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An iterative-based method for joint gain/phase and mutual coupling array calibration is proposed in this paper. It estimates the
array gain/phase and mutual coupling coefficients with a set of simultaneous equations formed by using the beam pattern property
of the array. Only one calibrating source with known direction is requiblue to obtain the unique estimate. The effectiveness of this
approach is illustrated by simulation results and by experimental data collected with an antenna array operating in high-frequency
radio band.

1. Introduction

Smart antenna technology is widely used in mobile commu-
nication. In a Smart Antenna System (SAS), an antenna array
is used in the base station to transmit and receive the mobile’s
signal directionally so that interferences are rejected and the
system’s channel capacity is enhanced. But in many practical
situations, the performance of the antenna array is degraded
due to gain/phase imbalances between the array sensors,
unknown mutual coupling coefficients, and unknown sensor
locations. This implies that an estimate of the true array
manifold is necessary before the processing of the array data
can be carried out. In fact, most of the array processing
algorithms available in the literature, such as the MUSIC
direction finding algorithm [1] and the minimum-variance
distortionless response (MVDR) adaptive beamforming
algorithm [2], are devised under the assumption that the
array manifold of the array processing system is known
exactly. Therefore, antenna array calibration is indispensable
for estimating the array manifold accurately. Antenna array
calibration mainly compensates for the following factors,
namely, sensor location uncertainty, gain/phase mismatch
between array sensors, and mutual coupling effects between
array sensors.

There are several methods for array calibration. The
first type of methods uses signals from known sources and
known directions for calibration. Friedlander and Weiss [3]
presented a method for estimating the gain and phase of
each sensor and the mutual coupling in the receiving array,
but it relies on the calibrating signals from several sources
(although it does not require to know their actual impinging
directions). The second type of methods injects an equal
phase signal to all channels of the antenna array. In [4],
Ertel et al. compensated the gain and phase imbalance in the
uplink system of an antenna array but without considering
the effects of mutual coupling. The third type of methods
uses network analyzer for calibration. Dandekar et al. [5]
gave a mathematical model of smart antenna and calibrated
the smart antenna array by network analyzer measurements
and computational electromagnetic (CEM) simulations. But
as an off-line method, it has limitations in compensating
mutual coupling effects which change due to thermal effects,
the environment around the sensor array (e.g., the effect of
metal objects near an antenna array on its beam pattern), and
other factors. Therefore, this paper is motivated to attempt
to suggest an alternative calibration technique to estimate
the array manifold parameters. Moreover, recent research on
array calibration can be found in [6, 7]. It is worth noting
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that the calibration methods discussed here refers to the
calibration method for the antenna array when it is in receive
mode [8]. As widely reported in references [9–11], there
exists other alternative means for dealing with the mutual
coupling that belongs to mutual coupling compensation
techniques.

The basic idea of the technique presented in this paper
is to form a set of linear equations using the null and
peak characteristics of the beam pattern, from which the
errors or the true steering vector that contains the manifold
information of the array sensors can be estimated. The
proposed technique only uses one calibrating source with
known direction to obtain the unique estimate. This paper
is organized as follows. Section 2 contains the signal model.
Section 3 describes the gain/phase calibration technique.
Section 4 describes the joint gain/phase and mutual cou-
pling calibration technique. Section 5 gives some simulation
results to show the performance of the proposed technique,
as well as its application to experimental data collected with
an antenna array operating in high-frequency band and
Section 6 concludes the paper.

2. Signal Model

Consider an antenna array havingM sensors and the azimuth
direction of arrival of θ0 (measublue with respect to the array
normal axis for the case of linear array), and let u0 = sin(θ0).
In the ideal situation, the received signal of the array can be
described as

x(t) = v(u0)s(t) + n(t), (1)

where x(t) = [x0(t), x1(t), . . . , xM−1(t)]T and xm(t) denotes
the received signal at mth element of the array, s(t) is the
transmitted signal, v(u0) is the M × 1 steering vector for the
direction θ0, and n(t) is the noise vector.

