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Abstract

The problem of identifying dynamical models on the basis ehsurement data is usually considered in a classical @mnédr closed-
loop setting. In this paper this problem is generalized toadfyical systems that operate in a complex interconnectimictare and the
objective is to consistently identify the dynamics of a jwatar module in the network. For a known interconnectiaicure it is shown
that classical prediction error methods for closed-loopntdication can be generalized to provide consistent medémates, under
specified experimental circumstances. Two classes of mistbhonsidered in this paper are the direct method and thel@imethod

that rely on consistent noise models, and indirect methidsrely on external excitation signals like two-stage avidriethods. Graph
theoretical tools are presented to verify the topologicaiditions under which the several methods lead to consistedule estimates.

Key words: System identification; closed-loop identification; grapbdry; dynamic networks; identifiability; linear systems.

1 Introduction engineering: power systems, biological systems, flexitde m
chanical structures, economic systems, to name a few.

One of the challenges in the systems and control field is to _ . . L :
develop effective synthesis methods for distributed agofr N this paper we will consider identification problems in-net

systems that operate in a network structure. While consider WOrks of dynamic systems. From an identification perspec-
able attention is devoted to this problem from a model-based V€ this can be considered as a natural extension of the sit-
control perspective, attention for the underlying moaejli ~ Uation of open-loop data, closed-loop data in a single loop,
problem is much more limited. In particular the problem of towards data that is obtained from systems operating in &
identifying dynamical models on the basis of measurement Predefined network structure, where some of the modules

data that is obtained from a (complex) dynamic network, My have known dynamics (as e.g. a particular controller
and where use can be made of external probing/excitationi the network). Since dynamic networks typically contain

signals, has not been addressed in much detail yet. At the{féedback) loops, itis expected that methods for closeg-lo
same time, modelling of interconnected systems is playing identification are an appropriate basis for developing more
an increasingly important role in many fields of science and 9€neralized tools to deal with complex networks.

S ] _ In our framework discussed here, a dynamic network is de-
Originally submittted to Automatica, 26 October 2012. Red fined as an interconnection of transfer functions or modules
2 April 2013. Final version 21 June 2013. This paper was not \yhere the interconnecting signals (terminals) are consitle
presete  apy IAC. meetng: Somespondr auhor Pa I as nodesivertices i the networ,and proper ransfer func-
the National Science and Engineering Research Council RGGE tions are ConSIder.ed as IlnkS/e_dgeS. In this paper it will be
assumed that the interconnection structure (topology)ef t
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Email addressesp. m j . vandenhof @ ue. nl (Paul M. J. network is known, and our goal is to identify the dynamics
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dressed in [9,20]. For a single contribution to the problem is written as:

of structured systems see also [14]. Much of the dynamic
network identification literature focuses on identifyiriget
dynamics of the full network, or on detecting the topology
of the network. Nonparametric methods have been used to
detect the structure of dynamic networks in [17,16,19,11]
(without worrying about obtaining consistent estimates of
the dynamics of the network). Consistency-based para-

wi(t) = Y Gh(@wr(t) +r(t) +v;(t)
keN;

1)

with G, (z) a proper rational transfer function,

metric identification of the interconnection structure is ® N the setof indices of node signals, & # j, for which

addressed in [3,25,26,5]. The conditions under which the
network identification algorithms work typically include
the condition that all disturbance/noise processes arerunc e
related and should be modelled exactly in conjunction with
the dynamic transfer functions in the network. However in

a large-scale dynamic network it can be questioned if this
is realistic. In this paper we therefore will particularlig@
include identification methods that can consistently iden-
tify dynamic transfer functions without relying on exact
noise models, and where weaker assumptions on the noise
sources are considered. °

[ ]
Taking classical principles of closed-loop identificatias

G, # 0, i.e. the set of indices of measured variables with
direct causal connections to;;

v; an unmeasured disturbance signal being a realization
of a stationary stochastic process with rational spectral
density, represented by, = H}(q)e; with e; a white
noise process anHJQ a monic, stable and stably invertible
filter;

r; an external excitation signal, quasi-stationary [15]f tha
is available to (and possibly can be manipulated by) the
user,

q~! the delay operatoyu(t) = u(t — 1), and

signalsv; andr; may or may not be present.

a starting point we will analyze the sketched problem by )| the measured variables can be written in a single matrix
generalizing several closed-loop identification methaals t equation as:

the dynamic network situation. The direct method [15] will
typically rely on exact noise models (system in the model
set). This also similarly for the joint-IO method. On theath
hand, the closed-loop identification methods referred to as
two-stage method [22] and instrumental variable method
[13] typically rely on the presence of external excitatian o
probing signals. They also will be generalized to deal with
the dynamic network situation. Throughoutthe paper we will
focus on conditions on the interconnection structure as wel
as on the presence of noise sources and excitation/probing
signals for consistently identifying a particular modufe i
the network.

0 GY - G

wq wq 1 U1
Wo Gy, 0 . GY wWo T2 V2
.21 2L " "
wr, GY, GY, -+ 0 wr, TL vL
=G'w4r+v (2a)
= (I -G Hr+w) (2b)

where in the latter equation it is assumed that the inverse
The paper will proceed as follows. In Section 2 a partic- (1 — G°)~! exists.

ular setup of dynamic network is chosen and defined, and
the problem under investigation will be formally stated. In
Section 3 some background information will be presented
on Prediction-Error identification, the Direct and Two Stag
closed loop methods, and some graph theoretical results.
Next some network properties are presented in Section 4.
In Sections 5 and 6 the Direct and Two-Stage Methods for
interconnected systems will be presented and analyzed. Fi-
nally some concluding remarks will be made.

Notation:[-];; is matrix element, i) of the matrix[-].

The research presented in this paper further builds on the
preliminary results presented in [4,23].

W, )
—» G
W, .
—> ij
 forallk, ke, I

Fig. 1. Single building block in a network structure relatedhe

2 System setup

construction of node signab;.

A single building block of the network related to the con-

2.1 Dynamic network and problem setup

struction of node signab; is sketched in Figure 1, where

the transfer functiorG?, has been separately indicated to
The network structure that we consider in this paper is built focus on the module that is supposed to be identified.

up of L elements or nodes, related tameasured scalar sig-
nalsw;, j =1,--- L. Every node signal; in this network

A dynamic network is then constructed by interconnecting
the several blocks through their node signal. For a pasticul



T1 U3 Us ods to resolve this. However the problem of deciding which
variables to classify as inputs and outputs, or to includest

@ @ @ @ @ tural _constraints (_zero modu_les_, known modules), and to de-
termine the “minimum” excitation conditions under which
consistent identification is possible, makes this nordtivi

By focussing on one particular modul€,; we intend to re-
veal these structural phenomena in the identification prob-

a). lem.
1 ® U3 vs Different approaches will be presented and analyzed that
Wi ws ws  ws ws can qddress the fqrmulated proble_m. Th_ey are direct gener-
GY, Gy, _>g_ GY, alizations of classical closed-loop identification metsiod
e Direct identification [15], with an emphasis on including
9. |« o0 the identification of exact noise/disturbance models;
23 45 ¢ Indirect identification, such as the two-stage method and
P the IV-method [22,13], with an emphasis on the use of
Gis [ external excitation or probing signals.
(b). ¢ Joint-10 identification [1], where input and output signals
) o ) are modelled as the output of a stationary stochastic pro-
Fig. 2. Two popular visualizations of the same dynamic netwo cess.

