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Monotonicity Conditions for Multirate and
Partitioned Explicit Runge-Kutta Schemes

W. Hundsdorfer, A. Mozartova, V. Savcenco

Abstract Multirate schemes for conservation laws or convection-dated prob-
lems seem to come in two flavors: schemes that are locallysistent, and schemes
that lack mass-conservation. In this paper these two deéeetdiscussed for one-
dimensional conservation laws. Particular attention @l given to monotonicity
properties of the multirate schemes, such as maximum piegand the total vari-
ation diminishing (TVD) property. The study of these prajgrwill be done within
the framework of partitioned Runge-Kutta methods. It widcaabe seen that the in-
compatibility of consistency and mass-conservation héddsgenuine’ multirate
schemes, but not for general partitioned methods.

1 Introduction

Several well-known multirate schemes for conservatiorsltivat have appeared in
the literature have one of the following defects: there alemes that arkcally
inconsistente.g. [1, 2, 13, 14], and schemes that aot mass-conservatiye.g.
[19]. In this paper these two defects are discussed for amestsional conservation
lawsu; + f (u)x = 0. We will mainly concentrate on time stepping aspects foipse
schemes with one level of temporal refinement. The spatids$ gire assumed to be
given and fixed in time. Spatial discretization of a PDE (jhdifferential equa-
tion) then leads to a system of ODEs (ordinary differentiplaions), the so-called
semi-discrete system. Particular attention will be givemnionotonicity properties
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of the multirate time stepping schemes, such as maximunciplas and the total
variation diminishing (TVD) property. Different types ofanotonicity, depending
on the norm or semi-norm being used, will lead to differeapstze restrictions.

In Section 2 we will present some multirate schemes with ewel bf refinement,
due to Osher & Sanders [14], Tang & Warnecke [19], Constastin & Sandu [1],
and Savcenco, Hundsdorfer & Verwer [15].

For the analysis of general multirate schemes it is connerigewrite them in
the form of partitioned Runge-Kutta methods. Basic prapsidf these methods are
discussed in Section 3.

In Section 4 techniques of Higueras, Ferracina and Spie®[ 10, 18] will
be employed, with some suitable modifications, to obtain eamicity results. It
will be seen that the step-size restrictions for maximummaonotonicity and
maximum principles can be more relaxed than for other nomsgimi-norms.

2 Some multir ate schemes of order one and two

2.1 Examples of simple schemes for the advection equation

Consider as a simple example the advection equation
h+u=0 Q)

on a one-dimensional spatial region< < 1 with given initial valueu(x,0), and
inflow boundary conditiomi(0,t) or spatial periodicity. Spatial discretization is per-
formed with the first-order upwind scheme on célfs= (xj — 3ax;,x] + 34Xj).
This gives a semi-discrete system

u’j(t):A—i_(uj_l(t)—uj(t)) forje v ={1,2,....m}, )
i

whereu|(t) = WUJ’ (t), andu;(t) approximatesi(xj,t) or the average value over
the surrounding cel;.

Application of the forward Euler method with time stapgives the CFL stability
conditionv; < 1 for all j, wherev; = At/Ax; is the local Courant number. Suppose
this stability condition is satisfied fgre .#; but on.%, = .# — .#; we need to take
two smaller steps with step-siéelt to reachty, 1 =t +At.

Then for this simple situation, the scheme of Osher and Sar[dd] can be
written as

s {uT for j € .71,
2

1 .

Ul +2vi(uj_y —uf) forje 2, ®)

N+l _ 1, Lo ("2 _ 3 i
Ui =ui+svi(ul —uf) +5vi(u i —up 7)) forjes.
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As observed in [19], the scheme (3) is not consistent at tieeface: ifi —1 € ./,
andi € %, then

1- %Vi
AX

1 1 1
at (Uin+l —ul) = —(u' - %(UinJr Un+2)) = (Ul g —ul),

N AX |
which is consistent for fixed Courant numhegwith the equation
U+ (1= Vi) = O(at) + 0(ax),

rather than the original advection equation (1).
To overcome this inconsistency, Tang and Warnecke [19¢tbex proposed the
modified scheme

n+2 o 1 .
up 2 =ul+5vi(ul_—uf) forje.s,
1 .
el ViUl —uf) forje s, (4)
un+l:u 2+
i ] 1, 3 ontd foric .z
SVi(ui_f —uj ?) forje.7.