However, under the practical conditions, the received
signal of the array may be described as

r(t) = Zv(u0)s(t) + n(t), (2)

Z = CGΦ, (3)

where C is the M ×M mutual coupling complex matrix, G
is the M ×M real diagonal matrix whose elements {gm}Mm=1
represent the sensor gains, and Φ is an M × M complex
diagonal matrix whose elements {e jϕm}Mm=1 represent the
sensor phases [12].

Let Γ = GΦ, where the M ×M complex diagonal matrix
Γ represents the sensor gain/phase matrix. From (3), matrix
Z is given by

Z = CΓ. (4)

For a linear uniform array, matrix C is a Toeplitz matrix. For
a uniform circular array, matrix C is a circulant matrix. This
paper uses the properties of Toeplitz matrix and circulant
matrix (see [3, Lemmas 1, 2, and 3]) to calculate the mutual
coupling matrix C as well as the sensor gain/phase matrix
Γ. It is worth noting that the assumption that the coupling

matrix C exhibits the Toeplitz and circulant matrix structure
also implies that the coupling between two adjacent array
elements is independent of the presence of other nonadjacent
array elements. This also means the coupling matrix for an
edge element is identical to that of an element located in
the center of the array. This condition is only true under the
minimum scattering array principle [13].

3. Estimating the Gain/Phase Vector

3.1. The Characteristics of Beam Patterns. For the ideal con-
dition expressed by (1), the covariance matrix of received
signals is

R = E
[

x(t)xH(t)
]

, (5)

where E[·] represents the expectation operation and the
superscript “H” represents the conjugate transpose opera-
tion.

The characteristics of the beam patterns are discussed as
follows for the uniform linear array and the uniform circular
array, respectively.

3.1.1. Uniform Linear Array. Decomposing the covariance
matrix R, we can obtain the standard beam pattern that is
expressed as

BL(u : u0) = vH(u)Ês, (6)

where Ês is the M × 1 normalized eigenvector of the
signal subspace, which is expressed as Ês = [1, e j2πdu0/λ, . . . ,
e j(M−1)2πdu0/λ]T/

√
M; v(u) is the M × 1 normalized steering

vector, which has the expression v(u) = e− j(M−1)2πdu/λ/
√
M ·

[1, e j2πdu/λ, . . . , e j(M−1)2πdu/λ]T ; d is the intersensor spacing
and λ is the wavelength.

Moreover, in the u-space the beam pattern can be expre-
ssed as

BL(u : u0) = 1
M

sin((πMd/λ)(u− u0))
sin((πd/λ)(u− u0))

. (7)

For the purpose of illustration, Figure 1 shows the beam
pattern of a 10-element uniform linear array with half
wavelength intersensor spacing and the direction of arrival is
0◦. We can see that the beam pattern has one peak and M−1
nulls. The peak of the pattern occurs when

u = u0, (8)

while the nulls (more detailed derivation and explanation on
the location of the nulls in the ULA beam pattern is available
[14]) occur when

u = m
λ

Md
, m = 1, 2, . . . ,M − 1. (9)

3.1.2. Uniform Circular Array. Decomposing the covariance
matrix R, we can get the uniform excitation beam pattern
that is expressed by

Bc
(
ϕ : ϕ0

) = sH
(
ϕ
)

Êsc, (10)
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Figure 1: Beam pattern of the uniform linear array (M = 10,d/λ =
0.5,u0 = 0).

where Êsc is the M × 1 uniformly eigenvector of the signal
subspace, which is expressed as Êsc = [1, e j2πR cos(ϕ0−ϕ1)/λ, . . . ,
e j2πR cos(ϕ0−(M−1)ϕ1)/λ]T/

√
M; s(ϕ) is the M × 1 normalized

steering vector which is expressed as s(ϕ)=[1, e j2πR cos(ϕ−ϕ1)/λ,
. . . , e j2πR cos(ϕ−(M−1)ϕ1)/λ]T/

√
M; ϕ1 = 2π/M and λ is the

wavelength. R denotes the circular radius of the array
geometry.