(a) Node-and-Link visualization (measurement-cent&ech node

represents a measured variable. The links between ngdand | | h of th | hods will be abl id
nodew; represents a transfer functim]ﬁ?i. (b) Transfer function n general each of the several methods will be able to iden-

representation (module-centric). Each block representarsfer  tify the moduleGY; in the network, dependent on the pres-

function between two measured variablesandw;. The signals ~ €nce of noise and excitation signals, the network topology

are added together by adders represented as circles. and the presence of a priori known transfers. This will be
o ) o analyzed in the rest of this paper.

example this is visualized in Figure 2. It shows a node-and- The dynamic networks that we consider are assumed to sat-

link visualization (Fig. 2a) that is popular in many fields jsfy the following general conditions.

such as artificial intelligence, machine learning [17])bip

ical systems [26], where the arrows between signglsep-  Assumption 1 We consider a dynamic network of which

resent causal relationships. It emphasizes the links lsgtwe  one puilding block, leading to the construction of node aign
measured variables (measurement-centric). The second Vi, is depicted in Figure 1, with the additional properties

sualization is a transfer function based visualization(Fe that
2b) (module-centric), commonly used in control.

a. All module transfer functions in the network are proper;

All node signalsw;, j = 1,--- L are supposed to be measur-  The network is well-posed in the sense that all minors of
able, while at each node a noise signha{non-measurable) (I — G%(c0)) are non-zerd ;

and excitation signat; (measurable) may or may not be ¢ (7 _ G9)~1s proper and stable.

present. Each excitation signa] is assumed to be uncor- ¢ The vector noise process= (vi, - - - v;,)T has a positive

related to all noise signals;. Some parts of the network semi-definite spectral density, (w) > 0, not necessarily
may have dynamics that are known a priori. This is e.g. the  gjagonal:

case in a classical closed-loop system with a known con-
troller. Since all node signals are supposed to measurdd, an
the network structure is supposed to be known, we do not

face the problem of ambiguous or hidden states/variables, ) ) )
see e.g. [24]. We will need some further notation to characterize the net-

work interconnection (topology), as well as some tools from

The problem that will be addressed in this paper is: given the graph theory. )
interconnection structure of the dynamic network, specify For the specification of the topology of the network we will
conditions under which a particular module transfer func- Utilize a directed graph that indicates the locations andak
tion G0, can be estimated consistently. directions of modu_le transfers in the network._ It can be rep-
The conditions for consistency of an identified module, will resented by an adjacency matrixe R***, defined as:
typically involve the interconnection structure of the -net _

work, and the presence and properties of disturbance andA(j,i) =0 if G?i(‘]) =0;

excitation signals. A(j,i) =1 elsewhere

2.2 Network topology and graph theory

One might think that identifying the full dynamic network ' The property of well-posedness is adopted from [2]. It ingsos
can always be cast into a -standard- multivariable closed- (weak) restrictions on allowable feed-through terms inrtavork
loop identification problem, while relying on classical imet  but still allows the occurrence of algebraic loops.



Because of the interconnection structure that we consider3 Prediction error identification and extension to dy-

here (see (1)) it follows that(i,i) =0,i=1,--- L.
The following lemma from graph theory will be very useful :

Lemma 1 [8] Consider a directed graph with adjacency
matrix A. Then fork > 1, [A’“]ji indicates the number of
different path connections of lengkthfrom nodei to node
j. O

In addition to the adjacency matrik defined above, we will
also consider a related delay-adjacency matrjxof which
the elements have three possible valogsio link), 1 (a link
with no delay), andl (a link with a delay). Through the use
of the following rules for addition and multiplication:

0+0=0 O0+4+4d=d 0-0=0 0-d=0
0+1=1 1+d=1 0-1=0 1-d=d
1+41=1 d4+d=d 1-1=1 d-d=d

summation and multiplication of matricels; can be defined,
and one can evaluatet®];;. The following lemma will be

helpful in characterizing the presence of delays in paldicu
network loops. See also e.g. [8].

Lemma 2 Consider a directed graph with delay-adjacency
matrix A; and the rules of multiplication and addition with
d. Then fork > 1,

e [A¥];; = 1indicates that there is a path of lengthfrom
1 to j without a delay,

e [AK];; = dindicates that all paths of length from i to j
have a delay,
[A’“]JZ = (O indicates that there is no path of lengttrom
110 7.

We will further consider the following sets:

e V denotes the set of indices of node signals to which
additive noise sourcesare directly connected.

e R denotes the set of indices of node signhals to which
external excitation signalsare directly connected.

¢ V; is the subset op of indices of noise signals for which
there exists a path t@;;

e R, is the subset oR of indices of excitation signals for
which there exists a path to,;

e KC; denotes the set of indices of node signajs k € N
for which the module transfeiS;;, are known;

e {* denotes the set of indices of node signalg k €
/\ﬂ,k # 4 for which the module transfer&;;, are un-
known.

Note that ifi € \; then\; = i U K; UU;. In the sequel
vanables; and: are used to denote the’ particular module
that we intend to identify.

namic networks
3.1 Prediction error identification

For reviewing a standard prediction error identification
method we express a measured variafbjevhich is chosen
as output variable, as a function of a particular set of vari-
ables{z1,x2,...,} = X, which are chosen as the inputs.
Inputs can be external excitationg or other measured
variableswy, k # j. We assume that the output can be
expressed in terms of the inputs as

=) G%

rLEX

(t) + Hj (q)é;(t) + i (t),

with GY; proper transfer functiondf? a stable and stably
invertible transfer, and; a white noise process. Note that in
the situation of the previous sections, this assumptiodsol
e.g. if we choose;, = wy, X = N, andé; = e;.

The module transfer&:), and noise filter/y are mod-
elled using parametnzed transfer functlotﬁ’gk(q, 0) and
H;(q,0), and the one-step-ahead predictor 4or is given
by ([15]):

W (tlt—1;0) —r;(t) = (1—H; ' (q,0)) (w; () —r; (£)+
(> Girla,0)z(t)), (3)
TREX
or equivalently
Wi (tt = 150) = (1 — H; (g, 0))w; (t)+
0)( > Gila. O)zi(t) +7;(1). (¥
TREEX

The unknown parameters are estimated through a quadratic
prediction error criterion:

= argmin Vy (0) (5)
1 N-1
with Vy (0) = Z &4 ) and the prediction error
€;(t,0) := wj(t) — w] (t|t 0).

Under standard -weak- assumptions the estimated parameter
converges in the number of dat, to satisfy ([15]):

Oy — 0* W.p. 1 asN — oo

with 8* = arg ming I_E[sf(t, 0)],

with E := limy 00 % Zi\gl E, andE the expectation op-
erator. IfG;x(q,0%) = ng(q) the module transfers are es-
timated consistently. Consistency is possible under séver

different conditions, dependent on the experimental aircu
stances, and the chosen model parametrizations.



