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Abstract

We study a situation where several independent service providers collaborate by
pooling their resources into a joint service system. These service providers may
represent such diverse organizations as hospitals that pool intensive care beds and
ambulances, airline companies that share spare parts, or car rental agencies that pool
rental cars. We model the service systems as Erlang loss systems that face a fixed
cost rate per server and penalty costs for lost customers. We examine the allocation
of costs of the pooled system amongst the participants by formulating a cooperative
cost game in which each coalition optimizes the number of servers. We identify a cost
allocation that is in the core of this game, giving no subset of players an incentive to
split off and form a separate pooling group. Moreover, we axiomatically characterize
this allocation rule and show that it can be reached through a population monotonic
allocation scheme. To obtain these results, we introduce a new extension of the
classic Erlang loss function to non-integral numbers of servers and establish several
of its structural properties.

Keywords: Games/group decisions: cooperative; probability: stochastic model
applications; inventory/production: uncertainty.
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1 Introduction

In today’s business world, service providers are increasingly recognizing the effectiveness

of resource pooling to drastically reduce the costs of maintaining their service systems.

Resource pooling refers to an arrangement in which a group of common resources is held

for several customer classes rather than dedicated resources for each individual customer

class. An important benefit of resource pooling is a reduction in the number of customers

who are blocked due to unavailability of the requested resources (Smith and Whitt, 1981).

Another important benefit is that, in setting up a cluster of pooled resources, economies of

scale can be exploited that typically prevail in acquiring and maintaining resources. These

benefits translate to substantial cost savings. Such savings are seen in many places in the

society in case multiple customer streams are served by one common service provider. But

they can also be obtained if the customer streams belong to several independent service

providers.

There are numerous real life examples in various sectors of independent service providers

that collaborate by pooling their resources into a joint service system. For instance, con-

sider a hospital that is composed of several independent clinical departments, each with

their own patient populations. Such departments commonly share operating rooms, in-

tensive care beds, and surgeons. Another example is that of airline companies pooling

inventories of critical spare components. One can also think of independent car rental

agencies that collaborate by holding a common set of rental cars for all their customers. A

final example is that of several cities operating a joint fire department. In all these cases,

collaboration among service providers enables more efficient use of their resources, which

is beneficial to the system as a whole.

The next natural question to be asked is how these service providers should allocate the

joint costs of the pooled system amongst them. Indeed, the problem of constructing fair

allocation mechanisms is one of the most severe impediments for horizontal cooperation in

the logistics industry (Cruijssen et al., 2007). In this paper, we will apply concepts from

cooperative game theory, which allows for enforceable binding agreements and transfer

payments between players, to identify a stable cost allocation scheme. In cooperative

game theory, stability is one of the the most prominent notions of fairness. Under our

stable allocation, each group of service providers will feel that pooling their resources with

others leads to a cost saving for themselves and, moreover, parties with a large customer

load will pay a larger share of the costs.

We model the service systems as Erlang loss systems (M/G/c/c systems) that face

resource costs for servers and penalty costs for customers that find all servers occupied
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upon arrival. The participating parties, which we will simply refer to as players, each face

their own Poisson stream of customers. The players may collaborate by complete pooling

of their servers and individual customer streams. We formulate a cooperative cost game

with transferable utility in which each coalition optimizes their expected joint costs over

an infinite time horizon by choosing a cost-minimizing number of common servers.

The study of cooperation in operations research problems is a fruitful and interesting

topic that is drawing growing attention. The applications of cooperative game theory to

operations research problems were surveyed at the start of this century by Borm et al.

(2001). Various other categories of cooperative games have recently been considered as

well; we mention inventory management games (reviewed by Fiestras-Janeiro et al., 2010)

and cooperation involving combinatorial structures (see, e.g., Bogomolnaia et al., 2010,

and references therein). The literature on the application of cooperative game theory to

queueing situations, characterized by stochastic uncertainty over an infinite time horizon,

is relatively sparse. This literature can roughly be divided in single-server queueing games

and multi-server queueing games. We now survey each category separately.

In single-server queueing games, a coalition of players operates an M/M/1 queueing

system with an adjustable service rate. González and Herrero (2004) deal with a cost

allocation problem in which each player has a pre-specified service criterion on the mean

sojourn time of their customers. A coalition of players chooses its service rate to satisfy

these sojourn time constraints. Garćıa-Sanz et al. (2008) analyze three variations of the

model in González and Herrero (2004): they allow more generic sojourn time constraints,

consider constraints on the mean waiting time in the queue, and investigate a preemptive

priority queueing discipline. Anily and Haviv (2010) study a model in which each player

has its own potential service rate. A coalition of players sets its service rate at a weighted

sum of the potential service rates of its members and subsequently has to divide congestion

costs. Finally, Yu et al. (2009) consider a situation where a coalition of players optimizes

its service rate to minimize delay and capacity costs, possibly subject to service level

constraints.

There are two key differences between our work in the context of Erlang loss systems

and the cooperative games associated with pooled M/M/1 queues. The first difference is

that we focus on situations in which a customer who finds all servers busy upon arrival

is served elsewhere at additional costs because waiting for service is not an acceptable

option. Secondly, we consider service systems with possibly more than one server. In

contrast to the studies on M/M/1 games, we do not assume that the service rate of a

single server can be set at arbitrary levels. Instead, we assume that additional servers have

to be acquired to increase the service capacity. In fact, the real life examples mentioned
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above can be accurately modeled as Erlang loss systems, whereas an M/M/1 model would

not fit. Thus, our work provides novel insights that are both practically relevant and of

theoretical importance.

In multi-server queueing games, a coalition of players operates a stochastic system with

possibly more than one server. Wong et al. (2007) describe cost allocation policies in the

context of spare parts inventory pooling. The spare parts take the role of the servers in

their Markovian model. They analyze their policies by means of a small numerical exper-

iment. McLean and Sharkey (1993) consider a multi-channel telecommunication model.

They introduce several cost allocation methodologies and illustrate them with numerical

examples. However, neither of these two papers investigate analytical properties of the un-

derlying game or stability of allocation rules, whereas the main focus of our present study

is to derive such structural results. Timmer and Scheinhardt (2010) analyze a queueing

model with several single-server stations in tandem. The various stations may cooperate by

redistributing their combined server capacity. Their setting with multiple servers in series

is different, however, from our setting with multiple parallel servers. Finally, Karsten et al.

(2009) consider a cooperative game that is similar to ours: they model service systems as

Erlang loss systems as well. In the model considered in Karsten et al. (2009), each player is

associated with a fixed number of servers, and each coalition uses the sum of the servers of

its members. In contrast, we consider a setting where a coalition picks an optimal number

of servers. This allows additional benefits of collaboration and leads to a different type of

game, which we will call resource pooling game.

In our analysis of resource pooling games, we consider the cost allocation rule that

divides joint costs proportional to the arrival rate of customers belonging to each player.

This rule is easy to understand and would be easy to implement in practice. We prove that

this cost allocation rule has several appealing properties. First, it accomplishes a stable cost

division as it gives no subset of players an incentive to split off and form a separate pooling

group. Second, it can be reached through a population monotonic allocation scheme under

which the costs faced by a player do not increase when the coalition to which he belongs

grows. Finally, our rule can be axiomatically characterized as the unique cost allocation

rule on resource pooling situations that is immune to manipulations of the players via

artificial splitting or merging, while still satisfying a weak continuity property.

