

TooLiP : a development tool for linguistic rules

Citation for published version (APA):
Leeuwen, van, H. C. (1989). TooLiP : a development tool for linguistic rules. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR321974

DOI:
10.6100/IR321974

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR321974
https://doi.org/10.6100/IR321974
https://research.tue.nl/en/publications/a2c8a6a3-b7a6-4380-8d8d-00289ad06416

Cover: Three aspects which are typical for ToorjP are illustrated on the
cover. The topmost figure is a linguistic rule, wich assigns primary word stress
to vowels which are pronounced as /of and written as 'eau'. T he middle figure
illustrates the internal representation of the focus of this rule. The bot tom
figure illustrates the internal data structure of synchronized buffers , and how,
moving from left to right through the grapheme buffer, one can access the
phoneme buffer.

ToorjP:
A Development Tool for Linguistic Rules

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. ir. M. Tels,
voor een commissie aangewezen door het College van Dekanen

in het openbaar te verdedigen
op vrijdag 15 december 1989 te 14.00 uur

door

Hugo Cornelis van Leeuwen

geboren te Castricum

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. S.G. Nooteboom
Prof. dr. H. Bouma

The work described in this thesis has been carried out at the Philips Research
Laboratories as part of the Philips Research programme.

Acknowledgements

W RITING a thesis is generally hard and solitary labour. I am no excep­
tion to this rule. Nevertheless, I wish to emphasize that neither form

nor content of this thesis would have had the same quality, had the labour
been purely solitary.

I definitely consider the scientific climate at the Institute for Perception
Research (IPO) an important factor in the accomplishment of this thesis.
Although the contribution to this thesis of any individual person can hardly
be measured or traced, the numerous scientific and social discussions which
constitute the pleasant working atmosphere at IPO, have certainly been very
stimulating.

There are a few persons whom I wish to thank personally. This concerns
first of all my promotor Sieb Nooteboom. He has been the main stimulat­
ing force all along the way. I have allways found his comments and sugges­
tions remarkably to the point, and I feel they have very much improved the
manuscript.

Further I wish to thank Marc van Leeuwen and Kees van Deemter for their
substantial help in the effort of formalizing the notion of complementation as
described in chapter 3. I thank John de Vet for his scrupulous reading of
chapter 4, to a level at which he was able to suggest some improvements to
the algorithms.

As to the form of this thesis, I wish to thank Marc and David van Leeuwen
for their TgX.nical assistance. Without their TgX.pertise and readiness to an­
swer and solve my numerous questions, this thesis would not have the TgX.nical
quality in which I now take pride.

Contents

List of Figures
List of Tables
List of operational definitions
Notational Conventions

1 Introduction

2 A development tool for linguistic rules
2.1 Introduction
2.2 Linguistic needs
2.3 The linguistic component

2.4

2.5

2.6

2.3.1 Linguistic rules
Primitives
Patterns
Actions

2.3.2 Modules ...
Assignment scheme .
Rule types ...
An example ..

2.3.3 Conversion scheme
System output
2.4.1 Development Support
2.4. 2 Rule Coverage Analysis
2.4.3 Derivation Analysis
Extensions
2.5.1 Meta-symbols .
2.5.2 Macro Patterns
2.5.3 Metathesis
2.5.4 Exception lexicon .
Relation to other systems
2.6.1 Lay-out
2.6.2 Ordering principle

viii
ix
X

xiv

1

7
8

10
12
14
15
17
19
21
21
22
23
24
26
27
28
28
29
29
30
31
31
32
32
33

Contents v

2.6.3 Assignment strategy 34
2. 7 Applications 34
2.8 Conclusion 35
Appendix 2.A FUnctional specification of Too.[jP's main body . 36

3 Extending regular expressions 39
3.1 Introduction 40
3.2 Simplified regular expr~.ssions 42

3.2.1 Introduction . 42
3.2.2 The formalism 44

Syntax. . . 44
Semantics . 46
Some properties of the formalism 4 7

3.3 Complementation introduced in a compositional manner 48
3.3.1 Some examples . . . 52
3.3.2 Some problem cases 53

3.4 Explicit nofits 54
3.4.1 Succeeding structure 54
3.4.2 Closing brackets . . 56
3.4.3 A semantics excluding explicit nofits 56

3.5 Properties of the new semantics 58
3.5.1 Consistent versus inconsistent patterns . 58
3 .. 5.2 Relation between the two definitions of the semantics 59
3.5.3 Double complementation . . . 60
3.5.4 Power of expression 61

3.6 Including simultaneity and optionality 61
3.6.1 The optional operator 61
3.6.2 The simultaneous operator . . 62

3. 7 Properties of the semi-compositional formalism 63
3. 7.1 Explicit no fits 63
3.7.2 Relation to the compositional formalism 66
3.7.3 de Morgan's laws 67
3.7.4 Complementing simultaneity 69

3.8 Discussion 69
3.9 Conclusion 71
Appendix 3.A Distributivity of patterns 73
Appendix 3.B Simplification of complementation 74
Appendix 3.C Equivalence of semantics 75
Appendix 3.D Alternative formalisms 78

4 Some aspects of the implementation of ToorJP 81
4.1 Introduction 82
4.2 The internal representation of patterns 83

Vl

4.2.1 An informal matching strategy
4.2.2 The representation

Graphemes
Phonemes
Grapheme features
Phoneme features .
Alternative structures
Simultaneous structures
Optional structures . . .
Complemented structures

4.2.3 Summary
4.3 The algorithm for pattern matching

4.3.1 Matching primitives ...
4.3.2 Matching structures

Alternative structures .
Simultaneous structures
Complemented structures

4.3.3 Exhaustive matching
Optional Structures . . .
The algorithm for exhaustive matching .

4.3.4 Summary
4.4 Synchronized buffers

4.4.1 Matching primitives to synchronized buffers
4.4.2 Synchronization mechanisms

Two mechanisms
Equivalence
Buffer switching
Installing synchronization

4.4.3 Comparison of the two mechanisms.
4.4.4 The algorithm for buffer switching
4.4.5 Summary

4.5 Discussion
4.6 Conclusion
Appendix 4.A Matching inside complementation

5 Evaluation
5.1 Introduction
5.2 Applications

5.2.1 Integer numbers
The rules ..
Discussion ..

5.2.2 Linguistic modules
Functionality .

Contents

84
86
87
87
87
88
88
89
89
92
92
93
96
97
98
99

100
103
104

. 108

. 109

. 110
112
115
116
118
120
121
124
126
128
128
130
132

137
138
138
140
140
146
147
147

Contents

Discussion
5.2.3 Other possible applications

5.3 The complementation operator . .
5.3.1 Conclusion

5.4 ToorjP in relation to comparable systems
5.4.1 The formalisms
5.4.2 Central data structure
5.4.3 Inference mechanisms
5.4.4 Development support
5.4.5 Implementation aspects
5.4.6 Conclusion

5.5 Possible Extensions
5.5.1 Rule-by-rule assignment
5.5.2 Simultaneous operator
5.5.3 Extension of layers ...
5.5.4 On-line rule editing . .
5.5.5 Compiler implementation

Appendix 5.A Module NUMBER_5 ..

References
Summary
Samenvatting
Curriculum Vitae

vii

. 148

. 149
150
151
152
155

. 158

. 159

. 160
162
164
165
165
165
166
167
167
169

171
175
178
182

List of Figures

2.1 Relation between basic concepts 11
2.2 Toor).P's architecture 13
2.3 The ways in which modules may be concatenated . 25
2.4 Separation of linguistic knowledge 27
2.5 The development system including an exception lexicon 32

4.1 Inside view of Toor).P 84
4.2 Buffer architecture of Toor).P 111
4.3 Selecting buffers in GTG modules. . 112
4.4 Selecting buffers in GTP modules . . 113
4.5 Selecting buffers in PTP modules . 113

5.1 Modular composition of the grapheme-to-phoneme conversion
system 139

I

2.1
2.II

3.1
3.II
3.III
3.IV
3.V
3.VI
3.VII
3.VIII
3.IX

5.1
5.II
5.III

List of Tables

Conversion table of phonemes

Rules for converting the word 'chauffeur'
Derivation analysis of the grapheme 'c'

Syntax of simplified regular expressions
Semantics of simplified regular expressions
Universe of an extended regular expression
Syntax of extended regular expressions . .
Semantics of regular expressions
Semantics of semi-compositional regular expressions
The semantics of patterns
The syntax of patterns
The universe of patterns

Module NUMBER-2: inserting unit markers
Comparison for expressing a particular rule .
Comparison between eight systems

XV

24
30

45
45
50
51
51
58
64
65
65

142
156
163

List of operational definitions

T HE following list gives a description of the most important concepts
which are introduced in this thesis, and of some general concepts which

are used in a specific manner here. All terms are introduced in the course of
the study, but the reader may wish to consult the list at another moment.
More information about the concepts can be found on the pages listed behind
the item.

In this list a description of the terms has been given rather than a formal
definition. The definition or the main source of information of a concept
can be found at the underlined pagenumbers. Examples of (the use of) the
concept can be found on the italicized pages.

Action: the application of a rule; the structural change of a linguistic rule is
added to the output and synchronized with the input segments which
are associated with the focus of the rule; 19.

Alternative operator: the 'or' operator for patterns; 17, 46, 64, 88, 93, 98.

Candidate: a string is a candidate if it can be fitted to a pattern such that
its segments do not match the complemented part, but match the non­
complemented parts of the pattern;

Common rule: a linguistic rule which can be triggered by more than one
segment. Operates further like a segment rule; 20, 22, 143.

Complementation operator: the 'not' operator for patterns; 18, 48, 54, 92,
100, 150.

Compositionality: a formalism is compositional if the meaning of an arbi­
trary expression can be expressed as a function of the meaning of the
composing sub-expressions; 47, 55, 70.

Concatenation operator: the operator which concatenates patterns. The spec­
ified patterns must be found in succession; 17, 4 7, 64, 86.

List of operational definitions xi

Consistent pattern: a pattern for which no strings exists which are both a
candidate and an explicit nofit; 58, 75.

Conversion scheme: the conversion defined by the concatenation of modules
of the user-provided input to the output; 24-26.

Explicit nofit: a string is an explicit nofit if it can be fitted to a pattern
such that its segments match both the complemented and the non­
complemented parts of the pattern; 55, 69.

Feature modification: the output segment is determined by modification of
the features of the input segment; 20.

Features: description of segments on the basis of common properties; 15.

Focus: the leftmost part of a linguistic rule (before the arrow), denoting the
input segments which are to be transcribed; 10, 14, 42, 93.

Formalism: formal description by means of syntax and semantics of a formal
language; 4 5, 64-65.

Graphemes: segments of the orthography. In this thesis generally the input
segments; 10, 87.

Identity marl(er: a marker placed behind a feature specification, used to com­
pare arbitrary segments; 16, 31, 143.

Inconsistent pattern: a pattern for which a string exists which is both a can­
didate and an explicit nofit; 58, 33, 75.

Insertion rule: a linguistic rule which 'inserts' a (sequence of) segment(s) into
the current input string: the structural change is added to the output
while no input segments are processed; 22, 22, 122.

Internal position: an internal marker indicating buffer and position at which
a pattern is to be matched; 94.

Label: supplementary (often non-segmental) information associated with a
segment; 16.

Label assignment: the assignment of labels to an output segment; 20.

Left context: the part of a linguistic rule between slash and underscore, de­
noting the pattern that should be found to the left of the focus; 10, 14,
42, 93.

Linguistic rule: the basic mechanism which transcribes input segments to
output segments, dependent of the context; 10, 14-21.

Xll List of operational definitions

Matching direction: the direction in which a pattern is matched
43, 127.

or--+);

Module: an ordered set of linguistic rules, which manipulates a string; 21-24.

Operator: a mechanism which defines the relation between sub-patterns or
structures; 17-19, 44.

Optional operator: the operator for specifying optional or repetitive presence
of patterns; 17, 61, 64, 89-91, 104.

Path: a pattern of concatenated primitives from the beginning of a pattern
or structure to its end; 53-56, 85.

Pattern: an expression which denotes a set of segment strings; 17-19,

Phonemes: segments of the pronunciation. In this thesis generally the output
segments; 10, 87.

Primitive: the building block of the linguistic rule. A primitive always refers
to exactly one segment in the input or output; 15, 46.

Re-write rule: see linguistic rule.

Reference marker: an internal marker indicating position at which a pattern
is to be matched; essentially the same as internal position; 19.

Regular expression: a common mathematical tool used to denote sets of
strings; 40.

Right context: the rightmost part of a linguistic rule (behind the underscore),
denoting the pattern to be found to the right of the focus; 10, 14, 42,
93.

Scanning direction: the direction m which the input buffer is scanned
(+--or --+); 112-113.

Segment: basic element of the input or output; 10, 15.

Segment assignment: the assignment of segments (those of the structural
change) to the output; 19.

Segment rule: a linguistic rule which can be triggered by a specific segment.
The rule 'transcribes' input segments into output segments. The struc­
tural change is added to the output and aligned with the input segments;
19, 22, 93.

List of operational definitions Xlll

Semantics: the formal description of the meaning of a pattern. Not to be
confused with semantics in natural language processing; 45, 64.

Semi-compositional formalism: the formalism which defines the syntax and
semantics of patterns in ToorjP; 64-65, 69-71, 150-152.

Simultaneous operator: the 'and' operator for patterns; 18, 62, 64, 89, 99.

String concatenation: the concatenation of two strings. The second string is
appended to the first; 47.

Structural change: the part of a linguistic rule between the arrow and the
slash, denoting the segments which are to be added to the output if the
rule matches; 10, 14, 42, 93.

Structure: the basic unit of pattern which can be concatenated. A structure
can be a primitive, an alternative structure, an optional structure, a
simultaneity structure or a complemented structure. Sometimes the
notion structure is used in the limited sense of the last four structures;
45, 94-96, 97-103.

Synchronization: the alignment of segments in different buffers such that
derivational information is available; 19-21, 110.

Syncl1ronized buffers: buffers between which synchronization exists; 110.

Synta'l:: the formal description of how patterns may be constructed. Not to
be confused with the syntax of natural languages; 45, 65.

Universe: the set of strings relative to which complementation operates; 48-
50,65.

Notational Conventions

T HROUGHOUT this thesis it is attempted to maintain consistency in
terminology and notation. In addition to this overview, in each chapter

the relevant conventions and terminology are explained. Generally this is
consistent between the chapters, but in one case it is not, as explained below.

Generally, when basic notions are introduced they are printed slanted.
Data such as linguistic rules, patterns and buffer contents, which are present
or may be present in a computer program, are printed in typewriter style.
However, as explained below, linguistic rules and patterns are also noted
in paper and pencil notation, in which case the are printed in bold face.
Algorithms are typeset in the following manner: keywords are printed in
bold face, procedures and functions have their first letter capitalized and are
printed in Italics, and variables and types are printed with no capitals and
also in italics. Finally, the names of actually developed linguistic modules are
printed in SMALL CAPS.

The way in which linguistic rules and patterns are typeset depends on the
angle of approach. In chapter 2 the system is approached from the user's
point of view. Therefore, all examples of linguistic rules in this chapter are
displayed in the exact appearance they have in the user-created computer
files. The other chapters take somewhat more distance. In these chapters
the rules are displayed in a paper-and-pencil notation. The 'and' insertion
rule, for instance, which is discussed in 5.2.1, would be displayed as in (1) in
chapter 2, and as in (2) in the other chapters.

t -> &,t I [D] _ [D] (1)
['0] ['{0}]

{1}

t - &,t I [-?o] (2)

Notational Conventions

The braces, which can span several lines in the paper and pencil
notation, are split up in the computer implementation, where
they are repeated on each line to indicate the arguments. The
complementation sign '•' gets an ASCII equivalent: '' '.

XV

Finally, throughout the thesis, phonemes are used in examples. Table I gives
the relation of the coded ASCII representation used in ToorjP to the IPA
(International Phonetic Alphabet) representation.

Table I: Conversion table of phonemes. For each phoneme the
IPA representation, the ToorjP representation and a Dutch ex­
ample word are listed.

IPA ToorW example IPA ToorjP example
u u roet p p pas
Ul UJ roe it pj PJ boompje
0 00 rood t T tas
01 OJ hooit tj TJ tjalk
;) 0 rot k K kan
::>i or hoi f F fok
a A mat s s sok
(11 AI detail I SJ chauffeur
au AU koud X X gok
a AA maat h B bas
al AJ maait d D das
E E les dj DJ djatiehout
ei EI reis g G goal
I I pit v v vuur
e EE lees z z zeer
eu EW leeuw 3 ZJ journaal
1 II liep m M meer
iu IW kieuw n N neer
y y muur Jl NJ oranje
AY UI muis lJ Q bang
~ EU keus 1 L lang
re OE put l LL april
a c de r R rok
1 GS glottal stop w w weer

SI silence j J jan
h H hok

Chapter 1

Introduction

I N reading aloud text one converts strings of letters into sounds. Although
for many of us this may seem a fairly simple feat, the processes involved are

not as simple as it may seem. This is soon found out if we try to automatize
letter-to-sound conversion, for example in a machine or computer program for
converting text to speech.

Part of the complexity stems from the fact that there is no one-to-one
correspondence between the letters as they are used in the orthography of the
language and the sound of speech. In reading a word like 'development', for
example, we encounter three times the letter 'e'. In the orthography they are
indistinguishable, but in the spoken version they are all different, the first one
sounding as in 'beach', the second one as in 'help' and the third one as in
'the'. Also, the second 'e' bears word stress and for quick understanding by
a listener we should get all of these factors right.

Now suppose we were to devise a reading machine, that is, a machine that
converts automatically given text into intelligible speech, then this machine
is confronted with the same problem. Of course, we can explicitly tell the
machine how to pronounce it, just like our parents told us how to pronounce
many words. However, they have never given us the pronunciation of all words
in our native language. Once we acquire some feeling for language, and this
can be quite early, we are capable of figuring some of it out ourselves. So
apparently we acquire rules on how to pronounce words. Some of them are
explicit, learnt at school, but most of them will probably be implicit.

Finding these rules and formulating them explicitly is best done by trained
linguists. Such rules can then be used in the reading machine. Of course,
such rules will probably not cover the whole of the language, since many
languages have numerous exceptions to their regularities, but generally the
regularities and sub-regularities, which can be expressed elegantly in rules,
cover a respectable part of a language.

Another observation also motivates the development of a rule component
in the pronunciation module of the reading machine. Suppose we were to

2 Chapter 1 Introduction

pursue the strategy of coaching, and we were to store all words of a language
in a lexicon rendering pronunciation and word stress. We would, first of all,
have a problem with storing all words. Constantly new words arise and old
words disappear. The new words, often denoting a new phenomenon, typically
appear quite suddenly and with relatively high frequency. It would therefore
be annoying if the reading machine, used to read aloud a newspaper text,
would fail on those words. A second problem would be the law of diminishing
returns. While the 200 most frequent words in English cover over fifty percent
(53.6 %) of the words in running text ("Brown corpus", Kucera & Francis,
1967), the next 800 words only increase the score 15.3 %, a trend which is
only persevered more strongly for words of lower frequency. Thus, although
a small lexicon is remarkably productive, increasing its size will yield quickly
diminishing returns. A rule component therefore serves both completeness
and efficiency.

Apparently we need a rule component in the reading machine. The task
is now to find the relevant rules. When this is done with paper and pencil
we find that, while one rule may be very clear and simple, a whole set of
simple rules can form a complicated prescription whose correctness or desired
functionality is difficult to establish. Here computers may provide help, as
they are very good in performing a sequence of simple instructions. If we
were to devise a tool which could read the paper and pencil rules, we could
have the machine evaluate the rules quickly on all kinds of text input, and
thus we could concentrate on the functionality of the rule set rather than
having to put effort each time into the deterministic process of evaluating our
rules.

In several places this approach has indeed been followed (Carlson &
Granstrom, 1976; Elovitz, Johnson, McHugh & Shore, 1976; Hertz, 1981;
Hertz, Kadin & Karplus, 1985; Holtse & Olsen, 1985; Karttunen, Kosken­
niemi & Kaplan, 1987; Kerkhoff, Wester & Boves, 1984; Kommenda, 1985).
The characteristics of these systems, which are studied more closely in one
of the following chapters, differ between the systems, but they all have in
common that linguistic rules are expressed in some format and executed by
machine. For a variety of languages the suitability of rules for expressing
spelling to pronunciation has been established.

This thesis describes yet another tool for the development of linguistic
rules. Like all other systems it has been designed with special intentions and
for particular purposes for which existing systems appeared not to be suited or
simply were not available. The main motivation for designing our own system
is that, apart from being used in the reading machine, it is also intended
to be used as an analysis tool to collect statistical information on spelling
to pronunciation relationships-for instance, how often is an 'e' pronounced

Introduction 3

as in 'beach', compared to the realizations as in 'help' and 'the'-which is
another question of interest in the field of linguistics. When the conversion
is performed by rules, the information is practically free: the rules explicitly
note the relationship, only some additional effort of an administrative nature
is needed.

Apart from this specific requirement, the system should meet some other,
rather general requirements. First of all linguists should be able to address it
in a familiar manner-the system should accept the rules which are formulated
as closely to the paper and pencil notation as possible in a computer imple­
mentation. The possibilities for expression should be as little restricted as
possible. Next, the system should feature tools to facilitate the development
of a rule set. Apart from diagnostic messages when the syntax is violated,
it should be able to provide detailed but carefully dosed information on the
derivational process for debugging purposes. Further, apart from being able
to access the input-to-output relationship from the outside, i.e., having these
relationships available when a word has been converted, they must also be
available inside, during the conversion process, so for instance one must be
able to test if a particular pronunciation is derived from a particular char­
acter sequence. Finally, from the engineering point of view it is desirable to
separate linguistic knowledge from the execution machine. The more linguis­
tic knowledge is declared explicitly, for instance what are the pronunciation
codes, which of these are defined as consonantal, etc., the less attached to a
particular linguistic flavour the system will be and thus the more indepen­
dent of the application. The only thing the system should offer is a certain
inference mechanism and an environment to provide this inference mechanism
with meaningful rules.

In this thesis, a tool for the development of linguistic rules is described
which satisfies the above requirements. It is called ToorJP, which stands for
"Tool for Linguistic Processing" and is pronounced in the same way as the
Americans pronounce 'tulip'. The link to this typical Dutch flower seems ap­
propriate since the system both originated in Holland and has been used to de­
velop rules for the spelling-to-pronunciation conversion (also called grapheme­
to-phoneme conversion) of Dutch.

Many of the examples will be taken from this application. The system is
not, however, restricted solely to this application, nor to the Dutch language.
The general characterization is that it is a tool with which one can test and
implement phonological theories. It is a tool with which one can define almost
any transcription of input characters to output characters which can be guided
by rules. For instance, it has also been used to spell out integer numbers
and acronyms, and can probably also be applied advantageously to spell out
abbreviations or correct root mutation due to morphological processes. In

4 Chapter 1 Introduction

fact, probably any rule-based segmental conversion or transcription process
can be implemented in Toor.jP, which makes the system suited to be used in
quite a variety of modules of the reading machine.

In this thesis Toor.jP will be treated from several points of view. In chap­
ter 2 a user's point of view is taken, and Toor.jP is described as it presents
itself to the user1 . First the possibilities available for constructing linguistic
rules are described, and and an explanation is given of the type of manipula­
tions one can express with the rules. Next it is explained how one can group
these rules into a set which defines a conversion scheme, i.e., a prescription
of how to compute the output from a given input. Then the development
support which the system provides is discussed and a short comparison with
some other systems is made on the basis of the properties discussed in this
chapter.

In chapter 3 a mathematician's point of view is taken. It concerns a specific
aspect of Toor.jP, which remains underexposed in chapter 2. In the linguistic
rules the user specifies target and context patterns which generally denote a
set of strings. For this purpose an extended form of regular expressions (a
widely used mathematical tool) is used. The extension consists of adding some
operators, i.e., mechanisms to express certain relationships between regular
expressions, to the formalism. The introduction of one operator, the com­
plementation operator, specifically gives rise to an unexpected problem. The
complementation operator is used to express the desired absence of a pattern,
and is desirable for elegant pattern description. In the intention of restricting
the user as little as possible, a full, unrestricted availability of this operator is
pursued. The problem which arises is that introduction in a straightforward
manner, viz. defining complementation analogously to how it is defined in set
theory, leads to an unexpected interpretation for a certain class of patterns.
That is, the formal interpretation differs from the subjectively expected mean­
ing. This is considered to be undesirable, and therefore an alternative formal
interpretation is proposed in chapter 3.

In chapter 4 a technical point of view is taken, concerning the implemen­
tation of the system. Three important aspects are discussed in detail. The
first one concerns the internal representation of the user-specified patterns.
The second concerns the matching strategy, i.e., how patterns are evaluated.
A full algorithmic description is given. The third concerns the system's in­
ternal data structure which is used to support the requirement of providing
input-to-output relations.

1Chapter 2 is a slightly modified form of a previously published article: Van Leeuwen,
H.C. (1989); A development tool for linguistic rules, Computer, Speech and Language, 3,
83-104. Compared with the article, the exposition of the linguistic component (section 2.3)
has been altered, and Appendix 2.A which contains a formal specification of this linguistic
component has been added.

Introduction 5

In the last chapter, chapter 5, the merits of Toor.jP are considered. First
some applications for which it has been used are discussed. As an example
of how ToorjP can be used it is discussed in detail how the spelling out of
integer numbers can be achieved. From somewhat more distance the major
application is viewed, viz. the grapheme-to-phoneme conversion. Next, the
complementation operator is reviewed and the formalism proposed in chap­
ter 3 is evaluated. Then, ToorjP is compared with seven existing systems
designed for similar purposes. This comparison is more extensive and com­
plete than the one in chapter 2, since here all the properties discussed in the
previous chapters are included. The conclusions of these sections, how ToorjP
is used in practice and how it relates to existing systems, lead to the proposal
of five possible extensions of the system, and these conclude the thesis.

Chapter 2

A development tool for linguistic rules1

Abstract

In this chapter the ToorjP system is presented. It is a development
tool for linguistic rules, and with it one can develop and test a set of
linguistic rules which define a scheme to convert an input string to
an output string. The system is approached from the point of view
of linguists, since they are the main users of such a system.

First the basic configuration is discussed. Linguistic rules are the
user's main tool to manipulate input characters. The possibilities for
transcribing input characters and the facilities to test contexts are
described. Grouping these rules into a module provides a mechanism
to manipulate strings. Modules are concatenated in a conversion
scheme to perform their tasks in the desired order. The system can
provide feedback on the conversion process, both for purposes of
debugging and efficiency improvement.

A special characteristic of ToorjP is that input-to-output rela­
tions are preserved. On the one hand this means that one can make
use of derivational information in the linguistic rules, and on the
other that the system can be used to gather statistics on input-to­
output relations. Given the major application for which ToorjP has
been used, viz. a grapheme-to-phoneme conversion system, ToorjP
can be used as an analysis tool for statistics on grapheme-to-phoneme
relations.

Finally, some extensions are discussed which are included to in­
crease its user-friendliness and applicability. Also, some character­
istics of the system are discussed and compared to those of some
other systems. A short survey of the applications in which it is used
concludes the chapter.

1This chapter is a slightly modified version of a previously published article: Van
Leeuwen, H.C. (1989); A development tool for linguistic rules. Computer, Speech and
Language, 3,83-104.

8 Chapter 2 A development tool for linguistic rules

2.1 Introduction

SINCE the publication of the Sound Pattern of English (SPE) by Chom­
sky & Halle (1968), linguistic re-write rules have become very popular in

phonology. This is due to the fact that rules of this type have proved to be
an elegant and efficient tool for formulating phonological processes. With the
rise of language- and speech technology such rules also found a wider appli­
cation, as they appeared to be adequate for the symbol manipulation which
is needed there.

One specific area is the development of text-to-speech systems. In most
Indo-european languages the spelling is not phonetic, i.e., the correspondence
between spelling and pronunciation is not one-to-one. Therefore, generally a
conversion phase is needed to assign a sound representation (phonemes) to the
orthographic text (graphemes). This phase is called grapheme-to-phoneme
conversion.

For a variety of languages the usefulness of linguistic re-write rules for gra­
pheme-to-phoneme conversion has been investigated (Ainsworth, 1973; Carl­
son & Granstrom, 1976; Elovitz, Johnson, McHugh & Shore, 1976; Hertz,
1981; Holtse & Olsen, 1985; Kerkhoff, Wester & Boves, 1984; Kommenda,
1985; Kulas & Riihl, 1985; Van Leeuwen, Berendsen & Langeweg, 1986). It is
widely agreed that these rules serve well for the large majority of regularities
in pronunciation of most languages, but that they should not be considered as
the best tool for irregularities (e.g., 'though' +-+ 'through') or ambiguities (e.g.,
'I read' (present tense)+-+ 'I read' (past tense)). For irregularities, alternative
approaches are more adequate, such as morph-based or word-based lexica,
where phonetic transcription is stored in a database as a function of the or­
thography. For ambiguities higher level linguistic processing seems necessary,
such as syntactical- and word class analysis. Therefore, in realistic applica­
tions a combination of approaches is often encountered (Allen, Hunnicutt &
Klatt, 1987).

In this chapter the ToorjP system is described, the main purpose of which
is to enable a linguist to develop an ordered set of linguistic re-write rules,
which defines a scheme to convert an input string into an output string. The
user can choose whether the input and output string are of the same type
or not. In the first case, a one-level concept is used, characters form the
input and characters result. Used in a grapheme-to-phoneme context, the
interpretation of graphemes and phonemes is done at the cognition level of
the (linguist) user. In the other case a two-level concept is used, for instance
one level corresponds to grapheme input and the other to phoneme output. A
special feature of ToorjP is that, once the second level has been initiated, the
alignment between the levels~i.e., for instance the correspondence between

2.1 Introduction 9

graphemes and phonemes-can be addressed in the rules. So, in the two-level
concept the notion of grapheme and phoneme can be entered into the system
and used explicitly in the rules.

The presence of co-ordinated information on orthography and pronuncia­
tion is-for the purpose of grapheme-to-phoneme conversion-not a necessity
from a theoretical linguistic point of view, but can be convenient for a num­
ber of applications. For instance, stress assignment in Dutch can profit from
this information, the rules can be formulated elegantly, and be well separated
from other parts of the grapheme-to-phoneme conversion. Also, the relation
between graphemes and phonemes is an attractive by-product of the con­
version. For applications where this information is needed (see for instance
Lawrence & Kaye, 1986), the grapheme-to-phoneme rules are sufficient and
no alignment algorithm is needed. Also, statistical information on individual
grapheme-to-phoneme relations can be gathered very easily. By running a
sample text corpus through the rules, it can be established how many dif­
ferent phonemic realizations a specific grapheme sequence has, and what the
frequency of occurrence is for each realization.

For some applications it is perhaps a limitation of ToorjP that only one
output string results from an input string. The system is not designed to
generate all possible outputs for input which has different possible correct
transcriptions. For instance, in a word like 'either' the first vowel may be
pronounced both&'> an ji:/ or as an /ai/, but in ToorjP one must choose one
or the other. Also, a word like 'object' is ambiguous if the word class is un­
known ('object' (verb) rt 'object' (noun)), and without this information the
correct pronunciation cannot be established. However, if such disambiguating
information is present (for instance provided by a separate process) ToorjP
is able to process this kind of non-segmental information and determine the
correct pronunciation (given the appropriate rules).

It was decided not to implement a facility which could produce all possible
correct transcriptions for ambiguous input. As to the first type of ambiguity,
when both transcriptions are correct and interchangeable, producing only
one of the alternatives is not erroneous. As to the second type, where the
ambiguity can be resolved by additional, non-segmental information, it is
preferable to aim at the correct transcription by providing the system with
that information. Since--for the purpose of text-to-speech conversion-the
processes involved are to a large extent deterministic and unambiguous, it
was felt that the additional possibilities would not justify the cost of increased
complexity.

On the other hand, an output string always results, no matter how incom­
plete or incorrect the specified rules may be. The output string may not be
the desired one, hut it will never cause ToorjP to crash, which is important

10 Chapter 2 A development tool for linguistic rules

when it is used, for instance, as part of a text-to-speech system.

Toor}P has been conceived in the first place to serve as a development tool
for linguistic rules which define a grapheme-to-phoneme conversion (Berend­
sen, Langeweg & Van Leeuwen, 1986; Berendsen & Don, 1987). Therefore,
some choices in the design have been tuned to this application. I believe that
the system can potentially be applied in a wider area, viz. in all cases where.
re-write rules are used to express certain linguistic processes. The discussion
of ToorjP, however, will mainly be done from the viewpoint of grapheme-to­
phoneme conversion, since most of the experience with the system has been
gathered in this application.

This chapter has the following structure. First, the facilities which are
needed to advantageously specify a conversion scheme are discussed. Then the
facilities offered by ToorjP are described: the basic units on which linguistic
rules operate, the different types of rules, how rules must be combined in a
module and how the modules constitute a conversion scheme. A description
is then given of the information the system contains once a conversion scheme
has been developed, and of the means which are available to the user to extract
this information. This is ToorjP's basic configuration. Next some extensions
are discussed which have been included to improve the flexibility and user­
friendliness. Finally, some characteristics of ToorjP are compared with those
of some other systems, and the applications in which it is used are discussed.

2.2 Linguistic needs

The basic units the linguist user wants to manipulate are the input charac­
ters. Via a certain scheme of transcriptions the input is manipulated into the
desired output, for instance, the phonemic transcription of the input string.
In ToorjP the input and output characters are called segments. The segments
are user-defined, and in the application of grapheme-to-phoneme conversion
the input segments are called graphemes and the output segments phonemeil.

The basic mechanism with which one can manipulate these segments is
the linguistic rule. Often the phonemic transcription of a grapheme depends
on the context: a 'c' sounds different before an 'a' than before an 'e'. In the
field of linguistics a particular type of re-write rules introduced by Chomsky
& Halle (1968), has become very popular for this purpose. The general format
of these rules is as follows:

F -> C I L R (2.1)

2The relation between these and most other basic concepts, which are printed slanted
when introduced, is given in Fig. 2.1.

patterns

primitives

linguistic rules

segment
assignment

actions

feature
modification

operators

label
assignment

concatenation alternation optionality complementation simultaneity

segments

graphemes phonemes

features labels

grapheme phoneme
features features

12 Chapter 2 A development tool for linguistic rules

A certain focus 'F' in the input string is re-written into the struc­
tural change 'C' if the focus is preceded by a left context 'L' and
followed by a right context 'R'.

There are different types of linguistic processes the user may want to account
for, which the rules must thus be able to express. First of all, transcrip­
tion rules are needed, which assign phonemes to graphemes or vice versa.
Then, one may want to insert segments or boundaries (affix-stripping; sadly
--+ sad+ly), modify segments (root mutation; happi+ly--+ happy+ly) or delete
symbols (the final 'r' in British English, which is not pronounced). Also,
one may wish to express phonological generalizations, such as the devoicing
of final obstruents in Dutch and German, in one general rule. This is usu­
ally called feature modification. Finally, one may want to represent and use
non-segmental information, such as stress-level or word class, and be able to
manipulate this kind of information.

One linguistic rule will seldom express the whole of the transcription one
wants to perform. Therefore, one may want to group a set of rules which
together pedorm a certain task, and separate it from another set, which per­
forms a different task. For instance, it seems desirable to insert affix- and
morph boundaries into the orthographic input before actual phoneme assign­
ment is done. This is called modularization.

These two mechanisms, the linguistic rule and grouping the rules into a
module, suffice for most of the transcription tasks the user wants to specify.
They will therefore be described in the following section, which describes the
main body of TooiJP. Extensions to this configuration will be discussed in
subsequent sections.

2.3 The linguistic component

The basic architecture of TooiJP is depicted in Fig. 2.2. It consists of three
layers: the linguistic rule, the module and the conversion scheme. The lin­
guistic rules operate on specific segments: the input segments denoted by the
focus are transcribed into the output segments which are denoted by the struc­
tural change. The linguistic rules can be grouped into a module. A module
operates on a string: the string in the module's input buffer is converted-in
accordance with the specification of the linguistic rules in the module-to an
output string which is written to the output buffer. Finally, the modules are
grouped into a conversion scheme, which is defined by consecutive application
of the modules.

input

conversion scheme

output

input

module 1

modified
input

module 2

etc.

module n

output

insertion rules

linguistic rule 1

linguistic rule 2

character rules

linguistic rule m

14 Chapter 2 A development tool for linguistic rules

In this section, Toor}P's architecture will be discussed from small to large3 .

First the linguistic rule will be considered, then it is discussed how rules are
organized in a module, and finally it is explained how a conversion scheme is
built.

2.3.1 Linguistic rules

In (2.2) the general format of a linguistic rule is given once again.

F -> C I L R (2.2)

The focus (F) of a linguistic rule refers to a sequence of zero or more segments
in the input. The left (L) and right (R) contexts can also refer to the output
segments. In general, F, L and R refer to a set of segment sequences which
are called patterns. The structural change (C) is a sequence of zero or more
segments which are added to the output and aligned with the focus in the
input, if the rule applies.

Toor.W adds segments to the output and aligns them with the input, rather
than transcribing and substituting segments in the input. This is necessary to
keep track of the derivation and to be able to refer to both input and output.

An example of a linguistic rule is given in (2.3), which serves to provide
the pronunciation of the 'ch' in the French word 'cachet' /ka,fe/ (cachet)4 •

c,h -> SJ I <+segm,-cons> _ e,t ! cachet

A 'ch' is pronounced as a 'SJ' /J/, when it is preceded by a vowel
and followed by the sequence 'et'5 • The exclamation mark is a
comment marker, so that one can comment on the purpose of
the rule; all text behind this mark is ignored.

(2.3)

The different aspects of the linguistic rule will now be discussed in order.
First the basic building block of a linguistic rule, the primitive, is dealt with.
When a primitive is used in a linguistic rule it refers to exactly one segment
in the input or output. Next, patterns are discussed. Patterns generally
denote a set of strings, one of which must be present in the input or output.
Patterns are constructed of primitives and operators; the primitives refer to
the segments in the input and output, the operators specify how they are

3 A formal specification is given in Appendix 2.A.
4 Like all other examples in this chapter, (2.3) is displayed exactly the way the linguist

types them in an input file.
5 A conversion table of phoneme symbols to IPA symbols is included in Table I (page xv

of the preface).

2.3 The linguistic component 15

to be combined. Finally, the actions are dealt with. When a rule matches,
i.e., when the patterns of focus, left and right context match, the structural
change is added to the output and aligned with the input. This is called an
action. These three notions, the building blocks, the patterns and the actions
will now be discussed in order.

Primitives

Primitives are the building blocks of the linguistic rules. As mentioned, a
primitive (in the rules) refers to one segment (in the input or output). To
be precise: the primitive states the restrictions for a specific segment which
must be met in order to have the pattern match. For instance, the 'e' in (2.3)
refers to the first character to the right of the focus. It matches if indeed an
'e' is found. But whether or not an 'e' is actually present in the input does
not affect the fact that the primitive 'e' refers to the first character to the
right of the focus. In the same way 't' in (2.3) refers to the second character
to the right of the focus.

Now 'e' and 't' are primitives which are rather restrictive: only 'e' and 't'
as segments in the input meet these restrictions, respectively. In (2.3) also an­
other, less restrictive primitive is specified: '<+segm,-cons>'. All graphemes
which are segmental but are not consonants match this primitive. This is the
set of vowels, so 'a', 'e', 'i', 'o', and 'u' match. In general there are three
different kinds of primitives: segments, features and labels. These will be
discussed in order.