€2 with w{™" (t) = z(¢). Note thatw!™) is the projection of

+ signalw, onto the space of (causally) time-shifted versions
o of rq.
2 If r, andw, are available from measurements tté}),. (¢)

can be consistently estimated from data, provided that the
T1 GY, signalr, is persistently exciting of a sufficiently high order.
T This consistent estimation can be done without the negessit
o0 to model the noise dynamics of because it is essentially
12

an open-loop type of identification problem, (and = are
uncorrelated). Subsequently the projection

Fig. 3. Closed loop data generating system.
~(r) gy
3.2 Direct method of closed-loop identification wy (1) 1= Fugr (9)ra(t)

In a simple closed-loop data generating system, as depicteacan be calculated, with, ., (g) the estimated transfer. This

in Figure 3, with the objective to identify the module trasrsf  €Stimate then can serve as an accur)ate estimaté’oft).
GY,, the direct method of closed-loop identification comes In the second step of the algorithi}™* is used as an input
down to choosingu, as outputyo; as input, and then apply-  in the predictor model (4), determined Iy, (¢,¢) and
ing the identification method as sketched in the previous sec Hz(q,?).

tion, with a parametrized predictor determined@®y; (¢, 0) Typical conditions for consistency of the estimate of the
and Hs(q, 0). module transfef7,; are

Typical conditions for consistency of the estimate of the

module transfer are ¢ Inthe first step a consistent estimate should be obtained of

F.,r - Thisis typically achieved by high order modelling.
e 9, and HY are present in the parametrized model set ® If in the second stageli»i(q,0) and Hy(q,6) are

generated by (¢, 0) and Hs(q, #) respectively. This is parametrized independently, then ord, needs to be
referred to as “system in the model set”; an element in the parametrized model set; .

o the feedback loop is sufficiently excited with external sig- ® the feedback loop is sufficiently excited with external sig-
nalsr, and/orey; nalsry; N .

e Plant feedback loop and model feedback loop should have® There are no conditions on (absence of) algebraic loops
at least one time-step delay (no algebraic loop). in the feedback system.

A generalization of this method to the dynamic network 1he generalization of this method to the dynamic network
case is obtained by applying the predictor model (4) for a case can now be made as follows, and as illustrated in Figure
particular output signal; and selecting;, as a subset of

the set of node signa .
gnakuidreit, o\ (1) Find an external excitation signa}, that is correlated

to w;;
(2) Projectw; ontor,,;
o _ ~ (3) Identify GY; by applying a predictor modeb, (t[t —
The two-stage or projection method of closed-loop identi- 1,6) leading to a prediction errar;(t,0) =
fication ([22,10]) uses the same predictor structure (4), to '
address the closed loop identification problem in Figure 3. 1 (P
However instead of using predictor input = wy, it uses H;(g,m) " [w; (6) = Gjila, 0" (1) = r5(). (6)
the part ofw; that is correlated to the external signal
Note thatr; andw; are quasi-stationary signals ([15]) such
that the cross-correlation function

3.3 Two-stage method of closed-loop identification

whereH; andG}; are parametrized independently, and
a prediction error criterion such as (5).

Ru,r (1) i= Efwy (¢)r1 (¢ — 7)] 3.4 Joint-10 method of closed-loop identification

is zero forr < 0 and non-zero for > 0. Then there exists  The classical joint input-output method of closed loop iden
a proper transfer functiof’ . such that tification, see e.g. [18,1], models the vector signal corados

i of wy andws in Figure 3, as a stationary stochastic process
that is driven by independent identically distributed ramd
variables (white noise), according to

w2> = To(q) <€2> ,
w1 €1

wi(t) = Fy,, (@)r1(t) + 2(¢)

with z uncorrelated to-;. This provides a decomposition (

wi(t) = wi™ (1) +wi (1)
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Fig. 4. Graphical representation of a data generating isystieere
the measured variable; is excited through an external excitation
signal r,,,.

with Y'(z) monic, proper, stable and minimum-phase. This
implies thatr; is modelled as a filtered white noisg.

To(q) can be estimated as a noise model in a prediction
error method with no measured input. From the estimated

modelY (¢, ) estimates of the transfe€, and possibly
GY, can then be calculated in a second step.

Typical conditions for consistency of the estimate of the
module transfe€Y, are basically the same as the conditions
that are required for the direct method, i.e. sufficient&xci

tion of the closed-loop, and an absence of algebraic loops.

One of the points of difference is that the joint-IO method
also allows to estimate to feedback path representee by

A generalization of this method to the dynamic network case 0
is obtained by enlarging the set of node signals that is taken w; = Gjp(¢)wp + 1; + v;

into account in the first step of the procedure.

In the next sections it will be shown how the direct, the

two-stage and the joint-IO methods can be used to obtain

consistent estimates a@¥?,. However first a few network
properties will be presented that will facilitate the arsidy
of the identification methods.

4 Network properties

It will be natural to talk aboupathsandloopsin a network.
A pathfrom i to j will be understood to mean that there are
transfer functions such thét;,,, Gy, », - - - Gn,i IS nonzero.

A loop is a path that has the same starting and ending node.

The lengthof a path is the number of transfer functions in
the product.

One of the properties of a dynamic network is the possi-
ble occurrence of algebraic loops, i.e. loops for which the

transfer function has a direct feed-through term. For analy
ing the properties of direct identification algorithms itis

tractive to be able to characterize these loops. In a network

with modules that are restricted to be strictly proper tfans
functions, algebraic loops will not occur but in the sitoati
that we consider here they are not excluded.

Lemma 3 Consider a dynamic network that satisfies As-
sumption 1, with transfer matri? (2a). LetG?, be the

(a,b)th entry of(I — G°)~!. Theng!,, has a delay if every
path fromb to a has a delay. Moreoveg?, = 0 if there is
no path fromb to a.

The proof of the Lemma is included in the appendix.

The next proposition shows that the dynamic network can be
rewritten in a classical feedback structure by denoting one
particularw; to be as “output signal”’. Any node signal can
serve this purpose. This equivalent structure will fazibt
the understanding and analysis of the several identificatio
results.

Proposition 1 Consider a dynamic network that satisfies
Assumption 1, and select one particular node signalto
be referred to as “output”. Classify the remaining signals
w;, i € Dwith D := {1,--- L}\{j} as inputs, denoted as
— T
wp = [wg, Wk, -+-]", ke €D.

The vectorsp andvp and defined analogously.

LetGY, denote the row vectd:9, G, ---], k. € D, let
GY,; denote the column vect¢€) ; G7 -1, k. € D,

and letGY,,, denote the corresponding matrix.

The measured node signa{svy}r—1,.... are equivalently
described by the feedback connection structure as indicate
in Figure 5, withw; interpreted as output, an@dp as input,
determined by

@)

wp = Gh;(gw; + G (q)vp + G" (q)rp, (8)
with

éf’U — ér — (I - GO'D'D)71 (9)

G = —Ghp) 'GY, (10)

and with proper square transfer matrice§”,G" ¢
RUE-D>(E=1(2), and proper transfer vectorGy,; e
R(L—l)xl(z)'

Proof Using the introduced notation the network equations
(2b) can be written as

wj w; +
wp wp

leading to the network equations:

0 G%

0 0
GDj Gpp

Tj-F’Uj

rp + vp

w; = G?DIUD +r;+v; (11)
wp = (I — Gpp) 'Gpyw; + (I — Gpp) (1 + v;) (12)

provided that the inversd — G%,) ! exists and is proper.
This is guaranteed by condition 1 of Assumption 1. O.



One of the important observations from the presented feed-The proof is added in the appendix.
back structure is that the disturbance/excitation ternas th
directly affect the “output'w;, do not appear as distur-  Note that in the considered situation all transféf, & €
bance/excitation signals .dlrectly actmg.on the “input-sig N need to be estimated simultaneously in order for the
nals” wp; they only contribute to these inputs through the resylt to hold, and that the dynamics of noise souraseeds
“feedback” operatiort:,;. to be modeled correctly through a noise modgl. Note
also that both the noise signal and the probing signal;
Tj 4+ vj provide excitation to the loop that is going to be identified.
The excitation condition (d) is a rather generic condition f

- Wy o informative data [15]. A further specification for partieul
o+l > G" Gio finite dimensional model structures can most likely be made
along the results for classical feedback loops as developed
in [12].

o _
Gp;j Wy

Whereas in classical closed loop identification with thectir
Fig. 5. Closed Loop representation of. method there is a condition on absence of algebraic loops in
the full feedback system ([21]), this is further specifiedehe
) in condition (c) by limiting that condition to only apply to
5 Direct method for general network topology the output signal that is considered for identification.

