability condition is satisfied forj ∈ I1 but onI2 = I −I1 we need to take
two smaller steps with step-size12∆t to reachtn+1 = tn + ∆t.

Then for this simple situation, the scheme of Osher and Sanders [14] can be
written as



















u
n+ 1

2
j =

{

un
j for j ∈ I1 ,

un
j +

1
2ν j(un

j−1−un
j ) for j ∈ I2 ,

un+1
j = un

j +
1
2ν j(un

j−1−un
j )+ 1

2ν j(u
n+ 1

2
j−1 −u

n+ 1
2

j ) for j ∈ I .

(3)
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As observed in [19], the scheme (3) is not consistent at the interface: ifi−1∈I1

andi ∈ I2 then

1
∆t

(

un+1
i −un

i

)

=
1

∆xi

(

un
i−1− 1

2(un
i +u

n+ 1
2

i )
)

=
1− 1

4νi

∆xi

(

un
i−1−un

i

)

,

which is consistent for fixed Courant numberνi with the equation

ut +(1− 1
4νi)ux = O(∆t)+O(∆xi) ,

rather than the original advection equation (1).
To overcome this inconsistency, Tang and Warnecke [19] therefore proposed the

modified scheme


























u
n+ 1

2
j = un

j +
1
2ν j(un

j−1−un
j ) for j ∈ I ,

un+1
j = u

n+ 1
2

j +







1
2ν j(un

j−1−un
j ) for j ∈ I1 ,

1
2ν j(u

n+ 1
2

j−1 −u
n+ 1

2
j ) for j ∈ I2 .

(4)

This scheme, however, is not mass conserving at the interface. If i − 1 ∈ I1 and
i ∈ I2, then the flux atxi−1/2 that leaves cellCi−1 over the time interval[tn, tn+1]
equals∆t un

i−1, whereas the flux that entersCi over this time interval is given by
1
2∆t(un

i−1 +un+1/2
i−1 ).

It should be noted that except for interface points the schemes (3) and (4) are
identical. For example, ifI1 = { j : j < i} andI2 = { j : j ≥ i}, then (3) and (4)
give in one step the same result forj 6= i. Furthermore, it can be shown that, also
for interface regions with a larger, but fixed, number of points, the properties of
local consistency and mass conservation cannot be combined. Due to cancellation
and damping effects, local inconsistencies need not show upin the global errors. In
particular, the scheme (3) can be shown to be convergent in the maximum norm.

2.2 Some schemes with one refinement level for general
semi-discrete problems

In this paper we will discuss monotonicity properties and temporal convergence of
multirate schemes for general semi-discrete problems inR

m,

u′(t) = F(u(t)) , u(0) = u0 . (5)

As applications we will consider nonlinear conservation problems with flux-limited
spatial discretizations. The approximations tou(tn) = (u j(tn))∈R

m will be denoted
by un = (un

j ) ∈ R
m. As above, we consider partitioningI = I1∪I2. Correspond-



4 W. Hundsdorfer, A. Mozartova, V. Savcenco

ing to these setsIk, let I1, I2 bem×m diagonal matrices with diagonal entries 0 or
1, such that(Ik) j j = 1 for j ∈ Ik, k = 1,2. We haveI1 + I2 = I , the identity matrix.

2.2.1 First-order schemes

The semi-discrete system (2) obviously fits in this form withlinear functionF ;
the general system (5) allows nonlinear problems and nonlinear discretizations. For
such systems the Osher-Sanders scheme (3) becomes







un+ 1
2

= un + 1
2∆tI2F(un) ,

un+1 = un + 1
2∆tF(un)+ 1

2∆tF(un+ 1
2
) ,

(6)

and the Tang-Warnecke scheme (4) reads






un+ 1
2

= un + 1
2∆tF(un) ,

un+1 = un + ∆tI1F(un)+ 1
2∆tI2

(

F(un)+F(un+ 1
2
)
)

.
(7)

In the following we will refer to (6) as the OS1 scheme, and to (7) as the TW1
scheme. We note that in [14] and [19] the number of sub-steps on the index setI2

was allowed to be larger than two for these schemes. This willbe covered by the
more general formulations considered in Section 3.

2.2.2 Second-order schemes

In the literature, several second-order multirate schemesfor conservation laws have
been derived that are based on the standard two-stage Runge-Kutta method

u∗n+1 = un + ∆tF(un) , un+1 = un + 1
2∆t

(

F(un)+F(u∗n+1)
)

.

The second stage can also be written asun+1 = 1
2(un +u∗n+1 + ∆tF(u∗n+1)). Mono-

tonicity properties are more clear with this form. The method is known as the ex-
plicit trapezoidal rule or the modified Euler method. In thissection we consider
some multirate schemes, based on this method, with one levelof temporal refine-
ment. Results on internal consistency and mass conservation are mentioned here,
but a detailed discussion will only be given in Section 3.

