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Cover: Three aspects which are typical for ToorjP are illustrated on the 
cover. The topmost figure is a linguistic rule, wich assigns primary word stress 
to vowels which are pronounced as /of and written as 'eau'. T he middle figure 
illustrates the internal representation of the focus of this rule. The bot tom 
figure illustrates the internal data structure of synchronized buffers , and how, 
moving from left to right through the grapheme buffer, one can access the 
phoneme buffer. 
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List of operational definitions 

T HE following list gives a description of the most important concepts 
which are introduced in this thesis, and of some general concepts which 

are used in a specific manner here. All terms are introduced in the course of 
the study, but the reader may wish to consult the list at another moment. 
More information about the concepts can be found on the pages listed behind 
the item. 

In this list a description of the terms has been given rather than a formal 
definition. The definition or the main source of information of a concept 
can be found at the underlined pagenumbers. Examples of (the use of) the 
concept can be found on the italicized pages. 

Action: the application of a rule; the structural change of a linguistic rule is 
added to the output and synchronized with the input segments which 
are associated with the focus of the rule; 19. 

Alternative operator: the 'or' operator for patterns; 17, 46, 64, 88, 93, 98. 

Candidate: a string is a candidate if it can be fitted to a pattern such that 
its segments do not match the complemented part, but match the non­
complemented parts of the pattern; 

Common rule: a linguistic rule which can be triggered by more than one 
segment. Operates further like a segment rule; 20, 22, 143. 

Complementation operator: the 'not' operator for patterns; 18, 48, 54, 92, 
100, 150. 

Compositionality: a formalism is compositional if the meaning of an arbi­
trary expression can be expressed as a function of the meaning of the 
composing sub-expressions; 47, 55, 70. 

Concatenation operator: the operator which concatenates patterns. The spec­
ified patterns must be found in succession; 17, 4 7, 64, 86. 



List of operational definitions xi 

Consistent pattern: a pattern for which no strings exists which are both a 
candidate and an explicit nofit; 58, 75. 

Conversion scheme: the conversion defined by the concatenation of modules 
of the user-provided input to the output; 24-26. 

Explicit nofit: a string is an explicit nofit if it can be fitted to a pattern 
such that its segments match both the complemented and the non­
complemented parts of the pattern; 55, 69. 

Feature modification: the output segment is determined by modification of 
the features of the input segment; 20. 

Features: description of segments on the basis of common properties; 15. 

Focus: the leftmost part of a linguistic rule (before the arrow), denoting the 
input segments which are to be transcribed; 10, 14, 42, 93. 

Formalism: formal description by means of syntax and semantics of a formal 
language; 4 5, 64-65. 

Graphemes: segments of the orthography. In this thesis generally the input 
segments; 10, 87. 

Identity marl(er: a marker placed behind a feature specification, used to com­
pare arbitrary segments; 16, 31, 143. 

Inconsistent pattern: a pattern for which a string exists which is both a can­
didate and an explicit nofit; 58, 33, 75. 

Insertion rule: a linguistic rule which 'inserts' a (sequence of) segment(s) into 
the current input string: the structural change is added to the output 
while no input segments are processed; 22, 22, 122. 

Internal position: an internal marker indicating buffer and position at which 
a pattern is to be matched; 94. 

Label: supplementary (often non-segmental) information associated with a 
segment; 16. 

Label assignment: the assignment of labels to an output segment; 20. 

Left context: the part of a linguistic rule between slash and underscore, de­
noting the pattern that should be found to the left of the focus; 10, 14, 
42, 93. 

Linguistic rule: the basic mechanism which transcribes input segments to 
output segments, dependent of the context; 10, 14-21. 



Xll List of operational definitions 

Matching direction: the direction in which a pattern is matched 
43, 127. 

or--+); 

Module: an ordered set of linguistic rules, which manipulates a string; 21-24. 

Operator: a mechanism which defines the relation between sub-patterns or 
structures; 17-19, 44. 

Optional operator: the operator for specifying optional or repetitive presence 
of patterns; 17, 61, 64, 89-91, 104. 

Path: a pattern of concatenated primitives from the beginning of a pattern 
or structure to its end; 53-56, 85. 

Pattern: an expression which denotes a set of segment strings; 17-19, 

Phonemes: segments of the pronunciation. In this thesis generally the output 
segments; 10, 87. 

Primitive: the building block of the linguistic rule. A primitive always refers 
to exactly one segment in the input or output; 15, 46. 

Re-write rule: see linguistic rule. 

Reference marker: an internal marker indicating position at which a pattern 
is to be matched; essentially the same as internal position; 19. 

Regular expression: a common mathematical tool used to denote sets of 
strings; 40. 

Right context: the rightmost part of a linguistic rule (behind the underscore), 
denoting the pattern to be found to the right of the focus; 10, 14, 42, 
93. 

Scanning direction: the direction m which the input buffer is scanned 
(+--or --+ ); 112-113. 

Segment: basic element of the input or output; 10, 15. 

Segment assignment: the assignment of segments (those of the structural 
change) to the output; 19. 

Segment rule: a linguistic rule which can be triggered by a specific segment. 
The rule 'transcribes' input segments into output segments. The struc­
tural change is added to the output and aligned with the input segments; 
19, 22, 93. 



List of operational definitions Xlll 

Semantics: the formal description of the meaning of a pattern. Not to be 
confused with semantics in natural language processing; 45, 64. 

Semi-compositional formalism: the formalism which defines the syntax and 
semantics of patterns in ToorjP; 64-65, 69-71, 150-152. 

Simultaneous operator: the 'and' operator for patterns; 18, 62, 64, 89, 99. 

String concatenation: the concatenation of two strings. The second string is 
appended to the first; 47. 

Structural change: the part of a linguistic rule between the arrow and the 
slash, denoting the segments which are to be added to the output if the 
rule matches; 10, 14, 42, 93. 

Structure: the basic unit of pattern which can be concatenated. A structure 
can be a primitive, an alternative structure, an optional structure, a 
simultaneity structure or a complemented structure. Sometimes the 
notion structure is used in the limited sense of the last four structures; 
45, 94-96, 97-103. 

Synchronization: the alignment of segments in different buffers such that 
derivational information is available; 19-21, 110. 

Syncl1ronized buffers: buffers between which synchronization exists; 110. 

Synta'l:: the formal description of how patterns may be constructed. Not to 
be confused with the syntax of natural languages; 45, 65. 

Universe: the set of strings relative to which complementation operates; 48-
50,65. 



Notational Conventions 

T HROUGHOUT this thesis it is attempted to maintain consistency in 
terminology and notation. In addition to this overview, in each chapter 

the relevant conventions and terminology are explained. Generally this is 
consistent between the chapters, but in one case it is not, as explained below. 

Generally, when basic notions are introduced they are printed slanted. 
Data such as linguistic rules, patterns and buffer contents, which are present 
or may be present in a computer program, are printed in typewriter style. 
However, as explained below, linguistic rules and patterns are also noted 
in paper and pencil notation, in which case the are printed in bold face. 
Algorithms are typeset in the following manner: keywords are printed in 
bold face, procedures and functions have their first letter capitalized and are 
printed in Italics, and variables and types are printed with no capitals and 
also in italics. Finally, the names of actually developed linguistic modules are 
printed in SMALL CAPS. 

The way in which linguistic rules and patterns are typeset depends on the 
angle of approach. In chapter 2 the system is approached from the user's 
point of view. Therefore, all examples of linguistic rules in this chapter are 
displayed in the exact appearance they have in the user-created computer 
files. The other chapters take somewhat more distance. In these chapters 
the rules are displayed in a paper-and-pencil notation. The 'and' insertion 
rule, for instance, which is discussed in 5.2.1, would be displayed as in (1) in 
chapter 2, and as in (2) in the other chapters. 

t -> &,t I [ D ] _ [ D ] (1) 
['0 ] ['{0}] 

{1} 

t - &,t I [-?o] (2) 



Notational Conventions 

The braces, which can span several lines in the paper and pencil 
notation, are split up in the computer implementation, where 
they are repeated on each line to indicate the arguments. The 
complementation sign '•' gets an ASCII equivalent: '' '. 

XV 

Finally, throughout the thesis, phonemes are used in examples. Table I gives 
the relation of the coded ASCII representation used in ToorjP to the IPA 
(International Phonetic Alphabet) representation. 

Table I: Conversion table of phonemes. For each phoneme the 
IPA representation, the ToorjP representation and a Dutch ex­
ample word are listed. 

IPA ToorW example IPA ToorjP example 
u u roet p p pas 
Ul UJ roe it pj PJ boompje 
0 00 rood t T tas 
01 OJ hooit tj TJ tjalk 
;) 0 rot k K kan 
::>i or hoi f F fok 
a A mat s s sok 
(11 AI detail I SJ chauffeur 
au AU koud X X gok 
a AA maat h B bas 
al AJ maait d D das 
E E les dj DJ djatiehout 
ei EI reis g G goal 
I I pit v v vuur 
e EE lees z z zeer 
eu EW leeuw 3 ZJ journaal 
1 II liep m M meer 
iu IW kieuw n N neer 
y y muur Jl NJ oranje 
AY UI muis lJ Q bang 
~ EU keus 1 L lang 
re OE put l LL april 
a c de r R rok 
1 GS glottal stop w w weer 

SI silence j J jan 
h H hok 



Chapter 1 

Introduction 

I N reading aloud text one converts strings of letters into sounds. Although 
for many of us this may seem a fairly simple feat, the processes involved are 

not as simple as it may seem. This is soon found out if we try to automatize 
letter-to-sound conversion, for example in a machine or computer program for 
converting text to speech. 

Part of the complexity stems from the fact that there is no one-to-one 
correspondence between the letters as they are used in the orthography of the 
language and the sound of speech. In reading a word like 'development', for 
example, we encounter three times the letter 'e'. In the orthography they are 
indistinguishable, but in the spoken version they are all different, the first one 
sounding as in 'beach', the second one as in 'help' and the third one as in 
'the'. Also, the second 'e' bears word stress and for quick understanding by 
a listener we should get all of these factors right. 

Now suppose we were to devise a reading machine, that is, a machine that 
converts automatically given text into intelligible speech, then this machine 
is confronted with the same problem. Of course, we can explicitly tell the 
machine how to pronounce it, just like our parents told us how to pronounce 
many words. However, they have never given us the pronunciation of all words 
in our native language. Once we acquire some feeling for language, and this 
can be quite early, we are capable of figuring some of it out ourselves. So 
apparently we acquire rules on how to pronounce words. Some of them are 
explicit, learnt at school, but most of them will probably be implicit. 

Finding these rules and formulating them explicitly is best done by trained 
linguists. Such rules can then be used in the reading machine. Of course, 
such rules will probably not cover the whole of the language, since many 
languages have numerous exceptions to their regularities, but generally the 
regularities and sub-regularities, which can be expressed elegantly in rules, 
cover a respectable part of a language. 

Another observation also motivates the development of a rule component 
in the pronunciation module of the reading machine. Suppose we were to 
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pursue the strategy of coaching, and we were to store all words of a language 
in a lexicon rendering pronunciation and word stress. We would, first of all, 
have a problem with storing all words. Constantly new words arise and old 
words disappear. The new words, often denoting a new phenomenon, typically 
appear quite suddenly and with relatively high frequency. It would therefore 
be annoying if the reading machine, used to read aloud a newspaper text, 
would fail on those words. A second problem would be the law of diminishing 
returns. While the 200 most frequent words in English cover over fifty percent 
(53.6 %) of the words in running text ("Brown corpus", Kucera & Francis, 
1967), the next 800 words only increase the score 15.3 %, a trend which is 
only persevered more strongly for words of lower frequency. Thus, although 
a small lexicon is remarkably productive, increasing its size will yield quickly 
diminishing returns. A rule component therefore serves both completeness 
and efficiency. 

Apparently we need a rule component in the reading machine. The task 
is now to find the relevant rules. When this is done with paper and pencil 
we find that, while one rule may be very clear and simple, a whole set of 
simple rules can form a complicated prescription whose correctness or desired 
functionality is difficult to establish. Here computers may provide help, as 
they are very good in performing a sequence of simple instructions. If we 
were to devise a tool which could read the paper and pencil rules, we could 
have the machine evaluate the rules quickly on all kinds of text input, and 
thus we could concentrate on the functionality of the rule set rather than 
having to put effort each time into the deterministic process of evaluating our 
rules. 

In several places this approach has indeed been followed (Carlson & 
Granstrom, 1976; Elovitz, Johnson, McHugh & Shore, 1976; Hertz, 1981; 
Hertz, Kadin & Karplus, 1985; Holtse & Olsen, 1985; Karttunen, Kosken­
niemi & Kaplan, 1987; Kerkhoff, Wester & Boves, 1984; Kommenda, 1985). 
The characteristics of these systems, which are studied more closely in one 
of the following chapters, differ between the systems, but they all have in 
common that linguistic rules are expressed in some format and executed by 
machine. For a variety of languages the suitability of rules for expressing 
spelling to pronunciation has been established. 

This thesis describes yet another tool for the development of linguistic 
rules. Like all other systems it has been designed with special intentions and 
for particular purposes for which existing systems appeared not to be suited or 
simply were not available. The main motivation for designing our own system 
is that, apart from being used in the reading machine, it is also intended 
to be used as an analysis tool to collect statistical information on spelling 
to pronunciation relationships-for instance, how often is an 'e' pronounced 
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as in 'beach', compared to the realizations as in 'help' and 'the'-which is 
another question of interest in the field of linguistics. When the conversion 
is performed by rules, the information is practically free: the rules explicitly 
note the relationship, only some additional effort of an administrative nature 
is needed. 

Apart from this specific requirement, the system should meet some other, 
rather general requirements. First of all linguists should be able to address it 
in a familiar manner-the system should accept the rules which are formulated 
as closely to the paper and pencil notation as possible in a computer imple­
mentation. The possibilities for expression should be as little restricted as 
possible. Next, the system should feature tools to facilitate the development 
of a rule set. Apart from diagnostic messages when the syntax is violated, 
it should be able to provide detailed but carefully dosed information on the 
derivational process for debugging purposes. Further, apart from being able 
to access the input-to-output relationship from the outside, i.e., having these 
relationships available when a word has been converted, they must also be 
available inside, during the conversion process, so for instance one must be 
able to test if a particular pronunciation is derived from a particular char­
acter sequence. Finally, from the engineering point of view it is desirable to 
separate linguistic knowledge from the execution machine. The more linguis­
tic knowledge is declared explicitly, for instance what are the pronunciation 
codes, which of these are defined as consonantal, etc., the less attached to a 
particular linguistic flavour the system will be and thus the more indepen­
dent of the application. The only thing the system should offer is a certain 
inference mechanism and an environment to provide this inference mechanism 
with meaningful rules. 