The direct method for closed-loop identification can rather Remark 1 In the Proposition above the predictor that is
simply be generalized to the situation of dynamic networks. used employs all possible inputs that directly connectéo th
To this end we consider the one-step ahead predictor that wasutput signalw;. If some of these transfers are known al-
formulated in (4). The principal choice that has to be made ready, e.g. they could be controllers with known dynamics,
is the set of input signals; € X that has to be taken into  then the result above can simply be generalized to the pre-

account in the predictor. If the module transfer funct@f?; dictor
needs to be identified it is tempting to choaseas input for
the predictor. However in most cases this will lead to biased ‘0 0 ) 0 "
results of the estimates due to the fact that other (neglgcte ;(t,0) = (q’ )(k ./\;IC G, O)wr(t)+
input signals will affect the output also. Therefore the tos NI\
safe situation is to choose in the predictor all inputs that + Z ij Jwi (t) + ;1)) +
have a direct link to the output;, i.e. ¥ = N, leading to kek,
the predictor: -
pred + (1= H; Mg, 0)w;(t), (14)
w;(tft — 15 6) ZGﬂc (4, 0)wi(t) +75(t)) leading to consistent estimates of the transféfy, k €
kEN; N;\K;, while in the formulation of the conditions of Propo-
+(1—H; ' (q,0)w;(t). (13) sition 2, the setV; is replaced by the seV/;\K;. ]
For this predictor the following result is obtained. Next, an algorithm for checking Condition (c) will be pre-

sented. The other conditions are straightforward to check

Proposition 2 Consider a dynamic network that satisfies @nd do not need an algorithm. Recall that the mattix
Assumption 1, and consider a direct prediction error identi IS the adjacency matrix with’s in the entries with strictly
fication according to (5) with predictor (13). Then the mod- Proper module transfer functions, abid in the entries with
ule transfer function&:%, , k € \/; as well asH! are esti-  Proper module transfer functions (see Section 2.2).

mated consistently under the following conditions: ) .
Algorithm 1 Check if all loops through nodghave a delay

(a) The noisey; is uncorrelated to all reference signals.

A ; : (1) EvaluateA’ for ¢ = 1,..., L using the multiplication
(b) Zlevm\)f%v] is uncorrelated to all noise signals;, and addition rules defined in Section 2.2;
g\ : (2) If for any considered powef entry (j,j) equalsi,

(c) For both the network and the parametrized model, every
loop through nodg has a delay.

(d) The spectral density dfv; wy, ---w,, |7, n. € Nj,
denoted a®; v, (w) is positive definite fow € [—, 7).

Condition (c) is not met.

Example 1 If we apply the result of the direct method to

e) The system is in the model set, i.e. there existd a the network exampl_e of Figure 6, it appears that the direct

() such t%atG (2,6 = GO (2) for all k € A, and method can be applied to each of the nodes: - - w5. Note
e ik 7 that in this scheme&9; = 1. The blue-colored transfers

Hj(2,0%) = Hj(2). G5, G, G2y, GY5 can be identified by SISO predictors,



using only a single input in the predictor, provided that ap-
propriate conditions are satisfied on excitation and absenc
of algebraic loops. The transfel83; and G9; can only be
estimated simultaneously in a MISO predictor, employing
bothw, andws as inputs andv, as output. Under the con-
dition that a delay is present in the loopg&9,G9;) and
(GY,GY%,GY,GY5) and by the use of an appropriate model
set that includes accurate noise modelling, the transfé}s
andGY, can be estimated consistently. In Figure 6 they are
indicated in red.

V5l

V2 V3,

w
oM o 0 0 .
> G Pow| Cx W5 T W G W T
0 0 |e
G Gl
0 |e
Cs

Fig. 6. Dynamic network witth node signals, of which (red-col-
ored) transfer function&'y; andG9; can be consistently identified
with the direct method using a MISO predictor. The blue-oatb
transfer functions can be identified with SISO predictors.

Itis clear that in large and complex networks only under very
limited circumstances, a SISO predictor, i.e. having only
the inputw; present in the predictor, suffices to consistently
identify the transfe ;.

Remark 2 It is not always necessary to include all,
k € Nj as input in the predictor. For instance consider

the case shown in Fig. 7a. Suppose that the objective is to

obtain consistent estimates@$, . According to Proposition

2 bothw; andws must be included as inputs in the predictor.
However, from the figure, it can be seen that only acts
as a (uncorrelated) disturbance an,, and does not need
to be modelled for consistent estimation(d,. This idea
is illustrated in Fig. 7b wheréi; = vy + ws.

Corollary 1 Consider the situation of Proposition 2. If the
noise sourcey; is not present. Then the module transfer
functionsGY,, i € \; can be estimated consistently, under
the conditions of Proposition 2, where the excitation cendi
tion (d) is replaced by:

(d) The spectrum dfv,,, -+ wy,]”, ne € Nj, D, (w) is
positive definite fow € [—x, 7],

the delay condition (c) is removed, and the noise model is
fixed to1, thereby focussing condition (e) on the module
transfer property only.

Proof The same procedure as the proof of Proposition 2
can be followed starting with (B.3) and plugging«in = 0,
H(#) =1, ando?, = 0. O

6 Two-stage identification for general network topology

The two-stage method for closed-loop identification as de-
scribed in Section 3.3 follows a different approach than the
direct method. It explicitly utilizes the presence of maasu
able external excitation signals, and has the potentiadte ¢
sistently identify module transfers without the necessity
consistently identify noise models also. Based on the sehem
depicted in Figure 4 we pursue the following strategy in an
attempt to consistently identify the module tranﬁ.

Algorithm 2 (Two-stage SISO model)

(1) Select a set of measured excitation sigals }, with
m € R;s C R;, each of them correlated with;.

(2) On the basis of measured signdls,, }, m € R;s and
w;, determinewl(n”).

(3) Construct the signal
W; (1) = w; (t) = Xpex, Ghu(@wr(t) — (1),
i.e. correctw,; with all known terms;

Further analysis of this is beyond the scope of the current (4) Identify the transfer functio’); on the basis of a

paper and will be presented elsewhere.

U3
v

0
G23

U1

w1
T1

U1

w1
1

R

0
Go

w2

0
G21

(@) (b)

Fig. 7. Example of a system where not all, £ € N, need to
be included as inputs in the predictavy can just be considered
as an uncorrelated disturbance).

Note that for using signab; as an output, it is not strictly
necessary that a noise soutgés present. This special case
is considered in the next Corollary.

predictor model with prediction error

5(t.0) = H;(a,0) " i (1) = G(a, O)wi ™ (1)
using measured signats; and ng“), an identifica-
tion criterion (5), and wheréd; is a fixed noise model
or parametrized independently 6f

For this algorithm the following result can be obtained:

Proposition 3 Consider a dynamic network that satisfies
Assumption 1. Then the module transfer func can
be consistently estimated with algorithm 2 if the following
conditions are satisfied:

(&) The sefR,; is non-empty.
(b) The external excitation signais, m € R;, are uncor-
related to all noise signals, k € {j,U;};



(c) The signaLuZ(R“) is persistently exciting of a sufficiently
high order?;

(d) All node signalsug, k € u;i, k # i, are uncorrelated to
all r,,,, m € Rys.