To obtain these structural results, we first prove several analytical characteristics of a

new extension of the classic Erlang loss function to non-integral numbers of servers. As

such, our work is related to the literature on performance analysis and optimization of

loss systems with overflow layers. Traditional approximation techniques for such systems,

such as the equivalent random method (Wilkinson, 1956) and Hayward’s approximation
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(Fredericks, 1980), also employ functions that extend the domain of the Erlang loss func-

tion. However, the extension that is commonly used in these approximation techniques,

the integral representation in terms of the Gamma function (see, e.g., Jagerman, 1974),

does not satisfy certain characteristics, while existence of an extension of the Erlang loss

function satisfying those characteristics is sufficient to prove the aforementioned properties

of the proportional allocation. With this purpose in mind, we develop a new extension

that does satisfy the desired characteristics.

The model, results and analysis we present in this paper make several primary contri-

butions. Firstly, we introduce a new class of operations research games, called resource

pooling games. This contributes to the literature on cooperative games in the form of a

rich modeling framework. Secondly, for this game, we identify a simple, yet stable cost

allocation. Thirdly, we show that this allocation can be reached through a population

monotonic allocation scheme. Fourthly, to derive this, we introduce a new extension of the

Erlang loss function and establish several of its properties, which contributes to the litera-

ture on the mathematics of loss systems. Finally, we prove that there is only one allocation

rule for our model that satisfies natural axioms of non-manipulability and continuity: our

proportional rule.

The remainder of this paper is organized as follows. We start in Section 2 with some

preliminaries on cooperative game theory and the Erlang loss function. Then, in Section

3, we describe our model, introduce resource pooling games, and propose the proportional

cost allocation rule. Section 4 describes our approach to prove that resulting allocations

are stable, which requires our new extension of the Erlang loss function. Afterwards,

we consider population monotonicity in Section 5 and the axiomatic characterization in

Section 6. Finally, we draw conclusions in Section 7.

2 Preliminaries

For reasons of self-containedness, we first give a brief introduction to cooperative game

theory. Subsequently, we present the well-known Erlang loss function along with several

of its properties, and we introduce the concept of scalability.

2.1 Preliminaries on cooperative game theory

A cooperative cost game with transferable utility, which we will simply refer to as game,

is a pair (N, c) where N is a nonempty finite set of players and c : 2N → R is the

characteristic cost function, which assigns to every coalition M ⊆ N its costs c(M) with
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c(∅) = 0. The value c(M) is interpreted as the total costs of the joint cooperative effort if

only the players in coalition M are involved in it. In particular, c(N) represents the total

costs for the grand coalition N when all players agree on working together. In this paper,

we will consider so-called subadditive games in which it is always beneficial to combine

coalitions: a game is called subadditive if for any two disjoint coalitions M and R it holds

that c(M) + c(R) ≥ c(M ∪R). In a subadditive game, cooperation by the grand coalition

is socially optimal.

A central problem in cooperative game theory is to allocate c(N) to the individual

players in a fair way. Formally, an allocation is a vector x ∈ RN satisfying
∑

i∈N xi = c(N).

The value xi is interpreted as the costs assigned to player i. An allocation is called stable

if
∑

i∈M xi ≤ c(M) for all nonempty coalitions M ∈ 2N− , where 2N− = 2N \ {∅} denotes the

power set consisting of all nonempty subsets of N . Under a stable allocation, each group of

players has to pay no more collectively than what they would face by acting independently.

Hence, if the costs of the grand coalition are assigned according to a stable allocation, no

coalition has an incentive to split off and establish cooperation on its own.

The set of all stable allocations is called the core, introduced by Gillies (1959). A

game with a nonempty core is called balanced. Moreover, a game (N, c) is said to be totally

balanced if for each nonempty coalition R ∈ 2N− the subgame (R, cR), where cR(M) = c(M)

for all M ⊆ R, is balanced. A notion that is even stronger than total balancedness

is concavity (sometimes referred to as submodularity), which is concerned with marginal

utility for coalition membership (Shapley, 1971). A game is called concave if for each i ∈ N
and for all M,R ⊆ N \{i} with M ⊆ R, it holds that c(M∪{i})−c(M) ≥ c(R∪{i})−c(R).

The last concept that we wish to introduce is a population monotonic allocation scheme.

An allocation scheme for a game (N, c) is a vector y = (yi,M)i∈M,M∈2N
−

, with
∑

i∈M yi,M =

c(M) for all coalitions M ∈ 2N− , which specifies how to allocate the costs of every coalition

to its members. This scheme is called a population monotonic allocation scheme (PMAS)

if the amount that a player has to pay does not increase when the coalition to which he

belongs grows. That is, yi,M ≥ yi,R for all coalitions M,R ∈ 2N− with M ⊆ R and i ∈ M .

If the game admits a PMAS, say y, then the game is totally balanced and (yi,N)i∈N is an

element of its core (Sprumont, 1990).

2.2 Preliminaries on the Erlang loss function and scalability

The Erlang loss function is a classic in queueing theory. To describe this function, let

N0 = N ∪ {0} denote the set of all nonnegative integers and let R++ = R+ \ {0} denote

the set of all positive real numbers. Then, for any s ∈ N0 and a ∈ R++, the Erlang loss
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function B : N0 × R++ → [0, 1] is defined by

B(s, a) =
as/s!∑s
y=0 a

y/y!
. (1)

B(s, a) may be interpreted as the steady-state probability that an arriving customer finds

no free server in an Erlang loss system (i.e., an M/G/s/s system) with s servers and offered

load a. In such a system, the mean service time is τ > 0 and customers arrive according to

a Poisson process with rate a/τ > 0. Since customers that find no free server upon arrival

are often called blocked customers, B(s, a) is also sometimes referred to as the blocking

probability.

Smith and Whitt (1981) were the first to show that pooling the resources of several

Erlang loss systems is beneficial due to an economies-of-scale effect satisfied by the Erlang

loss function. That is, when we increase the offered load a and the number of servers s with

the same relative amount t – for instance, by combining the servers and arrival streams

of two symmetric Erlang loss systems into a single joint system – the blocking probability

does not increase. Note that this is only meaningful when the scaling factor t is chosen such

that the number of servers in the scaled system, ts, is in N0. We describe this scalability

property more precisely and in more general terms in the following definition.

Definition 2.1. A function f : D → R, with D ⊆ Rn
+ for some n ∈ N, is said to be

upward scalable if, for each element of its domain x ∈ D, the associated scaled function

f (x) : {t ∈ R : tx ∈ D} → R, defined by f (x)(t) = f(tx), is non-increasing. ♦

In particular, the Erlang loss function B is upward scalable; a proof of which can be

found in the appendix of Smith and Whitt (1981). The Erlang loss function satisfies several

other useful properties as well. The properties that we will use in this paper’s analysis are

collected in the following theorem.

Theorem 2.1. Fix s, s′ ∈ N and a, τ, λ, λ′ ∈ R++. Then:

(i) B(s+ s′, (λ+ λ′)τ) · (λ+ λ′) ≤ B(s, λτ) · λ+B(s′, λ′τ) · λ′.
(ii) B(s, λ/µ) is decreasing and convex in µ on domain R++ for µ.

(iii)
∂B

∂a
(s, a) = [B(s, a)− 1 + s/a] ·B(s, a).

(iv) B(s, a) =
aB(s− 1, a)

(aB(s− 1, a) + s)
.

The subadditivity property, (i), is due to Theorem 1 in Smith and Whitt (1981). Prop-

erty (ii) corresponds to Proposition 3 in Harel (1990). The expression for the partial

derivative in (iii) is due to Theorem 15 in Jagerman (1974). Finally, the recursive relation

of property (iv) is well-known (see, e.g., Jagerman, 1974, p. 531).
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3 Model

In this section, we introduce resource pooling situations and define the associated games,

called resource pooling games.

3.1 Resource pooling situations

Consider a situation where several players require a number of servers for their customer

populations. Each player’s customers arrive to a service system according to mutually

independent Poisson processes. Service times are independent and identically distributed

with some general distribution function (with finite mean). Each newly arriving customer

immediately goes into service if there is an unoccupied server available. Conversely, if that

customer finds no free server, he is lost and some penalty costs have to be paid.

