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CHAPTER! 

ABOUT THE SUBJECT MATTER OF TIDS THESIS 

Ever since the discovery of the quantized Hall effect1·2 in 1980, localization of 

electrons in high magnetic fields is considered to be essential to create Hall plateaus. 

Several approaches exist to incorporate this localization concept into a physical 

microscopic model. Since these approaches predict different current distributions, a 

detailed knowledge of the current distribution is one of the means to increase our 

insight in the localization problem and thus our understanding of the quantized Hall 

effect. It is the aim of this thesis to investigate which of these theoretical approaches 

matches the experimental situation. This investigation includes numerical 

calculations and predominantly experimental observations. 

The results of a quantized Hall measurement are presented in Fig. 1.1. A 

current is sent through a Hall bar structure, which contains a so-called two­

dimensional electron gas. The Hall voltage and the Shubnikov-de Haas voltage are 

measured as a function of the magnetic field strength. These are the voltage drops 

across and along the direction of the current, respectively. The Hall resistance and 

the Shubnikov-de Haas resistance are obtained from the division of these voltages by 

the current. It is evident from Fig. 1.1 that the Hall resistance shows perfectly 

quantized plateaus and that these plateaus are accompanied by deep minima of 

almost zero resistance in the Shubnikov-de Haas oscillations. 

Explanations of these phenomena up to now all invoke the concept of 

localization. Localized electrons have a wave function with a limited spatial extent; 

their motion is restricted to a finite area. These states occur easily in the presence of 

a magnetic field, since in the absence of scattering the classical cyclotron orbits of 

the electrons drift along equipotential lines. Thus a closed equipotential loop in the 

two-dimensional electron gas may localize electrons. In fact, the entire area 

surrounded by such a loop may be localized. Since these equipotential loops are 

caused by nearly every kind of inhomogeneity in the electrostatic potential, 

localization will certainly be present. 
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How does this localization enter the problem of the quantized Hall effect? As 

long as the Fermi energy lies in the region of the localized states and the 

temperature is sufficiently low, the Shubnikov-de Haas resistance is nearly zero due 

to the absence of scattering of the mobile electrons. Also the addition of some 

electrons to the localized states does not change the conductive properties of the 

non-localized states, and hence the Hall resistance remains constant. However, these 

hand-waving arguments are not yet a satisfactory model of the quantized Hall 

effect. Such a model should explain many details like the temperature dependence 

or the width of the Hall plateaus and Shubnikov-de Haas minima. The key to a 

better understanding of the quantized Hall effect is probably the comprehension of 

the localization of electrons in two-dimensional electron systems subjected to a 

strong magnetic field. One way to attack this problem is to study which parts of the 
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Fig. 1.1 Typical experimental recordings of the Hall resistance RH (= V26jl14} and 

the Shubnikov-de Haas resistance RsdH (= V23ji14), as a function of the magnetic 
field B. Clearly visible are the plateaus in RH, which appear at the same values of the 

magnetic field as the minima in RsdH· The measurement was performed on a 
GaAsj AlxGa1.xAs heterostructure at a temperature of 1.5 K. 
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sample are localized and which parts are contributing to the current. In other 

words: "How is the current distributed?". 

From a theoretical point of view several possibilities exist. The first, and 

simplest, case would be a homogeneous current distribution with a constant Hall 

field and thus a linearly increasing Hall potential as a function of position in a 

direction perpendicular to the current. In this case the density of states is thought 

to be independent of position. Second, it could be that narrow current paths are 

percolating through regions of localized states. Because under quantized Hall 

conditions the electrons move along equipotential lines these percolating paths can 

be regarded as lines of constant height like in an Alpine landscape, with the hills 

and valleys containing localized states. As a third possibility one could argue that in 

a realistic sample the presence of the confining potential at the edges causes 

extended states to occur along the boundary of the sample. It is thus possible that 

edge effects cannot be neglected and a.re of major importance for the observation of 
the quantized Hall effect. 

These three classes of current distributions each have their own supporting 
models3-9. A discussion of these models is given in chapter 3, after the discussion of 

the two-dimensional electron gas in chapter 2. These selected models are 

representative for the field of research and the topics discussed in this thesis. 

The main topic of this thesis consists of chapters 4, 5 and 6, where we present 

our results of the investigations on the current distribution. We have organized the 

results as described in the following paragraphs. 

Since we tried earlier to convey the idea that inhomogeneities are important to 

obtain localization and hence to obtain the quantized Hall effect, we discuss in 
chapter 4 the presence and magnitude of inhomogeneities. In addition, we present 

the results of numerical calculations performed on inhomogeneous two-dimensional 

electron systems in a magnetic field. These calculations are meant to get a clearer 

picture of the sometimes surprising influences of sample inhomogeneities on the 

current distribution and hence on the experimental results. 

Of course, a direct measurement is the best determination of the occurrence 

and the position of extended states. This is the topic of chapter 5. Several 

investigations have been carried out on this subject by other workers in this 

field10· 11. All of them apply electrical contacts to the interior of the two-dimensional 

electron gas. In those experiments the magnitude of the Hall voltage developed 
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across two internal contacts is used to determine the magnitude of the current flow 

in between those two contacts. Their results seem to indicate that in between the 

plateaus the current is more or less homogeneously distributed. But inside a plateau 

region the current and potential distribution appear to be highly inhomogeneous and 

strongly dependent on the magnitude of the magnetic field, see Fig. 1.2. In these 

measurements, however, the electrical contacts influence the current distribution 

and in this respect the influence of the electrical contacts is questionable. Preferably 

such a measurement should be performed without using electrical contacts. In 

chapter 5 we present results of a contactless potential measurement. This 

measurement is based on a technique which makes use of the linear electro-optic 

effect. It turns out that the current distribution we observe with this technique 

completely differs from the one discussed above. 
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Fig. 1.2 Experimental results of Ebert et al!O obtained on a Hall bar structure with 
internal electrical contacts. In between the plateaus the drop of the Hall potential is 

more or less evenly distributed over the different contacts, indicating an almost 

homogeneous current distribution. How ever, it is evident that inside the plateau 

region the potential distribution and hence the current distribution, as deduced from 
Fig. 1.2, are far from homogeneous. 
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Finally, in chapter 6 we address the question of the necessity of sample edges 

for the quantized Hall effect to occur. We present unique measurements of the 

quantized Hall effect on samples with a Corbino geometry, which insures that edges 

do not connect the current contacts. In principle, these measurements show a 

striking resemblance to a thought experiment by Laughlin8.9. Laughlin's model of 

the quantized Hall effect, which we discuss in chapter 3, is based on this thought 

experiment. Our measurements on the Corbino structures reveal that under realistic 

experimental conditions the quantized Hall effect is probably restricted to Hall bar 

structures, for reasons we show in chapter 6. 
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CHAPTER2 

PROPERTIES OF THE TWO-DIMENSIONAL ELECTRON GAS 

In this chapter we present a brief introduction to the two-dimensional electron 

gas in GaAs/ AlxGa1.xAs heterostructures: its formation, the calculation of its 

eigenstates and the sample preparation. 

The occurrence of the quantized Hall effect is restricted to conducting systems 

with a two-dimensional character. Such systems are obtained by confining the 

charge carriers to some kind of potential well. These carriers can be electrons or 

holes, but we will restrict ourselves to the two-dimensional electron systems. 

Because the electrons move almost freely in the plane of confinement, which we 

name the xy-plane, these systems are usually called two-dimensional electron gases. 

The confining potential, which depends on the z-direction, can be achieved in 
several ways. 

Regarding the two-dimensional electron gases in semiconductors, the most 

commonly used structures are the GaAs/ AlxGa1.xAs heterostructure and the Si­

MOSFET, not the least because of their availability. The GaAs/ AlxGat-xAs 

heterostructure offers major advantages. It has both the higher mobility and the 

lower effective mass; therefore quantization effects occur at lower magnetic fields. In 

addition it shows the linear electro-optic effect, . which enables us to perform 

contactless measurements of the potential distribution. All measurements presented 

in this thesis are performed on these heterostructures. 

A schematic drawing of the various layers of such a heterostructure is shown in 

Fig. 2.1. The heterostructure in its simplest form consists of a Si-doped ( n-type) 

AlxGa1_xAs layer on top of a GaAs layer, which is usually slightly p-type due to 

residual background impurities. As a consequence of the difference in work function 

of both materials, electrons flow from the AlxGa1_xAs to the GaAs. Due to this 

charge transfer electric fields build up until the Fermi level t:F is equal throughout 

the entire device. This results in a potential well at the interface of the GaAs and 

AlxGa1_xAs acting as the confining potential of the two-dimensional electron gas. If 

the well is deep enough, it contains a two-dimensional electron gas. A more 
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elaborate description of this process will be presented after a discussion of the other 

layers which are shown in Fig. 2.1, where also typical dimensions of the structure 

are indicated. 

At low temperatures (~ 4 K) the donors in the AlxGa1_xAs layer are the main 

scattering source. Since the two-dimensional electron gas and the donors are 

spatially separated from each other, the mobility of the two-dimensional electron 

gas is enhanced above the bulk value. A further enhancement of this mobility can be 

achieved by inserting an additional undoped AlxGa1_xAs spacer layer in between the 

GaAs and Si-doped AlxGa1_xAs layer. In this way the distance between the 

electrons in the two-dimensional electron gas and the charged donors in the doped 

AlxGa1_xAs is enlarged. In Fig. 2.1 also a GaAs cap layer is shown, which prevents 

the AI in the AlxGa1_xAs from oxidation. The whole structure is grown on a GaAs 

substrate by means of e.g. an MBE (molecular beam epitaxy) or MOCVD (metal 

organic chemical vapour phase deposition) technique. We do not discuss these 

growth techniques here. 

20 rm GaAs cap layer 

40 rm Si doped AIGaAs 
24 -3 

2 x10 m Si 

20 rm undoped AIGaAs 

-~-------------
2 DEG 

4 ,um GaAs buffer 

400 JA.m GaAs substrate 

semi insulating 

Fig. !.1 Schematic drawing of the various layers in a GaAs/AlxGat-xAs 

heterostructure. The indicated dimensions should be regarded as typical values. On 

the right the energy band diagram of the GaAs/AlxGa1_xAs heterostructure is drawn, 

with the position of the two-dimensional electron gas (2 DEG} indicated. The indices 

c and v stand for conduction and valence band respectively. 
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Note that, due to the confinement of the electrons, the bottom of the 

conduction band near the GaAs/ AlxGa1.xAs interface as drawn in Fig. 2.1 is no 

longer associated with the presence of electron states at that specific energy. The 

calculation of the energies is usually carried out within the so-called effective mass 

approximation. In this approximation the details of the lattice potential due to the 

ions at the lattice sites are accounted for by the assignment of an effective mass m* 

to the conduction electrons. In this way the complexity of the problem is reduced 

considerably. The Poisson equation (Eq. (2.1)) has to be solved self-consistently 

with the Schr6dinger equation (Eq. (2.2)): 

lPVf/Jx2 + {)2Vf8y2 + {)2Vj{)z2 -q(x,y,z)f;;,(z), (2.1) 

(2.2) 

where U0 accounts for the conduction band discontinuity, Uc = -e V, with e the 

elementary charge, V the electrostatic potential, Uex an exchange correlation 

potential, $ the z-dependent part of the wave function, q(x,y,z) the charge density, 

and ;;, the dielectric constant. Note that the electrostatic potential is not a constant, 

but adjusts itself to a value such that the Schrodinger and Poisson equation are 

obeyed simultaneously. The first two terms in Eq. {2.1) are zero in case of a 

homogeneous sample, since in that case q does not depend on x and y. This charge 

includes, of course, the electrons in the two-dimensional electron gas, the positive 

donors in the doped AlxGa1_xAs layer and the negatively charged acceptors in the 

GaAs layer. As a result of the calculation the allowed energy states in the potential 

well are quantized, with energy eigenvalues <i (i == 0, 1, .. ) associated with the 

confinement in the z-direction. All states belonging to the same eigenvalue <i 

constitute an (electric) subband. In contrast, a continuum of energy eigenvalues E(k) 
is associated with the motion in the xy-plane. This energy can be written as 

E(k} fi.2!>2 /2m*, with fi, = hj21r, h Planck's constant and k the magnitude of the 

wave vector in the xy-plane. The distribution of the electrons across the different 

subbands depends on the density of states D(e) and, through the Fermi-Dirac 

distribution function, also on the temperature T. 

