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SUMMARY

In the first chapfer of this thesis, several basic properties of acoustic
gravity waves are discussed using the linearised equations of motion for an
inviseid non-rotating compressible fluid that is stratified under gravity. After
this introductory chapter, two main topics are addressed. Firstly, a critical
analysis of the frequently used hydrostatic approximation and of the equally
frequently used Boussinesq approximation, both applied to finite amplitude
waves in stratified fluids, is given (chapter 2), Secondly, the influence of the
compressibility on the properties of internal olitary waves in compressible
stratified fluids is studied (chapters 4 and 5).

The hydmstat@c approximation, which neglecis the vertical acceleration
of the fluid in the momentum equation, is shown to be valid for acoustic gravity
waves with small aspect ratios {ihe aspect ratio being the ratio of the vertical
and horizontal scales of the wave) and with frequencies much smaller than the
Brunt—V&isila frequency. The Boussinesq approximation can be used if density
variations are small throughout the part of the fluid that we want to describe.
For acoustic gravity waves this implies that the vertical scale of the motion
must be much smaller than the scale of the stratification of the fluid, i.e. the
geale height. The linear Boussinesq equations for an incompressible fluid can be
uged for these waves under the following additional conditions:

1) the displacement of streamlines should be small compared {o the

vertical scale of the wave,

2) tke frequency of the wave shounld be smaller than the Bruni-Viisild

frequency and

3) the definition of the Brunt-Viisdld frequency for an incompressible

fluid should be replaced by its compressible counterpart, i.e. the density

has to be replaced by the potential density.
It is noted that if other small effects are retained, e.g. weak nonlinear effects, one
should be very careful using the Boussinesq approximation even if the eonditiong
mentioned above are met.

To study internal solitary waves in compressible fluids two integrals of
the equations of motion for an ipviscid compressible fluid are derived. These
integrals, together with certain boundary conditions, are transformed to
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equations for the displacement of a streamline and for the perturbation of the
temperature, where we assume the absence of closed streamlines in order to be
able to determine the two constants of integration in the integrals of motion
from upstream conditions, Like for incompressible fluids, internal solitary waves
in compressible fluids are described by the Korteweg—de Vries equation if the
fluid is shallow, i.e. if the total depth of the fluid is much smaller than the
characteristic horizontal length scale of the wave. They are described by the
Benjamin~-Davis=Ono equation if the fluid is deep, i.e. if the total depth of the
fiuid is much larger than the characteristic horizontal length scale of the wave.
The corrections, due to the compressibility, to the coefficients and so to the
solutions of these two equations are £(gh/c?), where g is the gravitational
acceleration, h the depth of the stratified part of the fluid and ¢ the velocity of
sound. For atmospheric conditions the magnitude of this parameter varies
between 0.01 and 1. A fype of flow for which corrections due to the
compressibility are always important is a shallow isothermal shearless layer of
fluid, as is discussed in thiz thesis.

The contents of the sections 2.4.2 and 2.4.3 have heen published as:
Miesen, R.H.M., Kamp, L.P.J., Sluijter, F.W. (1988). "On the application of the
Boussinesq approximation for nonlinear gravity waves in the atmosphere”, Phys.
Seripte 38, 8578389,

The contents of the chapiers 3 and 4 will be published as: Miesen,
R.H.M., Kamp, L.P.J., Sluijter, F-'W. (1090). "Solitary Waves in Compressible
Shallow Fluids", Phys. Fluids A 2 (in press).

The contents of chapter 5 have been submitted for publication as:
Miesen, R.H.M., Kamp, L.P.J., Sluijter, F.W. "Solitary Waves in Compressible
Deep Fluids", Phys. Fluids A.
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HISTORICAL INTRODUCTION

I believe I shall best intreduce this phasnomenon by describing the circumstances
of my own first acquaintance with . I was observing the motion of & boat which
was rapidly drawn slong & natzow channe] by & pair of horses, when the boat
suddenly stopped — not so the mass of water iz the channel which it had put in
motion; it accurnulated areund the prow of the vessel in a state of violent
agitation, then sudderly leaving it bahind, rolled forward with great velocity,
essuming the form of & large solitary clevation, a reunded, smooth and well—
defined heap of waler, which continued ita course slong the channel apparently
without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some cight or nine miles an hour, preser-
ving its sriginal figure some thirty feet loug and a foot to a foot and & half in
height. Its height gredually diminished, and afier & chase of one or two miles [
lost it in the windings of the chanpel, Such, in the menth of August 1834, was
my ficst chance interview with that singular and beputiful phasnomenen ...

John Seott Russell (1845)

This original descr'iption by 1.8. Russell, a Scottish engineer who discovered and
named the solilary wewve riding on horseback along & channel in the
neighborhood of Edinburgh, shows thai the history of solitary waves has been
entangled with the theory of waves in fluids right from their discovery.
Especially in the theory of surface waves the study of nonlinear wave
phenomena, like solitary waves, has played an important role and vice versa [e.g.
Ajry 1845, Boussinesq 1872, Rayleigh 1876, Korteweg & de Vries 1895, Lamb
1932, Keller 1948, Ursell 1953, Long 1956]. After he discovered the solitary wave
Russell, who estimated this phenomenon at its value, studied it extensively
[Russell 1838, 1845]. In a laboratoty channel he tried to produce solitary waves
by either releasing an impounded elevation of water or dropping a weight at one
end of a channel, -

Russel’s experiment.
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His experiments showed that solitary waves are reproducible indeed and that &
wave with amplitude (or height) ¢ in water of depth A advances with the speed

¢ = [g(k+a)]2, (i.1)

where g is the gravitational acceleration. Note that this implies that a solitary
wave moves faster if its armplitude is larger. He alio observed that breaking
oceurs for @ = h, that negative solitary waves, i.e. solitary waves of depression,
do not exist, and that an initial elevation might, depending on the relation
between its length and height, evolve into either a pure solitary wave, a solitary
wave plus a wave train, or two or more golitary waves with or without a wave
train.

Russell’s ideas and experiments on golitary waves, as described above,
seemed to contradict Airy’s shallow—water theory [Airy 1845, Stokes 1891, Lamb
1932, section 252, Urgell 1953, Stoker 1957, section 10.9]. According to this
theory for surface waves with horizontal wavelengths much larger than the depth
of the fluid, a wave of finite amplitude cannot propagate without ¢hange of form.
The Airy paradox caused considerable scientific interest at the time. The
paradox was solved independently by Boussinesq [1871ab, 1872, 1877] and
Rayleigh {1876]. They showed that, if vertical acceleration and finite amplitude
is accounted for correctly, water waves can propagate without change of shape.
As a solitary wave solution they found

7= asech{x —ct)/§, a:=afhtl, e:=(h/) = 0{a), (i.2)
where # is the free—surface displacement, x the horizontal coordinate, t the time,
and { the characteristic length of the solitary wave. The wave speed is indeed
given by (i.1) and the characteristic length £ is given by

2= 4p¥ 30 ’ {1.3)
Their work was the first to contain the subtle balance between dispersion,
cansed by the allowance for vertical acceleration which was neglected in shallow—

water theory until that time (hydrostatic approximation), and nonlinearity. It is
this balance, where nonlineazity tends to steepen the wave front in consequence
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of the increase of wave speed with amplitude [cf. (i.1)} and dispersion tends to
spread the wave front becauvse the wave speed of any spectral componert
decreases with increasing wave number, that is essential to solitary waves.

A subseguent important theoretical result was the derivation by
Korteweg & de Vries [1895] of an equation describing finite amplitude waves,
moving in one direction in a uniform rectangular channel with an inviseid finid.
This equation is now called Korteweg—de Vries equation:

o+ colnye + %(ﬂ/h)ﬂx + %hzﬂxxx] =0, (i4)

wherein ¢, is the speed of infinitesimal long waves [ef (i.1) with 2 = 0] 2nd
subscripts denote derivatives. A solution of this equation is given by {i.1) 1o
(i.3). Korteweg & de Vries also obtained periodic solutions of this equation in
terms of elliptic functions which they called cnoidal waves [see also Whitham
1974]. In fact the equivalent of (i.4) that Korteweg & de Vries derived is a
somewhat more general equation in which they allow for a surface tension, which
we have assumed to be zero here. A recent review on shallow—water solitary
waves ig the one by Miles [1980].

The interest in solitary waves waned after the resolution of the Afry
paradox and no coherent research was done. Solitary waves were merely thought
of as an unimportant ¢uriosity in the theory of nonlinear surface waves. This
situation did last until 1955, when computer experiments in a different field
[Fermi, Pasta & Ulam 1935] gave a new impetus to nonlinear wave theory.
Zabusky & Kruskal [1965] coined the soliton concept, referring to the particle
like behaviour of the solifary waves they studied. It was at that time that it was
discovered that the Korteweg—de Vries equation or equivalents of this equation
arise in & wide variety of physical contexts [e.g Broer 1964, Var Wijngaarden
1968] and that these equations and their solutions exhibit some remarkable and
far—reaching properties {see e.g. the reviews by Jeffrey & Kakutani 1972, Scott et
al. 1973, Miura 1974, 1976, Kruska! 1974, 1975, Makhankov 1978].

At the same time that the theory of solitary waves and nonlinear wave
equations attracted new interest, progress was made with the theory and
interpretation of internal gravity waves in the aimosphere [e.g. Gossard & Munk
1854, Eckart & Ferris 1056, Eckart 1960, Hines 1960, 1963, 1965, Tolstoy 1963,
Yeh & Lin 1972, 1974]. Until that time interest in these and related waves was
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sporadic [VAisili 1925 Brunt 1927, Pekeris 1948, Scorer 1948, Martyn 1950].
These internal gravity waves can only exisi because of the stratification of the
atmosphere. Becatse the free surface of 2 fluid i3 2 limiting form of stratification
Abdullah [1949] suggested that atmospherie solitary waves might exist. The first
observation of whai appears to be an atmospheric solitary wave is also by
Abdullah [1955]. The theoretical study of internal solitary waves, i.e. solitary
waves that do not exist on the free surface of a fluid but "inside" the fluid as a
consequence of internal dersity stratification, was initiated by Keuligan [1053]
who considered a system of two superimposed fiuids of differemt constant
densities, bounded above and below by zigid surfaces. Long [1956], Abdullah
[1956] and Benjamin [1966] also investigated this kind of model for internal
solitary waves. A more general treatment, in which the upper boundary of the
two—{luid system may be free, as well as the more difficult problem of the
existence of internal solitary waves in a fluid whose density decreases
exponentially with height, was given by Peters & Stoker [1960]. The problem of
a continuonsly stratified fluid was also addressed by Ter-Krikorov [1963], Long
[1965], Benjamin [1966], Benney {1966], Djordjevic & Redekopp [1978], and
Weidman [1978]. Benjamin, Benney and Miles [1979] also allow for shear, as long
as there are no critical layers (that is where the phase speed of the wave equals
the velocity of the fluid). For the modifications mecessary when critical layers
occur, see Maslowe & Redekopp [1980] or Tung et al. [1982]. Miles also includes
cubic nonlinearity. Gear & Grimshaw [1983) extend the theory to the second
order {in @). Compressibility was accounted for by Long & Morton [1966], Shen
[1966, 1867), Shen & Keller [1973), Grimshaw [1980/1981] and Miesen et al.
[1990a). Long & Morton only consider a mode that is entirely due to the
compressibility and that disappears in the limit of in¢ompreasibility. The theory
of Shen and Shen & Keller is very difficult to compare with solitary wave theory
for incompressible fluids. Grimshaw, who uses 2 Lagrangian formulation of the
problem, also considers compressibility of the fluid to some extent, but it does
not connect wall to the theory for incompressible fluids. Miesen et al. are the
first to give a theory for a fully compressible fluid, generalising the thecry of
Cear & Grimshaw [1083] for an incompressible fluid, also allowing the
background quantities to vary with the height in the fluid. For recent reviews of
the theory of internal solitary waves see Grimshaw [1082] and Redekopp [1983].
A compact teview of the theory of solitary waves in shallow fluids is the one by
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Grimshaw [1986]. See also the books on nonlingar wave theory by Karpman
[1975] and Whitham [1974).

Until now we have only discussed the "¢lassical” shallow-water solitary
wave theory. Benjamin [1967] and Davis & Acrivos [1967] were the first to
disenss the problem of internal waves in a stiratified layer of fluid that is
contained in an infinitely deep fluid. These waves have dispersion properties that
differ from the waves in shallow water, and instead of the Korteweg—de Vries
equation they are therefore described by an equation which is now called the
Benjamin-Davis—Ono equation [Ono, 1975]. A solitary wave solution of this
equation was first given by Benjamin [1967]. This solution is called an algebraic
solitary wave. The influence of c¢ompressibility on these waves has been
considered only by Grimshaw [1980/1981], who also has given a gecond—order
theory [1981], and by Miesen et al. [1990b]. Important experiments in which
elassical as well as algebraic solitary waves are studied have been carried out by
Koop & Builer [1981] and Segur & Hammack [1982].

Observations of solitary waves in the atmosphere, though less detailed
than in oceans [e.g. Gargett 1976, Farmer 1978, Haury et al 1979, Oshomne &
Burch 1880, Apel et al. 1885, Liu et al. 1983, Liu 1088, Qstrovsky &
Stepanyants, 1080], have been frequent since 1978 [Christie et al. 1978, 1979,
1881, Clarke et al. 1981, Shreffler & Binkowski 1981, Goncharov & Matveyev
1982, Stobie et al. 1983, Doviak & Ge 1984, Pecnik & Young 1984, Haase &
Smith 1984, Noonan & Smith 1085, Bosart & Sanders 1986, Lin & Goff 1088,
Shutts et al. 1988). These observations include phenomena like "the Morning
Glory" and updular bores, that can be explained in terms of solutions of
nonlinear wave equations for internal waves.

In chapter 1 of this thesis an introduction is given into the linear theory
of acoustic gravity waves (see also the books by Phillips [1966], Hines {1974],
Gossard & Hooke [1975], Lighthill [1978), Yih [1980], Yeh & Lin {1972], Holton
[1972}, Kato [1980], Gill [1982), Turner [1983], and the reviews by Yeh and Liv
[1974] and Jones [1976)). Frequently used approximations like the Boussinesg-
and the hydrostatic approximation are discussed in chapter 2. In chapier 3 two
integrals of the equations of motion for 4 compressible flow are derived and
formulated in terms of the displacement of streamlines and the perturbation of
the temperature, These two equations deseribe the flow exactly if it is two—
dimensional and stationary in 2 horizontally moving frame, the background
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properties of the flow depending on the vertical coordinate. Im the limit of
incompressibility they reduce to Long’s equation {1953] In the chapters 4 and 5
the corrections, due to the compressibility, for solitary internal gravity waves in
shallow and deep fluids, respectively, are discussed.

At the end of this introduction we will indicate the reasons for the
interest in atmospheric solitary waves. From the academic point of view they are
an interesting nonlinear wave phenomenon in a nop-homogeneouns medium.
Furthermore they play an important role in the explanation of meteorological
phenomena like the already mentioned "Morning Glory”, undular bores and
¢lear—air turbulence. These waves also cause a wind—shear hazard to airplanes,
50 that an accurate description of the dynamics of these waves is necessary io
estimate possible risks {Christie & Muirhead 1983a,b and Doviak 1088]. Because
internal solitary waves do not disperse and are dissipated very slowly they can
trangport energy as well as momentum over large distances. As such they are of
interest to the general dynamics of the atmosphere.
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CHAPTER 1

LINEAR ACOUSTIC GRAVITY WAVES

11 INTRODUCTION

Although of the rich variety of wave phenomens physicists are familiar
with, it seems that gravity dependent wave phenomena in fluids are not common
property of them, Therefore we will give in this chapter an introduction into the
theory of these waves. We will restrict ourselves to linear theory, because it ig
simple, it has been developed farthest, it describes almost all basie properties of
acoustic gravity waves and because it is the point of departure of most non—
lingar theories. A linear theory, for any kind of waves, implies that we consider
disturbances 5o weak that in the equations describing these waves, we can view
their amplitndes as small quantities, whose products are negligible.

To understand the quite complicated physics involved with these waves
we will separately consider the different features dominating acoustic gravity
waves, i.e. the compressibility of the medium and the effect of the gravitetional
accelerotion. To study the effects of the compressibility of a fuid we will
describe in section 1.2 the theory of acoustic or sound waves. Section 1.2 is also
devoted to the introduction of some elementary ideas concerming wave
propagation, like the phage velocity, the group velacity, the dispersion equation,
and the polarisation relations, The effect of gravity is analysed in seciion 1.3 by
considering so—<alled internal gravity waves, first when propagating along the
interface of {wo homogeneous fluids of different density, subsequently when
propagating in a continuously stratified fluid. Also in section 1.3 the concept of
dispersion and the effects of the anisoiropy of the medium, due to the presence of
the gré.vitatioua.l acceleration, are disctaged. The influence of the compressibility
of the fluid and the gravitational acceleration are combined in section 1.4 that is
about the linear theory of acoustic gravity waves.
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1.2 ACQUSTIC WAVES

The propagation of acoustic or sound waves is governed by the balance
between the inertia and the compressibility of the fluid. We will neglect other
properties of the fluid, like viscosity, heat conduction, inhomogeneities, and
external for¢es including gravity, The validity of these assumptions is examined
in textbooks on the subject, e.g. {Lighthill 1978].

The theory of acoustic waves is based on the following {nonlinear)
equations for a compressible fluid, [e.g. Gill 1982, chapter 4]:

B4 p(¥-w) =0, (12)

PR = -V, (1b)

Bepem) =0, (1¢)
where

L A 2 (14)

The operator §/8t deals with the local change of a guantity, while the operator
1+ V deals with the charge of a quantity owing to its changing position in space
{convection). The first equation i3 the well-known equation of continuity, where
p 18 the mass per unit volume and u = (u,v,w) is the vector velocity field. This
equation relates the change of the density of a volume element to the velocity
field, and describes the conservation of mass. The second equation is the
equation of motion and is the application of Newton’s second law of motion to a
small fluid element, This demands that the product of the maass per unit volume
p and the acceleration

g—? + u-Vu &)

equals the force on the element per unit volume. When viscous stresses and
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external forces are neglected, this force per unit volume iz gsimply minus the
gradient of the fluid pressure p. The third equation ¢an be derived directly from
the equation of state of the flnid, for isentropic motion in the absence of viscous
or diffusive effects [Gill 1982, chapter 4]. Here - is the ratio of specific heats at
constant pressure and constant volume.

‘We assume that the fluid is at rest and homogeneous in the absence of
wzves. Equations (1) are then linearised, i.e. products of disturbances are
neglected, according to the following scheme

P(x:t) = PQ(Z) + p,(x,t), ' (33')
p(xt) = polz) + pl(x:t): (3b)
u(x,t) = 0 + uy(=,t), (3¢)

where py and py are the mass per unit volume and the pressure, respectively, in
the absence of waves, and py, py, and u, are disturbances of respectively the mass
pet unit volume, the pressure and the velocity field due to the presence of waves.
Note that we have assumed that uy = 0, i.., the fluid is at rest in the absence of
waves. The linearised equations (1) read

91 4 py(Vouy) = 0, (4a)
po Sl = -V, (41)

P1- gl (4c)

where the definition of what will prove to be the velocity of sound is

& = (1o o) )

For perfect pases this can be replaced by [e.g. Lighthill 1978, chapter 1}

¢ = (YRTo)% (6)
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where T, i3 the value of the absolute temperature T in Kelvin in the absence of
waves and R is the gas constant, which is the universal gas constant divided by
the mean molecular mass of the gas.

Elimination of v, and p; from (4) gives the following wave equation:

2
%fgl = ¢t Vip,. (7

Similar equations apply to p; and to the components of the velocity ;. This
equation is characteristic for phenomena involving propagation through a
homogeneous medium at a single wave speed c¢;, with energy conserved. A
solution of (7), representing a "plane wave" traveling with velocity ¢, in the
positive x-direction of a cartesian coordinate system, is

P = Hxgt). (8)

Here f(x) is the form of the wave at time t = 0, while the waveform at a later
time t has identical shape but is shifted a distance c,t in the positive x—direction.

In order to be able to compare some basic properties of acoustic waves,
internal gravity waves and acoustic gravity waves, and to introduce conceptions
like group velocity, polarisation relations and so on, we will consider a special
solution of the kind given by (8):

Py = A exp(ig), {9a)
¢ =k-x—out, (Qb)

where A is the amplitude of the pressure disturbance, ¢ is the phase—function,
k = (ky, X% k,) is the wavevector, w is the (radian) frequency, and x is the spatial
position in a cartesian coordinate system. The radian frequency w is related to
the waveperiod T, by

w = 2x/Ty. (10)

The magnitude k of the wavevector k is related to the wavelength A by
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k = 2x/A (11)
The real part of sclution (9) represents a sinusoidal wave.
By substitution of (9) into the wave equation (7) we obtain the

so-called dispersion equetion, that relates the Irequency of the wave w, to the
components of the wavevector k:

W= Y(kE + k2 + kB) = i, (12)

The phase velocily o is the velocity of a surface of constant phase (e.g.
the wavefront of a monochromatic wave) normal to that surface, i.e.

o= (Fx/ 0t - K)k/k2 (13)
By differentiation of (9b) with respect to time, for constant ¢ we find

& = /K2, (14)
or with the dispersion equation (12}

¢ = ck/k. (15)
Equation (15) implies that acoustic waves are dispersionless, since waves with
different wavenumbers all have a phase velocity with the same magnitude, c,.