Segments. Segments in the linguistic rules have a one-to-one correspondence
to the segments in the input or output, and are represented identically, i.e., an
'a' in the rules expresses the desired presence of an 'a' in the input. Although
segments in the rules and segments in the input or output are not exactly
the same notion, they are called the same since the difference is so small, and
generally it will be clear which is meant.

Segments are user-defined. They are coded by one ore more (ASCII) char­
acters. In this way a linguist is not forced into a certain notational frame­
work. He can decide himself how many phonemes he needs and whether there
needs to be a distinction between allophonic variants or not. In this thesis
graphemes are coded with one lowercase character, and phonemes with one
or more uppercase characters. This would appear to exclude capital letters
as graphemes, but there is a way around this, which will be explained when
Toor}P's architecture is treated in more detail.

Features. The notion of binary features is well known from linguistics, where
they describe phonological properties of phonemes. With these features strong

16 Chapter 2 A development tool for linguistic rules

descriptive rules can be formulated. Since different graphemes can be thought
of as sharing certain properties, just as phonemes do, the user can define
features for both graphemes and phonemes. He can determine the number
of features he needs and their symbolic representation. Every feature must
receive a binary value, '+' or'-', for each appropriate segment.

In correspondence with graphemes and phonemes, the grapheme features
are denoted in lowercase characters, and the phoneme features in uppercase
characters. In the linguistic rules features are enclosed in angled brackets. For
instance, the phoneme feature 'sonorant' is denoted as '<+SON>', and vowels
on the grapheme level can be referred to as '<-cons,+segm>'.

Behind a feature specification an identity marker may be placed. Identity
markers can be used to compare two or more arbitrary segments. Apart
from having to match the feature specification, the segments in the input or
output should also correspond to the requirements set by the identity markers.
If the identity markers are the same, the segments should be the same; if the
identity markers are different, the segments should differ. So, for instance,
'<+cons>i, <+cons>j' is a pattern that denotes two consecutive consonants
which are not the same.

Labels. Labels can be used to describe information which is associated with
a particular segment, but which alters its nature. Lexical stress, for instance,
is not an inherent feature of a vowel, but it sometimes is and sometimes is
not associated with it. Labels can also be used to represent non-segmental
information like word stress, but also word-class or sentence accent can be
represented, for instance by labelling this information to the first segment of
a word. Unlike features, labels are not necessarily binary. One may want to
make a distinction between primary stress, secondary stress and no stress. In
this case the label 'stress' has values 1, 2 and 0 respectively.

In the user-typed input and the final system.:provided output, the label
information must be placed between the segments, since only a linear repre­
sentation, a string, is available for input and output. Internally, the labels are
aligned with the segments rather than placed between them. In this way, the
segmental structure of a string is not distorted. That is, in a rule one does not
have to take into account that a vowel might have accent, '<+segm, -cons>'
selects the vowel whether or not there is stress associated with it. On the
other hand one can access this information by specifying'<* !stress *>'. If
the vowel bears stress the primitive matches.

Before anything else happens, the label information present in the user­
typed input string is extracted and aligned with the appropriate segments.
Likewise, the last action is to insert the labels which are aligned with out­
put segments, into the output string which is to be passed, for instance, to

2.3 The linguistic component 17

consecutive modules of the text-to-speech system.

So, apart from defining the number oflabels and their representation in lin­
guistic rules, the linguist must also specify a code for each value the label can
have for representation in the input and output. Thus, in the rules primary
lexical stress is for instance denoted as '<* lstress *>' and in the output
with (for instance) an asterisk before the stress-bearing vowel: 'ex*ample'.

Patterns

Primitives are in fact the most simple patterns, as they refer to exactly one
segment in the input or output. More complicated patterns can be built
by combining the primitives by means of operators, which in turn can also
be combined by operators to form still more complicated patterns. ToorjP
features five operators. In this respect the SPE formalism by Chomsky &
Halle (1968) is somewhat modified and extended, tuned to the application of
converting graphemes into phonemes.

1. The concatenation operator is denoted by the comma: ' , ', and is used to
express sequential arrangement of patterns. It is placed between the primitives
or patterns that must be found successively in the input or output, e.g., (2.3).

2. The alternative operator is denoted by pairs of curly brackets: '{ ... }',
and is used to express an or-relationship between patterns. They are placed
exactly below each other for each alternative, to adhere to the paper-and­
pencil notation as closely as possible. Any number of alternatives can be
specified. This operator is exemplified in (2.4), a simplified pronunciation
rule for the 'c' in Dutch:

c -> s I {e}
{i}

Cecilia (2.4)

A 'c' should be pronounced as an /s/ if it is followed by either
an 'e' or an 'i'.

3. The optional operator is denoted by parentheses: '(. ..) '. It operates
on one argument, the pattern placed between the parentheses. It is used for
repetitive patterns, and the parentheses may be followed by the minimum and
maximum number of times the structure should be present. Examples are:

(<+CONS>)2-5

(<-cons,+segm>)O
(A)

A minimum of two and a maximum of five
phoneme consonants.
Zero or more grapheme vowels.

= An optional (zero or one) phoneme 'A'.

18 Chapter 2 A development tool for linguistic rules

4. The complementation operator is denoted by an apostropghe: '' ', and is
used to express the absence of a pattern. It operates on the first primitive or
structure following the quote:

c -> K I 'h ! colbert (2.5)

A 'c' is pronounced as a /k/ if it is not followed by an 'h'.

This operator is not present in the SPE formalism, but is included for ele­
gant rule description. For instance, exceptions to rules can well be treated
with this mechanism. It turns out there are some logical problems connected
with its interpretation in certain structures, but these are treated extensively
elsewhere (Van Leeuwen, 1987; this thesis, chapter 3).

5. The simultaneity operator is denoted by angled brackets: '[. ..] ', and
is used to express an and-relationship between patterns. Like the alternative
operator, it can have any number of arguments, and each argument, enclosed
in brackets, is placed beneath the other. This operator, too, is not present in
the SPE formalism, and is included for elegant rule description. The operator
is typically used for two purposes. One is to intersect sets, for instance:

[<+cons>]
['c]

The set of all grapheme consonants is intersected with the set of
all graphemes except 'c ', so the structure denotes "any grapheme
consonant except 'c' " .

(2.6)

The other use of the operator is to express alignment between graphemes and
phonemes as in rule (2.7):

[00] -> <* lstress *> I
[e ,a, u]

<-segm> niveau

The label primary stress is assigned to the phoneme 'DO' if it is
derived from the orthography 'eau' and located at the end of the
word.

(2.7)

In this way one can distinguish elegantly between the same phonemic repre­
sentations which have different underlying orthographic structures.

With these operators, a user can define any pattern of segments to his or
her liking. With the first two operators, the concatenation and the alternative
operator, in principle any finite pattern for the input or output string can be
constructed. Because the number of possible segments is finite, any set of
segments can be composed with the alternative operator by means of enu­
meration. Strings can be composed with the concatenation operator, so sets

2.3 The linguistic component 19

of finite strings can be composed with the combination of the two. For repet­
itive patterns the optional operator is needed. The simultaneity operator is
necessary to express alignment of graphemes and phonemes. The complemen­
tation operator does not enhance the power of expression of the formalism,
but serves well for elegant and transparent pattern description. The alterna­
tive pattern for (2.6), where the complementation is used to exclude the 'c',
would be an extensive alternative structure, which would need closer study
to reveal its meaning, whereas a glance at (2.6) is sufficient.

Actions

When all the patterns of a rule match, the specified action is performed.
The structural change is added to the output and aligned with the focus
pattern. For the structural change only (possibly concatenated) primitives can
be substituted, no other operators are allowed. Therefore, three corresponding
types of action are distinguished: segment assignment, feature modification
and label assignment.

Segment assignment. The most commonly used mechanism is to assign seg­
ments in the output to segments in the input. The alignment of input and
output is represented by vertical lines. Consider for instance rule (2.8):

c,h -> SJ I a,u ! chauffeur (2.8)

and suppose that the internal state is as follows:

input:
(2.9)

output:

The arrow is a reference marker that points at the input segment being dealt
with. As can be seen, the patterns of (2.8) match, so the 'SJ' will be added to
the output and aligned with the grapheme sequence 'ch'. This is reflected in
(2.10) by the altered vertical alignment. The segments 'c' and 'h' should no
longer be considered separately, but as a sequence which as a whole is aligned
with the 'SJ':

input: c h
(2.10)

output: SJ

In principle all segment manipulations can be formulated with such seg­
ment assignment rules, although elegant and concise rules will not always

20 Chapter 2 A development tool for linguistic rules

result. For this reason, another mechanism has been introduced, feature
modification, mainly to be able to capture phenomena in one rule that would
otherwise require many similar rules.

Feature modification. Feature modification rules deal with phonological gen­
eralizations. A well known example is the phenomenon that in a number of
Germanic languages word-final obstruents become voiceless. This is expressed
elegantly in (2.11), where the obstruents are selected by the feature '<-SON>':

<-SON> -> <-VOICE> I <-SEGM> (2.11)

Suppose that at some time the following state is reached:

input: H U
(2.12)

output: H U

and that 'D' is defined as '<-SON>' and u (space) as '<-SEGM>'. The rule
applies, so the features (in this case there only is one) in the structural change
replace the corresponding original, which results in a new feature bundle. The
corresponding segment will be searched for in the segment definition table,
and added to the output. If no such segment is found, a special 'error-segment'
is added, and an error message is sent to the user. After the application of
the rule, the internal state will be as follows:

input: H U D 1 1 ... (2.13)
output: H U T

Label assignment. Label assignment rules assign labels to segments. The
labels are aligned with segments, and thus have a separate (parallel) represen­
tation level. The segmental structure of the input and output thus remains
unaltered, so that later rules, only operating on the segmental level, will not
be bothered by the labels. Consider rule (2.14):

[00] -> <* 1stress *>
[e ,a, u, (x)]

! Bordeaux, cadeau (2.14)

If this rule applies, the label '1stress' is set on the label representation level,
aligned with the phoneme 'OO' and the grapheme string 'eau' or 'eaux'. The
internal state then will be as follows:

2.3 The linguistic component 21

input: c a d e au

output: K AA D DO (2.15)

labels: !stress

The system output which the user receives if 'cadeau' is typed in will be:
'K AA D *00' (the spaces separate the phonemes). The label information, if
present, is inserted before the phoneme it is aligned with. In this case an
asterisk is the output representation of primary stress.

2.3.2 Modules

Thus, with linguistic rules one can transcribe an input segment into an output
segment. To transcribe an input string into an output string one needs to
group a set of rules into a module. A module is the smallest unit that takes
a string as input and produces a string as output. This section deals with
what a module looks like. First the general assignment scheme is discussed,
i.e., which procedure is used to determine the output string from the input
string given the specified rules. Then the grouping of rules into blocks and
how these blocks are consulted is discussed. Finally, an example is given of
how this works in practice.

Assignment scheme

The input of a module is the module's input buffer. The input buffer is filled
with an input string which is surrounded by a number of spaces. The spaces
serve to provide a neutral left- and right context for the leftmost and rightmost
segments respectively. The output of the module is written into the module's
output buffer.

The input buffer is scanned once. For each module the linguist can choose
whether this should be from left to right or from right to left. For instance,
stripping suffixes can be done elegantly if the input string is scanned from
right to left, while prefixes are best handled from left to right. Scanning in the
scanning direction, the input segments are considered in order. Simplifying
somewhat, for the current input segment the rules are consulted from top to
bottom, until a rule matches. The structural change of the rule is added to
the output and aligned with the corresponding input, and the remainder of
the rules is skipped. Then, dependent on the length of the focus the next
input segment is 'selected', and the procedure is repeated. This procedure is
called segment-by-segment assignment, as the segments are processed one by
one.

22 Chapter 2 A development tool for linguistic rules

If none of the rules match, it depends on the nature of the module what
happens. Either the input segment is simply copied to the output and aligned,
or an error condition occurs. This is addressed in a subsequent section, but in
either case the next segment is selected, and thus the procedure of transcribing
a segment always operates on the first still unprocessed input segment.

Rule types

Due to the segment-by-segment assignment strategy, a user can order the rules
according to the segment on which they operate, and thus improve efficiency.
For instance, all rules concerning the character 'c', such as (2.3-2.5), can be
grouped into a rule block which is only consulted when a 'c' is encountered
in the input. The rules within a block are consulted in the top to bottom
manner, with the first rule that matches applying. This is essentially an 'if
then else if ... ' construction. The rule blocks, on the other hand, are mutually
exclusive. The rule blocks operate as a 'case statement', the input segment
being the case selector.

Not all rules, however, can be grouped in this way, because some rules have
no triggering segment, while others are triggered by more than one segment.
Rules of the first type are called insertion rules, those of the second type
common rules. Rules of the type which are triggered by exactly one segment
are called segment rules.

An example of an insertion rule is given in (2.16):

o ->+I ... _ l,y

Here, a 'O' (zero) denotes an empty focus. An affix marker '+'
must be inserted before the affix 'ly' (under circumstances in
the left context which are left unspecified here).

(2.16)

Since the focus of an insertion rule is empty, the rule cannot be triggered by a
specific segment, and must therefore be tested for each position in the string.

An example of a segment rule is given in rule (2.8). In left-to-right scanning
mode the rule is triggered by a 'c'; only when the segment 'c' is encountered
in the input does this rule have to be consulted. Rule (2.11) is an example
of a common rule, which is triggered by any phoneme defined as '<-SON>'.
This applies to more than one segment, so the common rules, too, must be
consulted for each segment in the input string.

Due to this distinction in rule types the syntax of a module is as follows.
First, all rules must be grouped in the appropriate block: the insertion rules
in the insertion block, the segment rules in the appropriate segment blocks
and the common rules in the common block.

2.3 The linguistic component 23

For each input segment first the insertion block is consulted from top to
bottom. If an insertion rule matches, the structural change is added to the
output and the remainder of the insertion rules is skipped. If no insertion
matches nothing changes in the output. The input segment has not been
processed in either case. For the same input segment the segment block is
now consulted. The segment block is the case statement of rule blocks for
the various characters. The input segment selects the appropriate rule block,
and consults it from top to bottom. If a rule matches, the remainder of the
rules~--including the common block-are skipped and the next input segment
is dealt with. Only if no segment rule matches will the common block be
consulted. This is consulted in the same top to bottom manner. Only if no
common rule matches will the 'copy or error' action take place.

The procedure of first consulting the insertion block, then the segment
block and finally the common block is induced by the segment-by-segment
strategy. It does not, however, constrain the linguistic possibilities. If one
needs to alternate insertion and segment rules, or segment and common rules,
one can introduce separate modules for each of these blocks. By concatenating
them in the desired order one can obtain the desired function.

An example

As an example the conversion of the first part of the word 'chauffeur'
is treated. The relevant rules, which are a small sample of a grapheme-to­
phoneme module, are included in Table 2.1.

Suppose the input is scanned from left to right, and initially the inter­
nal state is as in (2.17), the reference marker being positioned at the first
character, 'c ':

input:
(2.17)

output:

Since there are no insertion rules, the character rules are consulted directly.
As the reference marker is positioned at a 'c', the rules under 'grapheme c'
are selected. The first rule fails to match as neither an 'e' nor an 'i' follows
the 'c'. The second rule fails as the right context of that rule requires any
character except an 'h' and that is exactly what is found. The third rule
matches; first the focus 'ch' is found, and directly to the right of the focus
'au' is found. The rule applies; the structural change 'SJ' is added to the
output and aligned with the focus 'ch'. The reference marker is shifted two
characters to the right, as the focus consists of two characters:

24 Chapter 2 A development tool for linguistic rules

input: c h
(2.18)

output: SJ

The new reference marker points at 'a', so now the rules for the grapheme 'a'
are selected. The first rule fails on the focus, as 'au' is found instead of 'aa'.
The second rule matches, however. The focus matches, and to the left of the
focus the phoneme 'SJ' is found. So 'OO' is added to the output and aligned
with 'au'. The reference point is shifted along the length of the focus:

input: c h au
(2.19)

output: SJ 00

2. 3. 3 Conversion scheme

With a module one can manipulate strings. Often a particular conversion can
be divided into several sequential steps. For this purpose the user can con­
catenate modules; every next module operates on the output of the previous
one. Together the modules define a conversion scheme.

Table 2.1: Part of a module, which is used for the conversion of
the first part of the word 'chauffeur'.

grapheme a Rules for Dutch
==========
a,a -> AA I 'u aap, not blaauw
a,u -> 00 I SJ chauffeur
a,u -> AU normal 'au' rule

grapheme c
==========
c -> s I {e} Cecilia, not cacao

{i}

c -> K I 'h colbert, not chauffeur
c ,h -> SJ I a,u chauffeur

2.3 Tbe linguistic component 25

input type

I
!

I grapheme-to-grapheme I
I
!

I
grapheme-to-phoneme I

I
~

I phoneme to-phoneme I
I

output type

Figure 2.3: The ways in which modules may be concatenated.

As holds for the total conversion, the input and output of separate mod­
ules can either be of the same type or not. A natural constraint is that the
output and input types of consecutive modules should be compatible. As
many modules as necessary may be concatenated.

The notion of two separate levels, an input and an output level, has been
introduced in order to provide access to information concerning the relation
between spelling and pronunciation. Therefore, input-types (graphemes) and
output-types (phonemes) must not be mixed, and, as a consequence, the
transition from the input to the output type may be made only once6 . This
is depicted in Fig. 2.3.

Once the (optional) transition to phonemes has been made, one can refer
to both graphemes and phonemes in the rules, along with their alignment.
Conversely, referring to phonemes when only grapheme modules have been
used is not possible, of course. This opens the possibility to interpret output
symbols (symbols which generally denote phonemes) within these modules
alternatively.

For instance, an elegant way to distinguish graphemes from phonemes­
given one wants to do so-is 'case coding': a 'k' is a grapheme, 'K' a phoneme.

6 Although the input-types and the output-types are not restricted to graphemes and
phonemes only, graphemes and phonemes will denote them respectively in the remainder
of this section.

26 Chapter 2 A development tool for linguistic rules

For a grapheme-to-phoneme module this works well, but it implies that one
cannot deal with capitals.

Therefore, in the first phase of the conversion, when only grapheme mod­
ules are used, the phoneme segments (for instance those which are denoted by
a single capital letter) can be used as if they were grapheme segments. In this
way one can write a de-capitalising module, which operates after a module
that deals with acronyms (abbreviations like 'UK' and 'BBC'). An obvious
demand is that when the grapheme-to-phoneme module is being consulted,
uppercase characters should be present in the input.

Now the 'copy or error' action can be specified which ToorjP performs if
for a certain segment none of the rules in a certain module match. In modules
that have the same type of segments as input as they produce as output, the
segments for which no rules apply are simply copied to the output. In the
grapheme-to-phoneme module no copy action can be taken, of course. Here,
a harmless error segment is added to the output to mark the position where
the error occurred, and the error condition is reported to the user.

This also implies that ToorjP is robust: all input can be handled, including
unpronounceable input. The system simply executes the specified rules. This
always results in an output string, possibly containing error segments.

2.4 System output

Given the deterministic way the rule base is consulted, the conversion scheme
contains all the information for the conversion explicitly. On the other hand,
it contains only this type of information, it does not include a mechanism to
actually perform the conversion. This bipartition, depicted in Fig. 2.4, gives
the system a maximum of flexibility: any conversion scheme for the manip­
ulation of strings specified in the linguistic section can be executed. In this
way, an efficient division of labour and field of speciality has been achieved.
A linguist formulates, for instance, the rules for grapheme-to-phoneme con­
version, while an engineer develops the machine which performs the specified
conversion. Their interface is the interpretation and consultation scheme of
the rules.

The conversion scheme is presented to ToorjP in text files. Each module
is a separate text file. A specific text file indicates the order in which the
modules are to be consulted. The definition tables of the segments, features
and labels are also included in separate files.

While the string of output segments is, naturally, ToorjP's most important
output, the system is also capable of providing information on the conversion

2.4 System output

input

I 1
I

conversion scheme converter

I
I !

output

Figure 2.4: The (linguistic) conversion knowledge is separated
from the mechanism which performs the conversion.

27

process and gathering information for statistical purposes. For development
purposes debugging tools have been provided for, to facilitate the tracing of
errors in the rules. When conversion performance is satisfactory, the linguist
may want to know how frequently the rules apply, to try and improve the
conversion speed. For this purpose a rule coverage analysis tool has been
included. Finally, when the set of rules has been developed Toor)P can be used
to collect statistical information on grapheme--to-phoneme correspondences, as
these are being preserved in the system. These three types of output will now
be described in greater detail.

2.4.1 Development Support

In the conversion scheme three levels can be distinguished. The conversion
scheme consists of modules, a module consists of linguistic rules, and the rules
consist of patterns and actions. In most cases, the number of modules will
not be extremely large. For instance, we have built a complete grapheme-to­
phoneme conversion system for Dutch with only some 8 to 12 modules (see
Berendsen et al., 1986). The number of rules to be consulted in succession,
however, can become large: we have a module with over 150 rules. Also,
the complexity of the rules can be high, when operators are nested to great
depths. Therefore, powerful debugging tools can be useful. Toor)P provides
three corresponding display modes to help debugging. The first one displays
the output of each module, the second one displays the performance of the
rules within a specific module, and the third one displays the matching process
within specific rules.

28 Chapter 2 A development tool for linguistic rules

2.4.1? Rule Coverage Analysis

A second development tool which has been included in Toor.jP is a so-called
rule coverage analysis. This feature can keep track of the frequency with which
individual rules are consulted, and determine whether or not they have been
applied. It may turn out that quite a number of rules hardly ever apply, for
instance because they have been designed for words of very low frequency. In
that case the linguist may want to rearrange the rules in such a way that the
rules for infrequent regularities are tested last. This can help to improve the
performance speed of a module, and consequently of the conversion scheme.

2.4.3 Derivation Analysis

As mentioned in earlier sections, Too:rjP can be used as an analysis tool to col­
lect statistical information on grapheme-to-phoneme correspondences. This
is possible because during the conversion of a word or a sentence the deriva­
tional history is retained. Not only are the results of each module retained,
but also the individual input-to-output relations.

There are two types of information on derivational history. The first type
is a detailed report on the derivational history of specific input. The second
type is an overview of the grapheme-to-phoneme relations of accumulated
input.

The derivational history report looks much like the internal state figures
as in (2.18) and (2.19), only here all the modules are included. Given a certain
scheme of concatenated modules, a typical example is shown in (2.20), where
a full derivation of the word 'chauffeur' is given.

input: c h a u f f e u r

morphology: c h a u f f # e u r

graph on: SJ 00 F F MB EU R

stress: SJ ~a a F F MB *EU R

reduction: SJ ~ao F *EU R

Here, a '#' is the morpheme boundary marker on the grapheme
level, 'MB' is the morpheme boundary marker on the phoneme
level, an asterisk denotes primary stress and a hat denotes sec­
ondary stress. Vertical lines indicate synchronization of segments

(2.20)

2.5 Extensions

between modules. So, for instance, in the morpheme module a
morpheme boundary was inserted between the 'f' and the 'e',
and in the graphon module the graphemes 'c' and 'h' are asso­
ciated with the phoneme 'SJ'.

29

From this detailed derivational history report the individual grapheme-to­
phoneme relations are computed. Each smallest group of input segments that
is synchronized with the output is stored in the derivation database with its
synchronized output. Synchronization means that the vertical synchroniza­
tion marks are extended from input to output on both sides of the segments.
Thus in (2.20) the 'c' at the input level is not synchronized with the output
as the right synchronization mark stops at the graphon level. In the exam­
ple 'ch' is synchronized with 'SJ', 'au' with 'DO', 'ff' with 'F', 'eu' with 'EU',
and 'r' with 'R'. These five grapheme-to-phoneme relations are stored in the
derivation database.

For each conversion, grapheme-to-phoneme relations can be computed. If
a new relation is found, a new entry is created in the database. If a relation is
found that has already occurred, the number of occurrences is incremented.
When all input has been processed and the grapheme-to-phoneme relations
are included in the database, the results are printed alphabetically. For each
group of input segments that has been stored, the corresponding output(s)
are listed with their frequency. An example is given in Table 2.II.

2.5 Extensions

In the previous sections only the essential characteristics of Toor}P have been
described. Some additional features were omitted, which are described in this
section.

2.5.1 Meta-symbols

Some symbols have a special meaning in the rules. For instance, a single 'O'
in the focus or structural change denotes an insertion or deletion rule, and '/'
indicates the beginning of the context specification. Such symbols are called
meta-symbols, as they have the syntactic function to denote the structure of
a rule.

Because of this function, they cannot be used freely to refer to segments
in the input or output. Therefore, a mechanism has been provided to define a
symbolic name for a character, so that the characters that correspond to the
meta-symbols can be referred to. In the definition tables of input and output
segments one can include such definitions, for instance:

30 Chapter 2 A development tool for linguistic rules

zero = 0 (2.21)

Now, when the character sequence 'zero' is used in the rules, it will refer to
the segment '0' in the input.

2.5.2 Macro Patterns

In the linguistic rules, some patterns are used very often. For instance,
'<-CONS,+SEGM>' is such a pattern, denoting all vowels. It may be desir­
able to introduce a shorthand notation for such patterns. These are called
macros. They not only reduce the typing effort, but also make the rules easier
to read.

At the beginning of each module one can define the macros valid for that
module, as exemplified in (2.22):

VOW = <-CONS,+SEGM> ! vowels (2.22)

Each time this macro is encountered, the pattern associated with it replaces
the macro. Previously defined macros can be defined in the patterns of new
ones.

Table 2.II: Derivation analysis of the grapheme 'c' in a random
word list. Listed to the left of the arrow are the input graphemes,
between parentheses the number of occurrences. Listed to the
right of the arrow are the alternative pronunciations with their
relative frequency.

grapheme c

c (671) -> K 78.5 % s 21.5 %
cc (10) -> K 100.0 %
ch (153) -> K 1.3 % SJ 30.7 % TSJ 1.3%

X 66.7 %
ck (11) -> K 100.0 %

2.5 Extensions 31

2.5.3 Metathesis

Metathesis is the exchange of two or more segments. This mechanism is
typically needed for elegant text normalization of Dutch or German numbers,
amounts of money and indication of time. In these languages, the digits of
the numbers between 13 and 99 are pronounced in inverse order. Take, for
instance, the number '36', which is pronounced as "zes en dertig" (six and
thirty). With the facilities described so far one would have to specify some
90 rules of the type:

3,6 -> 6,3 I (2.23)

With metathesis one can capture this phenomenon in one feature rule:

<+num>i,<+num>j -> <+num>j,<+num>i I (2.24)

Just like normal rules using identity markers, matching the focus pattern
of (2.24) to the input string results in storing the segments found. If the rule
matches, the segments are retrieved and added to the output in the specified
order.

2. 5.4 Exception lexicon

As stated in the introduction, rule-based grapheme-to-phoneme conversion
will always need an exception lexicon to cover irregularities. For this rea­
son ToorjP has been extended with the possibility to include an exception
lexicon. The presented orthographic input is decomposed into words, which
subsequently are looked up in the lexicon. If a word is present, the correspond­
ing phonetic transcription is assigned. If it is not present, it is transcribed
by rule. The output of lexicon-lookup and rule-transcription is then merged.
Before and after this lexicon some segment processing can be done. For in­
stance, before the lexicon lookup some text normalization may be needed, and
afterwards some inter-word processes such as assimilation may be desirable.
These processes are formulated in the same way as the rule-based conversion,
by means of linguistic rules in modules. This is indicated schematically in
Fig. 2.5.

The lexicon was constructed by Lammens (1987) in such a way that it can
easily be implemented in other systems. The user can insert and delete new
entries, which are coded in the same format as ToorjP's input and output.

32 Chapter 2 A development tool for linguistic rules

orthographic input

found

phonematized output

Figure 2.5: Structure of the development system when an ex­
ception lexicon is included. The pre-processing, the rule-base
and the post-processing are all conversion schemes.

2.6 Relation to other systems

2. 6.1 Lay- out

In most systems, the linguistic data to which a rule has access are represented
on one level only, viz. the output of the previous module or rule. In ToorjP,
more levels of linguistic information can be consulted. The input-type level
(graphemes) and the label level are always accessible, the output-type level
(phonemes) is available after it has been introduced. As each segment has a
unique representation, there is no doubt as to which level is referred to in the
rules. Information on the label level is accessed by enclosing the desired label
information in special brackets, as described in earlier sections.

The Delta system of Hertz, Kadin & Karplus (1985) is even more flexible:
the linguist can define any number of levels. A disadvantage is that in order
to refer to these levels in the linguistic rules, use must be made of special
selection markers, as the segments have the same representation on different
levels. These selection markers somewhat complicate a quick understanding
of the rules.

2.6 Relation to other systems 33

A second aspect of lay-out is the way in which or- and and-relationships are
represented. Normally, this is done one-dimensionally, so that the structure
can be parsed in one scan. A typical representation is given in the insertion
rule (2.25). The purpose of the rule is to insert a prefix boundary marker
behind the Dutch prefixes 'be', 'ge', 'her' and 'ver'. The right context is
omitted here. The left context is an alternative structure with two options,
each of which contains another alternative structure. The first alternative
accounts for 'be' and 'ge', the second one for 'her' and 'ver'. The slash
within braces denotes the separation of the alternatives:

0 -> + I {{blg},el{hlv},e,r} (2.25)

ToorjP features a two-dimensional representation of or- and and­
relationships, which increases the readability of the rules. It requires more
space and a more complicated parsing strategy, but offers the linguist greater
insight into the nature of the patterns than a one-dimensional representation.
Compare, for instance, (2.25) and (2.26). In (2.26), the same rule as (2.25) is
represented in the two-dimensional representation.

0 -> + I { {b},e }
{g}

{{h},e,r}
{v}

(2.26)

The idea behind this two-dimensional representation is that it reflects the
structure of patterns better than a one-dimensional representation. Hori­
zontal positioning of patterns reflects a sequential relationship; concatenated
structures should be found in succession. Vertical positioning reflects that the
patterns refer to the same position of the input or output string. The linguist
is able to use more complicated patterns owing to this way of representing
them, and it has been observed that in practice this possibility is being used
extensively.

2.6.2 Ordering principle

Inside each module and within each type of rule, the consultation of the rules
is order-sensitive. In most grapheme-to-phoneme conversion systems this is
the case. The main reason for this is that linguists are used to working with
sets of ordered rules. This implies that one cannot evaluate the performance
of an isolated rule, one can only judge the whole set of rules. In principle,
this is a disadvantage. However, compared to systems in which the rules are

34 Chapter 2 A development tool for linguistic rules

unordered and therefore disjunct (e.g., Vander Steen, 1987) the individual
rules in an order-sensitive system are less complicated, as each next rule deals
with a decreasing number of cases. Given the number and complexity of the
rules in a realistic application, this turns into an advantage over systems where
rules are unordered.

2.6.3 Assignment strategy

In several other systems (Carlson & Granstrom, 1976; Hertz, 1982; Holtse
& Olsen, 1985), the assignment strategy differs from the module-internal
strategy defined here. Instead of applying a segment-by-segment strategy­
consulting all appropriate rules from top to bottom for a certain input
segment-a rule-by-rule strategy is applied: one rule operates on the com­
plete input string, the modifications brought about being input to the next
rule. A rule then has string-manipulation characteristics: it modifies all ap­
propriate segments of an input string.

ToorJ.P features both strategies: within a module the segment-by-segment
strategy is applied, while the string-manipulation strategy is applied by suc­
cession of modules. Both strategies can be useful. The system described by
Kerkhoff et al. (1984), for instance, also features both strategies, but in that
system a rule-by-rule strategy is chosen by default.

The difference between a segment-by-segment and a rule-by-rule strategy
obviously has consequences for the way in which linguistic rules should be for­
mulated. Although ToorJ.P does not feature an explicit rule-by-rule strategy,
this can be simulated by including only one linguistic rule in a module, and
defining just as many modules as there are rules. Therefore, ToorJ.P has at
least the same possibilities as the others. However, by including more than
one rule in a module and organizing them according to the segments on which
they operate, efficiency is improved, since the rules are tested only on the ap­
propriate segments. As some 8D-90% of the rules in an actual application of
grapheme-to-phoneme conversion are segment rules, the increase in efficiency
is considerable.

2. 7 Applications

No matter how well-designed a system is, the final test that must be applied
is: "Is it useful in practice?". So far, the main test for ToorJ.P has been the
development of a grapheme-to-phoneme conversion system for Dutch (Berend­
sen et al., 1986). The conversion scheme comprises the full trajectory from
unrestricted orthographic text to phoneme transcription, complete with word

2.8 Conclusion 35

stress markers. The results appear to be promising: a 96.5% correct tran­
scription score was obtained for 4000 word types in an arbitrary newspaper
text (Berendsen, Lammens & Van Leeuwen, 1989).

In developing the rulebase, ToorjP's facilities have proved to be satisfac­
tory. The tools to construct a rulebase have appeared to be adequate, elegant
and flexible. The debugging tools in particular have served well in the devel­
opment of the rules.

The grapheme-to-phoneme converter now has two direct applications. On
the one hand, it serves as a research tool to collect statistical information on
the individual grapheme-to-phoneme relations for Dutch, and on the other, it
serves satisfactorily as part of a text-to-speech system for Dutch.

Apart from these scientific applications, ToorjP is also being used for ed­
ucational purposes. It appears to be well suited for a quick verification of
phonological descriptions and it serves as a practical teaching-aid to illustrate
and practice the use of SPE-like linguistic rules.

2.8 Conclusion

In this chapter the ToorjP system has been described for a user's point of view.
It serves as a development tool for linguistic rules. The linguistic rules can
be ordered in a certain scheme so as to define the conversion of an arbitrary
input string to a desired output string. The rules contain the information on
how the conversion is to be executed, and the system performs the conversion,
driven by the rules.

A special characteristic of ToorjP is that input and output can be of a
different type, and that the derivation of input to output is retained. Due
to this, one can refer in the rules to this alignment of input and output.
When the system is used as a grapheme-to-phoneme conversion system, this
alignment reflects the correspondence of spelling and pronunciation. As a
consequence, once a grapheme-to-phoneme conversion scheme for a certain
language has been developed satisfactorily, spelling-to-sound correspondences
in that language can be studied by using ToorjP as an analysis tool to collect
and analyse such data.

36 Chapter 2 A development tool for linguistic rules

Appendix 2.A
Functional specification of Too:r).P's main body

In this Appendix a functional specification is given of ToorjP's main body, as
it is described in section 2.3. The specification will be given on a rather high
level, thus abstracting from irrelevant detail. The primary goal is to define
formally how linguistic rules are evaluated, how a rule block is evaluated, and
how a module and the conversion scheme are executed. Therefore, some lower­
level functions are not specified formally but described in natural language.

Data structure

input
graph
phon
output

i } array [!..len [of segment

The main data structure consists of 4 arrays. input and output serve to store
the original input and the system-provided output and are also necessary for
overall synchronization purposes. The 'real work' is being done in graph and
phon.

Functionality

function P _match(P, match_dir, starLpos) =
Gen_string(start_pos, match_dir) n (P) ::f. 0

P_match: The basic function is to match a pattern to the data buffers.
P_match is defined in terms of Gen_string and (P). (P) is the set of string
denoted by P, on which chapter 3 elaborates. Gen_string is a function that
generates all strings of segments which can be formed by starting at starLpos
and concatenating all segments that are encountered between starLpos and
the end of the buffer in the matching direction match_dir, where at the syn­
chronization points between graph and phon one may switch from one buffer
to the other.

function R_match(F, L, R, scan_dir, inLpos) =
if (scan_dir = -+)
then P _match(F, -+, inLpos) A

31 E Length(F) : P _match(R, -+, inLpos + l)A
P _match(L, -, inLpos- 1)

else P _match(F, -, inLpos) A
P _match(R, -+, inLpos + 1) A
31 E Length(F): P _match(L, t--, inLpos l)

fi

2.A Functional specification of Toor.JP's main body 37

R_match: F, L and R denote focus, left and right context respectively.
scan_dir is the scanning direction. inLpos is the internal position (see sec­
tion 4.4), this denotes the position in work_buf up to where the transcription
process has proceeded. Length is a function that generates set of lengths for
which the (focus) pattern matches. For instance, Length({aad) = {1, 2} if

' the input contains 'at' at the appropriate position, but it is 0 if 'b' is found.

function Apply_rule(Rulei) =
if R_match(Fi, Li, Ri, scan_dir, inLpos)
then

if (gra-+phon) then "Add Ci to phon"
else "Replace Fi by Ci in work_buf" fi;

if (gra-+phon) or (phon-+phon)
then "Synchronize Ci(phon) with Fi(graph)" fi;

"Synchronize work_buf with input";
"Advance inLpos by Length(Ci) in scan_dir";
return true

else
return false

fi

Apply_rule: Fi, Li and Ri are the focus, left- and right context of Rulei.
gra-+phon denotes that the rule is part of a grapheme-to-grapheme module.
The other two possibilities are gra-+gra and phon-+phon. The bulk of the
output is generated by this function. It is given as a side effect rather than
the result of the function. Synchronization, too, is a side effect.

function Apply_Block(Rule_block) =
i := 1;
success := false;
while not success and Present(Rulei) do

success:= Apply_rule(Rulei);
i := i + 1

od;
return success

Apply_block: Starting with the first rule, the rules are consulted until a rule
matches. If a rule has been applied, success = true, otherwise it is false.

procedure Apply_Module(Modi) =
if (scan_dir = -+) then inLpos := 1

else inLpos := len fl.;
while (inLpos E Input_ range)

38

do

od;

Chapter 2 A development tool for linguistic rules

if Present(Insertion_block.)
then result:= Apply_Block(Insertion_blocki) fi;

if Present(Segm_blocki)
then result:= Apply_Block(Char(inLpos)i) fi;

if not result and Present(Common_blocki)
then result:= Apply_Block(Common_blocki) fi;

if not result then

fi

if (gra-+phon) then "Add ES {error segment} to phon" fi;
"Advance inLpos by 1 in scan_dir"

return true

Apply_Module: InpuLrange determines whether inLpos is still in the range of
the input string. Depending on the scanning direction inLpos is initialized
to the leftmost or rightmost segment. As can be seen, the segmental block
is consulted independent of whether the insertion block has applied. The
common block, on the other hand, is only applied when the segmental block
has not applied.

procedure Apply _Conv _Scheme (Scheme)
if (phon-+phon) then phon:= input

else graph := input fi;
i := 1;
while Present(Modi)
do

od;

if (phon-+phon) then work_buf :=phon
else work_buf := graph fi;

Apply _Module(Modi);
i := i + 1;

if (gra-+gra) then output:= graph
else output : = phon fi;

Apply_Conv..Scheme: work_buf is initially filled and defined for each module.
The modules are applied in order. (gra-+gra) and (phon-+phon) are tests that
concern the type of the overall conversion scheme.

Chapter 3

Extending regular expressions with
complementation and simultaneity

Abstract

Regular expressions are a well-known mathematical tool in computer
science. The patterns which are used in ToorjP are, in fact, an ex­
tended form of regular expressions. For user convenience two opera­
tors are added to the standard regular expressions: complementation
(the 'not') and simultaneity (the 'and').

The introduction is not without problems, however. If the com­
plementation operator is introduced in a compositional manner, the
formal interpretation of a certain class of expressions differs from
what one would expect those expressions to mean. To be precise:
certain strings one would expect to be excluded, are not. This is con­
sidered to be an undesirable characteristic, as generally users simply
start using a system rather than first studying its exact nature.

Therefore, an alternative definition for complementation is pro­
posed, which for the mentioned class of expressions behaves in accor­
dance with expectation. The essential difference with the composi­
tional formalism is that now the 'explicit nofits' are always excluded.
As a consequence, however, strict compositionality is lost, which for
instance shows in the fact that double complementation may not
always be annihilated.