The second-order scheme of Tang & Warnecke [19] reads
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u∗
n+ 1

2
= un + 1

2∆tF(un) ,

un+ 1
2

= 1
2
(

un +u∗
n+ 1

2
+ 1

2∆tF(u∗
n+ 1

2
)
)

,

u∗n+1 = I1
(

un + ∆tF(un)
)

+ I2
(

un+ 1
2
+ 1

2∆tF(un+ 1
2
)
)

,

un+1 = 1
2I1

(

un +u∗n+1 + ∆tF(u∗n+1)
)

+ 1
2I2

(

un+ 1
2
+u∗n+1 + 1

2∆tF(u∗n+1)
)

.

(8)

We will refer to this scheme as TW2. It will be shown below that this scheme is
internally consistent but not mass-conserving.

Constantinescu & Sandu [1] introduced the following scheme, which will be
referred to as CS2,



































u∗
n+ 1

2
= un + ∆tI1F(un)+ 1

2∆tI2F(un) ,

un+ 1
2

= un + 1
4∆tI2

(

F(un)+F(u∗
n+ 1

2
)
)

,

u∗n+1 = I1
(

un + ∆tF(un+ 1
2
)
)

+ I2
(

un+ 1
2
+ 1

2∆tF(un+ 1
2
)
)

,

un+1 = un + 1
4∆t

(

F(un)+F(u∗
n+ 1

2
)+F(un+ 1

2
)+F(u∗n+1)

)

.

(9)

This scheme is mass-conserving but not internally consistent. Nevertheless, we will
see that it is still convergent (with order one) in the maximum-norm due to damping
and cancellation effects. Note that for non-stiff ODE systems the scheme will be
consistent and convergent with order two.

The related method of Dawson and Kirby [2] is also mass-conserving but not
internally consistent. However in that scheme a limiter is applied which is adapted
to the outcome of previous stages, so it does not fit in the framework of this paper
where the semi-discrete system is supposed to be given a priori.

In [15] a multirate scheme of order two was constructed for stiff (parabolic) prob-
lems. This is a Rosenbrock-type scheme containing a parameterγ, and settingγ = 0
yields an explicit scheme, which we will refer to as SH2. In this scheme, first a
predictionvn+1 is computed, followed by refinement steps onI2 using interpolated
valuesvn+ 1

2
onI1. The scheme reads







































































v∗n+1 = un + ∆tF(un) ,

vn+1 = 1
2un + 1

2v∗n+1 + 1
2∆tF(v∗n+1) ,

vn+ 1
2

= 1
2un + 1

4v∗n+1 + 1
4vn+1 ,

u∗
n+ 1

2
= I1vn+ 1

2
+ I2

(

un + 1
2∆tF(un)

)

,

un+ 1
2

= I1vn+ 1
2
+ 1

2I2
(

un +u∗
n+ 1

2
+ 1

2∆tF(u∗
n+ 1

2
)
)

,

u∗n+1 = I1vn+1 + I2
(

un+ 1
2
+ 1

2∆tF(un+ 1
2
)
)

,

un+1 = I1vn+1 + 1
2I2

(

un+ 1
2
+u∗n+1 + 1

2∆tF(u∗n+1)
)

.

(10)
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This scheme will be seen to be internally consistent but not mass-conserving. It can
be written with fewer stages; there are no function evaluations ofvn+1 andvn+1/2,
so these vectors are just included for notational convenience. Further we note that
this scheme was not intended originally as used here. Instead, the prediction values
v∗n+1 andvn+1 were used in [15] to estimate local errors, and based on this estimate
the partitioningI = I1∪I2 was adjusted. For the schemes in the present paper
the partitioning is supposed to be given, based on local Courant numbers, in which
case onlyI1vn+1 andI1vn+1/2 are needed.

2.2.3 Monotonicity assumptions

We will consider monotonicity properties of the numerical methods with suitable
norms or semi-norms‖v‖ for v = (v j) ∈ R

m. More general sublinear functionals
can be included in the theory as well, and also these will be denoted by‖v‖.

The basic monotonicity assumption on the semi-discrete system is given by

‖v+ τ1I1F(v)+ 1
2τ2I2F(v)‖ ≤ ‖v‖ for all v∈ R

m and 0≤ τ1,τ2 ≤ τ0 , (11)

whereτ0 > 0 is a problem dependent parameter. A related assumption, used for
instance in [10, 18], is

‖v+ 1
kτkIkF(v)‖ ≤ ‖v‖ for all v∈ R

m and 0≤ τk ≤ τ0, k = 1,2, (12)

It is easily seen that (12) implies (11).
For the multirate schemes we shall determine step-size coefficientsC such that

we have the monotonicity property

‖un+1‖ ≤ ‖un‖ whenever∆t ≤Cτ0 . (13)

For a given scheme, the optimal step-size coefficientC will be called the thresh-
old factor for monotonicity. In general, such monotonicityproperties are intended
to ensure that unwanted overshoots or numerical oscillations will not arise. Follow-
ing [16, 17] we will call a scheme total variation diminishing (TVD) if (13) holds
with the semi-norm‖v‖TV . If the (semi-)norm is not specified, methods that have a
positive thresholdC can be called strong stability preserving (SSP), as in [3, 4]for
standard, single-rate methods.

