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Abstract

The problem of identifying dynamical models on the basis of measurement data is usually considered in a classical open-loop or closed-
loop setting. In this paper this problem is generalized to dynamical systems that operate in a complex interconnection structure and the
objective is to consistently identify the dynamics of a particular module in the network. For a known interconnection structure it is shown
that classical prediction error methods for closed-loop identification can be generalized to provide consistent modelestimates, under
specified experimental circumstances. Two classes of methods considered in this paper are the direct method and the joint-IO method
that rely on consistent noise models, and indirect methods that rely on external excitation signals like two-stage and IV methods. Graph
theoretical tools are presented to verify the topological conditions under which the several methods lead to consistent module estimates.

Key words: System identification; closed-loop identification; graph theory; dynamic networks; identifiability; linear systems.

1 Introduction

One of the challenges in the systems and control field is to
develop effective synthesis methods for distributed control of
systems that operate in a network structure. While consider-
able attention is devoted to this problem from a model-based
control perspective, attention for the underlying modelling
problem is much more limited. In particular the problem of
identifying dynamical models on the basis of measurement
data that is obtained from a (complex) dynamic network,
and where use can be made of external probing/excitation
signals, has not been addressed in much detail yet. At the
same time, modelling of interconnected systems is playing
an increasingly important role in many fields of science and
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engineering: power systems, biological systems, flexible me-
chanical structures, economic systems, to name a few.

In this paper we will consider identification problems in net-
works of dynamic systems. From an identification perspec-
tive this can be considered as a natural extension of the sit-
uation of open-loop data, closed-loop data in a single loop,
towards data that is obtained from systems operating in a
predefined network structure, where some of the modules
may have known dynamics (as e.g. a particular controller
in the network). Since dynamic networks typically contain
(feedback) loops, it is expected that methods for closed-loop
identification are an appropriate basis for developing more
generalized tools to deal with complex networks.

In our framework discussed here, a dynamic network is de-
fined as an interconnection of transfer functions or modules
where the interconnecting signals (terminals) are considered
as nodes/vertices in the network, and proper transfer func-
tions are considered as links/edges. In this paper it will be
assumed that the interconnection structure (topology) of the
network is known, and our goal is to identify the dynamics
of a single module or a collection of modules in the network.

Classical methods for closed-loop identification are ad-
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dressed in [9,20]. For a single contribution to the problem
of structured systems see also [14]. Much of the dynamic
network identification literature focuses on identifying the
dynamics of the full network, or on detecting the topology
of the network. Nonparametric methods have been used to
detect the structure of dynamic networks in [17,16,19,11]
(without worrying about obtaining consistent estimates of
the dynamics of the network). Consistency-based para-
metric identification of the interconnection structure is
addressed in [3,25,26,5]. The conditions under which the
network identification algorithms work typically include
the condition that all disturbance/noise processes are uncor-
related and should be modelled exactly in conjunction with
the dynamic transfer functions in the network. However in
a large-scale dynamic network it can be questioned if this
is realistic. In this paper we therefore will particularly also
include identification methods that can consistently iden-
tify dynamic transfer functions without relying on exact
noise models, and where weaker assumptions on the noise
sources are considered.

Taking classical principles of closed-loop identificationas
a starting point we will analyze the sketched problem by
generalizing several closed-loop identification methods to
the dynamic network situation. The direct method [15] will
typically rely on exact noise models (system in the model
set). This also similarly for the joint-IO method. On the other
hand, the closed-loop identification methods referred to as
two-stage method [22] and instrumental variable method
[13] typically rely on the presence of external excitation or
probing signals. They also will be generalized to deal with
the dynamic network situation. Throughout the paper we will
focus on conditions on the interconnection structure as well
as on the presence of noise sources and excitation/probing
signals for consistently identifying a particular module in
the network.

The paper will proceed as follows. In Section 2 a partic-
ular setup of dynamic network is chosen and defined, and
the problem under investigation will be formally stated. In
Section 3 some background information will be presented
on Prediction-Error identification, the Direct and Two Stage
closed loop methods, and some graph theoretical results.
Next some network properties are presented in Section 4.
In Sections 5 and 6 the Direct and Two-Stage Methods for
interconnected systems will be presented and analyzed. Fi-
nally some concluding remarks will be made.
Notation:[·]ji is matrix element(j, i) of the matrix[·].
The research presented in this paper further builds on the
preliminary results presented in [4,23].

2 System setup

2.1 Dynamic network and problem setup

The network structure that we consider in this paper is built
up ofL elements or nodes, related toL measured scalar sig-
nalswj , j = 1, · · ·L. Every node signalwj in this network

is written as:

wj(t) =
∑

k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (1)

with G0
jk(z) a proper rational transfer function,

• Nj the set of indices of node signalswk, k 6= j, for which
G0

jk 6= 0, i.e. the set of indices of measured variables with
direct causal connections towj ;

• vj an unmeasured disturbance signal being a realization
of a stationary stochastic process with rational spectral
density, represented byvj = H0

j (q)ej with ej a white
noise process andH0

j a monic, stable and stably invertible
filter;

• rj an external excitation signal, quasi-stationary [15], that
is available to (and possibly can be manipulated by) the
user,

• q−1 the delay operatorq−1u(t) = u(t− 1), and
• signalsvj andrj may or may not be present.

All the measured variables can be written in a single matrix
equation as:
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= (I −G0)−1(r + v) (2b)

where in the latter equation it is assumed that the inverse
(1−G0)−1 exists.
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i, k
�
j 

r j

0
jiG

0
jkG

Fig. 1. Single building block in a network structure relatedto the
construction of node signalwj .

A single building block of the network related to the con-
struction of node signalwj is sketched in Figure 1, where
the transfer functionG0

ji has been separately indicated to
focus on the module that is supposed to be identified.
A dynamic network is then constructed by interconnecting

the several blocks through their node signal. For a particular
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Fig. 2. Two popular visualizations of the same dynamic network.
(a) Node-and-Link visualization (measurement-centric).Each node
represents a measured variable. The links between nodewi and
nodewj represents a transfer functionG0

ji. (b) Transfer function
representation (module-centric). Each block represents atransfer
function between two measured variableswi andwj . The signals
are added together by adders represented as circles.

example this is visualized in Figure 2. It shows a node-and-
link visualization (Fig. 2a) that is popular in many fields
such as artificial intelligence, machine learning [17], biolog-
ical systems [26], where the arrows between signalswj rep-
resent causal relationships. It emphasizes the links between
measured variables (measurement-centric). The second vi-
sualization is a transfer function based visualization (Figure
2b) (module-centric), commonly used in control.

All node signalswj , j = 1, · · ·L are supposed to be measur-
able, while at each node a noise signalvj (non-measurable)
and excitation signalrj (measurable) may or may not be
present. Each excitation signalrj is assumed to be uncor-
related to all noise signalsvi. Some parts of the network
may have dynamics that are known a priori. This is e.g. the
case in a classical closed-loop system with a known con-
troller. Since all node signals are supposed to measured, and
the network structure is supposed to be known, we do not
face the problem of ambiguous or hidden states/variables,
see e.g. [24].

The problem that will be addressed in this paper is: given the
interconnection structure of the dynamic network, specify
conditions under which a particular module transfer func-
tion G0

ji can be estimated consistently.
The conditions for consistency of an identified module, will
typically involve the interconnection structure of the net-
work, and the presence and properties of disturbance and
excitation signals.

One might think that identifying the full dynamic network
can always be cast into a -standard- multivariable closed-
loop identification problem, while relying on classical meth-

ods to resolve this. However the problem of deciding which
variables to classify as inputs and outputs, or to include struc-
tural constraints (zero modules, known modules), and to de-
termine the “minimum” excitation conditions under which
consistent identification is possible, makes this nontrivial.
By focussing on one particular moduleG0

ji we intend to re-
veal these structural phenomena in the identification prob-
lem.
Different approaches will be presented and analyzed that
can address the formulated problem. They are direct gener-
alizations of classical closed-loop identification methods:

• Direct identification [15], with an emphasis on including
the identification of exact noise/disturbance models;

• Indirect identification, such as the two-stage method and
the IV-method [22,13], with an emphasis on the use of
external excitation or probing signals.

• Joint-IO identification [1], where input and output signals
are modelled as the output of a stationary stochastic pro-
cess.