In order to be able to measure the characteristic properties of the two­

dimensional electron gas, the wafer, as grown, needs further processing. A structure 

must be defined and contacts must be made to the electron gas. Two kinds of 
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structures are generally used, the Hall bar and the Corbino disc, see Fig. 2.2. These 

structures are photolithographically defined and mesa-etched. The contacts are 
made either by alloying AuGeNi films or small dots of In or Sn into the sample 

until they make contact to the electron gas. For Corbino structures AuGeNi 
contacts must be used, because in this way one can make contact to the entire 
periphery of these structures. 

After these processing steps it is advisable to check the quality of both the 

contacts and the sample. The contacts must be ohmic and have a low resistance. 

Further, if possible, the homogeneity of the sample must be checked, see also 
chapter 4. If these conditions are met we can perform a quantized Hall 

measurement, which we will describe in the next chapter. 
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Fig. 2.2 Hall bar {left) and Corbino disc (right). Usually a current I is sent 
through the device and the resulting voltages Vij are measured in order to determine 

the various parameters of the two-dimensional electron gas. 
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CHAPTER3 

THE QUANTIZED HALL EFFECT- EXPERIMENT AND MODELS 

3.1 About this chapter 

The aim of this chapter is to provide the reader some background information 

concerning the quantized Hall experiment and its models. The information supplied 

should suffice to understand the remaining part of this thesis, where we present and 

discuss our own experiments on the quantized Hall effect. 

3.2 The experiment 

The quantized Hall effect is usually measured with a Hall bar structure, like 

the one depicted in Fig. 2.2. The sample, which contains a twCKiimensional electron 

gas, is cooled down to a temperature of a few kelvin and a current I is sent through 

the contact pair 1 and 4. Next, a magnetic field B is applied perpendicular to the 

structure and the voltages across the different pairs of contacts are determined as a 

function of this magnetic field. Along the length of the structure the so-called 

Shubnikov-de Haas voltage is measured, which oscillates as a function of magnetic 

field. Across the width of the structure a Hall voltage with accurately quantized 
plateaus is measured, the quantized Hall effect. This is clearly visible in Fig. 1.1. 

The ratio of the Hall voltage and the current, the Hall resistance, is accurately 

quantized to the value h/ie2, with i = 1, 2, 3, .... 

In the above we have tacitly assumed that we use a Hall bar structure which is 

much longer than wide, with the voltage probes separated from the current contacts 

by a distance much larger than the width of the sample. This geometry leads to a 

current distribution which is parallel to the edges of the sample at the position of 

the voltage probes. This has the advantage that no mixing of the Shubnikov-de 
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Haas voltage and the Hall voltage occurs. This will be clear if we recall the 

definition of the resistivity tensor p and its inverse the conductivity tensor u: 

Ex = PxxJx + PxyJy, 

Ey = - Pxyh + Pxxly, 

Jx = O"xxEx + O"xyEy, 

Jy = - O"xyEx + O"xxEy, (3.1) 

with j the current density and E the electric field. In the above definition an 

isotropic two-dimensional electron gas is assumed. If the y-direction is the direction 

of the current in Eq. (3.1) and ix is zero, it is easy to derive that 

Pxx = (V2s/I)(bjl), 

Pxy = V35jl, (3.2) 

with Vij the potential difference across the contacts i and j. From these equations it 

is obvious that the Shubnikov-de Haas resistivity Pxx and the Hall resistivity Pxy 

can be measured separately. Note, however, that the orientation of the coordinate 

system is of no importance, it is only the easiest way to orient one of the axes along 

the boundary of the sample. 

The astonishing property of the quantized Hall effect is the preciseness of the 

quantization of Pxy to the value hfie2• This value does not depend on specific sample 

properties, like details of the scattering mechanism or electron concentration, and 

thus seems to be a fundamental property of the two-dimensional electron gas. This 

fact has led to the development of a variety of models to describe the quantized Hall 

effect. In the next sections we will present and discuss some of these models. 

3.3 Electrons in a. high magnetic field - the loca.lization model 

Classically an electron in a two-dimensional electron gas subjected to a 

perpendicular magnetic field will move in cyclotron orbits with angular frequency 

We eB/m*. It can be shown that in the absence of scattering and under the 
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influence of an electric field the drift velocity 'I'd of the centre of the cyclotron orbit 

is equal to 

(3.3) 

Thus the electron drifts perpendicular to the electric field along equipotential lines, 

and hence Pxx = 0 and Pxy = Bjne, with n the electron concentration. This can be 

verified from the force balance between the Lorentz force and the electric force; see 

also section 5 of this chapter. 

To incorporate quantization a quantum mechanical treatment is necessary. The 

solution of the Schrodinger equation of a two-dimensional electron gas in a magnetic 

field12 leads to quantized energy eigenvalues 

(3.4) 

with N = 0, 1, .... Note that we only deal with the lowest electrical subband. Every 

level EN has a degeneracy of 2eB/h and is called a Landau level, see Fig. 3.1(a). 

The magnetic field lifts the degeneracy of the spin up and spin down level, see 

Fig. 3.1(b). Every spin level has a degeneracy of eB/h instead of the earlier 2eB/h. 

Eq. (3.4) becomes fN,s (N+!J'ttwc+sg*tJ.BB, with s the spin quantum number, 

g* the effective g-factor and fJ.B the Bohr magneton ( = eli/2m, m the rest mass of the 

electron). The spin splitting is smaller than the Landau splitting by a factor 

g*m*/2m (m*/m = 0.0667 for GaAs), so it will be observable in the transport 

coefficients only at higher magnetic fields. But care has to be taken, since the g­

factor depends on filling factor and magnetic field 13. 

The discrete Landau levels are broadened by scattering. Usually a Gaussian 

broadening is assumed with a characteristic width r, see Fig. 3.1(c). The exact 

shape, however, is still a subject of controversion in literature14. If the level 

broadening is smaller than the Landau level spacing (r < li.wc) and the temperature 

is sufficiently low (k8 T « hwc, with kn the Boltzmann constant) the quantization can 

be observed in the transport coefficients. The first condition can also be formulated 

as tJ.B > 1, with the mobility 1.1. erfm*, r the scattering time. This means 

classically that, on the average, the electron performs at least one cyclotron 

revolution between two scattering events. 
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The number of Landau levels below the Fermi level depends on B, because the 

electron concentration is fixed and the degeneracy of the Landau levels depends on 

magnetic field. If the Fermi level is situated at a maximum of the density of states, 

the scattering will show a maximum. At a minimum of the density of states it will 

show a minimum. If the magnetic field is varied, the Landau levels will move 

through the Fermi level and thus the quantities Pxx and Uxx will oscillate as a 

function of the magnetic field. The Hall resistivity is hardly affected by the 

quantized density of states, since it depends on the total number of electrons and 

simply increases with magnetic field. 

Now consider the case where the Fermi level is centred between two Landau 

levels which are completely separated. The density of states at the Fermi energy is 

completely zero in this case. Suppose that there are i Landau levels below the Fermi 

energy and suppose that there is no thermal activation of electrons from Landau 

D(c:) 

D(c:) 

i 

{a) 

(c) 

r 

hwc 
~ 
I I 

{b) 

D(c:) 

i 
(d) 

D(c:) extended 

i 

Fig. 9.1 Density of states in the presence of a magnetic field (a). If the magnetic 

field is sufficiently high the spin splitting becomes observable (b). The Landau levels 

broaden due to scattering (c). Due to the scatterers, combined with the magnetic 

field, the tails of the Landau levels become localized (d). 
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level i to Landau level i+ 1. If all these conditions are satisfied the i Landau levels 

are completely filled and no scattering occurs. Thus Pxx is zero and Pxy equals 

Bj(e ieB/h) = h/ie2• So the Hall resistivity has the correct quantized value. 

However, this quantized value is only obtained for one specific value of the magnetic 

field, no plateau occurs. Also the resistivity Pxx rapidly increases with changing 

magnetic field and no broad minimum is predicted. 

In order to explain plateaus the keyword 'localization' comes into play. As we 

have seen earlier, the electrons drift perpendicular to the electric field. It is possible 

that a charge in the neighbourhood of the two-dimensional electron gas creates a hill 

or a valley in the electrostatic potential as a function of position. As a consequence 

there exist closed equipotential loops around such a hill or valley. A particle which 

drifts along such an equipotential is said to be localized. Note that this can be the 

case both around negative and positive charge, in contrast to the so-called extended 

states, which can move freely through the sample from one current contact to the 

other. 

In the description presented above the localized state has a macroscopic 

character. The cyclotron orbit is assumed to be small with respect to the potential 

hill or valley, otherwise it is impossible to speak in terms of a drifting cyclotron 

orbit. The other extreme is a rapidly fluctuating potential confined to a small area, 

e.g. the delta scatterer, which is infinitely small but has an infinitely high scattering 

potential. This delta scatterer can also bind or localize an electron5, see section 3.5. 

Concerning the energy of the localized states we can state that due to the 

Coulomb interaction they have a lower (around a positive charge) or higher (around 

a negative charge) energy than the extended states. So the localized states reside in 

the tails of the Landau levels, the centre is extended, see Fig. 3.1( d). 

The quantized Hall effect is now usually 'explained' as follows: 

If the Fermi level is in a localized region and the temperature is sufficiently low 

there is no scattering between the extended states and Pxx shows a minimum of 

nearly zero as long as the Fermi level is within this region. Thus Pxx is nearly zero 

within a certain range of magnetic fields. There is also no change in the properties 

and number of extended states if one electron is added to the system (and thus to 

the localized states), and hence Pxy remains constant. Note that this last argument 

uses a change of n, not B. In case B is varied the number of extended states has to 

be adapted in order to keep the ratio B/nexte constant, with 'next the number of 

extended states. If 'next f. eBjh, however, the Pxy value will not have the correct 
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quantized value (if Pxy = B/nexte). Furthermore the picture of Fig. 3.1 yields no 

information about the spatial position of the extended and localized wave functions, 

but shows some kind of a spatial average. We will comment on these problems in 

the next sections. 

3.4 The gauge argument 

Laughlin was the first to explain the quantized Hall effect by using a so-called 

gauge a.rgument8. Halperin made a slight extension and modification to the model, 

which we will discuss below9. 

Imagine a ring shaped structure, like a Corbino disc, consisting of a disordered 

region surrounded by boundaries of a perfect two-dimensional electron gas. It is 

assumed that these boundaries are at integer filling factor and thus have Pxy = h/ie2 

and Pxx = 0. The ideal properties of the boundaries are used in the following to 

make statements about the disordered region (with localization). 