(e) The module transfer functio@?i is in the model set,
i.e. there exists a parametéf such thatG,;(q,6°) =
GY:(q)- U

Proof: Note thatw; can be expressed as

w;(t) = Gi(@)wi(t) + Y Ghlg)wi(t)

kek;
+ 37 GO (@ur(t) + (1) + v; (1)

kel

= GY%(q)wi(t) + p; (1) + 55 (t) + v;(t)

wherep; reflects the contributions of all signal), (¢)wy.
that are known because of the fact that the dynarﬁi%gs
are known, as well as; (t); ands;(t) similarly reflects the
contributions of all s,ignaIS?g?k(q)w;C that are unknown, be-
cause the dynamidas?, is unknown.

Subsequently

w;(t) — p;(t) = GY(Qwi(t) + s5(t) + v;(t)

with the left hand side being a known signal.
Condition (b) together with the fact that by construction al
rm, M € R;s are correlated ta;, guarantee thab; can be

decomposed as; = w4+ w* ™) Then,

(

1Ris
wj —p; = G%(g) (w] (HRee)

Ris) 4 w; ) +s;+v;. (15)
Conditions (b) and (d) guarantee that the signabk uncor-

related to allr,,,, m € R;s. And by condition (b) the noise
v; is uncorrelated to alt,,,, m € R;,, while w* ) is un-

%

correlated to al,,,, m € R;s by construction.
As a result a prediction error identification on the basis of

input wER) and outputw; — p; will provide a consistent
estimate ol’G?i, provided that the input signalzz(R”)(t) is
persistently exciting of a degree at least equal to the num-
ber of parameters i+ (g, 0), see the classical conditions

on consistency of prediction error estimates in [15]. O

Note that as an alternative for the two-stage algorithng als
an |V estimator could have been used, usipgas instru-
ment,w; as input andv; — p; as output, leading to the same
consistency result, [13].

Next question is how to check whether the conditions of

2 Within the classical prediction error framework [15], theson-
structed signa{uﬁR”)(t) will need to be persistently exciting of
an order at least equal to the number of unknown parametats th
is estimated inG;;(q,0).

Proposition 3 are satisfied. Both the appropriate construc-
tion of the setR;, and Condition (d) can be checked mainly
on the basis of the adjacency matrixof the network.

Algorithm 3
Check for candidate reference signals to be correlated;to

(1) Evaluate elemertti, m) of A* for ¢ =1,---L;

(2) If for any considered powefthis element is non-zero,
then the reference signal,, qualifies as a candidate
excitation source that excites the input?3

Check whether allv,, k € U! are uncorrelated to all-,,,
m € R;s (check whether there is no path framto &):

(1) EvaluateA’ for ¢ =1,...,L;
(2) Forall k € U, k # i, check whether the entries, ()

of A* are zero for all powerd.

Example 2 Consider the dynamic network from Example 1,
depicted in Figure 8. When applying the conditions of Propo-
sition 3 it appears that the blue-colored transfe),, G2,

GY5 and GY; can be consistently identified with the two-
stage approach presented in this section. These four trans-
fers satisfy the conditions that their inputs are correthte

r1, while their outputs do not include non-modelled terms

that are correlated withr; .
V2 V- Vs
3

W
0 0 0 .
M1 G W G | G T T
0 e 0 |e
G2 Gis
0
Gis

Fig. 8. Dynamic network witls node signals, of whick (blue—
colored) transfer functions can be consistently identifigith the
two-stage method presented of Algorithm 2.

Note that the transfer&9; and G5, do not satisfy the con-
ditions of the Proposition because there are unknown con-
tributions tow, that are correlated to-; .

Actually the conditions that are formulated for Propositio

3 are very restrictive and it may be very well possible that
even in case of networks that have several external excita-
tion signals present, there is no choicefdf; possible that
satisfies the conditions. Additionally, by limiting attet

to SISO predictors, i.e. by only considerimg as input in

the predictor, the effect of all other inputs that affectwill

3 Inthe case thazévzl[A[]im > 1, there is a hypothetical option
that different path connections cancel each other. Sireacttual
correlation between,, andw; always needs to be checked, this
situation will not be dealt with separately.



be modelled as noise and therefore will increase the vari-

Moving from a SISO to a MISO predictor further increases

ance of the parameter estimate. An alternative reasoning,the complexity of the identification procedure, in terms of
that matches the situation of the direct method, is then to number of models and parameters to be estimated. However

extend the predictor to a MISO format, as reflected in the
following algorithm.

Algorithm 4 (Two-stage MISO model)

(1) Select a set of measured excitation sigals }, with
m € R;s C R;, each of them correlated with;.

(2) Determine the set of node signalg, k € {U/;,i} that
is correlated to any of the excitation signdls,, }, with
m € R;s. Denote this set adwy }, k € Uis.

3) Determinew,(cn“), for k € U;,.

(4) Construct the signal
@5 (8) = w; (1) — Y pere, Ghl@wr(t) = 75(b),
i.e. correctw,; with all known terms;

(5) Identify the transfers’}gk, k € U;s on the basis of a
predictor model with prediction error

ej(t,0) = Hi(q,n) " @;(t)— D Gjulg, 0w

]CGUjs

)@®)]

using measured signats; and w,(CR“), an identifica-
tion criterion (5), and wherdd is a fixed noise model
or parametrized independently 6f

For this algorithm the following result can be obtained:

Proposition 4 Consider a dynamic network that satisfies
Assumption 1. Then the module transfer funciiéh can
be consistently estimated with algorithm 4 if the following
conditions are satisfied:

(a) The setR;, is non-empty.
(b) The external excitation signats,, m € R;s are uncor-
related to noise signalsy, k € {j,U;}.

(c) The power spectral density @b,(f”) . N,
n. € U, is positive definite fow € [—n, 7).

(d) The module transfe@?k are in the model set, i.e. there
exists a parametef” such thatG,x(q,6°) = G9;.(q)
for all & € U;,. O

Ris
. w(

M

Under the considered conditions, all model transfer func-
tions G?k, k € U;, are estimated consistently.

Proof: The proof follows along similar lines as the proof of
Proposition 3 with appropriate change of notation. O

Example 3 Returning now to the situation of Example 2, it
can be observed that with Algorithm 4, the remaining module
transfersGY, and G9, can be identified by using a MISO
predictor with inputau; andws and outputws. The external
excitation signalr; excites both inputs. It only has to be
checked whether this excitation is sufficiently informeativ
Adding a second excitation signal could be helpful in this
respect.

10

it also can substantially reduce the variance of the estisnat
by improving the effective signal-to-noise ratio in the -out
put. The choice for which inputs to use in the predictor,
and which external excitation signals to project upon, ésav
more freedom here to choose from. This aspect is further
developed elsewhere [6].

Although in the framework of this paper, we are dealing with
noise-free measurements of node signajs it has to be
noted that the two-stage method can simply be generalized
to deal with the situation of having measurement noise on
the node signals also. This is caused by the property that
measurement noise will disappear when the measured node
signals will be projected upon external excitation signals

7 Extension of two-stage method with reconstructible
noise signals

Whereas in the two-stage method measured external excita-
tion signals serve as a basis for removing noise influences
frominput signals by way of projection, a similar mechanism
can be realized under particular circumstances by noise sig
nals. Consider the situation that somewhere in the network
there is a noise signal,, present, that can be reconstructed
on the basis of measured signals and known transfers, and
that provides excitation for the node signal that is an in-

put to the transfer functiod:%;,. Then a reasoning that is
completely similar to the two-stage method of the previous
section can be applied by treating this reconstructiblseoi
signal as an external excitation signal.