In general each of the several methods will be able to iden-
tify the moduleG0

ji in the network, dependent on the pres-
ence of noise and excitation signals, the network topology
and the presence of a priori known transfers. This will be
analyzed in the rest of this paper.
The dynamic networks that we consider are assumed to sat-
isfy the following general conditions.

Assumption 1 We consider a dynamic network of which
one building block, leading to the construction of node signal
wj , is depicted in Figure 1, with the additional properties
that

a. All module transfer functions in the network are proper;
b. The network is well-posed in the sense that all minors of

(I −G0(∞)) are non-zero1 ;
c. (I −G0)−1 is proper and stable.
d. The vector noise processv := (v1, · · · vL)T has a positive

semi-definite spectral density,Φv(ω) ≥ 0, not necessarily
diagonal;

2.2 Network topology and graph theory

We will need some further notation to characterize the net-
work interconnection (topology), as well as some tools from
graph theory.
For the specification of the topology of the network we will
utilize a directed graph that indicates the locations and causal
directions of module transfers in the network. It can be rep-
resented by an adjacency matrixA ∈ R

L×L, defined as:

A(j, i) = 0 if G0
ji(q) ≡ 0;

A(j, i) = 1 elsewhere.

1 The property of well-posedness is adopted from [2]. It imposes
(weak) restrictions on allowable feed-through terms in thenetwork
but still allows the occurrence of algebraic loops.
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Because of the interconnection structure that we consider
here (see (1)) it follows thatA(i, i) = 0, i = 1, · · ·L.
The following lemma from graph theory will be very useful :

Lemma 1 [8] Consider a directed graph with adjacency
matrix A. Then fork ≥ 1, [Ak]ji indicates the number of
different path connections of lengthk from nodei to node
j. 2

In addition to the adjacency matrixA defined above, we will
also consider a related delay-adjacency matrixAd of which
the elements have three possible values:0 (no link),1 (a link
with no delay), andd (a link with a delay). Through the use
of the following rules for addition and multiplication:

0 + 0 = 0 0 + d = d 0 · 0 = 0 0 · d = 0
0 + 1 = 1 1 + d = 1 0 · 1 = 0 1 · d = d
1 + 1 = 1 d+ d = d 1 · 1 = 1 d · d = d

summation and multiplication of matricesAd can be defined,
and one can evaluate[Ak

d]ji. The following lemma will be
helpful in characterizing the presence of delays in particular
network loops. See also e.g. [8].

Lemma 2 Consider a directed graph with delay-adjacency
matrixAd and the rules of multiplication and addition with
d. Then fork ≥ 1,

• [Ak
d]ji = 1 indicates that there is a path of lengthk from

i to j without a delay,
• [Ak

d]ji = d indicates that all paths of lengthk from i to j
have a delay,

• [Ak
d]ji = 0 indicates that there is no path of lengthk from

i to j.

We will further consider the following sets:

• V denotes the set of indices of node signals to which
additive noise sourcesv are directly connected.

• R denotes the set of indices of node signals to which
external excitation signalsr are directly connected.

• Vj is the subset ofV of indices of noise signals for which
there exists a path towj ;

• Rj is the subset ofR of indices of excitation signals for
which there exists a path towj ;

• Kj denotes the set of indices of node signalswk, k ∈ Nj

for which the module transfersGjk are known;
• U i

j denotes the set of indices of node signalswk, k ∈
Nj , k 6= i for which the module transfersGjk are un-
known.

Note that if i ∈ Nj thenNj = i ∪ Kj ∪ U i
j . In the sequel

variablesj and i are used to denote the particular module
G0

ji that we intend to identify.

3 Prediction error identification and extension to dy-
namic networks

3.1 Prediction error identification

For reviewing a standard prediction error identification
method we express a measured variablewj which is chosen
as output variable, as a function of a particular set of vari-
ables{x1, x2, . . . , } = X , which are chosen as the inputs.
Inputs can be external excitationsrk or other measured
variableswk, k 6= j. We assume that the output can be
expressed in terms of the inputs as

wj(t) =
∑

xk∈X

G0
jk(q)xk(t) +H0

j (q)ẽj(t) + rj(t),

with G0
ji proper transfer functions,H0

j a stable and stably
invertible transfer, and̃ej a white noise process. Note that in
the situation of the previous sections, this assumption holds
e.g. if we choosexk = wk, X = Nj and ẽj = ej .
The module transfersG0

jk and noise filterH0
j are mod-

elled using parametrized transfer functionsGjk(q, θ) and
Hj(q, θ), and the one-step-ahead predictor forwj is given
by ([15]):

ŵj(t|t− 1; θ)− rj(t) = (1−H−1
j (q, θ))(wj(t)−rj(t))+

+H−1
j (q, θ)

(

∑

xk∈X

Gjk(q, θ)xk(t)
)

, (3)

or equivalently

ŵj(t|t− 1; θ) = (1 −H−1
j (q, θ))wj(t)+

+H−1
j (q, θ)

(

∑

xk∈X

Gjk(q, θ)xk(t) + rj(t)
)

. (4)

The unknown parameters are estimated through a quadratic
prediction error criterion:

θ̂N = argmin
θ

VN (θ) (5)

with VN (θ) =
1

N

N−1
∑

t=0

ε2j(t, θ) and the prediction error

εj(t, θ) := wj(t)− ŵj(t|t− 1; θ).
Under standard -weak- assumptions the estimated parameter
converges in the number of dataN , to satisfy ([15]):

θ̂N → θ∗ w.p. 1 asN → ∞

with θ∗ = argminθ Ē[ε
2
j(t, θ)],

with Ē := limN→∞
1
N

∑N−1
t=0 E, andE the expectation op-

erator. IfGjk(q, θ
∗) = G0

jk(q) the module transfers are es-
timated consistently. Consistency is possible under several
different conditions, dependent on the experimental circum-
stances, and the chosen model parametrizations.
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Fig. 3. Closed loop data generating system.

3.2 Direct method of closed-loop identification

In a simple closed-loop data generating system, as depicted
in Figure 3, with the objective to identify the module transfer
G0

21, the direct method of closed-loop identification comes
down to choosingw2 as output,w1 as input, and then apply-
ing the identification method as sketched in the previous sec-
tion, with a parametrized predictor determined byG21(q, θ)
andH2(q, θ).
Typical conditions for consistency of the estimate of the

module transfer are

• G0
21 andH0

2 are present in the parametrized model set
generated byG21(q, θ) andH2(q, θ) respectively. This is
referred to as “system in the model set”;

• the feedback loop is sufficiently excited with external sig-
nalsr1 and/ore2;

• Plant feedback loop and model feedback loop should have
at least one time-step delay (no algebraic loop).

A generalization of this method to the dynamic network
case is obtained by applying the predictor model (4) for a
particular output signalwj and selectingxk as a subset of
the set of node signals{wk}k∈[1,L]\j.

3.3 Two-stage method of closed-loop identification

The two-stage or projection method of closed-loop identi-
fication ([22,10]) uses the same predictor structure (4), to
address the closed loop identification problem in Figure 3.
However instead of using predictor inputxk = w1, it uses
the part ofw1 that is correlated to the external signalr1.
Note thatr1 andw1 are quasi-stationary signals ([15]) such
that the cross-correlation function

Rw1r1(τ) := Ē[w1(t)r1(t− τ)]

is zero forτ < 0 and non-zero forτ ≥ 0. Then there exists
a proper transfer functionF 0

w1r1
such that

w1(t) = F 0
w1r1

(q)r1(t) + z(t)

with z uncorrelated tor1. This provides a decomposition

w1(t) = w
(r1)
1 (t) + w

(⊥r1)
1 (t)

with w
(⊥r1)
1 (t) = z(t). Note thatw(r1)

1 is the projection of
signalw1 onto the space of (causally) time-shifted versions
of r1.
If r1 andw1 are available from measurements thenF 0

w1r1
(q)

can be consistently estimated from data, provided that the
signalr1 is persistently exciting of a sufficiently high order.
This consistent estimation can be done without the necessity
to model the noise dynamics ofz, because it is essentially
an open-loop type of identification problem (r1 and z are
uncorrelated). Subsequently the projection

ŵ
(r1)
1 (t) := F̂w1r1(q)r1(t)

can be calculated, witĥFw1r1(q) the estimated transfer. This
estimate then can serve as an accurate estimate ofw(r)(t).
In the second step of the algorithm̂w(r1)

1 is used as an input
in the predictor model (4), determined byG21(q, θ) and
H2(q, θ).
Typical conditions for consistency of the estimate of the
module transferG21 are

• In the first step a consistent estimate should be obtained of
Fw1r1 . This is typically achieved by high order modelling.