We assume throughout that players are interested in their long-term average costs per

time unit. Naturally, penalty costs can be reduced by increasing the number of servers.

However, holding a large cluster of servers is costly as well. Thus, a natural trade-off

arises between resource costs for those servers and penalty costs. The following example

illustrates this problem in a medical context.

Example 3.1. Consider a single clinical department (player) in a hospital. New patients

(customers) arrive with rate λ̄ = 1
10

and their average length of stay (service time) is

τ = 1. If there is no bed (server) available when a patient arrives, he is transferred

to another hospital and treated there. The costs charged to the clinical department for

this emergency transferral (penalty costs) are p = 15, which may additionally encompass

goodwill loss and/or fines imposed by the government. The maintenance and capital costs

for one bed (resource costs) are h = 1 per unit time.

If this department would operate a system with s ∈ N0 beds, then the steady-state

blocking probability would be described by the Erlang loss function B(s, λ̄τ). Hence, the

expected relevant costs per unit time in steady state would add up to hs + B(s, λ̄τ) · λ̄p.
Given that B(0, 1

10
) = 1, B(1, 1

10
) = 1

11
, and B(2, 1

10
) = 1

221
, it is easily verified that the

optimal number of servers is S∗ = 1 with associated minimal costs equal to 1·1+ 1
11
· 1

10
·15 =

1 3
22

. ♦

In a setting with more than one player, the players could reduce their penalty costs

by pooling their resources. Furthermore, by acquiring and maintaining resources collab-

oratively, economies of scale can be exploited. Moreover, the players could benefit by

re-optimizing the number of servers in their joint system. To analyze this, we define a

resource pooling situation as a tuple (N, λ, τ,H, p), where
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• N is the nonempty finite set of players;

• λ ∈ RN
++ is the vector of arrival rates, i.e., λi > 0 denotes the arrival rate of customers

that belong to player i ∈ N ;

• τ > 0 is the mean service time for an arbitrary customer of any player;

• H : N0 → R+ is a concave increasing unbounded function specifying that the resource

costs for holding s servers are H(s) per unit time; and

• p > 0 is the expected penalty costs that are incurred whenever a customer is blocked.

This model covers a broad range of situations in which resource sharing can occur between

independent service providers, i.e., situations where collaboration between separate Erlang

loss systems is possible. In our analysis later on, it will be convenient to start by considering

situations with linear resource cost functions. To accommodate this, we call a resource

pooling situation (N, λ, τ,H, p) a linear resource pooling situation if there exists an h ∈ R+

such that H(s) = hs for all s ∈ N0. For convenience, we will represent such a situation

directly via the tuple (N, λ, τ, h, p).

3.2 Resource pooling games

The cooperation between players takes place as follows. Let ϕ = (N, λ, τ,H, p) be a

resource pooling situation and consider a coalition M ∈ 2N− . The players in this coalition

collaborate by complete pooling of their respective arrival streams and servers into a joint

system. Since the superposition of independent Poisson processes is also a Poisson process,

this coalition now faces a Poisson arrival process with merged rate λM =
∑

i∈M λi. We

assume that the common servers can handle all types of customers with equal ease.

Based on these assumptions, this joint service facility behaves as an Erlang loss system.

For any particular choice of the number of servers in the joint system s ∈ N0, we can

calculate the expected relevant costs per unit time in steady state as

KM(s) = H(s) +B(s, λMτ) · λMp. (2)

Since the value of the Erlang loss function is confined to the interval (0, 1], whereas the

resource cost function H increases unboundedly, there exists an optimal number of servers,

which can be found by an enumerative search procedure. Assuming that any coalition

indeed picks a cost minimizing number of servers, we can formulate a game corresponding

to resource pooling situation ϕ. We call the game (N, cϕ), with

cϕ(M) = mins∈N0 KM(s) (3)
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for all coalitions M ∈ 2N− and cϕ(∅) = 0, the associated resource pooling game.

For any coalition M ∈ 2N− , there may be multiple cost minimizing numbers of servers,

so to avoid ambiguity we define a specific optimal number of servers by

S∗M = min{s ∈ N0 : KM(s) = cϕ(M)}. (4)

The following theorem shows that cooperation in the context of resource pooling always

leads to a reduction in costs.

Theorem 3.1. Resource pooling games are subadditive.

Proof. Let ϕ = (N, λ, τ,H, p) be a resource pooling situation. Let M,R ∈ 2N− with M∩R =

∅. Then,

cϕ(M ∪R) = KM(S∗M∪R)

≤ KM(S∗M + S∗R)

= H(S∗M + S∗R) +B (S∗M + S∗R, (λM + λR)τ) · (λM + λR)p

≤ H(S∗M) +H(S∗R) +B (S∗M + S∗R, (λM + λR)τ) · (λM + λR)p

≤ H(S∗M) +H(S∗R) +B (S∗M , λMτ) · λMp+B (S∗R, λRτ) · λRp
= cϕ(M) + cϕ(R).

The first inequality holds because S∗M∪R is a cost minimizing base stock level for coalition

M ∪R. The second inequality is valid since H is a concave increasing function. The third

inequality holds by part (i) of Theorem 2.1. This completes the proof.

Although Theorem 3.1 shows that collaboration among all players is beneficial, it does

not answer the question of how the total costs of the grand coalition should be allocated to

the individual players. To study this, we define a cost allocation rule on resource pooling

situations (or rule for short) as a mapping, say f , that assigns to any resource pooling

situation ϕ = (N, λ, τ,H, p) a vector in RN such that
∑

i∈N fi(ϕ) = cϕ(N). A simple rule

would be to divide joint costs proportional to the arrival rate of each player. Formally, we

define for any resource pooling situation ϕ = (N, λ, τ,H, p) this rule A by

Ai(ϕ) = cϕ(N) · λi/λN (5)

for each player i ∈ N . If costs are shared according to this rule, then a player with more

frequent customer arrivals pays a greater share of the costs, which seems reasonable. The

following example illustrates this rule numerically and shows that resource pooling games

need not be concave.
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Coalition M S∗M B(S∗M , λMτ) cϕ(M)

{1}, {2} 1 1
11

1 3
22

{3} 3 32
827

3384
827

{1, 2} 1 1
6

11
2

{1, 3}, {2, 3} 3 243
4853

36561
9706

{1, 2, 3} 3 1
16

315
16

Table 1: Parameter values and characteristic cost function for each coalition in Example 3.2.

Example 3.2. Consider ϕ = (N, λ, τ,H, p), a 3-player resource pooling situation, with

N = {1, 2, 3}, λ1 = 1
10

, λ2 = 1
10

, λ3 = 8
10

, τ = 1, H(s) = s for all s ∈ N0, and p = 15.

As player 1 alone faces the same problem as in Example 3.1, S∗{1} = 1, B(S∗{1},
1
10

) = 1
11

,

and cϕ({1}) = 1 3
22

. We can similarly determine the optimal number of servers, associated

blocking probability, and characteristic costs for all other coalitions; all values are shown in

Table 1. The cost allocation proportional to arrival rates A(ϕ) assigns 63
160

to both players

1 and 2 and 3 24
160

to player 3. It is easy to verify that this cost allocation is stable. Hence,

the resource pooling game (N, cϕ) is balanced. However, this game is not concave, since

cϕ({1, 3})−cϕ({3}) = 36561
9706
−3384

827
< 0.212 < 0.261 < 315

16
−36561

9706
= cϕ({1, 2, 3})−cϕ({2, 3}).