Since the polar angle is not consideblue here, we can
simplify the expression in [15]. In the ϕ-space, the beam
pattern is expressed as

Bc
(
ϕ : ϕ0

) =
∞∑

m=−∞
jmMe− jmMξJmM

(
2π
λ
ρ
)

, (11)

where JmM(x) is the Bessel function of the first kind of order
mM. The variables ξ and ρ have the following expressions,
respectively:

cos ξ = cosϕ− cosϕ0[(
cosϕ− cosϕ0

)2 +
(
sinϕ− sinϕ0

)2
]1/2 ,

ρ = R×
[(

cosϕ− cosϕ0
)2 +

(
sinϕ− sinϕ0

)2
]1/2

= 2R× sin
(
ϕ− ϕ0

2

)
.

(12)

And in (11), the term J0((2π/λ)ρ) is the principle term
while the other terms are the residuals. The main lobe
behavior is adequately described by the term J0(·) [15]. And
if the interelement spacing on the arc dcir = 2πR/M satisfies
the inequality

dcir <
λ

2
, (13)

then the residuals will be negligible.
Hence, we can use J0((2π/λ)ρ) to describe the character-

istics of the standard beam pattern for uniform circular array.

Figure 2 shows the beam pattern of a 10-element uniform
circular array with one-third wavelength intersensor spacing
on the arc and the looking direction is 0◦. We can get the
beam pattern value corresponding to any angle by the Bessel
function table [16].

The proposed technique for calibration is based on the
knowledge of one calibrating source with known direction.
We can use some values of the beam pattern to get a set
of simultaneous equations for estimating the gain/phase
and mutual coupling matrix. In the following part of this
paper, we will use the peak and the nulls of beam pattern
for uniform linear array’s calibration. The calibration for
uniform circular array can be performed in a similar way as
the uniform linear array, by using other values of the beam
pattern.

3.2. Gain/Phase Calibration Technique. The true steering
vector at any look direction for a gain/phase perturbed array
can be expressed as

v(u) = diag{v0(u)}g, (14)

where v0(u) is the nominal steering vector; g = [Γ11,Γ22, . . . ,
ΓMM]T whose elements are the coefficients of the gain/phase
mismatch; the superscript “T” represents the transpose
operation.

Moreover, from (8) and (9) we have the following
equations

ÊH
s diag{v0(u0)}g = 1,

ÊH
s diag

{
v0

(
u0 +

λ

Md

)}
g = 0,

ÊH
s diag

{
v0

(
u0 +

2λ
Md

)}
g = 0,

...

ÊH
s diag

{
v0

(
u0 +

(M − 1)λ
Md

)}
g = 0.

(15)

Rewriting the above equations in matrix form, we obtain

Q1g = p1, (16)

where Q is an M ×M matrix given by

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÊH
s diag{v0(u0)}

ÊH
s diag

{
v0

(
u0 +

λ

Md

)}

...

ÊH
s diag

{
v0

(
u0 +

(M − 1)λ
Md

)}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

and p1 is a M × 1 vector given by

p1 = [1, 0, 0, . . . , 0, 0]T . (18)

As the nominal steering vectors according to different DOA
are independent with each other, matrix Q1 is full rank and
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has an inverse matrix. The gain/phase mismatch vector g is
given by

g = Q−1
1 p1. (19)

From (19), under asymptotic condition, the first element of g
should yield a value of one as the first array element is chosen
as a reference element and constrained as one. However, in
actual implementation, the data covariance matrix available
is not really perfect, especially when the number of snapshots
taken to form the covariance matrix is small. In this case, the
following constrained minimization formulation would be
more appropriate:

min
g

∥∥Q1g− p1
∥∥2

s.t. uT
1 g = 1,

(20)

where ‖ · ‖2 denotes the 2-norm operation. Equation (20)
yields the following solution:

g = Q−1
0 u1

(
uT

1 Q−1
0 u1

)−1(
1− uT

1 Q−1
0 p0

)
+ Q−1

0 p0, (21)

where

Q0 = QH
1 Q1

p0 = QH
1 p1

u1 = [1, 0, 0, . . . , 0]T .

(22)

4. Jointly Estimating the Gain/Phase Vector
and Mutual Coupling Matrix

Once the DOA of the source is known, which means u0 is
known, reasonable estimates of Γ and C may be obtained by
minimizing the cost function

Jc =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÊH
s CΓv0(u0)

ÊH
s CΓv0

(
u0 +

λ

Md

)

...