This scheme, however, is not mass conserving at the inerfac— 1 € .#; and
i € S, then the flux ak_;, that leaves celf5i_; over the time intervaltn, t 1]

equalsatu ;, whereas the flux that ente#§ over this time interval is given by

1 n1/2
ot +y).

It should be noted that except for interface points the sese(8) and (4) are
identical. For example, if1 = {j: j <i}and % = {j : j > i}, then (3) and (4)
give in one step the same result fp#£ i. Furthermore, it can be shown that, also
for interface regions with a larger, but fixed, number of p®jirthe properties of
local consistency and mass conservation cannot be comtinedto cancellation
and damping effects, local inconsistencies need not shaw thyg global errors. In
particular, the scheme (3) can be shown to be convergengim#ximum norm.

2.2 Some schemes with one refinement level for general
semi-discrete problems

In this paper we will discuss monotonicity properties andgeral convergence of
multirate schemes for general semi-discrete probleni&'in

U(t) =F(u(t)),  u(0)=up. ()

As applications we will consider nonlinear conservatiookpems with flux-limited
spatial discretizations. The approximationsitty) = (u;(tn)) € R™ will be denoted
by un = (uf) € R™. As above, we consider partitioning = .#1 U .#5. Correspond-
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ing to these set%, letl1, 1> bem x mdiagonal matrices with diagonal entries O or
1, such thatly);; =1 for j € A, k=1,2. We havd1 + 1, = |, the identity matrix.
2.2.1 First-order schemes

The semi-discrete system (2) obviously fits in this form wlittear functionF;

the general system (5) allows nonlinear problems and neafidiscretizations. For
such systems the Osher-Sanders scheme (3) becomes

1
un+% =Un+ zAﬂzF(Un),

1 1 (6)
Un+1 = Un+ zAtF(Un) + ?AtF (Un+%) ,
and the Tang-Warnecke scheme (4) reads
u.i1=u +lAtF(u )
n+2 n 2 nj» (7)

Un+l - Un +At|1F(Un) + %AtIZ(F(Un) + F(Un+%)) .

In the following we will refer to (6) as the OS1 scheme, andtpds the TW1
scheme. We note that in [14] and [19] the number of sub-stapgh@index set?,
was allowed to be larger than two for these schemes. Thisbeiltovered by the
more general formulations considered in Section 3.

2.2.2 Second-order schemes

In the literature, several second-order multirate scheforasonservation laws have
been derived that are based on the standard two-stage Rutigemethod

Ui 4 = Un+AtF (up), Uni1 = Up+ %At (F(un) +F(uiq)) -

The second stage can also be writteuias, = 3 (un+ U 4 + AtF (Ui, ;)). Mono-
tonicity properties are more clear with this form. The metli®known as the ex-
plicit trapezoidal rule or the modified Euler method. In teiction we consider
some multirate schemes, based on this method, with one détemporal refine-
ment. Results on internal consistency and mass consanaté@mentioned here,
but a detailed discussion will only be given in Section 3.

The second-order scheme of Tang & Warnecke [19] reads
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1
U;Jr% = Un -+ 5AtF (un),
_1 1
Unog = 2 (Un UL+ 5AtF (U7 L)),

. 1 (8)
Un 1 = l1(Un+AtF (Un)) +12(up, 1+ 58tF Uy, 1)

1 * * 1 * l *
Unt1 = 511 (Un+Uh, g +AtF (U 1)) + §|2(un+% UL g+ SAF (U, ) -

We will refer to this scheme as TW2. It will be shown below tHastscheme is
internally consistent but not mass-conserving.

Constantinescu & Sandu [1] introduced the following schewlgich will be
referred to as CS2,

* 1
un+% = Un + Atl1F (Un) + 54t12F (un),

Uy, 1 :un+%At|2(F(Un)+F(u:+%))’ (9)
9
1
Urer = 12(Un+AtF (Uy, 1) +12(Uy, 3 + F8tF (U, 1))

Uny1 = Un+ %At(F(un)JrF(u’r‘H%) +F(un+%)+F(u;+1)) )

This scheme is mass-conserving but not internally comdidiéevertheless, we will
see that it is still convergent (with order one) in the maximoorm due to damping
and cancellation effects. Note that for non-stiff ODE sysiehe scheme will be
consistent and convergent with order two.