In this thesis, a tool for the development of linguistic rules is described 
which satisfies the above requirements. It is called ToorJP, which stands for 
"Tool for Linguistic Processing" and is pronounced in the same way as the 
Americans pronounce 'tulip'. The link to this typical Dutch flower seems ap­
propriate since the system both originated in Holland and has been used to de­
velop rules for the spelling-to-pronunciation conversion (also called grapheme­
to-phoneme conversion) of Dutch. 

Many of the examples will be taken from this application. The system is 
not, however, restricted solely to this application, nor to the Dutch language. 
The general characterization is that it is a tool with which one can test and 
implement phonological theories. It is a tool with which one can define almost 
any transcription of input characters to output characters which can be guided 
by rules. For instance, it has also been used to spell out integer numbers 
and acronyms, and can probably also be applied advantageously to spell out 
abbreviations or correct root mutation due to morphological processes. In 
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fact, probably any rule-based segmental conversion or transcription process 
can be implemented in Toor.jP, which makes the system suited to be used in 
quite a variety of modules of the reading machine. 

In this thesis Toor.jP will be treated from several points of view. In chap­
ter 2 a user's point of view is taken, and Toor.jP is described as it presents 
itself to the user1 . First the possibilities available for constructing linguistic 
rules are described, and and an explanation is given of the type of manipula­
tions one can express with the rules. Next it is explained how one can group 
these rules into a set which defines a conversion scheme, i.e., a prescription 
of how to compute the output from a given input. Then the development 
support which the system provides is discussed and a short comparison with 
some other systems is made on the basis of the properties discussed in this 
chapter. 

In chapter 3 a mathematician's point of view is taken. It concerns a specific 
aspect of Toor.jP, which remains underexposed in chapter 2. In the linguistic 
rules the user specifies target and context patterns which generally denote a 
set of strings. For this purpose an extended form of regular expressions (a 
widely used mathematical tool) is used. The extension consists of adding some 
operators, i.e., mechanisms to express certain relationships between regular 
expressions, to the formalism. The introduction of one operator, the com­
plementation operator, specifically gives rise to an unexpected problem. The 
complementation operator is used to express the desired absence of a pattern, 
and is desirable for elegant pattern description. In the intention of restricting 
the user as little as possible, a full, unrestricted availability of this operator is 
pursued. The problem which arises is that introduction in a straightforward 
manner, viz. defining complementation analogously to how it is defined in set 
theory, leads to an unexpected interpretation for a certain class of patterns. 
That is, the formal interpretation differs from the subjectively expected mean­
ing. This is considered to be undesirable, and therefore an alternative formal 
interpretation is proposed in chapter 3. 

In chapter 4 a technical point of view is taken, concerning the implemen­
tation of the system. Three important aspects are discussed in detail. The 
first one concerns the internal representation of the user-specified patterns. 
The second concerns the matching strategy, i.e., how patterns are evaluated. 
A full algorithmic description is given. The third concerns the system's in­
ternal data structure which is used to support the requirement of providing 
input-to-output relations. 

1Chapter 2 is a slightly modified form of a previously published article: Van Leeuwen, 
H.C. (1989); A development tool for linguistic rules, Computer, Speech and Language, 3, 
83-104. Compared with the article, the exposition of the linguistic component (section 2.3) 
has been altered, and Appendix 2.A which contains a formal specification of this linguistic 
component has been added. 
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In the last chapter, chapter 5, the merits of Toor.jP are considered. First 
some applications for which it has been used are discussed. As an example 
of how ToorjP can be used it is discussed in detail how the spelling out of 
integer numbers can be achieved. From somewhat more distance the major 
application is viewed, viz. the grapheme-to-phoneme conversion. Next, the 
complementation operator is reviewed and the formalism proposed in chap­
ter 3 is evaluated. Then, ToorjP is compared with seven existing systems 
designed for similar purposes. This comparison is more extensive and com­
plete than the one in chapter 2, since here all the properties discussed in the 
previous chapters are included. The conclusions of these sections, how ToorjP 
is used in practice and how it relates to existing systems, lead to the proposal 
of five possible extensions of the system, and these conclude the thesis. 



Chapter 2 

A development tool for linguistic rules1 

Abstract 

In this chapter the ToorjP system is presented. It is a development 
tool for linguistic rules, and with it one can develop and test a set of 
linguistic rules which define a scheme to convert an input string to 
an output string. The system is approached from the point of view 
of linguists, since they are the main users of such a system. 

First the basic configuration is discussed. Linguistic rules are the 
user's main tool to manipulate input characters. The possibilities for 
transcribing input characters and the facilities to test contexts are 
described. Grouping these rules into a module provides a mechanism 
to manipulate strings. Modules are concatenated in a conversion 
scheme to perform their tasks in the desired order. The system can 
provide feedback on the conversion process, both for purposes of 
debugging and efficiency improvement. 

A special characteristic of ToorjP is that input-to-output rela­
tions are preserved. On the one hand this means that one can make 
use of derivational information in the linguistic rules, and on the 
other that the system can be used to gather statistics on input-to­
output relations. Given the major application for which ToorjP has 
been used, viz. a grapheme-to-phoneme conversion system, ToorjP 
can be used as an analysis tool for statistics on grapheme-to-phoneme 
relations. 

Finally, some extensions are discussed which are included to in­
crease its user-friendliness and applicability. Also, some character­
istics of the system are discussed and compared to those of some 
other systems. A short survey of the applications in which it is used 
concludes the chapter. 

1This chapter is a slightly modified version of a previously published article: Van 
Leeuwen, H.C. (1989); A development tool for linguistic rules. Computer, Speech and 
Language, 3,83-104. 
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2.1 Introduction 

SINCE the publication of the Sound Pattern of English (SPE) by Chom­
sky & Halle (1968), linguistic re-write rules have become very popular in 

phonology. This is due to the fact that rules of this type have proved to be 
an elegant and efficient tool for formulating phonological processes. With the 
rise of language- and speech technology such rules also found a wider appli­
cation, as they appeared to be adequate for the symbol manipulation which 
is needed there. 

One specific area is the development of text-to-speech systems. In most 
Indo-european languages the spelling is not phonetic, i.e., the correspondence 
between spelling and pronunciation is not one-to-one. Therefore, generally a 
conversion phase is needed to assign a sound representation (phonemes) to the 
orthographic text (graphemes). This phase is called grapheme-to-phoneme 
conversion. 

For a variety of languages the usefulness of linguistic re-write rules for gra­
pheme-to-phoneme conversion has been investigated (Ainsworth, 1973; Carl­
son & Granstrom, 1976; Elovitz, Johnson, McHugh & Shore, 1976; Hertz, 
1981; Holtse & Olsen, 1985; Kerkhoff, Wester & Boves, 1984; Kommenda, 
1985; Kulas & Riihl, 1985; Van Leeuwen, Berendsen & Langeweg, 1986). It is 
widely agreed that these rules serve well for the large majority of regularities 
in pronunciation of most languages, but that they should not be considered as 
the best tool for irregularities (e.g., 'though' +-+ 'through') or ambiguities (e.g., 
'I read' (present tense)+-+ 'I read' (past tense)). For irregularities, alternative 
approaches are more adequate, such as morph-based or word-based lexica, 
where phonetic transcription is stored in a database as a function of the or­
thography. For ambiguities higher level linguistic processing seems necessary, 
such as syntactical- and word class analysis. Therefore, in realistic applica­
tions a combination of approaches is often encountered (Allen, Hunnicutt & 
Klatt, 1987). 

In this chapter the ToorjP system is described, the main purpose of which 
is to enable a linguist to develop an ordered set of linguistic re-write rules, 
which defines a scheme to convert an input string into an output string. The 
user can choose whether the input and output string are of the same type 
or not. In the first case, a one-level concept is used, characters form the 
input and characters result. Used in a grapheme-to-phoneme context, the 
interpretation of graphemes and phonemes is done at the cognition level of 
the (linguist) user. In the other case a two-level concept is used, for instance 
one level corresponds to grapheme input and the other to phoneme output. A 
special feature of ToorjP is that, once the second level has been initiated, the 
alignment between the levels~i.e., for instance the correspondence between 



2.1 Introduction 9 

graphemes and phonemes-can be addressed in the rules. So, in the two-level 
concept the notion of grapheme and phoneme can be entered into the system 
and used explicitly in the rules. 

The presence of co-ordinated information on orthography and pronuncia­
tion is-for the purpose of grapheme-to-phoneme conversion-not a necessity 
from a theoretical linguistic point of view, but can be convenient for a num­
ber of applications. For instance, stress assignment in Dutch can profit from 
this information, the rules can be formulated elegantly, and be well separated 
from other parts of the grapheme-to-phoneme conversion. Also, the relation 
between graphemes and phonemes is an attractive by-product of the con­
version. For applications where this information is needed (see for instance 
Lawrence & Kaye, 1986), the grapheme-to-phoneme rules are sufficient and 
no alignment algorithm is needed. Also, statistical information on individual 
grapheme-to-phoneme relations can be gathered very easily. By running a 
sample text corpus through the rules, it can be established how many dif­
ferent phonemic realizations a specific grapheme sequence has, and what the 
frequency of occurrence is for each realization. 

For some applications it is perhaps a limitation of ToorjP that only one 
output string results from an input string. The system is not designed to 
generate all possible outputs for input which has different possible correct 
transcriptions. For instance, in a word like 'either' the first vowel may be 
pronounced both&'> an ji:/ or as an /ai/, but in ToorjP one must choose one 
or the other. Also, a word like 'object' is ambiguous if the word class is un­
known ('object' (verb) rt 'object' (noun)), and without this information the 
correct pronunciation cannot be established. However, if such disambiguating 
information is present (for instance provided by a separate process) ToorjP 
is able to process this kind of non-segmental information and determine the 
correct pronunciation (given the appropriate rules). 

It was decided not to implement a facility which could produce all possible 
correct transcriptions for ambiguous input. As to the first type of ambiguity, 
when both transcriptions are correct and interchangeable, producing only 
one of the alternatives is not erroneous. As to the second type, where the 
ambiguity can be resolved by additional, non-segmental information, it is 
preferable to aim at the correct transcription by providing the system with 
that information. Since--for the purpose of text-to-speech conversion-the 
processes involved are to a large extent deterministic and unambiguous, it 
was felt that the additional possibilities would not justify the cost of increased 
complexity. 

On the other hand, an output string always results, no matter how incom­
plete or incorrect the specified rules may be. The output string may not be 
the desired one, hut it will never cause ToorjP to crash, which is important 
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when it is used, for instance, as part of a text-to-speech system. 

Toor}P has been conceived in the first place to serve as a development tool 
for linguistic rules which define a grapheme-to-phoneme conversion (Berend­
sen, Langeweg & Van Leeuwen, 1986; Berendsen & Don, 1987). Therefore, 
some choices in the design have been tuned to this application. I believe that 
the system can potentially be applied in a wider area, viz. in all cases where. 
re-write rules are used to express certain linguistic processes. The discussion 
of ToorjP, however, will mainly be done from the viewpoint of grapheme-to­
phoneme conversion, since most of the experience with the system has been 
gathered in this application. 

This chapter has the following structure. First, the facilities which are 
needed to advantageously specify a conversion scheme are discussed. Then the 
facilities offered by ToorjP are described: the basic units on which linguistic 
rules operate, the different types of rules, how rules must be combined in a 
module and how the modules constitute a conversion scheme. A description 
is then given of the information the system contains once a conversion scheme 
has been developed, and of the means which are available to the user to extract 
this information. This is ToorjP's basic configuration. Next some extensions 
are discussed which have been included to improve the flexibility and user­
friendliness. Finally, some characteristics of ToorjP are compared with those 
of some other systems, and the applications in which it is used are discussed. 

2.2 Linguistic needs 

The basic units the linguist user wants to manipulate are the input charac­
ters. Via a certain scheme of transcriptions the input is manipulated into the 
desired output, for instance, the phonemic transcription of the input string. 
In ToorjP the input and output characters are called segments. The segments 
are user-defined, and in the application of grapheme-to-phoneme conversion 
the input segments are called graphemes and the output segments phonemeil. 

The basic mechanism with which one can manipulate these segments is 
the linguistic rule. Often the phonemic transcription of a grapheme depends 
on the context: a 'c' sounds different before an 'a' than before an 'e'. In the 
field of linguistics a particular type of re-write rules introduced by Chomsky 
& Halle (1968), has become very popular for this purpose. The general format 
of these rules is as follows: 

F -> C I L R (2.1) 

2The relation between these and most other basic concepts, which are printed slanted 
when introduced, is given in Fig. 2.1. 
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A certain focus 'F' in the input string is re-written into the struc­
tural change 'C' if the focus is preceded by a left context 'L' and 
followed by a right context 'R'. 

There are different types of linguistic processes the user may want to account 
for, which the rules must thus be able to express. First of all, transcrip­
tion rules are needed, which assign phonemes to graphemes or vice versa. 
Then, one may want to insert segments or boundaries (affix-stripping; sadly 
--+ sad+ly), modify segments (root mutation; happi+ly--+ happy+ly) or delete 
symbols (the final 'r' in British English, which is not pronounced). Also, 
one may wish to express phonological generalizations, such as the devoicing 
of final obstruents in Dutch and German, in one general rule. This is usu­
ally called feature modification. Finally, one may want to represent and use 
non-segmental information, such as stress-level or word class, and be able to 
manipulate this kind of information. 

One linguistic rule will seldom express the whole of the transcription one 
wants to perform. Therefore, one may want to group a set of rules which 
together pedorm a certain task, and separate it from another set, which per­
forms a different task. For instance, it seems desirable to insert affix- and 
morph boundaries into the orthographic input before actual phoneme assign­
ment is done. This is called modularization. 

These two mechanisms, the linguistic rule and grouping the rules into a 
module, suffice for most of the transcription tasks the user wants to specify. 
They will therefore be described in the following section, which describes the 
main body of TooiJP. Extensions to this configuration will be discussed in 
subsequent sections. 