The optimal valuesC may depend on the norm. As we will see, under assumption
(11), the thresholdsC are in general larger for the maximum norm than for the total
variation semi-norm.

Example. Well-known examples are the maximum norm‖v‖∞ = max1≤ j≤m|v j | and
the total variation semi-norm‖v‖TV = ∑m

j=1 |v j−1−v j | with v0 = vm, the latter aris-
ing from one-dimensional scalar PDEs with spatial periodicity.

Apart from such (semi-)norms, we can also consider sublinear functionals. For
example, following [18], define‖v‖+ = max1≤ j≤mv j and‖v‖− = −min1≤ j≤mv j .
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Then, having (13) for both these sublinear functionals amounts to the maximum
principle min1≤i≤mu0

i ≤ un
j lemax1≤i≤mu0

i for all n≥ 1 and 1≤ j ≤ m. In general,
this is of course somewhat stronger than having monotonicity in the maximum-
norm,‖un+1‖∞ ≤ ‖un‖∞, but for the schemes considered in this paper the associated
threshold valuesC will be the same. ✸

Example. Consider a scalar conservation lawut + f (u)x = 0 with a periodic bound-
ary condition, and with 0≤ f ′(u) ≤ α. Spatial discretization in conservation form
gives semi-discrete systems (5) with

Fj(v) =
1

∆x j

(

f (v j− 1
2
)− f (v j+ 1

2
)
)

wherev j±1/2 are the values at the cell boundaries, determined from the components
of v = (vi) ∈ R

m. Using limiters in the discretization it can be guaranteed that

0 ≤
v j− 1

2
−v j+ 1

2

v j−1−v j
≤ 1+ µ

with a constantµ ≥ 0 determined by the limiter; see also formula (8) in [2]. This
holds trivially for the first-order upwind discretization with µ = 0; for higher-order
schemes with limiting we getµ = 1. It follows thatFj(v) can then be written as

Fj(v) =
a j(v)

∆x j

(

v j−1−v j
)

, j = 1, . . . ,m, v0 = vm,

where
0≤ a j(v) ≤ α(1+ µ) for all j andv∈ R

m.

Suppose that∆x j = h for j ∈ I1 and∆x j = 1
2h for j ∈ I2. Then a well-known

lemma of Harten [7, Lemma 2.2] shows that the monotonicity assumptions (11) and
(12) will be valid for the total variation semi-norm‖ · ‖TV provided that

ατ0

h
≤ 1

1+ µ
.

Moreover, it is easy to see that the assumptions (11) and (12)will also hold under
the same CFL restriction with the maximum-norm and the functionals‖ · ‖± of the
previous example. ✸

2.2.4 Example: monotonicity for the TW1 scheme

General results on monotonicity will be presented in Section 4 in a more general
setting, but it is illustrative to first show the derivation of monotonicity results for the
simple TW1 scheme under assumption (11) with the maximum normor a general
semi-norm to see how the different step-size restrictions arise.
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In the first stage of the TW1 scheme (7) we have of course

‖un+ 1
2
‖ ≤ ‖un‖ whenever∆t ≤ τ0 .

The second stage can be written in the form

un+1 = (1−θ)un+θ
(

un+ 1
2
− 1

2∆tF(un)
)

+∆tI1F(un)+ 1
2∆tI2

(

F(un)+F(un+ 1
2
)
)

,

with arbitraryθ ∈ [0,1]. This leads to

un+1 = (1−θ)
(

un +
2−θ

2(1−θ)∆tI1F(un)+ 1
2∆tI2F(un)

)

+ θ
(

un+ 1
2
+

1
2θ ∆tI2F(un+ 1

2
)
)

.
(14)

Under assumption (11) this gives the monotonicity property(13) with

C = max
0≤θ≤1

min
(

1,
2(1−θ)

2−θ , θ
)

= 2−
√

2. (15)

This valueC ≈ 0.58 is valid for general semi-norms. So, in particular, it provides a
TVD result for schemes with limiters.

Next, consider the maximum-norm. The second stage can also be written as

un+1 = I1
(

un + ∆tI1F(un)
)

+ I2
(

un+ 1
2
+ 1

2∆tI2F(un+ 1
2
)
)

.

It follows that the monotonicity property (13) is valid for the maximum norm with
step-size coefficient

C = 1, (16)

and the same holds for maximum principles; cf. [19, Lemma 2.1]).
Note that this result (16) has been obtained by using the inequality ‖I1v+ I2w‖ ≤

max(‖v‖,‖w‖) , which holds for the maximum-norm and for the convex functionals
‖ · ‖± from the previous example, but not for general norms or semi-norms.