The related method of Dawson and Kirby [2] is also mass-awirsg but not
internally consistent. However in that scheme a limiterdplied which is adapted
to the outcome of previous stages, so it does not fit in thedveonk of this paper
where the semi-discrete system is supposed to be givenra prio

In [15] a multirate scheme of order two was constructed fiffr(garabolic) prob-
lems. This is a Rosenbrock-type scheme containing a paeametnd setting/ =0
yields an explicit scheme, which we will refer to as SH2. Iistecheme, first a
predictionvy1 is computed, followed by refinement steps.ghusing interpolated
valueswln+% on.#;. The scheme reads

V:"]+l - Un+AtF<Un) 3
1 1 1
Vel = ?Un + §V:f]+l + QAtF(V;+1) ,
1 1 1
Vnid = 2Un T ZVnr1 T ZVn+1s
1
u;+% = |1vn+% +12(Un+ 5AtF (un)) (10)
1 1
Uy g = 10V, g+ 3l2(Un UL o+ GAR (U ),
1
Uny1 =1V + |2(un+% + ?AtF(uw%)) )

1 * 1
Unt1 = l1Vny1 + Q'Z(UM% tUpr t EAtF(U;H)) :
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This scheme will be seen to be internally consistent but rassyconserving. It can
be written with fewer stages; there are no function evatuatiofv,1 andvy, 1/,
so these vectors are just included for notational conveeieRurther we note that
this scheme was not intended originally as used here. lahstiea prediction values
Vi1 andvn, 1 were used in [15] to estimate local errors, and based on stiinate

the partitioning.# = .1 U .#, was adjusted. For the schemes in the present paper
the partitioning is supposed to be given, based on local &wurumbers, in which

case onlyl1vn1 andlyvp, 1/, are needed.

2.2.3 Monotonicity assumptions

We will consider monotonicity properties of the numericagthrods with suitable
norms or semi-normgyv|| for v = (v;) € R™ More general sublinear functionals
can be included in the theory as well, and also these will betel by||v||.

The basic monotonicity assumption on the semi-discretesys given by

[IV+ Tal1F (V) + %Tzle(V)H < vl forallve RMand 0< 11,72 < Tp, (11)

where 1o > 0 is a problem dependent parameter. A related assumptied, fos
instance in [10, 18], is

v+ %rklkF(v)H < vl forallve RMand 0< 1y < 19, k= 1,2, (12)

It is easily seen that (12) implies (11).
For the multirate schemes we shall determine step-sizdiceetsC such that
we have the monotonicity property

lunsall < |lun|| whenevent <Crp. (13)

For a given scheme, the optimal step-size coeffici@mtill be called the thresh-
old factor for monotonicity. In general, such monotonigitpperties are intended
to ensure that unwanted overshoots or numerical oscitigtiall not arise. Follow-
ing [16, 17] we will call a scheme total variation diminisgigTVD) if (13) holds
with the semi-normj|v||, . If the (semi-)norm is not specified, methods that have a
positive thresholdC can be called strong stability preserving (SSP), as in [3o#]
standard, single-rate methods.

The optimal value€ may depend on the norm. As we will see, under assumption
(11), the threshold€ are in general larger for the maximum norm than for the total
variation semi-norm.

Example. Well-known examples are the maximum nojfii| = max<j<m|Vv;| and
the total variation semi-norifv||, = 311 [Vj—1 — Vj| With Vo = Vi, the latter aris-
ing from one-dimensional scalar PDEs with spatial periibglic

Apart from such (semi-)norms, we can also consider subligectionals. For
example, following [18], defingv||; = maxi<j<mVj and ||v||- = —mini<j<mV;.
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Then, having (13) for both these sublinear functionals amwto the maximum
principle min<j<mu’ < u’j‘lemaxlggmuio foralln>1and 1< j < m. In general,

this is of course somewhat stronger than having monotgnicithe maximum-
norm, ||Un+1|le < ||un|e, but for the schemes considered in this paper the associated
threshold value€ will be the same. <&

Example. Consider a scalar conservation lawt f (u)x = O with a periodic bound-
ary condition, and with &< f/(u) < a. Spatial discretization in conservation form
gives semi-discrete systems (5) with

1
AXj

Fi(v) = (F(v,_3) — F(v,.1))

1
2 2

wherev;.,/, are the values at the cell boundaries, determined from tmpooents
of v=(v;) € R™ Using limiters in the discretization it can be guarantded t

with a constaniu > 0 determined by the limiter; see also formula (8) in [2]. This
holds trivially for the first-order upwind discretizatiorittv = 0; for higher-order
schemes with limiting we gegt = 1. It follows thatF;(v) can then be written as

o ai(v) o , L _
FJ(V)—TXJ(VJ_]_ V])7 J—l,...7m, VO—Vm7
where
0<aj(v)<a(l+p) for all j andve R™.