Next, the simultaneous operator is included, symmetrical to the
alternative operator, which introduces a small additional complica­
tion. From a theoretical point of view the proposed formalism is not
completely satisfactory. It might be satisfactory, however, from a
practical point of view. Those patterns for which it behaves unsatis­
factorily are highly unlikely to be used in practice, and the proposed
formalism can be seen as a practical compromise between the prac­
tical needs and theoretical elegance. On these practical grounds it
has therefore been decided to implement the semi-compositional for­
malism in ToorjP.

40 Chapter 3 Extending regular expressions

3.1 Introduction

R EGULAR expressions are a widely used mathematical tool in computer
science. In general, they can be used to describe a certain class of (for­

mal) languages, called regular sets, the characteristics of which can be found
in any text book on this subject (see for instance Hopcroft & Ullman, 1979).
Regular expressions are used in a wide variety of applications, one of which,
for instance, is rule-based grapheme-to-phoneme conversion (see for instance
Carlson & Granstrom, 1976; Hertz, 1982; Holtse & Olsen, 1985; Kerkhoff,
Wester & Boves, 1984; Van Leeuwen, 1989). In such an application the
conversion of orthographic text (the graphemes) into a sound representation
(phonemes) is controlled by a set of linguistic transcription rules, which are of­
ten a particular version of Chomskian rewrite rules (Chomsky & Halle, 1968).
Each rule is a recipe on how to rewrite certain input characters, given their
presence in a certain context. The specification of the characters to be tran­
scribed, and the context in which the transcription should take place, can well
be done by means of regular expressions, as the type of strings one needs to
denote for this purpose generally fall within the class of regular sets. Often
some small extensions are made to this basic formalism, tuned to the specific
requirements of the application.

Apart from the so-called terminals, which directly refer to the characters of
some alphabet, regular expressions feature three operators for the specification
of more complex regular expressions. Alternation is used to obtain the union
of two regular sets, concatenation is used to express juxtaposition of two
regular sets, and repetition is used for infinite concatenation of regular sets.
In this chapter the problems are discussed that were encountered when two
operators, the complementation operator (the 'not') and the simultaneous
operator (then 'and'), were added to the standard regular expressions.

The main motivation for this extension was to increase the user's ease of
expression. 'Vith the thus extended regular expressions target and context
patterns are specified in the linguistic rewrite rules of the Too]JP system.
With it one can develop a set of linguistic rules, which, for instance, define
the grapheme-to-phoneme conversion for a specific language.

Several other systems which feature similar rules for similar purposes (e.g.,
Hertz, Kadin & Karplus, 1985; Kerkhoff et al., 1984; Vander Steen, 1987) also
feature a complementation operator in their own versions of extended regular
expressions, and each system features its own interpretation, without being
too clear, however, on the exact interpretation and the underlying motivation
for that specific interpretation. This chapter aims to identify and propose a
solution to the problems attached to this matter.

3.1 Introduction 41

Another, totally different, application where the problem may also be en­
countered concerns the search function of a text editor. Simple search func­
tions only allow a sequence of characters as search pattern. More sophisticated
functions also feature 'or' structures, thus for instance one can search for a
'c' followed by an 'e' or an 'i'. When a 'not' structure is also introduced (for
instance, "search for a 'c' not followed by an 'e' or an 'i'") the search function
has essentially the same possibilities as the context specification means which
are present in the linguistic rules of Toor.jP, and thus the same interpretation
problems will arise.

The main problem can be reduced to the combination of three operators
in one formalism: complementation (the 'not'), alternation (the 'or') and con­
catenation (the linking of consecutive structures). Therefore, the repetition
operator will be omitted in the first part of this study. When a reasonable
satisfying solution for the inclusion of complementation has been described,
the repetition operator will return in the formalism, together with the simul­
taneous operator.

The main problem of introducing complementation in regular expressions
is that the solution which comes to mind first is not satisfactory. The straight­
forward approach is to define complementation in a compositional manner, as
will be explained in section 3.3. This is done, for instance, by Van der Steen
(1987) in the Parspat system. However, for a certain class of expressions the
formal interpretation does not correspond to the meaning one expects the ex­
pression to have. A simple but not very satisfying solution to the problem is
to exclude the cases which cause problems by means of syntactic restrictions,
as is done, for instance, in the Fonpars system of Kerkhoff et al. (1984). An
alternative approach is to study what one expects the patterns of that par­
ticular class to mean and try and formalize that expectation so that it can be
incorporated in the semantics of the formalism.

In this chapter the latter line of thought is followed. First simplified regular
expressions are discussed, i.e., regular expressions stripped of the repetition
operator (section 3.2). The formalism does not yet feature a complemen­
tation operator, and some properties of this formalism are discussed. Then
complementation is included in a straightforward compositional manner, and
the cases in which problems arise are identified (section 3.3). The nature of
these patterns and the reason why expectation deviates from the formal in­
terpretation are then studied, which leads to a formalization of the expected
meaning (section 3.4). This is included in the formalism so that the inter­
pretation of this class of patterns also corresponds to expectation (that is,
applying common sense rather than the formal definition to determine its
meaning). A discussion on the properties of the thus originated formalism
follows (section 3.5). Then, simultaneity and optionality (this is the ToorjP

42 Chapter 3 Extending regular expressions

name for the repetition operator) will be added to the formalism (section 3.6),
the consequences of which are also discussed (section 3.7). As will become
clear the resulting formalism does not fulfil all the properties one could wish
it to have, such as the legitimacy of annihilating double complementation,
or applying de Morgan's laws. In adjusting the formalism to practical needs
some properties are lost, which are attractive from a theoretical point of view.
The discussion (section 3.8) deals with the incompatibility of practical needs
and theoretical elegance. Finally, in the concluding section (section 3.9) the
most important conclusions are recapitulated.

3.2 Simplified regular expressions

3. 2.1 Introduction

The similarity between regular expressions, a target or context pattern in
linguistic rules and a search pattern used in a text editor is the fact that pat­
terns of characters are specified. These are of exactly the same type as those
denoted by regular expressions. To distinguish the formalism here developed
from the (standard) regular expressions, the term 'pattern' will be used. In
general, a pattern denotes a set of strings, where a string is a sequence of
characters.

A typical example of a linguistic rewrite rule, which makes use of such
patterns, is given in (3.1):

c,h -+ SJ / {
a, u }

vow,q
(3.1)

The rule states that a character sequence 'ch' should be rewritten into 'SJ'
if it is followed by either the character sequence 'au' or a character sequence
which is characterized by "a vowel followed by a 'q' ". The rule is meant to
provide the Dutch pronunciation for the 'ch' in French loans such as 'chauffeur'
(driver) or 'choque' (shock). The slash (/) separates the transcription part
(left side) from the context specification (right side). The transcription part
specifies that the target pattern (c, h), which is also called focus, should be
rewritten (-+)into the change pattern (SJ), which is also called the structural
change. The comma (,) in the focus denotes the concatenation operator:
following a 'c', an 'h' should be present. The context specification specifies in
which context the focus should be found in order to apply the transcription.
The underscore (_) indicates the position of the focus in the context. Thus
in rule (3.1) the left context is empty, which means that any string satisfies
the condition. The right context consists of an alternative structure (denoted

3.2 Simplified regular expressions 43

by the braces'{' and '}'): of all patterns listed on top of each other (here:
a, u and vow , q) at least one must be present (here, vow is a shorthand
notation for the vowels {'a' 'e' 'i' 'o' 'u'})

! ' ' ' •

Throughout this chapter, when characters in the input string are referred
to, they are placed between quotes (e.g., 'ch'), whereas all patterns are printed
in bold face (e.g., c, h). Also, the patterns will be given in a notation derived
from linguistic rules rather than in a notation which is generally used in regular
e;:pressions, as the problems were encountered in this specific application.

In rule (3.1) three patterns can be distinguished that are searched for in
an input string: the focus, which denotes the string 'ch', the left context,
which denotes any arbitrary string, and the right context, which denotes all
strings beginning with either the characters 'au', 'aq') 'eq') 'iq', 'oq', or 1uq'.
Note the difference between the interpretation of the focus and the contexts.
With regard to the focus only strings match which have the correct length and
composition, while the right and left contexts are satisfied if the beginning of
the strings is correct. For the contexts a 'don't-care pattern', which matches
to all strings, is added at the end of the pattern.

A pattern is matched against a string at a certain position, called the an­
chor. Suppose a string consists of 'chau1feur', then matching the right context
of (3.1) against the string will only give a positive result if it is started on the
third character from the left or, in other words, if the anchor is positioned at
the 'a'.

A pattern is also matched in a certain direction. This is determined by
the place where the anchor is related to the pattern. For a right context
this is at the left side, where the focus (which is the reference point of the
ling·uistic rule) is found. Therefore, the right context is matched from left to
right. Conversely, the anchor of the left context is positioned at its right and
consequently, the pattern is matched from right to left. It is not so much
the direction in which a pattern is matched that is important, as the fact
that it can only be done in that specific direction. Consider, for instance, the
following right context:

This pattern consists of an alternative structure (a or o, u), concatenated by
the pattern t. The position where a 't' should be found in the string depends
on the alternative which is taken into account: if this is the first alternative
(a), the 't' should be found at the second position to the right of the anchor;
for the second alternative (o, u) thi' should be the third position.

44 Chapter 3 Extending regular expressions

In the following, I shall only consider left-to-right matching of patterns,
as right-to-left matching of reverse patterns will essentially have the same
properties. In defining the interpretation of these patterns, I will give the in­
terpretation of a (left or right) context, where, so to speak, the don't-care pat­
tern is added at the end, as that is the most general form of a pattern. The
interpretation of a focus pattern can easily be constructed from the general
interpretation. Moreover, the don't-care pattern is one of the sources of diffi­
culty and therefore the right context patterns are best suited to illustrate the
matter.

3.2.2 The formalism

In example (3.1) quite a few possibilities to construct a pattern are exempli­
fied. First, a pattern may be empty, like the left context. This is denoted by
the absence of any pattern. Then, there are the terminals, which refer directly
to the character in the input string, for example c, h, a and u. These are
called primitives. Next, one can use a shorthand notation to denote a set of
characters, for instance vow. Finally, two mechanisms are used to indicate a
relation between patterns. These are called operators. The comma expresses
concatenation: the concatenated patterns should be found successively in the
input string. The braces express an 'or' relationship: only one of the specified
patterns must be present.

In the formalism presented here only the essential elements which are
needed to construct an arbitrary pattern are included, so as to keep the line
of argument as clear as possible. Therefore, the possibility for shorthand
notation (as in vow) is omitted. The complementation operator, used to
express a 'not' relationship and which will be denoted by'-,', has been omitted
so far and will be introduced presently.

A formalism consists of a syntax and a semantics. The synta.x describes
which patterns can be constructed. The semantics provides a meaning to
those patterns. The syntax and semantics of simplified regular expressions
(not featuring complementation) are given below.

Syntax

The syntax of the formalism is given in Table 3.1.

The syntax is given in an informal version of the so-called Backus-Naur
Form (Naur, 1963). Here, '::='defines how a term on the left-hand side can
be expanded and 'I' denotes alternatives of expansion. In words these rules
read:

3.2 Simplified regular expressions 45

• A pattern ((patt}) can be empty (0) or a non-empty pattern ((ne-patt}).
In ToorjP the empty pattern is specified by the absence of any pattern.

• A non-empty pattern can be a structure ((strct}) or a concatenation (,)
of a structure and a non-empty pattern.

Table 3.1: Syntax of simplified regular expressions.

(patt} ::= 0 I (ne-patt)

{ne-patt} ::= (strct) j (strct), (ne-patt)

(strct) ::= (prim} I { ~:::!!l }
{ne-patt}

(prim) : := a I b I ... I z

Table 3.II: Semantics of simplified regular expressions.

{X} X,®

~ = {€}

® = { E, a, b, ... , z, aa, ab, ... , zz, aaa, ... } = u*

_::={x}

A,B = AI"VB ---

where x is (prim}

where A is (strct)
and B is (ne-patt)

46 Chapter 3 Extending regular expressions

• A structure can be a primitive ((prim}) or an alternative structure. An
alternative structure is denoted by braces ('{' and '}'). It can have
any number of arguments and each argument is an arbitrary non-empty
pattern (which can be constructed with the rule above).

• A primitive is one of a set of basic symbols, a, or b, and so on un­
til z. Here, only the 26 characters of the alphabet are assumed, but
in an actual system like ToorjP other characters such as blanks and
interpunction also belong to this set.

The primitives are the building blocks of the formalism. As will follow from
the semantics, they refer to information in the input string. The other sym­
bols (such as ',', '{', etc.) are used to define desired relations between the
primitives. Examples of patterns are:

a,b,c (3.2)

Semantics

The semantics of the formalism is given in Table 3.II. They should be read
as follows:

• The interpretation of a pattern X (denoted as '(X}') is the result of a
function applied to the concatenation of the pattern X and a special
pattern, the don't-care pattern, to which all strings match. This
function is denoted by an underscore and is pronounced as "the meaning
of".

• The meaning of the 'empty-pattern', 0, is the set containing the empty
string. This is a string with length zero and is denoted as '€'.

• The meaning of the don't-care pattern, ®, is the set of all strings, where
a string is defined as a sequence of arbitrary length composed of arbi­
trary characters from the alphabet.

• The meaning of a primitive is the set containing the character which is
denoted by the primitive. Here, x = { x} is shorthand for writing 26
expressions of the type: a = {'a'};~= {'b'}, etc.

• The meaning of an alternative structure is the union of the meanings of
the individual arguments.

3.2 Simplified regular expressions 47

• The meaning of a concatenation of a structure and a non-empty pat­
tern is the string concatenation (denoted as '.....,') of the meaning of the
structure and the meaning of the non-empty pattern (from the syntax it
follows that the first term is a structure and the second is a non-empty
pattern).

• The string concatenation '.-v' of two sets of strings is defined as the set of
all strings which can be split up so that the first part (d1) is an element
(E) of the first set (X) and the second part (d2) is an element of the
second set (Y). Note that string concatenation A.-vB is not the same
as the carthesian product, Ax B. The origin of the substrings cannot
be traced in the case of string concatenation: 'att' can be formed by
concatenation of 'a' and 'tt' as well as of 'at' and 't'. In carthesian
products the origin can be traced: (a,tt) is considered to be a different
pair from (at, t).

The function "the meaning of", in fact, closely resembles the definition
of regular expressions. It deviates at only two small points. One is that 0
denotes the empty string '€' rather than the empty set. The second point
is that the repetition operator is absent. This last point, however, is not
essential, and it will be re-included in section 3.6. This formalism, based on
the regular expressions, but stripped of the repetition operator will be called
'simplified regular expressions'.

According to this semantics, the interpretation of the examples given in
(3.2) is respectively: "the set of all strings beginning with 'abc'", "the set of
all strings beginning with 'ce' or 'ci'" and "the set of strings beginning with
'abe' or 'acde' ".

Some properties of the formalism

An important property of a formalism is that it is compositional. Composi­
tionality means that the meaning of a pattern can be expressed in terms of
the meanings of its composing patterns. If a formalism is compositional, we
have the guarantee that we can always determine the meaning of a pattern,
irrespective of its complexity. As can be seen in Table 3.II, the semantics
fulfils these compositionality requirements, so the formalism is compositional.

Another property of the present formalism is the distributivity of the al­
ternation over concatenation. For instance, one would expect that relation
(3.3) holds:

{
a } d _ { a,d }

b,c ' - b,c,d (3.3)

48 Chapter 3 Extending regular expressions

In other words, it is permitted to put freely an arbitrary pattern within braces,
or take equal patterns out. Given the definition of string concatenation (the
last line of Table 3.1I), one can prove (see Appendix 3.A) that one may do so.

A final important property of the present formalism is that it corresponds
to one's intuition, it does what one expects it to do. Without having to apply
step by step the rules of Table 3.1I, the meaning of a pattern is 'obvious'. In
my opinion, this is an essential property of a formalism, as otherwise it would
never be satisfactory in practice.

3.3 Complementation introduced in a compositional manner

The user's possibilities for constructing patterns with these simplified regular
expressions can be summarized as follows. With the primitives one can impose
the basic restrictions on the input: in order to have the input match the
pattern, the input character against which the primitive is matched should
meet the requirements imposed by that primitive1 . With the concatenation
operator one can specify the desired presence of a string, i.e., the respective
requirements of the primitives should be met by the respective characters
of the input string. With the alternative operator one can express an 'or'
relation: at the appropriate position in the input string one of the patterns
specified in the alternative structure should be present.

The question arose as to whether other operators could also be introduced
in the formalism. Regular expressions can be expected to be powerful enough
to specify the patterns that one needs, so it is not so much the power of
expression one wants to increase, as the ease of expression. With an analogon
of the 'and' and the 'not' certain patterns can be expressed more elegantly
and transparently than by means of enumeration using alternatives. Also an
optional or repetition operator can be useful for certain expressions.

We will first consider the introduction of only the 'not', since the main
problem of including additional operators lies here. The introduction of the
other operators will be discussed in section 3.6. The 'not', called the comple­
mentation operator, is denoted by'--.'. For instance, '--.c' should be interpreted
as "any character except 'c' ". Since a pattern denotes a set of strings, an in­
verted pattern will also denote a set of strings. In general, one cannot negate
a set, but one must take the complement of a set. This involves selecting all
elements from a universe, excluding the elements of the set. For this reason
the operator is called a complementation operator, rather than a negation or
inversion operator.

1In this chapter, the primitives only consist of the characters of the alphabet, but as
explained in chapter 2, a primitive can also denote a set of characters, such as the vowels.

3.3 Complementation introduced in a compositional manner 49

The most straightforward interpretation of a complemented pattern is the
complement of the set the pattern denotes. This is expressed mathematically
in (3.4):

(3.4)

Here, U is the universe relative to which the complementation operates, and '\'
is the operator of set-difference, which in (3.4) subtracts X from U. However,
this universe U must still be defined. -

The first possibility that comes to mind is the universe which is generally
used with regular expressions, the set of all strings from a given alphabet. This
is often denoted as (J* ((J is the alphabet, * is the repetition operator). This
choice of universe, however, has a serious drawback. Consider the pattern
'•c'. According to definition (3.4) a single 'c' is excluded from the set of
strings denoted by the pattern, as expected. The string 'cc', however, is
not excluded from this set, nor is 'ca', nor any other string of at least two
characters, irrespective of whether it starts with a 'c' or not. And since in
the application of context specification the context generally consists of more
than one character, the use of complementation with U = (J* does not seem
very useful.

The pattern '--,c' creates the impression that the first character to be tested
may not be a 'c', but further (on the following characters) no restrictions are
made, so '--,c' would denote all strings not starting with a 'c'. In the same
way, '--,[c], t' creates the impression of denoting all strings not starting with
a 'c' and having a 't' in second position.

The phrase "creates the impression" is a central notion in the argument.
Of course, one can introduce any operator in any formalism and attach it
to any definition, but this is only useful if it works out according to one's
expectation or intuition, or at least does not work out counter-intuitively.
And since the pattern '--,c' does not mean (according to (3.4)) the same as
the impression it creates, I do not consider this definition to be useful.

This can be fixed by adjusting the definition of the universe. It seems that
when complementation is used, the universe with respect to which it operates
is given implicitly. '•c' means any character but 'c', '•[c, t)' means any two
characters but the sequence 'ct'. Therefore, it seems satisfactory to make a
character count in the complemented pattern: the number of concatenated
primitives determines the length and all strings of that length are included
in the universe. Thus, if a single primitive is complemented, the universe
is the set of strings with length one; if a concatenation of three primitives
is complemented, the universe is the set of strings with length three; if an
alternative structure is complemented, that for instance contains two paths of

50 Chapter 3 Extending regular expressions

different length, such as in -,{o~u}, the union of the universes of the individual
patterns is taken, thus in this case all strings of length one and two. This is
formalized in a new definition, (3.5):

(3.5)

Note that the universe with respect to which the complementation operates is
now being determined explicitly by the pattern which is being complemented.

The new interpretation of the universe of an arbitrary pattern is formal­
ized in Table 3.III. The universe of a primitive is the alphabet. The universe
of a concatenation is the string concatenation of the universes of the compos­
ing patterns. This provides the 'character count'. The alternative operator
unites the universes of the composing patterns. Finally, the universe of a
complemented pattern is the same as the universe of the non-complemented
pattern.

The possibilities to construct a pattern can now be extended. In Table 3.IV
a new syntax is given to replace the former one (given in Table 3.1). The
complementation operator is included as a structure; everywhere where one
can use a primitive or an alternative operator, one can now also use the
complementation operator to complement an arbitrary non-empty pattern. If
the complemented structure consists of a single structure one may omit the
square brackets which serve to denote the range of the complementation2 •

2 Square brackets are chosen since parentheses will be used for optionality. Although
square bracket will also be used for another purpose, viz. to denote simultaneity, there is no
ambiguity since simultaneity always has two or more arguments, whereas optionality only
has one.

Table 3.III: Definition of the universe of an extended regular
expression.

xu={a,b, ... ,z}=o-

(A,B)u = Au""'Bu

({! })u = AuuBuu ... ucu

(-,A)u =Au

where x is (prim)

where A is (strct)
and B is {ne-patt}

3.3 Complementation introduced in a compositional manner

Table 3.IV: The syntax of extended regular expressions.

(patt) ::= 0 I (ne-patt)

(ne-patt) ::= (strct) I (strct) , {ne-patt)

(strct) ::= (prim) I { ~:::F::l } I ~ [(ne-patt}] I ~(strct)
(ne-patt)

(prim) : := a I b I . . . I z

Table 3.V: The semantics of regular expressions extended with
complementation in a compositional manner.

{X)= X,®

® = u*

::_={x}

~[A]= Au\A

A,B = A""'B

where x is (prim}

where A is (strct}
and B is (ne-patt}

51

52 Chapter 3 Extending regular expressions

The semantics accompanying this syntax is given in Table 3.V and replaces
the former semantics (given in Table 3.II). Likewise, the new semantics differs
only from the old one in the respect that the interpretation for the complemen­
tation operator as given in (3.5) is included. The Parspat system described
by Vander Steen (1987) features complementation exactly in accordance with
this scheme.

3.3.1 Some examples

With the new formalism defined by Tables 3.111, 3.IV and 3.V, we can deter­
mine the interpretation of the patterns which we can construct with the new
complementation operator. Starting with simple patterns, the interpretation
of some of these is given according to the new semantics.

(•c) = (u \ { c}) rv 0 = {a, b, d, ... , z} rv u* (3.6)

In words, pattern (3.6) is satisfied by an arbitrary non-empty string, which
does not start with a 'c'. This is, indeed, the set we previously described
informally. The other two patterns we saw earlier behave in accordance with
expectation, too.

(•c,t) = {a,b,d, ... ,z} "'t ""u* (3.7)

Here, any non-'c' character must be followed by a 't'. Note that the range of
the complementation is restricted to the c; the t is a 'positive' pattern that
must be present in the input string. To include the t in the complementation,
one should specify:

(•[c, t]) = {aa, ab, ... ,cs,cu, ... ,zz} ""u* (3.8)

Now, the string may start with any two characters, 'ct' excluded.

Another pattern, for instance, is (3.9), where the use of the alternative
operator in combination with the complementation operator is illustrated.

(• { : } , t) = {bt, dt, ... , zt} "' u* (3.9)

Note that both the 'a' and the 'c' are excluded as first character. The second
character, as expected, must be a 't'.

3.3 Complementation introduced in a compositional manner 53

3.3.2 Some problem cases

So far, the interpretation of these patterns corresponds to our intuition of
what they should be; complementing patterns lead to exclusion of the spec­
ified characters, the other characters being included. However, we can also
construct other more complex patterns, in which case complications arise.
Consider for instance the following pattern:

= {bt, ct, ... , zt, aat, ... ,
att, ... ,ott,ovt, ... zzt} ~a* (3.10)

This pattern includes some unexpected strings. As can be seen, the strings
'att ... ' (i.e., all strings starting with the characters 'att') are approved of,
due to the -,[o, u], t path. This path introduces all two-character sequences
except 'ou'-which includes 'at'-to be concatenated to 't .. .'. This is unde­
sirable, as the other path of (3.10), •(a), t is meant to exclude the strings
starting with 'at', of which the strings 'att...' are a subset.

Pattern (3.11) is even worse.

= {b, c, ... , o, ... , z, aa, ... , az,
ba, ... , ot, ov, ... zz} ,.,., a* = a* (3.11)

First, it includes all strings starting with an 'a', as -,[o, u] approves of all
two-character sequences starting with 'a'. But also the strings starting with
'ou' are included: the 'o' is approved by •a, to be string concatenated with
®. Amongst other strings, the strings 'u .. .' are linked to the 'o'. Thus it is
found that (3.11) is a clumsy way to specify the alphabet, a*. This is clearly
unexpected as the pattern suggests that all strings starting with 'a' or 'ou'
are to be excluded.

These are two sample patterns of a class for which there is a clash between
the formal interpretation of the pattern and our expectation of its meaning.
Although the patterns may be of a somewhat hypothetical nature, patterns
of a similar construction might well be specified in the application for which
the formalism is devised. In natural languages one can distinguish clusters of
letters which share a certain property. These letter clusters do not necessarily
have the same length. The class of English vowels, for instance, can consist of
one character, as the 'o' in 'over', but also of two, as 'ea' in 'reach'. Another
example is the class of so-called well-formed initial consonant clusters. These

54 Chapter 3 Extending regular expressions

are sequences of consonants one may encounter at the beginning of a syllable.
For instance, 'str' is encountered in words such as 'string' and 'strange', while
'kp' will never form the beginning of a syllable in English. One may want to
trigger a rule on the basis of such a class, or exclude the application of a rule
in such circumstances. The complementation operator is well suited for this
purpose, and typically, when excluding such classes this leads to patterns of
the above type.

Since linguists in general cannot be assumed to be familiar with the theory
of extended regular expressions, it is a drawback that patterns like (3.10)
and (3.11) do not behave as one expects. Therefore, the semantics of Table 3.V
is not completely satisfactory.

In the next section we will try to find a solution to this problem. What we
expect a pattern to denote, however, is an intuitive notion, which is difficult
to work with if it cannot be made explicit. Therefore, we will try to find the
type of patterns for which the expected and formal interpretation diverge,
analyse the expected meaning of these patterns and formalize the expected
interpretation.

3.4 Explicit nofits

3.4.1 Succeeding structure

Before we start to try and make this intuitive expectation explicit, we take
another look at the patterns (3.6)-(3.11). It is found that the divergence of
expectation and formal interpretation only occurs when one complements a
pattern that denotes strings of different length. If this is the case, as in (3.10)
and (3.11), a string which is matched against that pattern can be split up in
more than one way. Due to these different divisions, it can occur that strings
which are rejected by one path (for instance, the strings 'att ... ' are among
the strings which are rejected by -,[a], t in (3.10)) are approved by another
('att ... ' satisfies -,[o, u] , t).

' Clearly, these effects are not intended when such patterns are specified. If
we take another look at pattern (3.12):

...,{ a },t
o,u

(3.12)

one expects it to mean something like: "In the input string, somewhere a
't' must be found, but preceding the 't' a single 'a' and the sequence 'ou'
are not allowed." Informally speaking, it is as if the input string is fitted on

3.4 Explicit nofits 55

the pattern, so that for a certain path in the pattern each primitive will be
matched to one segment. If the string fits in such a way that its segments
match both the complemented and the non-complemented parts of a pattern
(as 'att ... ' does for •[a], t) the string is explicitly meant not to match. Such
strings will be called explicit nofits.

On the other hand, strings which do not belong to that category and have
a matching condition, should be included. A matching condition occurs if the
string can be fitted to the pattern in such a way that the segments fitted on the
complemented parts of the pattern do not match and the segments fitted on
the non-complemented (positive) parts do. Strings which fulfil the matching
condition are called candidates. For instance, both the strings 'att ... ' and
'art ... ' are matching strings of (3.12) as they fulfil the matching condition,
viz. on the path •[o, u], t. However, as 'att ... ' at the same time is also an
explicit nofit, viz. on the path •a, t, it should not be included in the set of
strings which are denoted by (3.12). The string 'art ... ', on the other hand, is
not an explicit nofit and is therefore included in the set.

This informal description of expectation can be formalized and expressed
mathematically:

explicitnofits(•A,B) = A""'B (3.13)

candidates (•A, B) = (AU\ A}·vB (3.14)

In the compositional semantics of Table 3.V the complementation operator
selects the candidates, without excluding the explicit nofits. To exclude these,
a new definition for complementation is proposed: the set of candidates minus
the set of explicit nofits, which is expressed mathematically in (3.15):

(3.15)

String-concatenation (,..,) has higher precedence than set-difference (\). As
is proved in Appendix 3.B, (3.15) can be simplified to (3.16):

(3.16)

One can comprehend this as follows: the strings which are added to the
generating set (the set to the left of the set-difference sign '\') of (3.16) as
compared with (3.15) are all part of the set of explicit nofits which are excluded
afterwards, so the resulting set of strings are the same for (3.15) and (3.16).

This way of presenting the complementation expresses the fact that the
complementation is sensitive to the succeeding pattern. If we see the com­
plementation as an operator which operates on one pattern, in (3.16) we lose
the strict compositional character that the semantics of Table 3. V had, as we
include the succeeding pattern in the definition of complementation.

56 Chapter 3 Extending regular expressions

3.4.2 Closing brackets

Before we can include (3.16) in a new proposal for the semantics, there is
another observation to be made. In (3.3) we saw that we can put a pattern
succeeding an alternative structure into the structure. Now suppose we have
a pattern resembling (3.3), in which complementation is used:

(3.17)

Again, we can identify two paths, one stating a , d and the other stating
b, •C, d. In the second path, d is the pattern succeeding the complementation
•C. However, we cannot simply apply the semantics of Table 3.V with the
new definition of complementation. The complementation will not "see" the
succeeding pattern d, as it is outside of the alternative structure:

(3.18)

Moreover, it is found in this case that there is no pattern present at all behind
the •C in (3.17), to substitute for pattern B of (3.16).

Both objections can be resolved by putting patterns which succeed an
alternative structure into braces, for instance, by reformulating (3.17) into
(3.19):

{
a,d }

h,•c,d (3.19)

In this way, we establish that

(a) a succeeding pattern (pattern B of (3.16)) is always present, and
(b) the full succeeding pattern is within the scope of the complementation.

Note that if the original pattern does not have a succeeding pattern, as
in (3.11), the formalism adds one, the ®-pattern. This has the desired effect,
as for instance in (3.11) all strings 'a ... ' and 'ou ... ' are included in the set of
explicit nofits, and thus are excluded from the new interpretation of (3.11).

3.4.3 A semantics excluding explicit nofits

Of course, we do not want to burden the user with the process of putting
the succeeding pattern into the scope of a structure, and moreover we still

3.4 Explicit nolits 57

want the property of being able to manoeuvre patterns freely in and outside
brackets to be preserved. Therefore, the formalism must provide a mechanism
to put these patterns into brackets.

This can be achieved by approaching the patterns from their concatenation
aspect. As can be seen in Table 3.V, the first line of the semantics concatenates
the ®-pattern to an arbitrary pattern before the function "the meaning of"
is applied. This means that for any user-specified structure there will always
be a succeeding pattern: either a user-defined (non-empty) pattern or the
®-pattern. Then, for alternative structures, the succeeding pattern can be
brought into its scope:

A,YUB,YU ... UC,Y (3.20) -- -- --

Note that, just like (3.16), the meaning of this structure is now defined in
combination with its succeeding structure.

To specify the meaning of a concatenation in general, we must discriminate
between the various leftmost structures. For concatenation and alternation
the meaning is now defined: (3.16) and (3.20). Two more possibilities re­
main for the leftmost structure, the empty pattern and the primitives (see
Table 3.IV). These are directly derived from Table 3.V. As a whole this
results in Table 3. VI, where the new semantics for the formalism is proposed.

There remain some minor points to discuss, due to the definition of comple­
mentation. In determining the meaning of the complementation, the meaning
of the complemented structure (A) has to he determined, and eventually we
are left with the task of determining the meaning of a single structnre (i.e.,
which does not contain a concatenation). This can be any of the three struc­
tures: a primitive, an alternation or a complementation. To avoid the neces­
sity of specifying the meaning of these structures, which essentially have the
same characteristics as those already specified for concatenation, the empty
pattern '0' is concatenated to that structure (X= X, 0). This does not alter
the interpretation of the pattern, as string concatenation of the empty string
to an arbitrary string does not alter the string. We can once again apply the
rule for the meaning of a concatenation. Eventually, we will only have to de­
termine the meaning of the empty pattern, which, for this reason, is included
in the semantics. Thus the semantics of Table 3.VI is complete; the meaning
of any arbitrary pattern can be determined.

58 Chapter 3 Extending regular expressions

3.5 Properties of the new semantics

3. 5.1 Consistent versus inconsistent patterns

The first thing to check is whether the new formalism yields the same results
for those patterns which in the old interpretation already had the desired
meaning. For this purpose, it is necessary to reconsider the difference between
the patterns in section 3.3.1 and those in section 3.3.2. The interpretation
problems appear when it is possible to find a string which is divisible in
different ways, so that it is rejected by one path and approved of by another
(see section 3.4.1), or, in other words, the string is both a candidate and an
explicit nofit. Such strings are called inconsistent divisible strings. Patterns
for which such strings exist are called, in imitation, inconsistent patterns.

Table 3.VI: The semantics of regular expressions extended with
complementation in a semi-compositional manner.

(X}= X,®

®=a*

X,Y= if X=0

if X= X

if X= •A

X=X ,0

then Y

then {x}-_,Y where x is (prim)

then A Y U B , Y U ... U C , Y
-- --

then AurvY\A"'Y

where X is (strct}

3.5 Propertjes of the new semantics 59

Consequently, all patterns which are not inconsistent are consistent patterns3 .

Defined semantically as such, there is no straightforward characteristic
of appearance to distinguish consistent patterns from inconsistent ones. For
instance,

·{ a },t o,u

is an inconsistent pattern, as 'att ... ' is both a candidate and an explicit nofit.
On the other hand, a pattern which closely resembles the previous one,

....,{ a },t,r
o,u

is consistent, as no inconsistent divisible strings exists.

However, there is a characteristic of appearance which guarantees con­
sistency. One can prove (see Appendix 3.C) that patterns containing only
positive structures are consistent. Also, if a pattern contains complemented
structures and the complementation contains only paths of a certain, specific
length, this pattern is consistent, too. So, for instance,

is a consistent pattern as it fulfils the characteristics of appearance.

3. 5. 2 Relation between the two definitions of the semantics

The inconsistent divisible strings for a certain pattern are those strings which
are both a candidate (the approving path) and an explicit nofit (the rejecting
path). For consistent patterns there are no such strings, which means that a
string is exclusively a candidate, an explicit nofit, or neither.

Given the presumption that a pattern is consistent it is proved in Ap­
pendix 3.C that the old semantics of Table 3.V yield the same results as the
new semantics of Table 3.VI. An illustration of this fact is that the only essen­
tial difference between the two semantics, which lies in the definition of com­
plementation, disappears for consistent patterns. This can be seen as follows.
For consistent patterns there is no overlap between candidates and explicit
nofits. Mathematically expressed this means that (Au\A)"'BnA"'B = 0.

3 A formal definition is given in Appendix 3.C.

60 Chapter 3 Extending regular expressions

Then [(A u\A)......,B] = [(A u\A)"""B] \A""' B. The left-hand side of this equa­
tion is the old definition, and the right-hand side is equal to the new definition
(see the simplification of (3.15) to (3.16)).

For inconsistent patterns, on the other hand, the two semantics yield of
course a different result. This is to be expected, as for these patterns the old
semantics yield undesirable results, which is resolved in the new semantics.

3.5.3 Double complementation

The new formalism lacks, however, a property which one could also expect
a formalism featuring complementation to have: the possibility to annihi­
late double complementation, i.e., a complemented structure which is directly
being complemented. In set theory, for instance, this is a characteristic prop­
erty which holds. The fact that this property does not hold for the proposed
formalism can be seen as follows:

(3.21)

For inconsistent patterns inconsistent divisible strings exist, which means that
they are candidates as well as explicit nofits. In (3.21) one can see that
such strings will be excluded from the double complementation -.-.A, B, as
they are candidates to -.A , B. At the same time, however, those strings are
explicit nofits to -.A, B. If, for instance, A itself does not contain another
complementation, the explicit nofits to -.A, B will match A, B. Thus, such
strings match A , B, but do not match -.-.A , B. For instance:

(3.22)

Attempts to adjust the formalism so that both the existing properties are
retained and double complementation can be annihilated all fail for one rea­
son or the other. Appendix 3.D elaborates on this matter. Two alternative
definitions for complementation are discussed, in which essentially only the
definition of explicit nofits is adjusted slightly. It appears that if double com­
plementation may be annihilated, the formal interpretation of some patterns
differs from what one would expect, and, vice versa, fixing the interpreta­
tion to expectation once again deletes the legitimacy of annihilating double
complementation.

3.6 Including simultaneity and optionality 61

3. 5.4 Power of expression

The introduction of complementation as an operator in simplified regular
expressions does not increase the power of expression of the formalism. This
can be seen as follows:

(3.23)

Here, the overbar denotes complementation with respect to u*, the uni­
verse generally used for complementing regular expressions as a whole. Since
regular sets are closed under complementation (in the regular sense) and under
intersection, the complementation operator as it is introduced here does not
increase the power of expression, or, in other words: one can always devise a
pattern without using the complementation operator which denotes the same
set as the one denoted by a pattern in which the complementation operator
is used.

However, the complementation operator was not introduced to increase
a user's power of expression. Rather, the aim was to increase the ease of
e>..'J)ression. With the complementation operator exceptions to rules can be
stated more elegantly in an explicit manner, which results in both more concise
and more transparent rules.

3.6 Including simultaneity and optionality

Now that complementation has been included in the semantics in a reason­
ably satisfying manner, we can study the consequences of including two more
operators. This concerns simultaneity, the 'and' operator, and optionality,
which can be used for optional and repetitive structures. The operators will
be introduced in the philosophy of excluding explicit nofits, which means that
these operators, too, include the succeeding pattern into their scope. \Vith
respect to the interpretation of the simultaneous operator this gives rise to
some minor additional complications, which are discussed subsequently. First,
therefore, the optional operator is dealt with, then the simultaneous operator
is discussed.

3.6.1 The optional operator

The introduction of the optional operator is fairly straightforward. With some
minor exceptions the optional operator is just a shorthand for a specific type
of alternative structure. The general format is as follows:

62 Chapter 3 Extending regular expressions

(A)a-b

The parentheses denote the optional structure, A is a non-empty pattern, and
a and b denote respectively the minimum number of times that A must, and
the maximum number it may, be present. Therefore, it is required that a ::; b.
If 'b' is omitted the pattern is interpreted as a or more times pattern A. If
both a and bare omitted the pattern is interpreted as 'optionally A', i.e., zero
or one A, which explains the name of this operator. Since in Toor.,i.P this is
the main application of this operator, the operator is called 'optional' rather
than 'repetitive'. Examples of its use are given in section 2.3.

Since optionality is merely a shorthand for alternatives, it can be included
in the formalism in accordance with the alternative operator. The relevant
definitions are given below:

X,Y= if X=(A)a-b then Aa,YuAa+l,Yu ... UAb,Y

if X= (A)a then Aa,YuAa+1 ,YU ...

if X (A) then YUA,Y ---

Here, A0 = 0 and Ai = A, Ai-l. A0 is defined as 0 so as to let the zero
repetition denote the empty string.

Since each structure can be used in any place, the optional structure can
also be complemented. The function of determining the universe must there­
fore also be capable to determine the universe of the optional structure. Since
the universe serves as a character counting mechanism, the universe for op­
tional structures is defined as follows:

((A)a-b) u =(A a) uu (Aa+l) u U ... U (A b) u

((A)a)u= (Aa)uu(Aa+l)uu .. .