2.3 The linguistic component 

The basic architecture of TooiJP is depicted in Fig. 2.2. It consists of three 
layers: the linguistic rule, the module and the conversion scheme. The lin­
guistic rules operate on specific segments: the input segments denoted by the 
focus are transcribed into the output segments which are denoted by the struc­
tural change. The linguistic rules can be grouped into a module. A module 
operates on a string: the string in the module's input buffer is converted-in 
accordance with the specification of the linguistic rules in the module-to an 
output string which is written to the output buffer. Finally, the modules are 
grouped into a conversion scheme, which is defined by consecutive application 
of the modules. 
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In this section, Toor}P's architecture will be discussed from small to large3 . 

First the linguistic rule will be considered, then it is discussed how rules are 
organized in a module, and finally it is explained how a conversion scheme is 
built. 

2.3.1 Linguistic rules 

In (2.2) the general format of a linguistic rule is given once again. 

F -> C I L R (2.2) 

The focus (F) of a linguistic rule refers to a sequence of zero or more segments 
in the input. The left (L) and right (R) contexts can also refer to the output 
segments. In general, F, L and R refer to a set of segment sequences which 
are called patterns. The structural change (C) is a sequence of zero or more 
segments which are added to the output and aligned with the focus in the 
input, if the rule applies. 

Toor.W adds segments to the output and aligns them with the input, rather 
than transcribing and substituting segments in the input. This is necessary to 
keep track of the derivation and to be able to refer to both input and output. 

An example of a linguistic rule is given in (2.3), which serves to provide 
the pronunciation of the 'ch' in the French word 'cachet' /ka,fe/ (cachet)4 • 

c,h -> SJ I <+segm,-cons> _ e,t ! cachet 

A 'ch' is pronounced as a 'SJ' /J/, when it is preceded by a vowel 
and followed by the sequence 'et'5 • The exclamation mark is a 
comment marker, so that one can comment on the purpose of 
the rule; all text behind this mark is ignored. 

(2.3) 

The different aspects of the linguistic rule will now be discussed in order. 
First the basic building block of a linguistic rule, the primitive, is dealt with. 
When a primitive is used in a linguistic rule it refers to exactly one segment 
in the input or output. Next, patterns are discussed. Patterns generally 
denote a set of strings, one of which must be present in the input or output. 
Patterns are constructed of primitives and operators; the primitives refer to 
the segments in the input and output, the operators specify how they are 

3 A formal specification is given in Appendix 2.A. 
4 Like all other examples in this chapter, (2.3) is displayed exactly the way the linguist 

types them in an input file. 
5 A conversion table of phoneme symbols to IPA symbols is included in Table I (page xv 

of the preface). 



2.3 The linguistic component 15 

to be combined. Finally, the actions are dealt with. When a rule matches, 
i.e., when the patterns of focus, left and right context match, the structural 
change is added to the output and aligned with the input. This is called an 
action. These three notions, the building blocks, the patterns and the actions 
will now be discussed in order. 

Primitives 

Primitives are the building blocks of the linguistic rules. As mentioned, a 
primitive (in the rules) refers to one segment (in the input or output). To 
be precise: the primitive states the restrictions for a specific segment which 
must be met in order to have the pattern match. For instance, the 'e' in (2.3) 
refers to the first character to the right of the focus. It matches if indeed an 
'e' is found. But whether or not an 'e' is actually present in the input does 
not affect the fact that the primitive 'e' refers to the first character to the 
right of the focus. In the same way 't' in (2.3) refers to the second character 
to the right of the focus. 

Now 'e' and 't' are primitives which are rather restrictive: only 'e' and 't' 
as segments in the input meet these restrictions, respectively. In (2.3) also an­
other, less restrictive primitive is specified: '<+segm,-cons>'. All graphemes 
which are segmental but are not consonants match this primitive. This is the 
set of vowels, so 'a', 'e', 'i', 'o', and 'u' match. In general there are three 
different kinds of primitives: segments, features and labels. These will be 
discussed in order. 

Segments. Segments in the linguistic rules have a one-to-one correspondence 
to the segments in the input or output, and are represented identically, i.e., an 
'a' in the rules expresses the desired presence of an 'a' in the input. Although 
segments in the rules and segments in the input or output are not exactly 
the same notion, they are called the same since the difference is so small, and 
generally it will be clear which is meant. 

Segments are user-defined. They are coded by one ore more (ASCII) char­
acters. In this way a linguist is not forced into a certain notational frame­
work. He can decide himself how many phonemes he needs and whether there 
needs to be a distinction between allophonic variants or not. In this thesis 
graphemes are coded with one lowercase character, and phonemes with one 
or more uppercase characters. This would appear to exclude capital letters 
as graphemes, but there is a way around this, which will be explained when 
Toor}P's architecture is treated in more detail. 

Features. The notion of binary features is well known from linguistics, where 
they describe phonological properties of phonemes. With these features strong 
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descriptive rules can be formulated. Since different graphemes can be thought 
of as sharing certain properties, just as phonemes do, the user can define 
features for both graphemes and phonemes. He can determine the number 
of features he needs and their symbolic representation. Every feature must 
receive a binary value, '+' or'-', for each appropriate segment. 

In correspondence with graphemes and phonemes, the grapheme features 
are denoted in lowercase characters, and the phoneme features in uppercase 
characters. In the linguistic rules features are enclosed in angled brackets. For 
instance, the phoneme feature 'sonorant' is denoted as '<+SON>', and vowels 
on the grapheme level can be referred to as '<-cons,+segm>'. 

Behind a feature specification an identity marker may be placed. Identity 
markers can be used to compare two or more arbitrary segments. Apart 
from having to match the feature specification, the segments in the input or 
output should also correspond to the requirements set by the identity markers. 
If the identity markers are the same, the segments should be the same; if the 
identity markers are different, the segments should differ. So, for instance, 
'<+cons>i, <+cons>j' is a pattern that denotes two consecutive consonants 
which are not the same. 

Labels. Labels can be used to describe information which is associated with 
a particular segment, but which alters its nature. Lexical stress, for instance, 
is not an inherent feature of a vowel, but it sometimes is and sometimes is 
not associated with it. Labels can also be used to represent non-segmental 
information like word stress, but also word-class or sentence accent can be 
represented, for instance by labelling this information to the first segment of 
a word. Unlike features, labels are not necessarily binary. One may want to 
make a distinction between primary stress, secondary stress and no stress. In 
this case the label 'stress' has values 1, 2 and 0 respectively. 

In the user-typed input and the final system.:provided output, the label 
information must be placed between the segments, since only a linear repre­
sentation, a string, is available for input and output. Internally, the labels are 
aligned with the segments rather than placed between them. In this way, the 
segmental structure of a string is not distorted. That is, in a rule one does not 
have to take into account that a vowel might have accent, '<+segm, -cons>' 
selects the vowel whether or not there is stress associated with it. On the 
other hand one can access this information by specifying'<* !stress *>'. If 
the vowel bears stress the primitive matches. 

Before anything else happens, the label information present in the user­
typed input string is extracted and aligned with the appropriate segments. 
Likewise, the last action is to insert the labels which are aligned with out­
put segments, into the output string which is to be passed, for instance, to 
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consecutive modules of the text-to-speech system. 

So, apart from defining the number oflabels and their representation in lin­
guistic rules, the linguist must also specify a code for each value the label can 
have for representation in the input and output. Thus, in the rules primary 
lexical stress is for instance denoted as '<* lstress *>' and in the output 
with (for instance) an asterisk before the stress-bearing vowel: 'ex*ample'. 

Patterns 

Primitives are in fact the most simple patterns, as they refer to exactly one 
segment in the input or output. More complicated patterns can be built 
by combining the primitives by means of operators, which in turn can also 
be combined by operators to form still more complicated patterns. ToorjP 
features five operators. In this respect the SPE formalism by Chomsky & 
Halle (1968) is somewhat modified and extended, tuned to the application of 
converting graphemes into phonemes. 

1. The concatenation operator is denoted by the comma: ' , ', and is used to 
express sequential arrangement of patterns. It is placed between the primitives 
or patterns that must be found successively in the input or output, e.g., (2.3). 

2. The alternative operator is denoted by pairs of curly brackets: '{ ... }', 
and is used to express an or-relationship between patterns. They are placed 
exactly below each other for each alternative, to adhere to the paper-and­
pencil notation as closely as possible. Any number of alternatives can be 
specified. This operator is exemplified in (2.4), a simplified pronunciation 
rule for the 'c' in Dutch: 

c -> s I {e} 
{i} 

Cecilia (2.4) 

A 'c' should be pronounced as an /s/ if it is followed by either 
an 'e' or an 'i'. 

3. The optional operator is denoted by parentheses: '(. .. ) '. It operates 
on one argument, the pattern placed between the parentheses. It is used for 
repetitive patterns, and the parentheses may be followed by the minimum and 
maximum number of times the structure should be present. Examples are: 

(<+CONS>)2-5 

(<-cons,+segm>)O 
(A) 

A minimum of two and a maximum of five 
phoneme consonants. 
Zero or more grapheme vowels. 

= An optional (zero or one) phoneme 'A'. 
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4. The complementation operator is denoted by an apostropghe: '' ', and is 
used to express the absence of a pattern. It operates on the first primitive or 
structure following the quote: 

c -> K I 'h ! colbert (2.5) 

A 'c' is pronounced as a /k/ if it is not followed by an 'h'. 

This operator is not present in the SPE formalism, but is included for ele­
gant rule description. For instance, exceptions to rules can well be treated 
with this mechanism. It turns out there are some logical problems connected 
with its interpretation in certain structures, but these are treated extensively 
elsewhere (Van Leeuwen, 1987; this thesis, chapter 3). 

5. The simultaneity operator is denoted by angled brackets: '[. .. ] ', and 
is used to express an and-relationship between patterns. Like the alternative 
operator, it can have any number of arguments, and each argument, enclosed 
in brackets, is placed beneath the other. This operator, too, is not present in 
the SPE formalism, and is included for elegant rule description. The operator 
is typically used for two purposes. One is to intersect sets, for instance: 

[ <+cons> ] 
[ 'c ] 

The set of all grapheme consonants is intersected with the set of 
all graphemes except 'c ', so the structure denotes "any grapheme 
consonant except 'c' " . 

(2.6) 

The other use of the operator is to express alignment between graphemes and 
phonemes as in rule (2.7): 

[ 00 ] -> <* lstress *> I 
[e ,a, u] 

<-segm> niveau 

The label primary stress is assigned to the phoneme 'DO' if it is 
derived from the orthography 'eau' and located at the end of the 
word. 

(2.7) 

In this way one can distinguish elegantly between the same phonemic repre­
sentations which have different underlying orthographic structures. 

With these operators, a user can define any pattern of segments to his or 
her liking. With the first two operators, the concatenation and the alternative 
operator, in principle any finite pattern for the input or output string can be 
constructed. Because the number of possible segments is finite, any set of 
segments can be composed with the alternative operator by means of enu­
meration. Strings can be composed with the concatenation operator, so sets 
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of finite strings can be composed with the combination of the two. For repet­
itive patterns the optional operator is needed. The simultaneity operator is 
necessary to express alignment of graphemes and phonemes. The complemen­
tation operator does not enhance the power of expression of the formalism, 
but serves well for elegant and transparent pattern description. The alterna­
tive pattern for (2.6), where the complementation is used to exclude the 'c', 
would be an extensive alternative structure, which would need closer study 
to reveal its meaning, whereas a glance at (2.6) is sufficient. 

Actions 

When all the patterns of a rule match, the specified action is performed. 
The structural change is added to the output and aligned with the focus 
pattern. For the structural change only (possibly concatenated) primitives can 
be substituted, no other operators are allowed. Therefore, three corresponding 
types of action are distinguished: segment assignment, feature modification 
and label assignment. 

Segment assignment. The most commonly used mechanism is to assign seg­
ments in the output to segments in the input. The alignment of input and 
output is represented by vertical lines. Consider for instance rule (2.8): 

c,h -> SJ I a,u ! chauffeur (2.8) 

and suppose that the internal state is as follows: 

input: 
(2.9) 

output: 

The arrow is a reference marker that points at the input segment being dealt 
with. As can be seen, the patterns of (2.8) match, so the 'SJ' will be added to 
the output and aligned with the grapheme sequence 'ch'. This is reflected in 
(2.10) by the altered vertical alignment. The segments 'c' and 'h' should no 
longer be considered separately, but as a sequence which as a whole is aligned 
with the 'SJ': 

input: c h 
(2.10) 

output: SJ 

In principle all segment manipulations can be formulated with such seg­
ment assignment rules, although elegant and concise rules will not always 
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result. For this reason, another mechanism has been introduced, feature 
modification, mainly to be able to capture phenomena in one rule that would 
otherwise require many similar rules. 

Feature modification. Feature modification rules deal with phonological gen­
eralizations. A well known example is the phenomenon that in a number of 
Germanic languages word-final obstruents become voiceless. This is expressed 
elegantly in (2.11), where the obstruents are selected by the feature '<-SON>': 

<-SON> -> <-VOICE> I <-SEGM> (2.11) 

Suppose that at some time the following state is reached: 

input: H U 
(2.12) 

output: H U 

and that 'D' is defined as '<-SON>' and u (space) as '<-SEGM>'. The rule 
applies, so the features (in this case there only is one) in the structural change 
replace the corresponding original, which results in a new feature bundle. The 
corresponding segment will be searched for in the segment definition table, 
and added to the output. If no such segment is found, a special 'error-segment' 
is added, and an error message is sent to the user. After the application of 
the rule, the internal state will be as follows: 

input: H U D 1 1 ... (2.13) 
output: H U T 

Label assignment. Label assignment rules assign labels to segments. The 
labels are aligned with segments, and thus have a separate (parallel) represen­
tation level. The segmental structure of the input and output thus remains 
unaltered, so that later rules, only operating on the segmental level, will not 
be bothered by the labels. Consider rule (2.14): 

[ 00 ] -> <* 1stress *> 
[e ,a, u, (x)] 

! Bordeaux, cadeau (2.14) 

If this rule applies, the label '1stress' is set on the label representation level, 
aligned with the phoneme 'OO' and the grapheme string 'eau' or 'eaux'. The 
internal state then will be as follows: 
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input: c a d e au 

output: K AA D DO (2.15) 

labels: !stress 

The system output which the user receives if 'cadeau' is typed in will be: 
'K AA D *00' (the spaces separate the phonemes). The label information, if 
present, is inserted before the phoneme it is aligned with. In this case an 
asterisk is the output representation of primary stress. 