The group velocily cg is the velocity with whick a wave packet, ie. a
superposition of solutiong like (9), travels. Under, in general, mild conditions it
can also be shown that wave energy i3 transported with the group velocity [see
e.g. Lighthill, 1078, Yeh and Liu, 1974]. The group velocity is defined by

g = (Juf Ok, Bw/ky, uw/f8k;). (16)

From the dispersion equation (12) we find that the group velocity of acoustic
waves is simply given by

¢z = csk/k, (17)
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which is equal to the phase velocity, thus demonstrating the dispersionless
characher of such waves.

The relations among the perturbation quantities py, py, uy, vy, and w, are
called polarisation relations. They can be determined from (4) together with (9)

Pi/oL=¢, (184)
u/py = kfpq. (18b)

Equation (18b) implies that acoustic waves are longitudinal, since the fluid
motion u, has the same direction as the direction of propagation of the wave k.

Thus for acoustic waves we find the simple sitvation depicted in
figure 1,

I

Fig. 1 For acoustic waves, the wavenumber k, the fluid velocity u,, the

phase velacity ¢y, and the group velocity ¢ are oll normal to planes af
constant phasge.
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13 INTERNAL GRAVITY WAVES

We are all familiar with surfoce gravity waves, which are ordinary waves
on the surface of, for example, a lake. These waves are controlled by the balance
between a fluid’s jneértia and its tendency, under gravity, to return to a state of
stable equilibrium with heavier fluid (water) underlying lighter (air). This
tendency is due to pressure differences caused by the presence of gravity. $¢ in
contrast with the situation for acoustic waves the restoring force for a displaced
fluid element is brought about by the gravitational acceleration and not by the
compressibility of the fluid. In the present section we will therefore ignore this
compressibility.

Suppose we have the case of a layer of fluid with a larger density p,
underlying a fluid with 2 smaller density pp and the effect of miving can be
ignored. Along the interface of these two fluids there can exist waves that
resemble surface waves in many ways and whickh are called internal waves. In
fact, the theories of surface gravity waves and of internal gravity waves become
identical in the limit that the density of the upper fluid becomes very small (like
that of air), and if the npper fluid is assumed to extend ad infinitum. If the
upper fluid does not have 2 density that is much smaller than the density of the
lower fluid, but the upper fluid does extend ad infinitum, the two theories are
identical if in the theory for surface waves the gravitational acceleration is
replaced by a reduced gravitational acceleration g, [Lighthill 1978, chapter 4.1].

=555 (19)

The case of two superposed fluids of different densities is actually met, e.g. in
many deep estuaries, such as Norwegian fjords, where river water moves
seawards above the heavier salt water (figure 2).

If a ship enters such an estuary it may experience a substantially
enhanced drag. This extra drag is due fo the generation of internal waves, even
though the ship may make almost no visible waves on the free surface. That the
ship may generate internal waves bui no surface waves iz a consequence of the
fact that the ship moves fast compared to the speed of internal waves and slow
compared to the speed of surface waves, both with wavelengths related to the
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Fig.2  The genevalion of internal waves by o ship frovelling in two
superposed layers of fluid of different density.

ship’s length. These lower speeds of the internal waves are dae to the reduction
of the effective gravitational aceeleration, given by (19).

If the density change between the upper and the lower layer is not
confined anymore to a region small compared with the wavelength of the wave
to be considered, we have a stratified fluid, whose density must be considered a
continwous function of the height in the fluid. As can be imagined, internal
gravity waves can still exist, since there is still a balance between the inertia of
ihe fluid and its tendency to return to a state of heavier fluid underlying lizhter.
But in this case the waves are no longer confined to an interface between two
fluids and also propagation in vertical direction (the direction of the density
gradient) will be possible. As will be seen‘these waves are not only dispersive
(the phase velocity varies with the wavenumber) but also anisotropic: the phase
velocity depends on the direction of prapagation and the group velocity does not
kave the same direction as the phase velocity.

To gain a better (quantitative) understanding of the balance between
inertia and buoyancy we consider an element of fluid at some hydrostatic
equilibrium Jevel zq, 1n 2 fluid with density p, decreasing with height at a rate
= dpyfdz. The mass Am of the fluid element at z, is

Am = py(z4) AV, (20)

where AV is the volume of the fluid element. If we digplace the fluid element
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quasi—static over a small vertical distance &, it will be subjecied to a buoyancy
force

Fy, = g [oo{zo+85) — polzq)] AV, (21

acting to return Am to z, (figure 3). Together with (20) and (21), Newton's
second law of motion leads to

2
g 328(20) 5 AV = py(ay) AV E{E), (22)

Choosing the acceleration of gravity in the negative z—direction (¢f. figure 3),
dpolzp)/dz < 0 for a stably stratified incompressible fluid and hence (22)

z 1
X
§s
Igf———nX Am
‘LQ

|

|

I

]

4Fb

Fig. 8 The buoyancy foree Fy, acting on o fluid element due fo ils

displacement over ¢ verticel distence 8.
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describes a harmonic oscillator with a frequency w, given by

= —E-aﬂﬂ (23)

This frequency iz known as the Brunt-Viisali frequency [Viisili 1925, Brunt

1927]. The Brunt-Viisili frequency is in fact the natural oscillation frequency of
a stratified fluid.

If the flnid element is somehow constrained to move at an angle ® with
tespact to the vertical (figure 4), the force exerted on this fluid element will be
the projection of the buayancy force now given by

Fy = g 228{80) (5 cos0) AV. (24)

In this case the fluid element will therefore oscillate with a frequency w, given by

|
|
I
N

Fb

Fig. 4  The projection of the buoyancy force Fy, ccting on o fluid
element due to its displacement over a verticel distance bz == 63 c0s©.
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w? = wicos?O. (25)

Hence the Brunt~Viisili frequency defined by (23) is the maximum frequency of
oscillations in a siratified incompressible flnid.

We will now give a more formal tregtment of the propagation of internal
graviiy waves in an incompressible non-rotating finid. Like we did in section 1.2
for acoustic waves, we start with the continuity equation, with the equation of
motion, and with an equation of state, but now for an incompressible fluid and
with gravity. Heat conduction and viscosily are still neglected so that the
following equations apply, [¢-g. Phillips 1966, Gill 1982, chapter 4]

Dow, (26a)
Du_

P =-Vp+ et (26b)

V-u=o, (26¢)

where the vector gravitational acceleration g = (0,0,g) iz directed downwards
(figure 3). The fact that a velocity vector field is divergence free in am
incompressible fluid, as stated by (26b), expresses the solenoidal property of the
velocity field [Lighthill 1986, chapter 2.4). This property is equivalent to the
assertion that tke volume of a fluid element does not change by its motion as can
be seen from the equation of continuity (1a) and (26a).

Apain, for simplicity, we assume that the fluid velocity is zero in the
absence of waves, i.e. @y = 0. If uy = (uy(2),0,0) the analysis already becomes
complicated, e.g., [Booker and Bretherton 1967, Holton 1972, Kelder 1087].
Equations (26) are linearised using (3). From the equation of motion (26b) we
find for the density py and the pressure py in the absence of waves

4o ~ .. gp,, (27)

i.e. the hydrostatic balance. Together with the law for a perfect gas

p = ¢RT, (28)
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we obtain

dpe/py = - dz/H, (202)
where H is called the scale beight and is given by

H=RT/E. (200)

It may seem to be a contradiction to assume that the fluid is incompressible and
to use the law for a perfect gas. However, it is to be expected that this i3 correct
if the velocity of the fluid is small cornpared to the velocity of sonnd (this will be
shown in section 3.3). Integration of (29a) from a reference height zy, at which
Po{Zo)} == Pog. 10 a0 arbitrary height = yields

2

Po = Pgo &P [-'20.[ (dZ/H)]; (302)
and with (28)

Pa = puof (RT) EKP[—ZOIZ(dZ/H)]- (30b)

For a constant scale height (30a,b) become

Po = Poo &xp(zg~2)/H], (31a)
Po = pog exp(zg—2)/H], (31b)
Poo = Peo/ (RT) = pyy/(gH) (31

Now we have evaluated the continuously stratified basic state of the
fluid, we proceed with the linearised equations for the perturbations p,, p; and
1), that ¢can be obtained by substitution of (3) in (26). This gives

g%‘ + 0y Vpp = 0, (32a)
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Pa 3%1 = —Vpy + 2.8, (32b)
Vo =9, (32¢)

where (32a) expresses the fact that changes of density at 2 fixed position are due
to the bodily displacement of the mean density structure and are 90° out of
phase with the vertical velocity. After elimination of the perturbation quantities
01 P, 1y and vy from (32), the following wave equation is found:

%,[\;ﬂw1 +3 doy g%l] + wiViw, =0, (33)
where
Vi=d0t g;, (34)

The Brunt—Viisili frequency as defined by (23) generally depends on z. Using
the expression for the equilibrium demsity (30b), (23) and (33) become
respectively

wi = (g/H){1+dH /dz) (38)
g%z[vzwi ~8 4 dH/dz)E'l] + WEViw, = 0. (36)

If the scale height H is not 2 ¢onstant the coefficients in the partial differential
equation (36) depend on =, and (36) can be solved analytically only for particular
E(z), e.g. [Daniels 1975).

However, in the present analysis we will confine ourselves to the case
that the scale height H i3 a comstant and the fluid is exponentially stratified [cf.
(31)]. In that case plane wave solutions, like in the analysis for acoustic waves,
are possible. From (36), together with (9), we obtain the following dispersion
equation for internal waves in an incompressible fluid with constant scale height:

w(k? + ik [H) - wiki = 0, | (31
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here w? = g/H is a constant, and k} = ki + k. The complex valuedness of this
dispersion equation, although the medium is assumed to be completely lossless,
will be discussed in the sequel,

But ficst (37) is examined if |k} » 1/H, an assumption that iz almost
always justified for oceanographic applications for vertical wavelengths up to
hundreds of kilometers. In that case (37) becomes

Wt = Bk /1, (38)
which is equivalent to (25).

If this approximation cannot be made, one is forced to consider complex
uy kg, ky or ky in order to satisfy (37). The choice of real or complex w, ky, ky
and k; depends on the problem at hand and the initial or boundary conditions
associated with the problem. For example, if the problem of interest is concerned
with imperfect horizontal ducting, k, may become complex to show leakage of
energy from the duet. Usually the forced oscillation ease is considered for which
wand k; are real. For (37) to be satisfied, k, has to be complex in that case. Let

kz = kz,r + ikz,i (39)
where k; . and k;, ; are real. Substitution of {39) into (37) gives

ky 1 = — (2H), (402)
wilkd + (2H)F] ~ wik] = 0, (40b)
where k2 is defined as
K=k} + K, (41)

Equation (40a) implicates that the dependence on z of the field
quantities py/pe, P1/0g, 2nd vy has the shape

exp(z/2ﬂ) ’ exP(ikz.rz), (42)
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which grows exponentially with height. Note that the averaged energy density of
a wave with fixed real frequency must be independent of time at a fixed position.
For an atmosphere whose properties vary only with z this means that the
vertical component of the emergy flux does not depend on z, ie. the average
value of pywy = po{p1/pe)wy is independent of z [Lighthill, 1978, chapier 4.2].
This requires that the average value of p;fpy and wy vary with z as exp(z/2H),
80 that k; must be complex although the medinm is losless. The growth of the
amplitude of internal waves shown by (42) accounis for the importance of such
waves in the interpretation of atmospherie and oceanographic disturbances. If
also accounts for the importance of nonlinear effects, what this thesis is about.

The phase velocity for (internal) waves is given by (14), while the group
velocity can be determined from the dispersion equation (40b) with the
definition (16). We find

)
& =25y [[gg_ 1] ks, [“a'ﬁ— 1]1:,, -k,_,]. (43)
Wiy 4 /wlwp=2Hk)
/
/
/
+-— e —— 0
1
/ 2
/4
0 1
1 H k.l.

Fig. & Dispersion dicgram for interngl gravily wdves in en

incompressible stratified fluid with constont scale height H and
Brunt-Vaisilg frequency wy. In the diagram the normalised frequency
wlwy i3 shown as o function of the normalised horizontal wavenumber
El, , with the vertical wovenumber as o parameter (Hkg = 0,1/2, 1, 2).
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We should note several things now. First of all, by comparing (14) and
(43), and since the frequency of internal waves is always smaller than the
Brunt—Viisald frequency, which we already noted after (23) and which can
easily be seen from the dispersion eguation (40b), the horizontal component of
the group velocity has the same sign and the same orientation as the horizontal
component of the phase velocity. Furthermore it is easily seen that the sign of
the vertical component of the gronp velocity is opposite to the sign of the
vertical component of the phage velocity. The latter implicates that if an
internal wave source radiates emetgy upward, the phase propagation of the
generated waves is directed downward! Finally from (14), (40b) and (43) we
deduce that the magnitudes of the vertical components of the group and the
phase velocity are equal under the condition k,, » 1/H, and that the group
velocity is perpendicular o the wavevector in that case.

From (32¢) we immediately see that internal waves are transverse, since
k-uy = 0, i.e. the fluid motion is transverse to the wavevector. Thus for internal
waves we find the situation depicted in figure 6.

From (32) together with (9) the polarisation relations are found to be
given by

(nlon) =~ S5ig (oulpo) (44a)
0= %“ {1/ o) " (44b)
v = 5(py/p0), (44c)
wi= =5 (o1/p0) BT

Conclusively, as we have shown in this section, the gravitational
acceleration introduces an anisotropy in the fluid system. This anisotropy has
some remarkable consequences, like, for example, the opposed directiona of the
vertical c¢ornponents of the group and phase velocity and the, in this case
exponential, growth of the wave’s amplitude with height.
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Fig. 6  For infernal gravity waves in an incompressible fluid with
constant scale height the wovenumber k and the phase welocily o are
perpendicular to planes of constant phase, and the fluid velocity 1y is
parallel to planes of constant phase. The verlical components of the
phase velocity and the group velocity have opposite directions. If the real
part of the vertical wavenumber is much larger than one over the scele
height, i.e. the vertical wevelength is much smaller than the scele height,
then the group velocily is parallel to planes of constant ;phase.'

ACQUSTIC GRAVITY WAVES

As the heading of this section says, the effects of compressibility and of

gravity will now be combined to study the propagation of hydrodynamic waves
in & compressible stratified fluid in a gravitational field.

From what we have learned in the two preceding sections, we might

anticipate some of the characteristics of such waves. Since compressibility causes
acoustic waves to be longitudinal and gravity causes internal gravity waves to be
transversal, we might expect waves in a compressible stratified fluid to be
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neither of them. Furthermore, a5 we have seen, internal gravity waves only exist
with frequencies smaller than the Brunt-Viisili frequency. Therefore acoustic
waves are likely to be modified substantially by gravity, only if their frequency
is not too large compared to the Brunt-Vaisili frequency. On the other hand, if
the frequency of a wave is very small so that the fluid’s velocity i3 much smaller
than the speed of sound, compressibility will be of minor importance, and the
waves are expectad to be essentially internal gravity waves.

As will be shown, the definition of the Brunt—Viisild frequency iz also
changed by the compressibility of the medium, since in the derivation of (23) the
fluid was assumed to be incompressible and therefore the effect of adiabatic
expansion or ¢compression of a fluid element was absent.

The dispersion equation for acoustic gravity waves will of course be of
fourth order in the wave frequency, indicating the existence of two modes, ie. &
"gravity" mode and an "acoustic'" mode. The group velocity of the waves, which
can be determined from the dispersion equation, will be even more complicated
than the one for internal gravity waves, given by (43).

Now let us quantify thege ideas by combining (1), describing acoustic
waves, with (26), describing internal gravity waves:

B+ (Vo) =, (450)

u__v 45b
Por=-Vp+ 8 : (45b)
]Dﬁ(PP"‘) =0. (45¢)

Using the perturbation scheme (3), the following linearised equations are
obtained:

%1+ 0, Vpg + po(Tom) = 0, (462)
Py %“t-‘ =—Vpi+ 28 (46b)
'g%‘ +uy-Vpy = ¢} ['g‘%l + 111'VP0]- (46¢c)
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From these equations the following wave equation ¢an be derived, of Appendix
A, [Pekeris 1948, Lamb 1916 or Jones 1876]:

%p—cggéz[wx,—%gggu%gggﬁg%x] - wieiVin =0, (47)

where also (27) was used and x; and the Brunt-Viisili frequency for a
compressible atmosphere w [¢f. (23)] are defined by

x1="V-ny, . (48)

4=-[@+8 )

Again, a5 in section 3 of this chapter, we have obtained a wave equation with

coefficients depending on z that can be solved analytically for special H(z) only.
We have also found the Brunt-Viisila frequency for a compressible

atmosphere, given by (49), and which can alternatively be written as [cf. (35)]

wi = (g/H)(} + dH/dz) - g¥fc, (50)

where we have used (29b) and (30b). Az can be seen by comparing (49) to (23),
or by compating (50) to (35), compressibility of a medium rednces the
magnitude of the Brunt—Vaisili frequency. From (49) we can also see that for a
compressible fluid to be stably stratified it is required that

£ 8005 ' (51)

In ¢rder to obtain a dispersion equation in an easy way we will assume
the scale height H to be constant. The coefficients of the wave equation (47) are
constant in thai case and plane wave solutions are possible. We then obtain the
following fourth—order dispersion equation for such acoustic gravity waves in g
compressible fluid [e.g. Hines 1960]
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wh — w2c(k2ik, [H) + wlelk] =0, (52)

where

w} = gi(r2)/cd, (53)

and we vsed that

¢f = yeH, (54)

which follews from (6) and (29b). Now the definitions (39) and (41) are vsed,
which imply a z-dependence of the field quantities given by (42), consistent with
energy considerations given after (42). The dispersion equation (52) becomes

wh = wied(ki+ud/cd) + wiedki = 0, (85)
where the acoustic cut-off frequency uy is defined by

w, = ¢/ (2H). (56)

The name-giving of w, will become clear in what follows,

In the limit that the gravitational acceleration g approaches zero, the
dispersion equation (55) for acoustic gravity waves reduces to the dispersion
equation (12) for acoustic waves, as can be seen from (29b), (53) and (56). Both
the acoustic cut—off frequency and the Brunt—Viisili frequency become zeto in
this cage. In the limit that the fluid becomes incompressible, i.e. the quotient of
the specific heats becomes infinitely large, or, to put it differently, if the velocity
of sound becomes infinitely large, the dispersion equation (88) reduces to the
dispersion equation (40b) for intetnal waves. In this case the Brunt-Viisili
frequency for a compressible stratified fluid, given by (49), approaches the
Brunt—Vaisali frequency for an incompressible stratified fluid, given by (23).

From the foregoing we ¢an conclude that acoustic gravity waves with
frequencies larger than the acoustic cut-off frequency are acoustic waves
modified by gravity and that acoustic gravity waves with frequencies smaller
than the Brunt-Viisili frequeacy (for a compressible fluid) are internal waves
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modified by compressibility. The dispersion eguation (55) can be visualised in
several ways as shown in figures 7 to 12, where for 7 the value 1.4 was used
which applies to dry air.

1 o

w/wQA

malwg

-

0 1 Hk)

Fig. 7 Dispersion diegram for ceoustic gravily waves in 4 compressible
stratified fluid with constand scole height B and Brunt-Viisuld frequency
wg. In the diegram the normolised frequency w/w, it shown as o function
of the normalised hovizonta! wevenumber Hky, with the vertical
wavenumber es a parameler (sz',. = 0, 1/2, 1, 2}. Also shoun are the
acoustic limit w = cgk,, the ocoustic cul—off frequency w, and the
resonance af the Bruni—=Viisild frequency. The regions of propagation of
acoustie gravity waves are bounded by the curves for which k; ; = 0. The
value used for vis 1.4
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w/ug [

0 K Rk

Fig. 8 Dils;uersian diagram for acoustic grevity weves. The normalised
frequency wfwy is shown as & function of the real part of the normalised
verticel wovenumber Hk, ., with the normalised horizontal wavenumber
Hk; as a parameter.

For the sake of completeness, we also give the proup velocity of aconstic
gravity waves, calculated from its definition {16), together with the dispersion
equation (55):

sof[gim) (B [FJ-wd @

For g — 0 this reduces to the group velocity for acoustic waves (17), and for
g — oo {37) reduces to the group velocity for internal waves given by (43).
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Fig. 9 Wovenumber diagram for acoustic grevity waves. The real part of
the normalised vertical wovenumber Bk, ; 49 shown versus the normalised
horizontal wovenumber Hk, with the normalised frequency of the wave
wfuyg as e parameter. Note the differsnce in shape of the curves for which
wfwg < 1, and for which wfug > wyfuy » 1.1,

The polarisation equations are found to be [Pekeris 1948

w1 = (gf? = )t [w"’cg 81 4 (giied - »,ng)xl], (582)
Dy = (ipo/w){edx) — BW)), (58b)
1wy = (Ex/w)(P1/p0), (58¢c)
vy = (ky/w)(po/pe), {58d)
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2
p1= (ioofuch) [ s + 7w, + G, (58¢)

where dxf/dz = ik,x; and dec2/dz = 0 if the scale height H of the fluid is a
constant,

0.2 0.5

0 1 2
ni

Fig. 10 Indicolriz for ecoustic grovily waves. n, = ¢k /w is shown
versus n, = cghy fw with the normelised frequency wfwg as o parameter.
The arrows illustrate the directions of the phase velocity (p) and of the
group velocity (g).