((A)) u = {E} UA u

0u

The clause 0 u = E is included for the zero repetition case.

3.6.2 The simultaneous operator

The simultaneous operator can be introduced analogously to the alternative
operator. Thus, the general format is as follows:

3. 7 Properties of the semi-compositional formalism 63

All arguments are non-empty patterns. The simultaneous structure can have
2 or more arguments. The intuitive meaning of this structure is that where
it is specified the input string should meet the requirements of all arguments.
Retaining the symmetry with alternation, simultaneity is defined as follows:

X,Y= if X= [i] then A,YnB Yn ... nC,Y (3.24)

For the simultaneous operator, too, the universe must be defined. In the
light of the character count it is defined as follows:

Combining these definitions with the current formalism, the complete for­
malism which defines the interpretation of patterns is given by tables 3.VII,
3.VIII and 3.IX. For reasons which will become clear this formalism is called
the semi-compositional formalism for extended regular expressions.

3. 7 Properties of the semi-compositional formalism

3. 7.1 Explicit nofits

Concatenating the succeeding structure to the individual arguments of the
simultaneous structure fits in the philosophy of excluding explicit nofits. Con­
sider, for instance, pattern (3.25):

(3.25)

Here, cons is a macro which denotes all consonantal segments, which includes,
for instance, 'b', 'c', 'd' and 'f'.

64 Chapter 3 Extending regular expressions

Table 3.VII: The semantics of patterns.

Semantics:

{X) =X,®

~ = {€}

® = u*

X,Y= if X=0 then

if X=x then

if X={f} then

if
X= [f] then

if X=-,A then

if X= (A)a-b then

if X= (A)a then

if X= (A) then

X=X,0 - --

x,.,_.y = {dtd21 dt EX Ad2 E Y}
A0 0
Ai=A,Ai-t i;:::l

y

{x}""'Y where x is {prim)

A,YUB,YU ... UC,Y -- --

A,YnB Yn ... nC,Y

Au,.,_.Y\A""'Y

A", YUA"+l, YU .. . UAb, Y

A" , Y U A a+t , Y U ...

YUA,Y

where X is (strct)

3. 7 Properties of tbe semi-compositional formalism

Table 3.VIII: The syntax of patterns.

Syntax:

(patt) ::= 0 I (ne-patt)

(ne-patt) ::= (strct} I (strct}, (ne-patt}

(strct) ::= (prim) I { ~::::::::; } I [~~=~:::;]1 ...,[(ne-patt)]I

(ne-patt} (ne-patt}

-,(strct} I ((ne-patt})a-b I ((ne-patt))a I ((ne-patt})

(prim) ::= a I b I ... I z

Table 3.1X: The universe of patterns.

Universe:

(A,B)u = AurvBu

({i})u=Auunuu. ucu

([Hu=Auunuu ... ucu
(-,A)u =Au

((A)a-b) u = (Aa) uU (Aa+l) uU ... U (Ab) u

{ (A)a) U = {A a) U U (A a+ 1) U U .. .

((A))u = {E}UAU

where x is (prim)

where A is (strct)
and B is (ne-patt)

65

66 Chapter 3 Extending regular expressions

If the succeeding structure (f) were not concatenated to the individual
arguments before the meaning is determined-as would be the case in a strict
compositional definition-the string 'bff...' would match this pattern. This
is not the kind of thing one wants to happen when 'bff' is excluded from
pattern (3.26):

(3.26)

With the given definition (3.24), however, it can be seen fairly easily that
(3.25) will exclude at least the same strings as (3.26):

[
(cons)l-2] { b}
·{c~d} ,f,181=(cons)l-2,f,181n• c,d ,f,181 (3.27)

The second term of the righthand side of (3.27) equals pattern (3.26).

3. 1. 2 Relation to the compositional formalism

The given definition is thus consistent with the philosophy of excluding ex­
plicit nofits. There is, however, a complication with simultaneity which does
not occur with complementation and alternation. Consider, for instance, pat­
tern (3.28):

(3.28)

According to the definition, (3.24), this pattern denotes all strings starting
with 'att':

([a: t] , t) =a, t, 181 n a, t, t, 181 =a, t, t, 181 = (a, t, t) (3.29)

This is an example of the property that simultaneity distributes over concate­
nation. This is not so surprising since it is defined that way:

3. 7 Properties of the semi-compositional formalism 67

However, the point is that, as opposed to alternation, simultaneity does not
distribute over concatenation in the compositional case. In the compositional
case concatenation and simultaneity are defined as follows4 :

A,B = A~B
-- --

[f] =AnBn ... nc

Thus:

a, e t,e t,e

[

{ t,e} l
a,t,{t~e} =a,{ e }na,t,{ e }=a,t,e

willie:

(3.30)

Therefore, beside the inconsistent patterns, this is a second case for which
the proposed semantics differs from a compositional one. In this case, however,
it is not so clear that {3.29) is a more expected or desirable interpretation
than (3.30). On the other hand, it may be argued that patterns like these,
which can be characterized by the fact that simultaneity operates on paths of
different length, have very little intuitive meaning to begin with.

3. 7.3 de Morgan's laws

Since the formalism now features an 1or', an 'and' and a 'not', one may wonder
whether an equivalent of de Morgan's laws is valid. From the field of logics we
know that ~(a V b) =~a/\ ~band ~(a I\ b) = ~a v~b. Is something equivalent
valid in the semi-compositional formalism, in other words, are equations (3.31)
and {3.32) valid?

4 The double underlining serves to distinguish this definition from the proposed
formalism.

68

= [=~J
= { =~}

Chapter 3 Extending regular expressions

(3.31)

(3.32)

It turns out that these equations are not valid in general. This can be
seen, for instance, as follows:

= ·{ a },t,®= o,u

{ a } u rvt, 0\ { a }rvt ® = a 1
•
2 ta* \ (ata* U outa*) :::?

o,u --- o,u

(3.33)

•a 't '® n •[o 'u] 't '® (ata* \ ata*) n (aata* \ outa*) :::?

(3.34)

Here, a 1 •2 denotes all strings of length 1 or 2.

Thus, (3.33) and (3.34) disprove (3.31). The other law, (3.32) can be disproved
in a similar way.

The equivalent of de Morgan's laws is thus not valid in general. It should
be noted, however, that in the compositional formalism the two equations are
not valid either5 . This can be verified by taking A = a and B = o, u.

5 0nly in a. compositional formalism where the universe is defined as U = u• will de
Morgan's laws be valid:

.., { ~} = u* \ (~ U !!) = (u* \ ~) n (u* \B)=

The other law is proved analogously.

3.8 Discussion 69

On the other hand, it is not so that the equations are always invalid. If,
for instance, the lengths of all paths in the complemented structure are equal,
it can be shown that the equations are valid. Thus, for instance:

(3.35)

3. 1.4 Complementing simultaneity

A final pattern which deserves some discussion is the use of complementation
in co-ordination with simultaneity. Consider, for instance, pattern (3.36):

[a] u .-vt ' ® \ [a] .-vt ' 0 =
a,t -- a,t --

[a: t] u rvt ® 0 ()1,2tu* (3.36)

Here, the result is somewhat unexpected. One could expect the strings
'att ... ' to be excluded from this pattern, since they match pattern (3.29),
which only differs from (3.36) in the absence of a complementation sign.

The reason for this phenomenon is that explicit nofits are defined as ArvB
rather than A, B. Then, when A= 0 the explicit nofits are empty, too.
does not necessarily have to be-the case for A, B, as exemplified in (3.29).
This phenomenon of the explicit nofits being empty did not occur previously
in simple complemented structures (no nested complementation) since there
is no pattern for which A= 0. So (3.36) is a simple complemented structure
of which one may feel that the semi-compositional does not behave in the
expected manner.

3.8 Discussion

In general, the phenomenon that not all strings are excluded which one would
expect to be, occurs when A"""B f. A, B. Apart from simultaneous structures
with paths of unequallengths,this can only occur when A contains a comple­
mented structure (also) containing paths of different lengths. So only when
complementation is nested to a level of two or more does this phenomenon oc­
cur. This is exactly the reason why double complementation may not always
be annihilated.

70 Chapter 3 Extending regular expressions

In this light it would be more consistent to define explicit nofits as A, B.
In fact, this is the most logical choice since A, B denotes precisely those
structures which match •A, B if the '...,' sign is omitted. This would resolve
the above particular case (3.36), but not all of the problems attached to this
matter. Appendix 3.D discusses this option with regard to double comple­
mentation. The following is probably an even stronger argument against this
option.

One of the main consequences of this choice is that complex patterns
must be evaluated as a whole. When for instance a pattern is specified with
complementation nested to a certain level, the full pattern is important to
determine the meaning of the most deeply nested complementation, something
which also holds for all the other complementations. This tends to get so
complicated that the only way to evaluate patterns in which complementation
is nested to level two or more is to write a computer program which patiently
executes the definition. This is not conducive to quick design of complex
patterns.

This is, in fact, a plea for compositionality. In a compositional system, the
meaning of any pattern, however complex, is determined by the composing
parts. The meaning of a part is not changed by altering something outside
that part. The meaning of a pattern is determined from small to large rather
than having to view the pattern as a whole to start with.

The current definition, with the explicit nofits defined as A"'B, can be
seen as a compromise between the two extremes. It resolves the objection to
the compositional system which does not exclude explicit nofits. On the other
hand, within complementation the succeeding structure is 'hidden', i.e., in de­
termining the meaning of a complemented pattern one can separately deter­
mine Au, A and B, and combine these afterwards. When complementation is
nested, thesucceeding structure does not extend outside the complementation
which is nested one level less deep. As we have seen, double complementation
may for this reason not always be annihilated. On the other hand, all patterns
can, with some practice, now be evaluated by hand, since the patterns can be
decomposed into smaller parts which can be evaluated separately.

On theoretical grounds the semi-compositional formalism is thus not com­
pletely satisfactory. For practical purposes, however, it might be satisfactory,
because the cases which are not resolved satisfactorily, such as double comple­
mentation, deeply nested complemented structures or complementing simul­
taneity which contains paths of different lengths, are highly unlikely to be used
in practice. The semi-compositional definition excludes explicit nofits in the
practical cases and has a semi-compositional behaviour for complex patterns.
It thus seems a practical compromise between the conflicting requirements

3.9 Conclusion 71

of strict compositionality on the one hand and interpretation according to
expectation on the other.

Based on these practical grounds it was decided to implement the semi­
compositional formalism in ToorjP to investigate its merits. In the next chap­
ter the implementation of the formalism will be discussed, and in the con­
cluding chapter (among other things) the merits of the semi-compositional
formalism will be considered.

3.9 Conclusion

In this chapter a formalism is proposed in which a complementation opera­
tor (the 'not') and a simultaneous operator (the 'and') are included in the
formalism of regular expressions.

Regular expressions are defined in a compositional manner. This is an
important theoretical and practical property, since the meaning of any ex­
pression, however complex, can be determined in parts, from small to large.

The inclusion of the new operators in regular expressions in a composi­
tional manner has the practical objection that for a certain class of patterns,
the so-called inconsistent patterns, the formal interpretation does not corre­
spond to the impression the patterns create.

The main motivation to try and resolve this objection is of an ergonom­
ical nature. The main users of the system in which the formalism must be
implemented cannot in general be expected to be familiar with the details of
the behaviour of such extended regular expressions.

The attempt to resolve this objection has resulted in a slightly different
formalism, which can best be characterized as a semi-compositional formal­
ism. Although the pattern succeeding a specific structure must be included
in determining the meaning of that structure, it remains possible to decom­
pose complex patterns into smaller parts, determine the meaning of each
of those parts, and determine the meaning of the whole pattern from the
meaning of the individual parts. The extent, however, to which the pattern
may be decomposed is smaller than in the compositional case. In the semi­
compositional case patterns can be decomposed only with respect to comple­
mentation, whereas in the compositional case patterns can be decomposed
with respect to all structures.

In defining the semi-compositional formalism three essential choices have
been made. The first one concerns the choice of universe. Rather than taking
the set of all strings, (J*, as universe, a character counting mechanism has
been defined. As a consequence, the user does not explicitly have to specify

72 Chapter 3 Extending regular expressions

the desired universe for each complemented structure that is used. On the
other hand, the validity of the equivalent for de Morgan's laws is lost. Both the
compositional and the semi-compositional formalism described in this chapter
feature the character counting universe.

The second choice is to exclude explicit nofits. This is the main differ­
ence between the semi-compositional and the compositional formalism. As a
consequence strict compositionality is lost, but the patterns behave more to
expectation.

The third choice is the definition of explicit nofits. In the semi­
compositional formalism which is proposed here this is defined as ArvB,
whereas the more logical choice would be A , B. As a consequence the semi­
compositional formalism still does not always behave as expected, i.e., not
always are the 'real' explicit nofits (A, B) excluded. On the other hand,
compositionality is not all together losr.--

From a theoretical point of view the semi-compositional formalism is thus
not completely satisfactory. For practical purposes, however, it might be satis­
factory, because the cases for which it does not behave satisfactorily are highly
unlikely to be used in practice. The semi-compositional definition excludes ex­
plicit nofits in the practical cases and has a semi-compositional behaviour for
complex patterns. It thus seems a practical compromise between the conflict­
ing requirements of practical needs and theoretical elegance. Based on these
practical grounds it has been decided to implement the semi-compositional
formalism in ToorjP.

3.A Distributivity of patterns

Appendix 3.A
Distributivity of patterns

73

In this appendix it is proved that, given the semantics of Table 3.II or 3.V
and the definition of string concatenation, alternation is distributive over
concatenation for patterns.

Propositions (A-1) and (A-2) hold in general for sets of strings.

Proof:

(AUB)""'C = (ArvC)U(B"'C)

Arv(BUC) = (ArvB)U(ArvC)

(AUB)"-~C ~ {dld2 IdlE (AUB) 1\ d2 E C} =
{ dl d2 I (dl E A 1\ d2 E C) v (dl E B 1\ d2 E C)} =
{ dl d2 I dl E A 1\ d2 E C} u { dl d2 I dl E B 1\ d2 E C} =
(ArvC) U (B""C)

(A-2) is proved analogously.

(A-1)

(A-2)

From these general properies of string sets the distributivity of concatenation
over alternation for patterns follows directly:

Similarly,

= (X UYU ... U Z) ""B
(A,;l) X""'BUYrvBU ... UZ""B

X BUY ,BU ... UZ B

{
X,B}
Y,B

Z,B

(A-3)

(A-4)

74 Chapter 3 Extending regular expressions

Appendix 3.B
Simplification of complementation

In this appendix it is proved that the definition of complementation as given
in (3.15) can be simplified to (3.16):

Proof:

X = ((P\A)rvB) \ (ArvB)
Y = (PrvB) \ (ArvB)

dE X ::::}
{ 3dt, d2 I d = dt d2, dl E P, dl rf. A, d2 E B

d rf. ArvB

::::}
{ 3dt, d2 I d = dl d2, dt E P, d2 E B

d rf. ArvB

- dEY

dEY ::::}
{ 3dt, d2 I d = dl d2, dl E P, d2 E B

d rf. ArvB

{ 3d,,d,l d ~ d,d,,d, E P,d, E B
::::} Vdt, d2•(d = d1d2 1\ dt E A 1\ d2 E B)

d rf. ArvB

::::}
{ 3dt, d2 I d = dt d2, dl E P, dl rf. A, d2 E B

d rj. ArvB

- dE X

(B-1)

3. C Equivalence of semantics 75

Appendix 3.C
Equivalence of semantics

In this appendix it is proved that for consistent patterns the semantics given
by Table 3.V and Table 3.VI are equivalent. For this purpose, the semantics
of Table 3.V is referred to by a single underlining, the semantics of Table 3.VI
by a double underlining.

First, the formal definition of consistent and inconsistent patterns is given.
Next, given the consistency of a pattern, the equivalence of the two seman­
tics are shown. Finally, two characteristics of appearance, which guarantee
consistency, are discussed.

Definition: A pattern X is consistent if Cons(X) =true, and inconsistent
if Cons(X) =false.

Cons(X) is given by:

Cons(0) =true

Cons(®)= true

Cons(X) = Cons(X, 0)

Cons(X ,Y) = if X= 0

if X= (prim)

if X= ·A

then Cons(Y)

then Cons(Y)

then Cons(A, Y) A Cons(B, Y)
A ... A Cons(C, Y)

then Cons(A) A Cons(Y)

A [CA u\ A)-vY nA'""Y 0]

76 Chapter 3 Extending regular expressions

For consistent patterns the semantics of Table 3.V and the semantics of Ta­
ble 3.VI yield the same results. This can be shown as follows:

181 =a-*= 181

:: = {X} = {X}"-'{ E} = {X}"-'~ = X, 0 = ::_

{f} AUBU ... UC = A,0UB ,0u ... UC ,0 i~.

A,B= if A=0 --+ Bi~. B=A,B
- - --

if A=x --+ {x}""'B i~. {x}""'B = A,B

if A~ {I} --+ (XUYU ... U Z)""'B
(A-=1)

X""'BU Y""'BU ... UZ""'B

= X ,BUY ,Bu ... UZ ,B ----in d.
X ,BUY ,BU ... UZ ,B = -- ---- -- --
A,B
--

if A= ·X --+ (Xu\ X)""'B i~. (Xu\ X)""'B
cons.

(Xu\X)""'B\X""'B
(B-1)

xu""'B\X""'B = •X ,B

A,B

3. C Equivalence of semantics 77

Characteristics of appearance

If a pattern consists exclusively of positive structures, it follows directly from
the definition that it is consistent.

If a pattern contains a complemented structure which contains exclusively
patterns of a certain specific length, it can be shown that this pattern is
consistent:

1) d is a candidate for -,X , Y => 3 d1 d2 I d1 E Xu\ X 11 d2 E Y
d~d~=d1d2=d ___, - -

a) ld~ I f. ldd •P«~ngth d~ rf_ X =>
no reason for d~ d; E X~ Y

b) ld~l = ldd => d~ = d1 => d~ rf_ X=>
no reason for d; d; E X~ Y

2} dis an explicit nofit for .,x, Y => 3 d,dz I d, EX II dz E Y =>
d1 rf_ Xu\ X=> d1d2 rf_ Xu\X~Y - -

78 Chapter 3 Extending regular expressions

Appendix 3.D
Alternative formalisms

In this appendix some alternatives for defining complementation are discussed.
A drawback of the semantics of Table 3.VI is that double negation may not
unconditionally be annihilated. The reason for this is that complementation
on the inner level loses track of the succeeding structure of the outer level.
Therefore, the inner complementation cannot fully compensate for the explicit
nofits of the outer complementation. For instance, consider pattern (D-1):

--,--, { a } , t
o,u

(D-1)

The inner complementation, •{0 au}, does not see the succeeding structure t.
' Therefore, the string 'at' will not be excluded from •{0 au}· Then, 'atrvt ... '

' is an explicit nofit of the outer complementation, and thus not an element of
the set of strings denoted by (D-1).

A solution to this could be to redefine complementation so that the inner
complementation can also see the succeeding structure of the outer comple­
mentation. This can be done by defining complementation as follows:

·A , B = Au"' B \ A , B (D-2)

Compared with the proposed definition (3.16), the two only differ in the set
which is subtracted from the generating set Au rvB. It is as if the explicit
nofits have been redefined. With this definition ofcomplementation one can
prove that a double complementation may always be annihilated:

= A,BnAui"VB = A,B (D-3)
-- -

However, this interpretation of complementation can lead to unexpected
results. Consider the pattern •A , B, where

A = { Xy } X = --, { a } Y = --, { e } and B = t , @
o,u a,t

(D-4)

3.D Alternative formalisms 79

This leads to pattern (D-5):

Applying (D-2) to interpret this pattern, (D-5) will include for instance the
strings 'att ... '. However, if we examine the candidates of , B, we find that
there are none; the universe of the structure (Au) is equal to the meaning
of the structure (A), the difference (Au\ A) being empty. It seems awkward
that the new complementation includes strings which are not candidates in
the first place.

The reason for this is that the simplification of (3.15) into (3.16) is not
valid if explicit nofits are defined differently. In other words, the generating
set of (3.16) as compared with the generating set of (3.15) includes strings
which are not excluded by A , B.

A logical way to overcome this objection is to redefine complementation
as follows:

(D-6)

Here, we start by selecting the candidates, rather than the strings which
satisfy the length condition as required by the universe, so the objection to
the previous attempt is automatically removed.

Unfortunately, (D-6) does not satisfy the double complementation require­
ment. This can be seen as follows:

••A,B

=

=

(((•A) u \ •A) ""B] \ -,A , B

[Au\(Au\A)""B] \ [(Au\A)"'B\A,B]

A""B\ [CAu\A)"-'B\A,B] (D-7)

80 Chapter 3 Extending regular expressions

attu* E ..,..,A B
} => attu* fl. A , B

Thus, when complementation is defined as in (D-6), double complementation
may not always be annihilated. It must be noted, however, that in the semi­
compositional formalism, where explicit nofits are defined as A.-vB, this effect
is more frequent than for the last definition. In the semi-compositional case
this occurs for all inconsistent patterns, i.e., when A, B =I= A,.,_, B. When
definition (D-6) is applied this only occurs when Au = A or A -0. These
last two cases will probably never occur in practical situations.

As is argued in the main section of the chapter, (D-6) is the most consis­
tent choice in the philosophy of excluding explicit nofits. A further discussion
on this matter is included in section 3.8. For this appendix it suffices to con­
clude the two attempts illustrate the dilemma: either unexpected results are
yielded for certain patterns, or the double complementation may not always
be annihilated.

Other attempts also do not seem very promising, either. In the philosophy
of excluding explicit nofits no other options seem available. Thus either one
must try and find a solution in a totally different direction or accept that
the property of being allowed to annihilate double complementation is lost.
Since double complementation will probably not occur very often in practi­
cal situations (the simple positive statement is more transparent), and other
attempts will probably violate the philosophy of excluding explicit nofits, it
was decided to accept the loss of this property.

Chapter 4

Some aspects of the implementation of
ToorjP

Abstract

In this chapter those aspects of the implementation of TooJjP are
described which concern the process of matching patterns to the
input, where input should be understood in the general sense of
synchronized buffers.

For this purpose first the internal representation of patterns is dis­
cussed. The user-specified patterns are transformed into a dynamic
data structure which is accessible for the matching routine. The dy­
namic structure codes the structure of the patterns, but some simple
adjustments have been made also, which facilitate pattern matching
during run-time.

Next, the algorithms which perform the pattern matching are
presented. First the situation of a single input buffer is considered.
In view of this input situation most of the functions for matching a
particular structure in a pattern are given. Special attention is paid
to the function for matching the complementation operator, since its
definition gives rise to some additional computational complexity.

Then the more general situation of synchronized buffers is consid­
ered. The algorithm for matching primitives is somewhat altered in
this situation. Since the synchronization mechanism is important for
this routine, two possible synchronization mechanisms are discussed
and compared. The more general one is chosen to be implemented
and the buffer switching algorithm is given.

On the whole, with respect to the processing of patterns, TooJjP
can be viewed as a compiler /interpreter. The user-defined patterns
are compiled from high-level source code to an internal representa­
tion. The internal representation is then interpreted by the functions
for pattern matching.

82 Chapter 4 Some aspects of the implementation of Tooi)P

4.1 Introduction

T HE previous two chapters served to give a more or less complete func­
tional specification of Toor}P. In chapter 2 the overall architecture is

discussed, together with the mechanisms available to define an arbitrary con­
version scheme. In chapter 3 the kernel of the linguistic rule, the pattern, is
discussed, and its meaning is formalized in Table 3.VII. Together, the two
chapters fully describe Toor}P's behaviour.

However, not only has Toor}P's behaviour been defined, Toor}P has also
been implemented and has been operational in evolving versions since 1986.
A chapter on the implementation may therefore not be omitted from its de­
scription. This chapter deals with those implementation aspects. However,
no attempt has been made to cover all aspects of the implementation com­
pletely, since that would be a rather technical and tedious matter. Only the
more important parts are dealt with.

To be precise: this chapter deals with those aspects of the implementation
which have to do with matching a pattern to the input. Here, 'input' should be
understood in a general sense, it is not necessarily the input given by the user.
It can also be an intermediate result of a module, or the synchronized results
of several modules. The function which matches patterns to the input is the
kernel of the system: a linguistic rule is evaluated by examining the patterns
of the focus, left and right contexts successively; the result of a module is
determined by repetitive application of rules; the overall conversion, in turn,
is determined by successive execution of the modules.

The implementation of this structured repetition will not be described.
The exact nature of this structure has been described in detail in chapter 2 and
its implementation is rather straightforward; each function (such as evaluating
a rule) is embedded in the function that directly needs it (such as executing
the module). The algorithm closely resembles the functional specification
given in Appendix 2.A. Since it does not seem very useful to repeat this in
detail once again, that part of the implementation is not included.

As to pattern matching, Toor}P contains functions which are similar to
those found in compilers. The patterns, which are specified in a certain user­
friendly notation, often called source code, are parsed and represented inter­
nally, before actual pattern matching takes place. However, some functions
are not implemented according to standard compiler techniques, such as given
by Abo, Sethi & Ullman (1986). The functionality of the system is, of course,
of primary interest. Moreover, Toor}P features extensions to the standard
theory, the extended regular expressions, in respect of which it is not obvious
how automata can be constructed to evaluate them. Throughout the chapter,

4.2 The internal representation of patterns 83

however, the relation to the standard theory and techniques will be indicated
where possible.

Thus, the main topic of this chapter is how patterns are matched against
input (in the general sense). For this purpose it is first discussed how the
patterns specified by the user in the linguistic source files are represented
internally (section 4.2). Then, the strategy of matching these (internally
represented) patterns to the input is formulated explicitly in algorithmic-like
structures (section 4.3). The matching process is initially derived for the
special case of a single input buffer (for instance an intermediate module
result). Derivational history cannot yet be accessed. The general case of
synchronized input buffers, which provide this information, is the topic of
section 4.4. A general discussion on the characteristics of ToorjP-as far as
the implementation is concerned-is included in section 4.5. Finally, the most
important conclusions of this chapter are summarized in the last section.

4.2 The internal representation of patterns

In almost all computer applications there is a conversion phase of the instruc­
tions a user has specified in source code to a computer internal code (object
code). For instance, programs written in Pascal should be compiled first be­
fore they can be executed. In ToorjP there also exists a high-level source code,
the linguistic rules. These are coded in a format which adheres as closely as
possible to the linguist's wishes. Just like source code in other applications,
the linguistic rules are also converted to an internal format. This contains the
same information but is more efficiently processed by the computer.

Fig. 4.1 depicts this process. The high-level linguistic rules are compiled
into an internal representation, which is input to the pattern matcher. In this
case the internal representation is a dynamic data structure rather than a
sequence of machine instructions. The data structure reflects the organization
of the linguistic input in a way which is accessible more quickly for a computer
program.

In this section it is discussed what the internal representation of patterns
looks like. For this purpose first an informal strategy for matching patterns
is formulated. With the informal strategy in mind we will then consider the
internal representation of patterns. The construction of the compiler which
translates the source code into this representation is not discussed, as it closely
resembles the parsing phase of a compiler (see for instance Aho et al. (1986)).

84

linguistic
input

Chapter 4 Some aspects of the implementation of Tool)P

-B internal - . representatiOn

input

pattern
matcher

output

Figure 4.1: More detailed inside view of ToorjP. The linguistic
input is compiled into an internal representation, which in turn
is input to the pattern matcher.

4.2.1 An informal matching strategy

The semantics, which is derived in chapter 3 and given in Table 3.VII, provides
a meaning to a pattern. To be precise, it defines the set of strings which are
denoted by the pattern. It is the kind of thing a linguist is interested in,
since when he specifies a pattern, he must be able to determine which strings
match that pattern. What we shall be considering throughout this chapter
is an algorithm which determines whether or not an arbitrary input string
matches an arbitrary pattern, that is, whether or not the input is part of the
set denoted by the pattern.

In general, the set denoted by a pattern is not finite; the pattern describes a
set of strings which 'start' in a certain manner; in other words, the head of the
string must satisfy certain requirements. It is therefore not a very promising
approach to try and determine the full set of strings and then determine
whether the input is part of that set. Instead, it seems more appropriate to
start with the actual input string and try to establish whether or not it is one
of the possible heads.

From the syntax, Table 3.VIII, it can be seen that a non-empty pattern is a
concatenation of structures. In the semantics the concatenation discriminates
between the different possibilities for the leftmost structure. Five possible
structures can be encountered, if we exclude the trivial case of empty patterns.
They are discussed in relation to the matching routine.

If a primitive is used, one of the segments it denotes should be found
at the appropriate place in the input and it should be followed by a string
denoted by the succeeding pattern (this is the definition of string concatena­
tion). Therefore, if such a segment is not found, we can stop the matching
procedure, since the current input string can never lead to the desired head

4.2 The internal representation of patterns 85

of the strings denoted by the pattern. Only when the segment matches the
primitive do we have to continue matching.

If an alternative structure is specified, the individual arguments of the
structure should be concatenated to the succeeding pattern before the mean­
ing of the thus formed patterns is determined, as explained above. For the
matching routine this means that we can test for these patterns one by one,
terminating with a positive result if one of the patterns is found, since they
are ordered in an 'or' relation.

The simultaneous structure is similar to the alternative structure, save for
the fact that the current input string should be present in all concatenated
sub-patterns. Therefore, the same strategy as above can be followed, only in
this case the matching fails if the string does not match a sub-patterns.

The strategy which is to be applied inside the complemented structure
differs from the strategy described above. So far, when a primitive does not
match, we can conclude that the path of concatenated primitives which we
are considering does not match. We can start matching the next path in the
case of alternatives, or conclude that the whole pattern does not match in
the case of simultaneity. Inside complementation, however, a mismatch of a
primitive will lead to the conclusion that that part of the complementation
matches, which may~but does not necessarily have to-lead to a positive
result value of the pattern as a whole. On the other hand, if a primitive
matches inside a complemented structure, this may but does not necessarily
have to lead to a negative result value of the pattern. Therefore, in both cases
further processing is necessary as no direct conclusion can be drawn, and so
the matching may not terminate in either case.

The optional structure is actually a shorthand notation for an alterna­
tive structure. It saves coding time for the users and improves legibility of
the rules. Since the optional structure is only a notational shorthand for a
certain alternative structure, the optional structure (for normal, positive pat­
terns) can internally be represented as an alternative structure. This includes
patterns denoting infinite repetition. Inside complemented patterns, how­
ever, this is not appropriate. As explained above, the matching routine must
fully consider all cases inside complementation, which in the case of infinity
would lead to non-termination. Therefore, a different internal representation
is needed in the case where optionality is used inside complementation.

Thus, in positive structures, we may terminate the matching of the cur­
rent path when a primitive does not match the input. Inside complemented
structures this is not the case. Amongst other things a separate internal rep­
resentation is then needed for optionality. With these characteristics in mind
we can now take a closer look at the internal representation of patterns.

86 Chapter 4 Some aspects of tbe implementation of ToorjP

4.2.2 The representation

The internal representation of patterns is a modified syntax tree. A syntax
tree is a hierarchical structure which accounts for the relationship of the el­
ements in an expression (in this case a pattern). The modification involves
some simple adjustments which can take place at compile-time, so as to speed
up the run-time performance.

Two basic data structure concepts are used to represent patterns inter­
nally. These are the record type, in which one can join elements of arbitrary
types into a compound type, and the linked list, in which one can store a list
(an arbitrary number) of elements (for instance a record) and access them se­
quentially. As illustrated below, the record type is portrayed by a rectangular
box, possibly sub-divided, while the linked list is represented by an open cir­
cle with an arrow (the link) pointing at an element, a rectangular box, which
contains a link to the next element. The end of the list is represented by a
filled circle.

As follows from the syntax, a pattern is a concatenation of structures.
The number of concatenations is free, and varies significantly in practical
situations. Therefore, a linked list of structures is an elegant way to represent
patterns, rather than a fixed array. Each link represents a concatenation, each
element of the list represents a structure:

Note that the filled circle, which indicates the end of the list, can be inter­
preted as the ®-pattern, to which all strings match. So as soon as this point
is reached, one may conclude that the pattern which is searched for is present.

A structure can be any of the given five types. The kind of information a
type represents differs per type. As only one type at a time can be used at
a certain place, the different types of linguistic data (graphemes, phonemes,
features, etc.) can be stored at the same place, provided an additional indi­
cation of which type is used. In Pascal terms this is called a variant record.
The record which represents a structure then contains three fields: a type
indication, the linguistic data, and a link field:

The internal representation will now be discussed for all possible struc­
tures. This comprises the four types of primitives: graphemes, phonemes,

4.2 The internal representation of patterns 87

grapheme features and phoneme features, and the four 'real' structures: al­
ternation, simultaneity, optionality and complementation.

Graphemes

Graphemes refer to orthography, and can be any printable character. For
instance, the pattern o , u, t (throughout the chapter all example patterns
are printed in bold face) is internally represented as follows:

8----4 gra 1 o IGH gra 1 u IGH gra 1 t I• I

Phonemes

Phonemes refer to pronunciation. They are defined by the user and consist
of a limited set. They are represented in a way similar to graphemes. For
instance, the pattern SJ, 00 is represented as follows:

Grapheme features

Grapheme features are user-defined, and are used to describe common proper­
ties of graphemes. A feature specification can consist of any positive (nonzero)
mnnber of features, each of which has a value ('+'or '-') and a name ('cons',
'son', etc.). For example, the feature specification <+cons, -son> denotes all
consonantal graphemes which are not sonorant. Since the number of features
used in a specification varies per rule, a linked list of feature elements is ap­
propriate to represent them. The representation, for instance for the above
specification, is as follows:

Used as part of a pattern, the linked list representing the feature specifi­
cation forms the data part of the structure, as illustrated below:

~ succeeding pattern

I + I cons IGH -I son I• I

88 Chapter 4 Some aspects of the implementation of Toorj.P

Phoneme features

Phoneme features describe common properties of phonemes, analogous to
grapheme features. These, too, follow from the definition tables. Their rep­
resentation is equal to grapheme features, save for the type indication. So
for instance, the pattern L, <+CONS>, which refers to a sequence of the
phoneme /L/ followed by a consonantal phoneme, is represented as follows:

Alternative structures

An alternative structure can have any number of arguments, each of which
can be a non-empty pattern. In accordance with the earlier solutions, this
can be represented elegantly by a linked list. In this case, the elements of the
linked list are patterns, i.e., linked lists of structures. Thus, here we see the
same recursion in the internal representation as is present in the syntax.

The true syntax tree of the pattern {0 au} , t (presented in the way patterns
' are represented) is as follows:

G--1.___at___._t lf--+--'IG____.+--1 ---------+-~·1 gra I t I I
lfiGH gra I a 1•1
leiGH gra I o IGH gra I u I• I

However, the semantics prescribe that the succeeding pattern should be
concatenated to each alternative to form new patterns, whose meaning then
should be determined. This transformation can be performed explicitly in
the compiling phase by linking the end of each alternative to the succeeding
structure. Thus, the above representation is adjusted to the following:

4.2 The internal representation of patterns 89

i leiGH gra I o IGH gra I u IGf---J
The original link, from the element marked as 'alt' to the succeeding structure
is now spurious, but on the other hand it does no harm, so it may as well
remain present. To achieve this representation, the compiler routine which
constructs the internal representation must perform some additional compu­
tations, of course. Before parsing the arguments of the alternative structure,
first the continuation entry for the succeeding structure should be computed,
so it can be patched at the end of each argument. Per rule, this only needs
to be done once. Moreover, constructing the internal representation is done
off-line, as a preparation phase for the pattern matcher, so this does not affect
the run-time performance.

Simultaneous structures

The simultaneous structure is similar to the alternative structure, be it that
the interpretation differs. As this is the task of the matching routine, the
internal representation for simultaneity only differs in the type indication
from the alternative structure:

Optional structures

As previously explained in chapter 3, an optional structure is generally char­
acterized by (A)a-b, where the parentheses denote the optional structure, A
denotes an arbitrary pattern, and a and b denote the minimum and maximum
number of times the pattern is required. Here, a ~ b, and a and b may be
any non-negative number. One may, however, use a notational shorthand and
omit either b or both a and b. In the first case, the pattern expresses infinite

90 Chapter 4 Some aspects of the implementation of ToorjP

repetition, that is, it should be present at least a times, but may be present
any higher number of times. In the second case, the structure is interpreted
in the true optional sense: it may be present or not, so it is as if a = 0 and
b = 1.

As mentioned, in normal positive structures it can be represented by an
alternative structure. This saves the need to code a separate routine for
positive optional structures. If b is limited, the pattern (A)a-b is represented
as follows:

·-·tUn~ { ··.

Typically, a and b are small, so explicitly representing the structure as
a sequence of similar elements does not burden the computer memory too
heavily. If b is omitted, and thus codes infinite repetition, the above scheme
cannot be used, since one cannot go on infinitely creating new alternatives.
However, the infinite repetition can be coded by a self-reference pointing back,
so that for the matching routine it seems as if the pattern continues endlessly:

If the minimum number of times the pattern must be present is zero (a= 0),
this undergoes a slight change:

4.2 The internal representation of patterns 91

succeeding pattern

These representations effectively code infinity, and therefore a terminating
mechanism should be provided for when the patterns are matched outside the
range of the input. On the other hand, in practical situations this mechanism
will seldom be used; either at some point the succeeding pattern matches
(leading to a positive result and terminating the matching process) or the
optional structure A does not match (leading to a negative result and also
terminating the matching process).

However, inside complemented structures such a safety mechanism cannot
be used. As argued in the previous section, inside complemented structures all
alternatives must be considered. If no further provisions are taken the match­
ing routine will always encounter a new alternative which it will investigate, as
it might add new information. These provisions could be taken, of course, but
that would burden the matching routine with extra processing, which then
would also be executed when finite structures are used. This would deterio­
rate run-time performance, and therefore a separate internal representation
is used in the circumstances that optionality is used inside complementation:

Here, the type field indicates that an optional structure is used, which
will cause the matching routine to select the part with the necessary extra
processing. The data field contains a pointer to a data item which provides
information on the minimum and maximum number of times the optional
structure should and may be present. A negative number for the maximum
codes infinity. This way of explicitly coding infinity provides the matching
routine with additional information, which enables it to determine when the
matching process can be terminated.

92 Chapter 4 Some aspects of the implementation of ToorjP

Complemented structures

The argument of a complemented structure is an arbitrary non-empty pattern.
This is the first structure which follows the complementation sign. If one
wants to complement a sequence of structures, these should be enclosed in
square brackets, •[...], thus indicating the range of the complementation
(the normal parentheses are already used for optional structures). Confusion
with the simultaneity does not occur, since in this case the structure (which
is being complemented) only consists of one argument.

The non-empty pattern which is complemented is represented in the same
way as it would be, and forms the data field of the complemented structure.
For instance, the pattern •[o, u] , t is represented as follows:

gra o IGH gra u I• I

4.2.3 Summary

With this, all structures and their internal representation have been discussed.
It was stated that the internal representation was a modified form of the
syntax tree. The goal of the internal representation is to represent the data
in such a manner that the matching routine can process them reasonably
well and reasonably fast. For that purpose, for instance, the arguments of an
alternative structure are linked to the succeeding structure, and the optional
structure has been translated to an alternative structure in positive structures.
On the other hand, computations which are difficult and laborious to do
off-line, such as determining which strings possibly match a complemented
structure, are postponed to the run-time part of pattern matching, where
they are computationally less complex since only a particular input string has
to be matched to the pattern.