2.3.2 Modules 

Thus, with linguistic rules one can transcribe an input segment into an output 
segment. To transcribe an input string into an output string one needs to 
group a set of rules into a module. A module is the smallest unit that takes 
a string as input and produces a string as output. This section deals with 
what a module looks like. First the general assignment scheme is discussed, 
i.e., which procedure is used to determine the output string from the input 
string given the specified rules. Then the grouping of rules into blocks and 
how these blocks are consulted is discussed. Finally, an example is given of 
how this works in practice. 

Assignment scheme 

The input of a module is the module's input buffer. The input buffer is filled 
with an input string which is surrounded by a number of spaces. The spaces 
serve to provide a neutral left- and right context for the leftmost and rightmost 
segments respectively. The output of the module is written into the module's 
output buffer. 

The input buffer is scanned once. For each module the linguist can choose 
whether this should be from left to right or from right to left. For instance, 
stripping suffixes can be done elegantly if the input string is scanned from 
right to left, while prefixes are best handled from left to right. Scanning in the 
scanning direction, the input segments are considered in order. Simplifying 
somewhat, for the current input segment the rules are consulted from top to 
bottom, until a rule matches. The structural change of the rule is added to 
the output and aligned with the corresponding input, and the remainder of 
the rules is skipped. Then, dependent on the length of the focus the next 
input segment is 'selected', and the procedure is repeated. This procedure is 
called segment-by-segment assignment, as the segments are processed one by 
one. 
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If none of the rules match, it depends on the nature of the module what 
happens. Either the input segment is simply copied to the output and aligned, 
or an error condition occurs. This is addressed in a subsequent section, but in 
either case the next segment is selected, and thus the procedure of transcribing 
a segment always operates on the first still unprocessed input segment. 

Rule types 

Due to the segment-by-segment assignment strategy, a user can order the rules 
according to the segment on which they operate, and thus improve efficiency. 
For instance, all rules concerning the character 'c', such as (2.3-2.5), can be 
grouped into a rule block which is only consulted when a 'c' is encountered 
in the input. The rules within a block are consulted in the top to bottom 
manner, with the first rule that matches applying. This is essentially an 'if 
then else if ... ' construction. The rule blocks, on the other hand, are mutually 
exclusive. The rule blocks operate as a 'case statement', the input segment 
being the case selector. 

Not all rules, however, can be grouped in this way, because some rules have 
no triggering segment, while others are triggered by more than one segment. 
Rules of the first type are called insertion rules, those of the second type 
common rules. Rules of the type which are triggered by exactly one segment 
are called segment rules. 

An example of an insertion rule is given in (2.16): 

o ->+I ... _ l,y 

Here, a 'O' (zero) denotes an empty focus. An affix marker '+' 
must be inserted before the affix 'ly' (under circumstances in 
the left context which are left unspecified here). 

(2.16) 

Since the focus of an insertion rule is empty, the rule cannot be triggered by a 
specific segment, and must therefore be tested for each position in the string. 

An example of a segment rule is given in rule (2.8). In left-to-right scanning 
mode the rule is triggered by a 'c'; only when the segment 'c' is encountered 
in the input does this rule have to be consulted. Rule (2.11) is an example 
of a common rule, which is triggered by any phoneme defined as '<-SON>'. 
This applies to more than one segment, so the common rules, too, must be 
consulted for each segment in the input string. 

Due to this distinction in rule types the syntax of a module is as follows. 
First, all rules must be grouped in the appropriate block: the insertion rules 
in the insertion block, the segment rules in the appropriate segment blocks 
and the common rules in the common block. 
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For each input segment first the insertion block is consulted from top to 
bottom. If an insertion rule matches, the structural change is added to the 
output and the remainder of the insertion rules is skipped. If no insertion 
matches nothing changes in the output. The input segment has not been 
processed in either case. For the same input segment the segment block is 
now consulted. The segment block is the case statement of rule blocks for 
the various characters. The input segment selects the appropriate rule block, 
and consults it from top to bottom. If a rule matches, the remainder of the 
rules~--including the common block-are skipped and the next input segment 
is dealt with. Only if no segment rule matches will the common block be 
consulted. This is consulted in the same top to bottom manner. Only if no 
common rule matches will the 'copy or error' action take place. 

The procedure of first consulting the insertion block, then the segment 
block and finally the common block is induced by the segment-by-segment 
strategy. It does not, however, constrain the linguistic possibilities. If one 
needs to alternate insertion and segment rules, or segment and common rules, 
one can introduce separate modules for each of these blocks. By concatenating 
them in the desired order one can obtain the desired function. 

An example 

As an example the conversion of the first part of the word 'chauffeur' 
is treated. The relevant rules, which are a small sample of a grapheme-to­
phoneme module, are included in Table 2.1. 

Suppose the input is scanned from left to right, and initially the inter­
nal state is as in (2.17), the reference marker being positioned at the first 
character, 'c ': 

input: 
(2.17) 

output: 

Since there are no insertion rules, the character rules are consulted directly. 
As the reference marker is positioned at a 'c', the rules under 'grapheme c' 
are selected. The first rule fails to match as neither an 'e' nor an 'i' follows 
the 'c'. The second rule fails as the right context of that rule requires any 
character except an 'h' and that is exactly what is found. The third rule 
matches; first the focus 'ch' is found, and directly to the right of the focus 
'au' is found. The rule applies; the structural change 'SJ' is added to the 
output and aligned with the focus 'ch'. The reference marker is shifted two 
characters to the right, as the focus consists of two characters: 
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input: c h 
(2.18) 

output: SJ 

The new reference marker points at 'a', so now the rules for the grapheme 'a' 
are selected. The first rule fails on the focus, as 'au' is found instead of 'aa'. 
The second rule matches, however. The focus matches, and to the left of the 
focus the phoneme 'SJ' is found. So 'OO' is added to the output and aligned 
with 'au'. The reference point is shifted along the length of the focus: 

input: c h au 
(2.19) 

output: SJ 00 

2. 3. 3 Conversion scheme 

With a module one can manipulate strings. Often a particular conversion can 
be divided into several sequential steps. For this purpose the user can con­
catenate modules; every next module operates on the output of the previous 
one. Together the modules define a conversion scheme. 

Table 2.1: Part of a module, which is used for the conversion of 
the first part of the word 'chauffeur'. 

grapheme a Rules for Dutch 
========== 
a,a -> AA I 'u aap, not blaauw 
a,u -> 00 I SJ chauffeur 
a,u -> AU normal 'au' rule 

grapheme c 
========== 
c -> s I {e} Cecilia, not cacao 

{i} 

c -> K I 'h colbert, not chauffeur 
c ,h -> SJ I a,u chauffeur 
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input type 

I 
! 

I grapheme-to-grapheme I 
I 
! 

I 
grapheme-to-phoneme I 

I 
~ 

I phoneme to-phoneme I 
I 

output type 

Figure 2.3: The ways in which modules may be concatenated. 

As holds for the total conversion, the input and output of separate mod­
ules can either be of the same type or not. A natural constraint is that the 
output and input types of consecutive modules should be compatible. As 
many modules as necessary may be concatenated. 

The notion of two separate levels, an input and an output level, has been 
introduced in order to provide access to information concerning the relation 
between spelling and pronunciation. Therefore, input-types (graphemes) and 
output-types (phonemes) must not be mixed, and, as a consequence, the 
transition from the input to the output type may be made only once6 . This 
is depicted in Fig. 2.3. 

Once the (optional) transition to phonemes has been made, one can refer 
to both graphemes and phonemes in the rules, along with their alignment. 
Conversely, referring to phonemes when only grapheme modules have been 
used is not possible, of course. This opens the possibility to interpret output 
symbols (symbols which generally denote phonemes) within these modules 
alternatively. 

For instance, an elegant way to distinguish graphemes from phonemes­
given one wants to do so-is 'case coding': a 'k' is a grapheme, 'K' a phoneme. 

6 Although the input-types and the output-types are not restricted to graphemes and 
phonemes only, graphemes and phonemes will denote them respectively in the remainder 
of this section. 
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For a grapheme-to-phoneme module this works well, but it implies that one 
cannot deal with capitals. 

Therefore, in the first phase of the conversion, when only grapheme mod­
ules are used, the phoneme segments (for instance those which are denoted by 
a single capital letter) can be used as if they were grapheme segments. In this 
way one can write a de-capitalising module, which operates after a module 
that deals with acronyms (abbreviations like 'UK' and 'BBC'). An obvious 
demand is that when the grapheme-to-phoneme module is being consulted, 
uppercase characters should be present in the input. 

Now the 'copy or error' action can be specified which ToorjP performs if 
for a certain segment none of the rules in a certain module match. In modules 
that have the same type of segments as input as they produce as output, the 
segments for which no rules apply are simply copied to the output. In the 
grapheme-to-phoneme module no copy action can be taken, of course. Here, 
a harmless error segment is added to the output to mark the position where 
the error occurred, and the error condition is reported to the user. 

This also implies that ToorjP is robust: all input can be handled, including 
unpronounceable input. The system simply executes the specified rules. This 
always results in an output string, possibly containing error segments. 

2.4 System output 

Given the deterministic way the rule base is consulted, the conversion scheme 
contains all the information for the conversion explicitly. On the other hand, 
it contains only this type of information, it does not include a mechanism to 
actually perform the conversion. This bipartition, depicted in Fig. 2.4, gives 
the system a maximum of flexibility: any conversion scheme for the manip­
ulation of strings specified in the linguistic section can be executed. In this 
way, an efficient division of labour and field of speciality has been achieved. 
A linguist formulates, for instance, the rules for grapheme-to-phoneme con­
version, while an engineer develops the machine which performs the specified 
conversion. Their interface is the interpretation and consultation scheme of 
the rules. 

The conversion scheme is presented to ToorjP in text files. Each module 
is a separate text file. A specific text file indicates the order in which the 
modules are to be consulted. The definition tables of the segments, features 
and labels are also included in separate files. 

While the string of output segments is, naturally, ToorjP's most important 
output, the system is also capable of providing information on the conversion 
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conversion scheme converter 
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Figure 2.4: The (linguistic) conversion knowledge is separated 
from the mechanism which performs the conversion. 
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process and gathering information for statistical purposes. For development 
purposes debugging tools have been provided for, to facilitate the tracing of 
errors in the rules. When conversion performance is satisfactory, the linguist 
may want to know how frequently the rules apply, to try and improve the 
conversion speed. For this purpose a rule coverage analysis tool has been 
included. Finally, when the set of rules has been developed Toor)P can be used 
to collect statistical information on grapheme--to-phoneme correspondences, as 
these are being preserved in the system. These three types of output will now 
be described in greater detail. 

2.4.1 Development Support 

In the conversion scheme three levels can be distinguished. The conversion 
scheme consists of modules, a module consists of linguistic rules, and the rules 
consist of patterns and actions. In most cases, the number of modules will 
not be extremely large. For instance, we have built a complete grapheme-to­
phoneme conversion system for Dutch with only some 8 to 12 modules (see 
Berendsen et al., 1986). The number of rules to be consulted in succession, 
however, can become large: we have a module with over 150 rules. Also, 
the complexity of the rules can be high, when operators are nested to great 
depths. Therefore, powerful debugging tools can be useful. Toor)P provides 
three corresponding display modes to help debugging. The first one displays 
the output of each module, the second one displays the performance of the 
rules within a specific module, and the third one displays the matching process 
within specific rules. 
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2.4.1? Rule Coverage Analysis 

A second development tool which has been included in Toor.jP is a so-called 
rule coverage analysis. This feature can keep track of the frequency with which 
individual rules are consulted, and determine whether or not they have been 
applied. It may turn out that quite a number of rules hardly ever apply, for 
instance because they have been designed for words of very low frequency. In 
that case the linguist may want to rearrange the rules in such a way that the 
rules for infrequent regularities are tested last. This can help to improve the 
performance speed of a module, and consequently of the conversion scheme. 

2.4.3 Derivation Analysis 

As mentioned in earlier sections, Too:rjP can be used as an analysis tool to col­
lect statistical information on grapheme-to-phoneme correspondences. This 
is possible because during the conversion of a word or a sentence the deriva­
tional history is retained. Not only are the results of each module retained, 
but also the individual input-to-output relations. 

There are two types of information on derivational history. The first type 
is a detailed report on the derivational history of specific input. The second 
type is an overview of the grapheme-to-phoneme relations of accumulated 
input. 

The derivational history report looks much like the internal state figures 
as in (2.18) and (2.19), only here all the modules are included. Given a certain 
scheme of concatenated modules, a typical example is shown in (2.20), where 
a full derivation of the word 'chauffeur' is given. 

input: c h a u f f e u r 

morphology: c h a u f f # e u r 

graph on: SJ 00 F F MB EU R 

stress: SJ ~a a F F MB *EU R 

reduction: SJ ~ao F *EU R 

Here, a '#' is the morpheme boundary marker on the grapheme 
level, 'MB' is the morpheme boundary marker on the phoneme 
level, an asterisk denotes primary stress and a hat denotes sec­
ondary stress. Vertical lines indicate synchronization of segments 

(2.20) 
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between modules. So, for instance, in the morpheme module a 
morpheme boundary was inserted between the 'f' and the 'e', 
and in the graphon module the graphemes 'c' and 'h' are asso­
ciated with the phoneme 'SJ'. 
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From this detailed derivational history report the individual grapheme-to­
phoneme relations are computed. Each smallest group of input segments that 
is synchronized with the output is stored in the derivation database with its 
synchronized output. Synchronization means that the vertical synchroniza­
tion marks are extended from input to output on both sides of the segments. 
Thus in (2.20) the 'c' at the input level is not synchronized with the output 
as the right synchronization mark stops at the graphon level. In the exam­
ple 'ch' is synchronized with 'SJ', 'au' with 'DO', 'ff' with 'F', 'eu' with 'EU', 
and 'r' with 'R'. These five grapheme-to-phoneme relations are stored in the 
derivation database. 

For each conversion, grapheme-to-phoneme relations can be computed. If 
a new relation is found, a new entry is created in the database. If a relation is 
found that has already occurred, the number of occurrences is incremented. 
When all input has been processed and the grapheme-to-phoneme relations 
are included in the database, the results are printed alphabetically. For each 
group of input segments that has been stored, the corresponding output( s) 
are listed with their frequency. An example is given in Table 2.II. 