1.5 SUMMARY
In this chapter some basic properties of acoustic gravity waves have

been reviewed on the basis of the linear theory of these waves. We have seen
that these waves exist in a compressible fluid, stratified under gravity. Such a
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flnid has 3 natural oscillation frequency, which is called Brunt-Vaisila
frequency.

Waves that are called acoustic gravity waves can in fact belong to two
modes. Waves belonging t¢ one mode are acoustic in nature, are medified by
gravity and have a cut—off at a frequency that is usually slightly larger than the
Brunt-Viisili frequency. Waves belonging to the other mode are internal waves
modified by the compressibility of the flnid, This mode has a resonance at the
Brunt—Vaisili frequency.

Basic 1deas like phase velocity, group velocity, wave equation, dispersion
relation, and polarisation relation have been intreduced.

€9,z feg

Cg'llcs ‘

Fig. 11 Roy surface for acoustic grovity weves. The normalised vertical
component of the group velocity cg ,/c; is shown versus the normalised
horizontal part of the group velocity cp)fes with the normalised
frequency wfuwg as o parameier.
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Fig. 12 Wave normal surfece for acoustic grawity waves. The
normalised phase velocity in the z—direction cp zfcs = wf(k; 104) 45 shown
versus oo fes = wf{kyc) with the normalised period wWwg as ¢
parameter.
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CHAPTER 2

APPROXIMATE EQUATIONS OF MOTION

21 INTRODUCTION

In chapter 1 we have given an introduction into the (linear) theory of
acoustic gravity waves. This was done by linearisation of the equations of
motion and assuming a monochromatic plane wave golution of these linearised
equations. Of course the equations of motion (1.1), {1.26) and (1.45) already
suppose several approximations. In section 2 of the present chapter we will give
equations of motion that are more gemeral in the sense thai they account for
rotation, viscosity and heat conduction of the fluid, In section 2.2 we will also
give some crude conditions under which these peneral equations of motion reduce
to (1.45), i.e. they reduce from the Navier—Siokes equations of motion to the
Euler equations of motion. In gection 2.3 the hydrostatic approximation is
discugsed. This is an approximation in which the vertical acceleration of the
fluid is neglected. The hydrostatic zpproximation will be shown to apply to
waves with frequencies small compared to the Brunt—Vaisili frequency and with
small aspect ratios; the aspect ratio being the quotient of the vertical and the
horizontal scale of the wave. In section 2.4 the frequently used Boussinesq
approximation and the conditions for its validity are analysed. This is done for
the application of the Boussinesq approximation to linear waves, i.e. waves with
infinitesima) amplitudes, as well as for its application to nonlinear waves.

2.2 EQUATIONS QF MOTION

221  NavierStokes equations

The continnity equation ot mags conservation equation (1.1a) is derived
and discussed by, e.g., [Gill 1982, section 4.2] or more generally by [Batchelor
1967, sections 2.2 and 3.1]. This eguation is fundamental in all problems
involving fluid motion.

The momentum equation for a viscous fluid in a coordinate sysiem
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rotating with angular velocity 0 reads [Batchelor 1967, section 3.2 and section
3.3, Gill 1682, section 4.5]

g % + 2p0xu + pg%-xx ~ 3V Q=x] % = —Vp 4+ pg + 1, [V + $V(V-u)},
1)

where i i3 the dynamic coefficient of viscosity. The second term on the
left-hand side of this equation is the Coriolis force per unit volume. Tt is called
after Coriolis [1835] who discussed it, together with the third and fourth term on
the left-hand side. These two terms will be neglected because & can be
considered constant and the potential due to the rotation is always very small on
earth [Gill 1082, section 7.4] To obtain (1), the assumptions have been made
that g, is a constant independent of temperature and that the ratio between p,
and the second coefficient of viscosity in the non-isotropic part of the stress
tensor is -2/3. This puts an npper lmit to the temperature vaziations in the
fluid for which {1) applies.

The heat, or (internal) energy equation [Gill 1982, section 4.4] for a
viscous, heat conducting, perfect gas may be written as an equation for the
entropy:

%‘1’1’ B—E(Pp"‘) =7, (2a)

where the function & is related to the net production of entropy. Now consider
the various terms combined in thig function, namely

&= V-q-dF, (2b)

where q is the heat flux due to particle conduction and & represents the sum of
all the heating sources, The heat flux g may be written

q=—-kvT, (7c)
where k i8 the thermal conduction temsor. The heating term J& in (2b) may be

written
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K =S+ Hy, (2d)

where 4% it the viscous dissipation rate and &%, is the wave heating term. The
viscous heating i3

M = mltesjes; ~ HV-u), (2e)

where ¢;; = fuy/8x; + Ou;/0xy, is the rate of strain tensor. The wave heating
contribution to % is not well-known. It is often assumed to be uniformly or
proportional to the density.

2.2.2 Viscosity and thermal conductivity

In order to estimate the importance of viscosity and thermal
conductivity in the equations of motion we introduce a characteristic mass
density p., & timescale t, and 2 lengthscale {, which, e.g., can be the wavelength
of & wave or the scale height of the fluid. From (1) we see that viscosity can be
neglected in the momentnm equation if

Blte s pyfpe, (3)

which is equivalent to the condition that the Reynolds number is much larger
than one, The kinematic viscosity, which ia equal to g, /s, has a valve of 10*f for
water, of approximately 1.4x10% m?fs for air at 1000 mbar (at the earth’s
gurface) [List 1951, table 113} and 2 value of about 1.8 m?/s for air at a height of
86 km. Using the dispersion eguation (1.55) to estimate /3/t;, we find that
vigeosity can be neglected in the momentum equation for much of the acoustic
gravity wave spectrym, at least in the lower atmosphere. For a more detailed
study of the effects of viscosity and thermal conduetion we refer to Pitteway &
Hines [1963].

In the energy balance (2) the viscons dissipative terms can be neglected,
35 argued by Spiegel & Veronis [1960). It ean zlso be seen that viscous
dissipation contributes negligibly to the heat equation by noting that the
proportion of the viseous terms and the left-hand side of (2) scales with
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%f:‘(CpTic)“ €1, (4)

where we used the law for a perfect gas (1.28), that 7 = cp/ey, where ¢ is the
specific heat at constant pressure, and the fact that Tt. > 104 for acoustic
gravity waves. For water ¢ is of the order 10%, while for air it is an order one
quantity.

Using (1.28) we find that heat conduction can be neglected in the heat
equation (2) if

1fte » kf (cppe), {8)

which is equivalent to the condition that the Fourier numbes is much smaller
than ome. Since the thermal diffusivity k/(cpp) is 1.36 times the kinematic
viscosity, according to the kinematic theory of gases, heat conduction can be
neglected in the heat equation under the same conditions under which viscosity
can be neglected in the momentum equation.

223  The earth’s rotation

An obvious condition under which to neglect rotation of the fluid would
be that the characteristic time scale of the phenomenon to be studied should be
much gmaller than the inverse magnitude of the angular veloeity, i.¢.,

te g 10 ' (6)

An other condition, under which rotation can be neglected, that is often used is
that the Rossby number is much smaller than one [Houghton 1977].

However, in this subsection we want to examine the conditions
mecessary to neglect the earth’s rotation in the description of gravity waves
somewhat better. Therefore we will derive and study the dispersion equation for
internal waves in a rotating fluid. For simplicity the compressibility of the fluid
is neglected. Thig will mot alter the conditions under which rotation can be
neglected, because internal gravity waves for which the earth’s rotation is of any
significance have frequencies much smaller than the Brunt-VEisild ifrequency
and for suck waves compressibility can be neglected if wy is replaced by w,
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[¢hapter 1).

The rotation of the earth can de modeled by taking {2 in (2) in the
z—direction, with magnitude £/2 [Gill 1982, section 7.4]. Here f is the Coriolis
parameter, which is equal to 2sin¢ {imes the earth’s angular velocity, wheze ¢ is
the latitude. I this is used, the equations of motion for internal gravity in an
inviscid rotating fuid become [cf, (1.26)]:

Bey, | (7a)
pg—‘;—fw—%, (7h)

D-f+fuv—§§ (7¢)
pRE=-22 g, (7d)
Vu=o. (7e)

Proceeding like after (1.28) gives the wave equation [¢f. (1.33)):

ST+ LS o) v o[G0 L4000 4 gviwi =0 (8)
Assuming an isothermal fluid, ie. a constant scale height, gives instead of
dispersion equation (1.40b) the following dispersicn equation:

Wi+ (2B)7) - P - + (20)7] - wfk,? = 0. (¢)

A diagram for this dispersion equation ig given in figure 13. From this
diagram and (9} it is clear that, due to the rotation of the fluid, there is a
cut-off at we{ and dispersion properties of internal gravity waves with
frequencies near the Coriols parameter are modified. By comparing (9) to
(1.40b) we find the following condition for rotation of the fiuid to be neglected:

+ (2H)/k} ¢ wd/f2, (10)
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This implies that both the ratio of the vertical and the horizontal wavelength of
the wave and the ratio of 47 times the scale height and the horizontal
wavelength should be much larger than ffuy, i.e. the aspect ratio of the wave
should be much larger than f/wy. From (9) these conditions can be seen to be
equivalent to the condition w» 1 [¢f. (8)].

‘._v-"
- e
0 // — - |
/ e
/ '_.-" -‘-‘____.-
e 4 [P - 4
-~ ..-""
g . -
£ ” -
2 "’ -
- o 4
‘2 22
/
1 | | { 1 ! ! 1
4 1 2
Hky

Fig. 18 Dispersion dicgram for internal gravity woves in o rofating fluid
(s0lid lines) and e non—rotating fluid (daoshed lines) with constant scale
height I and Brunt-Viisili frequency wy [replacing wy o (9)). In the
diagram the normalised frequency wfwy is shown versus the normalised
horizontal wovenumber Hk;, with the vertical wavenumber as o
parameter (Hlgr = 0, 1, 4). To show the effect of rotetion clearly we
have chasen the ratio of ffwy to be 107, which is correct for the abyssal
part of the ocean where wy » 10 However, for the upper part of the
ocean and the earth's stmosphere (af o latitude of approzimately 45°) o
velue 6f 1074 for £ and of 10 for wy epplies. Note the cut—off at w/w, =
[fw, =01,

46 chapter 2



224 Edler eqoations

In the previons subsections we have considered the conditions for which
the effects of viscosity, thermal conductivity and rotation can be neplected. If all
these effects can be neglected and no heat sources are present, the Navier—Stokes
equations of motion, ie. (1.45a), (1) and (2), become the Fuler equationg of
motion (1.45). In the next section we will consider two further simplifications of
these equations that are frequently used in studying phenomena in stratified
flows: the hydrostatic approsimation and the Boussinesq approximation.

2.3 THE HYDROSTATIC APPROXIMATION

In the hydrostatic approximation the vertical acceleration of the fluid ig
neglected. This amounts to the meglect of the left-hand side of the vertieal
component of the momentum equation (1.45b). In this section we will study the
conditions and the implications of this approximation in a rigerous way by
adopting a consistent way of bringing the equations of motion inte a
dirnensionless form.

As we will see this approximation applies to waves with frequencies
much smaller than the Brunt-Viaisili frequency and small aspect ratios.
Anticipating on these conditions we will make the equations of motion (1.45)
dimensionless using 2 kind of convective scales. However, since we are dealing
with a siratified fluid a little care is needed. Because the waves to which we
want to apply the bydrostatic approximation, have frequencies much smaller
than the Brunt~Viisild frequency, their velocity field multiplied by the mass
density must be almost divergence free as can be seen from the continuity
equation (1.45a), i.e.

V- (ou) = 0, (11a)
or

fu  Bw  w dpg .,
B4 fmi T dng,, (11b)

where agsumed that v = 0, which simplifies the discussion a little. Note that (11)
is used only to adopt a consistent scaling. From {11) we see that the derivative
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of the horizontal velocity u with respect to a horizontal coordinate x muat be of
the same order of magnitude as the derivative of the vertical velocity w with
respect to the vertical coordinate z or as the vertical velocity w divided by a
typical scale height, depending on the fact which of the last two quantities is
largest. A balance between the second and the third term in (11b) i3, for acoustic
gravity waves at least, not possible, because that would require that the zecond
term is real, i.e. that the wvertical wavenumber is imaginary. Note that the
horizontal and the vertical scale are not necessarily the same 3o that we have to
introduce different horizontal and vertical scales. These considerations lead to
the following dimensionless order one quantities, if the undisturbed or
background velocity of the flnid is assumed to be zero,

x=x/l, z=zlh = t/t,,

S E N D
!30 = nlbe i’o = pe/(ctpc), (12)

p = (ppdllope), P = {p-Dpo)/{achn,),

p5(dpo/dz) = (Hepg) Wdpo/dzy),

where h is a characteristic vertical scale of the wave and smaller or equal to the
characteristic scale height H,, & is a dimensionless measure for the amplitude of
the disturbance, ¢, i+ a typical velocity, and z, is the scale on which the
background density varies. Using the hydrostatic balance

dpa/dz + g0y = 0, (13a)
ox

dpy/dz; = —%Eo. (13b)

the equations (1.458) for two—dimensional metion become
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D2 + (ot an)(F-u) + f- P w =0, (14a)

(po+up)%-% =- g§ (14b)
!f-:(ﬂo+aﬂ)%% =- -gg - %%" 2 (14¢)

4B (ko =

where we have dropped the hats and

D =% +av) (153)
8 .0
V= ['aii 0, 'az} 3 (15b)

and we have chosen ¢ as
¢ = lft,. (16)

From (14¢) we see that the vertical acceleration of the fluid can be neglected if
the aspect ratio of the motion is small. The hydrostatic balance then also holds
for the perturbation pressure and densiiy. The hydrostatic approximation is
therefore correct provided that

(R <1, an

and @< #(1}. This will prove to be a very importani condition in chapters 4 and
5.

Now the dispersion eguatior in the hydrostatic approximation is
examined. Therefore we linearise (14) by assuming that the wave's amplitude is
very small, i.e. a ¢ 1. Fyrithermore an isothermal basic state is assumed. In that
case ¢ = 4gH and H, = H are constants and py! dpy/dz; = —1 (dimensionless
variables). Equations (14) become
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g§+P°(v'u)“]}ip°w =0 {18a)

ngi=-2, (135)
g%*%%l‘mf’: (18¢)
—E-gR -ae+h(l-—)pw=0. (18d)

Some algebra similar to that leading to (1.47) gives the wave equation

Otw

el RN EE- ()

where one should note that

Bpow)/ 82 = = § pus + po 0w/ 9%,
because we assumed p, to vary on the scale H, and w on the seale b [cf. (12)].
Returning to dimensional quantities, (19) together with (12), (18), (1.53) and

(1.54) gives

2 12 ?
ol ad ral-o | (20

In the same way as we obtained the dispersion equaticns (1.40b) and (1.55) we
now find from (20)

wiki r + (2H) % - wiki = 0. (21)
It we compare the dispersion equations (21) and (1.55) we may note

geveral things. First we note that for the hydrostatic approximation to be valid
the condition
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Fig. 14 Dispersion dingram for internal gravity waves in a straified
fluid (deshed lines) and for such ¢ fluid in the hydrostatic approzimation
{solid lines) with constant scele height H and Brunt~Vaisela frequency
wg. In the diagram the normelised frequency w/w, it shown versus the
normalised horizontel wevenumber Hk,, with the vertical wavenumber as
a parameter (Bk, . = 0,1, 2).

ketk,y or k¢ (2H), {22a)
should be satisfed. This is equivalent to (17). Furthermore we note the
condition

oy (220)

Condition (22b) implies that the hydrostatic approximation eliminates the
acoustic mode, although the important correction to the Brunmt-Viisild
frequency, due to the compressibility of the flnid, is retained. This is so, since wy
in (22) is defined by (1.53). In (1.55) w* ¢an be neglected because «? € wj [ef.
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(22b)]. Another thing to be noted is that the horizontal group velocity in the
hydrostatic approximation,

B o ugicy + (2H) V2, (23)

is determined by the value of kg ; only. Se, if k, ; is determined by certain
boundary conditions in such a way that it is fixed (chapters 4 and 5), the wave
shows no dispersion (figure 14). This implicates that a low frequency acoustic
gravity wave packet will not disperse, but will maintain its shape.

2.4 THE BOUSSINESQ APPROXIMATION

241 Historic note

In this section the Boussinesq approximation in its application to
acoustic gravity waves is discussed, This approximation is atfributed to
Boussinesq [1803], but, as noted by Eckart & Ferris [1856], a similar
approxdmation of the equations of motion was already introduced by Oberbeck
[1879]. In fact "Boussinesq approximation" is a collective mame for several
different approximations used in studies of convection, gravity waves and other
vhenomena in fluids with density variations. To illustrate the original form of
the Boussinesq approximation [Boussinesq, 1903], we rewtite (1.45b) in the form

Dy, 1
[1+%§] 0= Vp;+%—:g, (24)

where we have used (1.3), subtracted the hydrostatic balance (1.27) from (1.45b)
and divided by py. In (24) the ratio py/py appears twice: on the lefi-hand side in
the inertia term, on the right-hand side in the buoyancy term. When
disturbances are small it i3 elear that the density variations in the inertial term
are of little importance. However if the characteristic time scale is long enough
30 that the inertia of the fluid is less important, the density variation in the
buoyancy term will be essential to many problems. The original Boussinesqg
approximation now consists of neglecting variations of density in so far as they
affect inertia, but retaining them in the buoyancy terms, where they oceur in the
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combination gm/p,. When viscosity and diffusion are included, variations of
fluid properties are also neglected in this approximation. Note that the equations
of motion are still nonlinear in the Boussinesq approximation.

242 The linear Boussinesq equations for incompressible fluids.

Belore we consider {he Boussinesq approximation for nonlinear problems
(2.4.3) and for compressible flows (2.4.4) we will first study the Boussinesq
appreximation for an incompressible inviscid fluid, assuming that perturbations
are small enongh and nonlinear terms can be neglected.

The linearised Boussinesq equations for an incompressible, inviscid fluid
are [cf. (1.32))

9014w Y, (252)
Suw-Lp sl - (25b)
Veny = 0. (25¢)

Now the additional asspmpiion is made, which is often included in the name
"Boussinesq approximation®, that density deviations from a standard density are
small 50 that

1 08, _a8ff .
ot ot @)

where f; 13 & perturbation quantity vy, py or py. This implies that

Ll <),
1.e. that the characteristic vertical length scale of the perturbation is much
smaller than the scale height. For acoustic gravity waves this condition, which is
in fact & kind of W.K.B. approximation [Fréman & Froman 1965, is always
satisfied for deep sea conditions but can be resirictive for upper sea and
atmospheric applications.

(26b)
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Assuming that differentiations with respect to y are zero, which is no
loss of generality because the equations are linear and three—dimensional
golutions can be obtained from guperposition of two—dimensional solutions {Yih
1980, section 2.4], & streamfunetion 4 is introduced as

u=- %zé, (27a)

w = % (27h)

so that (25¢c), requiring that the velocity field is divergence free, is identically
satisfied. Using (26), elimination of p, from (25) gives

P+ Sl e d=, (28a)

T, (28b)

where
B = mlpo, ‘ (29)
and «f is defined by (1.35). From (28) we find the following wave equation

%[5%%3??] ru 3t =0 (30)

Assuming an isethermal atmosphere and a plane wave solution (1.9) the
following dispersion equation is found

wik? = wik]. (31)

Comparison of this dispersion equation with (1.37) and (1.40) shows two
consequences of the approximation (26). Firstly, for w < w, the vertical
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wavenumber ig réal now because o and k) have been assumed real, so that the
exponential growth of the field quantities, given by (1.42), i neglected. This
consequence can be corrgcted for afterwards by scaling the periurbation
quantities with pgt/¢ [Lighthill 1978, section 4.2, Turner 1973, section 1.3,
giving an improved Boussinesq approximation. Thig ¢an be understood in terms
of the energy considerations given after (1.42). Secondly, the dispersion
properties of the waves are changed. This consequence is of no concern provided
that

(2H) 2 ¢ k2, (32)
which is somewhat more general than (26b).

2.4.3 'The Bonssinesq approximation for nonlinear problems

We will now study the Boussinesq approximation for incompressible
inviscid fluids in a more rigorous way. Althouph the Boussinesq approximation
sometimes works surprisingly well in fluids with large density variations its
validity depends very much on the type of flow considered. In the theory of
internal solitary waves, for example, certain nonlinear terms are retained which
are of the same order ag those neglected in the Boussinesq -approximation, and
the whole phenomenon depends on the consistent inclusion of all terms to this
order {Long 1965, Benjamin 1966, Miesen et al. 1989].