The situation is depicted in Figure 9, where noise signal
is reconstructible if all transfer€? , , k € N, are known.
Then signalz,, can be calculated and,, can be recon-
structed according to,, = w,, — z,,. From this moment
onwardsv,,, can act as as an external excitation signal that
can be used in both the SISO and MIMO predictor of the

two-stage method.

An algorithm for checking whether a noise signal is recon-
structible is easily generated. For every index V: check

if K, =Np. If SO, v, qualifies as a reconstructible noise
signal. Algorithms for checking whethey, satisfies the ap-
propriate correlation properties with respect to the ispt
andwy, k € N; are equivalent to the ones provided in the
previous section.

Example 4 If we consider the network example of Figure 8,
it appears that bothy; andvs qualify as a reconstructible
noise signal, provided that the transfe), and G2, are
known a priori. However in the considered situation none of
the remaining transfer functions satisfies the other cooilit

of Proposition 3 that the outputs should not be disturbed by
unknown terms that are correlated to the (reconstructible)
noise source.



Vin v can be written as follows:

e = SN Gy > W 0 G% 0 w; v
m Xm W, * j N j j
forall k, kém § T wy| = |G Gl Gz | |un | + |ov (16)
f W c° 0 A0 0
i Wy G; y Gov Gon | |we Vs
j forallk, ki, kri where the vector, is defined as vector of the same dimen-
sion asw, with eitherv;, i € N present of if the particu-
Fig. 9. Single node in a network structure, where the inputs lar node signal does not contain an external disturbance (or
excited through a reconstructed noise signal excitation) signal. The vectar, is similarly defined.
However if we remove the outer loop connecti8h, asde-  |n the joint-IO method we first model the measured signals

picted in Figure 10, theri:3; can be identified consistently (w;, wy) as output of a stationary stochastic process. Next
through reconstructible noise signal if Gz, is known. In — an estimate of the module transfer functief} is extracted

a two-input predictor the two-stage method can now be ap- First we are going to formalize the properties of the vector
plied to node signalv, with inputsw;, ws and external ex- processw;, wy) in the next Lemma.

citation signalsr and vs.

V2 V-
e GO | GY, »l—» GO

Lemma 4 The node signalsv;, w, satisfy the following

Vs representation:
Ws

21 4 W2 W3 § Wsz 54 w] 7 0 ej )
=W7| 7| with a7
w) €
Gy [ Ghs | v v
0 0 A0 0 0 A0 770

. . . . . wo .- |[Wis Wiv|_| Gl CuGutly (18)
Fig. 10. Dynamic network witth node signals, of which (red— ) wo. Wo GO A0 F0 G0 f0
colored) transfer function can be consistently identifigthwhe NI NN NN NG NNTEN
two-stage method presented in this section 7 based on recon- ) ]
structed noise signals. with e; and é,, uncorrelated white noise processes, and

where

The special phenomenon with reconstructible noise signals . . .
is the appealing mechanism that a noise signal with variance G =(1-G (I -Gl "Gy
increasing effects on the model estimates, by the use of a Go o _ (I-G% —G°.GO )"
prior knowledge of particular module transfers, can beddrn jg’“ 0 NNO N é"/ o
into an external excitation signal thetducesthe variance Gy = Gun + G (I — Gz) ™ Go
of the estimates. Gy, =Gy, +Go(I-GL) Gy,

. andﬁ,? is the monic, stable minimum-phase spectral factor
8 Joint 10 method for general network topology of the stochastic process. + GO, (I — G2, )~ v 0
Also the joint IO method can be generalized to the situation If the matrix 17 in (17) is available (or an estimate thereof)
of dynamic networks. As with the other methods presented then it is possible to reconstru6t,, and HY, according to:
before, we will focus on a particular node signaj, for

which we intend to identify the module transt&f,. When QO — WO o

isolating the two node signal®; and w;, and modeling w WINN .

the vector procesgw?, w!)” as the output of a stationary H) =W}, =W W2, Wy,

stochastic process, it is very unlikely that the resulting-p

cess will allow to determine consistent estimateG@j, if An estimate ofi¥’? can be obtained by estimating a noise

the two node signals are part of a complex network topol- model which whitens the stochastic processes which gener-
ogy. Like in the direct method, we have to extend the num- ate the data. In particular, the output of the stochastie pro

ber of node signals_ that We_z_take into account. _ cess isw(t) = [w;(t) wy(t)]T, and the input ise(t) =
Consider the following partition of measured variabkes=

{wj, wy,, w=; } whereN; has the usual meaning, ady is 4 Since in the Joint IO method no explicit use is made of mea-
a set of all remaining variables. In the subsequent text the sured external excitation signals, we assume thgignals are not
subscriptj will be dropped from\/; and Z; for notational present, and that all external excitation originates frosisyv-

simplicity. Using these partitions the data generatingesys  signals.

11



[e;(t) év(t)]T. The one-step ahead prediction error is: to have at least a delay is extended to all loops that run
through any of the considered node signals, whereas for the
e(t,0) = w(t) —w(t|t — 1;0) = W HO)WO(t) direct method this only considered loops through ngde

and W (0) is the parametrized noise model. The parametrization restriction formulated in Part (e) can
Whereas in the standard prediction error situation it can be be interpreted as follows. As mentioned before, restigctin
assumed that?’® and W (#) are monic, stable minimum- W (oo, 6) to be is generally not leading to consistent es-
phase transfer function matrices, this condition is infles ~ timates, because of algebraic off-diagonal terms that tnigh
here, ad¥’? is not necessarily monic. As a result, a dedicated be present if¥’°. The parametrization (20) allows direct
parametrization of¥/ (#) needs to be chosen, in particular feedthrough terms to be present in the model, without the

for the modelling of the constant feedthrough teii (o), occurrence of algebraic loops that run through variabigs
to be parametrized by (co, ). k € {N,j}. It is achieved by reordering the node signals
The algorithm for the joint-10 method now becomes: wg, k € N, such that the parametrized structure of (20)
appears. Through the property tr'{eEtW(oo,9)_PT],M2 :
Algorithm 5 (Joint-10 method) [PW (00, 0) P ).k, = 0 for ki # ko, algebraic loops in
the parametrized model are avoided, while the restrictions
(1) Choose a parametrizatioi (¢) of W°; onW (oo, ) are su_ffici(_ant to guarantee a unique solution to
(2) Determined y by minimizing the sum of squared pre- the parameter estimation problem.
N-1
diction errors, Vy (6) = — Tt 0Ve(t. ). Whereas in the classical closed-loop situation the joint 1O
I () N ; e (t,0)e(t.6) method is able to also estimate the feedback dynamics of
(3) CalculateCly = W, (éN)W_’ (91\7) the controller, in the generalized method this will typigal
w = Wiv NN

not lead to consistent estimates of any of the module trans-
fer functions in the network, unlesg is the empty set.
Concerning the handling of a priori known module transfers
in the estimation procedure, Remark 1 that was made con-
cerning the direct method, applies to the Joint IO method
also.