H the flux <T> threading the inner loop of the disc is changed by a flux quantum 

h/e a current will flow in the radial direction. This can be understood in terms of 

Maxwell's equation d<T> /dt = ;E· dl, which implies that a flux change induces a 

tangential electric field E. The magnitude of the outward flowing current I= 21rrJr, 

with r the radius, corresponds to this field. If the flux <T> changes by h/ e in a time 

interval At this leads to d<T> I dt = hjeA t = Pxy21rrir· Since the induced current can 

be written as AQ/At, with AQ the transported charge, we get 

hjeAt = (AQ/At}{hjie2) or AQ = ie. Thus, due to the flux change for every 

Landau level one electron is transferred. The localized states do not enclose the loop 

and are not affected by the flux change. As a consequence their energies and wave 

functions are not changed. Therefore the so-called gauge argument can be applied to 

the extended wave functions. The argument states that the integer number of flux 

quanta can be removed by an appropriate gauge transformation and so the resulting 

wave functions of the extended states are identical to the ones we started with. The 

net result is that every extended state is shifted into its neighbour state and a total 

of i electrons is transferred from one edge to the other. 
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Thus we can conclude that the imperfect region of localized states does not 

affect the number of electrons transferred and hence a macroscopic measurement of 

Pxy results in the value hjie2. Note, however, that this model does not explain the 
occurrence of a plateau. 

3.5 The single scatterer and percolation models 

Prange presents in his papers an exact calculation of the influence of a delta 

function impurity on the properties of a two-dimensional electron gas. It turns out 

that an electron state develops which is localized on the impurity. However, the 

remaining mobile electrons passing the impurity carry an extra current which 

exactly compensates for the loss of current by the localized electron. So the Hall 

resistance is still exactly quantized. 

The underlying physics of the mathematically quite involved calculations of 

Prange have been made accessible to 'experimentalists' by Hansen6• 

Consider the case of an infinitely long two-dimensional electron gas with width 

Lx in the x-direction subjected to a perpendicular magnetic field. An electric field 

Ex in the x-direction is applied. We will first treat the impurity free case with an 

integer number i of Landau levels filled. The net force on all electrons has to be 

zero. Thus, if we consider a piece of the infinitely long structure with length Ly, the 

Lorentz force - BILy (with I the current) has to be equal to the electrostatic force 

LxLy{ieB/h}Exe = Ly(ie2jh}BVH, with VH the Hall potential. If an impurity is 

added to the system a bound state can appear. The extra forces Fib and Fim (the 

force of the impurity on the bound and mobile states respectively) will have to be 

included in the force balance equation: 

(3.5) 

It is clear that Fib+Fim has a certain finite value. Since Eq. (3.5) has to be valid 

irrespective of Ly, both the expression in brackets and the sum of the forces acted 

by the impurity must be zero. So VH = h/ie2 despite the presence of localization. 
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What is the physical picture behind? The electric field pulls at the bound 

electron. The impurity pulls it back with an equal but opposite force. The bound 

state becomes polarized and the impurity acts with an opposite force on the mobile 

electrons (as Fib -F1m)· This force is exactly the force needed to compensate for 

the loss of one mobile electron contributing to the current. So in the vicinity of a 

localized state the electrons will move faster, they are speeded up by an extra 

electric field. The situation is more or less comparable to an obstruction in a river 

with the water squeezed around. Since no restrictions are imposed on the shape of 

the impurity potential, the same arguments hold for an arbitrary number of 

impurities. However, no plateaus are predicted! Again it is only predicted that 

Pxy = h/ie2 at integer filling factor, irrespective of the presence of localized states. 

Related, but only applicable to situations with long range inhomogeneities, are 

the so-called percolation models of which we describe below the models of Woltjer 
and Luryi. 

In the model of Woltjer4 Pxy and Pxx are calculated from a theoretical 
expression derived by Ando et al!2. This expression results in Pxy = h/ie2 and 

Pxx = 0 at zero temperature and integer filling factor. No plateaus in Pxy occur 
however within Ando's model. In order to obtain plateaus W oltjer incorporates a 

gradient in the electron concentration across the width of the sample. In this case a 

range of magnetic fields exists at which there is a percolating path with integer 

X 

A 

©I( 
1 

y <IE---

Fig. 3.! Example of the equipotential lines across the sample, according to Luryi3• 

Indicated are two points A and A', which are on the same equipotential. The whole 

region enclosed by this equipotential becomes localized in a magnetic field. 
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filling factor (in this case a straight. line) from current contact to current contact. 

Since for this path Pxx is nearly zero at low temperatures, most of the current flows 

along this path. The measured 'apparent' Pxy is some average over the sample and 

shows the quantized value over the range of fields for which this path exists. 

The model of Luryia looks similar and assumes two-dimensional macroscopic 

inhomogeneities in the potential distribution to be present, like in Fig. 3.2. Luryi 

argues that integration over the electric field from A to A' does not result in any 

potential difference, because A and A' are situated on the same equipotential. The 

region within the equipotential on which A and A' are situated is localized. In other 

words, it would be possible to cut these regions of localized states out of the sample, 

without changing the Hall potential. Plateaus will occur over the range of magnetic 

fields where the percolating paths have integer filling factor. Such a range exists due 

to the fact that the potential hills and valleys act as a kind of buffer, see also 

section 4.2. 

3.6 Edge states 

In the Biittiker model7 contacts act as electron reservoirs. At zero temperature 

a contact with Fermi level fp can inject electrons up to this Fermi energy. Also 

electrons impinging on a contact can be absorbed by the contact, irrespective of 

their energy. A contact is called ideal if it absorbs all electrons impinging on that 

contact and fills all the empty states in the sample up to fp by injecting electrons. 

First consider the one-dimensional conductor sketched in Fig. 3.3, with two 

ideal contacts attached to both ends and calculate its conductance. The contacts are 

at fp 1 and fp 2 respectively. Further assume scattering to be absent in the structure. 

This implies that all electrons which are injected at one contact end up at the other 

contact, in other words the transmission probability is equal to one. It is clear that 

the conductance of the two-terminal device is proportional to the number of 

electrons with energies in between Ep 1 and Ep 2 times their velocity. The motion of 

electrons at lower energies cancels. Hence the conductance can be calculated from 
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the electrons between fFt and tF 2 alone. The total current can be written as 

I= nevg, with 'llg the group velocity 

Vg = 1/h dt/dk, (3.6) 

and n the concentration of electrons between tF 1 and fF2· The calculation of the 

conductance is now rather straightforward. In an energy interval D. f around tF there 

are D(t=tF)D.t electrons, with D{f} = (dn/dk}/(dt/dk}. It is clear that the terms 

dt/dk in vg and D(t) cancel in the product I= nevg. This peculiarity leads to 

I (trz-EFJe/h, where dn/dk lj21r is inserted. The value 1/21f can be derived 

from the particle in a box problem. If a voltage measurement across the two 

contacts is performed a voltage V = (EF 2-EFJ/ e is measured. The ratio of this 

voltage and the current leads to a conductance of e2 jh. If i one-dimensional 

subbands are present this changes into I= V ie2jh. So the conductance (I/ V) of the 

one-dimensional structure is quantized in units e2 jh. 

l 
--r---- -----

y 

Fig. 9.9 One-dimensional conductor with two contacts at fFt and Ef2 respectively. 

No scattering is supposed to occur. The net current is determined by the states in 

between fFt and fF 2· 
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The beauty of the Bfittiker formalism is that the same arguments can be 

applied to the quantized Hall effect in two-dimensional systems. This is because in a 

magnetic field the electron wave functions also have a one dimensional character: 

(3.7) 

with g(x--'J:o,N) the solution of the harmonic oscillator problem centred around Xo 

with characteristic length 

(3.8) 

the magnetic length. The centre x0 is related to the wave number kin Eq. (3. 7) via 

(3.9) 

In this case the Landau levels of the two-dimensional system play the role of the 

different subbands in the one-dimensional system. It can be proved in a similar way 

that the Hall resistance is quantized in units h/ie2, if the transmission probability is 

equal to one. The only difference is that the position x0 of the states with different k 

values is the same in the one-dimensional case, but depends on k for the quantized 
Hall case. 

Originally Buttiker sketched the following situation: The two-dimensional 

electron system is situated in a potential landscape with hills and valleys. At the 

edges the confining potential steeply increases in order to keep the electrons within 

the sample. Hence there will always exist an equipotential line from contact to 

contact along the edges. Along this equipotential line there exists an extended state, 

the interior will be localized. The energies of the Landau levels in this confining 

potential differ from those calculated earlier (Eq. (3.4)). Due to the confinement the 

Landau levels bend upward at the edges, like indicated in Fig. 3.4. This bending 

introduces a non-zero group velocity of the electrons at this position, see Eq. (3.6). 

At one edge the electrons move to the left, at the other to the right, because the 

sign of the slope of the energy as a function of position is opposite. The states with 

non-zero velocity can be compared with the classical so-called skipping orbits. 
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Now the picture of the quantized Hall effect like it was originally depicted by 

Biittiker can be drawn, see Fig. 3.4. If the Fermi level is situated in between the 

'bulk' Landau levels the net contribution to the current is given by the electrons at 

the edge with the higher Fermi energy only. These so-called edge states can scatter, 
but due to the presence of the magnetic field their group velocity will always be 

directed in the same direction. So there is no backseat tering and the transmission 

probability is one. The transmission probability will start to differ from one in case 

the Fermi level is situated within a 'bulk' Landau level. In this case an electron can 

move from one edge to another through subsequent scattering events. Thus not all 

electrons injected at one contact arrive at the other contact, some might return via 

the other edge, a.nd the quantization vanishes. 

Backscattering may also occur at high current levels. If £u-£F 1 > li.wc there 
will be scattering from the upmost Landau level to the other edge. This limits the 

range of currents at which the Biittiker model can be valid to a maximum value of 

about 100 nA under typical experimental conditions. Note that usually higher 

currents are applied. At high currents one always has to include the effects of the 

N=2 

0 

X 

Fig. :LI Landau levels in the presence of a confining potential. At the edges the 

confining potential causes the Landau levels to deviate from their 'bulk' value. 
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electric field in order to be able to describe the quantized Hall effect correctly. It is 

easy to make an extension to this more general situation, see Fig. 3.5. Due to the 

electric field the electrons obtain an extra drift velocity vd = Ex/ B. It can be shown 

that this drift velocity is already accounted for by Biittikers group velocity 

Vg = 1/h {dt/dk) = 1/h {dE/dXQ)(dx0fdk}. The factor dx0/dk can be obtained from 

Eq. (3.9) and is equal to [2. If an homogeneous Hall field is present this leads to an 

extra energy term eExx0. So dc/dx0 = eEx and substitution leads to 

Vg =Ex/ B = vd. This picture has been visualized in Fig. 3.5. The electrons which 

are situated on the line segments of Fig. 3.5 which have been indicated by 'loc' 

cancel with respect to their contribution to the current. It is easy to imagine that 

the indicated regions are just the part of the sample from A to A' in Fig. 3.2. Thus 

the parts that cancel are (comparable to) localized states. Also the extended states 

can be taken the same as those of Luryi and thus these models become very similar. 