Suppose thatx; = hfor j € .#; andax; = 3h for j € .%. Then a well-known
lemma of Harten [7, Lemma 2.2] shows that the monotonicisgagtions (11) and
(12) will be valid for the total variation semi-norff ||, provided that

aT 1
0 <

h ~ 14p’
Moreover, it is easy to see that the assumptions (11) andwill2also hold under

the same CFL restriction with the maximum-norm and the fonets|| - ||+ of the
previous example. <

2.2.4 Example: monotonicity for the TW1 scheme

General results on monotonicity will be presented in Sectian a more general
setting, but it is illustrative to first show the derivatioineonotonicity results for the
simple TW1 scheme under assumption (11) with the maximum rayrengeneral
semi-norm to see how the different step-size restrictioisea
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In the first stage of the TW1 scheme (7) we have of course
Hun+%\| < {Jun]] whenevent < 19.
The second stage can be written in the form

Uni1 = (1= 8)un-+ 0 (U, 3 — BALF (Un)) +AtI1F (Un) + 34tI(F (Un) +F (U, 1))

+3

with arbitrary8 € [0, 1]. This leads to

Une1 = (1—6) (un + 2(21;—649)““1':(““) + %Atle(un))

1 (14)
+0(uy, 3 + 5gAtIaF (U, )) .
Under assumption (11) this gives the monotonicity prop€r8) with
. 2(1-0)
C = 0rgngagxlmln (1, 50 ,9) =2-2. (15)

This valueC = 0.58 is valid for general semi-norms. So, in particular, itydes a
TVD result for schemes with limiters.
Next, consider the maximum-norm. The second stage can algagitien as

Unt1 = |1(Un+At|1F (Un)> + |2(Un+% + %AﬂzF(UnJr%)) .

It follows that the monotonicity property (13) is valid fdre maximum norm with
step-size coefficient
Cc=1, (16)

and the same holds for maximum principles; cf. [19, Lemm§2.1

Note that this result (16) has been obtained by using theusdéy ||11v+ low|| <
max(||v|, ||w]|), which holds for the maximum-norm and for the convex funciisn
|l || from the previous example, but not for general norms or s&onins.

3 Partitioned Runge-Kutta methods

3.1 General properties

In the multirate examples considered thus far, only onel lef/gefinement was
used to keep the notation simple. Generalizations can leulated in terms of
partitioned Runge-Kutta methods by which the schemes asepted in a compact
fashion; see also [1, 5]. Explicit methods are in generdigpred for applications to
conservation laws, but in the analysis below diagonallylioitpmethods could also
be easily included.
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As in (5), the semi-discrete systemt" is written asu’(t) = F(u(t)), u(0) =
Up. Let .# = 71 U---U % be an index partitioning with corresponding diagonal
matriced =11+ ---+ 1, wherel is the identity matrix, the entries of thgare zero
or one andyl, is the zero matrix ik # 1.

For a time step front, to th-1 = t, + At, we consider partitioned Runge-Kutta
methods

roi-1
Vnﬁi:Un‘f'Atzz K F ( Vnj) s i=1,...,s,
k=1j=1
s 17)
Un+1:Un+AtZZ |kF Vn]
k=1j=1

The internal stage vectowg;, i =1,...,s, give approximations at intermediate time
levels. The multirate schemes of the previous sectiong il finis form withr = 2
With r > 2 more levels of temporal refinement are allowed.

3.1.1 Internal consistency and conservation
Letc =31 %alf,i=1,....s If we have

W_c foralll<kl<randi1<i<s, (18)

M=

|
then the internal vectong,; will be consistent approximations tgt, -+ ciAt), and
the method will be callethternally consistentThis is an important property for the
accuracy of the method when applied to ODEs obtained by gesuietization.
Apart from consistency, we will also regard glolmnservation for example
mass conservation. Suppose that= (hy,...,hy) is such thah"u(t) = ¥ ihju;(t)
is a conserved quantity for the ODE system (5). This will himidarbitrary initial
valueug provided that

h"F(v)=0  forallve R™. (19)

For the partitioned Runge-Kutta scheme we have

s
b h IkF an)
=1

— b)Y RTIF (Vo).

hT Un+1 — hT Un +At

un+At; b
=1

for any 1< | <r. Therefore, as noted in [1], the conservation propéfiy,, 1 =
h"u, will be valid provided that

=~
= M-

Kk

—
Ra)

b =b{) forall1<kl<randi<j<s. (20)
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3.1.2 Order conditionsfor non-stiff problems