ÊH
s CΓv0

(
u0 +

(M − 1)λ
Md

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− p1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (23)

The proposed minimization algorithm is based on a two-step
procedure. First, given C, we minimize Jc over the gain/phase
parameters. Then given Γ, we minimize Jc over the mutual
coupling matrix C components. These minimization steps
can be repeated until Jc converges.

4.1. Initialization

(i) Set the iteration counter to zero: k = 0.

(ii) Select initial values for the gain/phase matrix Γ
and initial value for the mutual coupling matrix
C. Usually the initial values are based on some
previous knowledge (e.g., last measublue values or
pblueictions based on the idealized model).
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Figure 2: Beam pattern of the uniform circular array (M =
10,dcir/λ = 1/3,ϕ0 = 0).

(iii) Compute the covariance matrix R from the discrete
time-domain samples of the received signal at the
antenna array.

(iv) Perform eigen-analysis and construct signal subspace
Es.

4.2. Two-Step Procedure

Step 1 (estimating the gain/phase vector). Fixing the matrix
C, we now minimize Jc with respect to the gain and phase of
each of the sensors. From (23), we have

Jc =
∥∥Q11g− p1

∥∥2, (24)

where

Q11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÊH
s C diag{v0(u0)}

ÊH
s C diag

{
v0

(
u0 +

λ

Md

)}

...

ÊH
s C diag

{
v0

(
u0 +

(M − 1)λ
Md

)}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

We can minimize (24) using the constrained minimization
formulation expressed by (20). The solution is similar to the
formulation (21):

ĝ = Q−1
01 u1

(
uT

1 Q−1
01 u1

)−1(
1− uT

1 Q−1
01 p01

)
+ Q−1

01 p01,

(26)

where

Q01 = QH
11Q11,

p01 = QH
11p1,

u1 = [1, 0, 0, . . . , 0]T .

(27)
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Then, we can compute the gain-phase matrix Γk+1 from the
vector ĝ given by (26):

Γk+1 = diag
(

ĝ
)
. (28)

Step 2 (estimating the mutual coupling matrix). In this step,
we hold the sensor gain-phase fixed and find the mutual
coupling matrix that minimizes the cost function Jc. Using
the lemmas [3] depicted in the appendix, we obtain

Jc =
∥∥Q12c− p1

∥∥2, (29)

where

Q12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÊH
s Q3(Γv0(u0))

ÊH
s Q3

(
Γv0

(
u0 +

λ

Md

))

...

ÊH
s Q3

(
Γv0

(
u0 +

(M − 1)λ
Md

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

and c is the mutual coupling coefficients vector whose
elements are related to the coupling matrix C, as expressed
by

ci = CH
1i , i = 1, 2, . . . ,M. (31)

The formulation of Q3(·) is given by Lemma A.3 [3] in the
appendix.

We can minimize (29) using the constrained minimiza-
tion formulation expressed by (20). The solution is similar
to the formulation in (21), which is,

ĉ = Q−1
02 u1

(
uT

1 Q−1
02 u1

)−1(
1− uT

1 Q−1
02 p02

)
+ Q−1

02 p02, (32)

where

Q02 = QH
12Q12,

p02 = QH
12p1,

u1 = [1, 0, 0, . . . , 0]T .

(33)

Then, we can reconstruct the mutual coupling matrix Ck+1

form the vector ĉ given by (32).

4.3. Convergence Check. Here, we compute Jk+1
c using the

estimated sensor gain-phase and the mutual coupling matrix.
If Jkc − Jk+1

c > ε (ε is a preset threshold), then we will update
the iteration counter k = k + 1 and continue with the two-
step procedure. Otherwise, we will stop the process. The
algorithm performs the iterations until Jc converges. Note
that at each step, the cost function should blueuce so that

J (0)
c > J (1)

c > · · · > J (k)
c ≥ 0. (34)

4.4. Extension to Azimuth-Elevation Case. Although the pro-
posed calibration method is derived for linear geometry

array, the extension from azimuth-only (1D) to azimuth-
elevation (2D) case is possible by reformulating the azimuth-
elevation steering vector into its decoupled form [17, 18].
Using this decoupled formulation, the proposed calibration
can be applied individually on the coupling matrix associated
with the azimuth as well as elevation components of the
steering vector.