• If in the second stageG21(q, θ) and H2(q, θ) are
parametrized independently, then onlyG0

21 needs to be
an element in the parametrized model set;

• the feedback loop is sufficiently excited with external sig-
nalsr1;

• There are no conditions on (absence of) algebraic loops
in the feedback system.

The generalization of this method to the dynamic network
case can now be made as follows, and as illustrated in Figure
4.

(1) Find an external excitation signalrm that is correlated
to wi;

(2) Projectwi ontorm;
(3) Identify G0

ji by applying a predictor model̂wj(t|t −
1, θ) leading to a prediction errorεj(t, θ) =

Hj(q, η)
−1[wj(t)−Gji(q, θ)ŵ

(rm)
i (t)− rj(t)], (6)

whereHj andGji are parametrized independently, and
a prediction error criterion such as (5).

3.4 Joint-IO method of closed-loop identification

The classical joint input-output method of closed loop iden-
tification, see e.g. [18,1], models the vector signal composed
of w1 andw2 in Figure 3, as a stationary stochastic process
that is driven by independent identically distributed random
variables (white noise), according to

(

w2

w1

)

= Υ0(q)

(

e2

e1

)

,

5
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Fig. 4. Graphical representation of a data generating system where
the measured variablewi is excited through an external excitation
signalrm.

with Υ(z) monic, proper, stable and minimum-phase. This
implies thatr1 is modelled as a filtered white noisee1.
Υ0(q) can be estimated as a noise model in a prediction
error method with no measured input. From the estimated
modelΥ(q, θ̂N) estimates of the transfersG0

21 and possibly
G0

12 can then be calculated in a second step.

Typical conditions for consistency of the estimate of the
module transferG0

21 are basically the same as the conditions
that are required for the direct method, i.e. sufficient excita-
tion of the closed-loop, and an absence of algebraic loops.
One of the points of difference is that the joint-IO method
also allows to estimate to feedback path represented byG0

12.

A generalization of this method to the dynamic network case
is obtained by enlarging the set of node signals that is taken
into account in the first step of the procedure.

In the next sections it will be shown how the direct, the
two-stage and the joint-IO methods can be used to obtain
consistent estimates ofG0

ji. However first a few network
properties will be presented that will facilitate the analysis
of the identification methods.

4 Network properties

It will be natural to talk aboutpathsandloopsin a network.
A pathfrom i to j will be understood to mean that there are
transfer functions such thatGjn1

Gn1n2
· · ·Gnki is nonzero.

A loop is a path that has the same starting and ending node.
The lengthof a path is the number of transfer functions in
the product.

One of the properties of a dynamic network is the possi-
ble occurrence of algebraic loops, i.e. loops for which the
transfer function has a direct feed-through term. For analyz-
ing the properties of direct identification algorithms it isat-
tractive to be able to characterize these loops. In a network
with modules that are restricted to be strictly proper transfer
functions, algebraic loops will not occur but in the situation
that we consider here they are not excluded.

Lemma 3 Consider a dynamic network that satisfies As-
sumption 1, with transfer matrixG0 (2a). LetG0

ab be the

(a, b)th entry of(I −G0)−1. ThenG0
ab, has a delay if every

path fromb to a has a delay. Moreover,G0
ab = 0 if there is

no path fromb to a.

The proof of the Lemma is included in the appendix.
The next proposition shows that the dynamic network can be
rewritten in a classical feedback structure by denoting one
particularwj to be as “output signal”. Any node signal can
serve this purpose. This equivalent structure will facilitate
the understanding and analysis of the several identification
results.

Proposition 1 Consider a dynamic network that satisfies
Assumption 1, and select one particular node signalwj to
be referred to as “output”. Classify the remaining signals
wi, i ∈ D with D := {1, · · ·L}\{j} as inputs, denoted as

wD = [wk1
wk2

· · · ]T , k∗ ∈ D.

The vectorsrD andvD and defined analogously.
LetG0

jD denote the row vector[G0
jk1

G0
jk2

· · · ], k∗ ∈ D, let
G0

Dj denote the column vector[G0
k1j

G0
k2j

· · · ]T , k∗ ∈ D,
and letG0

DD denote the corresponding matrix.
The measured node signals{wk}k=1,···L are equivalently
described by the feedback connection structure as indicated
in Figure 5, withwj interpreted as output, andwD as input,
determined by

wj =G0
jD(q)wD + rj + vj (7)

wD = Ğ0
Dj(q)wj + Ğv(q)vD + Ğr(q)rD , (8)

with

Ğv = Ğr = (I −G0
DD)

−1 (9)

Ğ0
Dj = (I −G0

DD)
−1G0

Dj (10)

and with proper square transfer matrices̆Gv, Ğr ∈
R(L−1)×(L−1)(z), and proper transfer vectorĞ0

Dj ∈

R(L−1)×1(z).

Proof Using the introduced notation the network equations
(2b) can be written as

[

wj

wD

]

=

[

0 G0
jD

G0
Dj G0

DD

][

wj

wD

]

+

[

rj + vj

rD + vD

]

leading to the network equations:

wj =G0
jDwD + rj + vj (11)

wD = (I −G0
DD)

−1G0
Djwj + (I −G0

DD)
−1(rj + vj) (12)

provided that the inverse(I −G0
DD)

−1 exists and is proper.
This is guaranteed by condition 1 of Assumption 1. 2.
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One of the important observations from the presented feed-
back structure is that the disturbance/excitation terms that
directly affect the “output”wj , do not appear as distur-
bance/excitation signals directly acting on the “input sig-
nals” wD; they only contribute to these inputs through the
“feedback” operation̆G0

Dj.

G0
jD

Ğ0
Dj

ĞrrD+vD

rj + vj

wj

wD

Fig. 5. Closed Loop representation ofwj .

5 Direct method for general network topology

The direct method for closed-loop identification can rather
simply be generalized to the situation of dynamic networks.
To this end we consider the one-step ahead predictor that was
formulated in (4). The principal choice that has to be made
is the set of input signalsxk ∈ X that has to be taken into
account in the predictor. If the module transfer functionG0

ji

needs to be identified it is tempting to choosewi as input for
the predictor. However in most cases this will lead to biased
results of the estimates due to the fact that other (neglected)
input signals will affect the output also. Therefore the most
safe situation is to choose in the predictor all inputs that
have a direct link to the outputwj , i.e.X = Nj , leading to
the predictor:

ŵj(t|t− 1; θ) = H−1
j (q, θ)

(

∑

k∈Nj

Gjk(q, θ)wk(t) + rj(t)
)

+ (1−H−1
j (q, θ))wj(t). (13)

For this predictor the following result is obtained.

Proposition 2 Consider a dynamic network that satisfies
Assumption 1, and consider a direct prediction error identi-
fication according to (5) with predictor (13). Then the mod-
ule transfer functionsG0

jk, k ∈ Nj as well asH0
j are esti-

mated consistently under the following conditions:

(a) The noisevj is uncorrelated to all reference signals.
(b) The noisevj is uncorrelated to all noise signalsvk,

k ∈ Vj\{j}.
(c) For both the network and the parametrized model, every

loop through nodej has a delay.
(d) The spectral density of[wj wn1

· · ·wnn
]T , n∗ ∈ Nj ,

denoted asΦj,Nj
(ω) is positive definite forω ∈ [−π, π].

(e) The system is in the model set, i.e. there exists aθ0

such thatGjk(z, θ
0) = G0

jk(z) for all k ∈ Nj , and
Hj(z, θ

0) = H0
j (z).

The proof is added in the appendix.

Note that in the considered situation all transfersG0
jk, k ∈

Nj need to be estimated simultaneously in order for the
result to hold, and that the dynamics of noise sourcevj needs
to be modeled correctly through a noise modelHj . Note
also that both the noise signalvj and the probing signalrj
provide excitation to the loop that is going to be identified.
The excitation condition (d) is a rather generic condition for
informative data [15]. A further specification for particular
finite dimensional model structures can most likely be made
along the results for classical feedback loops as developed
in [12].

Whereas in classical closed loop identification with the direct
method there is a condition on absence of algebraic loops in
the full feedback system ([21]), this is further specified here
in condition (c) by limiting that condition to only apply to
the output signal that is considered for identification.