® current + 

® current 

e 

I®®®®®®®®®®®®®®® 

X 

Fig. 3.5 Biittiker model generalized to the situation where currents flow in the 

interior of the sample. The states indicated by 'lac' and the dashed lines can be 

regarded as localized, the others are extended. A situation comparable to that of 

Luryi occurs. The region A -A' can e.g. be compared to that of Fig. 3.2. 
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CHAPTER4 

INHOMOGENEITIES AND THEIR INFLUENCE 

ON THE CURRENT DISTRIBUTION 

IN THE QUANTIZED HALL EFFECT 

4.1 Introduction 

In solid state physics inhomogeneities are very often made responsible for 

differences between experiment and theory, if one cannot confirm their presence by 

an independent experiment or if one cannot calculate their influence. 

The same situation applies to the quantized Hall effect in two-dimensional 

electron gases. We have already mentioned the models of Woltjer and Luryi in 

section 3.5, where the quantized Hall effect is thought to be due to spatial variations 

in the electron concentration. More generally the whole picture of localization is 

strongly interwoven with these inhomogeneities. 

In section 4.2 we present numerical calculations on inhomogeneous two­

dimensional electron gases under quantized Hall conditions. These calculations show 

what the influence of inhomogeneities might be and how rigorously spatial 

variations must be taken into account for explaining the experimental observations. 

The current distribution which is calculated there is the externally imposed current. 

At the end of section 4.2 we also discuss the difference between the local current 

density caused by internal electric fields, which can be present due to 

inhomogeneities, and the current density which is imposed by the external electric 

field. This topic is of special interest for the spatially resolved potential 

measurements which we present in chapter 5. 

In section 4.3 we explain why we think inhomogeneities are present. Further we 

comment on some methods, which exist to determine these. It turns out that only 

very little is known about the subject of inhomogeneities. 
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4.2 How an inhomogeneous electron concentration influences 

the current distribution in the quantized Hall effect: 

a model for 'dynamic' localization 

We consider inhomogeneities in the electron concentration of at most a few 

percent. Variations of 1 % normally have only a small influence on the current 

distribution. However, we will show that when a magnetic field is applied, the 

current distribution can be strongly modified in spite of the very small variations in 

electron concentration. 

First, we clarify why these small inhomogeneities can have such a strong 

influence. Next, we consider their role in the occurrence of the quantized Hall effect, 

the asymmetry in the high magnetic field Shubnikov-de Haas effect and structure in 

Shubnikov-de Haas minima. 

Consider the situation in which two semi-infinite two-dimensional electron 

gases are connected to each other, see Fig. 4.1. Both regions (1, 2) have their own 

electron concentration n and resistivity tensor components Pxx and Pxy· The electric 

field and the current density are connected via E = pj. The system obeys the 

equation 

div j = 0. (4.1) 

It can be shown that because of the translational symmetry along the x-axis 

fJ:ix/ ox= 0. Thus with Eq. ( 4.1) it follows that ojy/ oy = 0 and thus jy1 = }y2 = iy· 
At the boundary Ex1 = Exa· Therefore we can derive that at this boundary 

(4.2) 

This means that the difference in Hall voltage caused by jy in regions 1 and 2 has to 

be fully compensated for by currents in the x-direction. If we apply a magnetic field 

of e.g. 1 T and if we assume an electron mobility of 100 m2/Vs we get 

Pxy/ Pxx = 100. If we assume Pxxl ~ Pxx2 Eq. ( 4.2) tells us that a difference between 

Pxy in regions 1 and 2 of 1 % results in almost equal currents ix and Jy. But within a 

quantized Hall plateau where Pxy/ Pxx can easily be 107, :ix turns out to be five orders 

of magnitude larger than iy· In an ordinary Hall bar this .ix has a tremendous 
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influence on the current distribution and hence on the voltages measured along the 

Hall bar structure, which we will show later. 

Mter this rather qualitative discussion we will now go into a more detailed 

calculation. We chose for a numerical approach of the calculation of the current 

distribution. Apart from Eq. ( 4.1) a second equation is involved: 

rotE=O. (4.3) 

If we apply j= uE to Eq. (4.1) and use Eq. (4.3) and E -grad Vone can deduce 

that 

Uxx {82V/8x2 + 82Vfoy2) + {ouxxfox- OO'xy/By) av;ax 
+ {80'xy/8x + OO'xxf8y) 8Vf8y = 0. (4.4) 

The system we want to study is a Hall bar structure. However we are only 

interested in effects caused by inhomogeneities, and not in contact or boundary 

effects. Therefore we apply periodic boundary conditions in the y-direction. The two 

® 

n1 . Pxx, • Pxv, 

Fig. 4.1 Two homogeneous regions 1 and 2 with different electrical properties. The 

two regions are connected along the x-axis. A current }y flows upward. It is 

demonstrated in the text that a magnetic field can cause currents ix to appear which 
are much larger than jy. 
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other boundaries of the periodic rectangular structure are governed by the boundary 

condition jx = 0. 

In case of a homogeneous sample the current distribution can very easily be 

derived from Eq. (4.4). In this case the current will be distributed homogeneously if 

O'xx 'f 0, as we will show in chapter 5, where we also consider the special case of 

O'xx = 0. 

We solved Eq. (4.4) numerically under the boundary conditions discussed 

above. To this end we applied a 70x70 discretisa.tion grid, resulting in a 4900x4900 

sparse matrix equation. The accuracy of the calculations is governed by the number 

of discretisation points compared to the magnitude of the inhomogeneities. We 

carefully checked that the numerical errors in this work rested within acceptable 

limits. 

B=O B:;t:O 

-------------------~f-

X X 

n n 

X X 

Fig. 4.:1 A schematic view of an inhomogeneous €-distribution. Shown is the 

situation at zero magnetic field {left) and non-zero magnetic field {right). A smooth 

electron distribution is possible in case B = 0. If B # 0 the electron concentration 

shows a jump at the position where the Fermi level crosses a Landau level. 



29-

The results of our calculations which we present in the following are obtained 

on two types of model systems. The one has a fixed electron distribution as a 
function of position, the other a fixed potential distribution or potential landscape 

which is filled with electrons up to the Fermi level. These two are equivalent at zero 

magnetic field, see Fig. 4.2. If a magnetic field is applied the situation gets more 

complicated. Landau levels occur, which means that in the case n is constant abrupt 

steps in the Fermi energy appear where it moves from one Landau level to another. 

This situation results in a redistribution of charge until a voltage difference across 

the redistributed charge is obtained which equals the step in Fermi energy. It has 

been shown15 that this can result in charge redistributions up to 1 pm. The charge 

redistribution strongly favours Landau levels to be completely filled or completely 

empty. This is exactly what one obtains within the model with a fixed potential 

distribution. Within this model the charge distribution depends on magnetic field or 

Fermi energy. When the inhomogeneities are of the order of the charge 

redistribution length (1 p,m) it is a better description than the model which assumes 

a constant charge carrier distribution. In case of long range inhomogeneities the 

fixed n distribution is the better approximation since the region in which the charge 

redistribution takes place is small compared to the range of the inhomogeneities. 

We want to stress, however, that neither of the two models is perfect. 

First, we present calculations on a system with a fixed electron distribution 

which is inhomogeneous in two directions. Our results indicate that interesting 

localization effects occur. Consider the case with 

n{x,y)= n0(1 + 0.005·sin(7rx)·sin(27ry)) 0 < x < 1 (4.5) 

Pxx = {10-3 + 5·10-1• (n- noB/BoJ2 )/n0eJ.io 
Pxy B/ne. 

In these equations we have chosen values which are in agreement with the 

experiments. For example Pxx is chosen such that it shows a minimum around a 

magnetic field B = B0njn0, with n0 = 5-1015 m·2 and B0 = 5 T. These parameters 

correspond to a filling factor 4 around a magnetic field of 5 T. We chose 

J.io = 10 m2fVs. The electron distribution is chosen such that there is a path across 

the sample with a constant electron concentration. We calculated the current and 

voltage distribution around 5 T in the entire sample. From this we took the 

potentials at specific points, which may be considered as voltage probes, and 
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calculated the 'apparent' values of Pxy and Pxx which one would obtain from an 

electrical transport measurement; see Fig. 4.3. These calculated values represent 

averages of local resistivities. Since we measure resistances and not resistivities we 

introduce the quantities Rxy and Rxx respectively. It is clear that there is some 

structure visible in Rxy but that there is certainly no plateau present. The minimum 

in Rxx we observe is rather sharp. 

If we replace n(x,y) in Eq. ( 4.5) by 

n(x,y) = no(1 + 0.01· (x- 0.5} + 0.001· cos(21ry)), (4.6) 

we find the results plotted in Fig. 4.4(a). In this case clearly a plateau appears and 

a wide minimum in Rxx is visible. Inhomogeneities in the current density can also 

5.05 ....------------------, 0.10 
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' ' ' 
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4.95 '--------......1..---------' 0.00 
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-j 
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Fig . .f.9 Calculated values of Rxy and Rxx determined from 

V(0,17/70)- V(1,17/70) and V(O,O)- V{0,1) respectively in case of a fixed electron 

distribution according to Eq. (4.5}. Instead of a plateau only some structure is 

visible. The Shubnikov-de Haas minimum is rather sharp. 
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Fig. 4.4 Calculated values of Rxy and Rxx determined from V(O,O}- V{l,O} and 

V{O,O}- V{0,1} respectively in case of a fixed electron distribution according to 
Eq. (4.6}. A plateau and a wide Rxx minimum are visible {a}. Calculated value of 

Rxx determined from V{O,O}- V{O,l/5) in case of a fixed electron distribution 
according to Eq. {4 .. 6). Clearly structure appears due to the inhomogeneous electron 

distribution {b). 
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cause a structure to appear in Rxx• as will be clear from Fig. 4.4(b ). Here, Rxx 'as 

measured' over a part of the structure is plotted. 

The question arises why in these calculations a plateau shows up, whereas in 

the first choice of parameters (Eq. (4.5)) only some vague structure was visible. In 

both cases (Eqs. (4.5) and (4.6)) percolating paths are present which have constant 

Pxy· In addition, one of these paths, namely the one at integer filling factor, has a 

relatively low Pxx· Apparently, in order to obtain a plateau these current paths 

must exist over a broad range of magnetic fields. This condition is only fulfilled for 

the parameters chosen in Fig. 4.4 (Eq. (4.6)) and not for Fig. 4.3 (Eq. (4.5)). 

From other calculations, which we do not show here, it became clear that the 

percolating Pxy paths are extremely 'wanted' by the current, especially when Pxx is 

much smaller than Pxy· This is caused by the effect, described at the beginning of 
this section, that boundaries between regions with different Pxy cause a strong 

deflection of the current path. The current is more or less obstructed by a change in 

Pxy· The effect is that strong that a percolating path of very low Pxx may be avoided 

if Pxy is not constant along this path. Instead a path with constant Pxy may be 

chosen, although Pxx is considerably higher. Without a magnetic field the path with 

low Pxx is favoured. 

From the discussion mentioned above it is clear that the conditions necessary 

to observe a plateau are generally not fulfilled if we have to deal with a fixed 

random distribution of the electron density. This model of fixed inhomogeneous n 
does not give a correct explanation of the quantized Hall effect. 

In Fig. 4.5 we plotted the current distribution in the case of n(x,y) as defined in 

Eq. (4.5). The lines plotted are the trajectories along which the current flows. At 

B 5.0 T the current runs predominantly along the edges of the sample. One can 

also see that the interior parts of the sample do not contribute much to the current 

and are more or less localized. This effect is stronger when Pxx is chosen such that it 

has a deeper minimum as a function of magnetic field. If we look at the current 

distribution at a different magnetic field value (B 4.9875 T) we observe that the 

situation has completely changed. Now current flows also in the interior of the 

sample. This means that localized states have now become extended states. 