5. Simulation and Experimental Results

To illustrate the behavior of the algorithm, consider a
narrowband half-wavelength spaced uniform linear array of
10 omnidirectional sensors. Noise components are complex
white Gaussian with zero mean. The following parameters
are used in the simulations:

SNR = 20 dB; Snapshots = 100; the known source’s
location: θ = 5◦; coupling coefficient: c = {1, 0.09,
0.09, 0.06, 0.05, 0.03, 0.02, 0.01, 0.01, 0.02};
coupling coefficients are independently distributed
according to U(−0.05π, 0.05π).

gains: g={1, 1.0351, 0.9886, 1.0471, 1, 1.0233, 1.1614,
1, 1, 1};
phases: ϕ = {0◦,−215◦,−149◦,−14◦, 21◦, 3◦,−40◦,
−40◦, 0◦, 0◦}.

In the presence of gain/phase imbalances and unknown
mutual coupling coefficients, the ideal beam pattern charac-
teristics of a uniform linear can no longer be observed. This
is depicted clearly in Figure 3 for this particular realization.
In comparison, we have also plotted the ideal beam pattern
computed given the gain/phase imbalances and mutual
coupling coefficients, as well as the after-calibration beam
pattern given by

BL(u : u0) = ÊH
s ĈΓ̂v(u), (35)

where Ĉ and Γ̂ are the estimated coupling matrix and
gain/phase imbalances. These results demonstrate that the
proposed two-step procedure in Section 4.2 is effective in
estimating jointly the gain/phase and coupling matrix that
satisfies the beam pattern’s nulls and peak characteristics.

In addition, we have also tested the calibration result for
direction finding application by plotting the MUSIC spatial
spectrum on the simulated test data that contains three
signals impinging from 50◦, 30◦, and −40◦.

Figure 4 shows the comparison of MUSIC spatial spectra
before calibration, after calibration, and ideal spectrum for
joint gain/phase and mutual coupling calibration. It is clear
that before calibration the estimation of DOA is wrong, the
spectrum is not acuity, and SNR is low. After calibration, the
estimation of DOA is correct, the spectrum is acuity and very
similar to the nominal MUSIC spectrum.

To demonstrate the statistical efficiency of the proposed
calibration, we perform the following Monte Carlo experi-
ments. The 10-element uniform linear array described above
is used with the same parameter setting. The data set for the
calibration contains only the calibrating source, while that
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for the direction finding includes three far-field narrow band
emitters. The gains and phases as well as coupling matrix
coefficients are unchanged. We run 500 realization for each
fixed SNR, and repeat for various SNR values ranging from
−20 dB to 20 dB in 5 dB step-size. The SNR is calculated as
the ratio of the received signal power and the noise power:
SNR = [

∑
k σ

2
k ]/σ2

n , where σ2
k and σ2

n are the kth received
signal power and noise power, respectively. The values of the
sensor gains and phases were kept constant throughout these
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Figure 5: RMSE of the DOA estimation versus SNR.

simulations. For each realization, we apply MUSIC-based
direction finding method to estimate the DOA.

For each SNR, we obtain the average DOA estimation
error out of the 500 realizations and use them to compute the
estimated root mean square error (RMSE). Figure 5 depicts
the RMSE plot versus SNR for the ideal (known gain/phase
and mutual coupling coefficients), as well as before and after
calibration. It can be seen that the proposed algorithm has
significantly improved the accuracy of the DOA estimation
through accurate joint estimation of gain/phase and mutual
coupling coefficients. In addition, we have also included
the Cramer-Rao Bound (CRB) plot of the DOA estimation
under the ideal condition. The CRB plot in Figure 5 depicts
the statistical lower bound of the DOA estimation under
perfect calibration where the coupling matrix is known.
While the RMSE plot under ideal case (known coupling
matrix) appears to converge to the CRB for high SNR case,
the performance of the proposed calibration does not deviate
far from the CRB.