If we consider incompressible two-dimensional flow it is profitable to
introduce again a streamfunction, defined by (27). Elimination of p from the
momentum equation (1.26h) and using (27) gives:

i+ s + Bt ¥isa) = Wolbens )} + ] it = Dot
+ eta} + el s~ e + k) + 00 = 0, (333)

where we have denoted differentiations as subscripts. Equation (1.26a), together
with {27), gives

Pt —pxde + a =0 (33b)
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If we use again that

where py = po(z), we find from (33)

(R Yot + V) = bl ion) | + P Vot = e

+ o} + [~ D) e} s — vahen + Biiaa} + e =0,
(34a)

{ﬁz - (1+3)w3/5}10x - ;x¢z + Bt =0, (34b)

where w, is defined by (1.23). Note that there is as yei no restriction on the
magnitude of 3.

The variables are now made dimensionless and of order ome in
magnitude:

- % ~_& -~ _p h
sz’ z='ﬁl p='§'—) ﬁﬂﬁ? £=T! (35)

where [ and A are the characteristic horizontal and vertical lengthscales of the
wave phenomenon, ¢ is a measure for the amplitude of the wave, H, is again a
characteristic value for pof 8o/ 7)™, B and ¢ are parameters and x, # and p are of
order one in magnitude. How 10 make t dimensionless can be seen from {31) and
the definition of wy, (1.23):

i =F(e/BIV2 1= e (g/B) V2, (30)
where we assumed that & ¢ ¢(I) and that the dispersion equation (31) is still

valid to some approximation. To make ¢ dimengionless and Z{1) we note that
(28b), together with (35) and (36), gives
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a0 —"’l)—+aﬁlh2£ 0 (37)
atox?  atoz?

S0 we define

b= g (#9)

again assuming that &< Z(7). Using (35), (36) and (38) we find from (34)
(1+QP){52'¢:::$ + Yozt + %(‘:'/’:xs + YPaea)¥x —%(5210:::: + V’xzz)%} +
aﬁzﬁx{th‘ %V’s'!bx:‘* %’!":V’xs} + ﬁ{%ﬁ’z' (1+ap)w§Hc/g}

* {wzt.—'g"pz'wn + %ibx'!"’m} +p=0, (39a)

{%ﬂz - (1+cxp)w§Hc/g] ¥ '%ﬁ:zz +p =0, (38%)

where we have dropped the hats. Note that wiH /g = 1 for an isothermal
atmosphere and otherwise of magnitude one.

By comparing (39) with (28) we find the following conditions for the
Boussinesq approximation for atmospheric gravity waves 1o be valid

atf, Fel, e= (1) (40)

The condition £ ¢ 1 ia equivalent 1o (26b), but the condition o € § is more severe
than the normally used condition o ¢ 1. So for example if H = 10km, gravity
waves for which b = 1 km and ¢ = 0.1 cannot be ireated in this Boussinesq
approximation because the nonlinear terms in the equations cannot be neglected.
We note that the condition o ¢ A is consistent with the condition e/h ¢ 1, given
by Long [1965] for a linearly stratified incompressible fluid, where a is the order
of the amplitude of the displacement 7 of a streamline. This can be seen by
noting that for an incompressible fluid
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cp=Bi=T 8o o(1] < o[k 81) - pfpe1), (4)

sothat ¢ = ¢ [,6% and therefore o ¢ f provided that % gl

Another implication of the use of the Boussinesq approximation is, that
to obtain a sclution of (39) we have to expand ¥ and p not only in & but also in
B (and if ¢ € 1 also in ¢) [Long 1965), e.g.

P = pog(2) + apyg + Bogy + Ppyg + afoy + By + ey (42)

where the first index gives the order in « and the second index gives the order in
f. We then choose o as

a = [t (432)

where n = 1,2,... 8o that indeed o ¢ # when f ¢ 1. Then the following expansion
is possible

p=po+Bo+Foat ., (43b)
For an isothermal fluid the equationg for terms of the firat order in f become

Pixxt T Przat + P1x = 0, . (44a)

Pt o =0, (44b)
which is of course equivalent with (28). The second order equations are

Yoxxt + Yazat + Pox = Y1zt =0 (45a)

— Yo + 02, =0 (45b)
The form of higher order equations depends on the value of n, The results of {his

paragraph are especially important in the study and interpretation of nonlinear
phenomena associated with internal gravity waves.
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24.4 The Boussinesq approximation for a compressible flnid.

In order that the Boussinesq approximation is valid for compressible
fluids, additional conditions arc necessary. These conditions amount to the
assumption that the flyid can be considered imcompressible except in the
definition of the Brunt—Viisild frequency and they can be inferred by writing
the equations of motion for a compressible inviscid fluid (1.45) as

1Dp
V-u=-— E P (46&)
Du
oy ="V +re (46b)

Toa %EIDFI{' (462)

and comparing these equations with the equations of motion for an
incompressible fluid (1.26). Under the same condition that nonlinear terms ean
be neglected for an incompressible fluid, they can be neglected for a compressible
fluid as can be seen by introducing the scaled variables {35), (36) and (38) into

(46) and using (33). We then obtain the foHowing linear equations for a
compressible fluid:

1 8 wyd
V'“ib"‘,“,“a@l'ﬁ fe, (472)
fn
[ =-Vp, + o8, (47b)

Brvwghn=by (B w Q). (w7c)

If the right-hand side of (47a,c) can be neglected, these equations are
equivalent to the linearised equations of motion (25) for an incompressible duid.
The conditions for which this is correct are found by introducing the scaled
variables {35), (36) and (38} into (47). We find that the two terms on the
right-hand side of (47a) are Zfae(g/B )%, whereas the lefi—hand side of this
equation is ¢[oe(g/H,)¥2/A]. This means that the right-hand side of (47a) can

chapter 2 59



be neglected if # € 1, which is the same condition as the condition for the
Boussinesg approximation for an incompressible fluid. The neglact of the first
term on the right-hand side of (47a) means that changes of perturbations take
place on such a long time scale that the rate of change of the perturbation
density negligibly affects the equation of continunity. Neglecting the second term
is just equivalent to the assumption (26) that leads to the Boussinasyq
approximadtion.

The first term on the right-hand side of (47c) is &[efe(g/H.)20,),
where we used (47b) to find the correct scaling for p; and we used that
¢} = o(gH,). Again, by comparing it to the first term on the left-hand side, this
implies that this term can be neglected, nnder the same ¢ondition nnder which
the Boussinesq approximation i3 valid for an incompressible fluid. Neglecting
this term means that the density changes resulting from pressure changes at a
fixed level, allowed for by the compressibility of the fluid, are much smaller than
the density changes due to the vertical displacement of the fluid. However, the
second term on the right-hand side of (47c) is of the same order as the second
term on the left-hand side of (47e), as can be seen from the hydrostatic balance,
the expression for the velocity of scund {1.54) and the definition of the scale
height. Therefore the second term on the right-hand side of {47c) cannot be
neglected. As we will see, retaining this term only changes the Brunt—Viisili
frequency from its incompressible value (1.23) to its compressible value (1.49).
This correction, due to the compressibility, is by no means small. For an
isothermal atmosphere, for example, it changes the value of the Brunt-Viisild
frequency by a factor {(4-1}/4]"? & 0.53. Another way to put it iz that we
account for the compressibility of the fluid by using the potential density instead
of the density g; in the equations (25) for an incompressible fluid [Turner 1973,
section 1.2 and 1.3, Spiegel & Veronis 1960].

Thus in the Boussinesq approximation for a compressible fluid the
lingarised equations of motion become

Vo =0, ‘ (48a)

2o %‘ =—Vp + pig, (48b)

60 ‘ chapter &



%ngépnw, =0, (48¢)

This leads to the wave equation (30} with w, replacing wyp, and s0 to the
dispersion equation (figure 15)

W = i , (49)

Comparing (49) to (1.55), we do not only find condition (32) but also the
condition

u? € o2k?, : (50}
! T T T r_____.__._|=:| bl
0z -
- !/ ._‘_._,.-"' .
Vi 'Ix.—'
/ =
R 4 /..-' -
4 / “
E] / 4 2
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/ //
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“
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/,
1 | I I 1 1 i 1
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Fig. 15  Dispersion diegram for internal gravity waves in a stratified
luid (dashed lines) and for such o fluid in the Boussinesq approzimation
(solid lines) with constent scale height H and Brunt—Veisala frequency
wg. In the diggram the normalised frequency wfuwy is shown versus the
normalised horizontel wavenumber Hk, , with the vertical wavenumber as
a pargmeter (Hk, . = 0.2, 1, 2).
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which can be seen to be satisfied using (49) and (32), and the fact that wgl/ey is
of order one.

As we can see from the dispersion equation (49) sound waves have been
¢liminated from the equations of motion by the Boussinesq approximation, This
is obvious since from the discussion after (47) we know that the two main effects
governing the propagation of sound, i.¢. the local density change associated with
the compressibility and the effect that this density change affects the divergence
of the velocity field, are neglectéd in the Boussinesq approximation.

2.5 SUMMARY

In this chapter we have introduced the {Navier-Stokes) equations of
motion for fluids. The conditions for which viscosity and thermal conductivity
can be neglected have been given and these conditions apply for most
atmospheric and oceanographic applications with respect to acoustic gravity
waves .

The influence of the rotation of the earth on the dispersion of internal
gravity waves has been studied briefly. From this study it is clear that the
totation of the earth can be neglected if the aspect ratio of the wave is much
lazger than ffu, % 1072 and that this condition is equivalent to the condition that
wy f (i 10,

The hydrostatic approximation, in which the vertical acceleration of the
fluid in the momentum equation is neglected, is shown to be valid for internal
gravity waves with small aspect ratios having frequencies much smaller than the
Bruni—Viisili frequency

The last approximation eonsidered in this chapter is the Boussinesq
approximation. After a historie note, in which the origin and the ambiguity of
the name of this approximation is pointed out, the conditions for its validity for
an incompressible finid are considered. These conditions require that the ratio of
the characteristic vertical scale and the scale height is very small, and that the
relative density perturbations are much smaller than this ratio. This last
condition is equivalent to the condition that the relative displacement a/h of 2
streamline in a fluid of depth h is much smaller than one, and that the relative
density difference throughout the part of the fluid we want to describe the wave
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in is also much smaller than one, If the Boussinesq equations are to be applied to
a compressible fluid the additional eondition that the wave’s frequency is smaller
than the Brunt—Viisili frequency it imposed. This implies that the acoustie
waves are not described by the Bonssinesq equations. In general one should be
careful uging the Boussinesq approximation, especially if other small effects are
retained, since its validity may depend strongly on the specific problem to be
studied.
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CHAPTER 3

INTEGRALS OF MOTION

31 INTRODUCTION

In this chapter we will adopt an approach by Lomg & Morton [1965] to
obtain two integrals of the equations of motion for a compressible fluid.
Together with certain boundary conditions these integrals are transformed to
equations for the vertieal displacement of a streamline and for the perturbation
of the temperature, in a quasi-Lagrangian coordinate system. In the limit of
incompressibility these equations are shown to be equivalent to equation (8) of
Gear & Grimshaw [1983], which is in fact Lorng’s equation [Long 1953).

32 INTEGRALS OF MOTION

The geometty we consider is shown in Fig. 18. There is a steady flow
hounded below by a rigid boundary at z = 0, and above by either a free surface
or a rigid boundary at 2 = k. The horizontal coordinate x i¢ the coordinate in a
frame moving horizontally with the phase speed ¢ of the wave. At |x| = oo the
flew iz horizontal with speed =T := up(z) — ¢ and has a density profile py(z).
Finally, in what follows we will adopt a quasi-Lagrangian description of the finid
motion. Accordingly, all quantifies are considered io be functions of 7, ie. the
height of & streamline far upstream, and x. The vertical displacement 7 = n{x,z)
of a streamline is determined by z* = =z + 7, where z* ig the Eulerian vertical
coordinate.

The aquations describing the motion of an inviseid compressible fluid are
discussed in chapter 2 of this thesis [e.g. Gill 1982, or cf. (1.45)]:

D2 4 p(v-u) = 0, (1a)
p%—‘f=—‘7p+as, (1b)
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%—t(w“) =0, (1¢)

where p is the density, p is the pressure, u = {u,v,w) is the velocity, g is the
gravitational acceleration pointing in the negative z*—direction, 7 is the ratio of
specific heats, ¥ = (-g;,%,m) and

I%E = % + (u-¥) (1d)

Here x, v, and z* are the Cartesian (Eulerian) coordinates. We now define the
potential deasity p by

B b, (2)
Al al

T

—/Lm —— — _TJ_
Z

T

Fig 16 The geometry: e ateady flow bounded below by o rigid boundary
gt z = 0, and sbove by either a free surface or o rigid boundery aig = h.
The horizontal coordinate % 45 the coordinate in o frame maoving
horizontally with the phase speed ¢ of the wave. At |x| = oq the flow is
horizontal with speed —T: = ug(2) — ¢ and has o density profile polz).
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The potential density is the density of a fluid parcel if its pressure is increased
(or decreased) adiabatically from p to p. In case of adiabatic motion we ean see
from (1c) that 7 is a conserved quantity; p is a constant which we may assign
arbitrarily. With the assumption of steady, two—dimensional motion, and with
the definitions

P _7_%1_ Y plify, (3)

g o= ‘r_lI’ {4)

equations (1) become

v-(P’%u) = 0, (5a)
P~ —vEr 478, (5b)
$#=0, (5¢)

whete u = (1,0,w), V= [g;{,o,a .] , and

d=nf vl (54)
Let us define
. P’
= ety )

where g, is a given value of p to be specified later and h; is a characteristic
length. Then (5a) implies the existence of a stream function 9, such that

uP*e = --glz[f;, {7a)
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WP = g;?. (b}

In the limit that the fluid is incompressible, i.e. ¢; = co or ¥ = o0, o -+ 0, the
stream function defined by (7) becomes equivalent to the siream function for an
incompressible flow defined by (2,27}, That v i3 indeed a stream function follows
from the fact that v is tangent to the line ¥ = constant, as can be seen vsing (7).
Notice from (5c) that p = p(4).

From (5) to (7) we can obtain the following two integrals of the
equations of motion of an inviscid compressible fluid [Appendix B}:

-§—+1d [ +gz] H{), (8a)

PUH

P+ p_célﬁ Bﬁ + gz‘] = L(¥), (8b)

where
C - JC z2 ] 'Y * 5
.4 [6 3?_4_ 8 y] [BP é BP ] (8¢)

is the vorticity,

qi‘_.u2+

Tl [#]2] 2

is two times the kinetic energy per unit mass and H(y) and L(¥) are arbitrary
functions, determined by the conditions far ypstream. The equations (8a) and
(8b) are in fact special forms of Bernouilii’s equation and Helmholtz' vorticity
equation for a two—dimensional compressible stratified fluid.

If the upper boundary is a free surface, the boundary condition can be
found by considering the sireamline coinciding with this boundary. Along this
streamline the following quantity is constant [Yih 1980

gz* + da® = constant, for z = b (9)
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This in fact means that the perturbation pressure is zero at a free surface, a8 can
be seen from (8b).

The equations (8) and (9) for ¢{x,2*) and P*(x,z*) can be transformed to
equationg for

n(x,z) = 2* — 3, (10a)
&x,z) = P*/P(z) - 1, (101)

where = i8 the Lagrangian coordinate and P(z) iz the value of P* far
upsiream From (2), (3), (8), (10b), (1.6) and (1.28) we find

§(x,2} = pegt I
= T/Tg - 1,

where the velocity of sound c; i5 the value of (yp/p)¥/2 far upstream, ie.
("/pg)V¥%, and T, is the temperature far upstream. The equations for n{x,z)
and &(x,z) are [Appendix CJ:

it + b S, -

+ m%i::'_%)’ [(14"73%)62 = (1+’7:)6x77x]

+3(pe?); [(1+6)-1] =0, (11a)
-+ (e [fEns 072 G 4 gn 37 =, (11b)

with the boundary ¢onditions

n=0,forz=0, (11¢)
i [22(1+m2 y -
gn+ & [c H_':;z (14820 — c2] =0,forz="h, {11d)
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where j = 0 or 1 for a rigid or a free upper boundary, respectively. Note that
from the definition of the potential density (2), the hydrostatic balance {1.27),
the definition of the velocity of sound and the fact that the potential density is a
conserved quantity [see (5¢)], we can see that the Brunt—Vaisala frequency for a
compressible fluid, defined by (1.49), i3 given by

""g = = gpafp- (12)

Equations (11) deseribe the inviseid steady two—dimensional compressible flow
exactly. As long as all the streamlings originate upstream the constants of
integration [Appendix B] H(4#) and L{¥) can be determined from upstream
conditions [Appendix C]. Equation {11) is the aquivalent for 4 compressible flow
of (18) of [Geat and Grimshaw, 1983} for an incompressible flow. This can be
seen by letting ¢~ 0o, ie. y2 oo and ¢ 0.

3.3 THE HYDROSTATIC AND THE BOUSSINESQ APPROXIMATION

In the present section, omece again, the hydrostatic and the Boussinesq
approximation are discussed. Note that as yet we did not use any approximation
to derive equations (11a,b), which describe two—dimensional steady motion, from
{1). Since we are now dealing with only two equations, (1la,b) respectively,
instead of four [cf. (2.14), (2.25) and (2.48)], it is easier to make a thorough scale
analysis of the two—dimensional steady compressible flow. Therefore the
following dimensionless quantities are introduced [cf. (2.33)}:

- - . n i - 7 N c
x=3 =% n=5?;;, =L, =&, =%,

C!z' e Ca
o= BTy, ()= Beetan, =3 Ba=gi—, c= 1
Pz cifc Pz1y z <% zh 1= R L2 a2’ r
(18)

B, and € are parameters. Eqnations {11a,b,d) become
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Pnel] o Tlx 2 ﬂﬁ%a,(gg-g?gzl _
epe [ +ﬂ.‘17]7]x +pe [ 1T z ﬁxR.oz1Ti(1+Cz36)2"
¢2
+ = g, e [(l-l-eiafqi}%i;ﬁz _(1+al’72)525\'25x77x]

2

+ [ﬂxﬂzxc2+ﬂzﬂ(°2)z2]{ o i + %ﬂilI(1+ﬂz5)2”‘1}} =0,

+a177:
(14a)
2y 1.2 ae_plitedafnd) &R 1
6+ o {tori(ranty -y eain) 4 o) g, (14v)
n+ %%-::H[(l+a26)%—1] 11::32 D0 forz=1, (14¢)

where we have dropped the hats and defined a Richardson number R = gh/ci.
Assuming that disturbances are small, i.e.

a1, el (15)

these equations become, cortect 10 the lowest order in an expansion with respect
to a; and oy,

952[5277:: + 7oz + '7%?5: ~ BiRpoan + [Bip1c?+Bap(c?)z2) [77:+a'%‘§6] =0
(16a)

Cz_ 2 aR -
6+ g -oc% + a‘;’f] =0, (16b)

N 2 '
nﬂ%fﬁ"—ho, forh = 1. (16¢)

Making the hydrostatic approximation implies that we assume that the
aspect ratio e of the disturbance ig small, so that the first term in (16a) can be
neglected. Note that in that case all differentiations with respeet to x have
disappeared from the equations and therefore the x-dependence of the solutions
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1 and ¢ is not determined by these equations. This also means that the waves
show no dispersion with respect to the horizontal wavenumber [ef. (2.28)].

Using the Boussinesq approximation for a cornpressible fluid means in
the first place that the compressibility can be neglected except in the definition
of the Brunt-Viisili frequency. Sinece ¢ = 0 for an incompressible fluid but
order one for a compressible fluid, neglecting the compressibility in (16a)
requires

azfay €1 (17a)

In the second place, in the Boussinesq approximation the basic density and
velocity are assumed to vary on a much larger scale than the vertical scale of the
wave. This implies that

Biel, Bael. (17b)

Because R > § in all stable cases, the free boundary condition (16¢) or {11d)
bécomes a rigid boundary condition in the Boussinesq approximation.

From (16b) and the definition of R we find that the condition (17a) is
satisfied if gh/ed € 1. With the definition of ¢; this can be seen to be equivalent
to the condition B, ¢ 1. The conditions for the Boussinesq approximation are
therefore oy ¢ 1, ) € 1 and B, ¢ 1 {cf. (2.40) and (2.41)}

34 SUMMARY

In this chapter we have derived two equations, i.e. (11a,b), from the
(nonlingar) equations of motion without using any approximation. These two
equations describe a compressible steady two—dimensional flow, if there are no
closed streamlines, in terms of the displacement of a streamline n(x,z) and in
terms of the relative temperature perturbation &(x,z). These equations also have
been used to discuss once again the hydrostatic and the Boussinesq
approximation.
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CHAPTER 4

INTERNAL SOLITARY WAVES
IN COMPRESSIBLE SHALLOW FLUIDS

41 INTRODUCTION

Internal solitary waves in incompressible stratified fluids have been
studied extensively [e.g, Benney 1966, Benjamin 1968, 1967, Grimshaw 1981,
Gear & Grimshaw 1983]. If the fluid can be considered shallow, i.e. if the depth
of the fluid is much smaller than the wavelengih, the solitary waves are
deseribed, to the first order in the wave amplitude, by the Korteweg—de Vries
equation. In that case they have the characteristic "sech?" profile, phase speeds
that vary linearly with the wave amplitude and wavelengths that vary inversely
with the square root of the wave amplitude.