The order conditions for partitioned Runge-Kutta methqafsliad to non-stiff prob-
lems can be found found in [8, Thm.|.15.9] for= 2. The orderp for non-stiff
problems may not correspond to the order of convergencesfoi-discrete systems
arising from PDEs with boundary conditions or interfaceditiaons, and therefore
p is often referred to as theassical order

To write the order conditions far> 2 in a compact way, lefy = (a{'j‘)) € RS*S
andby = (b®) € RS contain the coefficients of the method, andeset(1,...,1)T €
RS. Then the conditions for ordgr= 1 are just

bre=1  fork=1,...,r, (21)
that is;?zl b<jk> =1 for all k. To have ordep = 2 the coefficients should satisfy

biAe=3 forkl=1...r. (22)

The number of conditions quickly increase for higher orgnsp = 3 we get
biCLAe=3, bIAAe=¢g  for klyla=1...r, (23)

whereC, = diag(Ae).

3.1.3 Formulation for non-autonomous systems

For non-autonomous systems
u'(t) = F(t,u(t)), u(0) = up, (24)

we will use the partitioned method (17) with the stage fumctvaluesr (vy j) re-
placed byF (t,+ cjAt,vn ;). If (18) is valid, the abscissa are naturally taken as
¢ = ¢, which is independent d¢

If (18) does not hold, then a proper choice of the abscissasis dbvious. For
the OS1 and CS2 multirate schemes with: 2 it is natural to takes = ¢, As
generalization of the autonomous case we will therefore use

ci:ci(r), i=1,...,s. (25)

Note that ifhTF(t,v) = 0 for allt € R, v e R™, then we still have the conservation
propertyh"un,1 = h'uy if the scheme satisfies (20).

The alternative of replacinigF (v, j) in (17) by IcF (th + C(jk)At,Vn’j) will destroy
this conservation property. If the non-autonomous forngiogtes from a source
term in the PDE, this loss of conservation may be of little agyn, but for the
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advection equation; + (a(x,t)u)X = 0 with time-dependent velocity it is still a very
desirable property.

Example. The OS1 scheme (6) leads to the partitioned method (17)mwitt2 and
coefficients given by the tableau

For non-autonomous system$t) = F (t,u(t)) the scheme with (25) reads

1
Un+% = Un + zAtIzF(tn, Un) 5

Un 1 = Un + SAtF (tn, Un) + %AtF(tM%,UM%) .
The use ofF (th +C[*At, Vi }) instead oflF (tn + CjAt, vy, j), ¢; = ¢, would lead
to the same formula faw, 1/, in the first stage, but then

1 1 1
Unt+1 = Un+ QAtF(tn,Un) + zAtllF(tn, Un+%) + ?Atle(tn+%7un+%) ,
which is no longer conservative. <

The above order conditions have been derived for autonosysisms, but with
(25) they are also valid for non-autonomous systems. THisvie from the fact
thatu'(t) = F(t,u(t)) can be written as an equivalent, augmented autonomous sys-
temu'(t) = F(J(t),u(t)), 3'(t) = 1, with 9(0) = 0, and application of the parti-
tioned method to this augmented system gives the same eestiit the original,
non-autonomous system provided the additional equati¢) = 1 is included in
the index sets; .

3.1.4 Conservation versusinternal consistency

For the multirate schemes that have been considered inaperpthe conditions for
internal consistency (18) and conservation (20) did nothakhis incompatibility
is valid for all ‘genuine’ multirate schemes that are basadooe single method
ARk, that is, for schemes (17) that reduceripapplications (with step-siz&t /my)
of this base methodZrk to cover|ty,tn;1] in case that% = .# and the other#
are empty.

Consider, as simple example, a quadrature prohlgt = g(t) € R™, which is
just a special case of (24). (In a PDE context, this can beedeas a degenerate
case of advection with a source term where the advectivecitglbappens to be
zero.) Suppose (18) and (20) are valid wiffi = ¢j, b{% = b; for all k, and let
7 ={i e b #0}. Then for the quadrature problem we simply get
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Un+1ZUn+At z big(tn+CiAt),
ic 7

which is independent of the partitioning. However, if thisthe result of a base
method. Zrk withm =1, %, = .7, then the result fom, = 2, .%, = . should be

Uni1=Un+30t 3 b (g(tn+ Sciat) +g(ta+ %(1+q)m)) ,
ic 7

which is not the same for arbitrary source termgns

Note that for general partitioned Runge-Kutta methodsetli®mo conflict be-
tween (18) and (20). Given a scheme with the safﬁe: cﬁ') (for all i,k,1), but
different weightsb® + b’ (for somei,k,I), we can add an extra stage with new
weightsb that are independent &f to make it mass-conserving. Of course, this
will increase the computational work per step, and for the TWA&/2 and SH2
schemes such a modification does not seem to lead to effi@anschemes.