The internal representation of patterns is thus a hybrid kind of repre­
sentation somewhere between a syntax tree and a non-deterministic finite
automaton with E-transitions (NFA) (see for instance Hopcroft & Ullman,
1979). The representation for complementation and optionality typically con­
tains structural information of a syntax tree, whereas an alternative structure
and concatenations can be viewed as an NFA 1 .

1The open circles with arrows can be considered as states, the filled circle is the accepting
state. The data part of the record, the primitives, are labelled transitions, and the list of
structures in the alternative representation are E-transitions.

4.3 Tbc algorithm for pattern matching 93

From the viewpoint of compiler design, this is probably not the most ele­
gant type of representation. The choice for this representation rests mainly on
practical grounds. Translating the optional structure to an alternative saves
the need to code a separate routine for matching positive optional structures.
Linking the succeeding structure to the arguments of an alternative or simul­
taneous structure saves administrative effort during run-time. On the other
hand, computing during run-time whether or not a string matches a comple­
mented structure is probably less complex than transforming the syntax tree
of the complementation into some kind of finite automaton. These consid­
erations have resulted in the internal representation to represent patterns as
described above.

4.3 The algorithm for pattern matching

We can now consider the matching strategy in more detail. As depicted in
Fig. 4.1, the internal representation is one input to the pattern matcher, the
user-provided input the other. The pattern matcher is an interpreter which
is driven by the organization of the linguistic rules. At the basis patterns are
interpreted by the pattern matcher and matched to the input. This is the
kernel of the system. In this section the algorithm for matching patterns will
be given.

The general task of the matching routine is to determine whether or not
a certain pattern-internally represented by the linked list of structures-is
present in the input buffers or uot. For the present, it is assumed that there is
only one input buffer, containing either graphemes or phonemes. In the next
section the situation of synchronized buffers is dealt with.

The task of the matching routine is the following. Suppose the rule (4.1} is
specified to deal with the pronunciation of words like 'container' and 'trailer'.

(4.1}

Suppose the word 'container' is typed, and suppose the focus pattern has been
tested and found. Then the internal status will be as follows:

input: c o n t alilnlelrl
T

output: K 0 N T
(4.2)

94 Chapter 4 Some aspects of the implementation of TooJ)P

The arrow points at the position where the matching of the right
context will commence, directly to the right of the focus pattern.
The output buffer has partly been filled, as a result of rules
included in the same module, which have already been applied.
From the fact that the output buffer is filled to the left of the
focus it can be concluded that the module scans its input from
left to right.

The task of the matching routine is to match the right context of (4.1) to the
internal status of (4.2), and return a boolean-valued result: true (it matches)
or false (it does not match).

Thus, the matching routine can be seen as a function which returns a
boolean value and is fed by two parameters: the pattern which to match
against the buffer contents, and the position at which to start matching the
pattern. The last parameter can actually be subdivided into two parts: the
buffer in which to match (momentarily a constant), and the position in the
buffer at which to start matching. The combination of buffer and position is
called internal position.

function Match(patt :pattern;
inLpos : internaL position) : boolean;

Here, pattern is the data structure of the linked list of struc­
tures, and internaLposition a record which contains buffer and
position information. Customarily, algorithms will be presented
in the above manner; functions and procedures (both starting
with a capital letter), variables and types are printed in italics
and keywords are printed in bold face.

The functionality of the matching routine can be formalized as follows:
Match(patt, inLpos) is true iff (if and only if) the pattern patt matches a
string starting at position Pos(int_pos) in the buffer Buf(int_pos). Pos and
Buf respectively select the position and buffer of inLpos. Inside this func­
tion, we may expect the same differentiation between structures as is present
in the syntax and the semantics. In this respect, however, it is relevant to
separate the types into two groups: primitives versus 'real' structures. The
primitives are characterized by the fact that they refer to exactly one segment
in a buffer, whereas the structures do not refer directly to the input buffer
but indicate how to combine sub-patterns.

Structures can be concatenated in any order. However, when a structure
is used, the semantics prescribes that the full succeeding pattern (the pattern
succeeding the structure concerned) must be included in the determination of
the meaning of the structure. Therefore, if the function Match encounters such

4.3 The algorithm for pattern matching 95

a structure, control will be given to a routine which handles these structures,
including their succeeding patterns.

On the other hand, if a primitive is encountered, the matching value of
that specific primitive can be determined. If a negative value results, the
matching process can be terminated (until a complementation sign is encoun­
tered, we are matching a positive structure). If a positive value results, it
should continue. Then, both the starting position at which to match and the
pattern with which to match must be updated.

Such a recipe can be formulated compactly and explicitly in an algorithm.
For this purpose I use a pseudo-Pascal code; Pascal since the program is
implemented in that language, and a pseudo variant to be able to leave out
irrelevant detail. Thus, the function Match can be formalized as follows:

function Match(patt :pattern;
inLpos : internal_ position) : boolean;

begin
r-esult := true;

while result and Type(patt) =primitive
do

od;

result:= Match_primitive(patt, inLpos);
inLpos := Update(inLpos);
patt := Select_next(patt)

if result and Type(patt) = structure
then result := Match_structure(patt, inLpos) fi;

Match:= result
end;

Type is a function that returns the type field of the current pat­
tern. Update updates the internal position. In the current case
of one input buffer this consists of shifting the arrow in (4.2) one
position to the right or the left, depending on the matching di­
rection. In this case, this is to the right since the right context is
being matched, but for left contexts, for instance, this would be
to the left. SelecLnext updates the pattern, i.e., selects the next
element in the linked list of structures. In true Pascal code this
is equivalent to the statement: patt := pattj. next, but to abstract
from the implementation this is presented a.S a function.

Note that as soon as result turns false the matching process terminates with
negative result. On the other hand, if the end of the linked list is reached and
result is still true, the process terminates with positive result; both tests,

96 Chapter 4 Some aspects of the implementation of ToorjP

Type(patt) =primitive and Type(patt) = structure, fail (it is assumed that
Type recognizes the empty list and returns a unique code for that case).

The division between the primitives and structures manifests itself in a
call to two different functions, Match_primitive and Match_structure. These
form the topics of the next sections, 4.3.1 and 4.3.2. Amongst other things,
Match_structure deals with complementation. As will be explained, matching
inside complementation differs from matching outside, which is the normal
mode. In section 4.3.3 the matching strategy inside complementation is dis­
cussed. A brief discussion in section 4.3.4 concludes this section on how
patterns are matched against a single input buffer.

4.3.1 Matching primitives

Match_primitive is a boolean function that matches a single primitive
to a single segment in a certain buffer. Its functionality is given by:
Match_primitive(prim, inLpos) returns true iff the primitive pattern prim
matches the element at the internal position inLpos.

Four primitive types can be used: grapheme, phoneme, grapheme features
and phoneme features. When a grapheme or phoneme is specified in the rules,
that specific grapheme or phoneme must be found in the input buffer. The
matching value can be determined with a single statement.

result := Data(patt) = Segment(inLpos);

Data returns the contents of the data field, Segment selects the
segment at the internal position.

When features are specified in the rules, the segment in the input buffer must
satisfy all feature specifications. One by one, these specifications are verified,
a process that terminates if one specification fails, or when all specifications
have been dealt with:

result := true;
feat := Data(patt);
segm := Segment(inLpos);
while result and Present(!eat)
do

result:= (segm in Feature_set(feat)) = Value (feat);
feat := SelecLnext(feat)

od;

Present is a boolean function that returns true if there are still
elements in the linked list to be checked. In this place it is

4.3 The algorithm for pattern matching

equivalent to the Pascal statement feat =/= nil. Feature_set is a
function that returns the set of all segments which are described
by the given feature. Value is a boolean function which returns
true if the specified feature value in the rule is '+', false if this
is'-'.

97

The test whether the input-buffer segment is in correspondence with the fea­
ture specification consists of two parts. The first test determines whether
the current segment is an element of the set denoted by the feature:
segm in Feature_set(feat). The second test checks if that was intended: "ele­
ment of feature-set" = Value(feat). Then, of course, after testing one feature
specification, the next one must be selected, which is performed by SelecLnext.
If all features have been dealt with, this will cause the test Present to fail.
Thus, the result will only be positive if the input segment satisfies all the
feature specifications. As soon as one of the requirements is not met, the
matching process terminates.

The one-input buffer situation which is assumed here does not yet dis­
criminate between graphemes and phonemes. In section 4.4, which deals with
the synchronized buffers situation, the distinction will lead to a slightly dif­
ferent algorithm, for which reason the full algorithm for Match_primitive will
be given there.

4,3.2 Matching structures

As argued in chapter 3, when any of the structures is encountered, the pattern
succeeding that structure is necessary to determine the meaning of the struc­
ture. For this reason control is transferred to the function Match_structure
when a structure is encountered. The task of this function is to match the
remainder of the input to the remainder of the pattern. The first element of
this pattern is a structure.

Basically, the matching strategy differs for each structure. Therefore, the
only thing the function needs to do is to differentiate between the possible
types and transfer control to a function which is specialized to deal with the
encountered structure. Since optional structures are coded as alternatives
in positive (non-complemented) structures these cannot be encountered, only
the alternative, simultaneous and complementation structures must be dealt
with:

98 Chapter 4 Some aspects of the implementation of ToorjP

function Match_structure(patt :pattern;
inLpos : internaLposition) : boolean;

begin
case Type(patt) of
alternative :result := Match_alt(patt, inLpos);
simultaneous :result := Match_sim(patt, inLpos);
complementation: result := Match_cmp(patt, inLpos)
end;
Match_structure := result

end;

For each of the three possible types a different function is called. These will
be discussed in this order.

Alternative structures

The alternative structure is represented by a list of patterns. The head of each
such pattern consists of one of the arguments of the alternative structure, the
tail of each argument consists of the succeeding pattern:

--tl-------------.- succeeding pattern

arg. 1

arg. 2

arg. n

Each pattern in the list is exactly like the patterns we encountered at the
highest level: they are a linked list of structures. This means that we can use
the function we already 'have', Match, to determine the matching values of
the patterns in the list. Actually, this recursive call follows directly from the
semantics, which prescribes how to rearrange the pattern and apply the same
function, "the meaning of" to the new patterns.

With this, the strategy for matching an alternative structure becomes
simple: Match the patterns of the list one by one until one of them matches,
and terminate matching with negative result if all patterns fail. Note that

4.3 The algorithm for pattern matching 99

each time a new pattern is tested, it is matched starting at the same internal
position as the first time.

function Match_alt(patt :pattern;
int _pos : internal_position) : boolean;

begin
result false;
alternative := Data(patt);
while not result and Present(alternative)
do

od;

result:= Match(Pattern(alternative), int_pos);
alternative := SelecLnext(alternative)

Match_alt := result
end;

Pattern selects the following pattern from the list of alternatives.

The number of patterns which are represented in the linked list is finite. Ei­
ther it directly follows from the number of arguments the user has specified,
or the alternative structure consists of two elements when it is derived from
an optional structure. The routine specified above will therefore always ter­
minate, provided that the internally used routines terminate.

Simultaneous structures

The simultaneous structure can be treated analogously to the alternative
structure, with appropriate adjustment of combining the results. Apart from
the type indication, the internal representation is the same. Therefore, the
simultaneous structure can be treated with the following algorithm:

function Match_sim(patt :pattern;
inLpos : internaLposition) : boolean;

begin
result := true;
simultan := Data(patt);
while result and Present(simultan)
do

od;

result := Match(Pattern(simultan), inLpos);
simultan := SelecLnext(simultan)

Match_sim := result
end;

100 Chapter 4 Some aspects of the implementation of TooJ)P

This routine only terminates with positive result if all of the patterns are
found. If one of them fails, the result is negative.

Complemented structures

The complementation structure is represented as a pattern embedded within
complementation marks:

~ 'ucceeding pattern B

complemented pattern A

To determine whether a string belongs to the pattern, the semantics pre­
scribes that it should be an element of A u""'B, but not at the same time be an
element of A""'B, where A is the complemented pattern and B the succeed­
ing pattern:-Ifthis is implemented straightforwardly, the membership of the
input must be established for both sets. There is no simple shortcut, since
in chapter 3 it has been shown that in general A u,....,B \ A"'B =f= (Au\ A)rvB
(the lefthand side is the semi-compositional definition, the righthand side the
compositional one). So this would mean more or less a redoubling of the
amount of work, as compared to positive structures. Therefore, a more effi­
cient implementation has been searched for.

The definition of complementation is derived from a formulation which
reflects its origin (see chapter 3, page 55):

(4.3)

Thus, complementation can be interpreted as follows. -,A , B denotes those
strings which are candidates, but which at the same time are not explicit
nofits. Candidates are defined as the strings that can be fitted to the pattern
such that the segments fitted to the complemented part (A) do not match and
those to the succeeding pattern (B) do (= (Au\ A)"-' B). Explicit nofits are
defined as the strings that can be fitted such that theirsegments both match
the complemented part and the succeeding pattern (=ArvB). The string 'att'
for instance, is both a candidate and an explicit nofitforpattern (4.4) (and
should, for that reason, not be included by the set of strings denoted by that
pattern).

(4.4)

4.3 The algorithm for pattern matching 101

In patterns we can distinguish paths of concatenated primitives, or briefly:
paths. For instance, pattern (4.4), the internal representation of which is
depicted below, contains four paths: •a, t, •a, r, •[o, u], t and -.[o, uJ, r.

~cmp191o1

~
leiGH o IGH u lei

A certain string can be a candidate for a specific path, it can be an ex­
plicit nofit, or it can be neither, but it cannot be both at the same time for
the same path. If a string is both a candidate and an explicit nofit for the
pattern, this is due to different paths. Now we can separate the 'matching
value' of a string for a certain path into two parts: one for the complemented
part, and one for the succeeding pattern. In this way we have a tuple of two
boolean values, and thus four possible combinations: (false-false), (false­
true), (true-false) and (true-true). Here, the value is not yet adjusted
for whether or not being complemented, so (true-true) means the first part
matches the complemented structure and the second part matches the suc­
ceeding pattern.

The definition of complementation, as given in (4.3), can now be inter­
preted as follows: the input string must result in a (false-true) tuple for a
certain path (it must be a candidate), but it may not result in a (true-true)
tuple for any other path (it may not be an explicit nofit).

Therefore, the general strategy could be: compute and consider all tuples.
If there is a (true-true) tuple, the pattern as a whole does not fit, as this
is an explicit nofit. If there is no (true-true) tuple, then look for a (false­
true) tuple. If such a tuple is found a positive result must be returned, as a
candidate is found which is not an explicit nofit. If such a (false-true) tuple
is not found, the routine must return a negative result; the string is neither
an explicit nofit nor a candidate.

In this scheme, however, the matching value of the succeeding pattern must
be determined for each path in the complemented pattern. If the position at
which to start matching is different for each path, this has to be done anyhow.
For instance, in pattern (4.4), {~} (the succeeding structure) must be matched
to the second character (relative to the starting position of the whole pattern)

102 Chapter 4 Some aspects of the implementation of Toor.jP

for the first path, •a, and to the third character for the second path, •[o, u].

On the other hand, if certain paths of a complemented pattern are of equal
length, such as in pattern •{!}, t the starting position for the succeeding
pattern is the same, and therefore the matching values of those cases will all
be similar. So in these cases some increase in efficiency can be gained.

This can be done by combining the results of those complemented paths
which have equal lengths. For paths within an alternative structure the com­
bining operator is the logical or: if one of them matches, this leads to an
explicit nofit if the succeeding pattern also matches. Analogously, for paths
within simultaneity this is the logical and.

In fact, it is not the length of the complemented pattern that is essential,
but the position where the matching of the succeeding pattern should com­
mence. Therefore, the results of all paths which lead to the same internal
position are combined. Thus, we obtain a list of matching values for the com­
plemented part, of which each element is associated with a different internal
position. Now, for each list element the matching value of the succeeding
structure is determined, and the same strategy for combining result-tuples as
before can be applied to determine the matching value for the pattern as a
whole.

Yet, there is still some efficiency to be gained. If the list of matching values
for the complemented part is ordered in such a way that first for all true­
values the succeeding pattern is matched, and next for all false-values, we
can terminate matching the succeeding pattern as soon as a positive result is
returned. If the accompanying complemented path is true the string appears
to be an explicit nofit and thus a negative result can be returned directly.
If the accompanying complemented path is false, the string appears to be a
candidate. But since true-values in the result list precede the false values,
explicit nofits can no longer be encountered. Therefore, a positive result
can be returned directly. If the succeeding structure fails to match for all
list elements, again a negative result for the whole pattern must be returned.
Note that only in this case does the succeeding pattern have to be matched for
all list elements. This strategy can be formalized in the following algorithm:

function Match_cmp(patt :pattern;
inLpos : internaLposition) : boolean;

begin
res_list := Exh_match(Data(patt), inLpos);
result false;
succ_patt := SelecLnext(patt);
while not result and Present(res_list)
do

4.3 The algorithm for pattern matching

od;

neg_res := Res_value(res_list);
result:= Match(succ_patt,InLpos(res_list));
res_list := SelecLnext(res_list)

Match_cmp :=result and not neg_res
end;

Res_ value select the matching value of the current element of a
result list, lnLpos selects the internal position from that element.

103

Exh_match determines for each patch in the complemented pattern its match­
ing value and the resulting internal position. It combines the results for paths
with the same resulting internal position, and it orders the results in a list
such that those paths that match are included first, and returns this list. In
the next section, (4.3.3), this function is discussed in more detail. While no
definite decision can be made, i.e., when result = false, which means neither
an explicit nofit nor a candidate has been found, the succeeding pattern is
matched at the internal position of the next element of the result list. Storing
the accompanying result of each result list element in neg_res enables a quick
computation of the final result. This can be done with the single statement:

Match_cmp :=result and not neg_res

If the succeeding pattern matches for a certain path, then the while-loop ter­
minates with result = true. The final result should now become the inverted
value of the accompanying complemented part, which is stored in neg_res; if
neg_res true then an explicit nofit has been found, and thus the final result
is negative, if neg_res = false this indicates a candidate, and thus the final
result is positive. On the other hand, if the succeeding pattern did not match
for any of the paths (no candidates are found), the loop eventually terminates
with result = false, in which case a negative result is returned.

4.3.3 Exhaustive matching

The function Exh_match deserves some additional discussion. It performs the
task inside complemented structures that is performed by Match outside (in
positive structures). Compared to Match, it differs in some aspects. First
of all, it does not return the matching value of a pattern, but it returns a
list of matching values for all paths inside the complementation. Second, for
each matching value it includes information on where to start matching the
succeeding pattern. Third, it only terminates matching at the end of the
complemented part, rather than as soon as result turns false.

Despite these differences, there is quite some similarity in task. We will
find the same differentiation in type of structure as we saw in Match. Also,

104 Chapter 4 Some aspects of the implementation of ToorjP

more or less similar algorithms are encountered. Again, these algorithms will
differ from the previously presented ones in the respects given above. Since
for each path an indication is needed on where to commence matching the
succeeding pattern, we cannot simply terminate matching a path and return
a negative result when a certain primitive appears not to be present. One
solution for this is to continue matching until the end of the complemented
pattern is encountered. This only affects the termination criterion for the
routine. Another solution is to only count the remaining elements of the path,
but this has more consequences for the algorithm; more or less a redoubling
of source code is necessary, since the structures that can be encountered are
the same, only the matching of the primitives differs.

As in practical situations complementation is not used with high frequency,
and, moreover, the patterns being complemented are fairly simple (mostly
consisting of one or two paths of one or two characters), one may not expect a
very spectacular increase of run-time performance when the second solution is
chosen in favour of the first. Therefore, in the implementation I chose the first
solution. For this reason the routine is called Exh_match, as it exhaustively
matches each path to its end.

With this, the important differences of Exh_match with its positive coun­
terpart Match have been discussed, except the fact that optionality must also
be dealt with. This structure has not yet been discussed, as it does not occur
in positive structures. Therefore, how to deal with this structure and where
this is done are discussed in the next section. The algorithms for matching
the other structures (alternation, simultaneity and complementation) inside
a complemented structure are given in Appendix 4.A.

Optional Structures

The only case in which a separate internal representation for optional struc­
tures can occur is when optionality is used inside complementation. The
general appearance of such a pattern is as follows:

X ,..,[y ,(A)min-max,B] ,z (4.5)

Here, A, B, X, Y and Z are arbitrary patterns, all of which may be absent,
except A. A is also called the optional pattern and B is the pattern succeeding
the optional pattern within the complementation. Within the remainder of
this section (4.3.3) B will also be called in short the succeeding pattern, in
contrast to the general convention where it means the pattern succeeding the
complementation (which is Z, here). A and B are of interest for the routine
dealing with optionality, X, Y and Z are dealt with by other routines.

4.3 The algorithm for pattern matching 105

The internal representation of pattern (4.5) is as follows:

succeeding pattern B

optional pattern A

The sub-pattern matches if the optional pattern A is present at least min times
and up to at most max times before the succeeding pattern B. Of course, in
the end the matching result should be inverted, since the structure is present in
a complementation. However, the interpretation of the complemented struc­
ture as a whole is dealt with by the routine dealing with complementation,
Match_cmp. Here, we are concerned with determining the matching values
of the paths inside the complemented structure, that is, determining the first
values of the result-tuples described in the previous section (4.3.2). Therefore,
the task of this routine, which will be called Exh_match_opt, and which deals
with optionality inside complementation, is to determine whether the optional
structure (A) followed by the succeeding pattern (B) is present or not.

A straightforward strategy to determine this is as follows. First match the
optional pattern A min times and then match the succeeding pattern B. This
gives the first matching result to be put out in the result list. Just before B
is matched, the current internal position is saved, so that the next option,
Amin+l, can be checked without having to match the first min occurrences
once again. Then, after matching A once, B is matched again and the result
is added to the result list. Each time a next occurrence of the optional pattern
has been matched the internal position is saved. This continues until the op­
tional structure has been matched up to max times. The following algorithm
does the job:

for nr := 1 to min do "match optional pattern A" od;
save := inLpos;
"match succeeding pattern B";
res_list := result;
for nr := min + 1 to max
do

inLpos :=save;
"match optional pattern A";
save := inLpos;
"match succeeding pattern B";

106 Chapter 4 Some aspects of the implementation of Too[jP

res_list := Unite(res_list, result)
od;
return res_list;

Unite is a function which simplifies two result lists such that
each internal position only occurs once.

As to this algorithm, there are, however, two complicating factors:

• for each matching operation, a list of result values may result, as match­
ing takes place inside complementation. All elements of the list should
be dealt with.

• max may be infinite, which cannot be dealt with by the routine above.

As to the first factor, we may assume that when we encounter the optional
structure, we are investigating a specific path. There can of course be more
paths before an optional structure, but for each path the optional structure
will be investigated individually. So we start matching the optional structure
at a certain internal position, transported to the routine by means of the
variable int_pos.

It is possible that the optional structure contains an alternative structure,
which contains paths of different lengths. The result of matching structure A
may therefore be a list of result values. If, in succession, we must once again
match A or match the succeeding pattern B, we must do this for each list
element. So, generally, on the one hand a list of result values is returned by
the matching process (the result list), and on the other hand a list of states at
which to commence matching is presented to the matching process (the state
list). Only the first time we start matching we know we have to deal with
exactly one state. This can be seen as a state list containing one element.

The result list and the state list are essentially of the same type: each ele­
ment of a list contains information on where to continue or commence match­
ing (by means of the internal position) and the resulting or initial matching
value. The matching value of an arbitrary pattern inside complementation
can then be seen as a function of the pattern and the list of commencing
values, which results in a list of result values:

resulLlist := LisLmatch(pattern, commence_list);

Inside the function LisLmatch the pattern concerned should be matched
for each list element. Each list element contains an internal position and
an initial matching value. The internal position is selected by Int_pos, the
initial matching value by Res_value. The initial matching value is needed
for a correct result; if the first n - 1 occurrences of A do not match, then,

4.3 The algorithm for pattern matching 107

despite the fact that the nth occurrence may be present at that particular
position, the sequence An still does not match. This is taken care of by the
function Adjust. Each matching process produces a result list, and all the
result lists are combined as before, that is, simplified for paths ending at the
same internal position by the function Unite. This is expressed below:

function LisLmatch(patt :pattern;
comm_list: result_list): result_list;

begin
res_list := empty;
while Present(comm_list)
do

od;

inLpos := InLpos(comm_list);
prv_val := Res_ value(comm_list);
tmp_list := Exh_match(patt, inLpos);
tmp_list := Adjust(prv_val, tmp_list);
res_list := Unite(tmp_list, res_list);
comm_list := SelecLnext(comm_list)

LisLmatch := res_list
end;

Now, the routine for matching optional structures, given above in an in­
formal style, can be made more explicit. For non-infinite matching of optional
patterns in complemented structures we can give the following routine:

function Exh_match_opt(patt :pattern;
comm_list: resulLlist): resulLlist;

begin
opLpatt := Data(patt);
succ_patt := SelecLnext(patt);
for nr := 1 to min

do comm_list := LisLmatch(opLpatt, comm_list) od;
res_list := LisLmatch(succ_patt, comm_list);
nr :=min;
while nr =/= max
do

nr := nr + 1;
comm_list := LisLmatch(opLpatt, comm_list);
res_list := Unite (List_ match(succ_patt, comm_list), res_list)

od;
Exh_match_opt := res_list

end;

108 Chapter 4 Some aspects of the implementation of TooJ)P

Saving the internal positions is now done implicitly in the result lists,
which serve as state lists for the next matching process. Note that also the
internal position where matching is first to commence is transferred to the
function by means of a state list. That state list, comm_list, contains, apart
from the internal position, also the initial matching value, the result of (one
of the paths) of pattern Y.

The last for-loop is replaced by a while-loop to be able to make the
last step: to make the routine suited to deal with 'infinite matching', this
is when max = and the routine would therefore not terminate. In a
practical system the physical string is always finite. This means that the end
of that string will always be reached by repetitive matching of the optional
structure. This can be detected by Exh_matclLopt by means of a special
function, Out_of_bounds. This function returns true when all of the position
pointers are outside of the input range. This can be added to the termination
criterion:

while nr =/::.max and not OuLof _bounds(comm_list) do ...

Thus the relevant repetitions are dealt with, since the paths of the op­
tional structure which fall outside of the input range will cause the pattern
succeeding the complementation (Z) to fall outside of the input range as
well, and therefore a candidate can never result for those paths. Therefore,
Exh_matclLopt can be terminated as soon as repetitions reach beyond the
input range.

The algorithm for exhaustive matching

Now we can return to the general routine which deals with matching inside
complementation, the function Exh_match. As stated above, this function
resembles the function Match, but differs in three respects: it returns a list of
matching values rather than a single result, it also returns the accompanying
internal position, and only terminates at the end of a pattern (which is the
end of the complementation). Thus, the following algorithm results:

function Exh_match(patt : pattern;
inLpos : internaLposition) : boolean;

begin
result := true;
while Type(patt) = prim
do

od;

result := Match_primitive(patt, inLpos) and result;
inLpos := Update(inLpos);
patt := SelecLnext(patt)

4.3 The algorithm for pattern matching

res_list := Create_list(result, inLpos);

case Type(patt) of
alternative : res_list := Exh_match_alt(patt, res_list);
simultaneity : res_list := Exh_match_sim(patt, res_list);
complementation: res_list := Exh_match_cmp(patt, res_list);
optionality : res_list := Exh_match_opt(patt, res_list)
esac;

Exh_match := Sort(res_list)
end;

109

The first part is the same as function Match, save for the fact that the
routine does not terminate when result turns false. When all initial primi­
tives have been matched, an initial state list is created by Create_list. This list
serves either the as starting point for the routines which deal with structures,
or as a result list when no structures are used and the end of the comple­
mentation or pattern has been reached. If a structure is encountered the
structure-specific routines are called. The last, Exh_match_opt is discussed
above. The first three, Exh_match_alt, Exh_match_sim and Exh_match_cmp
are the exhaustive matching counterparts for 'positive' routines discussed in
section 4.3.2, and are given in Appendix 4.A. When the remainder of the
complemented pattern has thus been handled, the last task of the routine
is to rearrange the result lists such that those paths that match are in first
position, so that the routine Match_cmp can terminate as soon as an explicit
nofit or a candidate has been found. This is done by the function Sort.

4-3.4 Summary

With this, the important characteristics of the matching routine have been
discussed, when the input consists of a single buffer containing segments. The
matching routine is part of an interpreter, which interprets the linguistic rules
one by one. The kernel of the interpreter is the function Match, which matches
an arbitrary pattern to arbitrary input.

The function Match is syntax-directed, that is, the same structure which
is found in the syntax of patterns is found in Match. Essentially, Match is
called recursively, just as non-empty patterns can be used recursively. How­
ever, due to the implementation of complementation (which avoids redoubling
of computational effort), inside complementation a slightly different match­
ing strategy is applied. Therefore, when complementation is used, Match is
not called recursively, but the function ExlLmatch is called. This function
exhaustively matches the complemented pattern, and returns a list of match­
ing values and internal positions, essentially one pair for each path. Inside

110 Chapter 4 Some aspects of the implementation of TooJj.P

Exh_match all recursions of non-empty patterns call on Exh_match, so here
recursion is restored.

The situation of synchronized buffers, as opposed to a single input buffer,
only affects the routine for matching primitives. The routines for matching
structures remain unaltered. In fact, the only extra task Match_primitive
must perform is to determine in which of the synchronized buffers the specified
primitive is to be looked for. This is the topic of the next section.

4.4 Synchronized buffers

Synchronized buffers are needed to synchronize the input with the output.
The term synchronization is used in imitation of Susan Hertz, who intro­
duced the notion in her Delta system (Hertz, Kadin & Karplus, 1985). Al­
though synchronization is generally used to indicate time alignment between
processes, here it will be used to indicate segment alignment between buffers.
In Toorj.P synchronization is needed for two purposes. On the one hand it is
needed to be able to use information on orthography and pronunciation si­
multaneously in the rules. This will be called internal synchronization, since
it does not necessarily manifest itself on the level of original input and final
output. On the other hand it is needed to determine overall input-to-output
relations, that is, how the characters of the original input correspond to those
of the final output. This will be called overall synchronization. Both over­
all synchronization and the possibility to use information on orthography and
pronunciation are special features which were required in the design of Toorj.P
(see chapter 2).

Synchronization of buffers, or, more in general, synchronization of two or
more levels means that each segment or sequence of segments at one level can
be associated with a (sequence of) segments at another level. For instance,
the orthography and pronunciation of the word 'cadeau' /KAADOO/ (present)
are associated as follows:

input:
output: l claldleaul

K AA D 00

In words: the letter 'c' is pronounced as a /K/, the 'a' as an
/AA/, the 'd' as a /D/ and the sequence 'eau' as an /00/.

(4.6)

For retaining the input-to-output relations each unit which converts input to
output (in ToorJ.P these are modules) must have separate buffers for input
and output. During the conversion process these buffers are synchronized
according to the rules that apply. For instance, in (4.6) apparently a rule of
the form "c -+ K j some context" has been applied. Apart from adding the

4.4 Synchronized buffers 111

I original input I

1
I

grapheme input I
I

grapheme-to-grapheme 1 copy

I grapheme output I
I

grapheme-to-phoneme 1
I phoneme input I

I
phoneme-to-phoneme 1 copy

I phoneme output I
I

Figure 4.2: Buffer architecture of ToorjP.

'K' to the output, the system will also synchronize the 'K' in the output with
the 'c' in the input.

To achieve overall synchronization, that is between the input and there­
sult of the consecutive modules, one can create a buffer for the initial input
and a separate buffer for the output of each module, which simultaneously
serves as input buffer for the next module. Synchronization between each two
subsequent buffers then directly determines the overall synchronization. Thus
one needs n + 1 buffers where n is the number of modules.

There is a way, however, to make the number of buffers fixed and inde­
pendent of the number of modules. As explained in chapter 2, there are three
types of modules in ToorjP: one which manipulates graphemes, one which
transforms graphemes into phonemes, and one which manipulates phonemes.
Instead of creating an output buffer for each module, it is also possible to cre­
ate an output buffer for each type of module. Then, four buffers are needed
for the conversion process: one for the input of the first type of module, and
three for the output of each type of module. In this scheme the contents of the
output buffer are copied to the input buffer in the case of successive modules
of the same type. For overall synchronization one extra input buffer is needed
to preserve the original input (see Fig. 4.2); for if two or more grapheme-to­
grapheme modules are used in the four-buffer scheme, the original input is
overwritten by the output of the first module.

112 Chapter 4 Some aspects of the implementation of Toorj.P

scanning direction: ~

rule:

internal situation:
input:

output:

user v1ew:
graphemes:

n, k ~ n, k, # / cons, voc _ consl , voc

g e d e
g e - d e

left context +-

focus
n k

~ right context
d a g

left +- I focus I ~ right
g e - d e n k d a g

Figure 4.3: Selecting buffers in GTG modules.

In ToorjP the scheme of five data buffers is implemented. In section 4.4.1
it is discussed how the situation of five synchronized buffers affects the rou­
tine Match_primitive. In section 4.4.2 two possible mechanisms to implement
synchronization are discussed, which are compared in section 4.4.3. The im­
plementation of the one that is to be preferred is discussed in section 4.4.4.

4.4.1 Matching primitives to synchronized buffers

In section 4.3.1 a strategy for matching primitives is presented for the case of
a single input buffer. There, it is assumed by pre-condition that the buffer in
which to match and the position at which to match are known. Each time a
primitive is matched, afterwards the new matching position is computed, thus
satisfying the pre-condition for the next time a primitive will be matched.

The actual situation with synchronized buffers is slightly different. There
are three situations to be distinguished, corresponding to the three types
of modules. In the grapheme-manipulating modules so-called grapheme-to­
grapheme (GTG) rules are used. One may only refer to graphemes, since at
that point no phonemes are yet available. When graphemes are referred to,
either the grapheme input buffer or the grapheme output buffer is consulted.
This depends on the pattern which is being matched and the direction in
which the module's input is scanned. If the input string is scanned from
left to right (~) then the left context will be matched against the output
buffer, and the right against the input buffer (see Fig. 4.3). Conversely, if
the input string is scanned from right to left (+-), the buffers against which
the patterns are matched are exchanged accordingly. The focus pattern, of
course, is always matched against the input buffer. In this way, it seems to
the user as if there is only one buffer, where all transformations are executed

4.4 Synchronized buffers

scanning direction: -t

rule:

internal situation =
user view:

input:
output:

a, u -t 00 I SJ _

graphemes left - focus
c h a u
SJ

phonemes left -

-t right context
f f e u r

Figure 4.4: Selecting buffers in GTP modules.

scanning direction: -

rule: 0 -t <*lstress*> I { g,a } 1 p
e,n,v,e ' -

internal situation: graphemes left - focus -t graphemes right
graphemes: e n v e 1 0 p j e

input: E N V C L 0 p J c
phonemes left - focus

output: PJ C
-t phonemes right

user view: graphemes left - focus - graphemes right
graphemes: 1~1:1;1~1~ 0 p j I e
phonemes: 0 PJ C

phonemes left - focus - phonemes right

Figure 4.5: Selecting buffers in PTP modules.

immediately.

113

In the second type of module, grapheme-to-phoneme (GTP) rules are used.
These transform graphemes in the input buffer to phonemes in the output
buffer. Therefore, when graphemes are referred to, these should always be
searched for in the input buffer. Phonemes, on the other hand, are searched for
in the output buffer (see Fig. 4.4). However, one may only refer to phonemes
in contexts where they are present, so for left-to-right scanning this is the
left context and for right-to-left scanning the right context. If one refers to a
phoneme in the other context, a compile-time error occurs.

In the phoneme-manipulating modules phoneme-to-phoneme (PTP) rules

114 Chapter 4 Some aspects of the implementation of TooJ)P

are used. Since derivational history is being retained, one may refer to
graphemes as well as phonemes, or require that a phoneme is derived from
a (sequence of) graphemes. Reference to phonemes in these modules works
the same as reference to graphemes in the GTG modules, that is, phonemes
are searched for in the output buffer if that already contains information, and
otherwise in the input buffer. However, when graphemes are referred to in
PTP rules, these must be searched for in the grapheme level. In this case the
last grapheme level preceding the phoneme level is used, the grapheme output
buffer, in which the results of the last GTG module are stored (Fig. 4.5).

Particularly in the last two types of modules, when graphemes and
phonemes may both be referred to, the buffer to which the primitive should
be matched depends upon which of the two is used. This means that the
pre-condition of the original algorithm, having selected the internal position,
cannot be satisfied without knowledge of the type of the primitive that is
used.

Therefore, a different strategy is more appropriate: select and adjust the
internal position just before matching the current primitive, rather than pre­
pare it afterwards for the next matching action. In other words, the new
pre-condition is that the internal position indicates the position where the
previous primitive has been matched. This new condition on the one hand
implies that the internal position should be initialized properly before the first
matching action takes place, but on the other hand, it is not prepared in vain
after the last matching action.

For the algorithms presented thus far, this has some consequences. The
selection of the position-previously done in Match-will now be part of
Match_primiti1Je, to be combined with the selection of the buffer. As this
depends on the type of primitive (grapheme or phoneme), inside this routine
differentiation between these cases must be made. Therefore, as to matching
primitives, the following routines perform the tasks.

function Match(patt : pattern;
inLpos : internaLposition) : boolean;

begin
result := true;
while result and Type(patt) =primitive
do

od;

(result, inLpos) := Match_primitive(patt, inLpos);
patt := SelecLnext(patt)

if result and Type(patt) = structure
then result := M atch_structure (patt, inLpos) fi;

4.4 Synchronized buffers

Match:= result
end;

function Match_primitive(patt :pattern;
inLpos : internaLposition)

: (boolean, internaLposition);
begin {pre: buffer and pos pointing at last matched segment}

(inLpos,fail) := SelecLinLpos (Type(patt), inLpos);
if fail then result:= false
else

fi·
'

segm := Segment(inLpos);
case Type (patt) of
grapheme, phoneme :

result := Data(patt) = segm;
g_feat, p_feat: begin

result true;
feat Data(patt);
while result and Present(Jeat)
do

result := (segm in Feature_set(feat)) = Value(Jeat);
feat := SelecLnext(feat)

od end
esac

Match_primitive := (result, inLpos)
end;

115

The major part of the routines is simply copied from the previous algo­
rithms. New in Match_primitive is the function SelecUnLpos, which deter­
mines the new internal position. The first parameter indicates the type of
the pattern to be matched, the second is the current internal position, the
value of which has to be adjusted. The variable fail indicates whether the
returned values are valid; the position parameter might have been moved
outside the buffer boundaries, or at the current position there might not be
synchronization with the desired buffer. Note that this construction serves as
a termination criterion when infinite repetition is used.

4.4.2 Synchronization mechanisms

The task of routine SelecUnLpos is to determine the new internal position. If
this happens to be in the same buffer this is easy, just increment or decrement

116 Chapter 4 Some aspects of tbe implementation of ToorjP

pos by one. If, on the other hand, it turns out to be in a different buffer, one
must first find the position in that buffer which is aligned with the original
position in the original buffer. For this it is important to know how the
synchronization mechanism works.

One can probably think of several mechanisms to synchronize buffers. Two
of them are prompted directly from the two different purposes for which syn­
chronization is needed in ToorjP. In this section I will discuss these two mecha­
nisms, how they relate to each other, how-by means of synchronization--one
can switch from one buffer to another, and what is needed to have synchro­
nization operate correctly.

Two mechanisms

The first mechanism stems from the need to select an adjacent buffer if both
graphemes and phonemes are referred to in one pattern. The idea is to switch
from the current position in the current buffer directly to the correct posi­
tion in the adjacent buffer by means of a direct synchronization between the
segments of each buffer. This synchronization mechanism will therefore be
called direct buffer switching (DBS). An integer is attached to each segment
in a buffer, which points to the segment in the adjacent buffer with which it
is synchronized. In this way, individual segments can be synchronized with
values that fall within the buffer range.