2.5 Extensions 

In the previous sections only the essential characteristics of Toor}P have been 
described. Some additional features were omitted, which are described in this 
section. 

2.5.1 Meta-symbols 

Some symbols have a special meaning in the rules. For instance, a single 'O' 
in the focus or structural change denotes an insertion or deletion rule, and '/' 
indicates the beginning of the context specification. Such symbols are called 
meta-symbols, as they have the syntactic function to denote the structure of 
a rule. 

Because of this function, they cannot be used freely to refer to segments 
in the input or output. Therefore, a mechanism has been provided to define a 
symbolic name for a character, so that the characters that correspond to the 
meta-symbols can be referred to. In the definition tables of input and output 
segments one can include such definitions, for instance: 
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zero = 0 (2.21) 

Now, when the character sequence 'zero' is used in the rules, it will refer to 
the segment '0' in the input. 

2.5.2 Macro Patterns 

In the linguistic rules, some patterns are used very often. For instance, 
'<-CONS,+SEGM>' is such a pattern, denoting all vowels. It may be desir­
able to introduce a shorthand notation for such patterns. These are called 
macros. They not only reduce the typing effort, but also make the rules easier 
to read. 

At the beginning of each module one can define the macros valid for that 
module, as exemplified in (2.22): 

VOW = <-CONS,+SEGM> ! vowels (2.22) 

Each time this macro is encountered, the pattern associated with it replaces 
the macro. Previously defined macros can be defined in the patterns of new 
ones. 

Table 2.II: Derivation analysis of the grapheme 'c' in a random 
word list. Listed to the left of the arrow are the input graphemes, 
between parentheses the number of occurrences. Listed to the 
right of the arrow are the alternative pronunciations with their 
relative frequency. 

grapheme c 

----------
c (671) -> K 78.5 % s 21.5 % 
cc (10) -> K 100.0 % 
ch (153) -> K 1.3 % SJ 30.7 % TSJ 1.3% 

X 66.7 % 
ck (11) -> K 100.0 % 
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2.5.3 Metathesis 

Metathesis is the exchange of two or more segments. This mechanism is 
typically needed for elegant text normalization of Dutch or German numbers, 
amounts of money and indication of time. In these languages, the digits of 
the numbers between 13 and 99 are pronounced in inverse order. Take, for 
instance, the number '36', which is pronounced as "zes en dertig" (six and 
thirty). With the facilities described so far one would have to specify some 
90 rules of the type: 

3,6 -> 6,3 I (2.23) 

With metathesis one can capture this phenomenon in one feature rule: 

<+num>i,<+num>j -> <+num>j,<+num>i I (2.24) 

Just like normal rules using identity markers, matching the focus pattern 
of (2.24) to the input string results in storing the segments found. If the rule 
matches, the segments are retrieved and added to the output in the specified 
order. 

2. 5.4 Exception lexicon 

As stated in the introduction, rule-based grapheme-to-phoneme conversion 
will always need an exception lexicon to cover irregularities. For this rea­
son ToorjP has been extended with the possibility to include an exception 
lexicon. The presented orthographic input is decomposed into words, which 
subsequently are looked up in the lexicon. If a word is present, the correspond­
ing phonetic transcription is assigned. If it is not present, it is transcribed 
by rule. The output of lexicon-lookup and rule-transcription is then merged. 
Before and after this lexicon some segment processing can be done. For in­
stance, before the lexicon lookup some text normalization may be needed, and 
afterwards some inter-word processes such as assimilation may be desirable. 
These processes are formulated in the same way as the rule-based conversion, 
by means of linguistic rules in modules. This is indicated schematically in 
Fig. 2.5. 

The lexicon was constructed by Lammens (1987) in such a way that it can 
easily be implemented in other systems. The user can insert and delete new 
entries, which are coded in the same format as ToorjP's input and output. 
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orthographic input 

found 

phonematized output 

Figure 2.5: Structure of the development system when an ex­
ception lexicon is included. The pre-processing, the rule-base 
and the post-processing are all conversion schemes. 

2.6 Relation to other systems 

2. 6.1 Lay- out 

In most systems, the linguistic data to which a rule has access are represented 
on one level only, viz. the output of the previous module or rule. In ToorjP, 
more levels of linguistic information can be consulted. The input-type level 
(graphemes) and the label level are always accessible, the output-type level 
(phonemes) is available after it has been introduced. As each segment has a 
unique representation, there is no doubt as to which level is referred to in the 
rules. Information on the label level is accessed by enclosing the desired label 
information in special brackets, as described in earlier sections. 

The Delta system of Hertz, Kadin & Karplus (1985) is even more flexible: 
the linguist can define any number of levels. A disadvantage is that in order 
to refer to these levels in the linguistic rules, use must be made of special 
selection markers, as the segments have the same representation on different 
levels. These selection markers somewhat complicate a quick understanding 
of the rules. 
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A second aspect of lay-out is the way in which or- and and-relationships are 
represented. Normally, this is done one-dimensionally, so that the structure 
can be parsed in one scan. A typical representation is given in the insertion 
rule (2.25). The purpose of the rule is to insert a prefix boundary marker 
behind the Dutch prefixes 'be', 'ge', 'her' and 'ver'. The right context is 
omitted here. The left context is an alternative structure with two options, 
each of which contains another alternative structure. The first alternative 
accounts for 'be' and 'ge', the second one for 'her' and 'ver'. The slash 
within braces denotes the separation of the alternatives: 

0 -> + I {{blg},el{hlv},e,r} (2.25) 

ToorjP features a two-dimensional representation of or- and and­
relationships, which increases the readability of the rules. It requires more 
space and a more complicated parsing strategy, but offers the linguist greater 
insight into the nature of the patterns than a one-dimensional representation. 
Compare, for instance, (2.25) and (2.26). In (2.26), the same rule as (2.25) is 
represented in the two-dimensional representation. 

0 -> + I { {b},e } 
{g} 

{{h},e,r} 
{v} 

(2.26) 

The idea behind this two-dimensional representation is that it reflects the 
structure of patterns better than a one-dimensional representation. Hori­
zontal positioning of patterns reflects a sequential relationship; concatenated 
structures should be found in succession. Vertical positioning reflects that the 
patterns refer to the same position of the input or output string. The linguist 
is able to use more complicated patterns owing to this way of representing 
them, and it has been observed that in practice this possibility is being used 
extensively. 

2.6.2 Ordering principle 

Inside each module and within each type of rule, the consultation of the rules 
is order-sensitive. In most grapheme-to-phoneme conversion systems this is 
the case. The main reason for this is that linguists are used to working with 
sets of ordered rules. This implies that one cannot evaluate the performance 
of an isolated rule, one can only judge the whole set of rules. In principle, 
this is a disadvantage. However, compared to systems in which the rules are 
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unordered and therefore disjunct (e.g., Vander Steen, 1987) the individual 
rules in an order-sensitive system are less complicated, as each next rule deals 
with a decreasing number of cases. Given the number and complexity of the 
rules in a realistic application, this turns into an advantage over systems where 
rules are unordered. 

2.6.3 Assignment strategy 

In several other systems (Carlson & Granstrom, 1976; Hertz, 1982; Holtse 
& Olsen, 1985), the assignment strategy differs from the module-internal 
strategy defined here. Instead of applying a segment-by-segment strategy­
consulting all appropriate rules from top to bottom for a certain input 
segment-a rule-by-rule strategy is applied: one rule operates on the com­
plete input string, the modifications brought about being input to the next 
rule. A rule then has string-manipulation characteristics: it modifies all ap­
propriate segments of an input string. 

ToorJ.P features both strategies: within a module the segment-by-segment 
strategy is applied, while the string-manipulation strategy is applied by suc­
cession of modules. Both strategies can be useful. The system described by 
Kerkhoff et al. (1984), for instance, also features both strategies, but in that 
system a rule-by-rule strategy is chosen by default. 

The difference between a segment-by-segment and a rule-by-rule strategy 
obviously has consequences for the way in which linguistic rules should be for­
mulated. Although ToorJ.P does not feature an explicit rule-by-rule strategy, 
this can be simulated by including only one linguistic rule in a module, and 
defining just as many modules as there are rules. Therefore, ToorJ.P has at 
least the same possibilities as the others. However, by including more than 
one rule in a module and organizing them according to the segments on which 
they operate, efficiency is improved, since the rules are tested only on the ap­
propriate segments. As some 8D-90% of the rules in an actual application of 
grapheme-to-phoneme conversion are segment rules, the increase in efficiency 
is considerable. 

2. 7 Applications 

No matter how well-designed a system is, the final test that must be applied 
is: "Is it useful in practice?". So far, the main test for ToorJ.P has been the 
development of a grapheme-to-phoneme conversion system for Dutch (Berend­
sen et al., 1986). The conversion scheme comprises the full trajectory from 
unrestricted orthographic text to phoneme transcription, complete with word 
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stress markers. The results appear to be promising: a 96.5% correct tran­
scription score was obtained for 4000 word types in an arbitrary newspaper 
text (Berendsen, Lammens & Van Leeuwen, 1989). 

In developing the rulebase, ToorjP's facilities have proved to be satisfac­
tory. The tools to construct a rulebase have appeared to be adequate, elegant 
and flexible. The debugging tools in particular have served well in the devel­
opment of the rules. 

The grapheme-to-phoneme converter now has two direct applications. On 
the one hand, it serves as a research tool to collect statistical information on 
the individual grapheme-to-phoneme relations for Dutch, and on the other, it 
serves satisfactorily as part of a text-to-speech system for Dutch. 

Apart from these scientific applications, ToorjP is also being used for ed­
ucational purposes. It appears to be well suited for a quick verification of 
phonological descriptions and it serves as a practical teaching-aid to illustrate 
and practice the use of SPE-like linguistic rules. 

2.8 Conclusion 

In this chapter the ToorjP system has been described for a user's point of view. 
It serves as a development tool for linguistic rules. The linguistic rules can 
be ordered in a certain scheme so as to define the conversion of an arbitrary 
input string to a desired output string. The rules contain the information on 
how the conversion is to be executed, and the system performs the conversion, 
driven by the rules. 

A special characteristic of ToorjP is that input and output can be of a 
different type, and that the derivation of input to output is retained. Due 
to this, one can refer in the rules to this alignment of input and output. 
When the system is used as a grapheme-to-phoneme conversion system, this 
alignment reflects the correspondence of spelling and pronunciation. As a 
consequence, once a grapheme-to-phoneme conversion scheme for a certain 
language has been developed satisfactorily, spelling-to-sound correspondences 
in that language can be studied by using ToorjP as an analysis tool to collect 
and analyse such data. 
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Appendix 2.A 
Functional specification of Too:r).P's main body 

In this Appendix a functional specification is given of ToorjP's main body, as 
it is described in section 2.3. The specification will be given on a rather high 
level, thus abstracting from irrelevant detail. The primary goal is to define 
formally how linguistic rules are evaluated, how a rule block is evaluated, and 
how a module and the conversion scheme are executed. Therefore, some lower­
level functions are not specified formally but described in natural language. 

Data structure 

input 
graph 
phon 
output 

i } array [!..len [ of segment 

The main data structure consists of 4 arrays. input and output serve to store 
the original input and the system-provided output and are also necessary for 
overall synchronization purposes. The 'real work' is being done in graph and 
phon. 

Functionality 

function P _match(P, match_dir, starLpos) = 
Gen_string( start_pos, match_dir) n (P) ::f. 0 

P_match: The basic function is to match a pattern to the data buffers. 
P_match is defined in terms of Gen_string and (P). (P) is the set of string 
denoted by P, on which chapter 3 elaborates. Gen_string is a function that 
generates all strings of segments which can be formed by starting at starLpos 
and concatenating all segments that are encountered between starLpos and 
the end of the buffer in the matching direction match_dir, where at the syn­
chronization points between graph and phon one may switch from one buffer 
to the other. 

function R_match(F, L, R, scan_dir, inLpos) = 
if ( scan_dir = -+) 
then P _match(F, -+, inLpos) A 

31 E Length( F) : P _match( R, -+, inLpos + l)A 
P _match(L, -, inLpos- 1) 

else P _match(F, -, inLpos) A 
P _match(R, -+, inLpos + 1) A 
31 E Length( F): P _match(L, t--, inLpos l) 

fi 
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R_match: F, L and R denote focus, left and right context respectively. 
scan_dir is the scanning direction. inLpos is the internal position (see sec­
tion 4.4), this denotes the position in work_buf up to where the transcription 
process has proceeded. Length is a function that generates set of lengths for 
which the (focus) pattern matches. For instance, Length( {aad) = {1, 2} if 

' the input contains 'at' at the appropriate position, but it is 0 if 'b' is found. 

function Apply_rule(Rulei) = 
if R_match(Fi, Li, Ri, scan_dir, inLpos) 
then 

if (gra-+phon) then "Add Ci to phon" 
else "Replace Fi by Ci in work_buf" fi; 

if (gra-+phon) or (phon-+phon) 
then "Synchronize Ci(phon) with Fi(graph)" fi; 

"Synchronize work_buf with input"; 
"Advance inLpos by Length( Ci) in scan_dir"; 
return true 

else 
return false 

fi 

Apply_rule: Fi, Li and Ri are the focus, left- and right context of Rulei. 
gra-+phon denotes that the rule is part of a grapheme-to-grapheme module. 
The other two possibilities are gra-+gra and phon-+phon. The bulk of the 
output is generated by this function. It is given as a side effect rather than 
the result of the function. Synchronization, too, is a side effect. 

function Apply_Block(Rule_block) = 
i := 1; 
success := false; 
while not success and Present(Rulei) do 

success:= Apply_rule(Rulei); 
i := i + 1 

od; 
return success 

Apply_block: Starting with the first rule, the rules are consulted until a rule 
matches. If a rule has been applied, success = true, otherwise it is false. 

procedure Apply_Module(Modi) = 
if ( scan_dir = -+) then inLpos := 1 

else inLpos := len fl.; 
while ( inLpos E Input_ range) 
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do 

od; 
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if Present( Insertion_block.) 
then result:= Apply_Block(Insertion_blocki) fi; 

if Present( Segm_blocki) 
then result:= Apply_Block( Char(inLpos)i) fi; 

if not result and Present( Common_blocki) 
then result:= Apply_Block( Common_blocki) fi; 

if not result then 

fi 

if (gra-+phon) then "Add ES {error segment} to phon" fi; 
"Advance inLpos by 1 in scan_dir" 

return true 

Apply_Module: InpuLrange determines whether inLpos is still in the range of 
the input string. Depending on the scanning direction inLpos is initialized 
to the leftmost or rightmost segment. As can be seen, the segmental block 
is consulted independent of whether the insertion block has applied. The 
common block, on the other hand, is only applied when the segmental block 
has not applied. 

procedure Apply _Conv _Scheme (Scheme) 
if (phon-+phon) then phon:= input 

else graph := input fi; 
i := 1; 
while Present(Modi) 
do 

od; 

if (phon-+phon) then work_buf :=phon 
else work_buf := graph fi; 

Apply _Module( Modi); 
i := i + 1; 

if (gra-+gra) then output:= graph 
else output : = phon fi; 

Apply_Conv..Scheme: work_buf is initially filled and defined for each module. 
The modules are applied in order. (gra-+gra) and (phon-+phon) are tests that 
concern the type of the overall conversion scheme. 