Remark 1 In the Proposition above the predictor that is
used employs all possible inputs that directly connect to the
output signalwj . If some of these transfers are known al-
ready, e.g. they could be controllers with known dynamics,
then the result above can simply be generalized to the pre-
dictor

ŵj(t, θ) = H−1
j (q, θ)

(

∑

k∈Nj\Kj

Gjk(q, θ)wk(t)+

+
∑

k∈Kj

G0
jk(q)wk(t) + rj(t)

)

+

+ (1 −H−1
j (q, θ))wj(t), (14)

leading to consistent estimates of the transfersG0
jk, k ∈

Nj\Kj, while in the formulation of the conditions of Propo-
sition 2, the setNj is replaced by the setNj\Kj . 2

Next, an algorithm for checking Condition (c) will be pre-
sented. The other conditions are straightforward to check
and do not need an algorithm. Recall that the matrixAd

is the adjacency matrix withd’s in the entries with strictly
proper module transfer functions, and1’s in the entries with
proper module transfer functions (see Section 2.2).

Algorithm 1 Check if all loops through nodej have a delay

(1) EvaluateAℓ
d for ℓ = 1, . . . , L using the multiplication

and addition rules defined in Section 2.2;
(2) If for any considered powerℓ entry (j, j) equals1,

Condition (c) is not met.

Example 1 If we apply the result of the direct method to
the network example of Figure 6, it appears that the direct
method can be applied to each of the nodesw1, · · ·w5. Note
that in this schemeG0

43 = 1. The blue-colored transfers
G0

15, G
0
32, G

0
54, G

0
45 can be identified by SISO predictors,
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using only a single input in the predictor, provided that ap-
propriate conditions are satisfied on excitation and absence
of algebraic loops. The transfersG0

21 andG0
23 can only be

estimated simultaneously in a MISO predictor, employing
bothw1 andw3 as inputs andw2 as output. Under the con-
dition that a delay is present in the loops(G0

32G
0
23) and

(G0
54G

0
32G

0
21G

0
15) and by the use of an appropriate model

set that includes accurate noise modelling, the transfersG0
21

andG0
23 can be estimated consistently. In Figure 6 they are

indicated in red.

+ +

v3

w2 w3-
+ +

v5

w4 w5-
+

-

w1

v2

0
21G

0
23G

0
32G 0

54G

0
45G

0
15G

Fig. 6. Dynamic network with5 node signals, of which2 (red-col-
ored) transfer functionsG0

21 andG0
23 can be consistently identified

with the direct method using a MISO predictor. The blue-colored
transfer functions can be identified with SISO predictors.

It is clear that in large and complex networks only under very
limited circumstances, a SISO predictor, i.e. having only
the inputwi present in the predictor, suffices to consistently
identify the transferG0

ji.

Remark 2 It is not always necessary to include allwk,
k ∈ Nj as input in the predictor. For instance consider
the case shown in Fig. 7a. Suppose that the objective is to
obtain consistent estimates ofG0

21. According to Proposition
2 bothw1 andw3 must be included as inputs in the predictor.
However, from the figure, it can be seen thatw3 only acts
as a (uncorrelated) disturbance onw2, and does not need
to be modelled for consistent estimation ofG0

21. This idea
is illustrated in Fig. 7b wherẽv2 = v2 + w3.
Further analysis of this is beyond the scope of the current
paper and will be presented elsewhere.

G0
21

G0
23

r1

v2

v3

v1

w2w1

w3

G0
21

r1

ṽ2v1

w2w1

(a) (b)

Fig. 7. Example of a system where not allwk, k ∈ Nj need to
be included as inputs in the predictor (w3 can just be considered
as an uncorrelated disturbance).

Note that for using signalwj as an output, it is not strictly
necessary that a noise sourcevj is present. This special case
is considered in the next Corollary.

Corollary 1 Consider the situation of Proposition 2. If the
noise sourcevj is not present. Then the module transfer
functionsG0

ji, i ∈ Nj can be estimated consistently, under
the conditions of Proposition 2, where the excitation condi-
tion (d) is replaced by:

(d) The spectrum of[wn1
· · · wnn

]T , n∗ ∈ Nj , ΦNj
(ω) is

positive definite forω ∈ [−π, π],

the delay condition (c) is removed, and the noise model is
fixed to1, thereby focussing condition (e) on the module
transfer property only.

Proof The same procedure as the proof of Proposition 2
can be followed starting with (B.3) and plugging invj = 0,
H(θ) = 1, andσ2

ej
= 0. 2

6 Two-stage identification for general network topology

The two-stage method for closed-loop identification as de-
scribed in Section 3.3 follows a different approach than the
direct method. It explicitly utilizes the presence of measur-
able external excitation signals, and has the potential to con-
sistently identify module transfers without the necessityto
consistently identify noise models also. Based on the scheme
depicted in Figure 4 we pursue the following strategy in an
attempt to consistently identify the module transferG0

ji.

Algorithm 2 (Two-stage SISO model)

(1) Select a set of measured excitation signals{rm}, with
m ∈ Ris ⊆ Ri, each of them correlated withwi.

(2) On the basis of measured signals{rm}, m ∈ Ris and

wi, determinew(Ris)
i .

(3) Construct the signal
w̃j(t) = wj(t)−

∑

k∈Kj
G0

jk(q)wk(t)− rj(t),
i.e. correctwj with all known terms;

(4) Identify the transfer functionG0
ji on the basis of a

predictor model with prediction error

εj(t, θ) =Hj(q, η)
−1[w̃j(t)−Gji(q, θ)w

(Ris)
i (t)]

using measured signals̃wj andw
(Ris)
i , an identifica-

tion criterion (5), and whereHj is a fixed noise model
or parametrized independently ofθ.

For this algorithm the following result can be obtained:

Proposition 3 Consider a dynamic network that satisfies
Assumption 1. Then the module transfer functionG0

ji can
be consistently estimated with algorithm 2 if the following
conditions are satisfied:

(a) The setRis is non-empty.
(b) The external excitation signalsrm m ∈ Ris are uncor-

related to all noise signalsvk, k ∈ {j,U i
j};
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(c) The signalw(Ris)
i is persistently exciting of a sufficiently

high order2 ;
(d) All node signalswk, k ∈ U i

j , k 6= i, are uncorrelated to
all rm, m ∈ Ris.

(e) The module transfer functionG0
ji is in the model set,

i.e. there exists a parameterθ0 such thatGji(q, θ
0) =

G0
ji(q). 2

Proof: Note thatwj can be expressed as

wj(t) = G0
ji(q)wi(t) +

∑

k∈Kj

G0
jk(q)wk(t)

+
∑

k∈Ui
j

G0
jk(q)wk(t) + rj(t) + vj(t)

= G0
ji(q)wi(t) + pj(t) + sj(t) + vj(t)

wherepj reflects the contributions of all signalsG0
jk(q)wk

that are known because of the fact that the dynamicsG0
jk

are known, as well asrj(t); andsj(t) similarly reflects the
contributions of all signalsG0

jk(q)wk that are unknown, be-
cause the dynamicsG0

jk is unknown.
Subsequently

wj(t)− pj(t) = G0
ji(q)wi(t) + sj(t) + vj(t)

with the left hand side being a known signal.
Condition (b) together with the fact that by construction all
rm, m ∈ Ris are correlated towi, guarantee thatwi can be
decomposed aswi = w

(Ris)
i + w

(⊥Ris)
i . Then,

wj − pj = G0
ji(q)

(

w
(Ris)
i + w

(⊥Ris)
i

)

+ sj + vj . (15)

Conditions (b) and (d) guarantee that the signalsj is uncor-
related to allrm, m ∈ Ris. And by condition (b) the noise
vj is uncorrelated to allrm, m ∈ Ris, whilew

(⊥Ris)
i is un-

correlated to allrm, m ∈ Ris by construction.
As a result a prediction error identification on the basis of
input w(Ris)

i and outputwj − pj will provide a consistent

estimate ofG0
ji, provided that the input signalw(Ris)

i (t) is
persistently exciting of a degree at least equal to the num-
ber of parameters inGji(q, θ), see the classical conditions
on consistency of prediction error estimates in [15]. 2

Note that as an alternative for the two-stage algorithm, also
an IV estimator could have been used, usingrm as instru-
ment,wi as input andwj −pi as output, leading to the same
consistency result, [13].
Next question is how to check whether the conditions of

2 Within the classical prediction error framework [15], the recon-
structed signalw(Ris)

i (t) will need to be persistently exciting of
an order at least equal to the number of unknown parameters that
is estimated inGji(q, θ).