3 Partitioned Runge-Kutta methods

3.1 General properties

In the multirate examples considered thus far, only one level of refinement was
used to keep the notation simple. Generalizations can be formulated in terms of
partitioned Runge-Kutta methods by which the schemes are presented in a compact
fashion; see also [1, 5]. Explicit methods are in general preferred for applications to
conservation laws, but in the analysis below diagonally implicit methods could also
be easily included.
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As in (5), the semi-discrete system inRm is written asu′(t) = F(u(t)), u(0) =
u0. Let I = I1 ∪ ·· · ∪Ir be an index partitioning with corresponding diagonal
matricesI = I1 + · · ·+ Ir , whereI is the identity matrix, the entries of theIk are zero
or one andIkIl is the zero matrix ifk 6= l .

For a time step fromtn to tn+1 = tn + ∆t, we consider partitioned Runge-Kutta
methods























vn,i = un + ∆t
r

∑
k=1

i−1

∑
j=1

a(k)
i j IkF(vn, j) , i = 1, . . . ,s,

un+1 = un + ∆t
r

∑
k=1

s

∑
j=1

b(k)
j IkF(vn, j) .

(17)

The internal stage vectorsvn,i , i = 1, . . . ,s, give approximations at intermediate time
levels. The multirate schemes of the previous sections all fit in this form withr = 2.
With r > 2 more levels of temporal refinement are allowed.

3.1.1 Internal consistency and conservation

Let c(k)

i = ∑i−1
j=1a(k)

i j , i = 1, . . . ,s. If we have

c(k)
i = c(l)

i for all 1≤ k, l ≤ r and 1≤ i ≤ s, (18)

then the internal vectorsvn,i will be consistent approximations tou(tn + ci∆t), and
the method will be calledinternally consistent. This is an important property for the
accuracy of the method when applied to ODEs obtained by semi-discretization.

Apart from consistency, we will also regard globalconservation, for example
mass conservation. Suppose thathT = (h1, . . . ,hm) is such thathTu(t) = ∑ j h ju j(t)
is a conserved quantity for the ODE system (5). This will holdfor arbitrary initial
valueu0 provided that

hTF(v) = 0 for all v∈ R
m. (19)

For the partitioned Runge-Kutta scheme we have

hTun+1 = hTun + ∆t
r

∑
k=1

s

∑
j=1

b(k)
j hT IkF(vn, j)

= hTun + ∆t ∑
k6=l

s

∑
j=1

(

b(k)
j −b(l)

j

)

hT IkF(vn, j) ,

for any 1≤ l ≤ r. Therefore, as noted in [1], the conservation propertyhTun+1 =
hTun will be valid provided that

b(k)
j = b(l)

j for all 1≤ k, l ≤ r and 1≤ j ≤ s. (20)
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3.1.2 Order conditions for non-stiff problems

The order conditions for partitioned Runge-Kutta methods applied to non-stiff prob-
lems can be found found in [8, Thm. I.15.9] forr = 2. The orderp for non-stiff
problems may not correspond to the order of convergence for semi-discrete systems
arising from PDEs with boundary conditions or interface conditions, and therefore
p is often referred to as theclassical order.

To write the order conditions forr > 2 in a compact way, letAk = (a(k)

i j ) ∈ R
s×s

andbk = (b(k)

i )∈R
s contain the coefficients of the method, and sete= (1, . . . ,1)T ∈

R
s. Then the conditions for orderp = 1 are just

bT
k e= 1 for k = 1, . . . , r , (21)

that is∑s
j=1b(k)

j = 1 for all k. To have orderp = 2 the coefficients should satisfy

bT
k Al e= 1

2 for k, l = 1, . . . , r . (22)

The number of conditions quickly increase for higher orders; for p = 3 we get

bT
k Cl1Al2e= 1

3 , bT
k Al1Al2e= 1

6 for k, l1, l2 = 1, . . . , r , (23)

whereCl = diag(Al e).

3.1.3 Formulation for non-autonomous systems

For non-autonomous systems

u′(t) = F(t,u(t)) , u(0) = u0 , (24)

we will use the partitioned method (17) with the stage function valuesF(vn, j) re-
placed byF(tn + c j ∆t,vn, j). If (18) is valid, the abscissa are naturally taken as
ci = c(k)

i , which is independent ofk.
If (18) does not hold, then a proper choice of the abscissa is less obvious. For

the OS1 and CS2 multirate schemes withr = 2 it is natural to takeci = c(2)
i . As

generalization of the autonomous case we will therefore use

ci = c(r)
i , i = 1, . . . ,s. (25)

Note that ifhTF(t,v) = 0 for all t ∈ R, v∈ R
m, then we still have the conservation

propertyhTun+1 = hTun if the scheme satisfies (20).
The alternative of replacingIkF(vn, j) in (17) byIkF(tn +c(k)

j ∆t,vn, j) will destroy
this conservation property. If the non-autonomous form originates from a source
term in the PDE, this loss of conservation may be of little concern, but for the
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advection equationut +
(

a(x, t)u)x = 0 with time-dependent velocity it is still a very
desirable property.