Chapter 3 

Extending regular expressions with 
complementation and simultaneity 

Abstract 

Regular expressions are a well-known mathematical tool in computer 
science. The patterns which are used in ToorjP are, in fact, an ex­
tended form of regular expressions. For user convenience two opera­
tors are added to the standard regular expressions: complementation 
(the 'not') and simultaneity (the 'and'). 

The introduction is not without problems, however. If the com­
plementation operator is introduced in a compositional manner, the 
formal interpretation of a certain class of expressions differs from 
what one would expect those expressions to mean. To be precise: 
certain strings one would expect to be excluded, are not. This is con­
sidered to be an undesirable characteristic, as generally users simply 
start using a system rather than first studying its exact nature. 

Therefore, an alternative definition for complementation is pro­
posed, which for the mentioned class of expressions behaves in accor­
dance with expectation. The essential difference with the composi­
tional formalism is that now the 'explicit nofits' are always excluded. 
As a consequence, however, strict compositionality is lost, which for 
instance shows in the fact that double complementation may not 
always be annihilated. 

Next, the simultaneous operator is included, symmetrical to the 
alternative operator, which introduces a small additional complica­
tion. From a theoretical point of view the proposed formalism is not 
completely satisfactory. It might be satisfactory, however, from a 
practical point of view. Those patterns for which it behaves unsatis­
factorily are highly unlikely to be used in practice, and the proposed 
formalism can be seen as a practical compromise between the prac­
tical needs and theoretical elegance. On these practical grounds it 
has therefore been decided to implement the semi-compositional for­
malism in ToorjP. 
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3.1 Introduction 

R EGULAR expressions are a widely used mathematical tool in computer 
science. In general, they can be used to describe a certain class of (for­

mal) languages, called regular sets, the characteristics of which can be found 
in any text book on this subject (see for instance Hopcroft & Ullman, 1979). 
Regular expressions are used in a wide variety of applications, one of which, 
for instance, is rule-based grapheme-to-phoneme conversion (see for instance 
Carlson & Granstrom, 1976; Hertz, 1982; Holtse & Olsen, 1985; Kerkhoff, 
Wester & Boves, 1984; Van Leeuwen, 1989). In such an application the 
conversion of orthographic text (the graphemes) into a sound representation 
(phonemes) is controlled by a set of linguistic transcription rules, which are of­
ten a particular version of Chomskian rewrite rules (Chomsky & Halle, 1968). 
Each rule is a recipe on how to rewrite certain input characters, given their 
presence in a certain context. The specification of the characters to be tran­
scribed, and the context in which the transcription should take place, can well 
be done by means of regular expressions, as the type of strings one needs to 
denote for this purpose generally fall within the class of regular sets. Often 
some small extensions are made to this basic formalism, tuned to the specific 
requirements of the application. 

Apart from the so-called terminals, which directly refer to the characters of 
some alphabet, regular expressions feature three operators for the specification 
of more complex regular expressions. Alternation is used to obtain the union 
of two regular sets, concatenation is used to express juxtaposition of two 
regular sets, and repetition is used for infinite concatenation of regular sets. 
In this chapter the problems are discussed that were encountered when two 
operators, the complementation operator (the 'not') and the simultaneous 
operator (then 'and'), were added to the standard regular expressions. 

The main motivation for this extension was to increase the user's ease of 
expression. 'Vith the thus extended regular expressions target and context 
patterns are specified in the linguistic rewrite rules of the Too]JP system. 
With it one can develop a set of linguistic rules, which, for instance, define 
the grapheme-to-phoneme conversion for a specific language. 

Several other systems which feature similar rules for similar purposes (e.g., 
Hertz, Kadin & Karplus, 1985; Kerkhoff et al., 1984; Vander Steen, 1987) also 
feature a complementation operator in their own versions of extended regular 
expressions, and each system features its own interpretation, without being 
too clear, however, on the exact interpretation and the underlying motivation 
for that specific interpretation. This chapter aims to identify and propose a 
solution to the problems attached to this matter. 
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Another, totally different, application where the problem may also be en­
countered concerns the search function of a text editor. Simple search func­
tions only allow a sequence of characters as search pattern. More sophisticated 
functions also feature 'or' structures, thus for instance one can search for a 
'c' followed by an 'e' or an 'i'. When a 'not' structure is also introduced (for 
instance, "search for a 'c' not followed by an 'e' or an 'i'") the search function 
has essentially the same possibilities as the context specification means which 
are present in the linguistic rules of Toor.jP, and thus the same interpretation 
problems will arise. 

The main problem can be reduced to the combination of three operators 
in one formalism: complementation (the 'not'), alternation (the 'or') and con­
catenation (the linking of consecutive structures). Therefore, the repetition 
operator will be omitted in the first part of this study. When a reasonable 
satisfying solution for the inclusion of complementation has been described, 
the repetition operator will return in the formalism, together with the simul­
taneous operator. 

The main problem of introducing complementation in regular expressions 
is that the solution which comes to mind first is not satisfactory. The straight­
forward approach is to define complementation in a compositional manner, as 
will be explained in section 3.3. This is done, for instance, by Van der Steen 
(1987) in the Parspat system. However, for a certain class of expressions the 
formal interpretation does not correspond to the meaning one expects the ex­
pression to have. A simple but not very satisfying solution to the problem is 
to exclude the cases which cause problems by means of syntactic restrictions, 
as is done, for instance, in the Fonpars system of Kerkhoff et al. (1984). An 
alternative approach is to study what one expects the patterns of that par­
ticular class to mean and try and formalize that expectation so that it can be 
incorporated in the semantics of the formalism. 

In this chapter the latter line of thought is followed. First simplified regular 
expressions are discussed, i.e., regular expressions stripped of the repetition 
operator (section 3.2). The formalism does not yet feature a complemen­
tation operator, and some properties of this formalism are discussed. Then 
complementation is included in a straightforward compositional manner, and 
the cases in which problems arise are identified (section 3.3). The nature of 
these patterns and the reason why expectation deviates from the formal in­
terpretation are then studied, which leads to a formalization of the expected 
meaning (section 3.4). This is included in the formalism so that the inter­
pretation of this class of patterns also corresponds to expectation (that is, 
applying common sense rather than the formal definition to determine its 
meaning). A discussion on the properties of the thus originated formalism 
follows (section 3.5). Then, simultaneity and optionality (this is the ToorjP 
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name for the repetition operator) will be added to the formalism (section 3.6), 
the consequences of which are also discussed (section 3.7). As will become 
clear the resulting formalism does not fulfil all the properties one could wish 
it to have, such as the legitimacy of annihilating double complementation, 
or applying de Morgan's laws. In adjusting the formalism to practical needs 
some properties are lost, which are attractive from a theoretical point of view. 
The discussion (section 3.8) deals with the incompatibility of practical needs 
and theoretical elegance. Finally, in the concluding section (section 3.9) the 
most important conclusions are recapitulated. 

3.2 Simplified regular expressions 

3. 2.1 Introduction 

The similarity between regular expressions, a target or context pattern in 
linguistic rules and a search pattern used in a text editor is the fact that pat­
terns of characters are specified. These are of exactly the same type as those 
denoted by regular expressions. To distinguish the formalism here developed 
from the (standard) regular expressions, the term 'pattern' will be used. In 
general, a pattern denotes a set of strings, where a string is a sequence of 
characters. 

A typical example of a linguistic rewrite rule, which makes use of such 
patterns, is given in (3.1): 

c,h -+ SJ / { 
a, u } 

vow,q 
(3.1) 

The rule states that a character sequence 'ch' should be rewritten into 'SJ' 
if it is followed by either the character sequence 'au' or a character sequence 
which is characterized by "a vowel followed by a 'q' ". The rule is meant to 
provide the Dutch pronunciation for the 'ch' in French loans such as 'chauffeur' 
(driver) or 'choque' (shock). The slash (/) separates the transcription part 
(left side) from the context specification (right side). The transcription part 
specifies that the target pattern ( c, h), which is also called focus, should be 
rewritten (-+)into the change pattern (SJ), which is also called the structural 
change. The comma ( ,) in the focus denotes the concatenation operator: 
following a 'c', an 'h' should be present. The context specification specifies in 
which context the focus should be found in order to apply the transcription. 
The underscore (_) indicates the position of the focus in the context. Thus 
in rule (3.1) the left context is empty, which means that any string satisfies 
the condition. The right context consists of an alternative structure (denoted 
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by the braces'{' and '}'): of all patterns listed on top of each other (here: 
a, u and vow , q) at least one must be present (here, vow is a shorthand 
notation for the vowels {'a' 'e' 'i' 'o' 'u'}) 

! ' ' ' • 

Throughout this chapter, when characters in the input string are referred 
to, they are placed between quotes (e.g., 'ch'), whereas all patterns are printed 
in bold face (e.g., c, h). Also, the patterns will be given in a notation derived 
from linguistic rules rather than in a notation which is generally used in regular 
e;:pressions, as the problems were encountered in this specific application. 

In rule (3.1) three patterns can be distinguished that are searched for in 
an input string: the focus, which denotes the string 'ch', the left context, 
which denotes any arbitrary string, and the right context, which denotes all 
strings beginning with either the characters 'au', 'aq') 'eq') 'iq', 'oq', or 1uq'. 
Note the difference between the interpretation of the focus and the contexts. 
With regard to the focus only strings match which have the correct length and 
composition, while the right and left contexts are satisfied if the beginning of 
the strings is correct. For the contexts a 'don't-care pattern', which matches 
to all strings, is added at the end of the pattern. 

A pattern is matched against a string at a certain position, called the an­
chor. Suppose a string consists of 'chau1feur', then matching the right context 
of (3.1) against the string will only give a positive result if it is started on the 
third character from the left or, in other words, if the anchor is positioned at 
the 'a'. 

A pattern is also matched in a certain direction. This is determined by 
the place where the anchor is related to the pattern. For a right context 
this is at the left side, where the focus (which is the reference point of the 
ling·uistic rule) is found. Therefore, the right context is matched from left to 
right. Conversely, the anchor of the left context is positioned at its right and 
consequently, the pattern is matched from right to left. It is not so much 
the direction in which a pattern is matched that is important, as the fact 
that it can only be done in that specific direction. Consider, for instance, the 
following right context: 

This pattern consists of an alternative structure (a or o, u), concatenated by 
the pattern t. The position where a 't' should be found in the string depends 
on the alternative which is taken into account: if this is the first alternative 
(a), the 't' should be found at the second position to the right of the anchor; 
for the second alternative (o, u) thi' should be the third position. 
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In the following, I shall only consider left-to-right matching of patterns, 
as right-to-left matching of reverse patterns will essentially have the same 
properties. In defining the interpretation of these patterns, I will give the in­
terpretation of a (left or right) context, where, so to speak, the don't-care pat­
tern is added at the end, as that is the most general form of a pattern. The 
interpretation of a focus pattern can easily be constructed from the general 
interpretation. Moreover, the don't-care pattern is one of the sources of diffi­
culty and therefore the right context patterns are best suited to illustrate the 
matter. 

3.2.2 The formalism 

In example (3.1) quite a few possibilities to construct a pattern are exempli­
fied. First, a pattern may be empty, like the left context. This is denoted by 
the absence of any pattern. Then, there are the terminals, which refer directly 
to the character in the input string, for example c, h, a and u. These are 
called primitives. Next, one can use a shorthand notation to denote a set of 
characters, for instance vow. Finally, two mechanisms are used to indicate a 
relation between patterns. These are called operators. The comma expresses 
concatenation: the concatenated patterns should be found successively in the 
input string. The braces express an 'or' relationship: only one of the specified 
patterns must be present. 

In the formalism presented here only the essential elements which are 
needed to construct an arbitrary pattern are included, so as to keep the line 
of argument as clear as possible. Therefore, the possibility for shorthand 
notation (as in vow) is omitted. The complementation operator, used to 
express a 'not' relationship and which will be denoted by'-,', has been omitted 
so far and will be introduced presently. 

A formalism consists of a syntax and a semantics. The synta.x describes 
which patterns can be constructed. The semantics provides a meaning to 
those patterns. The syntax and semantics of simplified regular expressions 
(not featuring complementation) are given below. 

Syntax 

The syntax of the formalism is given in Table 3.1. 

The syntax is given in an informal version of the so-called Backus-Naur 
Form (Naur, 1963). Here, '::='defines how a term on the left-hand side can 
be expanded and 'I' denotes alternatives of expansion. In words these rules 
read: 
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• A pattern ( (patt}) can be empty (0) or a non-empty pattern ( (ne-patt} ). 
In ToorjP the empty pattern is specified by the absence of any pattern. 

• A non-empty pattern can be a structure ( (strct}) or a concatenation ( ,) 
of a structure and a non-empty pattern. 

Table 3.1: Syntax of simplified regular expressions. 

(patt} ::= 0 I (ne-patt) 

{ne-patt} ::= (strct) j (strct), (ne-patt) 

(strct) ::= (prim} I { ~:::!!l } 
{ne-patt} 

(prim) : := a I b I ... I z 

Table 3.II: Semantics of simplified regular expressions. 