Therefore our picture of the localized and extended states differs from the 'normal' 

homogeneous localization picture with extended states in the centre of the Landau 

level and localized states in the wings of the Landau levels. 
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We now turn to the second model, in which we have a fixed potential 

landscape. In this case we perform the calculations as a function of the electron 

concentration (or t:F ). If calculations as a function of B are performed fF has to be 
determined self-consistently at every step in B in order to keep the total number of 

electrons fixed. We took for D(t:} semi-ellipsesl2 with a width r. For T 0, Uxx was 

then calculated from O"xx = c· D2(eF ). The result of one of our calculations is shown 

in Fig. 4.6. Here we took 

(4.7) 

with fc 1 meV, r = 1 meV and hwc = 10 meV; the Fermi level moves from the 
fomth to the fifth Landau level. It is clearly visible from Fig. 4.6. that a wide 

plateau appears. Also a wide minimum in Rxx is present. Thus, within this picture 
it is possible to achieve plateaus, although at zero magnetic field the situation is 

comparable to that of Eq. ( 4.5) where no plateaus appear (see Fig. 4.3). The reason 

for this behaviour is that the charge redistribution facilitates the occurrence of 

(a) (b) 

Fig. 4,.5 Current distribution at 5.0 T (a} and 4.9875 T (b). The electron 

distribution is given by Eq. (4.5}. Drawn are the lines along which the current flows. 

Between every two adjacent lines an equal amount of current flows. It is clear that 

more or less localized regions exist, the position of which depends on the magnitude 

of B. 
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percolating Pxy paths, or even entire areas, at integer filling factors. Since these 

charge redistribution effects almost certainly exist, the quantized Hall plateau width 

may be partially or completely due to this effect. The experimental observation that 

low mobility samples show wider plateaus than samples with a high mobility may 

imply that a low mobility is accompanied by a low homogeneity. 

For two other cases we calculated the potential distribution, i.e. for 

f = fc· ( {l+cos(21rx}}· (l+cos{27ry)) 2 ), 

f' = -f, (4.8) 

both with fc 0.175 meV, r 1 meV and.li.wc = 10 meV. The result is indicated in 

Fig. 4.7. We immediately see that an asymmetrical shape of the Rxx curve occurs. 

The asymmetry clearly depends on the shape of the r-distribution and looks similar 

to the one measured by Haug et aH6. Haug demonstrated experimentally that the 
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Fig. 4.6 Calculated values of Rxy and Rxx determined from V{O, 7/12}- V(1, 7/12} 
and V(O,O}- V(0,1} respectively in case of a fixed e-distribution according to 

Eq. (4.. 7}. Clearly a plateau and a wide Rxx minimum occur. 
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asymmetry depends on the type of scatterers present. He argued that these 

sca.tterers would modify the density of states in such a way that it would become 

asymmetrical. In our calculation it is not the density of states which is 

asymmetrical, but the f distribution. This asymmetry could also be caused by the 
scatterers. At present we are not yet able to calculate the temperature dependence 

of the asymmetry. From experimental observations, however, we know that 

increasing the temperature decreases the asymmetry. We think this is because the 
inhomogeneity decreases with increasing temperature since a broad Fermi-Dirac 

distribution smooths the electron distribution. In addition a similar asymmetry 

observed in narrow samples17 was interpreted in the same terms by assuming an 
inhomogeneity in f caused by the edges. 

The local current densities we calculated are all due to an externally imposed 
current. In the Biittiker modeF, however, there exists a local non-zero current 

density at the edges without any imposed external or total current. This is a 
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Fig . .t. 7 Calculated values of Rxx determined from V{0,2/5)- V{0,9/5) in the case 

of a fixed t:.-distribution according to Eq. (4.8) and in case off' with f '=-f. Clearly 

visible is the asymmetrical shape of the Shubnikov-deHaas oscillations. 
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consequence of the band bending of the Landau levels at the edges, see Fig. 3.4 and 

the group velocity which obeys Eq. (3.6). A non-zero drift velocity can of course also 

be present due to internal electric fields. So a non-zero current density is not 

restricted to the geometrical edges of the sample. 

Consider for example the situation of Fig. 4.8 where we assume an 

inhomogeneous electron concentration to be present with a surplus of electrons in 

the centre. The local electrostatic potential distribution shows equipotential lines 

like indicated in Fig. 4.8(a). Hence, in a magnetic field currents appear parallel to 

these equipotential lines even in the absence of an externally applied current. If we 

now add a homogeneous current density the resulting total current density looks 

like indicated in Fig. 4.8(c) and (d) and the result depends on the magnitude of the 

(a) (c) 

(b) I r- / '/ (d) 

Fig . ../.8 Electrostatic potential distribution, with its 'frozen in' current distribution 

(a). If an extra current distribution (b) is imposed the resulting total current 

distribution (c) and (d) depends on the magnitude of the imposed current 

distribution. The larger current is added in (d). 
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current added. It is shown that although a homogeneous current density is added, 

the resulting total current density is highly inhomogeneous and that it becomes 

more homogeneous if a larger current is added. In the next chapter we will 

determine the current distribution due to these externally imposed currents. 

In conclusion we state that a magnetic field can strongly influence the current 

distribution in the two-dimensional electron gas. The current flows preferably along 

equi-Pxy lines if Pxx is small compared to Pxy· Furthermore, if the quantized Hall 

effect is to be explained solely by inhomogeneities it is inevitable to assume charge 

redistribution in the sample when changing the magnetic field. Inhomogeneities can 

also cause structure in Rxx at the plateau edges and asymmetrical Rxx curves. 

4.3 Which types of inhomogeneities are present and how to detect them 

Within the scope of this thesis only those (spatial) inhomogeneities are of 

importance which show up in the electrical transport properties of the two­

dimensional electron gas, like an inhomogeneous electron concentration or 

inhomogeneous mobility. Principally these are all caused by inhomogeneities in the 

composition or structure of the GaAs/ AlxGa1_xAs heterostructure, which are 

determined during the growth. 

Predominantly the distribution of Si-donors throughout the doped AlxGa1-xAs 

and the degree of perfection of the GaAs and AlxGa1_xAs layers are of importance. 

These do not only influence the scattering time, but especially the Si-distribution 

has its impact on the shape and depth of the potential well at the GaAs/ AlxGa,_xAs 

interface and hence on the electron concentration. Thus a band bending can occur 

parallel to the interface due to electric fields parallel to the interface and spatial 

variations in the local electrostatic potential are present. It is clear that this also 

occurs at the edges of the heterostructure where the Si-doping level jumps to zero. 

This causes the electron concentration to decrease steeply at the edges. From 

electrical transport measurements on narrow heterostructures 18 ( < 1 p.m) it can be 

deduced that these edge effects, which can be looked at as inhomogeneities, occur 

over distances of about 100 nm. Further, several types of defects like dislocation 

lines and oval defects have a severe impact. 
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The long range homogeneity of complete wafers can easily be investigated by 

cutting out small pieces and subsequent examination of their electrical properties. 

The result of such an experiment is of course some spatial average over the sample 

under study. This kind of measurement usually indicates a variation of the electron 

concentration and mobility less than a few percent over distances of about 1 em. 

Sometimes variations of the same order of magnitude can be observed over 

much smaller distances. These inhomogeneities manifest themselves in the difference 

between signals, measured across different pairs of contacts attached to one and the 

same Hall bar, which should behave equivalently. Care should be taken, however, 

when interpreting the experimental results. Short range variations are not 

necessarily an indication of an inhomogeneous electron concentration. As we will 

discuss later there might be local interruptions in the two-dimensional electron gas 

on an atomic scale. These consist of very narrow crack-like structures up to 

about 1 mm long which have a very high resistance. These cracks were first 

discovered by a liquid crystal technique19. If these interruptions are present the 

geometry of the structure is altered and the different pairs of contacts are no longer 

equivalent. Apart from the cracks also a really inhomogeneous electron gas might be 

present. This is not necessarily a consequence of an inhomogeneous Si-distribution, 

but it can be due to an inhomogeneous distribution of electrons over the dopant 

atoms. This kind of situation can occur at low temperatures, where such an instable 

situation can be frozen in. It is commonly known in this field of semiconductor 

physics that the homogeneity of the electron concentration, as observed in electrical 

transport experiments, strongly depends on the cooling-down procedure, i.e. slow or 

fast cooling with or without the presence of stress and/or light. This makes the 

comparison between measurements obtained during different cooling-down cycles 
difficult. 

In addition to these electrical transport experiments also several (electro-) 

optical techniques are suited to characterize the two-dimensional electron gas. With 

these techniques one can in principle obtain a spatial resolution of the order of the 

wavelength of the light used or at least the diffusion length of the charge carriers. 

Photoluminescence techniques on complete wafers20 have revealed 

inhomogeneities comparable to those obtained by electrical transport measurements. 

But photoluminescence measurements can also be used to detect individual defects 

of about several p.m. Small changes over small distances, however, are hard to 
measure. 
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A technique which is very well suited to image the quality of heterostructures 

quickly is the lateral photo effect21,22. In this kind of experiment electron-hole pairs 

are created in the GaAs by an incident spot of light and a normal photovoltage 

builds up between the two-dimensional electron gas and the p-side of the GaAs. Due 

to the local character of the illumination lateral (parallel to the surface) currents 

appear and a lateral photovoltage is established. This voltage can be measured 

across two contacts connected to the two-dimensional electron gas. It can be shown 

that in a homogeneous material the voltage depends linearly on the position of the 

illuminated spot between the contacts. Deviations from this linear dependence are 

an indication of inhomogeneities like dislocation lines. In this way the cracks we 

mentioned earlier in this section can be detected easily. It turns out that nearly all 

samples contain these cracks which we think to be dislocation lines, because they 

run parallel to the crystallographic axes. A surprising effect concerning these cracks 

is the fact that they seem to appear spontaneously after some storage time of e.g. 

one month. With a differential technique23 we were able to image the local 

resistivity directly. In this way we are able to visualize defects with even higher 

resolution. 

We mentioned in the introduction that electr<H>ptic measurements are also 

suited to characterize GaAs24. This technique is based on the fact that GaAs 

becomes birefringent under an applied electric field. Light polarized along the fast 

and slow axes of the GaAs obtains a phase difference. See section 5.2 for an 

extensive discussion of this technique. With this method the spatially resolved 

potential distribution of the two-dimensional electron gas can be measured. Under 

quantized Hall conditions surprising results have been obtained, which we present in 

chapter 5. 

The last technique we want to mention here is etching, with which all sorts of 

microscopic defects can be observed. The technique is based on the fact that defects 

usually have a higher etch rate. Though, this is a destructive technique and it does 

not reveal slight inhomogeneities over larger distances. 
To conclude this section we state that inhomogeneities are always present. 