Example. The OS1 scheme (6) leads to the partitioned method (17) withr = 2 and
coefficients given by the tableau

a(1)
i j a(2)

i j

b(1)
j b(2)

j

=

0 0
0 0 1/2 0

1/2 1/21/2 1/2

.

For non-autonomous systemsu′(t) = F(t,u(t)) the scheme with (25) reads






un+ 1
2

= un + 1
2∆tI2F(tn,un) ,

un+1 = un + 1
2∆tF(tn,un)+ 1

2∆tF(tn+ 1
2
,un+ 1

2
) .

The use ofIkF(tn +c(k)

j ∆t,vn, j) instead ofIkF(tn +c j ∆t,vn, j), c j = c(2)
j , would lead

to the same formula forun+1/2 in the first stage, but then

un+1 = un + 1
2∆tF(tn,un)+ 1

2∆tI1F(tn,un+ 1
2
)+ 1

2∆tI2F(tn+ 1
2
,un+ 1

2
) ,

which is no longer conservative. ✸

The above order conditions have been derived for autonomoussystems, but with
(25) they are also valid for non-autonomous systems. This follows from the fact
thatu′(t) = F(t,u(t)) can be written as an equivalent, augmented autonomous sys-
tem u′(t) = F(ϑ(t),u(t)), ϑ ′(t) = 1, with ϑ(0) = 0, and application of the parti-
tioned method to this augmented system gives the same resultas to the original,
non-autonomous system provided the additional equationϑ ′(t) = 1 is included in
the index setIr .

3.1.4 Conservation versus internal consistency

For the multirate schemes that have been considered in this paper, the conditions for
internal consistency (18) and conservation (20) did not match. This incompatibility
is valid for all ‘genuine’ multirate schemes that are based on one single method
MRK, that is, for schemes (17) that reduce tomk applications (with step-size∆t/mk)
of this base methodMRK to cover[tn, tn+1] in case thatIk = I and the otherIl

are empty.
Consider, as simple example, a quadrature problemu′(t) = g(t) ∈ R

m, which is
just a special case of (24). (In a PDE context, this can be viewed as a degenerate
case of advection with a source term where the advective velocity happens to be
zero.) Suppose (18) and (20) are valid withc(k)

j = c j , b(k)
j = b j for all k, and let

J = {i ∈ I : bi 6= 0}. Then for the quadrature problem we simply get
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un+1 = un + ∆t ∑
i∈J

bi g(tn +ci∆t) ,

which is independent of the partitioning. However, if this is the result of a base
methodMRK with m1 = 1, I1 = I , then the result form2 = 2, I2 = I should be

un+1 = un + 1
2∆t ∑

i∈J

bi

(

g
(

tn + 1
2ci∆t

)

+g
(

tn + 1
2(1+ci)∆t

)

)

,

which is not the same for arbitrary source termsg.
Note that for general partitioned Runge-Kutta methods there is no conflict be-

tween (18) and (20). Given a scheme with the samec(k)

i = c(l )
i (for all i,k, l ), but

different weightsb(k)

i 6= b(l )
i (for somei,k, l ), we can add an extra stage with new

weightsb∗i that are independent ofk, to make it mass-conserving. Of course, this
will increase the computational work per step, and for the TW1, TW2 and SH2
schemes such a modification does not seem to lead to efficient new schemes.

4 Monotonicity and convex Euler combinations

We are in particular interested in the case where the partitioned Runge-Kutta method
(17) stands for a multirate scheme that takesmk substeps of size∆t/mk on Ik

to cover[tn, tn+1], k = 1, . . . , r, with m1 = 1 < m2 < · · · < mr . The corresponding
monotonicity assumption is

∥

∥

∥
v+

r

∑
k=1

τk
mk

IkF(v)
∥

∥

∥
≤ ‖v‖ for all v∈ R

m andτk ≤ τ0, k = 1, . . . , r , (26)

where‖ · ‖ is a sublinear functional or (semi-)norm. We will also consider

∥

∥v+
τ0
mk

IkF(v)
∥

∥ ≤ ‖v‖ for all v∈ R
m andk = 1, . . . , r , (27)

which generalizes the assumptions made in [10] and [18]. Of course, (26) implies
(27). On the other hand, if (27) is valid, then the inequalityin (26) will hold under the
step-size restrictionτ1 + · · ·+ τm ≤ τ0. If we are dealing with the maximum-norm,
then (26) and (27) are equivalent.

In the following we denote forl = 1, . . . , r,



















κ(l)
i j = ml a

(l)
i j , 1≤ i, j ≤ s,

κ(l)
s+1, j = ml b

(l)
j , 1≤ j ≤ s,

κ(l)
i,s+1 = 0, 1≤ i ≤ s+1.