4 Monotonicity and convex Euler combinations

We are in particular interested in the case where the parétd Runge-Kutta method
(17) stands for a multirate scheme that takessubsteps of siz&at/my on .%
to coverltn,thia], kK=1,...,r, with my =1 < m < --- < m. The corresponding
monotonicity assumption is

;
Hv+ z %IkF(v)H < | forallve R™andty < 1o, k=1,...,r, (26)
K=1

where|| - || is a sublinear functional or (semi-)norm. We will also cafesi

v+ ;—iIkF(v)H < |v| forallve RMandk=1,....r, 27)
which generalizes the assumptions made in [10] and [18].dDfse, (26) implies
(27). On the other hand, if (27) is valid, then the inequaltit{26) will hold under the
step-size restrictiom; + - - - + Ty, < Tp. If we are dealing with the maximum-norm,
then (26) and (27) are equivalent.

In the following we denote for=1,...,r,

k) =mal), 1<ij<s,
kW =mbl,  1<j<s, (28)
kD= 0, 1<i<s+1.
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These coefficients will be grouped in thge+ 1) x (s+ 1) matrix 4 = (Ki(})). Itis
convenient to adeh, s11 = Uny1 to the internal vectors. Then (17) can be written as

r i—-1

Vn| = Un+z ZKIJ mlIF Vn]) |:1,7S+1 (29)
I=1]=

Depending on the monotonicity assumption, we can considgows ways to
represent this partitioned scheme in terms of convex Ewptbinations. For this
we will introduce new method coefﬂmenu#J , B(k‘ with corresponding lower tri-

angular matrices# = (a. (j'“) and %y = ([3,<jk ). Such convex Euler forms are also
called Shu-Osher forms, after [17] where such representativere used originally
to demonstrate the TVD property of certain Runge-Kutta im@sh

Inequalities for matrices or vectors in this section aregaihderstood component-
wise, that is,P = (pij) > 0 means that alpj; are non-negative. Furthermore, if
P e R4 andQ e RSHD*%, then[P Q] stands for the matrix whose firgi
columns equal those & and the other columns equal thos&pfin this section we
lete=(1,1,...,1)T € R®*1 and we use the conventiary 3 = + if a > 0,3 =0.

4.1 Maximum-norm monotonicity

A suitable form of (29) to obtain results on monotonicity fre tmaximum-norm is
Voi = z (1o un+z P+ B FW))), @)

wherea{k) = zij;ll afk) andi = 1,...,s+ 1. To have correspondence between (29)
and (30) the coefficients should satisfy

= (1 — k) "B,  k=1...r. (31)
Further we want the coefficients to be such that
a¥<1, al’pY>0 fori<j<i<stii<k<r. (32

For such coefficients, let
. K K
C = min al /Bl (33)

If there are no coefficients such that (31) and (32) are sadisfie se€C = 0.

Theorem 1. Consider (30) with (32) and let C be given by (33). Assumei§@lid
in the maximum-norm. Thefun; 1|« < ||Un|| Whenevent < Cro.

Proof. The form (30) is equivalent to
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G () At
We havevn 1 = Un. Suppose (induction assumption) thigh [|e < [|un|j for j =

1,...,i—1.Since

K k) At K 3 K At
ai(j )Vn7j +Bi<j )ﬂ|kF(Vn,j) = (ai<j ) fCBi(j >)Vn_,j JrCBi(j )(Vn,j + mlkF(Vm)) ,

we then have

K k) At K K
v+ B Ik (o) oo < Vi, oo < 1 s

It follows that||IkVn,i||e < ||Un|l fOrk=1,...,r, and hencévn|le < ||Un|e. Using
induction with respect to=1,...,s+ 1 the proof thus follows. O

It is obvious that we are in particular interested in the opli value ofC in
(33) for a given method (29). To obtain a suitable expres&iothis optimal value,
we can follow the construction of Ferracina & Spijker [6] addjueras [9] for the
individual Runge-Kutta methods given by the coefficiers

Theorem 2. The optimal value for C 0 in (33), under the constraints (31) and
(32), equals the largest> 0 such that

(I +yA4) e 4] >0,  k=1,...r. (34)

Proof. Supposey > 0 is such that (34) holds. We taksy = (1 + y.#) 1% and
i = YPBk. With this choice it is easily seen that (31) and (32) aredvahd that
(33) holds withC = y.