Apart from synchronization of individual segments, it must also be possible
to synchronize a sequence of segments as an inseparable unit to a segment or
another sequence. For instance, the 'eau' sequence of the word 'cadeau' is
pronounced as a single phoneme /00/, which one would like to represent
in the system as the grapheme sequence 'eau' being synchronized with the
phoneme segment '00'. Also, it must be possible to represent insertions or
deletions, that is, when a segment in one buffer is not associated with any
segment in another buffer. These two cases of alignment can be represented by
pointer values that fall outside the buffer range. For synchronization purposes
insertions and deletions are the same, and can therefore be represented by a
single value. This value will be denoted by a'=' sign. Inseparable sequences
will be represented by a different value, which will be denoted by a '-' sign.

To synchronize two buffers in the DBS mechanism, the leftmost segment
of an inseparable sequence (which can consist of a single segment) receives a
pointer value. This is either a normal value (inside the buffer range), or the
insertion value'=' to denote an insertion or deletion. The other segments of the
sequence receive the 'inseparable' value. For instance, the synchronization of
the orthography of 'cadeau' with the pronunciation of 'KADOO' is as follows
(compare with (4.6)):

4.4 Synchronized buffers

gra c
next: 1

a d e
2 3 4

prev: 1 2 3 4
phon K AA D 00

117

a u

The 'c' is associated with the first element of the next buffer, the 'K', which
in turn is associated with the first element of the previous buffer. Similarly,
the 'a' is synchronized with the 'AA', the 'd' with the 'D' and the sequence
'eau' with the '00'.

The second mechanism stems from the need to determine overall input­
to-output relations, and is inspired by the synchronization method used by
Susan Hertz e.t al. (1985) in her Delta System. This mechanism is called
overall synchronization (OS). Rather than directly synchronizing segments
with each other, the positions between the segments are synchronized. Before
and behind each segment one or more synchronization marks are placed, and
buffers are synchronized at a certain place if the values of the synchronization
marks are the same. Thus, synchronization is defined between any number
of buffers, rather than between two adjacent buffers. This mechanism can
for instance be implemented by attaching a (list of) synchronization marks
(sync marks) to each segment, which represents the sync marks behind the
segment. In front of the first segment a similar list is placed.

'Normal' one-to-one synchronization of segments is characterized by the
fact that sync marks enclosing the segments have the same value. Inseparable
sequences are characterized by the fact that certain sync marks are present in
one buffer but absent in another. Insertions and deletions are characterized by
the fact that between certain segments more than one sync mark is present.
With this mechanism the synchronization for 'cadeau', for instance, is as
follows:

gra c a d e
sync: 0 3 7 6 8

phon
sync:

K
0 3

AA D
7 6

00
5

a u
1 5

The values of the sync marks are arbitrary; of importance is only whether
the values are the same. Here, the grapheme 'c' and the phoneme 'K' are
aligned as they are 'enclosed' between sync marks with the same values

118 Chapter 4 Some aspects of the implementation of TooJ)P

(0 and 3). The same goes for a-AA and d-D. Since there are no sync marks
with the values 8 and 1 in the phoneme sync buffer the grapheme sequence
'eau' is associated with the phoneme 'OO'.

Equivalence

The two synchronization mechanisms are equivalent in the sense that they
both describe synchronization fully and can be transformed into each other.
Taking a broader viewpoint than only the scheme of grapheme and phoneme
buffers, both synchronization mechanisms can be transformed into the already
implicitly introduced scheme of vertical lines (see for instance (4.6)) for an
arbitrary number of buffers. The OS mechanism is a direct implementation of
this representation: the sync mark values can be placed between the segments,
and the marks of equal values can be connected with ragged lines, which, so
to speak, are then pulled straight:

buf 1: a
sync 1: 0 1

buf 2: a
sync 2: 0 1-2

buf 3: a
sync 3: 0 1-2-3

b c
2 3
c d
3 4
d
4

d
4

a b c d
a c d
a d

Oa1b2c3d4
0 a 1-2 c 3d 4
0 a 1-2-3 d 4

The correspondence of the DBS method to the vertical line representation
is more complex. A normal pointer value, that is, a value which falls within the
buffer range, should be interpreted as a sync mark to the left of the character
to which it belongs; the segment which is pointed to has an associated pointer
pointing back. This is called consistency of DBS synchronization. Thus, the
two adjacent buffers are synchronized between those two segments. Such
synchronization can be extended to other buffers if they, too, at that position
have such a synchronization:

4.4 Synchronized buffers 119

buf 1: X X X a
next 1: /3 XXX 3 a
prev 2: 4 I

buf2: X X a XX 4 a 3
next 2: 2 I
prev 3: 3/ x 2 a

buf 3: X a

-t

Inseparable sequences are characterized by the fact that they do not have
left-synchronization to one of the adjacent buffers (but perhaps do to the
other one):

buf 1: a b c d
next 1: 1 2 3 4
prev 2: 1 2 3 4

buf 2: a b c d
next 2: 1 - 3
prev 3: 1 4

buf 3: X y d

a I b I c
a b c

X I y

1 a
I
1 a
1
I
1 X

d
d
d

2 b
I
2 b

- y

3 c 4 d
I I
3 c 4 d
- 3

/
4d

Deletions and insertions can only be detected in the buffer where they oc­
cur, since in the relevant adjacent buffer there is no character to be associated
with them. Here the synchronization lines have to "propagate" through the
buffers; deletions propagate forwards and insertions backwards. Deletion and
insertion lines stick, so to speak, to the closest synchronization line to their
right.

120 Chapter 4 Some aspects of the implementation of TooJjP

Deletion:

buf 1: a
next 1: 1
prev 2: 1

buf 2: a
next 2: 1
prev 3: 1

buf3: a

Insertion:

buf 1:
next 1:
prev 2:

buf 2:

b c
- 2 -
3 4
c d
- 2
3
d

a b
1 3

d
3

1 = 2
a c b

d
d
d

-
1 a
I
1 a
1
I
1 a

= b 2 c

//
~ b ~ c
/

3d

a b c
c

d
d
d

a
a

sd

Via the vertical line representation the two synchronization mechanisms
can be tranformed into each other and hence they are equivalent. The vertical
line representation is the most natural way to represent synchronization, and
therefore in ToorjP it is the actual user interface. On the one hand, when
synchronization information is given, this is done in the vertical line represen­
tation. On the other hand, the concatenation comma and the square brackets
the user uses in the rules can be mapped directly on synchronization marks.

Buffer switching

Synchronization between buffers is defined by means of the vertical line repre­
sentation: one may switch to another buffer along the synchronization marks.
So for instance, when the internal status of the system is as depicted below

4.4 Synchronized buffers 121

in the vertical line representation, starting at the 'a' in the third buffer and
moving one position to the right (this is typically needed when patterns are
matched; after testing one segment an adjacent one must be tested), one can
shift to the first buffer and reach the 'b', or shift to the second buffer and
reach the 'c', or stay in the third buffer and reach the 'd':

buf 1:
buf 2:
buf 3:

arne d a c d
a d

To state it in general: between each two segments a list of sync marks
is present. The list always contains at least one element. The first element
that is encountered is the synchronization point (that is, the leftmost sync
mark when scanning -, or the rightmost sync mark when scanning+-); all
buffers which contain the same sync mark (that is: with equal sync values)
are synchronized at that position. Thus, in principle, one can switch to any
of those buffers. In that respect, starting at the 'a' in the third buffer once
again and moving -t, one cannot end up in the 'c' in the first buffer by taking
the second sync mark between the 'a' and the 'd' in the third buffer.

Also, inside an inseparable sequence one cannot shift to the adjacent buffer
which 'caused' the sequence to be inseparable. For instance, moving to the
right, one cannot shift from the 'e' in the grapheme buffer to the 'OO' in the
phoneme buffer:

gra:
phon: I

c I a I d 11 e~ a1.l u11
K AA D '}--- 00 ~

\Vhat is possible, is to move from the grapheme 'd' to the phoneme 'DO',
or from the grapheme 'u' to the phoneme following the '00', or to require
alignment of 'eau' with '00'.

Installing synchronization

Since synchronization is introduced for two purposes, it must meet the two
requirements of being able to switch from one buffer to another and to deter­
mine the overall input-to-output relationships. For both mechanisms we will
now look at how this influences the installation of synchronization, that is,
which actions must be taken to fulfil the two requirements.

When a rule applies, that is, when all three patterns of focus, left and right
context match, the structural change is added to the output and synchronized
with the focus part of the input. Thus, one or more segments in one buffer

122 Chapter 4 Some aspects of the implementation of Toor}P

are synchronized with zero or more segments in another buffer. The case
of zero segments corresponds with an insertion or deletion, the case of one
segment with a 'normal' synchronization, the case of more than one segment
corresponds with an inseparable sequence.

In the OS method the structural change which is added to the output is
synchronized with the input segment or sequence at the outer ends: the sync
marks to the left and right of the structural change are synchronized with
(given values equal to) the sync marks of the input buffer, which are defined
in a previous stage. If the structural change consists of a single segment no
further action is necessary. Between the segments of an inseparable sequence
new sync marks are generated in the output buffer.

If a rule deletes one or more characters, no character is added to the output,
but at that place the output buffer is synchronized with the input buffer at
two places, thus representing the deletion. Thus, a list of sync marks results
in the output, the head of which is (the list of) sync marks to the left of the
deleted segment(s), and the tail of which is the synchronization to the right
of the segment(s). Such a list will propagate forwards through the buffers
automatically:

buf 1: a b c d
buf 2: a c d
buf 3: a d
buf 4: a e

Insertions, however, are a little different, for in the input buffer left and
right sync marks are not both available; only one side (depending on the
scanning direction) is available. For instance, when the rule

0-+ c/a_b (4.7)

is specified, and the input buffer consists of:

the character 'c', which is added to the output, only has the sync mark be­
tween the 'a' and the 'b' to refer to. Therefore, a new sync mark is introduced
at the outer side of the insertion, that is, at the right side in forward scanning,
and at the left in backward scanning. This sync mark must propagate back­
wards through the existing buffers to distinguish the case from an inseparable
sequence. Compare, for instance:

4.4 Synchronized buffers

a b
a b
a c b

new

0-+c/a_b

123

a b
a b b-+c,b
a c I b

new

The difference between these two cases is that in the insertion case one can
switch to a previous buffer along the new sync mark, and in the inseparable
sequence case one cannot.

With insertions propagating backwards, the OS mechanism both ensures
correct buffer switching and overall synchronization, irrespective of the num­
ber of buffers which are actually implemented. The only demand is that
insertions propagate back in previous buffers as far as they can.

Since the DBS mechanism is equivalent to the OS mechanism, DBS auto­
matically also meets these two requirements. However, the preassumption for
this equivalence is that the basic synchronization of adjacent buffers is con­
sistent, i.e., that pointers are always mutually pointing at each other. If each
module has its own output buffer, this condition is automatically satisfied, for
when output is added to the output buffer it is synchronized consistently, and
no changes to this information are made further along the derivation. How­
ever, if the five-buffer scheme is used (see Fig. 4.2), this is not automatically
the case. Suppose, for instance, that a GTG module has been applied and
that the output is synchronized with the input. The synchronization of the
original input with the output of this module is only defined via the grapheme
input buffer, and hence one may not delete the synchronization information
by overwriting it with the information of the output buffer.

Therefore, both the pointers of the original input pointing at the input
buffer and the pointers of the input buffer pointing backwards will have to be
recomputed so as to make the synchronization consistent. Rather than going
into the details of this algorithm, I will give an example of how these buffers
are adjusted.

Consider the situation depicted below:

org in: a c
next 1: 1 3

org in:
prev 2: 1 2

a c

grain: b d
next 1: 1 = a
prev 2: 1

next 2: 1 2
prev 3: 1 2

grain: a b e

gra out: a b e

124 Chapter 4 Some aspects of the implementation of Toorj.P

Apparently the 'a' in the original input has expanded to the sequence 'ab'
in previous modules. The 'c' has been changed into a 'd'. In the current
module, the 'b' expands to 'be', and the 'd' is deleted. Considering the over­
all synchronization-which at that moment is the synchronization of original
input and grapheme output-it is as if the 'a' has expanded via 'ab' to 'abe',
and the 'c' has been deleted (via 'd'). When the grapheme output is copied
into the grapheme input buffer, the synchronization pointers should be ad­
justed such that they code the cumulative effects of all previous modules, as
is depicted above.

Summarizing, it can be stated that both mechanisms need some special
attention during the conversion process to ensure that they are reliable. For
the OS method insertions must propagate backwards through existing buffers,
for the DBS method resynchronization is needed when an output buffer is
copied to the input buffer.

4.4.3 Comparison of the two mechanisms

To be able to use synchronization for the two intended purposes, four functions
must be implemented in the system. The first one installs the synchronization,
that is how the segments in the output are associated with those in the input.
The second function is the mechanism to switch from one buffer to another.
A third function is to keep the synchronization consistent when the contents
of the output buffer are shifted to the input buffer when the next module
is to be consulted. The last function determines the overall synchronization
from input to output, that is, from the original input grapheme to the final
phoneme output.

In particular the last two functions are sensitive to the mechanism used.
In the OS method, they are more or less trivial, since the sync marks directly
code the desired information. In the DBS method, however, considerable
computing effort is needed, since the information is coded indirectly, that is,
only between the adjacent buffers synchronization information is available,
which will have to be made more global, in a manner described above.

On the other hand, one may expect the DBS method to be more appro­
priate for the second function, since the information to switch between two
adjacent buffers is coded directly by means of the pointers, except for the rare
occurrences of an insertion or deletion. Most commonly it is desired to switch
between two adjacent buffers, and otherwise there is only one intermediate
buffer, in which case a second buffer switch is needed. In the OS method the
synchronization will have to be searched for, a process one may expect to be
slower than direct switching.

4.4 Synchronized buffers 125

The first function is more or less of the same complexity for both mech­
anisms. In both cases the sync marks have to be installed according to the
mechanisms scheme, which in both cases comprises comparable action.

The order of magnitude in which these functions are used varies greatly.
The first function, installation of sync marks, is needed in each module in
the order of magnitude of the number of segments to be transcribed by the
module. The need for buffer-switching (the second function) depends greatly
on the kind of rules being used. In PTP modules this may be a number of
times within one rule, but it may also be absent. The third function, keeping
the database consistent is needed less than the number of modules per overall
transcription, and the fourth function is needed only if one is interested in the
derivational history, and in that case once per transcription.

It is hard to tell on theoretical grounds how the balance will dip. Therefore,
the two have been implemented as alternatives, and have been tested on
a practical situation. The pronunciation of Dutch words was determined
by some 8 modules, where buffer switching was used frequently in only one
module which contained some 80 rules. It turned out that the two mechanisms
were more or less in balance, that is, the DBS method was some 5% faster
than the OS method.

However, I favour the OS method above the DBS method. The main rea­
son for this is that it directly relates to the vertical-line representation. And
in spite of the fact that the DBS method originated from the idea of directly
switching to adjacent buffers, synchronization and buffer switching are de­
fined in terms of the vertical line representation. In the common situation
of one-to-one synchronization of input-to-output segments the DBS method
is undoubtedly faster, but when inseparable sequences and in particular in­
sertions and deletions occur, in one way or another the DBS representation
must locally be transformed to the vertical line representation before a cor­
rect buffer switch can be made. This also means that the designing of buffer
switching algorithm is simpler for the OS method than for the DBS method.
For a complex system in development, simplicity of such a mechanism, which
influences several parts of the system, was thought to compensate a 5 % loss
of run-time efficiency. Moreover, when the system needs to be extended in
the sense that extra layers of information must be synchronized with existing
ones, the OS method is superior to the DBS method. With the OS method
the extra layers are the same as any other buffer, with the DBS method the
original buffers have to be extended with extra pointer buffers, and some of
the algorithms have to be extended, too. For comparison both mechanisms
have been implemented, but for the above reasons the latter mechanism, the
OS method, is preferable and has therefore been chosen to serve as the syn­
chronization mechanism both for ToorjP in the released versions and ToorjP

126 Chapter 4 Some aspects of the implementation of Toorj.P

in future development.

4-4-4 The algorithm for buffer switching

At this point we can return to the algorithm and see how it works out in the
function SelecLinLpos. The task of this routine is to determine the new inter­
nal position based on the position where the previous primitive was matched.
The routine will be presented for the OS mechanism.

In general terms, the adjustment of the internal position takes place in
three phases. First the appropriate buffer must be determined, then the
position in this buffer which is synchronized with the old one in the old buffer
must be determined, and finally the new position must be determined by
shifting one position to the left or to the right. In the following algorithm
these three phases can be distinguished, although they are not fully separated:

function SelecLinLpos(prim : prim_type;
inLpos : internaLposition)

: (internaLposition, boolean);

begin {pre : lower _boundary < pos < upper _boundary}
desbuf := Desired_buffer(patLtype, scan_dir, mod_type, prim);
(buffer,pos) := inLpos;
if (match_dir = +-)
then pos := pos- 1;

fail := (pos < lower _boundary) fi;

if desbuf # buffer and not fail
then

fi;

sync_list := Synchronization(inLpos);
if (match_dir = -+)

then sync_val := Leftmost(sync_list)
else sync_val := Rightmost(sync_list) fi;

(pos ,Jail) := Search_sync(desbuf, sync_val)

if (match_dir = -+) and not fail
then pos := pos + 1;

fail := (pos > upper _boundary) fi;

inLpos := (desbuf, pos);
SelecLinLpos := (inLpos ,Jail)

end;

The first phase of determining the appropriate buffer depends on the pat­
tern (focus, left or right context), the scanning direction (+- or -+), the type of

4.4 Synchronized buffers 127

module (GTG, GTP, PTP) and the type of primitive (grapheme or phoneme),
as described in section 4.4.1. Only the type of primitive can vary during the
process of matching a pattern, and therefore only the type information is
transferred to Select_int_pos by means of parameter prim. The other infor­
mation is constant during the process of matching a pattern, and is therefore
available inside the procedure by means of global variables, which are adjusted
by higher level routines only when necessary. To emphasise the dependence
they are included in the parameter list for the function Desired_buffer. This
routine directly determines the appropriate buffer from these parameters, and
is a straightforward implementation of the rules given in section 4.4.1.

If the thus determined buffer differs from the original buffer, the position
in that buffer which is aligned with the original position in the original buffer
must be determined by means of the synchronization information. The sync
mark attached to a certain position is the sync mark behind the segment. If
the matching direction is backwards (+-), (which it is, for instance, when a
left context is being matched,) the relevant sync marker is the one before the
current position, and can be selected by first decrementing pos. The relevant
sync marker can now be determined by selecting the first element of the sync
marker list at that position (see 4.4.2). Synchronization selects the list, and
Leftmost or Rightmost determines the first element, which again depends on
the matching direction. Then, the sync mark is searched for in the new buffer
by Search_sync. This routine searches for the value sync_val in buffer desbuf
and returns the position where it is found, pos. Since nothing special is known
of the sync marker, this is done by means of a linear search.

If the sync marker is not found, there is no synchronization between the
two buffers at the original position. This means that the path of the pattern
that is being matched is not present. This is transferred by the second value
which Search_sync returns, fail, which is true if the search fails, and false if
it succeeds.

Finally, the new internal position is determined. In the case of backwards
matching (+-) no further action is needed, due to the fact that the sync marks
denote the synchronization points behind the segments. The decrementing
action has been done beforehand, before the buffer switch has been made. In
the case of forwards matching (-4) the correct position is one position to the
right, just across the synchronization mark, so in this case pos is incremented
by one. As when decrementing, it should be checked whether the buffer
boundaries have been crossed.

The variable fail thus performs a double task: it either indicates that there
is no synchronization between the two buffers at the original internal position,
or it indicates that the new internal position falls outside of the buffer range.
In both cases the investigation of (that specific path of) a pattern can be

128 Chapter 4 Some aspects of the implementation of TooJ)P

terminated, and since it is not important to know which of the two is the
case, this can be coded by means of one variable.

4.4.5 Summary

In this section the implications of synchronized buffers for the matching algo­
rithm Match have been discussed. First, the architecture of the synchronized
buffers as is present in ToorjP has been shown and how this specific architec­
ture affects the algorithm for matching primitives. Then a more general view
on synchronization has been taken, that is, how an arbitrary number of buffers
can be synchronized, what the characteristics of synchronization are, and how
one can switch in general from one buffer to another. Next, two alternative
mechanisms to implement synchronization have been presented, one prompted
by the need for buffer switching, the other by the need for overall synchroniza­
tion. They are functionally equivalent, but the main difference between the
two is that the first mechanism is somewhat faster in run-time performance,
whereas the second is a more simple and elegant algorithm as it directly codes
the definition for buffer switching and overall synchronization. For this reason
the latter mechanism is preferable, and is therefore implemented in the re­
leased versions of ToorjP. For this synchronization mechanism the algorithm
which performs the task of buffer switching is given in SeLinLpos, which is
an important part of the routine for matching primitives.

4.5 Discussion

In the foregoing, the important aspects of how patterns can be built, what they
mean, how they are represented internally, and how they are matched against
synchronized buffers have been dealt with. Looking at the way patterns are
processed, ToorjP can be viewed as a compiler/interpreter. The patterns,
specified by the user in a high-level language, are compiled into their internal
representations, which are then interpreted by Match. This is undoubtedly
slower than full compilation of patterns into machine code, but it has an
advantage that might be of importance to the future development of the
system. The internal representations of the various patterns are stored in
a dynamic structure in the order in which they are to be matched. Each
pattern is a separate and traceable entry in that structure. This means that
each such entry can in principle be replaced by a new one, for instance by a
compiled version of an adjusted pattern. This could be done on-line, during a
test session of the rules, which means that a linguist can interactively tune his
rules. Such an extension of the system can be implemented relatively easily in
the compiler /interpreter architecture of ToorjP, in contrast to a full compiler

4.5 Discussion 129

system. Only the rule which undergoes a change has to be recompiled, which
is typically so fast that it does not disturb the development session. The new
internal representation then must be patched over the old one, which can be
done instantaneously. Patching machine code, which would be the equivalent
in the full compiler scheme, is generally viewed as a cumbersome enterprise,
which requires detailed knowledge of the object code and is error-prone, and
is therefore not to be recommended. Therefore, when slight adjustments
mu't be made, generally in a full-compiler scheme the whole system is to
be recompiled, which generally takes orders of magnitude longer than the
incremental compilation in the compiler/interpreter scheme. Since ToojjP is
first and foremost a development tool, such a feature of being able to test
modifications quickly is interesting. The implementation of such a feature is
planned in the near future.

On the other hand, the run-time performance of Tooi}P is indeed that of
an interpreter, that is, some 10 times slower than comparable fully compiled
systems. It is difficult to give an exact figure of relative performance, since
there is no system available with the same functionality that is fully compiled.
The figure of 'some 10 times slower' is derived from a comparison with the
SPE rule compiler of Kerkhoff, Wester & Boves (1984), called Fonpars, run
on the same machlne for the same input. In this comparison Fonpars differs
from ToojjP in at least five respects. First of all, Fonpars is a compiler:
the linguistic rules and modules are compiled into a Pascal program rather
than some kind of dynamic internal representation. The Pascal program is
then compiled into machine code in the usual way. The second difference is
that Fonpars does not support complementation in the way 'lbojjP does.
It does support a notion of complementation, but. only for strings of the
same length. This restricts the use of this operator, but on the other hand
simplifies the algorithm which evaluates patterns. A third aspect is that
Fonpars does not keep track of the derivation, and therefore does not make use
of synchronization between buffers. A fourth point is that Fonpars does not
include extensive interactive debugging facilities which are present in TooJjP
(see 2.4.1 and 5.4.4). Finally, the rule sets which define the conversion differ in
structure and maguitude. The Fonpars includes some 250 rules for grapheme­
to-phoneme conversion which includes conversion of numbers, acronyms, etc.,
and the assignment of word accent. Tooi}P, on the other hand, uses some
550 rules for the same purpose. The reason for this rather large difference
in number has not been investigated. It is important to mention, however,
that should the Fonpars rules be more concise, this is not an artefact of
Tooi}P. The formalisms supported by the two systems are comparable in
power of expression (see 2.6.3). The relative contribution of each of these five
factors is hard to measure exactly without considerable programming effort,
and presumably not very interesting since these are only two of many systems

130 Chapter 4 Some aspects of the implementation of TooJ)P

processing linguistic rules.

Comparison with existing similar systems is often a suitable manner to
put into perspective one's own. As far as detailed implementation aspects
are concerned, such as presented above, this is difficult to do, since in the
literature there is no information available on this subject on other systems.
Generally, only general characteristics of a system are described, such as how
a user may formulate rules (the formalism), whether or not synchronization
is used (not how this is implemented), whether it is a compiler-like structure
or not, and so on. Such a functional comparison has been made in chapters 2
and 5.

4.6 Conclusion

In this chapter an algorithm is given which matches an arbitrary pattern
against arbitrary input, where 'input' should be viewed in the general sense
of synchronized buffers.

First, the internal representation is given into which the patterns, given by
the user in this high level language, are transformed. Since the transformation
process closely resembles the parsing pha.<>e of ordinary compilers, this has
not been touched upon, so only the output of this process is given. The
internal representation is more than a parse tree, but less than an NFA (non­
deterministic finite automaton) with €-transitions. This representation has
been chosen on practical grounds; those computations which can be done at
compile time are processed into the internal representation, those which are
simpler during run-time are done at run-time.

Next, the interpreter for these (internally represented) patterns is pre­
sented, the function Mate h. This is done in two phases. First, the simplified
case of a single input buffer, to which the pattern is to be matched, is dis­
cussed. Guided by the syntax and semantics of the patterns the various sub­
routines in the matching function are presented. Special attention has been
given to the routine which deals with complementation. The recursion, which
is directly present in the syntax, is interrupted at the highest level due to an
efficient implementation of complementation. Once inside complementation,
recursion is restored.

The second phase is the generalization to synchronized buffers. This only
affects a small part of Match, the part which deals with the actual compari­
son of the buffers and the requirements imposed by the pattern. Two possible
mechanisms to implement synchronization are presented and compared, one
which is somewhat faster but more complicated, the other which is slower
but simple and elegant. In a system which is in development and which for

4.6 Conclusion 131

instance could need to be extended in the respect of synchronizing capabil­
ities, run-time performance is not a top priority, whereas transparency of
algorithm is, and therefore the slower but elegant algorithm is preferable. For
this mechanism the algorithm to switch from one buffer to another has been
presented.

With respect to the processing of patterns ToorjP can be viewed as a
compiler/interpreter. User-defined rules are compiled from high-level source
code to an internal representation, which are further interpreted by Match. As
a consequence, ToorjP is not as slow as an interpreter which interprets directly
from source code, but not as fast as a compiler which compiles the source
code directly into machine code. Nevertheless, an important characteristic
of an interpreter has potentially been preserved, the possibility to modify
a rule interactively and directly see the effect of the modification. This is
an attractive feature of a development tool and is therefore planned to be
implemented in the near future.

132 Chapter 4 Some aspects of the implementation of Toorj.P

Appendix 4.A
Matching inside complementation

In this appendix the algorithms are given for matching structures inside a
complemented structure. Of the four possible structures only for optionality
has the algorithm been given in the main text (section 4.3.3). Therefore, the
algorithms for alternation, simultaneity and complementation will be given
here.

Alternation

function Exh_match_alt(patt :pattern;
comm_list: resulLlist): resulLlist;

begin
inLpos := InLpos(comm_list);
prv_val := Res_value(comm_list);
results := empty;
alternative := Data(patt);
while Present(alternative)
do

od;

res_list := Exh_match(Pattern(alternative), inLpos);
res_list := Adjust(prv_val, res_list);
results := Unite(res_list, results);
alternative := Select_ next(alternative)

Exh_match_alt := results;
end;

The structure of Exh_match_alt is similar to Match_alt. comm_list consists of
only one element (see page 106) and serves to carry int_pos and prv_val into
the routine. prv_val denotes the matching value of the path inside the comple­
mented structure before the alternative structure was encountered. Compared
to the non-complemented routine, the while-loop contains two extra state­
ments. One is to include prv_val in the list that the current alternative has
yielded. This is done by a routine called Adjust. This routine is not given, but
consists of intersecting each individual result of the result list with prv_val.
The second is the statement that prepares the result to be returned. This is
done by the function Unite, which is given below.

function Unite(new: resulLlist;
res : resulLlist): result_list;

4.A Matching inside complementation

begin
while Present(new)
do

od;

ip := lnLpos(new);
SelecLfirst(res);
while Present(res) cand ip =f: lnLpos (res)

do res := SelecLnext(res) od;
if Present(res) {This means : ip InLpos(res)}

then res[result] := Res_value(res) or Res_value(new)
else Append(new, res) fi;

new := SelecLnext(new)

Unite := res;
end;

133

The purpose of Unite is to combine the various result lists. If the inter­
nal positions of the various elements are not equal, they should both be
included in the resulting return list. This is dealt with by the statement:
Append(new, res). If the internal positions of two elements are the same they
are united: res[result] := Res_value(res) or Res_value(new). The surround­
ing control structure serves to compare each element of the new list with the
existing list.

Simultaneity

function Exh_match_sim(patt :pattern;
comm_list: resulLlist): resulLlist;

begin
inLpos := lnLpos(comm_list);
prv_val := Res_value(comm_list);
results := empty;
simultan := Data(patt);
while Present(simultan)
do

od;

res _list := Exh_match (Pattern(simultan), inLpos);
res_list Adjust(prv_val, res_list);
results := Intersect(res_list, results);
simultan := SelecLnext(simultan)

Exh_match_sim :=results;
end;

134 Chapter 4 Some aspects of the implementation of ToorjP

The structure of Exh_match_sim is symmetrical to Exh_match_alt. Instead of
Unite the function Intersect is used.

function Intersect(new : resulLlist;
res : resulLlist): resulLlist;

begin
if not Present(res)
then

res := new {Initialize}
else

fi·
'

while Present(new)
do

od

ip := InLpos(new);
Select_first(res);
while Present(res) cand ip -f= InLpos(res)

do res := SelecLnext(res) od;
if Present(res) {This means : ip = InLpos (res)}

then res[result] := Res_value(res) and Res_value(new)
else res[new] :=false;

Append(new, res) fi;
new := SelecLnext(new)

Intersect := res;
end;

Intersect is the counterpart of Unite. There are two significant differences.
The main one is that each new internal position which is added to the resulting
list is initialized false. Intersecting result lists means that internal positions
must be equal and matching values must be true. If these are not both true,
this may not lead to an explicit nofit. For the matching values this is accounted
for by the statement: res[result] := Res_value(res) and Res_value(new). If
the internal positions are not equal this means that the new internal position
must be added to the list with a result value which is false. As a consequence,
res must be initialized the first time Intersect is called. In Unite no explicit
test is needed, since Unite simply adds new internal positions to the list
without changing the matching values.

Complementation

function Exh_match_cmp(patt : pattern;
comm_list: resulLlist): resulLlist;

4.A Matching inside complementation

begin
prv_val := Res_value(comm_list)
cmp_list := Exh_match(Data(patt), lnLpos(comm_list));

succ_patt := SelecLnext(patt);
results := empty;
while Present(cmp_list)
do

res_list := Exh_match(succ_patt, lnLpos(cmp_list));

135

res_list := Cmp_adjust(prv_val, Res_value(cmp_list), res_list);
results := Unite(res_list, results);
SelecLnext(cmp_list)

od;

Exh_match_cmp := Cmp_simplify(results);
end;

Exh_match_cmp is set up in the same manner as Exh_match_alt and
Exh_matcluim. There are three noticeable points. Cmp_adjust is similar
to Adjust except that a facility has been included to keep track of the explicit
nofits. In Match_cmp this was not necessary because of the sorted result list.
Here, this is not possible since all the results must be returned instead of
stopping when an explicit nofit has been detected. Therefore, the explicit
nofits must be distinguished from regular non-matching paths. For this pur­
pose expnof has been introduced as a third 'boolean' value. Only inside
Exh_match_cmp the explicit nofits have to be known explicitly. Therefore,
before returning the result list, the expnof values are simplified to false. As
a consequence however, Unite must now be able to handle expnof values.
Given their function this is defined as follows2

:

expnof or true
expnof or false

expnof
expnof

Cmp_simplify and Cmp_adjust are given below.

function Cmp_simplify(res: result_list): resulLlist;
begin

while Present(res)
do if Res_value(res) = expnof then res.result :=false fi;

SelecLnext(res) od;
Cmp_simplify := res;

end;

2 The behaviour of expnof to 'and' is not necessary here, but can be defined analogously.

136 Chapter 4 Some aspects of the implementation of Tooi)P

function Cmp_adjust(firsLpart, com_part: boolean;
res_list : resulLlist): resulLlist;

begin
while Present(res_list)
do

od;

if firsLpart and com_part and Res_value(res _list)
then res_list.result := expnof
else res_list. result :=

firsLpart and not com_part and Res_value(res_list) fl.;
res_list := SelecLnext(res_list)

Cmp_adjust := res_list;
end;

Chapter 5

Evaluation

Abstract

In this chapter the merits of ToorjP are evaluated, and some recom­
mendations for future development are made. Three sides of ToorjP
are evaluated: (a) the outside, i.e., how ToorjP is used in a practi­
cal application, (b) the inside, i.e., how satisfactory was the semi­
compositional formalism in practice, and (c) the surroundings, i.e.,
how does ToorjP relate to other systems which have been designed
for similar purposes.

The main application for which ToorjP has been used is the de­
sign of a grapheme-to-phoneme conversion system. Two aspects of
this application are discussed. The first is the spelling out of in­
teger numbers, which is part of a pre-processing phase, the second
concerns the linguistically slanted modules which perform the actual
grapheme-to-phoneme conversion.

The second side of the evaluation concerns the use of the comple­
mentation operator. A semi-compositional formalism was devised to
overcome the problems which occurred with respect to complemen­
tation in the compositional formalism. The usage of the complemen­
tation operator in the above practical application will be reviewed
in the light of the choices which were made in chapter 3, and thus
the validity of these choices are evaluated.

The third side concerns some more general aspects. For a num­
ber of features which can be seen to characterize development tools
for linguistic rules, ToorjP is compared to seven important existing
systems. This gives an overview of what is unique in ToorjP and
what is common practice in such systems.

Finally, for the future development of ToorjP some recommenda­
tions are given which are concerned either with improving the system
or extending it along natural lines.

138 Chapter 5 Evaluation

5.1 Introduction

I N the previous three chapters a detailed inside view of Toor.}P has been
given. In chapters 2 and 3 the functional specification has been given and

in chapter 4 the implementation. In this last chapter ToorjP will be viewed
from somewhat more distance, once again, to put the system in some broader
perspective. For three topics its merits will be investigated.

In the first place the major application for which ToorjP has been used
will be discussed, viz. how it is applied as a grapheme-to-phoneme conver­
sion system (section 5.2). Secondly, the complementation operator will be
reviewed. Based on practical assumptions the semi-compositional formalism
was implemented. The validity of these assumptions will be investigated, and
with that the usefulness of the semi-compositional formalism (section 5.3).
Finally, ToorjP will be evaluated as a development tool. The system will be
reviewed in the light of some important features and is compared in those
respects to some important similar systems (section 5.4).

By way of conclusion some aspects which are not yet included in ToorjP
are discussed: some recommendations are made for extensions to ToorjP to
increase its power and user-friendliness (section 5.5).

5.2 Applications

As reported in chapter 2, the main application for which ToorjP has been used
is the development of a grapheme-to-phoneme conversion system for Dutch
(Berendsen, Langeweg & Van Leeuwen, 1986). This application will now be
discussed in greater detail than was provided in that chapter, without going
into too much linguistic detail, however.

The conversion scheme is depicted in Fig. 5.1. It is subdivided into three
major parts: text preprocessing, the actual grapheme-to-phoneme conver­
sion, and some postprocessing. The text preprocessing serves to normalize
the orthography, and concerns for instance the spelling out of numbers and
acronyms. No full text-normalizing component has been achieved as yet,
since this is quite an intricate problem. In principle, however, all input the
normalizing component can handle is put out in a spelled out form.

This output is input to the grapheme-to-phoneme conversion, which con­
sists broadly of three parts. First a morphosyntactic analysis takes place,
which aims at locating the important morpheme boundaries. Next the
spelling-to-sound conversion takes place, and finally word stress is determined.
These processes are rule-driven. Exceptions are stored in a small exception

5.2 Applications 139

ACRON

CAPITALS

NUMBER_1

NUMBER_2

NUMBER_3

NUMB ERA

NUMBER_5

MORPH_1

MORPH_2

MORPH_3

GRAPHON LEXICON

STRESS_1

STRESS_2

STRESS_3

PUNCTUATION

ACCENT

REDUCTION

WORDS

Figure 5.1: Modular composition of the mam application,
grapheme-to-phoneme conversion.

lexicon which is consulted first. The output of this grapheme-to-phoneme
conversion is then sent to the post processing modules, the task of which is
to deal with inter-word processes (such as assimilation) and to relocate sen­
tence accent. Some of these tasks, such as assigning word stress or spelling
out numbers, are divided into several physical modules. This is done because

140 Chapter 5 Evaluation

some processes are 'crucially ordered', which will be elaborated on presently.

The less linguistically slanted modules, such as the spelling out of integer
numbers and the relocation of sentence accent, have been devised by the
author; the others have been devised by the users for whom the system is
intended, linguists. The spelling out of numbers will be discussed in detail as
an example of how specific tasks can be achieved with Tooi)P. The linguistic
modules will be discussed from somewhat more distance, for instance what
type of constructs have been used frequently and which not. Finally some
possible other applications are discussed.

5.2.1 Integer numbers

The rules

The spelling out of integer numbers is pre-eminently suited to be achieved by
rule, since it is extremely regular. The automatic translation of numbers into
Dutch has already been solved (Brandt Corstius, 1965), but the implementa­
tion into Tooi)P was considered to be a good test case for the system.

To pronounce Dutch numbers correctly, two phenomena should be dealt
with. The first is characteristic for arabic numbers, viz. the value of a digit de­
pends on its position. This is not expressed explicitly in the orthography, '56',
but in the pronunciation it is: 'fifty six' instead of 'five six'. The relative value
of the digits will therefore have to be recovered. The second phenomenon is
characteristic for Germanic languages, viz. the fact that the digits of numbers
between 13 and 99 are pronounced in inverse order. Instead of 'fifty six' 'six
and fifty' is said. So after determining the relative values, the 'tens' and the
'ones' should be inverted.

These two processes are the kernel of the number grammar. Since knowl­
edge of the units is needed to invert some of the digits, this information must
be available before inversion can take place. This motivates a separate mod­
ule for each process. Beforehand some number normalization may take place,
such as deletion of leading zeros and spurious dots (in Dutch '1,000,000' is
written as '1.000.000'). Afterwards 'and' insertion (we say 'six and fifty' rather
than 'six fifty') and the actual spelling must take place. Thus we have five
modules, which will be discussed in order:

• NUMBER_1: for normalization
• NUMBER_2: for unit determination
• NUMBER_3: for digit inversion
• NUMBERA: for 'and' insertion
• NUMBER-5: for spelling out

5.2 Applications 141

NUMBER-I: The normalization module currently consists of two simple rules.
The first, (5.1), deletes all leading zeros in a number (D stands for a digit,
stands for a space). The second rule, (5.2), deletes all spurious dots. The
module scans the input from left to right (--+). Note that this scheme only
functions satisfactorily for integer numbers, and that no account has been
taken of other types of numbers, such as telephone numbers or numbers with
decimals.

zero --+ 0 I # _ { ~ } (5.1)

- o I D (5.2)

A single '0' in the focus or change denotes an insertion or deletion. To
refer to the single character '0' one must specify 'zero', as exemplified in (5.1).
However, when the character '0' is part of a sequence there is no ambiguity
and it can be used as any other character, as will be exemplified in rules (5.10)
and (5.11).