The effects of the compressiblity of the fluid are discnssed to some
extent by only a few authors [Grimshaw 1980/1981, Long & Morton 1968, Shen
1966, 1967, Shen & Keller 1873). The parameter that measures the effect of the
compressibility is given by h/(+H,) or gh/e?, where b is a vertical scale typical
for the vertical situcture of the wave, H, is a vertical scale typical for the
stratification of the fluid, + is the ratio of specific heats, g is the magnitude of
the gravitational acceleration, and ¢; is the velocity of sound. For oceanographic
observations le.g. Lin, Holbrock & Apel 1985] this parameter is always smaller
than 16, and compressibility effects can be neglected. However, in the
atmospheric case [e.g., Lin & Goff 1988, Pecnick & Young 1984, Stobie, Einandi
& Uccellini 1983), where h can be the total height of the troposphere, the
parameter that measures the effect of the compressibility is an order ome
quantity. Even if this parameter it small, but « is of order of magnitnde one (v
for air ig 1.4), the compressibility of the fluid ¢an have important consequences
[Grimshaw 1980/1981].

In this chapter a theory for a fully compressible fluid is presented, that
represents a generalisation of the theory for solitary waves in incompressible
shallow fluids as presented by Gear & Crimshaw [1983). In the limit of
incompressibility, i.e. ¢, -+ oo, our results reduce to the results of their paper.
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Before we proceed with compressible fluids, the theory for solitary waves
in incompressible fluids, correct to the first order in the wave amplitude, is
reviewed briefly. For that purpose we consider an inviscid, incompressible fluid
with a background density profile py(z} and a background velocity profile uy(z),
bounded below by a rigid boundary z = 0, and above either by a free surface
whose equilibrium position 1s at z = h, or by a rigid boundary at z = h. Here, z
is a (Lagrangian) vertical coordinate, and x shall be a horizontal coordinate in a
frame moving with the phase speed ¢ of the wave. Furthermore, the basic state
is assumed to be stable, ie. stably stratified (chapter 1) and with a Richardson
number larger than } Weakly nonlinear long waves in shallow fluids are
characterised by the equality of two small parameters o en € = (h/{)?, where o
is a measure of the amplitude of the vertical displacement 7, of a streamling due
to the solitary wave and £ is the horizontal scale of the wave. The equality of o,
which i a measure for the nonlinearity of the problem, and ¢?, which is a
measure for the strength of the dispersion of the wave, represents the balance
between nonlinearity and dispersion that is characteristic for solitary waves.
Thus, we let n, = aA(X)p(z), where X = ex, and ¢(z) is the modal function
describing the vertical structure of the wave, normalised to 1 at its maximum, It
satisfies the following linear eigenvalue problem correct to &(¢?) [Gear &
Grimshaw 1983):

(PGES‘PZ)Z +poudp=10,for0<z<h, (13)
p=0forz=10, ' {1ib)
w-iclp/g=0,forz =1, (1e)

where ¢ = ¢p — 114(2), wp = (~ Z0oz/0p )2 is the Brunt—Viisili frequency for an
incompressible stratified fluld and the subscripts z denote derivatives. The
variable j takes the value 0 or 1 according to the upper boundary being rigid or
fres, tespectively. The eigenvalue to be found is ¢, ie. the linear long wave
phase speed. We shzll assume for simplicity that there are no eritical layers and
80 €y is not zero for any value of z. From the equations correct to the first order
in the wave amplitude an integrated form of the Korteweg—de Vries equation is
found that determines the amplitude A(X) and the correction e2¢; to the linear
long wave phase speed ¢, [Benney 1966, Gear & Grimshaw 1983]:
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= AA F+ BAT 1 A, =0, (2a)
A{X) = o sech¥(X/{), (2b)
ey = paf(37), £a = 120/p. (2c)

The coefficients A, » and » are known in terms of the modal function ((z) and
are given by [Gear & Grimshaw 1383]

h _
A= 20‘( Aatoyd de, (32)
oo
w=3 ot &, (3b)
h _
v =°f Poche? dz. (8¢)

In the next section (section 4.2) we will give the analysis that leads to
the analogy of equationg (1) to (3) for a compressible flnid. In section 4.3 we
discuss three special cases: (I) there iz no background shear flow and the
Brunt—Vaiskli frequency is constant; (II) there is no background shear flow and
the Brunt-Vaisila frequency is constant for 0 < z < d and zerofor d < z < h,
forming a simple model of an inversion layer; (I1IT) the background shear flow is
linear and the Brunt-Viisild frequency is consiant. For the last case only the
eigenvalue problem iz discussed. In {IF} the Boussinesq approximation is made,
which also implies that the upper boundary can be considered rigid [section 3.3,
Gear & Grimshaw 1983]. The validity of this approximation, also if it is used for
(I) and (II), i discussed in conmection with the effects of the compressibitity.
Since the analytical expressions obtained for the special cases are complicated,
some numerical results are also presented.

42 ANALYSIS

421 The linear problem

We will start our analysis for a compressible fluid from the equations
(3.11) and seek solutions of these equations with the following asymptotic
expansions:
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C = Cylz) + e¥e; + etey + ..y (4a)

7= ey(X,2) + etmy(X2) + ., (4b)

§= e25i{X,2) + e'6(X,2) + ...y (4c)
where

7 = A(X)ez), (4d)

X =ex {4e) -

At leading order we find from (3.11a,b):

(pChnse)s + pugm + (00Chor)y = 0, (5a)
£y = oc - )t (chmg - gm)- (5b)

Equations (4d) and (), together with the houndary conditions, give at leading
order, the following eigenvalue problem:

[EEE M] +pup=0,for0<z<h (6a)
ef —ef 74

o= 0,forz=20, {6D)

- jches/g =0, forz = b, (6c)

where {cf. (3.12) and (1.46)]

wg = (= 882/ 0)"/? = (- Bpoalps — 82/ )V, (7)
is the Brunt-Viisali frequency for a compressible stratified fluid. In the limit of
incompressibility (¢; » ea), (6) reduces to (1), i-e. the eigenvalue problem for the

incompresaible fluid.
In terms of pp(z), (B4} can be written as

- 2 _ pA 2 - _
(0oehee)s + powtty + pp Bl = €8s (r g0 — o, (8)

cf(ci - cf)

which, if cf € ¢2 and (¢2),/(¢3), € c3/c§, is (2.15a) of Grimshaw [1880/1981]:
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(oo€8we)e + ol — B(c)e/cle = 0. (9)

Before we continue to the next order in ¢?, we shall disenss the
differential equation (8) briefly. If the fluid is almost incompressible the lagt
term of (8) is smaller than the first two terms. From the first two terms of this
equation, i.e. the differential equation if the flnid is incompressible, we see that
cffcd is of ¢(h%/cf) = o[h?/(vH?)), where b is a typical vertical scale of the
modal function ¢. If y = #{1), equation (8) can, correct to &(h/H) = &(f), be
written as

(POES‘PZ)Z + Pawg‘P - pﬂ%g (cg)z [Es Oy = %‘g ‘P]
~po (Du[By ] + 080 = 0. (10)

If furthermere |(c2),/e?|. ¢ H, whick ig true for most practical circumstances,
(8) becomes

(poclen)s + poudy — gpo(eh)zp/cd + 0(F%) = 0. (11)
Tf also |(cf)./cl] § HY, e.g. ug(z) = 0, then

(pOESWz)z + Powéﬁf’ + a(ﬁQ) =0, (12)
and the differential equation for the modal function for a compressible fluid is
the same, correct to the first order in the Bousginesg parameter h/H, as the
differential equation for an incompressible fluid if the "compressible definition"

for the Brunt~Vaisili frequency (7) is used.

4.2.2 The Korteweg—De Vries cquation
At the next order in €2 we obtain (Appendix D):

[EE EE—7125—5323] + pun +1,=0,for 0 <z <h, (132}
5 2

=0, forz =0, (13b)

M2~ ¢3ma/8 + 182 = 0, forz = b, (13c)
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and the inhomogeneous terms f;, g are given by

fo = pcfmies + [20c00108(cB-<d)*(cdma — 8712
- [553[%?; + (c3-c8)[ci(deh + (Jo--4)cieh + eh)nt:

- 223 + &/ oImim + £c}(1 + do ]| (130)
and
82 = - 2eue(c3-50) ebmals — 1) + [ (d-Srbals
+ (350083 + G )88 + $eb/ et/
~ (2c3+88/ a)enss + {1+ 1. (13¢)

The solution of (13a,b) can be found by the method of variation of
parameters. In order that this solution satisfies the second boundary condition
(13c) it is necessary and sufficient that (Appendix E)

S ot ol £ (621} ez

+ {FEICHehE0) waga exl- f(e/cp)enl}

= 0. (14)

Equation (14), together with (13d,e), (6c) and after partial integration, yields
the following integrated form of the Korteweg—de Vries equation for A(X):

~¢AA + hpAt AL, =0, (15a)

b -, -
A= T2pgco(ci-cd)® (cheagy)idz, (15b)

p= [ ost{3ed + (G-EDEHTSE + (1) o-8)Eck + 38t
— 2ge3(2ci+2d/ o)own + gRE(2+Y/ ) H e/ ci)dz,  (15¢)
v = ofhpuaﬁgazdz. (15d)

Here we used that (Appendix F):
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polz) = 3(a) exp[- I *(e/ch)ea]. (16)

If €7 € ¢2, an assumption that is almost always correct for atmospheric
applications, A, g and » can be approximated by

= J 2ppco( 0 + 268uR/cd - 2ppwn/cl + ghp?/cd)ds, (17a)

p= potiBud + TERY/<2 —Taprt/ch + EH5) gl cf
— g (r+1)ed/clldz, (178)
h _

v= I hcleida. (17¢)

If the velocity of sound becomes infirite, which means that the fluid is
incompressible, the coefficients of the Korteweg—de Vriss equation, given by (15)
or (17), become equal o the coefficients for the incompressible case as given by
(3) [cf. Benney 1966, or Gear & Grimshaw 1983}, Furthermore we note that the
results (15) for the coefficients A, p and » differ from those of Grimshaw’s
[1980/1981] freatment of the compressible case. This is dne to the fact that
Grimghaw does include compressibility only partially and furthermore applies
the Boussinesq approximation, both of which we do not adopt (see Appendix G).

The importance of the "compressibilily correction terms" in (17)
depends on. the magnitude of the two parameters ¢§/c? = o[h?/(7HY)] [see the
discussion before (10)], and ghfe? = hf(7H), where h and H are the scales for the
vertical structure of the wave and for the stratification of the fluid, respectively.
I y= ¢(1) and h/H ¢ 1 the last and the second term in (17a) and the last two
terms and the second term in (17h) can be neglected:

3= [ 2ol - g/ ch)is + O(R), (18a)
b= 1ot - TgwedfcB)da + 087, (180)
v= jhpoEapzdz. | (18¢)
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43 DISCUSSION

431  CASE I: Uniform stratification: g = 0, w2 = N?

Here N is a constant, which means that the scaleheight of the
atmosphere is & constant. This also means that the atmosphere is 1sothermal and
the velocity of sound is a constant. For an isothermal atmosphere H is constant
and the density is given by [cf. (1.30)]

pulz) = g exp(-z/H). (19)

If we anticipate that cf € cZ, (6) becomes [see also (9)):

(PO{Pz)z + PON}(P/CS =0, (203-)
@=0,forz=0, (20b)
0 = jcf./g, forz = h. (20¢)

This eigenvalue problem is the same as that for solitary waves in an
incompressible shallow fluid, if our definition of the Brunt-Viisili frequency,
i.e. {T), is replaced by its incompressible counterpart [cf. case (O) of Gear &
Grimshaw 1983]. That the consequences of this are by no means trivial is due fo
the fact that H in (19) cannot be replaced by g/N? as for an incompressible
fluid.

The solution of (20} is

@ = Mpgl/2 sin(r;z), {21a)

cf = N*/[r3+(4H?)], (21b)
where

tan(r;h) = jr,N2{g[rd+(4H?)Y — N2/(2H)}, 5 = 0,1,2,... . (21¢)

For g rigid upper boundary condition j = 0, 80 rgh = s7, and the s = 0 mode is
excInded. For a free upper boundary condition

(B RO RO
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and
d=gfi-By+ B2+ 00695 = (22b)

The s = 0 mode is the free surface mode, while the other modes are internal.
Note that the decrerse of the phase speed, due to the stratification of the fluid,
of the free surface mode compared to the phase speed of long surface waves on a
shallow homogeneous fuid (gh)/? ig approximately twice as large if the
compressibility is faken into account. The eigenvalue r; and s0 ¢ can be
obtained nomerically very easily by means of the iterative procedure

F(en+h) = bt a.rctan[N“rg“? [g[rgm 241/(4H2)] - m/(zﬂ)] "] + sw/h,

n=10,1.2,.., (23a)
0 =0,8 =123, (23b)
o = [N?/(gh) — (4HZ) 12 (23¢)

The iteration is stopped when r{® m r{P-1, whereafter ¢, is caleulated from
{21b). The constant M in (21a) is chosen $o that the maximum value of | p(z)] is
1. This value is attained at z,; we find that

(bze)rs = a,rctan[ 2H 1 g] 5=12,. (242)
and
Mpg/? = [sin(rszm)j exp[—Zm/ (2H)]

= (—1)5‘1[1 + [—%H—lﬂl —2j HN ]']” :

[Ta +itH EHZ - Exp[—zm/(2f[)] (24b)

Notice that for an incompressible fluid N?H/g = 1 but for a compressible fluid
{with v < 2) N2H/g « §. Taking account of this by adding jr to the right hand
side of (24a) if the fluid i¢ incompressible, (24) reduces to (48) of Gear &
Grimshaw [1983]. For the free surface mode (5 = 0) and sufficiently large H, the
maximum is aitained at z; = b, and M is chosen 50 that @(h) = 1.
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Next we will evaluate X, p and v from (17) to find the correction to the
phase velocity (c;) and the wavelength (£) of the solitary wave from (2). The
integrals that appear are basic and can be found, e.g., in Gradshteyn & Ryszhik
[1965]). Further evaluation of these expressions for A, 4 and » yields rather
complicated expressions that will not be given here. Instead some numerical
results are presented. But first we remark that for h < (2-f)sH we can
approximate A and p within a few percent by [see (18) and (21a)]

h
A/MEx 2(:01'30 [ cos(1ez)dz = cyrg[hrg + dsin(2hr,)], (25a)

M 5 ciMpg3 {35 [ expa/ 208t (r,2)ds
+ rg[gﬁ - %é] . ;hexp(z/zﬁ)cosz(r,z)sin(:,z)dz] , (25b)
and v is given by
v/MI =] [Msin¥(z,z)dz = gcs[h - gi—asin(%rs)]. (25¢)

If j = 0 evaluation of (25) gives with {2¢)

hey , AMHr[(-1)%eh/ 2H1) ITgH (R241/12) (26a)
acy plY3EH2eE + 1) |c? (Hir2+1/4)
et plf¥sed? +1) [7zHE (H%24+1/12) _1] -1' (26b)
h*  2MEh2r] [(-1)%eb/ 2-1] (e (HUni+1/4)

which, again for b < 25H, can be approximated as

hey , AMh[{-1)seb/2H_1} (273)
acy 9smpl/tH
ol . Opi/?H (27b)

b} 2srMh[(~1)s eb/2t]
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where we used that gHfe? = 1/1.4 for air. In that case the "correction due to
the compressibility is about five times (TgH/c?) larger than the term for the
incompressible case and of the opposite gign. This means that compared to a
solitary wave in an incompressible fluid, a solitaty wave in a compressible fluid
has & wavelength that is twice a3 small and the correction to the long wave
phase speed for this wave is four times larger. Furihermore, the sign of the
amplitude & of the wave changes so that a wave of elevation (e.g., j= 0,5 = 1)
becomes a wave of depression. So a solitary wave in a compressible fluid can
even be gualitatively different from the same wave in an incompressible fluid.
However, before we discuss how such qualitatively different behavior is possible,
some numerical results are presented.

We have calculated the linear long wave phase velocity cp, the
correction ¢, to it, and the length £ of the well-known 1-soliton solution of the
Korteweg— de Vries equation (Table I). We did so for the first two modes (5 =
1,2) and for free (j = 1) and rigid (j = 0) upper boundary conditions, using {17)
and the formulae in this section. The results are compared with those for an
incompressible fluid, calculated from (48) and (49) of Gear & Giimshaw [1983].
If the velocity of sound is assumed to be infinite in (17), and the definition of the
Brunt-Viisili frequency for an incompressible isothermal fluid N = (g/H)¥? is
used, the results axe identical to those obtained from the formulae of Gear &
Grimshaw. If the Brunt-Vaisili frequency is not defined in this way (¢; is still
infinite), (17) already gives different results for j = 1. This is due to the fact that
in order to simplify their results for j = 1, Gear & Grimshaw explicitly use that
the scaleheight of the fluid M = N2/g [see their eq. (45)], which is only valid for
an incompressible isothermal fluid. Therefors (49) of Geax & Grimshaw cannot,
without any further consideration, be used as an approximation for a
compressible fluid. The fact that for s = 1 and j= 1 there is reasonably good
agreement between the results it a evincidence, gince the last three terms in
(17b), i.e. the texms due to the compressibility, give a much larger contribntion
to p than the first incompressible term does. This can be checked by numesical
evaluation. ’

The reason why, at least in this example, the results are influenced
strongly by the compressibility of the fluid is that for a shearless isothermal fluid
the coefficient in front of the nonlinear term in the Korteweg—de Viies equation
is of ¢(h/H), because it is a well-known fact that in the Boussinesq
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s=1 s=2

h/H  -10%he/acy)  -10(ef2/hF) =103(hefacy)  {af?/h?)
j=0 0.1 2.8 (-0.%07) = 7L6 (-286) 0.349 (-0.0873) 1458  (-580)
0.2 5.65 (-1.41) 358 (~143) 138 (-0.345) 36.7 (-14T)
0.5 140 (=3.53) 4.3 (-57.1) B.30  (~2.08) 6.00  (-24.4)
1 274 (~7.01) 706 (-283) 31.0 {-7.80) L6l (~6.54)
2 50.5 (-13.6) 3.30  (=13.5) 108 (-27.6) 0.449 (-1.79)
=101 374 (2.51) 535 (77.7) 495 (15.9) 102 (3.14)
0.2 748 (5.07) 264 (38.9) 0.7 (32.0) 4.72 (1.55)
0.5 186 (13.2) 0.2 (12.7) 322 (80.6) 1.55 (0.597)
1 36.8  (28.0) 4.7¢ (5.04) 80.9 (164) 0.602 (0.278)
2 706 (64.0) 2.02 (1.67) 215 (346) 0.214 (0.119)

TABLET  -hcfacy and -ef2/h? as o function of h/¥ for the modes
8 =12 end for free surfece (j= 1) and rigid (j = 0) wpper boundary
conditions in cage I. The numbers between porenthesis are the values for
an tncompressible flutd. For the ratio of specific heats we used 4 = 1.4,

approximation (where it is assumed that H 3 h) this coefficient becomes zero for
an in¢compressible fluid [Long 1965]. However, the terms due to the
compressibility of the medium are of the order gh/c?, which for a compressible
fluid, i.e. « of order of magnitude one, is the same order of magnitude as h/H.

Finally in Fig. 17 we display graphs of the sireamlines for s = 1,
|a|/h=0.1,h/H = 0.2 and j = 0, 1. Note that for an incompressible fluid the
solitary wave is & wave of elevation for j = 0 (rigid upper lid) and a wave of
depression for j = 1 (free upper surface). However, for a compressible fluid the
solitary wave i3 a wave of the depression for bath j = 0 and j = 1. Also note the
difference in wavelength for compressible and incoempressible solitary waves,
which, for the valnes of the parameters used, is quite small if j = 1 but is a
factor 2 j= 0.
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Fig. 17. The streamlines o3 a function of X/€ and 2/h for the mode s =
1, le|/a=0.1, h/H = 0.2 when (a) = 1 and (b) j = 0 for cose L. Here £
is the wavelength of the solilary wave in the incompressible fluid. — — -,
incomaressible fluid, , compressible fluid.

432 CASE II: Inversion layer: ug = 0, wf = N? H{d-z)

Here H is the Heaviside function, so that Wy takes the constant value N
below the inversion level z = d and is zero above this level. The lower layer is
therefore an isothermal uniformly stratified layer with constant velocity of
sound. In the upper layer the Brunt—Viisili frequency is zero, implying constant
density. Of course, such a model is an idealisation of a real physical system like
the atmosphere. The idea behind thiz idealisation is that in the upper layer
(z > d) the temperature, and so the scale height H = ¢f/~g of the fluid, increases
suddenly to a much larger value than in the lower layer (z < d). A much larger
value of the scaleheight implies that the density of the fiuid is almost constant.
However, for a compressible fluid like air, 7 i2 of order of magnitude one, and to
be conmsistent with the assumption of constant density, terms proportional to
g/c? have 10 be neglacted in the upper layer.

chapter 4 87



First the eigenvalue problem is solved, again anticipating that cj € ¢2
For the lower layer (202,b) applies, while for the upper layer the boundary
condition (20¢) is wsed and

gy =0,ford <z <h, (28)

since ¢y = ¢, and p, are constants and wg is zero in (9). Requiring continuity of
the solution and its first derivative (dynamic boundary condition) gives

(~1)*t M exp(z/2H) sin(r,z), for0 ¢ z <4,
p(z) = {

(-1t M {‘E‘% exp(d/2H) sin(red), ford <z ¢ h,

(2%a)
where
cf = N2/[r2 + (4HE®)], (29b)
and .
tan(rd) = —zs(h—jca/g—d)[1+h—‘}§[UEi] T s =123, (286)

Note that as for case I the compressibility of the fluid only changes the definition
of the Brunt—V&isili frequency in the eigenvalue problem.