In other words, player 1’s marginal cost contribution may increase if he joins a larger

coalition. ♦

4 Analysis of allocation stability and extensions of the

Erlang loss function

Rule A resulted in a core element in Example 3.2. In this section, we describe our approach

to prove that this holds in general for linear resource pooling situations, i.e., situations with

linear resource cost functions. In Section 5, we will generalize this result to resource pooling

situations, i.e., situations that allow general concave resource cost functions. We focus on

linear situations in the current section for notational convenience; this focus allows us to

emphasize and intuitively describe the key challenge of finding an extension of the Erlang

loss function with certain properties.
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4.1 Proof approach

The proof that A, the cost allocation rule proportional to arrival rates, results in core

elements is based on the upward scalability property that was introduced in Section 2.2.

The main step in the proof can be described as follows. Consider a linear resource pooling

situation ϕ = (N, λ, τ, h, p) such that λN

λM
S∗M ∈ N0 for some coalition M . Then, by scaling

down the number of servers and the offered load by the same fraction λM

λN
, we obtain

B

(
λN
λM

S∗M , λNτ

)
≤ B (S∗M , λMτ) . (6)

This inequality, which holds because the Erlang loss function B is upward scalable, is

crucial in our proof. It is predicated, however, on the assumption that λN

λM
S∗M ∈ N0, which

need not be true. Indeed, if λN

λM
S∗M /∈ N0, then inequality (6) is not valid since λN

λM
S∗M is

not an admissible number of servers and, moreover, B
(
λN

λM
S∗M , λNτ

)
is not defined. A

seemingly obvious way to deal with this problem is to consider a function that extends the

domain of the Erlang loss function to non-integral numbers of servers and that coincides

with the Erlang loss function whenever the number of servers is an integer. Formally,

any function E : R+ × R++ → [0, 1] is called an extension of the Erlang loss function (or

extension for short) if E(s, a) = B(s, a) for all s ∈ N0 and a ∈ R++.

However, for such an extension to be helpful, it needs to satisfy several properties,

which need not be satisfied by all extensions. To describe one such requirement, we define

for any extension E and coalition M ∈ 2N− the corresponding cost function KE
M : R+ → R+

by

KE
M(s) = hs+ E(s, λMτ) · λMp. (7)

The following lemma states that existence of an extension that satisfies certain properties

is sufficient to prove stability of the allocation proportional to arrival rates.

Lemma 4.1. Let ϕ = (N, λ, τ, h, p) be a linear resource pooling situation. If there exists

an extension of the Erlang loss function, say E, satisfying (i) upward scalability and (ii)

KE
N(S∗N) ≤ KE

N( λN

λM
S∗M) for all M ∈ 2N− , then allocation A(ϕ) is in the core of the associated

resource pooling game (N, cϕ).

Proof. Let E be an extension satisfying properties (i) and (ii), and let M ∈ 2N− be an

12



arbitrary coalition. Then,∑
i∈M

Ai(ϕ) = KE
N(S∗N) · λM

λN

≤ KE
N

(
λN
λM

S∗M

)
· λM
λN

= h · S∗M + E

(
λN
λM

S∗M , λNτ

)
· λMp

≤ h · S∗M + E (S∗M , λMτ) · λMp
= KE

M(S∗M) = cϕ(M),

where the first inequality holds by property (ii) and the second inequality holds by property

(i). We conclude that A(ϕ) is indeed a stable allocation.

Intuitively, if λN

λM
S∗M ∈ N0 for all coalitions M , then requirement (ii) in Lemma 4.1

should certainly hold because S∗N is the optimal number of servers for the grand coalition,

and thus the costs when using S∗N servers cannot exceed the costs under λN

λM
S∗M servers.

However, if λN

λM
S∗M /∈ N0 for some M , then requirement (ii) need not be satisfied by an

arbitrary extension. The following example illustrates that a well-known extension in fact

does not satisfy this requirement.

Example 4.1. Consider the function B̂ : R+ × R++ → [0, 1], defined by

B̂(s, a) =

(
a

∫ ∞
0

e−ax(1 + x)sdx

)−1

. (8)

This function, which is related to the Erlang loss function via the Gamma function, is an

extension (Jagerman, 1974) and is upward scalable (Smith and Whitt, 1981). In fact, it

is one of the most commonly used extensions in the literature (see, e.g., Fredericks, 1980

and Jagers and Van Doorn, 1986). However, we cannot use it in an obvious way to prove

stability of A because it fails to satisfy requirement (ii) in Lemma 4.1.

To see this, suppose that N = {1, 2}, λ1 = 0.6, λ2 = 0.4, τ = 1, h = 0.85, and p = 3.

The optimal number of servers are S∗{1} = 1, S∗{2} = 1, and S∗N = 2. The associated optimal

costs are K{1}(S
∗
{1}) = 121

40
, K{2}(S

∗
{2}) = 1 27

140
, and KN(S∗N) = 2.3. Then, taking M = {1},

we have λN

λM
S∗M = 12

3
. As such, we obtain KB̂

M( λN

λM
S∗M) < 2.26 < 2.3 = KN(S∗N). This is

graphically illustrated in Figure 1. So, the costs for the grand coalition when using λN

λM
S∗M

servers, where the associated blocking probability is interpreted via the extension B̂, is

actually smaller than the costs under the optimal integer numbers of servers. ♦

13



Figure 1: The cost functions KB̂
N (thick curve), KL

N (straight line segments), KX
N (dashed, dis-

continuous), and KN (big dots) for the resource pooling situation described in Example 4.1.

This example shows that we need to be careful in choosing an extension. One way to

proceed would be to take an extension that trivially satisfies requirement (ii) in Lemma

4.1 and to subsequently show that it is also upward scalable. Since the linear interpolation

of KN is never below KN(S∗N), as illustrated in Figure 1, the linear interpolation of B is

an extension satisfying requirement (ii). For all s ∈ R+ and a ∈ R++, this piecewise linear

function L is defined by

L(s, a) = (1− (s− bsc)) ·B(bsc, a) + (s− bsc) ·B(dse, a), (9)

where dse denotes the smallest integer larger than or equal to s, and bsc denotes the largest

integer smaller than or equal to s.

To obtain an extension satisfying requirements (i) and (ii) in Lemma 4.1, we recognize

two possible approaches: either showing that L is upward scalable, or proving that another

extension of the Erlang loss function satisfies both requirements. In the next section, we will

follow the second approach, by introducing a new extension that satisfies both properties.

Whether or not L is upward scalable is left for further research.

14
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Figure 2: The scaled functions X(s,a)(t) (dashed, discontinuous) and B(s,a)(t) (big dots) for s = 2

and a = 1 fixed.

4.2 The new extension X and its properties

In this section, we define an extension that satisfies requirements (i) and (ii) in Lemma

4.1. More precisely, we introduce a new extension of the Erlang loss function that trivially

satisfies upward scalability and subsequently show that it also adheres to requirement (ii).

This new extension, X : R+ × R++ → [0, 1], is defined by

X(s, a) =

{
B(bsc, a · bsc/s) if s ≥ 1 and a ∈ R++;

1 if s ∈ [0, 1) and a ∈ R++.
(10)

Figure 2 depicts (for s = 2 and a = 1 fixed) the scaled function X(s,a) : R++ → [0, 1]

which, by Definition 2.1, is defined by X(s,a)(t) = X(ts, ta). One can infer from Figure 2

that X is indeed an upward scalable extension of the Erlang loss function. Notice that this

scaled function is stepwise constant and non-increasing. More precisely, for t between two

successive values t− ∈ {1
s
, 2
s
, . . .} and t+ = t− + 1

s
, X(s,a)(t) equals B(st−, at−). As such,

we have the following lemma.

Lemma 4.2. The function X is an extension and upward scalable.