NUMBER_2: As to the determination of units it can be observed that num­
bers naturally fall apart in groups of three (which for that reason are often
separated by a comma in English and a dot in Dutch). The first group (seen
from the right) are the ones, the second group the thousands, the third group
the millions, and so on. Within each group of three, the leftmost digit denotes
the hundreds, the middle digit the tens and the rightmost digit the ones.

The division into groups of three takes place from right to left, since the
relative weight of a digit depends on the number of digits to its right. There­
fore, assigning the relative weights to the digits is preferably also done from
right to left.

For this purpose we define the module to scan backwards, i.e., from right
to left (f-). The input of the module will be a normalized number, for instance
'1234567890'. The output must be a number where each digit is followed by
an indication of its relative weight, thus the previous number must be put
out as '1n2h3t4m5h6t7d8h9t0'. Here 'n' indicates milliard, 'm' million, 'd'
thousand, 'h' hundred and 't' ten.

The rules included in Table 5.! perform the task. First some often oc­
curring constructs are defined. D is an arbitrary digit, B is a boundary at
the righthand side of a trio, and DDD is a trio into which the hundreds and
tens are already inserted. Then the rules are stated. Each time, between
two digits the appropriate unit is inserted. Tens will be inserted before any
digit which has a trio boundary on its right side (the first rule). The first

142 Chapter 5 Evaluation

time this will be a space, but the second time a 'd' (the thousands marker)
will be present. Similarly, the hundreds are only inserted when the tens have
just been inserted, the thousands only when a space (or other non-segment)
delimits the trio, and so on. Note that this scheme makes use of information
provided by a previously applied rule. Note also, because of the left contexts
of all the rules, that only between two digits will unit-markers be inserted,
and that only one rule at a time can operate.

NUMBER_3: With these unit-markers the task of inverting digits can be
tackled. As stated, normally inversion takes place between 13 and 99, that
is around any place where now a 't' is present. However, this is not the only
place, for numbers consisting of 4 digits also exhibit this phenomenon. In
English 'one thousand two hundred' is as correct as 'twelve hundred', but in
Dutch the latter is preferable. This means that 1234, which is represented
by ld2h3t4 at this stage, should be transcribed to 2tlh4t3 in the next stage.
Note that apart from inversion the units have changed as well. This string
now codes twelve (2tl) hundred (h) four (4) and thirty (t3). Inversion around
the thousands-marker 'd' also occurs for numbers bigger than one million, the
digits of which for hundred-thousand and ten-thousand are zero: 1002300 is
pronounced 'one million twenty three hundred'. If one of these digits is not
zero, the thousands digit clings to the thousands trio: 1032300 is pronounced
'one million, two and thirty thousand, three hundred', and thus only the

Table 5.1: Module NUMBER_2: inserting unit markers.

definitions
= <-segm>

:~uJ
DDD=D,h,D,t,D

insertions
0 --+ t I D - D ,B
0 --+ h I D - D,t
0 --+ d I D- DDD,#
0 --+ m I D _ DDD, d
0 --+ n / D DDD , m
0 --+ o I D _ DDD ,n

5.2 Applications 143

'normal' inversion (within a trio) occurs. The normal and special inversion
can be expressed by the following two rules:

<+dig>i 't '<+dig>j - <+dig>j 't '<+dig>i (5.3)

d • . d [<+dig>j] < + Ig> t , , -,O -

d • . d' . I { o , h#, o , t } _ <+ Ig>J , t , <+ Ig>z (5.4)

The first rule deals with the normal cases and inverts all digits around a
't '. The second rule deals with the thousands case and replaces the thousands
marker by a tens marker. The exclusion of the zero in the focus ensures
that 'multiples' of thousands are not included. The left context ensures that
inversion only applies in the appropriate circumstances.

Since in ToorjP the i and j indices only select the unequal digits, one
additional rule is needed for the 1100, 2200, etc. cases:

. . [<+dig>i] <+dig>z, d, ...,0 -

d . . d' . I { o, h#, o , t } _ <+ Ig>z,t,<+ 1g>z (5.5)

Note that for normal inversion such a rule is not necessary, since in the cases
of 11, 22, etc., nothing needs to be changed.

This module, too, must scan from right to left (+-). If it were scanned
forwards, rule (5.3) would perform normal inversion inside the second trio of a
number like 1002345 (. 002 ... - . Oh0t2d ... - . Oh2t0d ...) which is not the
intention, in this case. If the input string is scanned backwards, the desired
effect will be achieved, since now rule (5.4) applies at the appropriate place
and blocks rule (5.3) from working in the second trio. This is shown in the
derivation below. The internal situation, when the inversion module is called
for, is shown in (5.6).

input:

output:

1 m 0 h 0 t 2 d 3 h 4 t 5
l (5.6)

Now, rule (5.3) applies, plus an additional copy action, which is performed
since there are no rules which apply for the 'h':

144 Chapter 5 Evaluation

input: 1 m 0 h 0 t 2 d 3 h 4 t 5

r (5.7)
output: h 5 t 4

Then, rule (5.4) applies:

input: 1 m 0 h 0 t 2 d 3 h 4 t 5

r (5.8)
output: 3 t 2 h 5 t 4

Rule (5.3) now cannot apply any more because the matching position has
been advanced too much to the left. Thus, the other digits and unit markers
will simply be copied.

NUMBERA: The and-insertion is governed by the next module. There is one
small point of attention. In Dutch we say 'six teen' to 16 but 'six and twenty'
to 26. Only numbers above 20 have an 'and'-insertion. Further, multiples
of 10 also lack the 'and'; we don't say 'zero and twenty', but just 'twenty'.
Nevertheless, one rule suffices, (5.9):

t &,t I [D]
·0

(5.9)

At this stage, the digits have been inverted, thus the restriction of a mul­
tiple of ten is imposed by the left context and the restriction of 20 and greater
by the right context. The additional restriction that it concerns digits is to
ensure that normal text containing a 't' will not receive an additional & (the
symbol coding the 'and').

NUMBER_5: The module for spelling out the numbers has now become fairly
straightforward. The units are marked, digits are inverted, the 'and' marker
is inserted, and thus most of the symbols just code a sequence of letters. The
only part which needs some attention is the units whose value is zero or one.

Generally, if a digit is zero, the accompanying unit marker should not be
pronounced. This can be dealt with using the following rules:

O,h
t,O
zero

0

0

0

(5.10)

(5.11)
(5.12)

When all three digits of a trio are zero, the unit marker accompanying the
trio must not be pronounced either. This is accounted for by rule (5.13):

5.2 Applications

d
m

O,h,O,t,O, n
0

145

--+ 0 (5.13)

In contrast to all other zeros, a single zero must be pronounced ('nul' is
the Dutch pronunciation for 'zero'):

zero --+ n , u, 1 I # _ # (5.14)

Finally, one extra rule is needed to deal with a special case. Numbers of
the type 1002345 have a slightly deviating form when they enter this module:
'1m0h0t3&t2h5&t7'. The '0' between the 'h' and the 't' denotes tens (of
thousands). This is in contrast to all other digits before a 't', which denote
the 'ones' due to the inversion. Only in this specific case, consisting of numbers
with two zeros on the fifth and sixth digit (... DOODDDD), no inversion has
been applied (in the trio of thousands) and therefore the zero and the 't'
should be deleted:

O,t --+ 0 I - D,(&),t (5.15)

The right context specifies the circumstances in which this should happen.
Only when a tens marker is followed by a digit and another tens marker is
this the case.

When a digit's value is one, this number is generally pronounced. An
exception to this is when it concerns hundreds and thousands. In Dutch we
say 'hundred three and twenty' to '123' rather than 'one hundred ... '. This is
expressed in rule (5.10):

1 --+ o 1 (5.16)

Here, too, one special case has to be dealt with. In numbers of the form
' ... DOOlODD' the '1' may not be pronounced as it denotes 'one thousand' just
like the previous case. The '1', however, has become separated from the 'd':
' ... DmOhltOdOhDtD', since normal inversion has been applied. Therefore,
only if the '1' is enclosed by two zeros must it be deleted. However, by the
time we reach the '1' in the rule base, part of the string will already be spelled
out (the part to its left). In the left context we only have available the spelled­
out form. Thus, the spelled-out form of 'h' (= honderd) may not be present,

146 Chapter 5 Evaluation

since when it is, apparently the digit of the hundreds is not zero. In the right
context the second digit, originally directly to its left, must also be zero. This
is expressed in (5.17):

1 -+ 0 / ...,[h, o, n, d, e, r, d] _ t, 0, d (5.17)

Now, spelling out the codes is trivial, and consists of some thirty rules of
the following type:

5 v,i,j,f

t '5 v' i ,j 'f' t 'i' g

The full rule set of module NUMBER_5 is included in the appendix.

Discussion

(5.18)

(5.19)

Looking at the functionality of the modules we can observe the following. The
task of the first two modules, normalizing and determining the units, needs
to be done in all languages using arabic numbers. Inversion of digits and
'and'-insertion, which is achieved by the next two modules, is necessary for
Germanic languages. The last module is language-dependent but rewriting it
for another language will mainly consist of translating the spelling of numbers.
So, for instance, German numbers can be handled by translating the last
module. The same goes for English numbers, only in this case the third and
fourth module can be omitted.

It would be too strong a conclusion to put forward that spelling out num­
bers is solved for all languages using arabic numbers, since many languages
will probably have their own specific exceptions. In French, for instance, num­
bers between 90 and 100 ('quatre vingt dix neuf') behave so differently from
the numbers between 20 and 90 that this cannot be handled elegantly in the
language dependent module. Probably this would motivate a separate '90-
exception' module. The scheme, however, of describing different phenomena
in separate modules is of course advantageous, and can probably be followed
for a large number of languages.

As to the implementation in Toorj.P some further observations can be
made. In the first place the possibility of scanning the input from right to
left is advantageous. In spite of the fact that we read from left to right in
many languages, some phenomena can be dealt with better from right to left.
Integer numbers, which have their anchor at the right side, are an example of
this, but also stripping suffixes can be done best from right to left.

A second observation is that using the output buffer as a reference for
those contexts for which it already contains information-as explained in the

5.2 Applications 147

previous chapter, and which for the user has the functionality of working with
one string, in which the transformations are available directly-is generally
advantageous, too. The unit insertion module advantageously makes use of
this by referring to the last inserted unit marker. Thus the rules become sim­
pler, and therefore more transparent and faster. Only in one case, rule (5.17),
one might argue that the rule becomes more complicated than necessary.

A third observation is that metathesis, inversion of characters as exem­
plified in rules (5.3) and (5.4), is advantageous for a number grammar. In
fact, it was first implemented when this application was developed, for in the
conversion of normal words into a sound representation this had not yet ap­
peared to be necessary (nor has it been used in the final set of rules). The
alternative for rule (5.3) would in this case be an enumeration of 90 special
case inversion rules of the type:

5,t,6 ~ 6,t,5 (5.20)

which is, of course, not very elegant.

5.2.2 Linguistic modules

Functionality

The central part of the conversion system consists of the linguistic modules
which perform the grapheme-to-phoneme conversion (see Fig. 5.1). This com­
prises a crude morphologic analysis, letter-to-sound transcription and stress
assignment. The great majority of the 550 rules which define the total con­
version are included in these seven modules.

The first three modules are a rule-based approach to the morphological
problem. By means of rules it is attempted to determine the important mor­
phological boundaries. No morpheme lexicon is utilized. Of course, in the
morphological sense errors will be made, but for grapheme-to-phoneme con­
version it does not seem necessary to have the full morphologic structure of
the word available in all cases. Some boundaries are crucial in the sense that
missing them will introduce a pronunciation error, other boundaries are not.
The first three modules aim at locating these important boundaries.

Since prefixes and suffixes form a relatively small and closed group they can
be identified reasonably elegantly by means of rules. Morpheme boundaries in
compound words (which occur frequently in Dutch) can often be determined
on morphosyntactic grounds. The sequence 'kp', for instance, does not occur
in Dutch morphemes, and therefore a morpheme boundary between these two
letters may be assumed. Combining the two, stripping affixes and applying

148 Chapter 5 Evaluation

morphosyntactics, it appears (Berendsen, Lammens & Van Leeuwen, 1989)
that only few crucial boundaries are missed.

The first 'morphological' module is the largest of aJ1 modules and scans
the input from right to left (+-). It strips the suffixes and inserts morpheme
boundaries. The boundaries which are inserted before the suffixes, differ,
where needed, in coding in order to indicate whether the suffix is stress­
bearing, stress-attracting or stress-neutral. The second module scans its input
(this is the output of MORPH_1) from left to right (-+) and strips the prefixes.
The last morphological module serves to delete some of the boundaries which
were inserted wrongly by the previous two modules, which apparently were
too difficult to exclude at the appropriate stage.

The fourth module, GRAPHON, deals with the second major task, the
letter- to-sound transcription. Since most of the morpheme boundaries are
placed correctly, this module consists to a considerable extent of relatively
simple rules, without too many context restrictions. Quite some effort, how­
ever, is put into controlling the pronunciation of loan words, which in Dutch
are extracted from several foreign languages.

The last task, assigning word stress, is separated into three modules, too.
Rather than assigning stress to a syllable, stress is associated with vowels in
this implementation, since accent-lending pitch movements are related to the
vowel onset in Dutch ('t Hart & Cohen, 1973; 't Hart & Collier, 1975). Stress,
in Toor}P, is implemented by means of labels rather than by inserting special
characters as is done with the morpheme boundaries.

The assignment of stress is more or less an implementation of the cur­
rent theories on stress assignment in Dutch (Nunn, 1989; Kager, Visch &
Zonneveld, 1987), expressed in the Toor}P formalism. Not every notion of
non-linear representation, such as binary feet, can be expressed in Toor}P,
but the effect of heavy and super-heavy syllables can be captured in the rules.
In principle, primary and secondary stress are distinguished. In the first mod­
ule, all vowels (except the schwa) are marked such that they can potentially
bear stress. Then, in the second module, rather than directly marking pri­
mary stress, the appropriate vowels are marked with secondary stress, making
use of the previously inserted morpheme boundaries. In the last module, the
appropriate secondary stress labels are raised to primary stress and other
vowels (which have not received any stress at all) are reduced or shortened.

Discussion

Since these modules constitute the main application, it is interesting to study
the rules which constitute these modules, for they reveal which constructs are
often used and therefore useful in practice, and which are not.

5.2 Applications 149

Two of the observations made for the rule grammar can also be made here.
By having the applied transformations available directly, and by being able
to scan the input in inverse order, suffixes can be stripped off recursively. The
suffix boundary which is inserted by one rule triggers a next, similar rule.

Another observation is that macro patterns, which abbreviate frequently
used constructs, are used extensively. Not only the more common voc (vowel)
and cons (consonant) definitions, but also more complicated structures are
used to indicate well-formed consonant clusters, syllable boundaries and vowel
clusters.

Next, nearly all constructs which are available to the user are employed,
the operators presented in chapter 2 are used frequently throughout all mod­
ules. In one of the stress modules, extensive use has been made of the
possibilty to refer to graphemes and phonemes simultaneously. The two­
dimensional notation in which alternation and simultaneity is expressed has
been used to good advantage for devising patterns that would be utterly un­
readable in a one-dimensional representation.

5.2.3 Other possible applications

Virtually any rule-governed segmental conversion scheme can be defined in
Too:[jP. Apart from the applications which have been discussed above, Too:[jP
can therefore also be used for other purposes. In the first place it can be used
to describe or deal with other processes in a text-to-speech system, such as the
recognition and spelling out of abbreviations, other types of numbers (tele­
phone numbers, reals, etc.), or addresses. In the second place it can serve
as part of other modules in the text-to-speech system. For instance, Too:[jP
could be used to perform morphological tasks, such as correcting for root mu­
tation due to affixation, or deriving the singular forms from the plural. Also
applications outside the text-to-speech range can be thought of. For exam­
ple, one could build a module which can recognize syllables, with which one
could build an automatic hyphenation machine. Another possibility might be
to automatically determine inflectional forms. Or one can go the other way
around and define phoneme-to-grapheme conversion. Also, a braille trans­
lation machine could be built, i.e., a program that translates text files into
ASCII representative grade 2 braille files. Finally, also other rule-based sym­
bolic transcriptions might possibly be expressed with Too:[jP. For example,
Bliss-to-text or Dominolex-to-text might be possible. Although these last ap­
plications are somewhat speculative, a Bliss-to-text system has been reported
(Carlson, Granstrom & Hunnicutt, 1981), implemented with functions which
are either present in Too:[jP or can be simulated.

150 Chapter 5 Evaluation

5.3 The complementation operator

In chapter 3 the introduction of the complementation operator in the semi­
compositional formalism has been discussed. The semi-compositional formal­
ism is a compromise between the practical needs of excluding the explicit
nofits of a complemented structure and the theoretical elegancy of compo­
sitionality. It was decided to implement the semi-compositional formalism,
since on the one hand it would 'succeed' in excluding the explicit nofits where
the compositional formalism would 'fail', and on the other hand would fail
only on patterns which are highly unlikely to be specified in practice. The
patterns for which the compositional case would fail, however, are such that
can be expected to be used in practice, and thus it was felt that ToorjP should
be able to handle these cases.

Now that the first major application has been completed, it is interesting to
see how frequently the added functionality has been used. Added functionality
means the functionality provided by the semi-compositional formalism which
is not present in the compositional formalism. It is also interesting to see
whether, despite their low probability, patterns are used for which the semi­
compositional formalism fails.

It turns out that complementation is used quite frequently. In a total of
some 700 rules the operator is used 214 times (for comparison: this is twice
as often as the simultaneity, as often as optionality and one fifth as often
as alternation). Its use can be subdivided into three classes. The first class
is where complementation is used to exclude cases from a limited set, for
instance as in pattern (5.21)1 :

(5.21)

In other words, the universe to which the complementation 'operates' is pro­
vided by the user.

The second class is where complementation is used without explicitly spec­
ifying the universe and where the resulting pattern is consistent, as in pat­
tern (5.22):

1These three examples, (1>.21)-(5.23), are directly taken from the existing rulebase.

5.3 The complementation operator 151

-.a,a
-.o,o
-.u,u

-,[o, e], i (5.22)

-.{~},e

The third class is where complementation is used without explicitly spec­
ifying the universe and where the resulting pattern is inconsistent, such as
pattern (5.23):

{
i,n,g }

..., voc, <-segm> (5.23)

All complemented structures fall into one of these three classes. The first
class comprises 50% of all cases, the second 42.5% and the third 7.5 %. This
means that in 50% of the cases the complemented patterns are naturally
suited also for a compositional formalism where the universe is defined as
U = rJ*. If the universe were indeed defined as such, complementation could
only be used in practical situations if the universe is specified explicitly. Thus
it turns out that in 50% of the cases the user feels the need to do so anyhow.
On the other hand it probably also means that in the other 50% of the cases
he is glad that he does not have to do so.

In 92.5% of the cases the compositional formalism where the universe is
defined as in Table 3.IX is satisfactory, since in the additional 42.5% the
universe is not specified explicitly, and only consistent patterns result.

Only in 7.5% of the cases, 16 in total, does the functionality of the semi­
compositional formalism appear to be necessary. This is not a large number,
but nor is it negligible. No patterns have been specified of a complex form
(for instance, double complementation of inconsistent patterns) for which the
semi-compositional formalism is not adequate. This means that the practical
choice of implementing the compromise between practical needs and compo­
sitionality has not been invalidated by this particular application.

5.3.1 Conclusion

On the whole it can be concluded that the choice of defining the universe as
the character count of a pattern has been validated by practical use. Having to
define the universe for each complemented pattern explicitly would needlessly
burden the user and mistify the patterns. Furthermore, the choice to exclude
explicit nofits by means of the semi-compositional formalism has on the one

152 Chapter 5 Evaluation

hand not been invalidated, but on the other hand has not fully been validated
either, since this functionality has been needed too infrequently. Given the
theoretical objections to the semi-compositional formalism (not fully exclud­
ing explicit nofits, not being fully compositional, and its relative complexity),
it can be argued that these objections and the increased computational com­
plexity cannot be justified by the relatively small ergonomical advantages for
the user. With some rewriting these few cases can probably be made suited
for the compositional formalism.

5.4 Toor).P in relation to comparable systems

In this section TooJjP will be compared with a number of existing systems,
most of which are used as the grapheme-to-phoneme conversion component
of a text-to-speech system. The comparison will be guided by a number of
properties which characterize the functioning and possibilities of such systems.
First the systems will be introduced, and then each of them, including TooJjP,
will be viewed with regard to those properties.

The systems included in the comparison are all more or less high-level
rule-based systems. Systems which approach grapheme-to-phoneme conver­
sion, the main application of TooJjP, from a different angle, such as a lexicon­
based (Lammens, 1989) or morpheme decomposition approach (Pounder &
Kommenda, 1986), differ too much from TooJjP for there to be any point
in comparing them. Also, other systems which are rule-based, but in which
the rules are compiled by hand into a general-purpose programming language
(Daelemans, 1987; Riihl, 1984) do not have enough interface with TooJjP for
an interesting comparison. Finally, some well-known text-to-speech systems,
such as MITalk (Allen, Hunnicutt & Klatt, 1987), cannot be included in the
comparison as the linguistic contents rather than the technique of implemen­
tation have been described in literature. In the following order, the systems to
be compared with TooJjP are: Rulsys, Fonpars, SPL, Depes, TWOL, Delta
and Parspat. The first four systems, like TooJjP, are based on SPE-based
notations borrowed from generative phonology, whereas the latter three each
have their own approach to rule-based conversion. The systems will now be
introduced briefly.

Rulsys is the grapheme-to-phoneme conversion component of the multi­
lingual text-to-speech system devised by Carlson & Granstrom (1976),
(see also Carlson, Granstrom & Hunnicutt, 1989). It is one of the earlier
systems which provide an environment for the development of linguistic
rules. The rules are expressed by the user in a format borrowed from
generative phonology, to be compiled and executed by the computer.

5.4 ToonP in relation to comparable systems 153

Fonpars is the system developed in Nijmegen by Kerkhoff, Wester & Boves
(1984), especially for the linguistic front end of a text-to-speech system.
Like Rulsys, the rules are expressed in a phonological format. Here,
these rules are compiled into a Pascal program, which, in turn, needs to
be compiled to obtain an executable program.

SPL was developed in Copenhagen by Holtse & Olsen (1985) and closely re­
sembles the previous two. In correspondence with the above two sys­
tems, each rule operates on the output of the previous rule.

Depes was developed by Van Coile (1989) in Ghent and also belongs to the
SPE-based rule compilers. Inspired by the Delta System, instead of
having only one buffer available to store input, intermediate results and
output, the system supports multiple layers in which related informa­
tion can be stored and synchronized, for instance the relation between
graphemes, phonemes and pitch movements. Also, control structures
can be used to control the conversion process more freely.

TWOL was developed by Koskenniemi (1983) at the University of Helsinki
(see also Karttunen, Koskenniemi & Kaplan, 1987) and originated as
a morphological processor. It differs from the SPE-based systems in
that the rules are of a declarative nature rather than imperative. The
rules are therefore not ordered and can lead to conflicts; for instance,
two rules which both apply may want to change a character differently.
Such conflicts can be detected by a computer but must be resolved by
the user.

Delta is the system developed by Hertz in Ithaca, N.Y. (Hertz, Kadin &
Karplus, 1985). It was the first system to introduce a whole new ap­
proach to the linguistic front end of a text-to-speech systems. On the
one hand the multi-layered, synchronized data structure, called a delta,
was introduced, and on the other hand powerful control structures and
functions to manipulate the delta became available. The customary no­
tational conventions of generative phonology are lost, however, which is
partly due to the multi-layered data structure.

Parspat is a system developed by Vander Steen (1987) in Amsterdam. Rather
than devised only for grapheme-to-phoneme conversion the system is
meant to generate programs for recognition, parsing and transduction.
Grapheme-to-phoneme conversion is merely an application of this sys­
tem. This system is interesting as it emerged from computer science
rather than from the field of linguistics, and thus the solutions to some
problems differ from those in other systems. Like TWOL, the transcrip­
tion rules are declarative rather than imperative. An interesting aspect

154 Chapter 5 Evaluation

of the system is that a complementation operator has been introduced
fully in the regular expressions like formalism, be it in a different way
than proposed in chapter 3.

These seven systems plus ToorjP will be discussed with regard to some char­
acterizing properties, some of which will be subdivided. Not all systems can
be viewed for all properties, since not every detail is reported for every system
in the literature, but on the whole a reasonable overview can be given. Five
main properties will be considered.

1. The first property concerns the formalism or language in which the
linguistic knowledge must be expressed. This is subdivided into five
characteristics: (a) whether the formalism is based on the formal­
ism introduced by Chomsky & Halle (1968) in the Sound Pattern of
English, which became very popular in generative phonology. This
will be referred to as 'SPE-based'; (b) whether context specifica­
tions (patterns) are represented one-dimensionally or two-dimensionally;
(c) whether and under what circumstances complementation can be
used; (d) whether explicit control structures can be used to control the
conversion process; and (e) whether numerical functions can be em­
ployed.

2. The second main property concerns the central data structure on which
the formalism operates. This can be multi-layered or not. If it is multi­
layered, the system provides information on different levels of represen­
tation, which are possibly co-ordinated. If the system is multi-layered,
it will be discussed whether this induces the possibility of co-ordinated
use of the different levels in the formalism, and whether it can be used
to derive input-to-output correspondences.

3. The third property is the manner in which the linguistic rules are eval­
uated, i.e., if the rules are evaluated in order, if one can define the
scanning direction, and what assignment strategy is applied.

4. The fourth property concerns whether or not a system provides support
for the development of rules, and if so, which type of support is given.

5. The last property concerns some implementation features, viz. the com­
puter language of implementation and the nature of the internal opera­
tor, i.e., whether it is a compiler or not.

5.4 ToorJP in relation to comparable systems 155

5.4.1 The formalisms

As already mentioned, five of the systems are explicitly SPE-based, viz. Rul­
sys, Fonpars, SPL, Depes and ToorjP. TWOL has a representation which
resembles SPE-type rules, but they are of a declarative nature. This means
that they describe a relation between one representation and another rather
than a description of how to derive the output from the input. In TWOL the
application concerns the relation between a lexical representation (how the
entries are stored in a morph lexicon) and a surface representation (how the
entries are written, for instance wolf-s - wolves). Delta and Parspat have
more deviating rule formats. In Delta the rules are adapted to the program­
ming language, which makes them more powerful but somewhat less readable.
In Parspat the rules are expressed in the 'unifying formalism' described in Van
der Steen (1987), which resembles the declarative BNF notation for Chom­
sky type-0 grammars. However, for both Delta and Parspat SPE-type rules
can be transformed into the local formalism to produce the same effect. Ex­
cept ToorjP, none of the systems feature a two-dimensional representation
of patterns. As argued in chapter 2, a two-dimensional representation takes
more space and (off-line) computational effort, but results in more transpar­
ent rules; vertical positioning denotes alternatives for the same position or
co-ordination between two layers, and horizontal positioning denotes juxta­
position. For comparison, in each formalism the pronunciation rule for the 'c'
which precedes an 'e' or an 'i' has been expressed in Table 5.II.

Most systems feature more or less the same operators to specify patterns
as provided by ToorjP (see chapter 2). The complementation operator, how­
ever, is interesting since its introduction gives rise to unexpected problems,
as discussed in chapter 3. Therefore, the presence and status of this opera­
tor has been investigated for the systems being compared. Not all reports in
literature are as detailed, and in particular with respect to the complementa­
tion operation information is scarce, so the result will be presented with some
reticence.

Most probably, SPL does not feature complementation as an operator. In
an internal report (Holtse & Olsen, 1985) the language's syntax is described,
which does not mention a complementation operator. Probably, the same goes
for Rulsys, Depes and TWOL, but here the available information was less de­
tailed, none of which contained any reference to complementation. In Fonpars,
Delta and Parspat complementation is available. In Fonpars a restricted ver­
sion is available in the sense that only constructions which contain strings of
equal length may be complemented. This is more restricted than demanding
patterns to be consistent, but syntactically less involved. In Delta, inconsis­
tent patterns may be built, but from the documentation (Hertz, 1989) it is

......
CJI
O'l

Formalism Expression Remark

Paper & c ---"* s I {~} A 'c' is pronounced as an 's' if it is
Pencil - followed by an 'e' or an 'i'.

O't-3
'"I ~ 8
i:l' ('!>

~c.rt
rJl •

~ !=::
0
0

crule: apply rule only once

Rulsys crule c -> s I e 2 rules: The presence of an alter--crule c -> s I - i native operator could not be estab-

~
~.
rJl

§
lished in the literature.

Fonpars c -> S I --- {eli}
---: focus mark
I : separates alternatives

('!>
:<
'0
~
1.ll

replace c I e -> s replace: type indication of the rule.
SPL - Structural change and context have

replace c I - i -> s
been exchanged.

I='
oq
i:l'
'0 e; ,..
(')

Focus and change field are enclosed
by ' I ' markers.

De pes I c I l<2:s>l I _ {e,i}
c ---> <2: s>: a 'c' in the default

---> first layer (graphemes) will be asso-

l::! e; Q a {;
a> """ s· ~

dated with an 's' in the second layer
(phonemes). ~ ""

c;· t;rj
l::! et rJl

;:::
i:l'
"""
§

Formalism Expression I Remark

A colon (:) separates the two layers.
Therefore the rule states: a 'c' in the

TWOL c:s <= _ e: I i:
input layer is always (<=) associated . with an in the second layer, if the

is followed by an 'e' or an 'i' in
input layer.

_-1: the anchor of the expression,

_-1 !~2 {eli} ->
assumed to be positioned to the left

Delta c of the
insert [s] ~1 ... -2

,-2: sync mark to the right of
is stored in -2.

BNF-like notation. The presence of

Parspat c,S,Rc1 .. c,Rc1. the 'c' in the left-hand side of the
Rc1 .. e I i. first expression is not understood by . .

the author.

The 'or' braces have to be don-
Toor.W

c -> s I _ {e} bled to simulate the large enclosing {i}
braces.

158 Chapter 5 Evaluation

unclear what the expressions mean. In Parspat complementation is defined
exactly in accordance with Table 3.V, in other words in the compositional
extension of regular expressions. As argued, this definition is not satisfactory
for inconsistent patterns, but it is unclear whether this has been recognized
in Parspat.

A fourth aspect is the possibility to use control structures, i.e., the pos­
sibility to explicitly control the conversion process. In generative phonology
these are not present, and only in Depes and Delta are they fully available,
due to the programming language character of the formalism. In Rulsys and
SPL some control is possible by indicating whether the rule should be applied
once or cyclically (Rulsys) or whether the rule is obligatory or optional (SPL),
but this can hardly be counted as full control structures. In the other systems
(except perhaps Parspat) flow of control is determined by the system itself
and cannot be manipulated by the user.

A final aspect which characterizes the formalisms is whether or not numer­
ical functions are available. For front-end linguistic processing this generally
is not necessary, but in more phonetic processing, such as control of segmental
duration, such functions are needed, and discrete segments are still the main
units. Therefore, several systems which originated for linguistic purposes have
evolved to be able to deal with more phonetically oriented rules. Examples
are Rulsys, SPL and Fonpars. A future version of Delta has also been an­
nounced to support these facilities. The other systems either do not mention
such facilities, or do not support them (ToorjP).

5.4.2 Central data structure

A mutli-layered data structure is a convenient mechanism to be able to access
derivational information in the rules and to be able to determine input-to­
output relations. For this purpose the system should ensure that synchro­
nization between buffers is reliable-this is the consistency requirement of
4.4.2. For instance, if a character is inserted in one layer, some of the charac­
ters in the other layer must be re-associated with the characters whose indices
have changed.

Of the eight systems, Rulsys, Fonpars and SPL do not have a multi-layered
data structure. TWOL and ToorjP both have two layers and keep the syn­
chronization consistent. Depes and Delta leave it to the user to define the
number of layers. Parspat probably has a notion of multiple layers, that is, it
could not be found explicitly in the literature, but in some examples it shows
that one can refer to graphemes as well as phonemes within one rule. All
systems with multiple layers support buffer switching. Depes and Parspat are
unclear as to whether co-ordinated information can be used, such as referring

5.4 Toorj.P in relation to comparable systems 159

to an jo:f which is derived from 'eau'; the other three support co-ordination.
As to overall input-to-output relations, in Depes and Delta one can write a
program to compute these. Toor}P provides an option to file these relation­
ships. Parspat and TWOL are unclear as to this facility.

5 .. 4-3 Inference mechanisms

Two different inference mechanisms are used to evaluate the rules in the sys­
tems which are included in the comparison. Declarative rules are evaluated
in parallel, imperative rules sequentially. Declarative rules describe a relation
between input and output, and can therefore often be used in two directions.
In TWOL, for instance, the same morphological rules can be used to derive
the surface structure from the lexicon structure (wolf-s --t wolves), or to de­
rive the possible set of lexical structures from the surface structure (wolves
--t wolf-sjwolv-sjwolves). Declarative rules are not ordered, that is, they are
applied in parallel rather than sequentially. This has the disadvantage that
rules can easily be conflicting and therefore have to be disjunct for the pur­
pose of grapheme-to-phoneme conversion. For instance, the character 'c' can
give rise to quite some pronunciations: /s/, /k/, ///, /x/, etc. In sequential
systems one can first deal with one case (for instance, when 'c' is followed by
'e' or 'i') and then consider the remainder of the cases-which means one does
not have to consider the previous cases, since those have already been dealt
with, and therefore the individual rules can be simpler.

On the other hand, imperative mechanisms only describe the path from
input to output, not the other way around. Also they are much more deter­
ministic by nature and therefore less suited to deal with ambiguities. Within
the sequentially evaluated imperative systems there are two strategies. One is
the 'rule-by-rule' mechanism, where the input string is completely dealt with
by the first rule, before the output is dealt with by the next rule. The second
mechanism is the 'segment-by-segment' mechanism where the first character
consults all rules from top to bottom before the second character is dealt with.
Both strategies can be useful, depending on the application. Finally, the pos­
sibility to determine the scanning direction is of interest, since for certain
applications, such as stripping suffixes, scanning backwards is convenient.

TWOL and Parspat are of a declarative nature, evaluating the rules in
paralleL The other systems are of an imperative nature, and hence the rules
are inherently ordered. Most systems provide only rule-by-rule strategy, only
Fonpars also provides a segment-by-segment strategy. Toor)P provides the
segment-by-segment strategy, modules can be utilized for crucial ordering. Of
the imperative systems most provide both forward and backward scanning,
only SPL and Fonpars do not.

160 Chapter 5 Evaluation

As to dealing with ambiguities, TWOL and Parspat are well suited to
generate and handle them, due to their inference mechanism. SPL has a
mechanism in the imperative setup to express the possibility of ambiguities.
By means of defining a rule as 'optional', both the input and the output of
the rule will be input for the following rules.

5.4.4 Development support

As the support which the various systems offer for rule development is scarcely
documented in the literature, comparison of this characteristic cannot be com­
plete.

Most systems, however, will probably feature some kind of syntax checking
and accompanying error messages, since without it large sets of rules can
hardly be debugged even on the syntax level. In ToorJP, when a syntax error
has been encountered, the file, place and nature of the error are reported. In
some cases, the error triggers some additional errors, but these will only occur
within the rule in which the first error occurred. The other rules are parsed
as if no error had occurred, so each first error of a rule can be taken seriously,
and generally most error messages are of diagnostic value. In Delta, on the
other hand, one syntax error generally triggers a whole lot of others (in the
user manual the user is warned against this), so here generally only the first
error message is diagnostic. This has the disadvantage that each real error
will generally take an edit session and a compiler run before the next one can
be identified.

Once a program (set of rules) is syntactically correct one is set to the task
of making it semantically correct, that is getting the program to do what you
want. Despite the rare occasions that this is reached at once, some effort is
generally needed to reach it. The output of the program tells you something
is wrong, but often does not give a clue about why and where it went wrong,
so one will either have to reduce the program to the simplest version that
still contains the error (in which case the error often is discovered) or one can
advantageously use some debugging tools to analyse the larger and erroneous
program directly. Only when the latter fails does one turn to the former
strategy.

As to the debugging tools, two classes can be distinguished. One class is
that of the tracing facilities, the other is often called the debugger. A tracer,
when activated, reports the intermediate stages during conversion, reports
which are generated by the system rather than by the user. Debuggers typi­
cally interrupt the program, whereupon the user can investigate the internal
status by examining variables. Tracers are typically used in special-purpose
programs, where flow of control is more or less the same for all applications,

5.4 Toor.jP in relation to comparable systems 161

and the number of central data structures is limited, so that special display
routines can be devised. Debuggers are typically used in general purpose
programs, where both control flow and data structures are user-determined.
Tracers can often display the relevant information quickly and transparently,
whereas debuggers only interrupt the program, whereupon the user must
search the relevant information interactively. On the other hand, tracers are
pre-programmed; if for some reason there is no access to sub-parts of the pro­
gram in which the error happens to be located, the user has no other option
but to reduce the program. Debuggers do have access to all parts, so gener­
ally the user never has to decide upon the laborious reduction of his program.
Thus, on the whole, debuggers are less user-friendly but more powerful.

Of the eight systems, Fonpars, Parspat and TWOL do not report any de­
bugging facilities. Depes and Delta feature a debugger where the breakpoints
can be set and examined at run-time, so no compilation is needed for each
new examination. Rulsys, SPL and ToorjP feature a trace facility. The exact
nature of the trace facilities in Rulsys and SPL are not reported, but in both
cases it is claimed that quite a detailed view of the actions performed by the
system may be obtained.

On the trace facilities of ToorjP chapter 2 was not very specific and there­
fore some additional information will be given here. ToorjP distinguishes
normal input from commands. Commands start with a dot followed by some
mnemonic code indicating the type of command;' .h', for instance, gives help
on the mnemonic codes by producing a list of commands which are available
to modify the system's settings.

Locating a semantic error is done in three steps. First the module in
which the error occurs must be determined. For this purpose '. m' must be
typed, whereupon the intermediate results of each module are printed. The
module in which the error is located can be identified. Next, the rule which
is erroneous can be identified by invoking the tracer with ' . t '. The user is
prompted for the erroneous module. For that module a shorthand status
report of each rule is given. If a rule has been applied its ranking number and
its contribution to the output buffer is printed. If a rule has not been applied
the pattern which did not match is printed: 'f' is the focus pattern failed, '1'
for left context, 'r' for right context.

A more detailed view of a rule's operation can be obtained by invoking
the second level of the tracer. Once again giving the command ' . t' will
achieve this ('. t1' and '. t2' are the explicit commands; '. t' increments the
tracing one step to a maximum of two). Now, for a specific character and
for a sequence of rules (for which the user is prompted) a detailed report
on the rules operation is given. This may lead to a respectable amount of
information (all primitive matching values are reported, as well as all operator

162 Chapter 5 Evaluation

constructions and their conclusions), but generally the selection of the rules to
be reported can be so limited that the information flow is not overwhelming,
and on the other hand the report is minute enough to pinpoint the error. In
the experience of users this three-step strategy is an efficient way to locate a
semantic or conceptual error.

The final step in program development is, when it is semantically correct,
improving the efficiency of the program. Rulsys reports that statistics of rule
productivity can be gathered, the other systems do not report on tools for
this purpose. As touched upon in chapter 2, ToorjP features a rule coverage
analysis, which reports on the frequency with which individual rules are con­
sulted. Like the trace facility, it can be invoked by a single command '.lr'
(log rule coverage). The frequency rule consultations are then filed for all
input cumulatively. Thus the infrequently consulted rules can be identified
and be rewritten and rearranged. With this tool the efficiency of the existing
grapheme to phoneme conversion rules has been increased by some 20 %.