On the other hand, suppose that we have (31), (32) and (38Y0wnit 0, and set
y=C. Then

(1 +yo6) e vord = (1 — 4) (1 — e v,

where #y = <4 — y%x. From (33) we know that# > 0, and since it is a strictly
lower triangular matrix we also have

(I =)™t =\ + M+ ME+ ...+ M > 0.

It follows that (34) is valid. O

4.2 Monotonicity under assumption (27)

If we assume (27) for a general (semi-)norm or sublineartfanal, then a suitable
form for (29) is
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(0) d
Vhi = (1—Qi )Un‘f'zz ,J an'i‘BIJ m('kF(an)) (35)
K=1j=1

wherea® = 3174 (a’+---+aff),i=1,...,s+1, and

r -1
f%/k:(l_zgl) Zka k:17"'7r' (36)
=1
We want
a? <1, aff%ﬁfj”zo for 1<j<i<s+1,1<k<r, (37)
with an optimal
szgg //3 : (38)
i

Theorem 3. Assume (27) is valid.

(i) Consider (35) with (37) and let 8e given by (38). Thelfun;1|| < ||un| whenever
At < Crp.

(ii) The optimal C> 0in (38), under the constraints (36) and (37), equals thedatg
y > 0 such that

(I+Zyji/> ey > k=1,...r. (39)

The proof of this result is similar to that of the Theorems #l @ In fact, the
result forr = 2 can be obtained directly from Higueras [10] and Spijket.[E8rther
we note that the coefficient matricesg, and %, which lead to an optimal valug@
are in this case given by = (I + 5, y.#) 1% and.«Zy = y .

4.3 Monotonicity under assumption (26)

Finally, if (26) is assumed for a general (semi-)norm or swgar functional, then
we consider

Yoy = )+ z (@ + zﬁ., TR WFER). 40)

wherea® = ' 1@, i=1,...,5+1,and

= (1 — o) 1By, k=1,...,r. (41)

Here we want
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a% <1, ﬁff’)ﬂ}‘)zo for 1<j<i<s+1,1<k<r. (42
such that "
-
C:Tj[Eai(j)/ﬁij (43)
is optimal.

Theorem 4. Consider (40) with (42) and le€ be given by (43). Assume (26) is
valid. Then||uyy1]| < ||un|| whenevent < Crp.

The proof is similar to that of Theorem 1. For this case thered convenient
representation (comparable to (34) and (39)) of the optstegl-size coefficierE.
An optimization code can be used to determine this optimialevdHowever, from
the previous results we do obtain useful upper and lower d®torC.

Theorem 5. The optimal values C, € in (33), (38) and (43) satisfy
Fc<c<c<cC

Consequently, if G= 0thenC = 0.

Proof. Given an optimalC with corresponding coefficient matriceg, %y, we
can takew = «7o, %k = $x. Then (31) and (32) hold and mifx ai‘r}/[}i"jk) >C.
Consequently we hav@ > C for the optimal valueC.

Likewise, for a given optimaC with corresponding#Z,, %\, we can choose
By = By, o= Yy|_1.4/. Then (41) and (42) hold and we have mjigd. /BE‘J-" >
C, showing thaC > C.

On the other hand, for given optim@lwith corresponding” o, %y, we can take
By = By, 4\ = +/o. It follows thatC > IC. ]

4.4 Application: multirate schemes with one level of refinenten

The monotonicity results for the multirate schemes of $ec#.2 are presented in
Table 1. The table gives the optimal step-size coeffici€n&andC for the various
cases:

step-size coefficient for maximum-norm monotonicity;
step-size coefficient for monotonicity under (27) ;
step-size coefficient for monotonicity under (26)

C
(o}
c

It was seen in Section 2.2 that for scalar conservation laws f (u)x = 0 with
flux-limited spatial discretizations, the monotonicitgasptions will hold for these
three cases with the samg
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Table 1 Optimal step-size coefficients for the multirate schemes with ewel lof refinement.
(The entryC for the scheme SH2 is a lower bound.)

C c c
os1 1 0.667 0.423
TW1 1 0.580 0.423
TW2 1 0 0
cs2 1 0 0
SH2 05 0.284 0.284

The results for the first-order schemes OS1 and TW1 can beepsily derived
analytically as in Subsection 2.2.4; we @&t 1,C =2/3,C = 1—1//3 for OS1,
andC=1,C=2-+2,C=1-1//3for TW1.