Proof. The extension part holds by definition. To show upward scalability, let (s, a) ∈
R+ × R++ and consider the scaled function X(s,a). Let t1, t2 ∈ R++ with t1 ≤ t2. If

15



t1s ∈ [0, 1), then X(s,a)(t1) = 1 ≥ X(s,a)(t2). Otherwise, if t1s ≥ 1, then

X(s,a)(t1) = B(bt1sc, a · bt1sc/s)
≥ B(bt2sc, a · bt2sc/s) = X(s,a)(t2),

where the inequality holds because the Erlang loss function B is upward scalable. We

conclude that X(s,a) is a non-increasing function, which completes the proof.

It remains to show that X satisfies requirement (ii) in Lemma 4.1, i.e., KX
N ( λN

λM
S∗M) ≥

KX
N (S∗N) for all M ∈ 2N− . To this end, it is convenient to show the stronger result that

KX
N (s) ≥ KN(S∗N) for all s ∈ R+. We remark that this result is not obvious: although S∗N

is an optimal number of servers, it was obtained by optimizing over N0 only, and we now

have to consider KX
N (s) for possibly non-integer s as well. In the process of proving this

result, we first establish several structural properties of the new extension X and the linear

interpolation L. We will present three lemmas that consider X and L as a function of the

number of servers on a domain restricted to an interval between two consecutive integers.

To describe this formally, it will be convenient to introduce two restricted functions: for

any fixed r = (S, a) ∈ N×R++, we define the functions Lr and Xr, both mapping [S, S+1)

to [0, 1], by Lr(s) = L(s, a) and Xr(s) = X(s, a) for all s ∈ [S, S + 1). So, these functions

are described on their domain by

Xr(s) = B(S, aS/s); (11)

Lr(s) = (1 + S − s) ·B(S, a) + (s− S) ·B(S + 1, a). (12)

The following lemma states two properties of X that are graphically illustrated in Figure

3.

Lemma 4.3. Let r = (S, a) ∈ N×R++ be fixed. Then Xr is decreasing and convex on its

domain [S, S + 1).

Proof. By part (ii) in Theorem 2.1, it holds for each fixed ŝ ∈ N and λ ∈ R++ that

B(ŝ, λ/µ) is decreasing and convex in µ for µ ∈ [S, S + 1). By substituting ŝ = S,

λ = aS, and µ = s, we conclude that Xr(s) = B(S, aS/s) is decreasing and convex in s on

[S, S + 1).

In proving the next property of the function X, we make use of the following lemma.

Lemma 4.4. Let S ∈ N and a ∈ R++. Then,

a[B(S, a)]2 − 1− (a− S − 1)B(S, a) ≤ 0. (13)
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Figure 3: The functions L(s, a) (straight line segments), X(s, a) (dashed, discontinuous), and

B(s, a) (big dots) for a = 1 fixed. The graph of X(1,a), for instance, corresponds to the dashed

curve on [1, 2).

Proof. We start by rewriting inequality (13). By filling in the definition of the Erlang loss

function (1) in inequality (13), subsequently combining the terms into a single fraction,

and finally multiplying both sides with −
(∑S

y=0 a
y/y!

)2

< 0, we obtain that inequality

(13) is equivalent to(
S∑
y=0

ay

y!

)2

− a ·
(
aS

S!

)2

+ (a− S − 1) ·

(
S∑
y=0

ay

y!

)
· a

S

S!
≥ 0. (14)

Next, let the function f : N→ R be defined by

f(s) =

(
s∑

y=0

ay

y!

)2

− a2s+1

s! · s!
+

s∑
y=0

ay+s · (a− s− 1)

y! · s!
. (15)

Notice that inequality (14) corresponds to f(S) ≥ 0. To complete the proof, we show that

f(s) ≥ 0 for all s ∈ N by induction. Firstly,

f(1) = (1 + a)2 − a3 + (a+ a2)(a− 2) = (1 + a)2 − a3 + a2 − 2a+ a3 − 2a2 = 1 ≥ 0.
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To avoid empty summations later on, it is convenient to treat the case s = 2 separately:

f(2) =

(
1

2
a2 + a+ 1

)2

− 1

4
a5 +

(
1

4
a4 +

1

2
a3 +

1

2
a2

)
· (a− 3)

=
1

4
a4 + a3 + 2a2 + 2a+ 1− 1

4
a5 +

1

4
a5 +

1

2
a4 +

1

2
a3 − 3

4
a4 − 3

2
a3 − 3

2
a2

=
1

2
a2 + 2a+ 1 ≥ 0.

For the induction step, let s ∈ {3, 4, . . .} and assume that f(s− 1) ≥ 0. Then,

f(s) =

(
s∑

y=0

ay

y!

)2

− a2s+1

s! · s!
+

s∑
y=0

ay+s · (a− s− 1)

y! · s!

=

(
s∑

y=0

ay

y!

)2

− a2s+1

s! · s!
+
a2s+1

s! · s!
− a2s · s
s! · s!

− a2s

s! · s!
+

s−1∑
y=0

ay+s · (a− s− 1)

y! · s!

=
a2s

s! · s!
+ 2 ·

s−1∑
y=0

ay+s

y! · s!
+

(
s−1∑
y=0

ay

y!

)2

− a2s · s
s! · s!

− a2s

s! · s!
+

s−1∑
y=0

ay+s · (a− s− 1)

y! · s!

=

(
s−1∑
y=0

ay

y!

)2

− a2s · s
s! · s!

+
s−1∑
y=0

ay+s · (a− s+ 1)

y! · s!

=

(
s−1∑
y=0

ay

y!

)2

+

[
−a

s · s
s!

+
s∑

y=1

ay

(y − 1)!
+

s−1∑
y=0

ay · (−s+ 1)

y!

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

+

[
s−1∑
y=1

ay

(y − 1)!
+

s−1∑
y=0

ay · (−s+ 1)

y!

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

+

[
s−2∑
y=1

ay

(y − 1)!
+

s−2∑
y=0

ay · (−s+ 1)

y!

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

+

[(
s−2∑
y=1

ay

y!
· (y − s+ 1)

)
− s+ 1

]
· a

s

s!

≥

(
s−1∑
y=0

ay

y!

)2

+

[
s−2∑
y=1

ay

y!
·
(
−s2

y + 1
+ s

)
− s+ 1

]
· a

s

s!

≥

(
s−1∑
y=0

ay

y!

)2

+

[
s−2∑
y=1

ay

y!
·
(
−s2

y + 1
+ s

)
− s2 + s− s2

a

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

+

[
s−2∑
y=0

ay

y!
·
(
−s2

y + 1
+ s

)
− s2

a

]
· a

s

s!
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=

(
s−1∑
y=0

ay

y!

)2

+

[
− a

s−1 · s
(s− 1)!

−
s−2∑
y=0

ay · s2

(y + 1)!
− s2

a
+

s−2∑
y=0

ay−1 · a · s
y!

+
as−1 · s
(s− 1)!

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

+

[
− a

s−1 · s
(s− 1)!

−
s−1∑
y=1

ay−1 · s2

y!
− s2

a
+

s−1∑
y=0

ay−1 · a · s
y!

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

+

[
− a

s−1 · s
(s− 1)!

+
s−1∑
y=0

ay−1 · (a− s) · s
y!

]
· a

s

s!

=

(
s−1∑
y=0

ay

y!

)2

− a2(s−1)+1

(s− 1)! · (s− 1)!
+

s−1∑
y=0

ay+s−1 · (a− (s− 1)− 1)

y!(s− 1)!

= f(s− 1) ≥ 0.

In the first couple of steps, we split up summations, split off terms from summations, and

cancel out common terms. The first inequality is valid because, for all y ∈ N0, it holds

that s2 − 2s(y + 1) + (y + 1)2 = (s− (y + 1))2 ≥ 0, and thus y − s+ 1 ≥ −s2/(y + 1) + s.

The second inequality holds because −s + 1 ≥ −s2 + s ≥ −s2 + s − s2/a, since s > 1.