Every device should be checked for larger defects like dislocation lines by means of 

e.g. a scanning optical microscope (application of the lateral photo effect) prior to 

performing other electrical transport measurements. Although the presence of 

several inhomogeneities can be detected, there is insufficient information about 
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small inhomogeneities ( < 1 %) or larger inhomogeneities over small distances 

( < ltkm), e.g. clusters of Si-atoms in the doped AlxGa1_xAs. Unfortunately, as we 

have seen in section 4.2, the very small (unknown) inhomogeneities in electron 

concentration ( < 0.1 %) can have a considerable influence on the current 

distribution in high magnetic fields. 
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CHAPTERS 

OPTICAL MEASUREMENT OF THE SPATIAL POTENTIAL DISTRIBUTION 

IN THE QUANTIZED HALL EFFECT 

5.1 Why contactless measurements? 

Until recently, experimental access to the problem of the current and potential 

distribution in two-dimensional electron gases under quantized Hall conditions was 

possible only by attaching electrical contactsto,u to the interior of the two­

dimensional electron gas. These electrical contacts, however, disturb the system to 

be investigated. First, the contact acts as an equipotential probe; it is an electron 

reservoir with a thermalized electron distribution. Second, there are problems 

arising from the s<H;alled Corbino effect. Finally, by attaching an electrical contact, 

the electrochemical potential rather than the electrostatic potential is measured. 

With these problems in mind it is not clear whether the effects of current bunching 

reported in Refs. 10 and 11, see Fig. 1.2, are due to the presence of the electrical 

contacts or due to an intrinsic effect in the two-dimensional electron gas. 

Our technique to determine the spatial potential distribution is based on the 

linear electro-optic effect25 or Pockets effect and makes use of the effect that GaAs 

becomes birefringent when an electric field is applied. The application of the 

Pockels effect is not uncommon in the field of GaAs chip testing26, but has until 

recently never been applied under quantized Hall conditions. Since it is a technique 

which does not involve electrical contacts we avoid the problems mentioned above. 

In section 5.2 we describe the experimental set-up and in section 5.3 we present 

our experimental results in combination with a discussion and a comparison with 

theoretical models. 
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5.2 Details of the experimental set-up 

GaAs becomes birefringent when an electric field is applied. We can take 

advantage of this effect to determine the potential difference between the two­

dimensional electron gas and the back-gate of a GaAs/ AlxGa1_xAs heterostructure. 

This has been demonstrated in Ref. 24. We will briefly outline the method here. 

We used a 1.3 J.Lm, 1 mW semiconductor solid-state laser beam, which is 
focused, with a focal diameter of 70 p,m, on a GaAs/ AlxGa1_xAs heterostructure 

with a two-dimensional electron gas in the (001) plane, see Fig. 5.1. The light is 

polarized along the <100> axis and travels in the <001> direction. Since the GaAs 

is transparent to the wavelength of 1.3 p;rn, the light exits on the back of the 

substrate, on which we evaporated a thin (8 nm) semi-transparent Au-layer acting 

as an equipotential plane. When a potential difference Vis present between the two­

dimensional electron gas and the An-layer, the components of the light polarized 
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Fig. 5.1 Experimental set-up, the electrical circuit is indicated schematically. 
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along the fast and slow axes obtain a phase difference Llr. It has been shown25 •26 

that this phase difference Llr equals 

d 

Llr = 27f/A. n0 r 41 Ez(x,y,z}dz = 27f/A. n0 r4 1 V(x,y), 3 J 3 (5.1) 
0 

where no and r41 are the refractive index and the component of the electr()-{)ptic 

tensor of the GaAs, d is the thickness of the substrate, Ez the component of the 

electric field perpendicular to the two-dimensional electron gas and >.. the 

wavelength. The electric field parallel to the two-dimensional electron gas does not 

enter this expression. If we position a quarter-wave plate and a polarizer in front of 

the detector the transmitted light intensity varies almost linearly with the applied 

potential difference between the two-dimensional electron gas and the Au-layer. 

Since we do not want the incident laser beam to ionize additional donors and 

thus disturb the potential distribution, we apply a constant background 

illumination which empties all donor states in the AlxGa1_xAs. We carefully 

selected a GaAs/ AlxGa1_xAs heterostructure to ensure that even under illumination 

there is no parallel conduction in the AlxGa1_xAs layer. This is essential, because 

parallel conduction might cause a potential drop in the AlxGa1_xAs. Since the 

AlxGa1_xAs also shows the Pockels effect, additional unwanted phase shifts in the 

transmitted light might then occur. However, as long as the AlxGa1_xAs is 

insulating, the potential drop in the very thin AlxGa1_xAs layer is negligibly small. 

Our sample consists of a 400 JJ.m GaAs substrate with on one side the 8 nm 

Au-layer kept at ground potential. On the other side a 4 JJ.m GaAs buffer layer, a 

20 nm AlxGa1_xAs spacer layer, a 40 nm AlxGa1_xAs Si-doped (nsi = 2·1024 m-3) 

layer (both with x = 0.3) and a 18 nm GaAs cap layer are grown. The sample has a 

rectangular geometry of 5.4 mm length and 2 mm width without side arms. Current 

contacts (In) were alloyed into the two-dimensional electron gas at both ends, 

5.4 mm apart. Prior to our experiments we checked the homogeneity of our sample 

with a laser-scan technique to be sure that no interruptions of the two-dimensional 

electron gas21 or other major defects are present. 
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To avoid interference effects the sample is slightly tilted from normal incidence 

(:::7°). Due to this tilt angle, electric fields parallel to the two-dimensional electron 

gas also enter Eq. (5.1). The impact of the error introduced by this tilting will be 

discussed later on in relation to the presence of fringing fields. As the potential 

differences to be detected are fairly small we apply an alternating current (235 Hz) 

through the two-dimensional electron gas and thus modulate the transmitted light 
intensity. The detector output is hence measured with a lock-in technique. We 

carefully checked that the measured signals had neither an out of phase component 
nor a double frequency component. 

In order to determine the local potential in the two-dimensional electron gas we 

first perform a calibration measurement. To this end an alternating voltage of 

5.6 V PP is applied between the two-dimensional electron gas and the Au-layer, 

which is at ground potential, and the resulting detector signal is measured. Next, an 

alternating current of known amplitude is sent through the two-dimensional 

electron gas, with one current contact and the Au-layer at ground potential, and 

again the lock-in signal is measured. Both measurements are taken at the same 

position of the laser beam. The ratio of the detected intensities in these two 

measurements yields the unknown potential at the position of the laser beam for the 

case of the alternating current flowing through the two-dimensional electron gas. 
Subsequently the laser beam is scanned across the surface of the sample step by 

step. At each spot the calibration procedure is repeated. We checked that the 

results do not depend on the amplitude of the voltage applied in the calibration 

measurement. Further, the use of alternating currents with current reversal in the 

sample does not cause any problems, since our results are the same if we apply a DC 

offset current. With this DC offset current we obtain a modulated current density 

which is not reversed. Therefore we can rule out that spatial switching of current 

paths affects our measurements. As a last confirmation of the correctness of our 
experimental results we note that measurements performed during the same cool­

down cycle reproduce very well. 
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5.3 The results and their interpretation in terms of edge charge 

The result of a two-point resistance measurement as a function of magnetic 
field is shown in Fig. 5.2. Due to the two-point character of the method both Hall 

plateaus and Shubnikov-de Haas oscillations are visible. From Fig. 5.2 an electron 
concentration of 5.0·1015 m·2 and a mobility of 20 m2/Vs can be derived. In the 

following we subsequently present and discuss line scans of the potential made at 

the magnetic field values indicated in Fig. 5.2. Unless indicated otherwise the 

temperature at which these scans are made is 1.5 K. 

The first two scans, see Fig. 5.3, are made inside the plateau with filling factor 

four. These are scans across the width of the Hall bar in the middle between the 

current contacts. The edges of the Hall bar are at ±1 mm. It is obvious from Fig. 5.3 

that the Hall potential steeply increases or decreases at the edges. In the interior a 
more or less linear dependence on position is observed. If the temperature is 
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Fig. 5.! Plot of the voltage across the sample versus magnetic field (I 5 p.A, 

T 1.5 K). The tw~point experiment shows both plateaus and Shubnikov-de Haas 

oscillations. Arrows indicate magnetic field values at which line scans are made. 
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raised to 55 K, see Fig. 5.4, the edge effects disappear and a linear dependence of 

the Hall potential on position is observed. The measured potential difference is 

equal to the Hall voltage measured electrically on the Hall probes. This observation 
implies that there are no disturbing fringing fields at the edges. Prior to the 

presentation of further measurements we now first turn to the theoretical 

interpretation of these results. 

We have already mentioned at the end of section 4.2 that far away from the 

current contacts in a homogeneous sample also a homogeneous current distribution 

is expected to occur, irrespective of the magnitude of the magnetic field as long as 

O'xx :f 0. This can easily be derived from the substitution of Eq. (3.1) in Eq. (4.1), 

which leads to 

(5.2) 

This can be compared with Eq. (4.4), which is the more general equation for the 
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Fig. 5.9 Two line scans of the potential at magnetic fields of 5.0 T (•) and 

5.25 T (+ ). The solid line is the result of a model calculation {Eq. {5.6)). 
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inhomogeneous case. If we assume the current to flow in the y-direction and if we 

assume an infinitely long homogeneous sample, we can show that 

lJVflJy =constant, and hence lJ2VJl)y2 = 0. Thus it follows from Eq. (5.2) that in 

the homogeneous case also lJ2VflJx2 = 0 (if CTxx :J: 0) and hence lJV/8x =constant, 

which implies a homogeneous Hall field and hence a homogeneous current 

distribution. This is what we observe at 55 K (Fig. 5.4) where the quantized Hall 

effect is absent and hence crxx :J: 0. 

If CTxx = 0, however, this argument does not hold and the potential distribution 

has to be calculated by other means. This calculation has been carried out by 

MacDonald et al~7 and Thouless2s. They argue that at integer filling factor a 

possibility exists to accommodate more charge per unit area in one Landau level. In 

an electric field all one electron wave functions (Eq. (3.7)) are shifted in space. If 
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Fig. 5.4 Line scan at 55 K, where the quantized Hall effect is absent. A linear 

potential distribution is observed {the straight line is a least squares fit). 
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the electric field depends on position this shift and hence the electron density 
depends on position too, according to27,28: 

for -i W < x < ! W, (5.3) 

with W the width of the sample. In this way it is possible to maintain an integer 

filling factor throughout the sample despite charge redistribution. The potential is 
related to the excess density by 

with r;. the dielectric constant. So we have to solve the equation 

+WL2 
VH(x) = -e J d2VH(xJfdxPnlx1-xl dxt. 

-W/2 

(5.4) 

(5.5) 

with e = il2j1ra*, l the magnetic length (Eq. (3.8)) and a*= 41fxh2/m*e2 the 
effective Bohr radius. This can be done numerically. For the limit of small e 
Beenakker29 has shown that the solution of Eq. (5.5) can be approximated 
accurately by: 

for lxl :5 W/2- {. (5.6) 

In our case e is small (e = 1.6·10-8 mat B = 5 T and a relative dielectric constant 

of 13 for GaAs). The variation of VH{x) within a distance e from the edges can be 

neglected. Eq. (5.6) approximates the potential as a result of line charge with width 

{ at the two edges x = ± W/2 of the Hall bar. In Fig. 5.3 we have plotted the 

potential distribution calculated from Eq. (5.6). The agreement with the experiment 

is striking in view of the fact that the theory does not contain any adjustable 
parameters. 

Results of scans outside the plateau region are presented in Figs. 5.5(a) 

and (b). The almost linear increase of the Hall potential in the interior of the Hall 
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Fig. 5.5 Line scans at a magnetic field of 4.55 T (a) (top) and 4.25 T (b) {bottom}, 

both at 10 pA and 20 pA. Although the edge effects are smaller than inside the 

plateau region they remain present (lines are meant as a guide to the eye). 