Proposition 3 are satisfied. Both the appropriate construc-
tion of the setRis and Condition (d) can be checked mainly
on the basis of the adjacency matrixA of the network.

Algorithm 3
Check for candidate reference signals to be correlated towi:

(1) Evaluate element(i,m) of Aℓ for ℓ = 1, · · ·L;
(2) If for any considered powerℓ this element is non-zero,

then the reference signalrm qualifies as a candidate
excitation source that excites the inputwi

3

Check whether allwk, k ∈ U i
j are uncorrelated to allrm,

m ∈ Ris (check whether there is no path fromm to k):

(1) EvaluateAℓ for ℓ = 1, . . . , L;
(2) For all k ∈ U i

j , k 6= i, check whether the entries (k,m)
of Aℓ are zero for all powersℓ.

Example 2 Consider the dynamic network from Example 1,
depicted in Figure 8. When applying the conditions of Propo-
sition 3 it appears that the blue-colored transfers,G0

32, G0
54,

G0
15 and G0

45 can be consistently identified with the two-
stage approach presented in this section. These four trans-
fers satisfy the conditions that their inputs are correlated to
r1, while their outputs do not include non-modelled terms
that are correlated withr1.

r1 + +

v3

w2 w3-
+ +

v5

w4 w5-
+

-

w1

v2

0
21G

0
23G

0
32G 0

54G

0
45G

0
15G

Fig. 8. Dynamic network with5 node signals, of which4 (blue–
colored) transfer functions can be consistently identifiedwith the
two-stage method presented of Algorithm 2.

Note that the transfersG0
21 andG0

23 do not satisfy the con-
ditions of the Proposition because there are unknown con-
tributions tow2 that are correlated tor1.

Actually the conditions that are formulated for Proposition
3 are very restrictive and it may be very well possible that
even in case of networks that have several external excita-
tion signals present, there is no choice ofRis possible that
satisfies the conditions. Additionally, by limiting attention
to SISO predictors, i.e. by only consideringwi as input in
the predictor, the effect of all other inputs that affectwj will

3 In the case that
∑N

ℓ=1[A
ℓ]im > 1, there is a hypothetical option

that different path connections cancel each other. Since the actual
correlation betweenrm andwi always needs to be checked, this
situation will not be dealt with separately.
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be modelled as noise and therefore will increase the vari-
ance of the parameter estimate. An alternative reasoning,
that matches the situation of the direct method, is then to
extend the predictor to a MISO format, as reflected in the
following algorithm.

Algorithm 4 (Two-stage MISO model)

(1) Select a set of measured excitation signals{rm}, with
m ∈ Ris ⊆ Ri, each of them correlated withwi.

(2) Determine the set of node signalswk, k ∈ {U i
j , i} that

is correlated to any of the excitation signals{rm}, with
m ∈ Ris. Denote this set as{wk}, k ∈ Uis.

(3) Determinew(Ris

k ), for k ∈ Uis.
(4) Construct the signal

w̃j(t) = wj(t)−
∑

k∈Kj
G0

jk(q)wk(t)− rj(t),
i.e. correctwj with all known terms;

(5) Identify the transfersG0
jk, k ∈ Uis on the basis of a

predictor model with prediction error

εj(t, θ) =Hj(q, η)
−1[w̃j(t)−

∑

k∈Ujs

Gjk(q, θ)w
(Ris

k )(t)]

using measured signals̃wj andw
(Ris

k ), an identifica-
tion criterion (5), and whereHj is a fixed noise model
or parametrized independently ofθ.

For this algorithm the following result can be obtained:

Proposition 4 Consider a dynamic network that satisfies
Assumption 1. Then the module transfer functionG0

ji can
be consistently estimated with algorithm 4 if the following
conditions are satisfied:

(a) The setRis is non-empty.
(b) The external excitation signalsrm, m ∈ Ris are uncor-

related to noise signalsvk, k ∈ {j,U i
j}.

(c) The power spectral density of[w(Ris
n1

) · · · w
(Ris
nn

)]T ,
n∗ ∈ Uis is positive definite forω ∈ [−π, π].

(d) The module transfersG0
jk are in the model set, i.e. there

exists a parameterθ0 such thatGjk(q, θ
0) = G0

jk(q)
for all k ∈ Uis. 2

Under the considered conditions, all model transfer func-
tionsG0

jk, k ∈ Uis are estimated consistently.

Proof: The proof follows along similar lines as the proof of
Proposition 3 with appropriate change of notation. 2

Example 3 Returning now to the situation of Example 2, it
can be observed that with Algorithm 4, the remaining module
transfersG0

21 andG0
23 can be identified by using a MISO

predictor with inputsw1 andw3 and outputw2. The external
excitation signalr1 excites both inputs. It only has to be
checked whether this excitation is sufficiently informative.
Adding a second excitation signal could be helpful in this
respect.

Moving from a SISO to a MISO predictor further increases
the complexity of the identification procedure, in terms of
number of models and parameters to be estimated. However
it also can substantially reduce the variance of the estimates
by improving the effective signal-to-noise ratio in the out-
put. The choice for which inputs to use in the predictor,
and which external excitation signals to project upon, leaves
more freedom here to choose from. This aspect is further
developed elsewhere [6].

Although in the framework of this paper, we are dealing with
noise-free measurements of node signalswj , it has to be
noted that the two-stage method can simply be generalized
to deal with the situation of having measurement noise on
the node signals also. This is caused by the property that
measurement noise will disappear when the measured node
signals will be projected upon external excitation signals.

7 Extension of two-stage method with reconstructible
noise signals

Whereas in the two-stage method measured external excita-
tion signals serve as a basis for removing noise influences
from input signals by way of projection, a similar mechanism
can be realized under particular circumstances by noise sig-
nals. Consider the situation that somewhere in the network
there is a noise signalvm present, that can be reconstructed
on the basis of measured signals and known transfers, and
that provides excitation for the node signalwi that is an in-
put to the transfer functionG0

ji. Then a reasoning that is
completely similar to the two-stage method of the previous
section can be applied by treating this reconstructible noise
signal as an external excitation signal.

The situation is depicted in Figure 9, where noise signalvm
is reconstructible if all transfersG0

mk, k ∈ Nm are known.
Then signalxm can be calculated andvm can be recon-
structed according tovm = wm − xm. From this moment
onwardsvm can act as as an external excitation signal that
can be used in both the SISO and MIMO predictor of the
two-stage method.

An algorithm for checking whether a noise signal is recon-
structible is easily generated. For every indexm ∈ V : check
if Km = Nm. If so, vm qualifies as a reconstructible noise
signal. Algorithms for checking whethervm satisfies the ap-
propriate correlation properties with respect to the inputswi

andwk, k ∈ Nj are equivalent to the ones provided in the
previous section.

Example 4 If we consider the network example of Figure 8,
it appears that bothv3 and v5 qualify as a reconstructible
noise signal, provided that the transfersG0

32 andG0
54 are

known a priori. However in the considered situation none of
the remaining transfer functions satisfies the other condition
of Proposition 3 that the outputs should not be disturbed by
unknown terms that are correlated to the (reconstructible)
noise source.
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vj

wj
wi

wk

for all k, k
�
i, k
�

j 

vm

wk

for all k, k
�
m r j

wmxm
+ 0

jiG

0
jkG

+ +0
mkG

Fig. 9. Single node in a network structure, where the inputwi is
excited through a reconstructed noise signalvm.

However if we remove the outer loop connectionG0
15, as de-

picted in Figure 10, thenG0
23 can be identified consistently

through reconstructible noise signalv3 if G0
32 is known. In

Figure 10 this transfer is indicated in red. Similarly, using
a two-input predictor the two-stage method can now be ap-
plied to node signalw2 with inputsw1, w3 and external ex-
citation signalsr andv3.

r1 + +

v3

w2 w3-
+ +

v5

w4 w5-
+

w1

v2

0
21G

0
23G

0
32G 0

54G

0
45G

Fig. 10. Dynamic network with5 node signals, of which1 (red–
colored) transfer function can be consistently identified with the
two-stage method presented in this section 7 based on recon-
structed noise signals.