(28)
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These coefficients will be grouped in the(s+ 1)× (s+ 1) matrix Kl = (κ (l )
i j ). It is

convenient to addvn,s+1 = un+1 to the internal vectors. Then (17) can be written as

vn,i = un +
r

∑
l=1

i−1

∑
j=1

κ(l)
i j

∆t
ml

Il F(vn, j) , i = 1, . . . ,s+1. (29)

Depending on the monotonicity assumption, we can consider various ways to
represent this partitioned scheme in terms of convex Euler combinations. For this
we will introduce new method coefficientsα (k)

i j , β (k)

i j with corresponding lower tri-

angular matricesAk = (α (k)

i j ) andBk = (β (k)

i j ). Such convex Euler forms are also
called Shu-Osher forms, after [17] where such representations were used originally
to demonstrate the TVD property of certain Runge-Kutta methods.

Inequalities for matrices or vectors in this section are to be understood component-
wise, that is,P = (pi j ) ≥ 0 means that allpi j are non-negative. Furthermore, if
P ∈ R

(s+1)×q1 andQ ∈ R
(s+1)×q2, then [P Q] stands for the matrix whose firstq1

columns equal those ofP and the other columns equal those ofQ. In this section we
let e= (1,1, . . . ,1)T ∈R

s+1, and we use the conventionα/β = +∞ if α ≥ 0, β = 0.

4.1 Maximum-norm monotonicity

A suitable form of (29) to obtain results on monotonicity in the maximum-norm is

vn,i =
r

∑
k=1

Ik
(

(

1−α(k)
i

)

un +
i−1

∑
j=1

(

α(k)
i j vn, j +β (k)

i j
∆t
mk

F(vn, j)
)

)

, (30)

whereα (k)

i = ∑i−1
j=1 α (k)

i j and i = 1, . . . ,s+ 1. To have correspondence between (29)
and (30) the coefficients should satisfy

Kk =
(

I −Ak
)−1

Bk , k = 1, . . . , r . (31)

Further we want the coefficients to be such that

α(k)
i ≤ 1, α(k)

i j ,β (k)
i j ≥ 0 for 1≤ j < i ≤ s+1, 1≤ k≤ r . (32)

For such coefficients, let
C = min

i, j,k
α(k)

i j /β (k)
i j . (33)

If there are no coefficients such that (31) and (32) are satisfied, we setC = 0.

Theorem 1. Consider (30) with (32) and let C be given by (33). Assume (26)is valid
in the maximum-norm. Then‖un+1‖∞ ≤ ‖un‖∞ whenever∆t ≤Cτ0.

Proof. The form (30) is equivalent to
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Ikvn,i = Ik
(

(

1−α(k)
i

)

un +
i−1

∑
j=1

(

α(k)
i j vn, j +β (k)

i j
∆t
mk

IkF(vn, j)
)

)

, k = 1, . . . , r .

We havevn,1 = un. Suppose (induction assumption) that‖vn, j‖∞ ≤ ‖un‖∞ for j =
1, . . . , i −1. Since

α(k)
i j vn, j +β (k)

i j
∆t
mk

IkF(vn, j) =
(

α(k)
i j −Cβ (k)

i j

)

vn, j +Cβ (k)
i j

(

vn, j +
∆t

Cmk
IkF(vn, j)

)

,

we then have

‖α(k)
i j vn, j +β (k)

i j
∆t
mk

IkF(vn, j)‖∞ ≤ α(k)
i j ‖vn, j‖∞ ≤ α(k)

i j ‖un‖∞ .

It follows that‖Ikvn,i‖∞ ≤ ‖un‖∞ for k = 1, . . . , r, and hence‖vn,i‖∞ ≤ ‖un‖∞. Using
induction with respect toi = 1, . . . ,s+1 the proof thus follows. ✷

It is obvious that we are in particular interested in the optimal value ofC in
(33) for a given method (29). To obtain a suitable expressionfor this optimal value,
we can follow the construction of Ferracina & Spijker [6] andHigueras [9] for the
individual Runge-Kutta methods given by the coefficientsKk.

Theorem 2. The optimal value for C≥ 0 in (33), under the constraints (31) and
(32), equals the largestγ ≥ 0 such that

(I + γKk)
−1[e γKk] ≥ 0, k = 1, . . . , r . (34)

Proof. Supposeγ ≥ 0 is such that (34) holds. We takeBk = (I + γKk)
−1Kk and

Ak = γBk. With this choice it is easily seen that (31) and (32) are valid and that
(33) holds withC = γ.

On the other hand, suppose that we have (31), (32) and (33) with C ≥ 0, and set
γ = C. Then

(

I + γKk
)−1

[e γKk] =
(

I −Mk
)−1

[(I −Ak)e γBk] ,

whereMk = Ak− γBk. From (33) we know thatMk ≥ 0, and since it is a strictly
lower triangular matrix we also have

(I −Mk)
−1 = I +Mk +M 2

k + . . .+M s
k ≥ 0.