In the final steps, we rearrange our expression to show that it is equal to f(s− 1), which

was non-negative by the induction hypothesis. Hence, by the principle of mathematical

induction we have for all s ∈ N that f(s) ≥ 0. This completes the proof.

Now, in contrast to X and L, the functions Xr and Lr are differentiable, which allows

us to compare their derivatives, evaluated at S, in the following lemma.

Lemma 4.5. Let r = (S, a) ∈ N× R++ be fixed. Then L′r(S) ≤ X ′r(S).

Proof. First of all, the derivative of Lr for any s ∈ [S, S + 1) is

L′r(s) = B(S + 1, a)−B(S, a). (16)

To obtain the derivative of Xr, we combine part (iii) of Theorem 2.1 with Equation (11)

to derive that for any s ∈ [S, S + 1):

X ′r(s) = [B(S, a · S/s)− 1 + S/(a · S/s)] ·B(S, a · S/s) ·
(
−aS/s2

)
= [B(S, a · S/s)− 1 + s/a] ·B(S, a · S/s) ·

(
−aS/s2

)
. (17)
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Evaluating the derivatives (16) and (17) at s = S, we obtain

L′r(S)−X ′r(S) = B(S + 1, a)−B(S, a)−
[
B(S, a)− 1 +

S

a

]
·B(S, a) · −a

S

=
aB(S, a)

aB(S, a) + S + 1
−B(S, a)−

[
B(S, a)− 1 +

S

a

]
·B(S, a) · −a

S

=
aB(S, a)

aB(S, a) + S + 1
+B(S, a) ·

[
−1 +B(S, a) · a

S
− a

S
+ 1

]
= B(S, a) ·

[
a

aB(S, a) + S + 1
+ (B(S, a)− 1) · a

S

]
= B(S, a) · a

S(aB(S, a) + S + 1)
·
[
S + (B(S, a)− 1) · (aB(S, a) + S + 1)

]
= B(S, a) · a

S(aB(S, a) + S + 1)
·
[
a[B(S, a)]2 − 1− (a− S − 1)B(S, a)

]
≤ 0.

The second equality holds by part (iv) in Theorem 2.1. The other equalities hold by

rewriting. The inequality holds because B(S, a) > 0, a > 0, S(aB(S, a) + S + 1) > 0, and

a[B(S, a)]2− 1− (a−S− 1)B(S, a) ≤ 0, where the last-named inequality holds by Lemma

4.4. We conclude that L′r(S) ≤ X ′r(S).

The following lemma states that the graph of X always lies above the graph of L, as

illustrated in Figure 3.

Lemma 4.6. X(s, a) ≥ L(s, a) for all s ∈ R+ and a ∈ R++.

Proof. Let (s, a) ∈ R+ × R++. We distinguish two cases.

Case 1: s < 1. Then, by definition X(s, a) = 1, whereas L(s, a) ≤ 1.

Case 2: s ≥ 1. Then, we denote S = bsc and consider the functions X(S,a) and L(S,a),

which are described on their domain [S, S + 1) by Equations (11) and (12). First of all,

observe that X(S,a)(S) = L(S,a)(S) since both X and L are extensions of the Erlang loss

function. Secondly, by Lemma 4.5, we observe that the derivative of L(S,a) at S does

not exceed the derivative of X(S,a) at S. Thirdly, X(S,a) is convex by Lemma 4.3, whereas

L(S,a) is by definition a linear function, which (together with the second observation) implies

that X ′(S,a) ≥ L′(S,a) on [S, S + 1). Combining these three observations yields X(S,a)(s) ≥
L(S,a)(s). We conclude that X(s, a) ≥ L(s, a).

As a result of Lemma 4.6, we have the following lemma.

Lemma 4.7. Let ϕ = (N, λ, τ, h, p) be a linear resource pooling situation. Then KX
N (s) ≥

KN(S∗N) for all s ∈ R+.
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Proof. Let s ∈ R+. The result follows upon comparison with the linear interpolation L:

KX
N (s) ≥ KL

N(s) ≥ min
S∈R+

KL
N(S) = KN(S∗N),

where the first inequality holds by Lemma 4.6 and the first equality holds because KL
N

linearly interpolates between consecutive points of KN .

Recall Lemma 4.1: existence of an extension of the Erlang loss function satisfying two

properties is sufficient to conclude that the allocation proportional to arrival rates is stable

in general. Lemma 4.2 showed that the extension X satisfies upward scalability – require-

ment (i) in Lemma 4.1. Lemma 4.7 immediately implies that KX
N (S∗N) ≥ KX

N ( λN

λM
S∗M)

for all M ∈ 2N− – requirement (ii) in Lemma 4.1. Thus, we can now state the following

theorem, which is our first main result regarding resource pooling games.

Theorem 4.8. Let ϕ = (N, λ, τ, h, p) be a linear resource pooling situation. Then, alloca-

tion A(ϕ) is stable, i.e., it is in the core of the associated resource pooling game (N, cϕ).

5 Population monotonicity

In this section, we extend Theorem 4.8 by generalizing it to (possibly non-linear) resource

pooling situations and by showing that A, the cost allocation rule proportional to the

arrival rates, can be reached via a population monotonic allocation scheme (PMAS). The

idea behind the rule A, which allocates the costs of the grand coalition proportional to

player’s arrival rates, can be naturally extended to an allocation scheme for each coalition.

Accordingly, we define for any resource pooling situation ϕ = (N, λ, τ,H, p), coalition

M ∈ 2N− , and player i ∈M this allocation scheme by

Āi,M(ϕ) = cϕ(M) · λi/λM . (18)

The following example illustrates this allocation scheme.

Example 5.1. Consider the resource pooling situation ϕ of Example 3.2 again. The

corresponding allocation scheme Ā(ϕ) is shown in Table 2. Notice that Ā1,{1,2}(ϕ) = 3
4
>

63
160

= Ā1,N(ϕ) and similarly Ā2,{1,2}(ϕ) > Ā2,N(ϕ), i.e., the amount that player 1 or 2 has to

pay does not increase when player 3 joins them. This can be verified for all other coalitions

as well, implying that Ā(ϕ) is population monotonic. Finally, note that Āi,N(ϕ) = Ai(ϕ)

for all players i ∈ N ; thus, (Āi,N(ϕ))i∈N is a stable cost allocation. ♦
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Player 1 Player 2 Player 3

{1} 1 3
22

* *

{2} * 1 3
22

*

{3} * * 3384
827

{1, 2} 3
4

3
4

*

{1, 3} 11893
29118

* 3 3895
14559

{2, 3} * 11893
29118

3 3895
14559

N 63
160

63
160

3 24
160

Table 2: The values for the allocation scheme Āi,M (ϕ) in Example 5.1.

The following theorem states that resource pooling games always admit a PMAS. The

proof of this theorem is similar to the proof of Theorem 4.8, based on the properties of the

new extension X, while two new aspects are simultaneously tackled: possibly non-linear

resource cost functions and population monotonicity.

Theorem 5.1. Let ϕ = (N, λ, τ,H, p) be a resource pooling situation. Then Ā(ϕ) is a

PMAS of the associated resource pooling game (N, cϕ).