The special phenomenon with reconstructible noise signals,
is the appealing mechanism that a noise signal with variance-
increasing effects on the model estimates, by the use of a
prior knowledge of particular module transfers, can be turned
into an external excitation signal thatreducesthe variance
of the estimates.

8 Joint IO method for general network topology

Also the joint IO method can be generalized to the situation
of dynamic networks. As with the other methods presented
before, we will focus on a particular node signalwj , for
which we intend to identify the module transferG0

ji. When
isolating the two node signalswi and wj , and modeling
the vector process(wT

j , w
T
i )

T as the output of a stationary
stochastic process, it is very unlikely that the resulting pro-
cess will allow to determine consistent estimates ofG0

ji, if
the two node signals are part of a complex network topol-
ogy. Like in the direct method, we have to extend the num-
ber of node signals that we take into account.
Consider the following partition of measured variables:w =
{wj , wNj

, wZj
} whereNj has the usual meaning, andZj is

a set of all remaining variables. In the subsequent text the
subscriptj will be dropped fromNj andZj for notational
simplicity. Using these partitions the data generating system

can be written as follows4 :









wj

wN

wZ









=









0 G0
jN 0

G0
Nj G0

NN
G0

NZ

G0
Zj G0

ZN
G0

ZZ

















wj

wN

wZ









+









vj

vN

vZ









(16)

where the vectorvN is defined as vector of the same dimen-
sion aswN with eithervi, i ∈ N present or0 if the particu-
lar node signal does not contain an external disturbance (or
excitation) signal. The vectorvZ is similarly defined.

In the joint-IO method we first model the measured signals
(wj , wN ) as output of a stationary stochastic process. Next
an estimate of the module transfer functionG0

ji is extracted
from this previously estimated noise model.
First we are going to formalize the properties of the vector
process(wj , wN ) in the next Lemma.

Lemma 4 The node signalswj , wN satisfy the following
representation:

[

wj

wN

]

=W 0

[

ej

ẽN

]

with (17)

W 0 :=

[

W 0
jj W 0

jN

W 0
Nj W 0

NN

]

=

[

Ğ0
jjH

0
j G0

jN Ğ0
NN

H̃0
N

Ğ0
NN

G̃0
NjH

0
j Ğ0

NN
H̃0

N

]

(18)

with ej and ẽN uncorrelated white noise processes, and
where

Ğ0
jj = (1−G0

jN (I − G̃0
NN

)−1G̃0
Nj)

−1

Ğ0
NN

= (I − G̃0
NN

− G̃0
NjG

0
jN )−1

G̃0
NN

= G0
NN

+G0
NZ

(I −G0
ZZ
)−1G0

ZN

G̃0
Nj = G0

Nj +G0
NZ

(I −G0
ZZ
)−1G0

Zj ,

andH̃0
N

is the monic, stable minimum-phase spectral factor
of the stochastic processvN +G0

NZ
(I −G0

ZZ
)−1vZ . 2

If the matrixW 0 in (17) is available (or an estimate thereof)
then it is possible to reconstructG0

jN andH0
j , according to:

G0
jN = W 0

jNW 0
NN

−1

H0
j = W 0

jj −W 0
jNW 0

NN

−1
W 0

Nj .

An estimate ofW 0 can be obtained by estimating a noise
model which whitens the stochastic processes which gener-
ate the data. In particular, the output of the stochastic pro-
cess isw(t) = [wj(t) wN (t)]

T , and the input ise(t) =

4 Since in the Joint IO method no explicit use is made of mea-
sured external excitation signals, we assume thatr-signals are not
present, and that all external excitation originates from noisy v-
signals.
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[ej(t) ẽN (t)]
T . The one-step ahead prediction error is:

ε(t, θ) = w(t) − ŵ(t|t− 1; θ) = W−1(θ)W 0e(t)

andW (θ) is the parametrized noise model.
Whereas in the standard prediction error situation it can be
assumed thatW 0 andW (θ) are monic, stable minimum-
phase transfer function matrices, this condition is infeasible
here, asW 0 is not necessarily monic. As a result, a dedicated
parametrization ofW (θ) needs to be chosen, in particular
for the modelling of the constant feedthrough termW 0(∞),
to be parametrized byW (∞, θ).
The algorithm for the joint-IO method now becomes:

Algorithm 5 (Joint-IO method)

(1) Choose a parametrizationW (θ) of W 0;
(2) Determineθ̂N by minimizing the sum of squared pre-

diction errors,VN (θ) =
1

N

N−1
∑

t=0

εT (t, θ)ε(t, θ).

(3) CalculateĜjN = WjN (θ̂N )W−1
NN

(θ̂N )

For this algorithm the following result can be formulated:

Proposition 5 Consider a dynamic network that satisfies
Assumption 1. Algorithm 5 leads to a consistent estimate of
G0

jN if the following conditions are satisfied:

(a) Noisevj is present and uncorrelated to all noise signals
vk, k ∈ Vj \ {j}.

(b) The processvN + G̃0
NZ

vZ is full rank.
(c) Every loop through nodek, k ∈ {N , j} has a delay.
(d) The system is in the model set, i.e. there exists aθ0 such

thatW (θ0) = W 0.
(e) W (∞, θ) is parametrized such that there exists a per-

mutation matrix

P =

[

1 0

0 PNN

]

, such that (19)

PW (∞, θ)PT =









1
[

djN (θ) 0
]

[

0

dNj(θ)

]

L(θ)









(20)

wheredjN (θ) anddNj(θ) are parametrized vectors with
length(dNj) + length(djN ) = card(Nj), andL(θ) is
lower triangular with ones on the diagonal. 2

The result of the Proposition shows that besides the
parametrization issue of Part (e), the estimation results are
quite similar to the ones obtained for the direct method. Like
in that method all module transfer functionsG0

jN need to be
estimated simultaneously in order to arrive at a consistent
estimate ofG0

ji. The delay structure conditions are tighter
for the joint IO method: the set of loops that is restricted

to have at least a delay is extended to all loops that run
through any of the considered node signals, whereas for the
direct method this only considered loops through nodej.

The parametrization restriction formulated in Part (e) can
be interpreted as follows. As mentioned before, restricting
W (∞, θ) to beI is generally not leading to consistent es-
timates, because of algebraic off-diagonal terms that might
be present inW 0. The parametrization (20) allows direct
feedthrough terms to be present in the model, without the
occurrence of algebraic loops that run through variableswk,
k ∈ {N , j}. It is achieved by reordering the node signals
wk, k ∈ N , such that the parametrized structure of (20)
appears. Through the property that[PW (∞, θ)PT ]k1k2

·
[PW (∞, θ)PT ]k2k1

= 0 for k1 6= k2, algebraic loops in
the parametrized model are avoided, while the restrictions
onW (∞, θ) are sufficient to guarantee a unique solution to
the parameter estimation problem.

Whereas in the classical closed-loop situation the joint IO
method is able to also estimate the feedback dynamics of
the controller, in the generalized method this will typically
not lead to consistent estimates of any of the module trans-
fer functions in the network, unlessZ is the empty set.
Concerning the handling of a priori known module transfers
in the estimation procedure, Remark 1 that was made con-
cerning the direct method, applies to the Joint IO method
also.

9 Conclusions

Several methods for closed-loop identification have been
generalized to become applicable to systems that operate in
a general network configuration. In the current setting we
have focussed on networks in which all node signals are
measurable, and where our intention is to model one partic-
ular module. Complex networks can be handled and effec-
tive use can be made of external excitation signals. These
excitation signals limit the necessity to perform exhaustive
consistent modelling of all noise sources in the network. The
several prediction error methods presented (direct method,
two-stage method based on either excitation signals or on re-
constructible noise signals, and joint-IO method) are shown
to be able to estimate particular subparts of the network. It
opens questions as to where and how many external prob-
ing/excitation signals are required to identify particular parts
of the network.

Appendix

A Proof of Lemma 3.