The optimal value€, C for the second-order schemes have been found numer-
ically, using (34) and (39). For the TW2 and CS2 schemes we Bave0 and
therefore als& = 0. The fact tha€ = 0 for these two schemes can also be shown
analytically, similar to [10], by considering (39) for srhgl> 0. The value o€ for
SH2 was obtained with the NfLAB optimization codeeMINIMAX . This does not
provide a guarantee that the solution is a global optimurd therefore thi< is to
be considered as a lower bound. The fact that we merely@avéd /2 for the SH2
scheme is due to the first stage.

The resulC = 1 for the OS1 and TW1 scheme was already given in [11, 14, 19]
in terms of maximum principles. For the CS2 scheme the samdtreas been
proved in [1].

The optimal value€ are such that we will have monotonicity in the maximum-
norm, as well as maximum principles, provided thak Crtyp. Likewise, for spatial
discretization with limiting the TVD property will hold it < Ctp. All this under
corresponding assumptions (11) for the semi-discretesyst

Comparison of these theoretical values with experimentshi® Burgers equa-
tion u; + (3u)x = 0 with solution valuesu € [—1,1] and flux-limited spatial dis-
cretizations did not show a clear correspondence. As wasligtfore, we then have
o= %Axfor both the maximum-norm and the total variation semi-norherefore,
with v = At/Ax, the TVD property is guaranteed by the above resultvfer %C
and the maximum principle far < %C. For the Burgers’ experiment with a moving
shock it was observed that for the schemes TW2, CS2 and SH2Wzer no over-
shoots forv < 1, whereas the TVD property was valid for< 0.8 approximately.
Therefore, for that test, the theoretical optimal valGes 0 for the TW2 and CS2
schemes in Table 1 are much too pessimistic. The same sedmolsltior the small
valueC = % of the SH2 scheme compared to the vallie- 1 for TW2 and CS2.
This may be caused by the fact that spatial discretizatiaitts flux-limiting (or
of WENO type) do add some local diffusion near very steep gradj which may
counteract an overshoot or increase of total variation etithe stepping scheme.
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5 Concluding remarks

In this paper some multirate schemes based on the forwaet Endthod and the
two-stage explicit trapezoidal rule have been analyzetth&ise methods can be
written as partitioned Runge-Kutta methods.

For the analysis of the monotonicity properties of the sabeme followed the
TVD/SSP framework of [3, 4, 17], assuming monotonicity oédarward Euler step
with suitable local time steps. The monotonicity assumgim this paper consist
of generalizations of the assumptions made in [10] and [tRjether with more
relaxed assumptions which are still valid for 1D scalar eovation laws with flux-
limited spatial discretizations.

Different monotonicity thresholds were found for maximumorm monotonic-
ity and maximum principles on the one hand, and the TVD prypen the other
hand. However, these theoretical differences did not telieanselves in numerical
tests. In practical situations, the thresh@ltbund for maximum-norm monotonicity
seems the most relevant.

Many multirate schemes are not internally consistent. firteig lead to low accu-
racy at interface points. An analysis of the local discedtan errors even suggests
lack of convergence, but this is too pessimistic. Also fer ¢ther schemes, that are
internally consistent, propagation of the leading locabeterms has to be studied
to understand the proper convergence behaviour.

The use of a high-order Runge-Kutta methods as basis for tiratelscheme
or a partitioned scheme will not directly lead to a high ordeaccuracy at inter-
face points. The discretization errors have to be consibeitnin the PDE context.
Regarding the semi-discrete as a fixed (non-stiff) ODE wiljéneral lead to a too
optimistic estimate of the rate of convergence. Such anracgwanalysis is part of
our current research.

The partitioning considered in this paper was grid pointedathat is, component-
wise in the semi-discrete system, wih= I1F + 12F . For a conservative spatial dis-
cretization of a conservation law, splittingsfcould also be based on the fluxes,
leading to a splitting® = F*++F2 with F, F2 containing fluxes and" F¥(v) = 0 for
all v, instead of (19), and this automatically guarantees massegeation. However,
monotonicity assumptions such as (11) will not be valid e tfeximum-norm with
this decomposition. This can be seen already quite easilh&first-order upwind
advection discretization (2). Moreover, such a decomjuosdf F can easily lead to
inconsistencies, since we do not ha/gu(t)) = ¢(1), no matter how smooth the
solution is. For example, for the first-order upwind syst@js{ich a decomposition
gives a completely inconsistent result.
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