{X} X,® 

~ = {€} 

® = { E, a, b, ... , z, aa, ab, ... , zz, aaa, ... } = u* 

_::={x} 

A,B = AI"VB ---

where x is (prim} 

where A is (strct) 
and B is (ne-patt) 



46 Chapter 3 Extending regular expressions 

• A structure can be a primitive ((prim}) or an alternative structure. An 
alternative structure is denoted by braces ('{' and '}'). It can have 
any number of arguments and each argument is an arbitrary non-empty 
pattern (which can be constructed with the rule above). 

• A primitive is one of a set of basic symbols, a, or b, and so on un­
til z. Here, only the 26 characters of the alphabet are assumed, but 
in an actual system like ToorjP other characters such as blanks and 
interpunction also belong to this set. 

The primitives are the building blocks of the formalism. As will follow from 
the semantics, they refer to information in the input string. The other sym­
bols (such as ',', '{', etc.) are used to define desired relations between the 
primitives. Examples of patterns are: 

a,b,c (3.2) 

Semantics 

The semantics of the formalism is given in Table 3.II. They should be read 
as follows: 

• The interpretation of a pattern X (denoted as '(X}') is the result of a 
function applied to the concatenation of the pattern X and a special 
pattern, the don't-care pattern, to which all strings match. This 
function is denoted by an underscore and is pronounced as "the meaning 
of". 

• The meaning of the 'empty-pattern', 0, is the set containing the empty 
string. This is a string with length zero and is denoted as '€'. 

• The meaning of the don't-care pattern, ®, is the set of all strings, where 
a string is defined as a sequence of arbitrary length composed of arbi­
trary characters from the alphabet. 

• The meaning of a primitive is the set containing the character which is 
denoted by the primitive. Here, x = { x} is shorthand for writing 26 
expressions of the type: a = {'a'};~= {'b'}, etc. 

• The meaning of an alternative structure is the union of the meanings of 
the individual arguments. 
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• The meaning of a concatenation of a structure and a non-empty pat­
tern is the string concatenation (denoted as '.....,') of the meaning of the 
structure and the meaning of the non-empty pattern (from the syntax it 
follows that the first term is a structure and the second is a non-empty 
pattern). 

• The string concatenation '.-v' of two sets of strings is defined as the set of 
all strings which can be split up so that the first part ( d1 ) is an element 
(E) of the first set (X) and the second part ( d2 ) is an element of the 
second set (Y). Note that string concatenation A.-vB is not the same 
as the carthesian product, Ax B. The origin of the substrings cannot 
be traced in the case of string concatenation: 'att' can be formed by 
concatenation of 'a' and 'tt' as well as of 'at' and 't'. In carthesian 
products the origin can be traced: (a,tt) is considered to be a different 
pair from (at, t). 

The function "the meaning of", in fact, closely resembles the definition 
of regular expressions. It deviates at only two small points. One is that 0 
denotes the empty string '€' rather than the empty set. The second point 
is that the repetition operator is absent. This last point, however, is not 
essential, and it will be re-included in section 3.6. This formalism, based on 
the regular expressions, but stripped of the repetition operator will be called 
'simplified regular expressions'. 

According to this semantics, the interpretation of the examples given in 
(3.2) is respectively: "the set of all strings beginning with 'abc'", "the set of 
all strings beginning with 'ce' or 'ci'" and "the set of strings beginning with 
'abe' or 'acde' ". 

Some properties of the formalism 

An important property of a formalism is that it is compositional. Composi­
tionality means that the meaning of a pattern can be expressed in terms of 
the meanings of its composing patterns. If a formalism is compositional, we 
have the guarantee that we can always determine the meaning of a pattern, 
irrespective of its complexity. As can be seen in Table 3.II, the semantics 
fulfils these compositionality requirements, so the formalism is compositional. 

Another property of the present formalism is the distributivity of the al­
ternation over concatenation. For instance, one would expect that relation 
(3.3) holds: 

{ 
a } d _ { a,d } 

b,c ' - b,c,d (3.3) 
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In other words, it is permitted to put freely an arbitrary pattern within braces, 
or take equal patterns out. Given the definition of string concatenation (the 
last line of Table 3.1I), one can prove (see Appendix 3.A) that one may do so. 

A final important property of the present formalism is that it corresponds 
to one's intuition, it does what one expects it to do. Without having to apply 
step by step the rules of Table 3.1I, the meaning of a pattern is 'obvious'. In 
my opinion, this is an essential property of a formalism, as otherwise it would 
never be satisfactory in practice. 

3.3 Complementation introduced in a compositional manner 

The user's possibilities for constructing patterns with these simplified regular 
expressions can be summarized as follows. With the primitives one can impose 
the basic restrictions on the input: in order to have the input match the 
pattern, the input character against which the primitive is matched should 
meet the requirements imposed by that primitive1 . With the concatenation 
operator one can specify the desired presence of a string, i.e., the respective 
requirements of the primitives should be met by the respective characters 
of the input string. With the alternative operator one can express an 'or' 
relation: at the appropriate position in the input string one of the patterns 
specified in the alternative structure should be present. 

The question arose as to whether other operators could also be introduced 
in the formalism. Regular expressions can be expected to be powerful enough 
to specify the patterns that one needs, so it is not so much the power of 
expression one wants to increase, as the ease of expression. With an analogon 
of the 'and' and the 'not' certain patterns can be expressed more elegantly 
and transparently than by means of enumeration using alternatives. Also an 
optional or repetition operator can be useful for certain expressions. 

We will first consider the introduction of only the 'not', since the main 
problem of including additional operators lies here. The introduction of the 
other operators will be discussed in section 3.6. The 'not', called the comple­
mentation operator, is denoted by'--.'. For instance, '--.c' should be interpreted 
as "any character except 'c' ". Since a pattern denotes a set of strings, an in­
verted pattern will also denote a set of strings. In general, one cannot negate 
a set, but one must take the complement of a set. This involves selecting all 
elements from a universe, excluding the elements of the set. For this reason 
the operator is called a complementation operator, rather than a negation or 
inversion operator. 

1In this chapter, the primitives only consist of the characters of the alphabet, but as 
explained in chapter 2, a primitive can also denote a set of characters, such as the vowels. 
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The most straightforward interpretation of a complemented pattern is the 
complement of the set the pattern denotes. This is expressed mathematically 
in (3.4): 

(3.4) 

Here, U is the universe relative to which the complementation operates, and '\' 
is the operator of set-difference, which in (3.4) subtracts X from U. However, 
this universe U must still be defined. -

The first possibility that comes to mind is the universe which is generally 
used with regular expressions, the set of all strings from a given alphabet. This 
is often denoted as (J* ((J is the alphabet, * is the repetition operator). This 
choice of universe, however, has a serious drawback. Consider the pattern 
'•c'. According to definition (3.4) a single 'c' is excluded from the set of 
strings denoted by the pattern, as expected. The string 'cc', however, is 
not excluded from this set, nor is 'ca', nor any other string of at least two 
characters, irrespective of whether it starts with a 'c' or not. And since in 
the application of context specification the context generally consists of more 
than one character, the use of complementation with U = (J* does not seem 
very useful. 

The pattern '--,c' creates the impression that the first character to be tested 
may not be a 'c', but further (on the following characters) no restrictions are 
made, so '--,c' would denote all strings not starting with a 'c'. In the same 
way, '--,[c], t' creates the impression of denoting all strings not starting with 
a 'c' and having a 't' in second position. 

The phrase "creates the impression" is a central notion in the argument. 
Of course, one can introduce any operator in any formalism and attach it 
to any definition, but this is only useful if it works out according to one's 
expectation or intuition, or at least does not work out counter-intuitively. 
And since the pattern '--,c' does not mean (according to (3.4)) the same as 
the impression it creates, I do not consider this definition to be useful. 

This can be fixed by adjusting the definition of the universe. It seems that 
when complementation is used, the universe with respect to which it operates 
is given implicitly. '•c' means any character but 'c', '•[c, t)' means any two 
characters but the sequence 'ct'. Therefore, it seems satisfactory to make a 
character count in the complemented pattern: the number of concatenated 
primitives determines the length and all strings of that length are included 
in the universe. Thus, if a single primitive is complemented, the universe 
is the set of strings with length one; if a concatenation of three primitives 
is complemented, the universe is the set of strings with length three; if an 
alternative structure is complemented, that for instance contains two paths of 
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different length, such as in -,{o~u}, the union of the universes of the individual 
patterns is taken, thus in this case all strings of length one and two. This is 
formalized in a new definition, (3.5): 

(3.5) 

Note that the universe with respect to which the complementation operates is 
now being determined explicitly by the pattern which is being complemented. 

The new interpretation of the universe of an arbitrary pattern is formal­
ized in Table 3.III. The universe of a primitive is the alphabet. The universe 
of a concatenation is the string concatenation of the universes of the compos­
ing patterns. This provides the 'character count'. The alternative operator 
unites the universes of the composing patterns. Finally, the universe of a 
complemented pattern is the same as the universe of the non-complemented 
pattern. 

The possibilities to construct a pattern can now be extended. In Table 3.IV 
a new syntax is given to replace the former one (given in Table 3.1). The 
complementation operator is included as a structure; everywhere where one 
can use a primitive or an alternative operator, one can now also use the 
complementation operator to complement an arbitrary non-empty pattern. If 
the complemented structure consists of a single structure one may omit the 
square brackets which serve to denote the range of the complementation2 • 

2 Square brackets are chosen since parentheses will be used for optionality. Although 
square bracket will also be used for another purpose, viz. to denote simultaneity, there is no 
ambiguity since simultaneity always has two or more arguments, whereas optionality only 
has one. 

Table 3.III: Definition of the universe of an extended regular 
expression. 

xu={a,b, ... ,z}=o-

(A,B)u = Au""'Bu 

( {! })u = AuuBuu ... ucu 

(-,A)u =Au 

where x is (prim) 

where A is (strct) 
and B is {ne-patt} 



3.3 Complementation introduced in a compositional manner 

Table 3.IV: The syntax of extended regular expressions. 

(patt) ::= 0 I (ne-patt) 

(ne-patt) ::= (strct) I (strct) , {ne-patt) 

(strct) ::= (prim) I { ~:::F::l } I ~ [ (ne-patt}] I ~(strct) 
(ne-patt) 

(prim) : := a I b I . . . I z 

Table 3.V: The semantics of regular expressions extended with 
complementation in a compositional manner. 

{X)= X,® 

® = u* 

::_={x} 

~[A]= Au\A 

A,B = A""'B 

where x is (prim} 

where A is (strct} 
and B is (ne-patt} 
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The semantics accompanying this syntax is given in Table 3.V and replaces 
the former semantics (given in Table 3.II). Likewise, the new semantics differs 
only from the old one in the respect that the interpretation for the complemen­
tation operator as given in (3.5) is included. The Parspat system described 
by Vander Steen (1987) features complementation exactly in accordance with 
this scheme. 

3.3.1 Some examples 

With the new formalism defined by Tables 3.111, 3.IV and 3.V, we can deter­
mine the interpretation of the patterns which we can construct with the new 
complementation operator. Starting with simple patterns, the interpretation 
of some of these is given according to the new semantics. 

( •c) = ( u \ { c}) rv 0 = {a, b, d, ... , z} rv u* (3.6) 

In words, pattern (3.6) is satisfied by an arbitrary non-empty string, which 
does not start with a 'c'. This is, indeed, the set we previously described 
informally. The other two patterns we saw earlier behave in accordance with 
expectation, too. 

(•c,t) = {a,b,d, ... ,z} "'t ""u* (3.7) 

Here, any non-'c' character must be followed by a 't'. Note that the range of 
the complementation is restricted to the c; the t is a 'positive' pattern that 
must be present in the input string. To include the t in the complementation, 
one should specify: 

(•[c, t]) = {aa, ab, ... ,cs,cu, ... ,zz} ""u* (3.8) 

Now, the string may start with any two characters, 'ct' excluded. 

Another pattern, for instance, is (3.9), where the use of the alternative 
operator in combination with the complementation operator is illustrated. 

( • { : } , t) = {bt, dt, ... , zt} "' u* (3.9) 

Note that both the 'a' and the 'c' are excluded as first character. The second 
character, as expected, must be a 't'. 



3.3 Complementation introduced in a compositional manner 53 

3.3.2 Some problem cases 

So far, the interpretation of these patterns corresponds to our intuition of 
what they should be; complementing patterns lead to exclusion of the spec­
ified characters, the other characters being included. However, we can also 
construct other more complex patterns, in which case complications arise. 
Consider for instance the following pattern: 

= {bt, ct, ... , zt, aat, ... , 
att, ... ,ott,ovt, ... zzt} ~a* (3.10) 

This pattern includes some unexpected strings. As can be seen, the strings 
'att ... ' (i.e., all strings starting with the characters 'att') are approved of, 
due to the -,[o, u], t path. This path introduces all two-character sequences 
except 'ou'-which includes 'at'-to be concatenated to 't .. .'. This is unde­
sirable, as the other path of (3.10), •(a), t is meant to exclude the strings 
starting with 'at', of which the strings 'att...' are a subset. 

Pattern (3.11) is even worse. 

= {b, c, ... , o, ... , z, aa, ... , az, 
ba, ... , ot, ov, ... zz} ,.,., a* = a* (3.11) 

First, it includes all strings starting with an 'a', as -,[o, u] approves of all 
two-character sequences starting with 'a'. But also the strings starting with 
'ou' are included: the 'o' is approved by •a, to be string concatenated with 
®. Amongst other strings, the strings 'u .. .' are linked to the 'o'. Thus it is 
found that (3.11) is a clumsy way to specify the alphabet, a*. This is clearly 
unexpected as the pattern suggests that all strings starting with 'a' or 'ou' 
are to be excluded. 

These are two sample patterns of a class for which there is a clash between 
the formal interpretation of the pattern and our expectation of its meaning. 
Although the patterns may be of a somewhat hypothetical nature, patterns 
of a similar construction might well be specified in the application for which 
the formalism is devised. In natural languages one can distinguish clusters of 
letters which share a certain property. These letter clusters do not necessarily 
have the same length. The class of English vowels, for instance, can consist of 
one character, as the 'o' in 'over', but also of two, as 'ea' in 'reach'. Another 
example is the class of so-called well-formed initial consonant clusters. These 
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are sequences of consonants one may encounter at the beginning of a syllable. 
For instance, 'str' is encountered in words such as 'string' and 'strange', while 
'kp' will never form the beginning of a syllable in English. One may want to 
trigger a rule on the basis of such a class, or exclude the application of a rule 
in such circumstances. The complementation operator is well suited for this 
purpose, and typically, when excluding such classes this leads to patterns of 
the above type. 