LetG0(∞) denotelimz→∞ G0(z), and letG0(∞) represent
a directed graph, denoted byG. If every path fromb → a
has a delay then there is no path fromb to a in the graph
defined byG0(∞). We can now separate the nodes ofG into
two groups, one calledA, containing nodea and all nodes
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that have a path toa, and a second group of nodes calledB,
containingb and all remaining nodes that have no path toa.
By reordering the nodes in the graphG, the matrixG0(∞)
related to this reordered representation can be written as

G0(∞) =

[

GAA 0

GBA GBB

]

whereGAA andGBB both have zeros on the diagonals.
With the inversion rule for block matrices it follows that:

(

I −G(∞)
)−1

=

[

I −GAA 0

−GBA I −GBB

]−1

=

[

∗ 0

∗ ∗

]

which shows that the(a, b) entry in(I−G0(∞))−1 is zero.
Since(I−G0)−1 is proper, this implies that the(b, a) entry
in (I −G0)−1 has a delay.
The reasoning to show that if there is no path fromb to a
thenG0

ab = 0 is completely analogous except that instead of
working withG0(∞), it is necessary to work withG0. 2

B Proof of Proposition 2

The proof will proceed as follows:

(1) Show that the lower bound of the objective function
V̄j(θ) := Ēε2j(t, θ) is σ2

ej
, the variance ofej.

(2) Show thatV̄j(θ) = σ2
ej

implies thatθ = θ0 (i.e the
global minimum is attainable and unique).

Step 1.Throughout the proof, it will be useful to expand the
measured variablewi in terms of all noise sources and ex-
ternal inputs that affectwi. From (2b) and using the notation
from Lemma 3 we have:

wi =

L
∑

k=1

G0
ik(vk + rk) =

∑

k∈Vi

G0
ikvk +

∑

k∈Ri

G0
ikrk (B.1)

where the second equality holds by Lemma 3 and the defi-
nitions ofVi andRi.
Now, (B.1) will be used to express the objective function
in terms of only noise sources and external inputs. With the
predictor (13) it follows that

V̄j(θ) = Ē

[(

H−1
j (θ)

(

vj +
∑

i∈Nj

(

G0
ji −Gji(θ)

)

wi

))2]

= Ē

[(

H−1
j (θ)

(

vj+
∑

i∈Nj

∆Gji(θ)
(

∑

k∈Vi

G0
ikvk+

∑

k∈Ri

G0
ikrk

)))2]

= Ē

[(

∆Hj(θ)vj +H−1
j (θ)

∑

i∈Nj

∑

k∈Vi

∆Gji(θ)G
0
ikvk

+H−1
j (θ)

∑

i∈Nj

∑

k∈Ri

∆Gji(θ)G
0
ikrk + ej

)2]

(B.2)

where∆Gji(θ) = G0
ji−Gji(θ), and∆Hj(θ) = H−1

j (θ)−

H0
j

−1
. Next Condition (c) will be used to simplify this ex-

pression.
By (c) if G0

ji has a delay, thenGji(θ) will be parameterized
with a delay (i.e.∆Gji(θ) has a delay ifG0

ji has a delay).
Moreover, by Lemma 3 the termG0

jiGij has a delay if all
paths fromj to j have a delay. By Condition (c), every path
from j to j has a delay, therefore,∆Gji(θ)G0

ij has a delay
for all i.
Consequently every term in (B.2) is uncorrelated toej :

• sinceHj(θ) andH0
j are both monic,∆Hj(θ)vj is a func-

tion of vj(t− k), k > 1 ;
• as described above,∆Gji(θ)G0

ijvj is also a function of
vj(t− k) k > 1;

• by Condition (b) any term involvingvk, k ∈ Vj , k 6= j is
uncorrelated toej ;

• by Condition a of Assumption 1,ej is uncorrelated tork
for all k.

Using this reasoning to simplify (B.2) results in:

V̄j(θ)= Ē

[(

∆Hj(θ)vj +H−1
j (θ)

∑

i∈Nj

∑

k∈Vi

∆Gji(θ)G
0
ikvk

+H−1
j (θ)

∑

i∈Nj

∑

k∈Ri

∆Gji(θ)G
0
ikrk

)2]

+ σ2
ej

= Ē

[(

∆Hj(θ)vj+H−1
j (θ)

∑

i∈Nj

∆Gji(θ)wi

)2]

+σ2
ej

(B.3)

whereσ2
ej

is the variance ofej . From (B.3), it is clear that
V̄j(θ) ≥ σ2

ej
. This concludes the first step.

Step 2.Next it must be shown that the global minimum of
V̄j(θ) is attainable and unique. This will be done by showing

V̄j(θ) = σ2
ej

⇒ θ = θ0.

Using (B.3),V̄j(θ) = σ2
ej

can be written as

Ē

[

∑

i∈Nj

∆Gji(θ)

Hj(θ)
wi +∆Hj(θ)vj

)2]

+ σ2
ej

= σ2
ej

or equivalently

Ē

[(

[

∆Hj(θ)
∆Gjn1

(θ)

Hj(θ)
· · ·

∆Gjnn
(θ)

Hj(θ)

]















vj

wn1

...

wnn















)2]

= 0
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Ē

[(

∆x(θ)















1 −G0
jn1

· · · −G0
jnn

1

. . .

1





























wj

wn1

...

wnn















)2]

= 0

Ē

[(

∆x(θ)T Jw{j,Nj}

)2]

= 0 (B.4)

where

∆x(θ)T =
[

∆Hj(θ)
∆Gjn1

(θ)

Hj(θ)
· · ·

∆Gjnn
(θ)

Hj(θ)

]

,

wT
{i,Nj}

= [wj wn1
· · · wnn

], nk ∈ Nj .

Using Parseval’s Theorem results in:

1

2π

∫ π

−π

∆x(ejω, θ)T JΦ{j,Nj}(ω)J
∗∆x(e−jω, θ)dω=0

for ω ∈ [−π, π), whereJ∗ denotes the conjugate trans-
pose of J . By Condition (d), Φ{j,Nj}(ω) is positive
definite. Moreover,J(ejω) is full rank for all ω. Thus
the only way the equation can hold is if each entry of
[∆Hj ∆Gjn1

· · · ∆Gjnn1
] is equal to zero for allω.

Therefore, by Condition (e) and if the parameterization of
Gji(θ) is such that the only way thatG0

ji −Gji(θ) is equal
to zero is whenGji(θ) = G0

ji, the global minimum of
V̄j(θ) is unique. 2

Remark A.1 There exists an alternative reasoning to prove
the proposition, by utilizing the equivalent feedback struc-
ture as presented in Proposition 1, combined with the rea-
soning in [21] concerning absence of algebraic loops. How-
ever the proof presented above naturally includes the exci-
tation conditions also.

C Proof of Lemma 4

The variableswZ can be eliminated from the equations:

[

wj

wN

]

=

[

0 G0
jN

G0
NjG

0
NN

][

wj

wN

]

+

[

0

G0
NZ

]

(I −G0
ZZ
)−1
[

G0
Zj G

0
ZN

]

[

wj

wN

]

+

[

0

G0
NZ

]

(I −G0
ZZ
)−1vZ +

[

vj

vN

]

=

[

0 G0
jN

G̃0
Nj G̃0

NN

][

wj

wN

]

+

[

I 0 0

0 I G̃0
NZ

]









vj

vN

vZ









,

where the several matrices̃G are implicitly defined through
the equations. The transfer fromwN to wj is still G0

jN ,

whereas the transfer fromwj to wN has become a compos-
ite function of various tranfers (denoted̃G0

Nj). Subsequently
the map fromv to [wj wN ]

T is

[

wj

wN

]

=

[

1 −G0
jN

−G̃0
Nj I − G̃0

NN

]−1 [

I 0 0

0 I G̃0
NZ

]









vj

vN

vZ









.

Consider the stochastic processvN+G̃0
NZ

vZ which appears as
part ofwN . Denote the power spectral density of this process
as Φ̃N (ω), and letH̃0

N
be its monic, stable and minimum-

phase spectral factor. Substituting this into the expression of
the data generating system results in

[

wj

wN

]

=

[

Ğ0
jj G0

jN Ğ0
NN

Ğ0
NN

G̃0
Nj Ğ0

NN

][

H0
j

H̃0
N

][

ej

ẽN

]

whereej andẽN are uncorrelated sincevj andvN andvZ are
uncorrelated. 2

D Proof of Proposition 5

Before proceeding to the proof, consider the following useful
lemmas.

Lemma A.1 Consider a dynamic network that satisfies As-
sumption 1. If every path fromwk2

→ wk1
, k1 6= k2 ∈

{j,Nj} has a delay, then[W 0]k1k2
has a delay. If every

path fromwk → wk, k ∈ {j,Nj} has a delay then[W 0]kk
is a monic transfer function.