In order to compare our results for a compressible fluid with those of
Gear & Grimshaw [1983] for an incompressible fluid and to estimate in that way
the importance of the compressibility when studying solitary wave propagation,
especially in the atmosphere, we shall use the Boussinesq approximation. This is
done although corrections due to non—Boussinesq terms may be of the same
order of mapnitude as corrections due to the compressibility of the flpid. In the
Boussinesq approximation {20} becomes [ef. Gear & Grimshaw 1983]

(~1)*lsin(rsz), for 0¢ z<d,
w(z) = he-z) . (30a)
(1)t {ﬁ% sin(rgd), ford ¢z <h,
where
o = Nug2, (308)
and
tan(r,d) = —~ (), 8 = 1,2,3,... . (30¢)
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Next, from (17} and (30) we can evaluate A, 4 and ¥ to find ¢; and £
from (2c) to study the correction due to the compressibility to them. Because we
already use the Boussinesq approximation, which is correct only if h/H is much
less than one, and to obtain expressions of reasonable size for ¢; and £, we neglect
terms of #(c§/cd), 2[(gh/cd)?] and 2{(gh/cd)®). Equation (17) then becomes (18)
with ¢(z) given by {30z). We find that

bhey . 2(=1)A(h-d)2{sin(r.d)=(7g/6r c. ) [1+cos?(r.d)/2c0s(r.d/2
acy +I £/ 8CE ’
(31a)
af® _ 3+12(h—d)}(2+d/h
J AR CS LR Y sin{r gf0r.cl +CO5( T, CORH(I, ’
(31b)

which for ¢; - co reduces to {56) of Gear & Grimshaw [1983]. With these
expressions we have calculated heyfac, and aff/h? for several values of d/h for
the modes $ = 1,2 and for h/H = 0.2 and b/H = 0.5 (Table II). Comparison with
the results for an incompressible fluid shows that differences, although less
important than in case I, are appreciable. Corrections due to the compressibility
are more important for smaller s and larger h/H and d/H. For an incompressible
fluid the solitary waves ate always waves of elevation since the amplitude a iz
always positive, as can be seen from (31) with ¢; + 0o and from Table II. The
inversion layer z = d is displaced upwards by these waves. However, for a
compressible flnid the waves are waves of depression if s == 1 and d¢/h - 1. This is
due to the fact that for an incompressible isothermal layer of fluid g - 0 if the
Boussinesq approximation is used [see case I]. So, when d = h the inversion layer
in this case becomes just an isothermal uniformly stratified layer of fluid and the
only terms contributing to p are the ones due to the compressibility.

‘We can conclude this case with a remark on the two~layer flnid [case IV
in the paper by Gear & Grimshaw 1983]. The twolayer flnid is a typical
meompressible model gince both layers of fluid are assumed {o have constant
densities, being equivalent with the assumption that H = c¢/4g » eo for both
layers. If the fluid was assumed to be compressible, ie. v = £(1), this would
imply gf¢E -+ 0 and the coefficients in the Korteweg—de Vries equation are the
same a3 for an incompressible fluid.
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g=1 §=2
d/h 102(he,face)  10%(alfh?) 10%(heyfacy)  10%(af2/hY)

%:0.2 0.1 632 (836) 0.797 (0.789) 666  (663) 0.934 (0.937)
0.3 178 (182) 724 (7.02) 218 (218) 9.01 (9.11)
0.5 761 (80.5) 213 (219) 123 (121) 73 (27.7)
0.7 230 (28.1)  BE7 (70.5) 600 (67.0)  6B.8 {(87.6)
0.9 482 (1.83) —421  (1110) 1.3 (10.8) 447 (478)
%20.5 0.1 625 {638) 0.810 (0.789) 669  (863) 0.920 (0.937)
0.3 171 (182) .60 (7.02) 222 (218) 8.88 (9.11)
0.5 694 (B0.5) 259 (21.9) 127 (121) 266 (27.7)
07 152 {28.1) 135 (70.5) 72.0 (67.0) 632  (67.6)
0.9 —14.8 (1.83) -137 (1110) 124 (10.8) 408 (478)

TABLE II heyfacy and af2fhd as ¢ function of d/h for the modes
5= 1,2 ond for h/H = 0.2 gnd h/H = 0.5 in case II. The numbers betmeen
parenthesis are for an tncompressible fluid, For the ratio of specific heats
we uged ¥ = 1.4.

433 CASE II: Isothermal shear layer: uy = ~ kz, o = N2

Here k and N are constants, so the background state is that of a linear
shear flow in an isothermal stratified fluid. We will assume that the Richardson
number N2/k? is greater that $ so that the background state is stable. We will
also assume that thers are no critical layers so that cg # 0 for 0 ¢ 2z < h. In the
first two examples the compressibility of the fluid did not, aside from a
redefinition of the DBrunt—Viisili frequency, alter the eigenvalue problem
materially. After redefining this frequency the linear problems for compressible
and incompressible fluids were equivalent. Significant consequences of the
compressibility were found in the next order, ie. when evaluaiing the
coefficients of the Korteweg—de Vries equation. However, in the present example
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we will show that also the eigenvalue problem, and thus the eigenvalues ¢, and
eigenfanction ¢(z), can change considerably due to the compressibility of the
fluid. Note that we do not use the Boussinesq approximation and do not assume
¢§ to be much smaller than cZ. Since the fluid is isothermal ¢; is a constant and
thé eigenvalue problem (8) becomes

(rocien)z + pol2p + 2o —gfﬂﬁg (cBp, —gp) =0,for0<z<h, (322)
e ~c

with boundary conditions

p=0,forz=0 {32b)
v = jobps/g, forz =h. (32¢)

We can write (322) like

Pyy + [a(¥)+ax(7)]o =0, for 0 < z < b, (332}
where
v =1+ ke/ey, (33b)
#(y) = y(1-2.5%) V2 exp(-a1y/2) oly), (33c}
a(y) = 22/¥% (33d)
aly) = sy (l-ay/e) + y{(1ay?) Hamyiag) — Ja,(1-a,9%)7, (33€)
2, = ¢/(HX), (3af)
a; = N#/k?, (33g)
a3 = 2g¢p/ (ke?), (33h)
ag = cffcd. (33i)

H ¢f € cf, ay » 0 and solutions of {33a) can be found in terms of
Whittaker functions [see e.g. Kamke 1956]. In the Boussinesq approxmation
ay = 0, and in the incompressible limit both ay and a4 are zero. I ay, 2y, and a,
are zero, qy(y) = 0 and the solution of (33a) satisfying boundary condition (32b),
ie P(1)=0,isgivenby

P(y) = M y¥2 sinfz In(y)), (34)
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w(y) = M V% ginfr In(y)}, (35a)
where

rt ey} = N2, (5b)
and the upper boundary condition (32c) determines the eigemvalues ¢p. An

approximate solution of (33a), if a;, » 1 and aj/a,, agfa; and agfa; € 1, is
[Nayfeh 1973]

#(y) = L q§¥/% {sin[B(y)] + P cos[B(y)}, (36a)
whera

Bly) =1 apH(1+a,/20,)dy

= a¥/¥n(y) + faj¥ ’{—aﬁﬁ/ 8 - fay?(l-agy”)"

+ fa;Y Y aay)ln [81—:%%;]}. (36b)

The lower boundary condition (32b) yields
P = — tan[B(1)). (36¢)

By comparing {36) with (35a) or by substitntion of (36) in (33), one finds that
an even better approximation is obtained with

w(y) = M y"/? exp(ay/2) {sin[6(y)]-tan[6(1)]cos[5(¥)]}, (37a)
= =1/2 2/8 _ 5yl -1 /g i4al/?
By} = tin(y) + fazV/ M -aly?/8 — Jar(l-ay®) ! + Jail/(22g)ln —7)| |-
(37b)
The condition a, » 1 can then be replaced by a, > 1, while the conditions a,/a,,

a3/as, and /2, € 1 still apply.
The eigenvalues oy are determined by the upper boundary condition
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(32¢c). X the fluid is incompressible and the Boussinesq approximation is used
8 =83 = 2y = j = 0 and we find [Gear & Grimshaw 1683, equation (38b)):

¢y = kh[exp(snft)}1], 3] = 1,2,3,..... (38)

From (34) we see that ;1 and gﬁ are o(gg_lg) and that %‘1 is 0[(-9-0-]5)2]. From (38)
we find that for [s]/r 2 i the pﬁ&se velocity ¢ 35 of the order o(kh) or smaller,
Therefore the conditions a,/a; € 1, a3/2; € 1, and ayfa, € 1 for the approximate
sclution (36a) to be valid require k2 ¢ g/h, a ¢ondition that is always satisfied
under practical circumstances.

If a, a4, and a4 are non—zero, the eigenvalues ¢y can be determined using
an iterative procedure. From (32c), (33b), and (37) we find

b = G(h), (392)

whetre

B=1+kh/c, (39h)

G(h) = exp{%a.rctan{tan[ﬂ(n] + %ﬂﬁ [1+§'§'“5(1-a1?i)] -1
«[r+ g2 o Kt/ 2-6a Ho(1a ) -G RR (10 )
+2ﬁ(aras)(1-a4ﬁ=)'lﬂ [1+tan[ﬁ(1)]mm(ﬁ)]]}

-3

+ mr/r]. (39¢}

With a simple iterative procedure like the one discussed in case I we find the
eigenvalues cp. We have calculated ¢p/hk if r = 1 for several values of h/H for
the modes ¢ = 1,2 and j = 0,1 (Table ITI). This was also done if ag = 0
(Boussinesq approximation) and if 8, = a3 = a; = 0 {incompressible fluid in the
Bonssinesq approximation).

chapter 4 03



h/H j=0 j=1 ji=0 j=1

0.25 435 (482) [502] 398 (d24) 471} 17.8 (18.7) [20.7] 16.6 (17.6) [19.3]
0.6 380 (452) [348] 343 (396) [478]  16.8 (18.7) [22.3] 14.5 {18.8) [20.0]
1 207 (452) [398] 262 (340) [461]  12.7 (18.7) [24.9] 111 (14.4) [10.7)
15 183 (452) [556) 321 (285) [4B4) 7.99 {18.7) [24.3] 12.9 (12.8) [19.9]

TABLETO The dimensionless phese velocity 10%ch/k) for r = 1,
s=12 j= 0,1 and h/H = 0.25, 0.5, 1, 1.5, calculated from (39). The
nurnbers befween parenthesis are for ay = 8q =y = 0, t.e, for an
incompressible fluid in the Boussinesq cpprovimelion. The nuwmbers
between brackets are for a; = 0, i.e., for & compressible fluid in the
Boussinesq approzimation. For the ratio of specific heats we used 1.4.

From Table IIT we see that corrections for the compressibility tend to
make the phase velocity larger, while not making the Boussinesq approximation
makes the phase velocity smaller. The magnitude of the corrections entirely due
to the compressibility can be inferred from comparison of the numbers between
parenthesis and brackets.

4.4 SUMMARY AND CONCLUSIONS

In this chapter we have studied the effects of the eompressibility of a
density-stratified shallow fluid on nonlinear long solitary gravity waves that are
described by the Korteweg—de Vries equation and we compared our results with
those for an incompressible fluid. To that end, starting from two integrals of
motion for the compressible inviscid flnid, we performed a rigorous derivation of
the eigenvalue problem for the modal function whick deseribes the vertical
gtructure of the wave phenomenon.

To first order in the wave amplitude we found, just as in the
incompressible case, the Korteweg—de Vries equation of which the coefficients
are given in terms of integrals of the modal function. In the limit of
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incompressibility these coefficients reduce to the values that have been given
previcusly in the literaturs for an incompressible fluid [Benney 1966, Benjamin
1966, Grimshaw 1983). However, they differ from those found by Grimshaw
[1980/1981) who also treated the compressible case. The reason for ihis is that
our approach is more general in that we do include compressibility fully and
furthermore we do not apply the Boussinesq approximation.

The modification of the eoefficients in the Korteweg—de Vries equation
have been studied in some detail for three special cases.

For an isothermal fluid with a constant Brunt-Viigild frequency and
withont shear these modifications are most pronounced, Assaming 2 rigid upper
boundary of the fluid, not only the wavelength of the solitary wave becomes
approximately {wice as small as in the incompressible case but alse the
eorrection o the long wave phaze speed becomes approximately four times
larger. Furthermore it turned out, again assuming a rigid upper boundary, that
the inclusion of compressibility results in a change of sign of the coefficient in
front of the nonlinear term in the Korteweg—de Vries equation thus causing 2
solitary wave of elevation to become one of depression. The importance of the
effects of the compressibility in this example is due to {he fact that the
coefficient in front of the nonlinear term in the Korteweg—de Vries equation
becomes zero in the Boussinesq approximation if the fyid is incompressible.

For the case of an inversion Jayer the comrections due io the
compressibility, though less pronounced than in the preceding case, are still
appreciable. The most significant effects are found for the lowest modal modes,
that is for the modal modes with the smallegt vertical wavenumber, and for
larger inversion heights.

Finally, for the case of an isothermal shear layer important changes are
found in the phase speeds and modal functions, i.e., the eigenvalyes and
eigenfunctions, respectively, of the eigenvalue problem, thus giving rise to
considerable changes in the coefficients of the Korteweg—de Vries equation.
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CHAPTER &

INTERNAL SOLITARY WAVES
IN COMPRESSIBLE DEEP FLUIDS

5.1 INTRODUCTION

Long internal solitary waves in shallow stratified fluids have been
studied comprehensively [Benney 1966, Benjamin 1966, Gear & Grimshaw 1883,
Miesen et al. 1690, chapter 4]. To the first order in the wave amplitude these
waves are described by the Korteweg—de Vries equation. A well-known eolution
of this equation has the characteristic "sech?" profile, phase speeds that vary
linearly with the wave amplitude and wavelengths that vary invetsely with the
square oot of the wave amplitude. However, in deep fluids, where the total
depth of the fluid is much Jarger than the horizontal scale of the waves, solitary
waves are algebraic [Benjamin 1967, Davis & Acrivos 1967]. These algebraic
solitary waves have phaste speeds that also vary linearly with the wave
amplitude but their wavelengths vary inversely with the wave amplitude (and
not with the square root of the wave amplitude Lke for solitary wavee in shallow
fluids). The algebraic solitary wave is a solution of the Bemjamin-Davis—Ono
squation, which describes the balance between dispersion and wave steepening
due to weak nonlinear effects, for long internal waves in a density stratified layer
of fluid that is confined in an infinilely deep fluid. The waves are long compared
to the typical seale of the stratification.

As faz as the author knows, the changes of the deep fluid solitary waves
due to the compressibility have only been discussed by Grimshaw [1980/1981].
He distingueishes two dimensionless parameters measuring the effects of the
Boussinesq approximation and the compressibility and studies solitary waves in
a compressible fluid, correct to first order in these parameters, using the
equations of motion in Lagrangian coordinates. Furthermore an approxmation
concerning the profile of the velociy of sound is used [Grimshaw 1980/1981,
Miesen et al. 1000].

Ia this chapter a theory for solitary waves in a fully compressible fluid is
presented, related closely to the theory for solitary waves in incompressible deep
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fluids as presented by Grimshaw [1981] and to the theory for solitary waves in
both incompressible [Gear & Grimshaw 1983] and compressible [Miesan et al.
1990] shallow fluids. In the limit of incompressibility our results coincide with
the results of Grimshaw [1981] and Christie [1689] for incompressible fluids. As
we will see, for a compressible fluid with a ratio of specific heats 7 = £(1), the
dimensionless parameter h/H, measures both the effects of the Boussinesq
approximation and the compressibility. Here b is a scale typical for the vertical
structure of the wave and H; is & scale typical for the stratification of the fluid.
For the lower atmosphere H, lies between 5 km and 9 km. In some cases, e.g.
Christie, Muirhead & Hales [1978] where h/H, < 1/10, compressibility can be
neglected and the Boussinesq approximation can be made with small errors. In
other cases, e.g. Noonan & Smith [1985] where 0.2 < h/H, < 0.4, important
changes due to the compressibility and the inadequacy of the Boussinesq
approximation must be expected. In the three special cases in the present paper
we will concentrate on the effects of compressibility since the validity of the
Boussinesq approximation can also be studied from incompressible theory. Note,
however, that significance of the compressibility and the invalidity of the
Boussinesq approximation go together. Unforfunately, not using the Boussinesg
approximation while incorporating compressibility would require a numerieal
approach for all but the simplest cases.

Before we proceed with compressible fluids, the theory for solitary waves
in incompressible deep fluids, correct to the first order in the wave amplitude, is
reviewed briefly. An inviscid, incompressible fluid is considered for which there
is a background density profile po(z) and a background velocity profile uy(z),
bounded below by the rigid boundary z = 0, and such that p4(z) — constant and
uy(z) — 0 a8 z — co. Here, z is a (Lagrangian) coordinate and x will be a
horizontal coordinate in a frame moving with the phase speed ¢ of the wave.
Furthermore, it is assumed thai the basic state of the fluid is stable, i.e. the fluid
is gtably stratifie? and the Richardson number is larger than § Weakly
nonlinear long waves in deep fluids are characterised by the equality of two
small parameters @ and ¢ = h/{, where & is 2 measure of the amplitude of the
vertical displacement 7, of a streamline due to the solitary wave (Fig. 18) and £
is the horizontal scale of the wave. Again, like in chapter 4, the equality of these
parameters represents the balance between nonlinearity and dispersion,
measured by e and ¢, respectively. Let (X2} = cA(X)¢(z), where X = ex, and
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Fig. 18  The geometry of the problem: a compressible flow, bounded
from below by ¢ rigid boundary ot z = 0, is steady in o frame moving
horizontally , i.e. in the x—direction, with the phase velocity c of the
wave, The fluid is stratified predominantly in a layer of depth h and has
a background horizontal velocity profile uo(z) and e density profile py(z).
The wertical displacement m(x,z) of e streemline is given by the
difference between the Eulerian vertical coordinate z* and the Lagrangian
vertical coordinate 2.

w(z) is the modal function describing the vertical structure of the wave, which is
normalised to 1 at its maximom value. It satisfies the following eigenvalue
problem [Grimshaw 1981):

{poeden): + polp = 0, for 0 < = < 00, (12}
p=0, forz=0, (1b)
¥z — 0,48z — oo, (1c)

where ¢y = cg = 0y(2), Wy = {— EPez/po)? is the Brunt-Viisils frequency for an
incompressible stratified fluid, and the sobscripts z denote derivatives. The
eigenvalues ¢y of the problem are the linear long wave phase speeds. We will
assume that there ar¢ no critical levels so that c; is not zero for 0 < 2 < co.

chapler 5 ‘ 99



From the integrated equations of motion, i.e. Long’s equation [Long 1953], one
finds correct to the first order in the wave amplitude the so—called Benjamin—
Davis—Ono equation [Banjamin 1967, Davi3 & Acrivos 1967, Ono 1975):

—cA + }pAl - £.B(A) = 0, (22)
where
=L J [ 7] exp(irX) £ (F)dr, (2b)
and
A7) = Jmexp(—irX)A(X)dX. (2¢)

This equation determines A(X) and the correction ec; to the linear long wave
phase speed ¢;. The algebraic solitary wave solution of this equation ig
[Benjamin 1967)

A(X) = off /(X2 + B), (32)
and its phase speed ¢ » ¢y + ¢y, where

= fuafA, la=dx/p. (3b)

The coefficients A, 4 and % are known in terms of the modal function ¢(z) and
are given by [e.g. Grimshaw 1981]

A=2 [potoplds, (43)
w=3 0I “ pochedaz, (4b)
& = (pgcfe?)s , . {4c)

where the subscript "co" denotes a quantity evaluated as z — co. As already
noted, and as ean be seen from (3b), the algebraic solitary wave (3a) has a phase
speed which is linear in the amplitude g, and has a wavelength £ which is
inversely proporticnal to a.

In the next section (section 5.2), starting from the equations (3.11a,b,c),
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the analysis is given that leads to the analogon of equations (1) to (4) for a
compressible fluid. Tn section 5.3 we discuss three special cages that can all be
regarded as models of the nocturnal inversion in the atmosphere: (I) there is no
background shear flow and the Brunt-Viisils frequency is constant thronghout
a lzyer of depth h (i.e., 0 £ z < h), and is zero above this layer (i.e., z > h); (1)
there js a linear background shear flow and the Brunt-Viisdld frequency is
constant throughout a layer of depth h, and is zero above this layer; (IIT) there
is no background shear flow and the Brunt—Viisili frequency has a "sech
profile. In case (M) and (LI) the Boussinesq approximation is used, alihough, as
already noted, its effects are of the same order of magnitude as the effects of the
compressibility. This is done in order to estimate analytically the importance of
the compressibility in these cases. Corzect to the first order in the parameter
h/H,, effects, due the invalidity of the Boussinesq approximation, can just be
added to the effects of the cornpressibility.