-50 

bar becomes more pronounced the further the plateau region is left. Also outside the 

plateau the edge effects, although smaller, remain present. A similar transition to a 

linear potential distribution can be observed inside a plateau region if the current is 

increased, see Fig. 5.6. This can be explained by heating effects which cause Pxx to 

increase. If the current is increased far enough a linear behaviour (not shown), like 

that of Fig. 5.4, occurs. 

These heating effects might be related to the large amount of electrons which 

pile up at the edges and the associated high electric fields. From Eq. (5.6) we 

deduce that at a distance e from the edge (with i = 4, VH = 0.1 V), the Hall electric 

field equals Ex = 3 ·105 V /m. This corresponds to a potential drop of 3 m V within a 

distance of 10 nm, which results in a substantial overlap of wave functions of 

adjacent Landau levels. Hence inelastic scattering processes may occur. 
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Fig. 5.6 Line scans at 5 #A and 20 jkA, in the centre of a plateau. A clear current 
dependence can be observed {lines are a guide to the eye). 
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In between plateaus these high electric fields do not occur. The linear potential 

distribution which should develop if O'xx = constant # 0 is associated by an excess 
electron concentration o:£28: 

(5.7) 

At a distance e from the edge and at VH = 0.1 V, B 5 T this results in 

'llexcess 1.4·1013 m·2, which seems to be small regarding the magnitude of 

n = 5.0·1015 m·2. However, since D'xx can depend strongly on n, the condition 

O'xx = constant will no longer be fulfilled, even for such a small deviation from a 

homogeneous electron distribution. It is easy to see qualitatively what happens. Due 

to the translational symmetry of the problem the current flows parallel to the edges. 

The electric field Ey along this current is independent of position. Thus, since 

Ey = PxxJy - PxyJx and Jx = 0, Jy is inversely proportional to Pxx everywhere. The 

Hall field as determined from the current distribution by Ex = PxyJy is inversely 

proportional to Pxx· The magnitude of Pxx is determined by the distribution of the 

electrons over the density of states. 

It is tempting to interpret the presence of edge effects in between the plateaus 

in terms of the above mentioned inhomogeneities induced by a large current. 

However, there are two major objections to such an interpretation. First, there 

should be a clear current dependence outside the plateau region as Eq. (5. 7) depends 

on VH. This, however, is not what we observe, although this may be due to our 

limited range of currents used. Second, the potential distribution should be 

asymmetrical due to an electron excess at one edge and a shortage at the other edge. 

This is not the case in Fig. 5.5. 

Perhaps the clue to the presence of edge effects in between the plateaus can be 

found in the correspondence between the transition from inside to outside a plateau 
and the transition from low to high current inside a plateau. Both transitions are 

gradual. This resemblance might indicate that the underlying physics of both 

transitions is similar. If we assume that the sample is inhomogeneous, it is possible 

that the quantized Hall effect breaks down locally if the current is increased. In an 

inhomogeneous sample even outside a plateau the quantized Hall conditions may 

still be fulfilled in part of the sample. In this case the transition from the situation 

in Fig. 5.3 to Fig. 5.4 is no longer abrupt. 
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We now turn to the influence of electrical contacts. In Fig. 5. 7 line scans along 

the length of the sample are presented. These scans are carried out at a current of 

50 p.A. At this large current the sample is heated up to some extent, but the 

measuring time is considerably reduced. The influence of the ends of the Hall bar 
with the current contacts is clearly visible. Fig. 5. 7 shows that the current enters at 

one corner of the sample and exits at the opposite corner, as ~xpected theoretically. 
The influence of internal electrical contacts is much less clear. In Fig. 5.8 a 

scan across such an internal electrical contact is shown. We also show a scan 1 mm 

below the internal contact. The contact is disconnected. Note, however, that the 

measurement is not changed when we connect the contact to a lock-in amplifier with 

an input impedance of 100 Mn to ground potential. Apart from the edge effects at 

the boundary of the two-dimensional electron gas we see a sharp bending of the 

measured potential in the immediate neighbourhood of the contact. The 

interpretation of this effect is yet unclear. 
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Fig. 5. 7 Line scans across the length of the sample at a current of 50 p.A. The lines 

drawn are a rather arbitrary fit with polynomials of order four. 
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We also measured the electrical potential between the interior electrical 

contacts and ground by attaching a voltmeter to the contact. The result is shown in 

Fig. 5.9. It is clearly different from Fig. 5.3. From Fig. 5.9 a current distribution 

would be obtained which strongly depends on the magnitude of the magnetic field. 

No such current distribution can be deduced from the Pockels experiment. This 

difference between the two experiments can be understood if one realizes that with 

electrical contacts one measures the electrochemical potential (the Fermi level), and 

that with the Pockets effect one measures the electrostatic potential. Already in a 

simple pn-junction, where the Fermi level is equal throughout the junction but the 

space charge at the interface of the junction causes an internal electric field, the 

electrochemical and electrostatic potential are different. One should be able to 

observe the resulting potential difference across such a junction with the Pockets 

effect, though not with a voltmeter. 
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We now briefly reconsider the models of the quantized Hall effect which we 

discussed in sections 3.3 to 3.6. First we state that under our experimental 

conditions the entire Hall voltage across the Hall contacts is caused by an 

electrostatic potential difference. In the Biittiker model the driving force is diffusion 

due to gradients in the electron concentration. However, as pointed out earlier, see 
section 3.6 and Fig. 3.5, electric fields can be incorporated into the Biittiker model 

easily. The electrons simply obtain an extra drift velocity due to the electric field. If 

this incorporation is carried out and one assumes the electric field to be the entire 

cause of the Hall potential, then all ingredients of the Biittiker model which are 

essential to obtain the quantized Hall effect are simply those of Woltjer and Luryi, 

section 3.5. The essential assumptions made in these two models are a quantized 

Hall resistivity at integer filling factor in combination with long range (» l) 
inhomogeneities. This last requirement is imposed because a local resistivity must 

be definable within these models. However, we may also incorporate short range 
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Fig. 5.9 Hall potential measurement as a function of magnetic field between the 

contacts indicated. Contrary to the Pockels experiment, the current distribution 

seems to depend strongly on the magnetic field. 
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inhomogeneities if we apply the arguments of Prange and Hansen, section 3.5, or 

Halperin and Laughlin, section 3.4. The short range inhomogeneities do not disturb 

the exact quantization at integer filling factor. If there are long-range 

inhomogeneities, then in between the plateaus the potential distribution is not 

completely linear, whereas in a plateau the potential distribution at the edges is not 
as steep as expected theoretically (Eq. (5.6)). 

We conclude from our experiments that the Hall potential distribution in a 

plateau region is well described by the presence of edge charge. In between plateaus 

and at high current levels the Hall potential distribution becomes a linear function 

of position, with a gradual, sometimes incomplete change between hoth kinds of 

distributions. This indicates the coexistence of hoth regions with O"xx = 0 and 

regions with O"xx :f. 0 nnder these circumstances. 
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CHAPTER6 

THE QUANTIZED HALL EFFECT IN THE ABSENCE OF SAMPLE EDGES 

6.1 The Corbino disct a. geometry without edges 

The absence of edges which connect the two current contacts in a Corbino disc is 

its major difference with the Hall bar geometry. Because of this absence of edges a 

measurement of Pxy or qxy on such a structure would be a powerful tool to 

investigate the influence of the presence of edges on the quantized Hall effect. With 

the conventional magneto-transport techniques, however, such a measurement is an 

impossibility. The inability to do so is due to the fact that no tangential electric 

field can be developed in the Corbino disc. We circumvented this problem by 

modifying a technique of Syphers et aH0,31 who induce an electric field in the sample 

by application of a modulated magnetic field. The difference between their 

experiment and ours is that we load the Corbino disc with a resistor which is small 

compared to the resistance of the Corbino disc, instead of measuring an open-drcuit 

voltage. 

6.2 How to measure the Hall conductivity on a Corbino disc 

We describe the modulated magnetic field which is applied perpendicular to the 

two-dimensional electron gas by 

B(t) = B0 + B1sin(wt). (6.1) 

The two contacts, see Fig. 2.2, are loaded with an impedance Z. The modulated 

magnetic field induces an electric field in the sample, which in turn causes a current 

to flow in the sample and in the impedance Z. We assume throughout the following 
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that the sample under study is homogeneous. In this case we can write down the 

following relation between the current density and the electric field: 

Eq, = Pq,q,Jq, + Pq,rJr = !rdBfdt, 
Er = - Pq,rJq, + Pq,q,Jr. (6.2) 

The indices rand <P indicate the radial and tangential components respectively. We 

can identify P4>4> with Pxx and P<!>r with Pxy· If the tangential current density is 

eliminated the radial electric field can be rewritten as 

(6.3) 

If we integrate Eq. (6.3) from the inner radius r1 to the outer radius r0 and use the 

relation Jr = I/27rr, with I the current through Z, we obtain 

(Pxy /PxxJUr-'5 - r¥}dB/dt 
V= 1 + ln{r0 /ri}/(21rZuxxJ · (6.4) 

In case Z = oo is substituted into Eq. (6.4) we get the relation derived by Syphers et 
aH0•

31 with their geometry factor f(r) i{r5 - rV and WeT= Pxy/Pxx· The special 
limit we are interested in is obtained if Z « Zc, with Zc the resistance of the Corbino 

disc, Zc 1/(27rUxx) ln(r0 jr1). We can derive from Eq. (6.4) that in this limit 

I= !1ro-xy (r5- rV/1n{r0 frJ dB/dt. (6.5) 

With this expression we can determine O'xy if we measure the current through the 
circuit. 

A second possibility to determine O'xy or Pxy on a Corbino disc, which is in fact 

very similar to the one described above, necessitates two separate measurements. 

The first experiment is just the one of Syphers (with Z = oo) and yields Pxy/Pxx· 
The second experiment consists of a conventional measurement of the Corbino 

resistance and in this case 1/axx is determined. From the ratio of these two 

quantities O'xy can also be obtained (as (Pxy/Pxx)o-xx) = O'xy)-
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6.3 The experimental absence of plateaus a.nd its interpretation 

The first experimental attempts to measure uxy made obvious that three major 

disturbing factors are present which cause signals which are orders of magnitude 

larger than those to be measured according to Eq. (6.5). These three are: vibrations 

of the wiring, thermo-voltages and a non-zero self inductance of the wiring. 

Vibrations of the wiring in the static magnetic field result in large in and out of 

phase signals. Usage of one coaxial cable instead of two separate wires and careful 

fixation and positioning of this cable turned out to suppress this kind of inductive 

pick-up sufficiently. 

The non-zero self inductance of the wiring, however, is harder to prevent. This 

self inductance is caused by small loops in the wires which connect the coaxial cable 

with the sample. Although it is relatively easy to trim this self inductance to zero at 

room temperature by means of an adjustable compensation coil, the self inductance 

appears again at low temperature due to thermal shrinking effects during cool-down. 

It was necessary to construct a compensation coil which is adjustable at liquid He 

temperature. One adjustable loop of about 1 mm2 turned out to be sufficient. 

Thermoelectric effects are the third disturbing influence we mentioned. Due to 

thermovoltages a DC current may appear in the circuit. As the resistance of the 

Corbino disc strongly depends on magnetic field in a plateau region the modulated 

magnetic field will modulate the Corbino resistance and hence this DC current too. 