Proof: The result follows directly from the combination of
Lemmas 3 and 4. 2

Lemma A.2 Consider a dynamic network that satisfies As-
sumption 1. If every loop that runs throughk ∈ {j,N} has
a delay then there exists a permutation matrixP structured
as (19) such thatPW 0(∞)PT is structured according to
(20).

Proof: Since we are assuming that every loop throughwk,
k ∈ {j,Nj} has a delay, it follows by Lemma A.1 that the
diagonal entries ofW 0 are monic transfers. This proves the
left upper part of (20).
Consider a graph ofW 0

NN
(∞) − I. By Lemma A.1, since

every loop involvingwk, k ∈ {j,Nj} has a delay this is an
acyclic graph, and thus (see [7]) there exists a permutation
matrixPNN such thatPNNW 0

NN
(∞)PT

NN
is lower triangular,

conforming to the right lower part of (20).Note thatPNN

may not be unique. LetPNN denote the set of permutation
matrices that satisfies the above condition.
Then it must be shown that for at least onePNN ∈ PNN ,
the off-diagonal blocks are structured according to (20). The
reasoning will be split into two steps. First it will be shown
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that there exists aPNN ∈ PNN such thatPNNW
0

NjW
0
jNPT

NN
is

strictly lower triangular. Then it will be shown that for this
matrix to be strictly lower triangular, the structure of (20)
must hold.
Consider the graph ofW 0

NN
(∞) + W 0

Nj(∞)W 0
jN (∞) − I.

This graph is equal to the original graph ofW 0
NN

(∞) − I
with some new edges added. The set of permutation matrices
that triangularizes the corresponding matrix, will be a subset
of PNN since edges have only been added toW 0

NN
(∞) − I

and none have been removed. This implies that if it is not
triangularizable by anyPNN ∈ PNN , then there does not ex-
ist a permutation matrix such that it is triangularized.
DenoteP ′

NN
∈ P ′

NN
⊆ PNN as the set of permutation matri-

ces that triangularizeW 0
NN

(∞)+W 0
Nj(∞)W 0

jN (∞)− I. By
the condition that all loops passing throughwk, k ∈ {j,Nj}
have a delay, the graphW 0

NN
(∞) + W 0

Nj(∞)W 0
jN (∞) − I

is acyclic. Then this implies ([7]) that there exists a permu-
tation matrixP ′

NN
such that

P ′
NN

(

W 0
NN

(∞) +W 0
Nj(∞)W 0

jN (∞)− I
)

P ′T
NN

is lower triangular. ConsequentlyPNN is not empty. Since
P ′

NN
⊆ PNN it follows that there exists a permutation matrix

such thatP ′
NN

W 0
NN

(∞)P ′T
NN

andP ′
NN

W 0
Nj(∞)W 0

jN (∞)P ′T
NN

are both lower triangular.

From Lemma A.1 it follows that the diagonal entries of
P ′

NN
W 0

Nj(∞)W 0
jN (∞)P ′T

NN
are zero and therefore this ma-

trix is strictly lower triangular. Next it will be shown that
the fact thatP ′

NN
W 0

NjW
0
jNP ′T

NN
is strictly lower triangular

implies the off-diagonal structure of (20). Consider two vec-
tors,xT = [xT

1 xT
2 ] andyT = [yT1 yT2 ]. Then,

[

x1

x2

]

[

yT1 yT2

]

=

[

x1y
T
1 x1y

T
2

x2y
T
1 x2y

T
2

]

.

The only way this matrix can be strictly lower triangular
is if both x1 and y2 are zero. Letx = P ′

NN
W 0

Nj(∞) and

y = W 0
jN (∞)P ′T

NN
, then by this reasoning, the structure of

the off-diagonal blocks in (20) follows. 2

The proof of Proposition 5 proceeds in the usual fashion:

(1) Calculate a lower bound on̄V (θ).
(2) Show that achieving this lower bound implies thatθ =

θ0.

Step 1.The expression for̄V (θ) is

V̄ (θ) = Ē[εT (t, θ)ε(t, θ)] = tr{Ē[ε(t, θ)εT (t, θ)]}

= tr{Ē[W (θ)−1wwTW (θ)T ]} (D.1)

with w := [wj wT
N
]T . Then withQ := cov(e),

V̄ (θ) =
1

2π

∫ π

−π

tr{W (θ)−1W 0Q(W (θ)−1W 0)∗}dω.

Now consider the LDU-decomposition of the symmetric ma-
trix Q: Q = LQDLT

Q with LQ lower triangular with ones
on the diagonal, andD diagonal, then because of the struc-
ture ofe, LQ will be a block diagonal matrix with diagonal
blocks(1, LQ

NN ) andLQ
NN lower triangular with ones on the

diagonal.
The expression for̄V (θ) can be expanded as:

V̄ (θ)=
1

2π

∫ π

−π

tr
{

(W(θ)−1W 0LQ−I)D(W(θ)−1W 0LQ−I)∗

+(W(θ)−1W 0LQ−I)D+D(W(θ)−1W 0LQ−I)∗+D
}

dω
(D.2)

Two important properties of (D.2) is that the first term is≥ 0
for anyθ, and secondly that the last term is not a function of
θ. In the following text it will be shown that the second and
third terms of (D.2) are zero. Consequently,V̄ (θ) ≥ tr{D}.
Consider the second term of (D.2), while using the matrix
inversion lemma forW (θ)−1:

(

A B

C D

)−1

=

=

(

A−BD−1C 0

0 D − CA−1B

)−1(

I −BD−1

−CA−1 I

)

then(W(θ)−1W 0LQ−I)D =

([

Wjj(θ)−WjN (θ)W−1
NN

(θ)WN j(θ) 0

0 WNN (θ)−WNj(θ)W
−1
jj (θ)WjN (θ)

]−1

·

[

W 0
jj−WjN (θ)W

−1
NN

(θ)W 0
Nj W 0

jN−WjN (θ)W
−1

NN
(θ)W 0

NN

W 0
Nj−WNj(θ)W

−1
jj (θ)W

0
jj W 0

NN
−WNj(θ)W

−1
jj (θ)W

0
jN

]

·

[

1 0

0 LQ

NN

]

− I

)

D

then the first diagonal term

(

Wjj(θ)−WjN (θ)W−1
NN

(θ)WNj(θ)
)−1

·
(

W 0
jj−WjN (θ)W

−1
NN

(θ)W 0
Nj

)

− 1

is a strictly proper transfer function, which means that the
first diagonal element of(W(θ)−1W 0LQ−I)D is a strictly
proper transfer function.
Secondly,

(

WNN (θ)−WNj(θ)W
−1
jj (θ)WjN (θ)

)−1

·
(

W 0
NN

−WNj(θ)W
−1
jj (θ)W 0

jN

)

LQ

NN
.

is a product of three lower triangular matrices with ones on
the diagonals. This is induced by Condition (e), and Lem-
mas A.1 and A.2. The statement follows, since the inverse
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of a product of triangular matrices with ones on the diago-
nal, is a lower triangular matrix with ones on the diagonal.
Consequently, the diagonal terms of(W(θ)−1W 0LQ−I)D
are all strictly proper transfer functions.
Finally, since

∫ π

−π
[F (eiω) + F ∗(eiω)]dω = 0 for strictly

properF , (D.2) can be simplified to

V̄ (θ)=
1

2π

∫ π

−π

tr
{

(W(θ)−1W 0LQ−I)D(W(θ)−1W 0LQ−I)
∗

+D
}

dω ≥ tr{D} (D.3)

Step 2.From (D.3)V̄ (θ) = tr{D} implies that

1

2π

∫ π

−π

tr
{

(W(θ)−1W 0LQ−I)D(W(θ)−1W 0LQ−I)∗
}

dω=0

SinceD is positive definite∀ω ∈ [−π, π) this implies that
(W(θ)−1W 0LQ−I) = 0 ∀ω ∈ [−π, π). Consquently,

W (θ) = W 0LQ for all ω ∈ [−π, π)
[

Wjj(θ) WjN (θ)

WNj(θ) WNN (θ)

]

=

[

W 0
jj W 0

jNLQ

NN

W 0
Nj W 0

NN
LQ

NN

]

By Condition (e) and Lemma A.2 the parameterization is
such that there exists a solution to this equation. In particular
the parameterization is such that the equalityWjN (θ) =
W 0

jNLQ

NN
can hold. This completes the proof. 2
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