5.2 ANALYSIS

5.2.1 Inner expansion

First we consider the part of the fluid that s clearly stratified (figure
18) and where we can identify 2 characteristic vertical scale, compared 1o which
the waves are long. The ratio of the characteristic vertical secale and a
characteristic horizonial lenght scale of the wave is . We seek solutions of the
equations (3.11a,b,¢), which govern finite amplitude waves in inviscid
compressible stratified shear flows, having the following expansions

= ep(Xg) + mp(XeE) + .., (5a)

§=eby(X,2) + 26(X 2} + ..., (5b)

¢ = Cp(2) + €0y + €2 + ..., (5c)
where

n(X,z) = A(X)p(z), : (54)

X=ex (5e)
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Substitution of (3) into {3.11a,b) gives [Miesen et al. 1990, see also chapter 4.2]
at leading order in ¢

— 2 - -
[pcs M] + pwlp =0, (6)
®_
ef—cf 4,
or
- 2 n _ ¥ -
(Pohee)e + powe + po BeRael(Da (530 4y = 0, (7a)

cj(ci—<f)
with boundary eondition
p=0,forz=10 (7b)

Equations (7a,b) reduce to (1a,b) in the limit of incompressibility.
At the next order ir ¢ we find [¢f. Miesen et al. 1990, or chapter 4.2

-, F - -
[PC% E’ﬂzz—.m] + pufms + £ =0, (82)
2
ci-c} .
7 =0,forz =0, (8b)

and the inhomogeneous term f, is given by

fy = [2pCotie3(c28)* (cnugn)ls
- (Pt tnta + (ca-20) S8ttt + (o)t + Fetln

- gel(2ed+81/mnes + gelliHo N |} (20)

R
A solution of (8) can be found by the method of variation of parameters
% f z f
ﬂ3=¢ojﬁdzﬂxojﬁdz (9)
Here x{(z), like ¢(z), is a solution of {6), linearly independent of ¢{z). The
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Wronskian of the solutions ¢ and x is defined as
A= Xz (10)
and ¢an be calculated using Abel’s identity {Ince 1956]

A=a, exp[-u_[z(a.,/ao)dz]. (10b)

where ap, 2, are the coefficients of the second and first derivative in (8a),
respectively. From (10) we find

Pxz = pax = [pCied(cd-ef) exp[of “(e/ CE)dZ]- (11)

Until now the corréction ¢, to the Mnear phase velocity ¢ and the
amplitude A(X) are undetermined. They are determined by constructing an
outer expansion, valid in the region z » h where 7 scales, like x, with ¢, and
matching this outer expangion with the inner expansion obtained above, This
matching will also yield a second boundary condition for (7a) and (18). It is
useful to anticipate that matching at leading order in ¢ will give condition (1c)
as the second boundary eondition for (72). The equations (7a,b) and (1c) are an
eigenvalue problem with eigenvalues ¢, and eigenfunctions or modes ¢(z). One of
these modes with eigenvalue ¢p is considered. To achieve the matching, the
properties of ¢ and x as z — 00 must be determined. From (11) together with
{1¢) it follows that

X % 2f(pec§¥)e + By, 85 2 — c0, (12)
where B is an arbitrary constant and we used that [Appendix F]
- z
pola) = p(z) exp[- | (6/ ) (13)

The subscript oo denotes evaluation of the quantity as z — co. Substitution of
(12) into (9) gives
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4__ B " of z
T e

where the constant By is given by

B, = ¢(c0) J g{: dz - B, rﬁz da. (14b)
[ 1)

§52.1  Outer expansion and matching
In the region for z — oo we use the following scaling of variables

X = ¢x, (15a)
Z = ez, (15h)
7= enx2) (15¢)

The scaling of x and 7 is consistent with the fact that the waves in the lower and
the upper part of the fiuid are coupled. Since the upper part of the fluid is
homogeneous and of infinite thickness there is no characieristic seale for z, so
that gpatial scales in the vertical will be roughly equal to those in the horizontal
[Doviak & Chen 1988]. Therefore z is scaled like x.

From (3.11b) we find that § — 0 as z — od, BiNCe g — 0O 2% 2 — 00,
This is 50 becanse py — constant as z — o0 which implies that the scaleheight of
the fluid becomes infinitely large; for a compressible fluid that means that
¢ — o0. Equations (3.11a) and (15) then give

;Txx + ;?Zﬁ + 0(52) =0, (16)

where we used that w; — 0 and Ty = constant as z — co. The solution of this
equation that satisfies boundary condition (1c), i.e. 7 — 0 a8 z — oo, Teads

=5 J m'ﬂP(iﬂc —17172) A (1) dr + o(eY), (172)
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where & (7) is the Fourier transform of A [see (2¢)} and
A(X) = 5(X,0). (178)

Substitution: of Z = ez and expangion of (17a) in powers of ¢ gives with (15¢)

n = en(X,ez) = eA - ¢ B{A) + ..., (18a)
where
2(8) =47 [ Irlexp(irX) o (r)dr. (18b)

Matching (18a) with the inner solution (5a,d) as z — oo, where 1, is given by
(14a), gives

@ — constant, as z — o0, {19a)

which is equivalent to (1c}, and

A = Ap(oo), (19b)
2(4) = m J :_o da. (19¢)

This, together with (8a), (10a) and (11) gives

(eochn 3 () = [ o] (e/ciies] ot o (20

[

Partial integration of the right-hand side of (20) gives, together with the
boundary conditions (7b) and (1%a) and equation (13),

“ A + FuA? -k B(A) = 0, (21)

where in this case A, 4, and & are given by
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e C S C RS DT (22a)

b= ui”pﬁ&{?rsvi + (CE—ES)"[ES[TCQ + (1/o-8)ccl + 3civd
- 26} (2c3+ 34/ ooy + B2+ )] orgorc 4 (220)

& = (o). (229)

Since effc? = O(h?/H2) [see section 4.2] and ghfc? = 2(hfH,), (22) gives correct
to 2(b/H,)

A= “2000( 8 - 2800 /cE) da + O(n2[HY), (23a)
p= [ potl(d0} Tappl/ed)dz + o(bi/HY), (23v)
K= (PoCE‘PI)m: (23':)

where we used 1/¢ = v — 1, For an incompressible fuid (ie., ¢ — o or ¥ — o)
(23a,b) 1educe to (4a,b). A solution of (21) is given by (3a), as shown by
Benjamin [1967), and ¢, and £ are given by (3b).

5.3 DISCUSSION
531  Cate I Constant w, layer, uy = 0.

For this case we assume that the background velocity 1y = 0 and that
the Brunt-VAisild frequency w, is constant throughout a layer of depth h (e
0 £ z< h), and 13 zero above this layer (ie. z > h): wf = N2H(h-%). Here, H is
the Heaviside function. If wg is constant, and the fluid is an ideal gas, the fluid
must be isothermal and ¢; is comstant. If wy is zero the fluid must be
homogeneous, i.e. the scaleheight of the fluid is infinite and cg is infinite too, For
this fluid configuration the density is given by
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poexp(-z/H), for 0 £ z < b,
PolZ) = (24)

o exp(-h/H), for 2 > 1,
where H i3 the scaleheight of an jsothermal fluid. For such an isothermal fluid

the Brunt—Viisili frequency and the velocity of sound, in terms of H, are given
by

N? = Eivlgll | (25a)

cf = ygH. ‘ (25b)

The eigenvalue problem {7a,b), (102) then becomes

(pocfe)z + poN2H(h—2)p = 0, for 0 < z < o0, (26a)
p=0,forz=0, (26b)
g — 0, a8 2 — 0o, (26(3)

which 15 equivalent to the eigenvalue problem for an incompressible fuid
[Grimshaw 1981], with only the Brunt-Vaisili frequency defined differently.
Equations (28a,b,c) have the solution

M pg /2 gin(yz), for0 £ 2z < h, 5 =0,1,2,...,

o = [0 ) (272)
i, for z = h,

ef = N3/[+% + (2H)2). (27h)

The dynamis boundary condition [e.g. Benjamin 1966] requires continunity of the
first derivative of ¢ at z = h, which gives

%h = m{s+1) + arctan [ﬁﬁ—], §=10,12,... {(27c)

5

M is a constant chosen so that the maximum value of p(2), attained at z = h, is
1:
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M = p}/2 exp[-h/(2H)] sin(ysh). (27d)
If 4 = h/H i3 small, (27c) ¢an be approximated by

Ysh = rs[l + E:léfg + 0(132)] y (28)
where
t; = ={s+4). (29)

Now A, p and & will be evaluated. Correct to ¢{f8) we find from {23a,b),
(24) and (27a,b,c) that

s = K+ 5 -5+ o(), (302)

%ﬁ‘y_ﬂ =2tf+ %[2+r§+(—1)‘§’] —%(—1)5[5%] 1, + 2(F). (30D)

2
From (3b), (27d) and (28) we find that

G = e {1+ gt + (B et seen) + o),

(31a)
f= i Lo g ey + 0 [ + 0. )

For an incompressible fluid in the Boussinesq approximation [Grimshaw 1981},
cifcg and £/h are given by thé firgt térm in (31a,b). If we use that for the present
case cZ = yzH and take for 7 the value for air, ic. v = 1.4, we find for s = 0

& . 25[1 - 0.0481 %,ﬂ g8 [1 + 0.0181 H] (32)

For s = 1 we find

c, L h £ _ _8h b
E:'" = '2—h[1 + 0.183 H.]’ i m[l - 0.167 H] . (33)
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Note that for ¢ = 0 the corrections due to the ¢ompressibility and due to
non-Boussinesq terms are both iraportant [they are both £(f)], but they cancel
one another almost completely. In fact for this case and for s = 0, terms of 2(5?)
should be included. The corrections are larger if 2 = 1, although the vertical
scale of this mode is smaller. Note that the canceling of the compressibilily
correction ferms and the non-Boussinesq ones may very well be caused by the
special choice of a layer with constant wg. On the other hand, however, we note
a more general tendency that corrections for the compressibility and due to not
making the Boussinesq approximation, have opposite signs [chapter 4].

53.2 Case II: Constant w, shear layer.

In thiz example we will again consider an inversion kind of model. A
uniformly stratified layer of depth h, with ¢onstant Bruni-Vaisili frequency N
and linear wind profile, ng(z) = — u, — ke, Lies beneath a nentrally stable layer
(i.e. wy = 0) with constant wind component u,,. Consistent with the assumption
of a neutrally stable layer for z > h 18, a8 we have discussed in case I, the
assumption that ¢; — oo for z > h. In order 10 simplify the algebra we will,
unlike Christie [1989), assume that there is no density discontinuity across the
interface z = h: this algebra is not necessary to illustrate our point.

The differential equation (7a), i.e. (4.8), for p is approximated by (4.12).
This requires that |k/&| < H', ie. the shear should mot be too strong.
Solutions of the eigenvalue problem for an incompressible fluid for this
configuration have been found by Maslowe and Redekopp [1979, 1980] and
Clarke et al. [1981], if the Boussinesq approximation is used. Since we want to
obtain ¢orrections for the compressibility of the fluid and these corrections are of
the same order of magnitude as the terms neglected in the Boussinesg
approximation, we should not use the Boussinesq approximation. In that case
the eigenvalue problem cannot be solved in terms of elementary functions.
Therefore we will use the Boussinesq approxtmation anyway, but the resnlts, i.e.
the corrections due {0 the compressibility, can only be used to estimate the
imporfance of the compressibility for this model. To be completely, all terms of
the first order in 5 should have been incorporated.

In this case the eigenvalue problem has the following solutions
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(o) {M[Mkz/(%ﬂc)]"" *sin{rin{1+kz/(¢o+uc)l}, for 0 £ 2 < b,
o(z) =

1, forz > h,
(34a)
where
M = [14+kh/(co+u)]? [sin{rln[l+kh/(co+uc)]}] "t (34b)
= (N¥/k2 - 1/4)1/2, (34c)

The Richardson number N%/k? is assumed to be larger than 1/4 so that the basic

state i3 stable The eigenvalues are obtained from the dynamic boundary
condition:

Cotu, = kh{exp[r'hrctaﬁ(Zr)-Fsvr/r] - 1}—1, s 021,22, . (34d)
Using this, (34b) can be written as

M = (-1)* [L+kh/{cg+uc)]/? (1 + §r2)/2. (34e)
For a positive mode number (s = 0,1,2,...), (ca+u;)/kh > 0, the wave is
propagating in the opposite sense to the background flow and the maximum of

| @] is attained close to 2 = 0 at 2 = Zy. It can easily be shown that

1 + Xzp/(cotu,) = explrtarctan(2r)], (35a)

Plom) = (1 [ pmpfeatuc)] (35)

For a negative mode number s, (cy+u,}/kh < 0, the wave is propagating in the
same sense as the background flow and the maximum of || is attained at z =
h,ie @(h) = 1.

For large Richardson N2/k?, r — o0, and we find from (34d)

CoU= sign(K) %{1 + Jrtai(sH4)t — a(s+)] + a[gi]} (36)
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I we compare thiz result with its equivalent for a shallow fluid [Gear &
Grimshaw 1983 or chapter 4] we see that, corzect to order #(s/r), 5 is replaced
by s+4, due to the different condition at z =h. If we compere (36) with the
eigenvalues ¢, for case I, given by (27h) and (28), we see that for r — oo, ie.,
k — 0, they become identical as should be expecied,

Next we will gvaluate A and g. Like in the foregoing example X and g
will be approximated by

A= [ 2potald ~ 2mpen/ )iz + O (), (372)
u= I 03842~ Tepud/cd)dz + O(F7). (37b)

After straightforward but cumbersome algebra we find from (342,d) and (37a,b)

m = &2 (1-x51) + [%ﬂ)] [Infxy) - 2], (38a)

Pcﬁ = 21(r2 +%),1{ [1 + (—1)5x53’=(r3+§)1’3]
- [755(:&-‘!:-2;1] [3 - 4(;1)5x5‘/3(r3+§)“/2] }, (38b)

where
xp = 1+ kh/(cpdn,) = explrarctan(2r) + sr/f1], (39)

and we used that ¢; — oo and ¢, = 0 for 2 > h. If we compare (38a,b) for & and
A with the results of Christie [1989, Appendix A of that paper], we notice that in
our expression for 4 there is an extra factor [1 + (~1Px3?/2(x2+1)¥?] in the Hmit
of incompressibility. However, if we consider the Hmiting case k — 0 and
compare the resplts with Christie’s and ours (Case I) in that limit, we see that
this facior is correct. The difference must therefore be caused by a misprint in

the paper by Christie [1989]. From (3b), (22d), (34¢), (38a,b) and (39) we finally
find
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co—+1i§ E/z{f,i%f {[(—1): + xE3f2(rz+i)l/2] _ [ TBEZ%J%:——H]
x [3(—1)5—4xEl/2(r2+*)—i/2:|} {1 + [ ?‘E’%?c_hi’[)z} () - 2]}

(40a)
= SR Gt ([0 + v i) - [t
< [3(-1)s - 4x51f3(1'3+i)"”]}'1. (40b)

These expressions for ¢f(ce+n.} and £/h can be obtained from their
incompressible counterparts by multiplication by [1+(k/H)F.] and by

[1-+(h/H)F }, respectively, (Fig. 19)
s = {1 et (AR
for [t ee -2 (e
L+(b/E)F, o= [1- [t 25 sf;;” s 'm}}q- (41b)

Note that for s = 1,3,5,.., g, given by (38b), can be zero for an
incompressible fiuid, and ¢; — 0 and £ — co [see (3b)], if

(r2 + §) = =2, {42a)

or
4 In(r24+4) = arctan(2r) + 57,8 =1,35,... (421)

Tor example, if s = 1, 1 = 4.543. In such cases the corrections due to the
compressibility (and due to non—Beusginesq terms) are very important.
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log {F. 4]

log (M)

Fig. 19 The corrections to ¢ (Fg, circles) end £ (F 2 squares) due to the
compressibility of the fluid Jor the lowest modes propagating upsiream
(i.e. § = 0, solid circles and squares) and downsiream (i.e. s = -1, open
circles and squares).

5.3.3  Case : o} = NZech¥(z/h), uy = 0.

Again we will assume no background velocity, uy = 0, and use the
Boussinesq approximation. The profile for the Brunt—VEisgl8 frequency is given
by

w} = Nsech?(z/h). (43)

For a compressible fluid there is an associated velocity of sound profile. This, of
course, means that the solutions of the eigenvalue problem for a compressible
fluid differ from the solutions of the eigenvalue problem for an incompressible
fluid [see (6)]. However, we shall assnme that the eigenvalve problem is not
changed substantially by the compressibility for the single purpose to estimate
the importance of the ¢ompregsibility in the computation of the coefficients of
the Benjamin-Davis—Ono equation in a crude way. This is cortect to &) as is
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clear from the discussion in 4.2.1. Note that in this way a lower limit for the
importance of the compressibility is obtained, since changes in the eigenvalue
problem and so in the eigenfunctions, i.e. the modal functions also change the
coefficients of the Benjamin—Davis-QOno equation. We will now evaluate (37a,b)
using the first mode solution of the incompressible eigenvalue problem in the
Boussinesq approximation, wi given by (43) [Grimshaw 1981]:

(z) = tanh(z/h), (44a)
g = Nh/yZ. {44b)

Substitution of (44a) into (37a,b) gives

S 380 (14 gb/e) + 2(), (452)
£ =52 (1 + Heh/ch) + o(). (48b)

Again, as in foregoing examples, we see that the importance of the
compressibility is measured by the parameter ghfc.

b4 SUMMARY AND CONCLUSIONS

Long solitary waves in inviseid compressible stratified deep fluids are
deseribed by the Benjamin-Davis-Ono equation [Benjamin 1967, Davis &
Acrivos 1967, Ono 1973). The coefficients of this equation are given in tetms of
the modal function 4, which is the solution of the eigenvalue problem with
eigenvalues ¢, i.e. the long wave phase speed of these waves. A solution of the
Benjamin-Davis—Ono equation is the algebraic solitary wave, first given by
Benjamin [1967]. Differences between the wavelength and the correction to the
long wave phase speed of this algebraic solitary wave in a compressible fluid and
in an incompressible fluid are typically #(gh/c?), where h is the vertical scale of
the wave and ¢, is the velocity of sound. This has been illustrated by the study
of three special cases.
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APPENDICES

APPENDIX A

Equations (46a,b,c) are written like

g@l + W %%Q = PoX1n (Ala)
po = B2y (Alb)
po gt =- 3, (Alc)

PR TN (A19)
g%‘ + wy %%“ = —pecdx1, (Ale)

where x; is defined by (48). Differentiation of (Alb,c,d) with respect to t, using
(Ala,e) to eliminate p, and p, zespectively, and substitution of these three
equations into the definition (48) of y; yields

'51'%"’ Vi(elx: —gwy) + 3‘{.0 Eg[ﬂo(cm SWz)]} + S‘a—(XI + 2 aﬂn]
where we nsed (27) to eleminate py. This equation can be written as
i d[c2d
gV = -méf-l + Vi(elxy) + '55[;,': ot EXI]- (A2a)

Differentiation of {Ald) with respect to t and using (Ala,e) to eliminate g, and
py respectively, gives

g?i'-‘ 'a'(PoC X1) —g“%"",_.—‘ + g% (A2b)
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Substitution of (A2a) into (A2b) to eliminate w; gives after some
straightforward algebra equation (47), where wy is defined by (49).

APPENDIX B

B’ is eliminated from (§b) by cross—differentiation of its x— and z—component.
With use of (7) and the fact that 7 = p(¢) we find

%%[uP”a— . gwpw] g.c[g; g-:,]

dudw  Owow _Gudu Buaw] (B1)

+ ”[Ea—*‘a—a? 3z 07 3z°
With ¢ and q defined by (8c,d) respectively (B1) gives
o ded [q? . ~d _[édn | 8w (8w Bu] _
P a—%af[g—-i-gz]+Pa—§+p[ﬁ+'5?;]['a;"-a;;]—0, (Bz)
or, wsing (5a) and (8c¢)
Po@bdlfree] +rf-rpho i ¢=0. (B3)

Using (5c), equation (B3) gives

wd | ¢ 1dp[a )| w g
PP [P“u+_d¢[%+g]] ) (B4)

which after integration yields (8a).

The second integral of the equations of motion may be obtained by
multiplying the x—component of (5b) by u, multiplying the z*—component by w
and adding. The result is
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¢ 1 ] H 2 ki
u—g—l;—-+ w-g%+gpw+%ﬁ[u-g:—+w§“?+u-g:—+ w-g%] =0. (B5)

With (5¢) and the definition of g2 (8d), (B3) gives
2
%[P' +g,oz~+p§-] = 0. (B6)

After integration and with the definition of P* (6) this yields the second integral
of motion {8b).

APPENDIX C

From. (7a) and the conditions far upstream we see that by definition

] =, (c1)
50
G-23) -erg (c2)
‘We will also use |
* gz gz*| @

from which we find that

== 5

dz _ bz
PR

Fx

x] ! = —nu(l4n) 1, (C3)

where subscripts denote derivatives. Farthermore we find that

a Y| Bz .
g;{é 2 = H;% z + ‘3-‘:3 . F 5 = - Epvﬂx(l"l'ﬂz) 1, (043)
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and in the same way that

%?f

it RAC ORI (ca)

& & .