Proof. We begin by extending the domain of the resource cost function H to all nonnegative

reals by a linear interpolation, i.e., we define the function H lin : R+ → R+ by

H lin(s) = (1− (s− bsc)) ·H(bsc) + (s− bsc) ·H(dse). (19)

For any coalition M ∈ 2N− , we extend the domain of the cost function KM (introduced in

Equation (2)) in similar fashion, i.e., we define the function K lin
M : R+ → R+ by

K lin
M (s) = (1− (s− bsc)) ·KM(bsc) + (s− bsc) ·KM(dse)

= H lin(s) + L(s, λMτ) · λMp. (20)

We now fix two arbitrary coalitions M,R ∈ 2N− with M ⊆ R, and we let i ∈ M . We show

that Ā(ϕ) is population monotonic as follows:

Āi,R(ϕ) =
λi
λR
·K lin

R (S∗R)

≤ λi
λR
·K lin

R

(
λR
λM

S∗M

)
=

λi
λR
·H lin

(
λR
λM

S∗M

)
+ L

(
λR
λM

S∗M , λRτ

)
· λip
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≤ λi
λR
·H lin

(
λR
λM

S∗M

)
+X

(
λR
λM

S∗M , λRτ

)
· λip

≤ λi
λR
·H lin

(
λR
λM

S∗M

)
+X(S∗M , λMτ) · λip

=
λi
λM
· λM
λR
·H lin

(
λR
λM

S∗M

)
+B(S∗M , λMτ) · λip

≤ λi
λM
·H(S∗M) +B(S∗M , λMτ) · λip

=
λi
λM
·KM(S∗M) = Āi,M(ϕ).

The first inequality holds because S∗R is a cost minimizing number of servers for coalition

R, so both KR(b λR

λM
S∗Mc) and KR(d λR

λM
S∗Me) are no smaller than KR(S∗R), and the same

holds for the associated linear interpolation. The second inequality holds by Lemma 4.6,

and the third inequality holds because X is upward scalable (Lemma 4.2). The fourth

inequality holds because H is a concave non-negative function, so the same holds for its

linear interpolation H lin, and thus

λM
λR
·H lin

(
λR
λM

S∗M

)
≤ λM
λR
·H lin

(
λR
λM

S∗M

)
+
λR − λM

λR
·H lin(0) ≤ H lin (S∗M) ,

where the first inequality holds because H lin(0) ≥ 0 and the second inequality holds by

concavity (since S∗M = λM

λR
· λR

λM
S∗M + λR−λM

λR
· 0). We conclude that Ā(ϕ) is a PMAS.

Finally, by Sprumont (1990), the following corollary follows immediately from Theorem

5.1.

Corollary 5.2. Let ϕ = (N, λ, τ,H, p) be a resource pooling situation. Then (Āi,N(ϕ))i∈N

is in the core of the associated resource pooling game (N, cϕ). Moreover, this game is totally

balanced.

6 Axiomatic characterization

In this section, we show that there is only one allocation rule on resource pooling situations

that is immune to manipulations of the players via artificial splitting or merging, while

simultaneously satisfying a weak continuity requirement: the proportional rule A. This

non-manipulability property means that no group of players will have an incentive to

artificially represent themselves together as a single player, or vice versa. The following

two definitions describe this concept more formally.
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Definition 6.1. Two resource pooling situations ϕ = (N, λ, τ,H, p) and ϕ̄ = (N̄ , λ̄, τ,H, p)

are said to be manipulations of each other if there exist Msp ⊆ N , ime ∈ N̄ , and G ⊆ N

such that

• N = G ∪Msp and N̄ = G ∪ {ime};

• G ∩Msp = ∅, G ∩ {ime} = ∅, and Msp ∩ {ime} = ∅; and

•
∑

j∈Msp
λj = λ̄ime , in addition to λi = λ̄i for all i ∈ G.

Then, Msp is called split-set, ime is called merge-player, and G is called common set. ♦

Definition 6.2. A rule f is called non-manipulable if, for any two resource pooling situ-

ations ϕ and ϕ̄ that are manipulations of each other with split-set Msp and merge-player

ime, it holds that fime(ϕ̄) =
∑

j∈Msp
fj(ϕ). ♦

Non-manipulability is very similar to immunity to coalitional manipulation (considered

by Mosquera et al., 2008, for inventory situations) and non-advantageous merging or split-

ting (considered by Garćıa-Sanz et al., 2008, for queueing situations). In those concepts,

any situation with player set N and coalition M ⊂ N is associated with a fixed M -

manipulation with player set {iM}∪ (N \M), whereas we have defined non-manipulability

as a relation between two situations. Our definition circumvents the potential problem

where a player with name iM might already be contained in set N .

Seemingly reasonable rules need not satisfy non-manipulability. For instance, consider

the rule Q that assigns costs proportional to the square root of the arrival rates, which is

defined for any resource pooling situation ϕ = (N, λ, τ,H, p) by

Qi(ϕ) = cϕ(N) ·
√
λi∑

j∈N
√
λj

(21)

for each player i ∈ N . This rule assigns less costs per arrival to players with relatively high

arrival rates, which may appear fair since players with high arrival rates already have some

economies-of-scale benefits by themselves. However, as shown in the following example,

this rule need not be stable and, moreover, it gives an incentive for players to merge,

implying that Q does not satisfy non-manipulability.

Example 6.1. Consider the resource pooling situation ϕ of Example 3.2 again. Rule Q

assigns Q1(ϕ) ≈ 0.82, Q2(ϕ) ≈ 0.82, and Q3(ϕ) ≈ 2.31. Note that since Q1(ϕ) +Q2(ϕ) >

cϕ({1, 2}), Q(ϕ) is not a stable allocation.

Now, take split-set {1, 3}, merge-player ime and common set {2} to obtain the manipu-

lation ϕ̄ = (N̄ , λ̄, τ,H, p) with N̄ = {ime, 2}, λ̄ime = 9
10

, and λ̄2 = 1
10

. Then, Qime(ϕ̄) = 261
64
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and Q2(ϕ̄) = 63
64

. Clearly, Qime(ϕ̄) 6= Q1(ϕ) + Q3(ϕ), and thus Q does not satisfy non-

manipulability. ♦

The following lemma states that the costs assigned to any player by a non-manipulable

rule can only depend on the vector of arrival rates through that player’s own arrival rate

and an aggregate parameter. The lemma also states that these costs are independent of the

total number and names of participating players. To state this lemma, we let H denote the

set of all resource cost functions (i.e., the set of concave increasing unbounded functions

mapping N0 to R+).

Lemma 6.1. Let f be a non-manipulable rule. Then there exists an associated function

g : R3
++ × H × R++ → R such that, for all resource pooling situations ϕ = (N, λ, τ,H, p),

fj(ϕ) = g(λj, λN , τ,H, p) for all players j ∈ N .

Proof. Let ϕ = (N, λ, τ,H, p) and ϕ̂ = (N̂ , λ̂, τ,H, p) be two resource pooling situations

such that player j is both in N and in N̂ , λj = λ̂j, and λN = λ̂N̂ . We now aim to show

that fj(ϕ) = fj(ϕ̂), and we distinguish two cases.

Case 1: N = {j}. Then, N̂ = {j} as well, so clearly ϕ = ϕ̂, and thus fj(ϕ) = fj(ϕ̂).

Case 2: |N | ≥ 2. Then, let ϕ̄ = (N̄ , λ̄, τ,H, p) be the manipulation of ϕ via split-set

Msp = N \ {j}, merge-player ime, and common set {j}. Notice that, by the combination

of assumptions on ϕ and ϕ̂, situation ϕ̄ is a manipulation of ϕ̂ as well via split-set M̂sp =

N̂ \ {j}, merge-player ime, and common set {j}. Now, cϕ(N) = cϕ̂(N̂) = cϕ̄(N̄) because

the grand coalition in all three situations faces the exact same problem. Then,

fj(ϕ) = cϕ(N)−
∑

i∈Msp
fi(ϕ) = cϕ̄(N̄)−

∑
i∈Msp

fi(ϕ)

= cϕ̄(N̄)− fime(ϕ̄) = fj(ϕ̄),

where the first and fourth equalities hold because f is an allocation rule (thus fully assigning

the costs of the grand coalition over all players), and the third equality holds because

f satisfies non-manipulability. Analogously, we can also show fj(ϕ̂) = fj(ϕ̄), and thus

fj(ϕ) = fj(ϕ̂).