It follows that (34) is valid. ✷

4.2 Monotonicity under assumption (27)

If we assume (27) for a general (semi-)norm or sublinear functional, then a suitable
form for (29) is



Monotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes 15

vn,i =
(

1−α(0)
i

)

un +
r

∑
k=1

i−1

∑
j=1

(

α(k)
i j vn, j +β (k)

i j
∆t
mk

IkF(vn, j)
)

, (35)

whereα (0)
i = ∑i−1

j=1

(

α (1)
i j + · · ·+α (r )

i j

)

, i = 1, . . . ,s+1, and

Kk =
(

I −
r

∑
l=1

A l

)−1
Bk , k = 1, . . . , r . (36)

We want

α(0)
i ≤ 1, α(k)

i j ,β (k)
i j

≥ 0 for 1≤ j < i ≤ s+1, 1≤ k≤ r , (37)

with an optimal

C = min
i, j,k

α(k)
i j /β (k)

i j
. (38)

Theorem 3. Assume (27) is valid.
(i) Consider (35) with (37) and let Cbe given by (38). Then‖un+1‖≤ ‖un‖ whenever
∆t ≤Cτ0.
(ii) The optimal C≥ 0 in (38), under the constraints (36) and (37), equals the largest
γ ≥ 0 such that

(

I +
r

∑
l=1

γKl

)−1
[e γKk] ≥ 0, k = 1, . . . , r . (39)

The proof of this result is similar to that of the Theorems 1 and 2. In fact, the
result forr = 2 can be obtained directly from Higueras [10] and Spijker [18]. Further
we note that the coefficient matricesA k andBk which lead to an optimal valueC
are in this case given byBk = (I +∑l γKl )

−1Kk andA k = γBk.

4.3 Monotonicity under assumption (26)

Finally, if (26) is assumed for a general (semi-)norm or sublinear functional, then
we consider

vn,i =
(

1−α(0)
i

)

un +
i−1

∑
j=1

(

α(0)
i j vn, j +

r

∑
k=1

β (k)
i j

∆t
mk

IkF(vn, j)
)

, (40)

whereα (0)
i = ∑i−1

j=1 α (0)
i j , i = 1, . . . ,s+1, and

Kk = (I −A 0)
−1Bk , k = 1, . . . , r . (41)

Here we want
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α(0)
i ≤ 1, α(0)

i j ,β (k)
i j ≥ 0 for 1≤ j < i ≤ s+1, 1≤ k≤ r . (42)

such that
C = min

i, j,k
α(0)

i j /β (k)
i j (43)

is optimal.

Theorem 4. Consider (40) with (42) and letC be given by (43). Assume (26) is
valid. Then‖un+1‖ ≤ ‖un‖ whenever∆t ≤Cτ0.

The proof is similar to that of Theorem 1. For this case there is no convenient
representation (comparable to (34) and (39)) of the optimalstep-size coefficientC.
An optimization code can be used to determine this optimal value. However, from
the previous results we do obtain useful upper and lower bounds forC.

Theorem 5. The optimal values C, C, C in (33), (38) and (43) satisfy

1
r C ≤ C ≤ C ≤ C.

Consequently, if C= 0 thenC = 0.

Proof. Given an optimalC with corresponding coefficient matricesA 0, Bk, we
can takeAk = A 0, Bk = Bk. Then (31) and (32) hold and mini, j,k α (k)

i j /β (k)

i j ≥ C.

Consequently we haveC≥C for the optimal valueC.
Likewise, for a given optimalC with correspondingA k, Bk, we can choose

Bk = Bk, A 0 = ∑r
l=1A l . Then (41) and (42) hold and we have mini, j,k α (0)

i j /β (k)

i j ≥
C, showing thatC≥C.

On the other hand, for given optimalC with correspondingA 0, Bk, we can take
Bk = Bk, A k = 1

r A 0. It follows thatC≥ 1
r C. ✷

4.4 Application: multirate schemes with one level of refinement

The monotonicity results for the multirate schemes of Section 2.2 are presented in
Table 1. The table gives the optimal step-size coefficientsC, C andC for the various
cases:

C = step-size coefficient for maximum-norm monotonicity;
C = step-size coefficient for monotonicity under (27) ;
C = step-size coefficient for monotonicity under (26).

It was seen in Section 2.2 that for scalar conservation lawsut + f (u)x = 0 with
flux-limited spatial discretizations, the monotonicity assumptions will hold for these
three cases with the sameτ0.
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Table 1 Optimal step-size coefficients for the multirate schemes with one level of refinement.
(The entryC for the scheme SH2 is a lower bound.)