2%, = gp (1+77z) 11 (C4¢)
a? . oy tlple
8], = er [ (G40
ﬁl;;_d = cr(P«)u-x[Pax - (PﬁPdﬁP,é’)ﬂE}, (C4e)
| = otpy[BthiatEad), (049

Substitution of {C4) into (8a,b) and (9) gives
2
cip?u[ Ny ] _ —[ ple .EH'ZL:} ]
? +M2lx iﬂ ¢ +7:) )2
bl 21:!5 w V3
+ et P60 + ot Pl P EE

—47 [%H%ﬂ] = g7 (z+n)(1+8) P = pTP(P)* H(Y),

(Csa)
P+ pit e [iepye BB 4 goan)] <10, (o)
g(z+n) + $CH(P/Px)2e %—'_tg% = eonstant, for z = h. (C5c)

Evaluation of (C5) for ix| — &0 gives the right—hand sides in terms of 5, T, P
and z. Using these expressions and that pgh P/ = ocl [equation (2) to (4) and
(6)] gives after soms manipulations (11),
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AFPPENDIX D
At order ¢4 (2.11) yields:

(Bttiag)e + ﬂh’ﬁ'ﬂ: + (0FCib)s + PCHTx + (2PT0ttT1z)z — &(ﬁagﬁgz)z
+ 2opulny + (20p%0181); ~ (0BT ) 2mat8)
+ oo 1/2)(Th)ett = 0, (D12)

8y + o(c2-e1) | (ema — Tes) + il + 208 + o{o+1/2)8]
Tge{7se + asl)} =o. (D1b)

Equation (D1a) can be written as

(P2h1100)s + 5“-’3’72 + {dPTEbp)s + FCiex + (20T oMt o))z
— HAeEna)e ~ [(oPTR6) 2N+ 0di 36l = 0, (D2)

where we used (5a). Substitution of (D1b) into (D2) gives:

2 -
(e L= B0 s+ e+ [ 2920ty ()|
g = z z

~ ¥PeR)e — { PR 8) 2ocdtims + olo+1/2)ek + R} =0

(B3)
Bubstitution of &; from (5b) gives (13a) with f; given by (13d).
At order e* the boundary condition {2.11d) becornes
g7 — Je}(niartady) — 23€eey(pt o)) + TR[20n 6 + It
+ o{o+1/2)] =0, forz=h (D4)

Substitution of § and &, from (5b) and (D2), respectively, gives after some
rearTangements
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872 = §C41ze — 2j8eco(cd-C8) cdngm) + JE3(cE-C)2
 [2maledeiEime-gn) + BllcBE0? + (L) (ehnugn] =
forz =1, (D)

From (D$) we can obtain (13¢), with g, piven by (13e).

APPENDIX E

We want to solve the differential equation (13a)

ag(2¥ oz + 21(2) 00 + 2y(2) + fy = G for 0 <z < b, (Ela)
where

ag(z) = pEfed(ci-tf)™, (E1b)

ay(z) = [pefcd(ci2f) Y, — epeh(cdTh) ™, (Elc)

ay(z) = — [gpef(ei-ef) Y. + Puf. (E1d)

The solution ny(z) is subjected to the boundary conditions {13a,b). A solution of
the homogeneous problem [f, and g, are zero in (13)] is (z). If 2 solution of the
homogeneous problem, linearly independent of p(z), is taken to be x(z), 2
solution of (E1) is given by

hyf Beof
m= g ) kgt di-x f K2 4z (E2)

as can be verified by substitution. The Wronskian A of ¢ and x is defined as
{Ince 1956]

A=

L 4
¥z X

z

= 19X — P2 (E3)

and can be calculated using Abel’s identity [Ince 1956):
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A=A, exp[—ofh(a,/ao)dz]v (E4)

The solution for 5, given by (E2) satisfies the boundary condition {13b)
jdentically. The second boundary condition gives

Bt 3
J Ka oo+ R

where we used (6¢) and (E3). Calculating A from Abel’s identity (E4) gives
(14).

o= (E5)

AFPPENDIX F

The equilibrivm pressure py(z), determined from the hydrestatic balance, ie.
{3.1b) with w =0 [cf. (1.27)],

a1 goy =0, {F1)
and from the law for a perfect pas [ef. (1.28})

Po = HRT, (F2)
where R i3 the gas constant and T ig the absolute temperature, reads

o = puo exp~ I (frpes]. (F3)

where pyp is the presgure at z = 0. The velocity of sound, defined by ¢ = 1py/2y,
can, with the law for a perfect gas, be written as

¢y = {yRT)2, (F4}

Therefore (F3) can be written as
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2
po = Bao exp| /" (7e/cB)da]. (Ps)
Evaluation of (3.2) far upstream, and assigning p the value pg, yields

#1= B(po/Poa), (F8)

which is equivalent to (16).

APPENDIX G

If terms of ¢(%3/cd) = ¢{(h/H)?), of ¢[(ghfed)?] = ¢[(R/H)Y and of o{(gh/c?)?]
are neglected, (17a,b} become correct to &(h/H)

b
A= I 2qTo( i - 28pp./cE)dz, (G1a)
b
p= 1 poTh(3¢2 - Tgwil/ch)da. (G1b)
We multiply (8) with ¢ and integrate which gives:
b
o [Pratdien)s + pouty’] dz + O(R3/c]) + o(gh/cd) = 0. (G2)

If the upper boundary is rigid, or is approximated to be rigid (Boussinesq
approximation), partial integration of (G2) gives

B B
S potleida= ] pawgpidz + o(2f/cd) + o(gh/cd). (G3a)

In the same way multiplication of (8) by ¢? and integration gives
B b 2 2 2
] 2eetbegkis = [ pwdpida + o(z§/cl) + d(gh/ch). (G3b)

Inserting (G3) into (G4) shows that (2.19a,b) of Grimshaw is equivalent with
(17), correct to &(gh/ci) and if the Boussinesq approximation can be used.
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LIST OF SYMBOLS

{page of definition enclosed within brackets)

amplitude of a solitary wave [4, 76, 100]

x-dependent part of 7, [76, 78, 88, 101]

Fourier transform of A(X) [100]

[100]

phase speed of a solitary wave[4] and velocity of the moving frame [65,
76, 98]

phase speed ¢ minus background velocity uy(z) [65]

linear long wave phase speed [5, 76, 9]

linear long wave phase speed ¢ minus background velocity uy{z) {76, 98]
correction 0 ¢y [76, 77, 100, 101]

characteristic velosity [48]

velocity of sound [15, 32]

group velocity [17]

phase speed [17)

specific heat at constant pressure [44]

specific heat at constant volume [44}

inversion height [87)

Coriglis parameter [45]

buoyancy foree {21)

gravitational aceeleration [4)

depth of a fluid {4], characteristic vertical scale [48)

depth of a {finid, characteristic vertical scale [75, 98]

scale height [24]

characteristic value of the scale height j48]

Heaviside function [37, 106]

parameter that is 0 for a rigid and 1 for a free boundary [70]
wavevector [16]

magnitude of k (chapters 1, 2); background velocity gradient [90, 109]
x—component of the wavevector [18)

y—component of the wavevector [16]

z—component of the wavevector [16]

magnitude of the real part of k [26]
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k,p  imaginary part of k, [26]

k. real part of k, [26]

k, magnitude of the component of k that is perpendicular to g {25]

& characteristic length of a solitary wave [4, 76, 100]

I characteristic lengthscale {43]

M normalisation factor for  [33, 88, 106]

N Brunt-—Visila frequency for a compressible isothermal fluid [83, 87, 90,
108, 10§, 113]

)#3 pressure {14]

po(z): background pressure [15]

P perturbation pressure [15]

P reference pressure [66]

p* normalised pressure proportional to the temperature [67, 69]
R: gas constant [16]

3 eigenvalue for mode 5 [83, 88]

5 mode number [83, 88, 108, 110]

t: time [4]

te characteristic timescale

T: absolute temperature [16)

T, absolute température in the absence of waves [16]
w vector velocity field [14]

uy: perturbation velocity field [15]

w x—component of the velocity [14]

u,(z): background velocity [68, 76, 98]

y—component of the velocity [14]

z—¢omponent of the velocity [14]

vector in a right-handed Cartesian coordinate system [15]

Cartesian coordinate (parallel to the lower boundary of the fluid) [4]

1= gx [76, 78, 98, 101}

Cartesian coordinate (parallel to the lower boundary of the fluid) [25]
Cartesian coordinate in the direction opposed to g {chapters 1, 2) [L5,
21]; Lagrangian coordinate in the direction opposed to g (chapters 3, 4,
5} [65, 76, 98]

AR Eulerian (Cartesian) coordinate in the direction opposed to g [65]

£ height 2t which the modal function (z) attaines its maximum [83]

B on Hog oo
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Z: 1= ez [104]
o measure for the amplitude of a (solitary) wave [4, 48, 56, 76, 93]
Jis ratio of characteristic vertical length (A, h) and characterigtic scale

height (H,, H) [58, 79]

ratio of specific heats [14]

perturbation of the temperature [69]

vertical displacement of & streamline [4, 65]

vertical displacement of a streamline correct to @ (a) [77, 101}

ratio of a characteristic vertical and horizontal length [4]

phase function [16)

modal function [76, 78, 98, 101]

coefficient in the BDO equation [100, 106]

coefficient in the KdV equation and the BDO equation [76, 81, 100, 106)
coefficient in the K4V equation and the BDO equation [76, 81, 100, 106]
coefficient in the KAV equation [76, 81]

dynamic coefficient of viscosity [42]

mass density [14]

MEF IR XIS SN I N >R
X = =
C)

= pi/py [54]
folz):  backgronnd mass density [15, 76, 98]
ot perturbation of the mass density [15]
P characteristic density [43]
o potential density [66]
o = (g1 [67]

x(z): solution of the eigenvalue problem (chapters 4 and 5), independent of
o(2) [102, 122)

X1 divergence of n, [31)

s streamfunction [54]

W radian frequency [16]

wy! acoustic cut—off frequency [32)

wyt Brunt-Viisili frequency for an incompressible fluid {22]
Wyt Brunt—Viisili frequency for a compressible fluid [31, 70]
: angular velocity of a rotating fluid [42]
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SAMENVATTING

In het eerste hoofdstuk van dit proefschrift worden enkele fundamentele
eigenschappen van akoestische zwaartegolven besproken aan de hand van de
gelinearisesrde hewegingsverpelijkingen voor een niet-—viskenze, niet-roterende,
samendrukbare, gelaagde vloeistof. Na dit inleidende hoofdstuk worden twee
onderwerpen bestudeerd. Ten eerste, de veelvuldip gebruikte hydrostatische— en
Boussinesq-benaderingen in samenhang met een zorvuldige analyse van de
voorwaarden voor de geldigheid van deze benaderingen bij toepassing op golven
met een amplitude van eindige grootte in een samendrukbare, gelaagde vioeistof.
Ten tweede, de invleed van de samendrykbaarheid op de eigenschapper van
interne solitaire golven in zo'n vioeistof.

De hydrostatische Dbenadering, waarbij de wversnelling in vertikale
richting verwaarloosd wordt in de impulsbalans, blijkt geldig te zijn voor
akoestische zwaartegolven met een vertikale lengteschaal die veel Keiner is dan
de horizontale lengteschaal, d.w.z. voor akoestische zwaartegolven met een kleine
aspekiverhouding, en frequenties veel kleiner dan de Brunt—Viisili—frequentie.
De Boyssinesg-benadering kan worden pebruikt wanneer de dichtheidsvariaties,
in het gedeelle van de stroming dat we willen beschrijven, klein zijn. Voor
akoestische zwaartegolven betekent dit dat de vertikale schaal van de golven
klein moet zijn ten opzichte van de schaal van de gelaagdheid van de vloeistof,
ie. de schaalhoogte, De gelineariseerde Boussinesq—vergelijkingen voor een
onsamendrnkbare vloeistof kunnen gebruikt worden ter beschrijving van deze
golven als aan de volgende voorwaarden is voldaan:

1) de uitwijking van stroomlijnen. moet klein zijn ten opeichte van de

vertikale schaal van de stroming,

2} de frequentie van deg golven moet kleiner zijn dan de Brunt-—Viisila

—frequentie en

3) voor de definitie van deze frequentie moet de definitie van de

Brunt-V3iisili-frequentie voor een samendrukbare vloeistof worden

gebruikt.

De laatste voorwaarde is gelijkwaardig aan het gebruik van de massadichtheid
onder pgenormaliseerde omstandigheden in  plaats van de  werkelijke
massadichtheid. We merken op dal men zeer voorzichlig moet zijn met het
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gebruik van de Boussinesg-benadering als andere kleine effecten, zoals zwak
niet—lineaire effecten, in de beschouwingen worden meegenomen, zelfs indien zan
de overige Bovengenoemde voorwaarden is voldaan.

Om interne solitaire golven in samendryukbare vloeistoffen te bestuderen
worden twee integralen van de bewegingsvergelijkingen voor een niet-viskeuze
samendrukbare vloeistof afgeleid. Deze integralen worden, evenals bepaalde
randvoorwaarden, getransformeerd tot vergelijkingen voor de uitwijking van
stroomlijner en voor de verstoring van de temperatuur. Hierbij nemen we aan
dat er geen gesloten stroomlijnen zijn, zodat de twee integratieconstanten in de
bewegingsintegralen bepasld kunnen worden uit de condities stroomopwaarts.
Interne solitaire golven in samendrukbare vloeistoffen worden, evenals interne
solitaire golven in onsamendrukbare vloeistoffen, beschreven door de
Korteweg—le Vries—vergelijking als de vloeistof ondiep is, d.w.z. als de totale
diepte van de vloeistof wveel kleiner i3 dan de karakteristicke horizontale
lengteschaal van de golf. Zij worden door de Benjamin-Davis~Ono—vergelijking
beschreven als de vloeistof diep i, d.w.2. als de totale diepte van de viceistof
veel groter is dan karakteristieke horizemtale lengteschaal van de golf. De
correcties ten gevolge van de samendrukbaarheid van de vloeistof op de
codfficiénten en dus op de oplossingen van deze vergelijkingen =ijn £(gh/c?),
waarin g de grootte van de zwaartekrachtsversnelling is, h de diepte van het
gelaagde deel van de vleeistof en ¢, de geluidssnelheid. Voor omstandigheden
zoals die in de atmosfeer voorkomen ligt de grootte van deze parameter tussen
0.01 en 1. Het soort stroming wazrvoor deze correcties altijd van belang zijn is
de ondiepe isotherme uniforme stroming, zoals in dit proefschrift wordt
uitgelegd.

De inhoud van de paragrafen 2.4.2 en 2.4.3 zijn gepubliceerd als: Miesen,
B.HM., Kamp, L.P.J, Sluijter, F.W. (1988). "On the application of the
Boussinesq approximation for nonlinear gravity waves in the atmosphere", Phys.
Seripta 38, B57—850. _

De inhoud van de hoofdstukken 3 en 4 wordt gepubliceerd als: Miesen,
R.H.M., Kamp, L.B.J., Sluijter, F.W. (1990). "Solitary Waves in Compressible
Shallow Fluids", Phys. Fiuida 4 2.

De inhoud van hoofdstuk 5 is aangeboden voor publikatie aan Phys.
Fluids A als: Miesen, R.HE.M., Kamyp, L.P.J., Sluijter, F.W. "Solitary Waves in
Compressible Deep Fluids".
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I

Voor de verklaring van de eigenschappen van interne solitaire golven in een on—
diepe compressibele vioeistof zijn de correcties ten gevolge van de compressibili-
teit van de vipeistof van essentieel belang.

[1] R.H.M. Miesen, L. P.]. Kamp and F.W. Sluijter, Phys. Fluia A 2, in press (1980).

2] Dit proefschrift.

I

Demping van gravito—akoestische golven als gevalg van de eindige geleiding van

de ionosfeer vindt plaats met een karakieristicke demping die tussen 0 en wp/2

ligt, waarbij wy, de Pedersen frequentie is.

{1) C.Q. Hines and W.H. Hooke, J. Geophys. Res. 75, 2563 (1970).

{2} R.H.M. Miesen, P.C. de Jagher, L.P.]. Kamp &nd F.W, Sluijter, I. Geephys, Rea, D
94, 16269 (1989).

oI

Anders dan bij demping die het gevolg is van warmtegeleiding of viscositeit hangt
de sterkie van de demping die het gevolg is van de eindige geleidiog van de jonos-
feer niet alleen van de freguentie van de golf af, maar ook van de voorlplantings—
richting, Dit kan een verklaring zijn voor de waargenomen voorkeursrichting wat
betreft de voortplanting van zogenaamde "Travelling Ionosferic Disturbances".

[1] R.H.M. Miezen, P.C. de Jagher, L.7.J. Kamp and F.W. Sluijter, J. Geophys. Res, D
94, 16268 (1089).
[2) H. Keldex, T.A.Th. Spoelstra., J. Atmos. Terr. Phys. 48, 7 (1887).
v

Ten gevolge van chemische reaktles onder invloed van zonnestraling bestaat er
eer insiabiliteit die mede verklaring is voor de excitatie van gravito akoestische
golven.

[ P.C. de Jagher, 1. Geophys, Res. D, accepted for publication (1990).

v

De benadering die gebruikt wordt in de studie van golven in gelaagde viceistoffen
en die met de naam Boussinesq-benadering wordt aangeduid, is in feite los komen
te staan van de door Boussinesq ingevoerde benadering,

fi} 1. Boussinesq, Théeric Analytique de la Chaleur 2, Ganthier Vilars, Paris (1903),

= 1.8, Turner, Buoyaney Effects in Fluids, Cagsbridge (1873}

[t:4] R.H.M. Misten, L.P.J. Kamp and F,W. Sluijter, Phys, Scripta 38, 857 (1988).



VI

Zelfs onder strenge condities kan de zogenaamde Boussinesq benadering leiden tot
onjuiste resultaten.

[1 T.B. Benjamin, J. Fluid Mech. 25, 241 (1966).
2]  RHEM. Micscn, L.P.J, Kemp and F.W. Sluijter, Phys. Fluids A 2, in press (1390).
VI

Ondanks het feit dat de totale hoeveelheid ogon in de atmosfeer afneemt, neemt
ook de hoeveelheid ultra—viclette straling op het aardopperviak af.

f1] C. Briihl and P.J. Cruizen, Geophys. Res. Lesters 16, 703 (1983).
2] S.A. Penkett, Nature 341, 28 september, 283 (1088)
vid

De potentiaal, in de impulsbalans voor een vloeistof, die het gevelg is van rotatie

van de vloeistof kan niet, zoals door Gill gedaan wordt, geschreven worden als

023, maar wel als 4]0 = x|,

[1] A-E. Gill, Atmosphere~Ocean Dynarmics, ssction 4.5.1, Internaticnsl Geephysics
Series 30, Academic Press (1082).

KX

De naamgeving van vergelijkingen en methoden gebenrt vaak onzorgvuldig. Een
recent voorbeeld daarvan is de vergelijking die in de literatuur Benjamin(—Davis)—
One—vergelijking wordt genoemd. Deze vergelijking zou Benjamin—Davis—Acrivos—
of anders Benjamin-Davis—Acrivos—Ono—vergelijking moeten heten.

f11 T.B. Benjemin, J. Finid Msch_ 20, 559 (1967).
2 F E. Davis and A, Acrivos, J. Fluid Mech 28, 583 (1967).
k| H. Ono, 1. Phys. Boc. Japan 39, 1082 (1975).

X

Omdat interne solitaire zwaartegolven kunnen leiden tot over-correctie tijdens
het landen of opstijgen van vliegtuigen vormen zij een redel gevaar voor de lucht—
vaart.

1 D.R. Christic #0d K.J, Muirhead, Intern. J. Aviation Safety 1, 169 (1983).

[2] R.I1. Dovizk and D.R. Christie, J. Alrcraft 26, 423 (1989).



XX

De¢ positie zoals die door het Christen Democratisch Appel de laatste 10 jaar in de
Nederlandse politiek is ingenomen, heeft afbreuk gedaan aan de waarde van het
parlement als instrument van het volk en dus aan het democratisch gehalte van
het parlement.

XTI

De ontwikkeling en de verspreidin% van geluidsapparatuur en geluidsdragers heeft
de heleving van live uitgevoerde klassieke muziek sterk beinviced: deordat muzi—
kale lijnen reeds bij de luisteraar bekead zijn, is de technische perfectie van het
spel een belangrijkeé 1ol in de luisterervaring gaan spelen. In dit kader moet ook
het ontstaan van vele gespecialiseerde otkesten gezien worden.

Xia

De technische ontwikkeling van blaasinsirumenten heeft het mogelijk gemaakt
dat muziek, met name muziek geschreven in de 18° en begin 19° eeuw, in een te
snel tempo wordt uitgevoerd. Goade voorbeelden hiervan zijn Mozart’s hoorneon—
certen (K. 412, 417, 447, 495). Het tempo waarin met name de rondo’s uit deee
congerten in de modeme concertpraktijk gespeeld worden, is op natunrhoorn, het
instrument waarvoor deze concerten geschreven zijn, nauwelijks uitvoerbaar en
doet afbreuk aan het originele (dans)karakter van deze delen.

X1v

Bij de ondergang van het Romeinse rijk kan het bestaan van interne zwaartegol—
ven een rol hebben gespeeld

[1} Q. Pettersson, Svenska Hydrografisk—Rislegisks Kommisionens Skrifter 5, 1 {1912).
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