This effect can be eliminated by inclusion of a capacitor in series with the load 

resistor, as it prevents DC currents. The value of this capacitor must be chosen such 
that its impedance can be neglected with respect to the resistance of the load 

resistor, in order to prevent both phase shifts and violation of the condition Z C: Zc· 

For our axy experiments presented below we use a modulation frequency of 

2011 Hz, a 130 0 resistor in series with a 4 7 p,F capacitor and a modulation 

amplitude of 0.4 mT. The dimensions of the sample under study are r1 = 200 f.tiil 

and r0 = 700 f.till (n = 4.2·1015 m-2, J.L = 15 m2fVs at 2 K). With four Landau levels 

populated it can be calculated that this results in a current level of about 400 pA 

and a voltage of 55 n V across the resistor. 
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With the above mentioned precautions we obtained the experimental result 

plotted in Fig. 6.1. It is clear that the overall shape of the measured Uxy curve 

corresponds to the expected 1/ B behaviour. However, instead of plateaus we observe 

oscillations. 'Real' oscillations in Uxy should only occur if Pxx is still sufficiently 

large. This because Uxy is a mixture of Pxy and Pxx ( Uxy = -Pxy/(Pix +Pix)). We 
checked that in our case the contribution of Pxx can be neglected and so this is not 

the origin ofthe oscillations in Fig. 6.1. 

To check our set-up we also performed the second method we mentioned to 

determine u-,;,y· Both the results of the normal Corbino measurement and the 

modulation method at high load impedance are plotted in Fig. 6.2(a). The ratio of 

these two, which should yield Uxy• and the result of the direct determination of Uxy 

(Fig. 6.1) are both shown in Fig. 6.2(b). As can be seen the results of the two 

methods look very similar apart from the somewhat larger noise in the full curve. 
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Fig. 6.1 Hall conductivity Uxy as a function of the magnetic field. A modulation 

frequency of 2011Hz, a resistor of 130 0 and a modulation of 5 Ts-t are applied. 
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curve) and the induced voltage Vind with Z = 100 MO (full curve) as a function of 

the magnetic field (a} (top). Hall conductivity axy as calculated from Fig. 6.2{a) (full 

curve) compared with the measured conductivity {broken curve) {b) (bottom}. 
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These results are shown up to 2 T only because of the drastic increase of the 

Corbino resistance .at higher fields, which becomes comparable to the input 

resistance of the measuring equipment. 

At this point we wish to make some remarks on the accuracy of the method. 

From the modulation experiment with Z = oo the ratio Pxy/Pxx is obtained. Since 

we know the electron concentration we can identify the filling factor of the different 

plateaus and hence we know the corresponding values of Pxy· So we can calculate 

Pxx from this value and the measured ratio Pxy/ Pxx· The values obtained agree 

within a few percent with the values calculated from the conventional Corbino 

measurement at the peak positions in Fig. 6.2(a). Furthermore we varied a number 

of experimental parameters. The applied frequency, load resistor, series capacitor 

and the magnitude of the magnetic field modulation had no significant influence on 

the shape of the oscillations as long as we stayed within reasonable limits. 

Increasing the temperature from 2 K to 10 K makes the oscillations disappear, but 

in this case the quantized Hall effect is expected to disappear as well. The exact 

shape and magnitude of the oscillations does depend, however, on the specific 

sample under study and the cool-down cycle. Cool-down dependent behaviour has 

already been mentioned in chapter 4, where we discussed sample inhomogeneities. 

So this experimental result may be an indication that the observed effects are 

indeed caused by sample inhomogeneities. To investigate whether this is the case we 

performed some model calculations we describe below. 

For reasons of simplicity we chose in our calculations for a radial inhomogeneity 

in the electron concentration. Such an inhomogeneity seems rather arbitrary and 

artificial but might be caused during the processing of the sample, like for instance 

the fabrication of the electrical contacts. We took two concentrical areas with a 

difference in electron concentration of 0.4 % in a sample with the same dimensions 

as the one investigated experimentally. The boundary of these regions was taken to 

be situated at a radius of 450 J.tm. The values of Pxy are taken equal and constant in 

both areas. For Pxx a quadratic dependence on magnetic field is assumed and the 

position of the minimum value depends on electron concentration. To get the 

voltage across the sample we have to integrate Eq. (6.3) over the two parts and add 

them together. The resulting calculated signal, see Fig. 6.3, looks very similar to the 

experimentally observed ones, but the exact shape of the oscillation depends, of 

course, on the parameters used in the model calculation. Calculations with more 
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than two areas having different electron concentrations made clear that it is possible 

to model different shapes of oscillations. This also accounts for the cool-down 
dependence. 

It is interesting to return to the question of the current distribution at this 

point. It might seem that the current is just radially directed in the homogeneous 

situation, this because the induced field is directed tangentially and the current 

flows at right angles to the electric field. Though, if we integrate along Eq, once 

around the Corbino disc we obtain a potential difference which depends on r as 

'lrTldB/dt. Since this is not a constant, but depends strongly on r, there is no 

solution with radial currents only. The current must contain large tangential 

components. It can be derived from Eq. (6.2) that the current circulates clockwise 

around the centre contact and that this rotation becomes less strong with increasing 

r. At a specific radius there is no tangential component of the current and from that 
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Fig. 6.9 Calculated Hall conductivity Uxy as a function of the magnetic field 

around a filling factor two. The difference in the electron concentration between the 

inner and outer part of the sample is 0.4 % in this calculation. 
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point outwards the current flows counter-clockwise. When the sample is 

inhomogeneous this current distribution is even more complicated, like we discussed 
in chapter 4. 

If we compare our experiments with the thought experiment of Laughlin (see 

chapter 3) we observe, apart from a striking similarity, the following difference. In 

our experiment the modulated field is present across the entire sample, in 

Laughlin's thought experiment the modulated magnetic field is restricted to the 

hole in the Corbino disc, or the inner contact, and Eq (6.5) becomes simply 

I= Uxydlf! /dt. As a consequence a current distribution is possible with radial 

currents only in Laughlin's case. But this only in the special case that 

JPxx/27rr dr = Z (integrated from ri to r0 ) and this can never be accomplished over 

a range of magnetic field values. Thus, in this case we will neither be able to 

observe plateaus if the sample is inhomogeneous. 

In conclusion we can state that the method described does not deliver the 

expected Hall conductivity, but a conductance that strongly depends on 

inhomogeneities in the electron density. Such inhomogeneities do not disturb the 

quantized Hall plateaus in a Hall bar because of the different topology of the Hall 

bar. The results described give experimental evidence for the existence and the 

importance of inhomogeneities. 
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SUMMARY 

This thesis deals with the investigation of the current distribution under 

quantized Hall conditions in two-dimensional electron gases present in 

GaAs/ AlxGa1_xAs heterostructures. After a short introduction in chapter 1 to the 

contents of this thesis and in chapter 2 to the concept of the two-dimensional 

electron gas, we discuss in chapter 3 experiments and various models with respect to 

the quantized Hall effect. In chapters 4, 5 and 6 we present the results of our own 

investigations. 

First, in chapter 4 the determination and calculation of the current distribution 

in inhomogeneous two-dimensional electron systems is presented. It is argued there 

that inhomogeneities can strongly influence the current distribution in high 

magnetic fields. We show that this can lead to specific structure in the Shubnikov­

de Haas minima and to asymmetrical Shubnikov-de Haas peaks. Furthermore, the 

occurrence of quantized Hall plateaus is calculated for different types of sample 

inhomogeneities. 

Second, in chapter 5 we present spatially resolved measurements of the 

potential distribution. These measurements are performed with an optical 

technique, which avoids the use of disturbing electrical contacts. Our results show 

that the potential distribution under quantized Hall conditions is determined by 

edge charge, which results in steep changes of the Hall potential at the edges. These 

steep changes disappear if the current or temperature is increased and if one leaves 
the plateau region. 

Third, in chapter 6 the influence of the presence of sample edges on the 

occurrence of the quantized Hall effect is investigated. These investigations are 

carried out on a Corbino disc subjected .to a modulated magnetic field. With this 

method the Hall conductance of the Corbino disc is determined. We find that the 

presence of inhomogeneities causes the plateaus to disappear, in contrast to what 

one observes in Hall bar structures. 
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SAMENV ATTING 

Dit proefschrift handelt over onderzoek aan de stroomverdeling in 

tweedimensionale electronengassen in GaAs/ AlxGa1_xAs heterostructuren onder 

quantum Hall condities. Na een korte inleiding in hoofdstuk 1 over de inhoud van 

dit proefschrift en in hoofdstuk 2 over het concept van het tweedimensionale 

electronengas, beschouwen we in hoofdstuk 3 experimenten en enkele modellen 

betreffende het quantum Hall effect. In de hoofdstukken 4, 5 and 6 worden de 

resultaten van ons eigen onderzoek behandeld. 

In hoofdstuk 4 worden berekeningen van de stroomverdeling in inhomogene 

tweedimensionale electronengassen gepresenteerd. Aangetoond wordt dat in hoge 

magneetvelden de inhomogeniteiten een grote invloed kunnen uitoefenen op de 

stroomverdeling. We laten zien dat dit kan leiden tot specifieke structuur in de 

Shubnikov-de Haas minima en tot asymmetrische Shubnikov-de Haas pieken. Voorts 

wordt het al dan niet optreden van het quantum Hall effect berekend voor 

verschillende inhomogeniteiten in het tweedimensionale electronengas. 

In hoofdstuk 5 worden metingen getoond van de lokale potentiaal in het 

tweedimensionale electronengas. Deze metingen zijn uitgevoerd met behulp van een 

optische techniek waarbij storende invloeden van electrische contacten worden 

vermeden. Onze resultaten laten zien dat de potentiaalverdeling onder quantum 

Hall condities veroorzaakt wordt door lading aan de randen van de structuur, 

hetgeen aanleiding geeft tot een sterke plaatsafhankelijkheid van de potentiaal aan 

deze randen. Deze sterke plaatsafhankelijkheid verdwijnt als de stroom of 

temperatuur wordt verhoogd en als men het plateau verlaat. 

In hoofdstuk 6 wordt de invloed van de aanwezigheid van preparaatranden op 

het optreden van het quantum Hall effect onderzocht. Dit onderzoek is uitgevoerd 

aan een Corbino schijf die geplaatst is in een gemoduleerd magneetveld. Met deze 

techniek is de Hallgeleiding van de Corbino schijf bepaald. Wij vinden dat de 

aanwezigheid van inhomogeniteiten de Hall plateaus doet verdwijnen, in 

tegenstelling tot hetgeen in Hall bar structuren wordt waargenomen. 
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Stellingen 

behorende bij het proefschrift 

The Potential Distribution in the Quantized Hall Effect 

1 Kleine inhomogeniteiten ln de electrnnenconcentratie kunncn de 

stroomverdeling in hoge magneetvelden sterk beinvloeden. 

- Dit pToef$chrift, hoofdstuk 4-

2 In quantum Hall plateaus is het Hall ele~trisch veld geconcentreerd aan de 

ran den van de Hall bar structum. 

- Dit pr-oefschTift, hoofdstuk 5. 

3 Ten gevolge van het verschil in geometrie tussen de lfall bar en de Corbino disk 

heeft een inhornogene electronenconcentratie in bcide geometrieen een 

tegengestelde invloed op het al dan nict optreden van het quantum Hall effect. 
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