C C C

OS1 1 0.667 0.423
TW1 1 0.580 0.423
TW2 1 0 0
CS2 1 0 0
SH2 0.5 0.284 0.284

The results for the first-order schemes OS1 and TW1 can be quiteeasily derived
analytically as in Subsection 2.2.4; we getC = 1,C = 2/3,C = 1−1/

√
3 for OS1,

andC = 1,C = 2−
√

2,C = 1−1/
√

3 for TW1.
The optimal valuesC, C for the second-order schemes have been found numer-

ically, using (34) and (39). For the TW2 and CS2 schemes we haveC = 0 and
therefore alsoC = 0. The fact thatC = 0 for these two schemes can also be shown
analytically, similar to [10], by considering (39) for small γ > 0. The value ofC for
SH2 was obtained with the MATLAB optimization codeFMINIMAX . This does not
provide a guarantee that the solution is a global optimum, and therefore thisC is to
be considered as a lower bound. The fact that we merely haveC = 1/2 for the SH2
scheme is due to the first stage.

The resultC = 1 for the OS1 and TW1 scheme was already given in [11, 14, 19]
in terms of maximum principles. For the CS2 scheme the same result has been
proved in [1].

The optimal valuesC are such that we will have monotonicity in the maximum-
norm, as well as maximum principles, provided that∆t ≤Cτ0. Likewise, for spatial
discretization with limiting the TVD property will hold if∆t ≤Cτ0. All this under
corresponding assumptions (11) for the semi-discrete system.

Comparison of these theoretical values with experiments for the Burgers equa-
tion ut + (1

2u)x = 0 with solution valuesu ∈ [−1,1] and flux-limited spatial dis-
cretizations did not show a clear correspondence. As was noted before, we then have
τ0 = 1

2∆x for both the maximum-norm and the total variation semi-norm. Therefore,
with ν = ∆t/∆x, the TVD property is guaranteed by the above results forν ≤ 1

2C
and the maximum principle forν ≤ 1

2C. For the Burgers’ experiment with a moving
shock it was observed that for the schemes TW2, CS2 and SH2 there was no over-
shoots forν ≤ 1, whereas the TVD property was valid forν ≤ 0.8 approximately.
Therefore, for that test, the theoretical optimal valuesC = 0 for the TW2 and CS2
schemes in Table 1 are much too pessimistic. The same seems tohold for the small
valueC = 1

2 of the SH2 scheme compared to the valueC = 1 for TW2 and CS2.
This may be caused by the fact that spatial discretizations with flux-limiting (or
of WENO type) do add some local diffusion near very steep gradients, which may
counteract an overshoot or increase of total variation of the time stepping scheme.
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5 Concluding remarks

In this paper some multirate schemes based on the forward Euler method and the
two-stage explicit trapezoidal rule have been analyzed. All these methods can be
written as partitioned Runge-Kutta methods.

For the analysis of the monotonicity properties of the schemes we followed the
TVD/SSP framework of [3, 4, 17], assuming monotonicity of one forward Euler step
with suitable local time steps. The monotonicity assumptions in this paper consist
of generalizations of the assumptions made in [10] and [18],together with more
relaxed assumptions which are still valid for 1D scalar conservation laws with flux-
limited spatial discretizations.

Different monotonicity thresholds were found for maximum-norm monotonic-
ity and maximum principles on the one hand, and the TVD property on the other
hand. However, these theoretical differences did not reveal themselves in numerical
tests. In practical situations, the thresholdC found for maximum-norm monotonicity
seems the most relevant.

Many multirate schemes are not internally consistent. Thismay lead to low accu-
racy at interface points. An analysis of the local discretization errors even suggests
lack of convergence, but this is too pessimistic. Also for the other schemes, that are
internally consistent, propagation of the leading local error terms has to be studied
to understand the proper convergence behaviour.

The use of a high-order Runge-Kutta methods as basis for a multirate scheme
or a partitioned scheme will not directly lead to a high orderof accuracy at inter-
face points. The discretization errors have to be considered within the PDE context.
Regarding the semi-discrete as a fixed (non-stiff) ODE will in general lead to a too
optimistic estimate of the rate of convergence. Such an accuracy analysis is part of
our current research.

The partitioning considered in this paper was grid point based, that is, component-
wise in the semi-discrete system, withF = I1F + I2F . For a conservative spatial dis-
cretization of a conservation law, splittings ofF could also be based on the fluxes,
leading to a splittingF = F1+F2 with F1,F2 containing fluxes andhTFk(v) = 0 for
all v, instead of (19), and this automatically guarantees mass conservation. However,
monotonicity assumptions such as (11) will not be valid in the maximum-norm with
this decomposition. This can be seen already quite easily for the first-order upwind
advection discretization (2). Moreover, such a decomposition of F can easily lead to
inconsistencies, since we do not haveFk(u(t)) = O(1), no matter how smooth the
solution is. For example, for the first-order upwind system (2) such a decomposition
gives a completely inconsistent result.
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