For this algorithm the following result can be formulated:

Proposition 5 Consider a dynamic network that satisfies
Assumption 1. Algorithm 5 leads to a consistent estimate of
G?N if the following conditions are satisfied:

(a) Noisev; is present and uncorrelated to all noise signals 9 Conclusions
Vg, k € Vj \ {_]}

(b) The process,, + GY, v is full rank. Several methods for closed-loop identification have been
(c) Every loop through nodg, k € {N,j} has a delay. generalized to become applicable to systems that operate in
(d) The system is in the model set, i.e. there exigtssaich a general network configuration. In the current setting we
that W (0°) = WO. have focussed on networks in which all node signals are
(e) W(o0, 0) is parametrized such that there exists a per- measurable, and where our intention is to model one partic-
mutation matrix ular module. Complex networks can be handled and effec-

tive use can be made of external excitation signals. These

1 excitation signals limit the necessity to perform exhasgsti
P= , such that (19) consistent modelling of all noise sources in the networle Th
L0 Byw several prediction error methods presented (direct method

- ) {d- o) 0} two-stage method based on either excitation signals or-on re
w constructible noise signals, and joint-10 method) are show
PW (o0, 8)PT = 0 (20) to be able to estimate particular subparts of the network. It
L( opens questions as to where and how many external prob-
dy;(9) ing/excitation signals are required to identify partieyarts

of the network.
whered;(#) andd,; (0) are parametrized vectors with
length(dy;) + length(d;,) = card(N;), and L(6) is Appendix
lower triangular with ones on the diagonal. O

The result of the Proposition shows that besides the A Proof of Lemma 3.

parametrization issue of Part (e), the estimation resuéis a

quite similar to the ones obtained for the direct methodeLik Let G°(co) denotdim,_, ., G°(z), and letG?(o0) represent
in that method all module transfer functi need to be a directed graph, denoted l8y. If every path fromb — «a
estimated simultaneously in order to arrive at a consistenthas a delay then there is no path fréno a in the graph
estimate ongi. The delay structure conditions are tighter defined byG°(cc). We can now separate the nodesahto
for the joint IO method: the set of loops that is restricted two groups, one called!, containing node: and all nodes

12



that have a path te, and a second group of nodes callgd
containingb and all remaining nodes that have no path to
By reordering the nodes in the grafih the matrixG® (oo)
related to this reordered representation can be written as

GAA 0

G%(0)
Gas Gis

whereG,, andGg both have zeros on the diagonals.
With the inversion rule for block matrices it follows that:

o

which shows that théa, b) entry in(I — G°(c0)) ! is zero.
Since(I — G%)~! is proper, this implies that th@, a) entry

in (I —G")~! has a delay.

The reasoning to show that if there is no path frono «
thenG% =0'is compIeter analogous except that instead of
working with G°(00), it is necessary to work witlx°. O

—1

—Gpa I —Ggs

(I-G(x)) ™" =

B Proof of Proposition 2

The proof will proceed as follows:

(1) Show that the lower bound of the objective function
V;(0) := Ee3(t,0) is a , the variance oé;.

(2) Show thatV( ) = 02j |mplies thatd = 6, (i.e the
global minimum is attainable and unique).

Step 1.Throughout the proof, it will be useful to expand the
measured variable; in terms of all noise sources and ex-
ternal inputs that affeat,. From (2b) and using the notation
from Lemma 3 we have:

L

wW; = E lk vk—l—rk

k=1

Z g LUk + Z g?krk (B-l)

kev; kER;

where the second equality holds by Lemma 3 and the defi-
nitions of V; andR;.
Now, (B.1) will be used to express the objective function
in terms of only noise sources and external inputs. With the
predictor (13) it follows that
2
s O)w:)) ]

(9):1@[( - (v3+ Y (@

161

_E[(70) (4 3 AG )(Zggszg?m)))z]

€N keV; kER;

—E|(AH;(0)0; + H'(0) Y- Y AG(6
€N kEV;

JHO) Y D AGO)Gr +ej)2} (B.2)

i€EN; kER;

k”k

13

whereAGj;(0) = G, — G;(0), andAH; (0) = H; () —
H0 ' Next Condition (c) will be used to simplify this ex-
pressmn

By (c) if G . has a delay, the@';; (9) will be parameterized
with a delay (i.e.AG,;(0) has a delay iG has a delay).
Moreover, by Lemma 3 the terrcﬁ*O :Gij has a delay if all
paths fromyj to 7 have a delay. By Condition (c), every path
from j to j has a delay, therefor&\G;; (9 )g has a delay
for all 4.

Consequently every term in (B.2) is uncorrelated fo

sinceH; () andH are both monicAH;(6)v; is a func-
tion of v;(t — k), k> 1;

as described above\G; (0)Gy;v; is also a function of
’Uj(t — ]{) k>1;

o by Condition (b) any term involvingy, k € V;, k # j is
uncorrelated te;;

by Condition a of Assumption %; is uncorrelated toy,
for all .

Using this reasoning to simplify (B.2) results in:

Z(@):E[(AH @)y + H70) S Y AG(0)G v
€N KEV;
Z Z AGj; (0 Zkrk) } crgj
1€N; kER;
:E[(AH Yo, +H ZEZNAGJZ H o2 (B.3)

wherea2 is the variance oé;. From (B.3), it is clear that
V;(0) > o— . This concludes the first step.

Step 2.Next it must be shown that the global minimum of
V;(6) is attainable and unique. This will be done by showing

V,(0) = o,

= 60 =20,.
Using (B.3),V; () = ol

E|

iE./\/j

can be written as

AG;;(0)
H;(0)

w; + AH; (9)1;]-)2] + crgj

or equivalently

i AGju (0)  AGy.(0)7]wn | Y]
2 ([ G - )| ™| )| =



1-GY,, - —GY,. w;
— [ 1 wnl 2
E| | Az(0) ' ) =0
1 Wh,,
_T 2
E_(A:c(e) Jw{j_N}) ] 0 (B.4)
where
AGin, (0 AG . (8
Ax(9)" = [aH;(0) HJ-(eg ). };(eg ],
J J

T
w{i,/\/j} = [w7 wnl T w”n]’ Nk 6N7

Using Parseval's Theorem results in:

1 [™ )
— | Azx(e!”

5 L0)T T a3 (W) T Az (€7, 0)dw =0
p ,

—T

for w € [-m, ), whereJ* denotes the conjugate trans-
pose of J. By Condition (d), ®; ;;(w) is positive
definite. Moreover,J(e’*) is full rank for all w. Thus
the only way the equation can hold is if each entry of
[AH; AGjn, -+ AG,,, ] is equal to zero for alk.
Therefore, by Condition (le) and if the parameterlzatmn of

Gji(0) is such that the only way th&t9, — G;;(0) is equal
to zero is whenGj;(0) = GY;, the global minimum  of
V;(6) is unique. m

Remark A.1 There exists an alternative reasoning to prove
the proposition, by utilizing the equivalent feedback stru

ture as presented in Proposition 1, combined with the rea-
soning in [21] concerning absence of algebraic loops. How-

ever the proof presented above naturally includes the exci-

tation conditions also.

C Proof of Lemma 4

The variablesu. can be eliminated from the equations:

w; 0 GO ||w 0
e oot k]
Wy GNjGNN w, Gy Wy
0 \—1 Uj
+ 0 (I - Gzz) vz +
NE Uv
Vs
0 G%] [w] [r0 o]]|”
50 A0 + ~0 U
GNj G| [wnv 01 G,, .
Z

where the several matricésare implicitly defined through
the equations. The transfer from, to w; is still GY,,
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whereas the transfer from; to w), has become a compos-
ite function of various tranfers (denoté?j}j). Subsequently

the map fromo to [w; wy]” is
_ v
w; 1 -Gy I0 0 ’
— ~ ~ ~ (Y
v B e e o R [ e UN
Z

Consider the stochastic procegst+GY, v which appears as
part ofw, . Denote the power spectral density of this process
as ¢, (w), and letH? be its monic, stable and minimum-
phase spectral factor. Substituting this into the expoessi

the data generating system results in

[wj [y anah e “ej]
Wn G/?/NG/(\Jrj G/?/N H/S en

wheree; andé, are uncorrelated sinag anduv,, andv, are
uncorrelated. O

D Proof of Proposition 5

Before proceeding to the proof, consider the following ukef
lemmas.