Hence, as ϕ and ϕ̂ were chosen arbitrarily, the value fj(ϕ) can only depend on the

vector λ through λj and λN and does not depend on the size of N .

To complete the proof, we show that fj(ϕ) does not depend on the name of player j

either. Let ϕ′ be a resource pooling situation that is obtained from ϕ by merely relabeling

player j to j′ in the entire tuple. But then ϕ′ is a manipulation of ϕ with split-set {j},
merge-player j′, and common set N \ {j}, and thus fj(ϕ) = fj′(ϕ

′). As ϕ′ was chosen

arbitrarily, fj(ϕ) indeed does not depend on the name of player j.
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To uniquely characterize A, we employ a natural continuity property in addition to

non-manipulability.

Definition 6.3. A rule f is called continuous in arrival rates if, for any resource pooling

situation ϕ = (N, λ, τ,H, p), it holds that lim
λ∗→λ

f(N, λ∗, τ,H, p) = f(N, λ, τ,H, p). ♦

Before showing that there is only one rule satisfying both non-manipulability and con-

tinuity in arrival rates (the proportional rule A), we prove the following lemma.

Lemma 6.2. The rule A is non-manipulable and continuous in arrival rates.

Proof. First, take ϕ, ϕ̄, Msp, ime, and G as in Definition 6.2. Then,

Aime(ϕ̄) = cϕ̄(N̄) · λ̄ime/λ̄N̄ = cϕ̄(N̄) ·
∑

i∈Msp
λi/λ̄N̄

= cϕ(N) ·
∑

i∈Msp
λi/λN =

∑
i∈Msp

Ai(ϕ),

where the third equality holds because the grand coalition in both situations faces the same

problem and λ̄N̄ = λN , which is equal to λ̄N . Hence, A satisfies non-manipulability.

To establish continuity, simply observe that λi, λN , and B(S∗N , λNτ) are all continuous

in λ. Thus, A(ϕ) = cϕ(N) ·λi/λN , where λN > 0 as all players have strictly positive arrival

rates in resource pooling situations, is obviously continuous in arrival rates as well.

We are now ready to state the main result of this section in the following theorem.

Theorem 6.3. A is the unique allocation rule on resource pooling situations satisfying

both non-manipulability and continuity in arrival rates.

Proof. Let f be a non-manipulable rule that is continuous in arrival rates, which exists by

Lemma 6.2, and take an associated function g as in Lemma 6.1. Let ϕ = (N, λ, τ,H, p)

be a resource pooling situation. Keeping λN , τ , H, and p fixed, we define the function

ĝ : (0, λN ]→ R by ĝ(`) = g(`, λN , τ,H, p).

Now, we aim to show that ĝ is linear. To this end, let `1, `2 ∈ (0, λN ] be such that

`1 + `2 ≤ λN . Then, there exists a resource pooling situation ϕ′ = (N ′, λ′, τ,H, p) such

that N ′ = {1, 2, . . . , n} for some integer n ≥ 3, λ′N ′ = λN , λ′1 = `1, and λ′2 = `2. Let

ϕ̄′ = (N̄ ′, λ̄′, τ, h, p) be a manipulation of ϕ′ via split-set {1, 2}, merge-player ime and

common set {3, . . . , n}. Then,

ĝ(`1 + `2) = ĝ(λ′1 + λ′2) = ĝ(λ̄ime) = fime(ϕ̄
′) = f1(ϕ′) + f2(ϕ′)

= ĝ(λ′1) + ĝ(λ′2) = ĝ(`1) + ĝ(`2).
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The second equality holds since ϕ̄′ is a manipulation of ϕ′, and hence λ′1 + λ′2 = λ̄ime . The

third and fifth equalities hold by Lemma 6.1, and the fourth equality holds because f is a

non-manipulable allocation rule. Hence, ĝ is an additive function. Although we would like

to conclude that ĝ is a linear function, we need to be careful at this point because there

exist additive functions which are not linear (Hamel, 1905).

However, ĝ is a continuous function because, for any ` ∈ (0, λN ], there exists a resource

pooling situation ϕ̂ = (N̂ , λ̂, τ,H, p) such that j ∈ N , λ̂j = `, and λ̂N̂ = λN , while by

Lemma 6.1 it holds that ĝ(λj) = fj(ϕ). Thus, continuity in arrival rates of f implies

continuity of ĝ. As ĝ is both continuous and additive, in line with Cauchy (1821, Chapter

5) we conclude that ĝ is linear, i.e., ĝ(`) = ` · Ĉ for all ` ∈ (0, λN ] and some constant

Ĉ ∈ R.

To finish the proof, we return to our original situation ϕ. As fi(ϕ) = ĝ(λi) for all i ∈ N ,

it holds that
∑

i∈N fi(ϕ) = λN · Ĉ. Since f is an allocation rule,
∑

i∈N fi(ϕ) = cϕ(N), so

Ĉ = cϕ(N)/λN . Hence, fi(ϕ) = cϕ(N) · λi/λN = Ai(ϕ) for all i ∈ N .

We finish this section with a discussion. First, we compare our axiomatic characteri-

zation to related literature. Mosquera et al. (2008) uniquely characterize a proportional

allocation rule for so-called p-additive cost games via an immunity to coalitional manipu-

lation property that is similar to our non-manipulability property, and Garćıa-Sanz et al.

(2008) give such a characterization for M/M/1 queueing games. Although Theorem 6.3,

and in particular the line of its proof, is somewhat similar to the (proof of) these results in

Mosquera et al. (2008) and Garćıa-Sanz et al. (2008), we have extended and adjusted their

work in various ways. First and foremost, resource pooling games do not fit in the class of

p-additive cost games or M/M/1 queueing games, so Theorem 6.3 states a new result.

Furthermore, we do not have to assume nonnegativity of cost allocations or indepen-

dence on (names in and size of) the player set, as is done in Mosquera et al. (2008) and

Garćıa-Sanz et al. (2008). Instead of nonnegativity, we assume a continuity property. We

view exclusion of negative cost allocations a priori as unnatural – in fact, for a related

model, Anily and Haviv (2010) show that core allocations with negative entries can exist.

Thus, we consider our continuity requirement to be more natural. Our proof of Theorem

6.3 shows that nonnegativity can be easily replaced by continuity in the proof methodol-

ogy described in Mosquera et al. (2008) and Garćıa-Sanz et al. (2008). Finally, by defining

manipulations as a relation between two resource pooling situations, as mentioned earlier,

we have shown in our proof of Lemma 6.1 that independence on (names in and size of) the

player set actually follows from non-manipulability.

Finally, we consider independence of our two axioms. The square root rule Q is clearly
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continuous in arrival rates, but does not satisfy non-manipulability, as shown in Example

6.1. Describing a non-manipulable rule that is not continuous in arrival rates seems beyond

the scope of this paper because that would require construction of a pathological additive

function that is discontinuous everywhere, in line with Hamel (1905).

7 Conclusion

In this paper, we presented a cooperative game corresponding to a situation where several

players pool their resources to serve the union of their individual customer arrival streams.

We modeled the service system of any coalition as an Erlang loss system in which the

number of joint servers is chosen to minimize the sum of server costs and penalty costs.

We identified a cost allocation rule with appealing properties. Firstly, as this rule simply

divides joint costs proportional to the arrival rate of each player, it is easy to understand

and would be easy to implement in practice. Secondly, the cost allocation is stable, i.e.,

it gives no subset of players an incentive to split off and form a separate pooling group.

Moreover, it can be reached through a population monotonic allocation scheme under

which the costs faced by any player do not increase when the coalition to which he belongs

grows. Finally, our rule is immune to manipulations of the players via artificial splitting or

merging. In proving these properties, we used analytical characteristics of a new extension

of the Erlang loss function to non-integral numbers of servers.
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