Lastly, we verify the calibration method experimentally
using the data collected from a high frequency (HF) radio
antenna array system. The measurement setup is described
in detail in [6], therefore it will not be repeated here.

We implement the calibration technique to calibrate
jointly the array gain/phase and mutual coupling coefficients.
Unlike the calibration described in [6], we only need one
calibrating data set from the short-time Fourier transform
(STFT) output that consists of single narrowband signal. It is
important to note that although it is impossible to conduct a
controlled experiment in which only one calibrating signal
is observed, it is possible to extract only the narrowband
calibrating signal from the received signal using short-time
frequency analysis technique. Even in the congested nature of
HF band, we have demonstrated that it is possible to extract
the calibrating data set.
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Figure 6: MUSIC spatial spectra obtained before and after the pro-
posed joint gain/phase and mutual coupling calibration.

After estimating jointly the gain/phase and mutual cou-
pling coefficients, we applied the calibration result for
plotting the MUSIC spatial spectrum on the data set that
contains three narrowband signals. Figure 6 shows the spatial
spectrum plots before and after the proposed calibration.
Notice that, unlike the spatial spectra shown in [6, Figure 12],
the spatial spectra shown here are plotted with respect to
sin(θ) where the angle θ is measublue with respect to the
array normal axis.

It can be seen that although the proposed method does
not include the array geometry calibration, all three DOAs
are estimated effectively as indicated by the peaks in the
plot located at −0.9219, 0.1719, and 0.6266, respectively.
Furthermore, the estimation results are in agreement with
the results obtained using the method in [6]. This can be
understood from the fact that the array geometry error is
negligible, as shown in array geometry calibration result (see
[6, Figure 11(c)]).

6. Conclusion

In this paper, a calibration technique based on eigen-
structure analysis and the beam pattern characteristics has
been used to obtain jointly the estimates of gain, phase, and
mutual coupling parameters of the smart antenna system.
The effectiveness of this method is illustrated by simulation
results, as well as experimental verification. Even though
the proposed method is developed under the assumption
that the calibrating data contains only calibrating source of
known direction with additive noise, it does not render the
proposed method impractical since this requirement can be
easily overcome through prefiltering approach.

Appendix

Lemma A.1. For any M× 1 complex vector X and any M×M
complex diagonal matrix D one has

D ·X = Q1(X) · d, (A.1)

where the components of the M × 1 vector d and the M ×M
matrix Q1(X) are given by

di = Dii, for i = 1, 2, . . . ,M;

[Q1(X)]i j = Xij · δi j , for i, j = 1, 2, . . . ,M.
(A.2)

Lemma A.2. For any M× 1 complex vector X and any M×M
complex symmetric circulant matrix A, one has

A ·X = Q2(X) · a, (A.3)

where the elements of the L× 1 vector a are given by

ai = Ali, for i = 1, 2, . . . ,L, (A.4)

where L = M/2 + 1 when M is even and L = (M + 1)/2 when
M is odd. The M × L matrix Q2(X) is the sum of the following
four M × L matrices:

[W1]pq =
{
Xp+q−1, p + q ≤M + 1,

0, otherwise

[W2]pq =
{
Xp−q+1, p ≥ q ≥ 2,

0, otherwise

[W3]pq =
{
XM+1+p−q, p < q ≤ l,

0, otherwise

[W4]pq =
{
Xp+q−M−1, 2 ≤ q ≤ l, p + q ≥M + 2,

0, otherwise,

(A.5)

where l =M/2 for even M and l = (M + 1)/2 for odd M.

Lemma A.3. For any M× 1 complex vector X and any M×M
banded complex symmetric Toeplitz matrix A, one has

A ·X = Q3(X) · a, (A.6)

where the L× 1 vector a is given by

ai = A1i, for i = 1, 2, . . . ,L (A.7)

and L is the highest superdiagonal that is different from zero.
The M × L matrix Q3(X) is given by the sum of the following
two M × L matrices

[W1]pq =
{
Xp+q−1, p + q ≤M + 1,

0, otherwise

[W1]pq =
{
Xp−q+1, p ≥ q ≥ 2,

0, otherwise.

(A.8)
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