5.4.5 Implementation aspects

As to the implementation, not many details are provided, either. Often,
only a schematic and short section is included on the implementation, which
states the language of implementation and gives a crude sketch of the sys­
tem's architecture. Not much more than a list of facts can be given here. The
choice of programming language is often influenced by the local conditions
and acquaintance of the programmer with programming languages. One con­
sideration which is heard is that the program should be transportable, but in
this sense the generally known programming languages do not differ greatly.

SPL and Rulsys do not specify in which programming language they are
implemented. TWOL is implemented in Lisp, Delta inC, and the other four
systems in Pascal. As for ToorjP, apart from acquaintance with the language,
a consideration has been that list structures and recursion is needed in extent,
which is supported by Pascal. On the other hand it has been suggested
that the unifying capabilities of Prolog might be very well suited for pattern
matching. Apart from some uncertainty as to the execution speed, there
seems no real reason why it could not have been implemented in Prolog as
well.

All systems have been implemented as a compiler, except ToorjP which
can be described as a compiler/interpreter. This topic has been discussed in
the previous chapter, section 4.5. An advantage of an interpreter-like scheme
is that on-line editing of rules is easily implementable. The price to be paid
is often a slower execution of run-time. For the development of rules the

?I

""' Rulsys Fonpars SPL TooiJP Depes TWOL Delta Parspat

SPE-based yes yes yes yes partly no no yes
Two-dimensional no no no no no no no yes

at? ~
.,...0"' ~-~="-(!) (!) 'i::l

Complementation no restr. no no no special stfw. full
Control structures rudim. no no yes no yes no-+ no
Numerical functions yes yes yes no no future no no

Multi-layered I no no no yes yesg yes pro b. yes
Co-ordination - - ? yes yes ? yes
Derivational history - - progr. ? progr. ? yes

Rule ordering yes yes yes yes no yes no yes
Scanning direction ? -t - +-+ parallel +-+ parallel -Assignment strategy 1 rbr rbr/sbs rbr rbr - rbr - sbs/mbm
Ambiguities no no partly progr. yes progr. yes no

Syntax diagnosis ? no ? ? fragile yes ? yes~
Trace facility yes no yes no ? no ? yes
Debugger no no no yes ? yes ? no
Efficiency support yes ? ? ? ? ? ? yes

"0 01, ;......; i:l
0,

"0 ~ ~ (!) a. o l!ll
(!) 0 0
Cll s i:l
P.."'
[ii' e; 0
n n
,:: Cll 0
gj § ~ (!)

P-O"'

~ ('!) i:l .,...
.,... ~ g
I=" ill ('!)
('!) i:l

~ .,... .,...
~ I="

!)j
.,...('!)

~ (I)
<§. .,...

CfJ
"<
~
(I)

Implemented in ? Pascal ? Pascal Lisp c Pascal Pascal ~
Compiler /interpreter c c c c c c c c/i 0

i:l .,...
restr. = restricted

rbr rule-by-rule
stfw. straightforward = = sbs segment-by-segment
pro b. probably = = mbm module by module
rudim. = rudimentary

? could not be established from the literature
programmable = progr. =

I="
(I)

0"
~
Cll

1-'
O'l
c.:>

164 Chapter 5 Evaluation

first argument is more important, for operation in an application such as a
text-to-speech system the latter may be of more importance.

5.4.6 Conclusion

The most important characteristics have now been reviewed. For an overview,
they are included in Table 5.III for all systems included in the comparison.
By way of conclusion the merits of Toor}P can now be enumerated. Toor}P
is a system which fits in the SPE tradition. The rules are expressed in a
formalism which is familiar to linguists, the main users of the system. Two
features of the formalism are characteristic for Toor}P and are not present
in other systems. One is the two-dimensional representation of 'and' and
'or' structures, and the other is the definition of complementation, the 'not'
structure. Either the problem discussed in chapter 3 has not been recognized
or it has not been elaborated on, but the solutions encountered in the various
other systems are of a different nature of the solution in Toor}P.

Another characteristic of Toor}P is the support of a two-level data repre­
sentation, one for graphemes, the other for phonemes. With it, grapheme-to­
phoneme relations are available, both for usage in the rules and for statistical
purposes. In this respect two other systems might be compatible, be it that
for statistical purposes the user must probably write his own program. Fur­
thermore, TooJJP provides relatively extensive development tools. Apart from
clear diagnostic messages on the syntactic level and a powerful trace facility
for semantic debugging, TooJJP also features a rule coverage analyser to im­
prove the efficiency of a rule set. Most of these features are rarely touched
upon by reports on the other systems.

Finally, Toor}P is restricted to deterministic symbol manipulation. It does
not feature control structures in its formalism, nor numerical functions to
specify for instance durational rules on the segmental level. From the input
exactly one output is generated and thus ambiguous pronunciations cannot be
generated. Furthermore, TooJJP does not provide any tools to represent tree­
like structures which are typically desired in syntactic analysis of sentences.
Toor}P, therefore, is suited for front-end linguistic processing in a text-to­
speech system, which does not need tools to perform a complicated struc­
tural analysis. So typically TooJJP is suited for the applications it has been
used for, such as spelling out acronyms, numbers, abbreviations, inserting
boundaries on morphosyntactic grounds, performing grapheme-to-phoneme
conversion and assigning word stress, but it is less suited to perform full mor­
phological or syntactical analysis in order to improve grapheme-to-phoneme
conversion or insert phrase boundaries and determine sentence accent.

5.5 Possible Extensions 165

5.5 Possible Extensions

This last section will discuss some possible future extensions of ToorjP. It
comprises five topics concerned either with improving the system or extending
it along natural lines.

5. 5.1 Rule-by-rule assignment

As mentioned in chapter 2 and in the previous section, processes can be
crucially ordered, that is one process must be finished before the other can
apply. For this purpose ToorjP features modules; the next module will apply
only when the current has fully been applied. This is the only mechanism in
ToorjP to express crucial ordering. Despite the limited number of modules
needed in a full-grown application it might be attractive to implement a more
direct mechanism to express crucial ordering. In the current implementation
some modules consist of only one rule, for instance NUMBERA, as this rule
must be applied after NUMBER __ 3 and before NUMBER_5. Also, a user who
is accustomed to specifying in a crucially ordered manner does not want to
create a module for each rule-which is a separate file for each module in the
current implementation. The user retains more overview when such crucially
ordered rules can be included in one file.

A possible solution to this is to allow the user to indicate for each group
of rules in a module how to process them, either in the rule-by-rule strategy
or the segment-by-segment strategy. Internally, the crucially ordered rules
can be interpreted as a separate module for each rule which gives them the
desired functionality, but for external (debugging) purposes the rule must be
accessed via the module in which they are included. This will probably require
little effort for the functional implementation but somewhat more for the user
interface.

5.5.2 Simultaneous operator

One of the functions of the simultaneous operator is to express co-ordination
between graphemes and phonemes, and it has been used rather frequently for
instance for the purpose of stress assignment. While the operator is satisfac­
tory for co-ordination and exclusion (such as "any consonant but 'c' "), the
operator is not satisfactory for expressing non-synchronization, such as "the
vowel 'II' which is not derived from 'ie' ". Currently, when a pattern like

[II]
[' [i, e]]

(5.24)

166 Chapter 5 Evaluation

is expressed, this is interpreted as "the vowel 'II' which is synchronized with
a sequence of two characters, the sequence 'ie' excluded". If the 'II' happens
to be derived from a 'y' or a single 'i' this pattern will not match.

One possibility is to express this pattern positively (and 'II' can only be
derived from a limited number of characters), but in other situations this
may lead to patterns of undesirable complexity, and moreover, in the line of
complete availability of negation this does not seem elegant.

Another possibility is to allow the user to explicitly denote non­
synchronization, for instance in the following manner:

+[II]
- [i ,e]

(5.25)

Here, the minus in front of the square brackets denotes the fact that the 'II'
may be synchronized with anything but 'ie'.

The introduction of such a mechanism involves some additonal theoreti­
cal work. Currently, the simultaneous operator is defined symmetrically to
the alternative operator, that is, analogously with appropriate exchange of
disjunction and conjunction operators. This also implies that the pattern
succeeding the simultaneous operator is put into braces. For the purpose
of synchronization and non-synchronization this might not be appropriate.
Perhaps an explicit distinction on the level of user programming between
simultaneity used as an 'and'-operator and simultaneity used as a synchro­
nization operator is desirable. Detachment of the succeeding pattern from the
synchronization operator, however, will have influence on the solution for the
introduction of complementation, the exact nature of which will have to be
studied closely before a satisfactory solution is found.

5.5.3 Extension of layers

In chapter 4 the architecture of a two-layered central data structure has
been discussed, including the mechanism used to synchronize them. This
architecture has been devised with the main application in mind, grapheme­
to-phoneme conversion. The first layer contains graphemes, the second
phonemes. Both data-types are user-defined.

With this, the kernel of a multi-layered data structure has been achieved.
Extra layers can be added without too much effort if the OS synchronization
mechanism is used to synchronize them. However, if the DBS synchronization
mechanism is used, this will involve considerable effort.

5.5 Possible Extensions 167

The extension of layers is not restricted to segments; there is no rea­
son why larger units such as morphemes (prefix/root/suffix) or words (lexi­
cal/number/abbreviation) should not be introduced. However, such an exten­
sion will also affect the formalism, which is the user's only tool for accessing
the data structure. Currently, graphemes and phonemes are disjunct, so ref­
erence to either does not need disambiguation. When extra layers are defined,
one possibility is that the elements they hold are disjunct to all other layers;
another possibility may be that a layer selection mechanism is included in the
formalism. The first solution may be undesirable in some applications, the
latter may obscure the rules to an undesirable extent. A practicable solution
might be a compromise of only having to disambiguate in ambiguous cases,
and encouraging the user to use as few as possible equal sequences in different
layers.

5.5.4 On-line rule editing

One of the characteristics of ToorjP is that the patterns are interpreted at a
certain leveL As argued in chapter 4, this property may well be capitalized by
implementing on-line editing and testing of rules. This can probably be done
with little effort, since the infrastructure is present. The rule to be edited,
inserted or deleted can be selected in the same way as the rules to be traced
currently are. The source text is available, so this can be read into the buffer
of an editor. When the rule has been adjusted the system can compile the
rule into its internal data representation and patch it over the old one so that
it can be tested.

Of course, now the internal data differ from the original source. So a new
source must be produced. Several solutions for this are possible. A safe and
disk-space-friendly manner seems to be to store each change into a file with
an indication which rule in which module it concerns. This serves as a journal
file for recovery. Then, when the session is finished, like an editor, the system
may ask whether the changes must be stored. For each module in which a
rule has changed the system can generate the new source by appending all
individual source texts.

5. 5. 5 Compiler implementation

An opposite extension is also possible, not serving the development tool but
serving the run-time performance. When a rule set has been developed and
performs satisfactorily, there is no reason why all development support tools
should still be available. Therefore a full-compiler version of ToorjP is at­
tractive for implementation in the text-to-speech system. On the one hand

168 Chapter 5 Evaluation

all development support tools can be omitted, but the major part of the in­
crease in run-time performance may be expected of the implementation of a
full compiler.

One possibility is to follow the scheme of Fonpars, to translate the lin­
guistic rules into a Pascal program, which in turn is compiled into machine
code. An informal test, where a pattern was translated by hand into a Pascal
program, indicated an increase of speed by a factor of 6, which seems a rea­
sonable indication of the possible gain in speed with this approach. Another
possibility is to translate the patterns into finite state machines as is done in
TWOL. However this involves some theoretical work, since it is not clear be­
forehand how complementation should be translated to a finite state machine.
An estimate of the possible gain in speed is hard to give, since the theoretical
work has not been done yet, but it seems reasonable to believe that, since the
approach is more direct, the increase in speed will be greater than in the first
approach. However, the amount of effort will presumably be greater, too.

5.A lV!odule NUMBER_5

Appendix 5.A
Module NUMBER_5

169

In this appendix the full rule set of module NUMBER_5 is given. It serves to
spell out the number when all important processes have been executed, viz.
unit insertion, inversion and 'and' insertion. The rules follow below.

definitions
= <-segm>
D = <+cijf>

grapheme 0

O,h,O,t,o,{i} ~ 0
O,t ___. 0 I - D,(&),t
O,h ---> 0
zero ---> n , u , I I # _ #
zero ---> 0

grapheme 1

1 ___. o I _ {!}
1 ---> 0 I •[h, o , n , d , e , r, d] _ t , 0 , d
1,t,1 ---> e,l,f
1 ---> e,e,n

grapheme 2
2,t,1 ---> t,w,a,a,l,f
2 ---> t,w,e,e

grapheme 3
3,t,1 ---> d,e,r,t,i,e,n
3 ---> d,r,i,e

grapheme 4
4,t,1 ---> v,e,e,r,t,i,e,n
4 ---> v,i,e,r

grapheme 5
5 ---> v,i,j,f

grapheme 6
6 ---> z,e,s

grapheme 7
7 ---> z,e,v,e,n

grapheme 8
8 ---> a,c,h,t

170 Chapter 5 Evaluation

grapheme 9
9 - n,e,g,e,n

grapheme &
& - e,n

grapheme t
t,O - 0
t,l - t,i,e,n
t,2 - t,w,i,n,t,i,g
t,3 - d,e,r,t,i,g
t,4 - v,e,e,r,t,i,g
t,S - v,i,j,f,t,i,g
t,6 - z,e,s,t,i,g
t,7 - z,e,v,e,n,t,i,g
t,S - t,a,c,h,t,i,g
t,9 - n,e,g,e,n,t,i,g

grapheme h
h - h,o,n,d,e,r,d I D

grapheme d
d - d,u,i,z,e,n,d I D

grapheme m
m - m, i, I ,j , o , e, n I D

grapheme n
n - m, i, I ,j , a, r, d I D

grapheme o
0 - b, i, 1 ,j, o, e, n I D

References

Aho, A.V., Sethi, R. & Ullman, J.D. (1986). Compilers; Principles, Tech­
niques and Tools. Addison Wesley, Reading, Massachussetts.

Ainsworth, W.A. (1973). A system for converting English text into speech.
IEEE Transactions on Audio and Electroacoustics, AU-21, 288-290.

Allen, J., Hunnicutt, S. & Klatt, D. (1987). From Text to Speech: The
MITalk system. Cambridge University Press, Cambridge.

Berendsen, E., Langeweg, S. & Van Leeuwen, H.C. (1986). Computational
Phonology: merged not mixed. Proceedings International Conference
on Computational Linguistics 86, 612-614.

Berendsen, E. & Don, J. (1987). Morphology and stress in a rule-based
grapheme-to-phoneme conversion system for Dutch. Proceedings Euro­
pean Conference on Speech Technology 87, 1, 239-242.

Berendsen, E., Lammens, J.M.G. & Van Leeuwen, H.C. (1989). Van tekst
naar foneemrepresentatie, Informatie, To appear.

Brandt Corstius, H. (1965). Automatic translation of numbers into Dutch,
Foundations of Language, January 1965, 59-62.

Carlson, R. & Granstrom, B. (1976). A text-to-speech system based entirely
on rules. Proceedings of ICASSP 76, 686-688.

Carlson, R., Granstrom, B. & Hunnicutt, S. (1981). Bliss communication
with speech or text output. Quarterly Progress Status Report, 4, Royal
Institute Of Technology, Stockholm, Sweden, 29-38.

Carlson, R., Granstrom, B. & Hunnicutt, S. (1989). Multilingual text-to­
speech development and applications. Internal Report, Royal Institute
Of Technology, Stockholm, Sweden.

Chomsky, N. & Halle, M. (1968). The Sound Pattern of English. Harper &
Row, New York.

Daelemans, W. (1987). An Object-Oriented Computer Model of Mor-
phophonological Aspects of Dutch. Ph.D. Dissertation, Katholieke Uni­
versiteit Leuven.

172 References

Elovitz, H.S., Johnson, R., McHugh, A. & Shore, J.E. (1976). Letter-to­
sound rules for automatic translation of English text to phonetics. IEEE
Transactions on Acoustics, Speech and Signal Processing, ASSP-24(6),
446-459.

't Hart, J. & Cohen, A. (1973). Intonation by rule: a perceptual quest.
Journal of Phonetics, 1, 309-327.

't Hart, J. & Collier, R. (1975). Integrating different levels of intonation
analysis. Journal of Phonetics, 3, 235-255.

Hertz, S.R. (1981). SRS text-to-phoneme rules: a three-level rule strategy.
Proceedings of ICASSP 81, 102-105.

Hertz, S.R. (1982). From text to speech with SRS. Journal of the Acoustical
Society of America, 72(4), 1155-1170.

Hertz, S.R., Kadin, J. & Karplus, K. (1985). The Delta rule development
system for speech synthesis from text. Proceedings of the IEEE, 73(11),
1589-1601.

Hertz, S.R. (1989). The Delta System. User Manual.

Holtse, P. & Olsen, A. (1985). SPL: a speech synthesis programming lan­
guage. Annual Report Institute of Phonetics, 19, University of Copen­
hagen, 1-42.

Hopcroft, J.E. & Ullman, J.D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison Wesley, Reading, Massachus­
setts.

Kager, R., Visch, & Zonneveld, W. (1987). Nederlandse woordklemtoon
(Hoofdklemtoon, Bijklemtoon, Reductie en Voeten). Glot, 10.2, 197-
220.

Karttunen, L., Koskenniemi, K. & Kaplan, R.M. (1987). A compiler for Two­
level Phonological Rules. Internal Report, Xerox Palo Alto Research
Center, Stanford University.

Kerkhoff, J., Wester, J. & Boves, L. (1984). A compiler for implementing
the linguistic phase of a text-to-speech conversion system. Linguistics
in the Netherlands, 111-117.

Kommenda, M. (1985). GRAPHON - ein System zur Sprachsynthese bei
Texteingabe. In: Osterreichische Artificial Intelligence- Tagung, (H.
Trost, J. Retti eds.), Springer, Berlin.

Koskenniemi, K. (1983). Two-level Morphology: A General Computational
Model for Word-Form Recognition and Production. Ph.D. Dissertation,
Publication no. 11, Department of General Linguistics, University of
Helsinky.

Kucera, H. & Francis, W.N. (1967). Computational Analysis of Present Day
American English, Brown University Press, Providence, RI.

References 173

Kulas, W. & Riihl, H.W. (1985). Syntex-unrestricted conversion of text­
to-speech for German. New Systems and Architectures for Automatic
Speech Recognition and Synthesis, 517-535.

Lammens, J.M.G. (1987). A Lexicon-based Grapheme-to-phoneme conver­
sion system. Proceedings European Conference on Speech Technology
81, 1, 281-284.

Lammens, J.M.G. (1989). From text to speech via the Lexicon. Internal
Report, no. 1, SPIN, Utrecht.

Lawrence, S.G.C. & Kaye, G. (1986). Alignment of phonemes with their
corresponding orthography. Computer, Speech and Language 1, 153-
165.

Naur, P. (1963). Report on the Algorithmic Language ALGOL 60. Journal
ACM, 6, no. 1, 1-17.

Nunn, A.M. (1989). Het optimaliseren van de regelset van GRAFON, Inter­
nal Report, no. 691, Institute for Perception Research, IPO, Eindhoven.

Pounder, A. & Kommenda, M. (1986). Morphological Analysis for a Ger­
man Text-to-Speech System. Proceedings International Conference on
Computational Linguistics 86, 263-268.

Riihl, H.W. (1984). Sprachsynthese nach Regeln fiir unbeschdinkten
deutschen Text. Ph.D. Dissertation, Ruhr-Universitat Bochum.

Van Coile, B.M.J. (1989). The Depes development system for text-to-speech
synthesis. Proceedings of ICASSP 89, 250-253.

Vander Steen, G.J. (1987). A program generator for recognition, parsing
and transduction with syntactic patterns, Ph.D. Dissertation, Faculteit
der Letteren, University of Amsterdam.

Van Leeuwen, H.C., Berendsen, E. & Langeweg, S. (1986). Linguistics as an
input for a flexible grapheme-to-phoneme conversion system for Dutch,
Proceedings lEE International Conference on Speech Input/Output 86,
200-205.

Van Leeuwen, H.C. (1987). Complementation introduced in linguistic re-
write rules, Proceedings European Conference on Speech Technology 81,
1, 292-295.

Van Leeuwen, H.C. (1989). A development tool for linguistic rules. Com­
puter, Speech and Language, 3, 83-104.

Summary

F OR the purpose of automatically converting (printed) text into speech,
among other things grapheme-to-phoneme conversion is required, i.e., the

assignment of a pronunciation code to the orthography. Since many words in
a language are regular and the number of words in a language principally is
not finite, a rule-based approach to this matter seems appropriate for at least
a major part of the task. Exceptions, then, can be stored in a small lexicon.

In this thesis a tool is described for the development of linguistic rules with
which one typically can define the transitions which are needed to derive the
pronunciation from the orthography. The development tool is called ToorjP,
which stands for "Tool for Linguistic Processing". And as the name suggests,
although grapheme-to-phoneme conversion as yet has been the only major
application for which ToorjP has been used, ToorjP is certainly not restricted
to this application only. Probably any rule-based segmental transcription
process can be implemented in ToorjP.

A special characteristic of ToorjP is that input-to-output relations are
preserved. This means that one can make use of derivational information in
the linguistic rules, so for instance for stress assignment rules this can be used
advantageously. On the other hand it means that the system can be used to
gather statistics on input-to-output relations. Given the major application
for which ToorjP has been used, the system can be used as an analysis tool
for statistics on grapheme-to-phoneme relations.

In this thesis ToorjP is treated from several points of view. In chapter 2
a user's point of view is taken, and ToorjP is described as it presents itself to
the user. First the basic configuration is discussed. Linguistic rules are the
user's main tool to manipulate input characters. With them, one can select
and transcribe characters dependent on the context. The possibilities for
transcribing input characters and the facilities for defining contexts are then
described. Such rules can be grouped into a module, which thus provides
a mechanism to manipulate strings. Modules, in turn, can be concatenated
to form a conversion scheme, which performs the desired task. The chapter

176 Summary

concludes with a discussion on some extensions which are included to increase
its user-friendliness and applicability. Also, some characteristics of the system
are discussed and compared to those of some other systems.

In chapter 3 a mathematician's point of view is taken. It concerns a specific
aspect of ToorjP, which remained underexposed in chapter 2, i.e., the exact
meaning of patterns (the mechanism to denote sets of strings). In ToorjP
patterns are an extended form of regular expressions. The extension con­
sists of the addition of two operators to the standard regular expressions for
user convenience: complementation (the 'not') and simultaneity (the 'and').
The introduction of one operator, the complementation operator, specifically
gives rise to an unexpected problem. If the complementation operator is intro­
duced in a compositional manner, the formal interpretation of a certain class
of patterns differs from what one would expect them to mean. To be precise:
certain strings one would expect to be excluded, are not. This is considered
to be an undesirable characteristic, as generally users simply start using a
system rather than first studying its exact nature. Therefore, an alternative
definition for complementation is proposed, which for the mentioned class of
expressions behaves in accordance with expectation. The essential difference
with the compositional formalism is that now the 'explicit nofits' are always
excluded. As a consequence, however, strict compositionality is lost, which
shows, for instance, in the fact that double complementation may not always
be annihilated. From a theoretical point of view the proposed formalism is
thus not completely satisfactory. It might be satisfactory, however, from a
practical point of view. Those patterns for which it behaves unsatisfactorily
are highly unlikely to be used in practice, and the proposed formalism can
be seen as a practical compromise between the practical needs and theoret­
ical elegance. On these practical grounds it has therefore been decided to
implement the proposed (semi-compositional) formalism in ToorjP.

In chapter 4 a technical point of view is taken, and some aspects of Toor}P's
implementation are discussed. To be precise: those aspects of the implemen­
tation are described which concern the process of matching patterns to the
input. Here, 'input' should be understood in the general sense of synchronized
buffers, i.e., buffers of which the segments are aligned such that derivational
information is available. For this purpose, first the internal representation
of patterns is discussed. The user-specified patterns are transformed into a
dynamic data structure which is accessible for the matching routine. The
dynamic structure codes the structure of the patterns, but some simple ad­
justments are made also, which facilitate pattern matching during run-time.
Next, the algorithms which perform the pattern matching are presented. First
the situation of a single input buffer is considered. In view of this input situ­
ation the functions for matching a particular structure in a pattern are given.
Special attention is paid to the function for matching the complementation

Summary 177

operator, since its definition gives rise to some additional computational com­
plexity. Then the more general situation of synchronized buffers is considered.
The algorithm for matching primitives is somewhat altered in this situation.
Since the synchronization mechanism is important for this routine, two pos­
sible synchronization mechanisms are discussed and compared. The more
general one is chosen to be implemented and the buffer switching algorithm
is given. On the whole, with respect to the processing of patterns, Toor}P
can be viewed as a compiler/interpreter. The user-defined patterns are com­
piled from high-level source code to an internal representation. The internal
representation is then interpreted by the functions for pattern matching.

In the final chapter, chapter 5, the merits of Toor}P are evaluated. Three
sides of Toor}P are considered: (a) the outside, i.e., how Toor.}P is used
in a practical application, (b) the inside, i.e., how satisfactory is the semi­
compositional formalism in practice, and (c) the surroundings, i.e., how does
Toor}P relate to other systems which have been designed for similar pur­
poses? The main application for which ToorJP has been used is the design of
a grapheme-to-phoneme conversion system. Two aspects of this application
are discussed. The first is the spelling out of integer numbers, which is part
of a pre-processing phase, the second concerns the linguistically slanted mod­
ules which perform the actual grapheme-to-phoneme conversion. The second
side of the evaluation concerns the use of the complementation operator. The
usage of the operator in the above application is reviewed in the light of the
choices which were made in chapter 3, and thus the validity of these choices
are evaluated. The usage of the operator in the specific situation that the
compositional formalism would fail whereas the semi-compositional one suc­
ceeds is relative scarce. In the light of theoretical objections the choice for the
semi-compositional formalism does not seem fully justified in this particular
application. The third side concerns some more general aspects. For a number
of features which can be seen to characterize development tools for linguistic
rules, ToorJP is compared to seven important existing systems. This gives an
overview of what is unique in Toor}P and what is common practice in such
systems. The thesis is concluded with some recommendations for the future
development of Toor)P. These concern both the improvement of the system
and its extension along natural lines.

Samenvatting

0 M langs automatische weg van gedrukte tekst naar spraak te komen is
het onder andere nodig om over grafeem-foneem conversie te beschikken,

dit is het toekennen van een uitspraakrepresentatie aan de geschreven vorm.
Omdat veel woorden in een taal min of meer regelmatig in hun uitspraak zijn
en het aantal woorden in een taal principieel niet eindig is, lijkt een aanpak die
gebaseerd is op regels niet ongeschikt om een groot gedeelte van de woorden in
een taal aan te kunnen. Uitzonderingen kunnen dan vervolgens in een kleine
uitzonderingenlijst opgenomen worden.

In dit proefschrift wordt een gereedschap beschreven, dat bedoeld is om
taalkundige regels te ontwikkelen, waarmee men typisch het soort overgangen
kan beregelen dat nodig is om van spelling naar uitspraak te komen. Het
ontwikkelgereedschap heet 'ToorjP', hetgeen staat voor "Tool for Linguistic
Processing" (gereedschap voor taalkundige verwerking). En, zoals de naam
al aangeeft, ondanks het feit dat grafeem-foneem omzetting tot nu toe de
voornaamste toepassing is waarvoor ToorjP gebruikt is, is het systeem beslist
niet beperkt tot deze enkele toepassing. Waarschijnlijk kan elke segmentele
omzetting die door regels beschreven kan worden in ToorjP gei"mplementeerd
worden.

Een speciale eigenschap van ToorjP is dat de individuele relaties tussen de
invoer en de uitvoer behouden blijven. Dit betekent dat men in de taalkundige
regels gebruik kan maken van de afleiding tot dan toe, wat bijvoorbeeld bij de
toekenning van woordklemtoon erg handig kan zijn. Anderzijds betekent het
ook dat het systeem geschikt is om statistische gegevens te verzamelen over
de relatie tussen de invoer en de uitvoer. Gegeven de toepassing waar het
systeem voor gebruikt is, kan ToorjP dus dienen als analyse gereedschap ter
bepaling van welke orthografie hoe vaak tot welke klanken aanleiding geeft.

In dit proefschrift wordt ToorjP van een aantal zijden belicht. In hoofd­
stuk 2 wordt een gebruikersstandpunt ingenomen, en wordt ToorjP beschreven
zoals het zich aan de gebruiker presenteert. Allereerst wordt de basiscon­
figuratie geschetst. De taalkundige regels zijn het middel om karakters te

Samenvatting 179

manipuleren; ze worden gebruikt om karakters te selecteren en te wijzigen
afhankelijk van de kontekst. De mogelijkheden om ze te herschrijven en de
kontekst te definieren worden vervolgens beschreven. Dit soort regels kunnen
in een module gegroepeerd worden, om zodoende een mechanisme te vormen
dat woorden of zinnen aan kan. Vervolgens kunnen modules weer in volg­
orde in een conversie schema geplaatst worden, dat zodoende de gewenste
taak uitvoert. Het hoofdstuk besluit met de beschrijving van enkele uitbrei­
dingen op de basisconfiguratie, bedoeld om de gebruikersvriendelijkheid en de
toepasbaarheid van het systeem te verhogen. Tevens worden een aantal eigen­
schappen van het systeem besproken en vergeleken met die van soortgelijke
system en.

In hoofdstuk 3 wordt een wiskundig standpunt ingenomen. Het betreft
een onderdeel dat in hoofdstuk 2 onderbelicht is gebleven, namelijk de pre­
cieze betekenis van patronen (het mechanisme om verzamelingen strings aan
te duiden). In ToorjP zijn patronen een uitgebreide versie van reguliere ex­
pressies. De uitbreiding bestaat erin dat twee operatoren aan het formalisme
zijn toegevoegd terwille van het gebruikersgemak, te weten complementatie
(de 'niet') en coordinatie (de 'en'). De introductie van complementatie geeft
specifiek aanleiding tot problemen. Als de operator op een compositionele
wijze aan het formalisme wordt toegevoegd, wijkt de formele betekenis van
een bepaalde klasse van patronen af van wat je zou verwachten. Om precies
te zijn: bepaalde strings waarvan je zou verwachten dat ze uitgesloten wor­
den, worden dat niet. Dit wordt onwenselijk geacht, omdat gebruikers in het
algemeen een systeem gewoon gaan gebruiken zonder een voorafgaande studie
van z'n exacte werking, zodat ze dan voor onverwachte en wellicht onnodige
problemen komen te staan. Daarom wordt er in dit hoofdstuk een alter­
natieve definitie van complementatie voorgesteld, die voor de bewuste klasse
van patronen wel volgens verwachting reageert. Het essentiele verschil met
het voorgaande formalisme is dat nu de 'explicit nofits', de strings waarvan je
expliciet verwacht dat ze uitgesloten zullen worden, nu wei altijd uitgesloten
worden. De konsekwentie hiervan is echter wel dat strikte compositionaliteit
verloren gaat, wat bijvoorbeeld gei1lustreerd wordt door het feit dat dubbele
complementatie niet zomaar altijd geschrapt mag worden. Theoretisch gezien
is het voorgestelde formalisme dus niet geheel bevredigend. Praktisch gezien
zou het dit echter wel kunnen zijn. Het is uiterst onwaarschijnlijk dat de
patronen waarvoor het voorgestelde formalisme niet bevredigend reageert ge­
bruikt worden in de praktijk, en zodoende kan het formalisme beschouwd
worden als een compromis tussen praktische wensen en theoretische elegantie.
Op grond van deze praktische overwegingen is er besloten om het voorgestelde
(semi-compositionele) formalisme in ToorjP te implementeren.

In hoofdstuk 4 wordt een technisch standpunt ingenomen en worden een
aantal aspecten van de implementatie besproken. Om precies te zijn: die

180 Samenvatting

aspecten worden beschouwd die te maken hebben met het evalueren van pa­
tronen tegen de invoer. Rier moet 'invoer' gezien worden in de algemene zin
van gesynchroniseerde buffers, dit zijn buffers waarvan de segmenten zodanig
zijn opgelijnd dat de afleidingsinformatie beschikbaar is. Allereerst wordt de
interne representatie van patronen besproken. De door de gebruiker gespeci­
ficeerde patronen worden omgezet naar een dynamische datastructuur die toe­
gankelijk is voor de evaluatieroutines. De dynamische datastructuur codeert
de structuur van de patronen, waar enkele kleine aanpassingen aan gedaan zijn
die het evalueren vergemakkelijken. Vervolgens worden de algoritmes gegeven
die de patronen evalueren tegen de invoer. Eerst wordt de situatie beschouwd
alsof er maar een enkele invoer buffer bestaat. Voor die situatie worden de
functies voor het evalueren van een bepaalde structuur gegeven. De com­
plementatie operator wordt speciaal belicht omdat deze aanleiding geeft tot
extra computationele complexiteit. Tenslotte wordt de algemene situatie van
gesynchroniseerde buffers beschouwd. Ret algoritme om primitieven te eval­
ueren verandert hierdoor enigzins, maar de algoritmes voor structuren niet.
Omdat het synchronisatiemechanisme belangrijk is voor genoemde routine
worden twee mogelijke mechanismes besproken en vergeleken. Er is besloten
om het algemenere mechanisme in ToorjP te implementeren. Tenslotte wordt
het algoritme gegeven om van buffers te veranderen. Over het geheel gezien
kan ToorjP als een compiler /interpreter gezien worden ten aanzien van het
evalueren van patronen. De door de gebruiker in een taalkundig formaat
gespecificeerde patronen worden gecompileerd naar de interne representatie.
Vervolgens wordt die representatie geinterpreteerd door de evaluatie functies.

In het laastste hoofdstuk, hoofdstuk 5, wordt ToorjP op zijn merites
beschouwd. Drie zijden van ToorjP worden belicht: (a) de buitenkant, d.w.z.
hoe is ToorjP gebruikt in een praktische toepassing, (b) de binnenkant, d.w.z.
hoe voldeed het voorgestelde formalisme in de praktijk, en (c) de omgeving,
d.w.z. hoe verhoudt ToorjP zich tot andere systemen die voor soortgelijke
doeleinden zijn ontworpen? De voornaamste toepassing waar Toor}P voor ge­
bruikt is, is het ontwerpen van een grafeem-foneem omzettingssysteem. Twee
aspecten van deze applicatie worden nader beschouwd. Enerzijds is dat een
systeem om gehele getallen uit te schrijven, wat deel is van de voorbewerk­
ingsfase, en anderzijds zijn dat de taalkundig getinte modules die de echte
letter naar klank omzetting uitvoeren. Ret tweede aspect van de evaluatie
is het gebruik van de complementatie operator. Ret gebruik van deze ope­
rator in de genoemde toepassing wordt bekeken in het Iicht van de keuzes
die in hoofdstuk 3 gemaakt zijn, en zodoende wordt de juistheid van die
keuzes geevalueerd. Ret gebruik van de operator in de specifieke situatie dat
het compositionele formalisme fout gaat maar het semi-compositionele for­
malisme goed is betrekkelijk gering. De keus voor het semi-compositionele
formalisme lijkt hierdoor gezien de theoretische bezwaren in deze toepassing

Samenvatting 181

niet geheel gerechtvaardigd. De derde zijde betreft wat algemenere aspecten.
Voor een aantal eigenschappen die voor dit soort systemen van belang zijn,
wordt ToorjP vergeleken met een aantal belangrijke vergelijkbare systemen.
Zodoende ontstaat er een overzicht over wat uniek is in ToorjP en wat ge­
bruikelijk is in dit soort systemen. Het proefschrift wordt afgesloten met
enkele aanbevelingen voor verder onderzoek. Deze betreffen enerzijds mo­
gelijke verbeteringen aan het systeem en anderzijds uitbreidingen langs een
natuurlijk lijn.

Curriculum Vitae

1 februari 1959 Geboren te Castricum

aug 1971 juni 1977 St. Stanislascollege Delft.
Gymnasium {3.

sept 1977 nov 1984 Technische Hogeschool Delft, Elektrotechniek.

jan 1985 heden

Afstudeerrichting: Regeltechniek.
Afstudeeronderwerp: Ontwerp en realisatie van een in­
teractieve, robotonafhakelijke robotprogrammeertaal.

Wetenschappelijk medewerker in dienst van het Na­
tuurkundig Laboratorium van Philips, gedetacheerd op
het Instituut voor Perceptie Onderzoek (IPO).

Stellingen

behorende bij het proefschrift
ToorjP: A development tool for linguistic rules

van Hugo van Leeuwen

1. In veel bestaande tekst naar spraak systemen worden verschillende
niveau's van informatie in elkaar geklapt tot een enkele informatiestroom.
Het is raadzamer deze verschillende niveau's expliciet weer te geven door
mid del van een gelaagde, gesynchroniseerde structuur, zoals die voor twee
lagen besproken is in sectie 4.4 van dit proefschrift.

2. Bij het luisteren naar spraak valt het doorgaans zeer snel op of een spreker
spontaan spreekt of voorleest. Een belangrijke oorzaak hiervan is dat een
spreker die voorleest begint te spreken voordat hij/zij de zin geheel gelezen
en begrepen heeft, en daardoor accenten legt die in stijd kunnen zijn met
de inhoud van de tekst.

3. Dank zij de zgn. PSOLA-techniek, het eerst gerapporteerd door Hamon
et al., die het mogelijk maakt om zonder veel verlies aan spraakkwaliteit
toonhoogte en temporele structuur van spraak te manipuleren, zal de
kwaliteit van kunstmatige spraak op korte termijn een belangrijke ver­
betering in kwaliteit ondergaan.

Hamon, C., Moulines, E. & Charpentier. F. (1989): A diphone syn­
thesis system based on time-domain prosodic modifications on speech,

ICASSP, 238-241.

4. Zowel in de overheidssector als in het bedrijfsleven worden veelal de bud­
getten voor een afdeling of werkgroep voor het komende jaar vastgesteld
op grond van budget en uitgaven van het huidige jaar volgens de formule:

waar B het budget is, U de uitgaven, Min een functie is die het minimum
van twee getallen bepaalt, en de indices de jaren in kwestie aanduiden. In
tegenstelling tot de bezuinigende bedoeling hiervan is dit een verkwistende
maatregel.

5. Momenteel kan een verdachte bloedafname voor identificatiedoeleinden
d.m.v. de zgn. DNA-print weigeren door zich te beroepen op de onschend­
baarheid van de lichamelijke integriteit. Het afnemen van vingerafdrukken
kan de verdachte niet weigeren. Gezien de zekerheid waarmee de DNA­
print identificeert, client deze identificatiemethode dezelfde status te krij­
gen als de vingerafdruk, d.w.z. een verdachte client het recht ontnomen te
worden dit te kunnen weigeren.

6. Het is algemeen bekend dat specialisten en arts-assistenten in ziekenhuizen
regelmatig onverantwoord lange werktijden maken. Als gevolg hiervan
worden soms ernstige maar onnodige fouten gemaakt. Als specialisten van
de toekomst rust er op de arts-assistenten speciale verantwoordelijkheid
om aan deze misstand iets te doen. Zij dienen zich te verenigen om
zodoende verantwoorde werktijden af te dwingen.

7. Het file probleem zou voor een deel opgelost kunnen worden door het
fietsenvervoer in de trein gratis te maken en speciale faciliteiten op NS­
stations te scheppen zodat men snel vanuit de trein per fiets uit het station
kan komen en omgekeerd.

8. Het is de vraag of het mer ken van eigendommen een afdoende bescherming
tegen diefstal biedt; de praktijk leert dat ze doorgaans ongemerkt ver­
dwijnen.