Lemma A.1 Consider a dynamic network that satisfies As-
sumption 1. If every path fromv,, — wg,, k1 # ko €
{j,N;} has a delay, theidW°],,x, has a delay. If every
path fromwy, — wy, k € {j, N} has a delay thefiV ]y

is a monic transfer function.

Proof: The result follows directly from the combination of
Lemmas 3 and 4. O

Lemma A.2 Consider a dynamic network that satisfies As-
sumption 1. If every loop that runs throughe {j, N'} has

a delay then there exists a permutation matfbstructured

as (19) such thaPW°(co0) PT is structured according to
(20).

Proof: Since we are assuming that every loop through

k € {j,N,} has a delay, it follows by Lemma A.1 that the
diagonal entries ofV’? are monic transfers. This proves the
left upper part of (20).

Consider a graph of0, (cc) — I. By Lemma A.1, since
every loop involvingwy, k € {j,N;} has a delay this is an
acyclic graph, and thus (see [7]) there exists a permutation
matrix P, such thatB, W2, (co) BL, is lower triangular,
conforming to the right lower part of (20).Note th&,,
may not be unique. LeP,,, denote the set of permutation
matrices that satisfies the above condition.

Then it must be shown that for at least oRg, € Py,
the off-diagonal blocks are structured according to (20 T
reasoning will be split into two steps. First it will be shown



that there exists &, € P such thatl,, W2 W9 PI is
strictly lower triangular. Then it will be shown that for ¢hi
matrix to be strictly lower triangular, the structure of 20
must hold.

Consider the graph o, (c0) + W2, (00) W (c0) — 1.
This graph is equal to the original graph Bf0, (cc) — I

Now consider the LDU-decomposition of the symmetric ma-
trix Q: Q = LoDLL with Lg lower triangular with ones
on the diagonal, an@ diagonal, then because of the struc-
ture ofe, Ly will be a block diagonal matrix with diagonal

blocks(1, LfQ?N) andL%,, lower triangular with ones on the
diagonal.

with some new edges added. The set of permutation matricesThe expression fol’ () can be expanded as:

that triangularizes the corresponding matrix, will be asaib
of Py since edges have only been added/IA.j@N -1

and none have been removed. This implies that |f it is not V(o

triangularizable by any,, € P, then there does not ex-
ist a permutation matrix such that it is triangularized.
DenoteP),. € P!, C Pu as the set of permutation matri-
ces that triangulariz&/,. (co) + W, (00) W, (c0) — I. By
the condition that all loops passing through, k& € {j,N;}
have a delay, the graptv{) (co) + W, (c0) W3, (c0) — I

is acyclic. Then this implies ([7]) that there eX|sts a permu
tation matrixP/,, such that

2l (W0 (00) + W2, (00) W (00) — I) P'y,

is lower triangular. Consequentiy,,, is hot empty. Since
Pl € Puv it follows that there exists a permutation matrix
such thatl, W9, (c0) P’y andBl, W2, (co) W9, (c0) P’
are both lower triangular.

From Lemma A.1 it follows that the diagonal entries of
Bl W, (00)WR (00 )P'L. are zero and therefore this ma-
trix is strlctly Iower triangular. Next it will be shown that
the fact thatP), W, W2 P'L, is strictly lower triangular
|mpI|es the off d|agona structure of (20). Consider twave

tors,2” = [2] 21] andy” = [y{ 1 ]. Then,
Z1 T Tl _ w1yl T1y;

Y Y2 | — T T|"®
T9 T2Y; T2Y5

The only way this matrix can be strictly lower triangular
is if both z; andy, are zero. Letr = PA’,NW0 (c0) and

y=W) (00 )P'AT/N, then by this reasoning, the structure of
the off- dlagonal blocks in (20) follows. O

The proof of Proposition 5 proceeds in the usual fashion:
(1) Calculate a lower bound o¥i(8).
(2) Show that achieving this lower bound implies that
Bo.

Step 1.The expression foV (9) is

V(0) =E[e"(t,0)e(t,0)] = tr{E[e(t,0)e" (1,0)]}
=tr{E[W () wuw W (6)"]} (D.1)
with w := [w; wr]T. Then withQ := cov(e),
V(9) = % /F tr{W () *WOQ(W(6) ' W) * }dw.
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Oy WOL,—I)D(W(O)*WOL,—I)*

tr{

+(W(9) 1W0LQ—I)D+D(W(9) '"WOLo—1I)*+D}dw

(D.2)

Two important properties of (D.2) is that the first tern»i<)

for any, and secondly that the last term is not a function of
6. In the following text it will be shown that the second and
third terms of (D.2) are zero. Consequentfy(g) > tr{D}.
Consider the second term of (D.2), while using the matrix
inversion lemma folV ()1

—1
ABY
C D B
-1
_(A-BD'C 0 I —BD!
B 0 D—CA'B _CAY T

then(W(0) W L,—I)D =

QWJ-J-(e) Wi (0) W5 w)Ww(o) 0 ]
0

W= Wi ()W Oy, W
W2~ Wi (W (O W, WO

J

Win (0) W (0) Wiy
— Wi Q)W HO)W R,

17
10 )
—I|D

0 L3,

then the first diagonal term

(W5 (0) = Wi (O) Wi (0)Waes (0))

(W= Wi (O)Wos (O)W;) —

is a strictly proper transfer function, which means that the
first diagonal element of W(0)W°L,—1I)D is a strictly
proper transfer function.

Secondly,

(Waae (0) = Way ()W (0) W (6)) "

’ (WJ\%\f —Wy;j (O)ngl (H)W%)L%/N-

is a product of three lower triangular matrices with ones on
the diagonals. This is induced by Condition (e), and Lem-
mas A.1 and A.2. The statement follows, since the inverse



of a product of triangular matrices with ones on the diago- [9] U. Forssell and L. Ljung.
nal, is a lower triangular matrix with ones on the diagonal.

Consequently, the diagonal terms @%(0)'W°L,—1I)D
are all strictly proper transfer functions.
Finally, since ["_[F(e™) 4+ F*(e¢™)]dw = 0 for strictly
properF, (D.2) can be simplified to
_ 1 (7
V(o):2— tr{(W(0) " W°Lo—I)D(W(0) " WOL,—I)*
m —Tr
+D}dw > tr{D} (D.3)

Step 2.From (D.3)V () = tr{ D} implies that
2i tr{ (W(0) ' WOLo—I)D(W(0) ' W Lo—1I)}dw=0
T) -

Since D is positive definitévw € [, 7) this implies that
(W(O)'WOL,—1I) =0 VYw € [—m, ). Consquently,

W) =Ww'L, forallwe [-m,7)
Wii (0) Wi ()| _ | W Wi L3
Wi (0) W (6) Wo; WLl

By Condition (e) and Lemma A.2 the parameterization is

such that there exists a solution to this equation. In paletic
the parameterization is such that the equality, (9) =
Wi LY, can hold. This completes the proof. O
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