Since linguists in general cannot be assumed to be familiar with the theory 
of extended regular expressions, it is a drawback that patterns like (3.10) 
and (3.11) do not behave as one expects. Therefore, the semantics of Table 3.V 
is not completely satisfactory. 

In the next section we will try to find a solution to this problem. What we 
expect a pattern to denote, however, is an intuitive notion, which is difficult 
to work with if it cannot be made explicit. Therefore, we will try to find the 
type of patterns for which the expected and formal interpretation diverge, 
analyse the expected meaning of these patterns and formalize the expected 
interpretation. 

3.4 Explicit nofits 

3.4.1 Succeeding structure 

Before we start to try and make this intuitive expectation explicit, we take 
another look at the patterns (3.6)-(3.11). It is found that the divergence of 
expectation and formal interpretation only occurs when one complements a 
pattern that denotes strings of different length. If this is the case, as in (3.10) 
and (3.11), a string which is matched against that pattern can be split up in 
more than one way. Due to these different divisions, it can occur that strings 
which are rejected by one path (for instance, the strings 'att ... ' are among 
the strings which are rejected by -,[a], t in (3.10)) are approved by another 
('att ... ' satisfies -,[o, u] , t ). 

' Clearly, these effects are not intended when such patterns are specified. If 
we take another look at pattern (3.12): 

...,{ a },t 
o,u 

(3.12) 

one expects it to mean something like: "In the input string, somewhere a 
't' must be found, but preceding the 't' a single 'a' and the sequence 'ou' 
are not allowed." Informally speaking, it is as if the input string is fitted on 
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the pattern, so that for a certain path in the pattern each primitive will be 
matched to one segment. If the string fits in such a way that its segments 
match both the complemented and the non-complemented parts of a pattern 
(as 'att ... ' does for •[a], t) the string is explicitly meant not to match. Such 
strings will be called explicit nofits. 

On the other hand, strings which do not belong to that category and have 
a matching condition, should be included. A matching condition occurs if the 
string can be fitted to the pattern in such a way that the segments fitted on the 
complemented parts of the pattern do not match and the segments fitted on 
the non-complemented (positive) parts do. Strings which fulfil the matching 
condition are called candidates. For instance, both the strings 'att ... ' and 
'art ... ' are matching strings of (3.12) as they fulfil the matching condition, 
viz. on the path •[o, u], t. However, as 'att ... ' at the same time is also an 
explicit nofit, viz. on the path •a, t, it should not be included in the set of 
strings which are denoted by (3.12). The string 'art ... ', on the other hand, is 
not an explicit nofit and is therefore included in the set. 

This informal description of expectation can be formalized and expressed 
mathematically: 

explicitnofits(•A,B) = A""'B (3.13) 

candidates ( •A, B) = (AU\ A}·vB (3.14) 

In the compositional semantics of Table 3.V the complementation operator 
selects the candidates, without excluding the explicit nofits. To exclude these, 
a new definition for complementation is proposed: the set of candidates minus 
the set of explicit nofits, which is expressed mathematically in (3.15): 

(3.15) 

String-concatenation (,..,) has higher precedence than set-difference (\). As 
is proved in Appendix 3.B, (3.15) can be simplified to (3.16): 

(3.16) 

One can comprehend this as follows: the strings which are added to the 
generating set (the set to the left of the set-difference sign '\') of (3.16) as 
compared with (3.15) are all part of the set of explicit nofits which are excluded 
afterwards, so the resulting set of strings are the same for (3.15) and (3.16). 

This way of presenting the complementation expresses the fact that the 
complementation is sensitive to the succeeding pattern. If we see the com­
plementation as an operator which operates on one pattern, in (3.16) we lose 
the strict compositional character that the semantics of Table 3. V had, as we 
include the succeeding pattern in the definition of complementation. 
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3.4.2 Closing brackets 

Before we can include (3.16) in a new proposal for the semantics, there is 
another observation to be made. In (3.3) we saw that we can put a pattern 
succeeding an alternative structure into the structure. Now suppose we have 
a pattern resembling (3.3), in which complementation is used: 

(3.17) 

Again, we can identify two paths, one stating a , d and the other stating 
b, •C, d. In the second path, d is the pattern succeeding the complementation 
•C. However, we cannot simply apply the semantics of Table 3.V with the 
new definition of complementation. The complementation will not "see" the 
succeeding pattern d, as it is outside of the alternative structure: 

(3.18) 

Moreover, it is found in this case that there is no pattern present at all behind 
the •C in (3.17), to substitute for pattern B of (3.16). 

Both objections can be resolved by putting patterns which succeed an 
alternative structure into braces, for instance, by reformulating (3.17) into 
(3.19): 

{ 
a,d } 

h,•c,d (3.19) 

In this way, we establish that 

(a) a succeeding pattern (pattern B of (3.16)) is always present, and 
(b) the full succeeding pattern is within the scope of the complementation. 

Note that if the original pattern does not have a succeeding pattern, as 
in (3.11), the formalism adds one, the ®-pattern. This has the desired effect, 
as for instance in (3.11) all strings 'a ... ' and 'ou ... ' are included in the set of 
explicit nofits, and thus are excluded from the new interpretation of ( 3.11). 

3.4.3 A semantics excluding explicit nofits 

Of course, we do not want to burden the user with the process of putting 
the succeeding pattern into the scope of a structure, and moreover we still 
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want the property of being able to manoeuvre patterns freely in and outside 
brackets to be preserved. Therefore, the formalism must provide a mechanism 
to put these patterns into brackets. 

This can be achieved by approaching the patterns from their concatenation 
aspect. As can be seen in Table 3.V, the first line of the semantics concatenates 
the ®-pattern to an arbitrary pattern before the function "the meaning of" 
is applied. This means that for any user-specified structure there will always 
be a succeeding pattern: either a user-defined (non-empty) pattern or the 
®-pattern. Then, for alternative structures, the succeeding pattern can be 
brought into its scope: 

A,YUB,YU ... UC,Y (3.20) -- -- --

Note that, just like (3.16), the meaning of this structure is now defined in 
combination with its succeeding structure. 

To specify the meaning of a concatenation in general, we must discriminate 
between the various leftmost structures. For concatenation and alternation 
the meaning is now defined: (3.16) and (3.20). Two more possibilities re­
main for the leftmost structure, the empty pattern and the primitives (see 
Table 3.IV). These are directly derived from Table 3.V. As a whole this 
results in Table 3. VI, where the new semantics for the formalism is proposed. 

There remain some minor points to discuss, due to the definition of comple­
mentation. In determining the meaning of the complementation, the meaning 
of the complemented structure (A) has to he determined, and eventually we 
are left with the task of determining the meaning of a single structnre (i.e., 
which does not contain a concatenation). This can be any of the three struc­
tures: a primitive, an alternation or a complementation. To avoid the neces­
sity of specifying the meaning of these structures, which essentially have the 
same characteristics as those already specified for concatenation, the empty 
pattern '0' is concatenated to that structure (X= X, 0). This does not alter 
the interpretation of the pattern, as string concatenation of the empty string 
to an arbitrary string does not alter the string. We can once again apply the 
rule for the meaning of a concatenation. Eventually, we will only have to de­
termine the meaning of the empty pattern, which, for this reason, is included 
in the semantics. Thus the semantics of Table 3.VI is complete; the meaning 
of any arbitrary pattern can be determined. 
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3.5 Properties of the new semantics 

3. 5.1 Consistent versus inconsistent patterns 

The first thing to check is whether the new formalism yields the same results 
for those patterns which in the old interpretation already had the desired 
meaning. For this purpose, it is necessary to reconsider the difference between 
the patterns in section 3.3.1 and those in section 3.3.2. The interpretation 
problems appear when it is possible to find a string which is divisible in 
different ways, so that it is rejected by one path and approved of by another 
(see section 3.4.1), or, in other words, the string is both a candidate and an 
explicit nofit. Such strings are called inconsistent divisible strings. Patterns 
for which such strings exist are called, in imitation, inconsistent patterns. 

Table 3.VI: The semantics of regular expressions extended with 
complementation in a semi-compositional manner. 

(X}= X,® 

®=a* 

X,Y= if X=0 

if X= X 

if X= •A 

X=X ,0 

then Y 

then {x}-_,Y where x is (prim) 

then A Y U B , Y U ... U C , Y 
-- --

then AurvY\A"'Y 

where X is (strct} 
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Consequently, all patterns which are not inconsistent are consistent patterns3 . 

Defined semantically as such, there is no straightforward characteristic 
of appearance to distinguish consistent patterns from inconsistent ones. For 
instance, 

·{ a },t o,u 

is an inconsistent pattern, as 'att ... ' is both a candidate and an explicit nofit. 
On the other hand, a pattern which closely resembles the previous one, 

....,{ a },t,r 
o,u 

is consistent, as no inconsistent divisible strings exists. 

However, there is a characteristic of appearance which guarantees con­
sistency. One can prove (see Appendix 3.C) that patterns containing only 
positive structures are consistent. Also, if a pattern contains complemented 
structures and the complementation contains only paths of a certain, specific 
length, this pattern is consistent, too. So, for instance, 

is a consistent pattern as it fulfils the characteristics of appearance. 

3. 5. 2 Relation between the two definitions of the semantics 

The inconsistent divisible strings for a certain pattern are those strings which 
are both a candidate (the approving path) and an explicit nofit (the rejecting 
path). For consistent patterns there are no such strings, which means that a 
string is exclusively a candidate, an explicit nofit, or neither. 

Given the presumption that a pattern is consistent it is proved in Ap­
pendix 3.C that the old semantics of Table 3.V yield the same results as the 
new semantics of Table 3.VI. An illustration of this fact is that the only essen­
tial difference between the two semantics, which lies in the definition of com­
plementation, disappears for consistent patterns. This can be seen as follows. 
For consistent patterns there is no overlap between candidates and explicit 
nofits. Mathematically expressed this means that (Au\A)"'BnA"'B = 0. 

3 A formal definition is given in Appendix 3.C. 
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Then [(A u\A)......,B] = [(A u\A)"""B] \A""' B. The left-hand side of this equa­
tion is the old definition, and the right-hand side is equal to the new definition 
(see the simplification of (3.15) to (3.16)). 

For inconsistent patterns, on the other hand, the two semantics yield of 
course a different result. This is to be expected, as for these patterns the old 
semantics yield undesirable results, which is resolved in the new semantics. 

3.5.3 Double complementation 

The new formalism lacks, however, a property which one could also expect 
a formalism featuring complementation to have: the possibility to annihi­
late double complementation, i.e., a complemented structure which is directly 
being complemented. In set theory, for instance, this is a characteristic prop­
erty which holds. The fact that this property does not hold for the proposed 
formalism can be seen as follows: 

(3.21) 

For inconsistent patterns inconsistent divisible strings exist, which means that 
they are candidates as well as explicit nofits. In (3.21) one can see that 
such strings will be excluded from the double complementation -.-.A, B, as 
they are candidates to -.A , B. At the same time, however, those strings are 
explicit nofits to -.A, B. If, for instance, A itself does not contain another 
complementation, the explicit nofits to -.A, B will match A, B. Thus, such 
strings match A , B, but do not match -.-.A , B. For instance: 

(3.22) 

Attempts to adjust the formalism so that both the existing properties are 
retained and double complementation can be annihilated all fail for one rea­
son or the other. Appendix 3.D elaborates on this matter. Two alternative 
definitions for complementation are discussed, in which essentially only the 
definition of explicit nofits is adjusted slightly. It appears that if double com­
plementation may be annihilated, the formal interpretation of some patterns 
differs from what one would expect, and, vice versa, fixing the interpreta­
tion to expectation once again deletes the legitimacy of annihilating double 
complementation. 
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3. 5.4 Power of expression 

The introduction of complementation as an operator in simplified regular 
expressions does not increase the power of expression of the formalism. This 
can be seen as follows: 

(3.23) 

Here, the overbar denotes complementation with respect to u*, the uni­
verse generally used for complementing regular expressions as a whole. Since 
regular sets are closed under complementation (in the regular sense) and under 
intersection, the complementation operator as it is introduced here does not 
increase the power of expression, or, in other words: one can always devise a 
pattern without using the complementation operator which denotes the same 
set as the one denoted by a pattern in which the complementation operator 
is used. 

However, the complementation operator was not introduced to increase 
a user's power of expression. Rather, the aim was to increase the ease of 
e>..'J)ression. With the complementation operator exceptions to rules can be 
stated more elegantly in an explicit manner, which results in both more concise 
and more transparent rules. 

3.6 Including simultaneity and optionality 

Now that complementation has been included in the semantics in a reason­
ably satisfying manner, we can study the consequences of including two more 
operators. This concerns simultaneity, the 'and' operator, and optionality, 
which can be used for optional and repetitive structures. The operators will 
be introduced in the philosophy of excluding explicit nofits, which means that 
these operators, too, include the succeeding pattern into their scope. \Vith 
respect to the interpretation of the simultaneous operator this gives rise to 
some minor additional complications, which are discussed subsequently. First, 
therefore, the optional operator is dealt with, then the simultaneous operator 
is discussed. 

3.6.1 The optional operator 

The introduction of the optional operator is fairly straightforward. With some 
minor exceptions the optional operator is just a shorthand for a specific type 
of alternative structure. The general format is as follows: 
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(A)a-b 

The parentheses denote the optional structure, A is a non-empty pattern, and 
a and b denote respectively the minimum number of times that A must, and 
the maximum number it may, be present. Therefore, it is required that a ::; b. 
If 'b' is omitted the pattern is interpreted as a or more times pattern A. If 
both a and bare omitted the pattern is interpreted as 'optionally A', i.e., zero 
or one A, which explains the name of this operator. Since in Toor.,i.P this is 
the main application of this operator, the operator is called 'optional' rather 
than 'repetitive'. Examples of its use are given in section 2.3. 

Since optionality is merely a shorthand for alternatives, it can be included 
in the formalism in accordance with the alternative operator. The relevant 
definitions are given below: 

X,Y= if X=(A)a-b then Aa,YuAa+l,Yu ... UAb,Y 

if X= (A)a then Aa,YuAa+1 ,YU ... 

if X (A) then YUA,Y ---

Here, A0 = 0 and Ai = A, Ai-l. A0 is defined as 0 so as to let the zero 
repetition denote the empty string. 

Since each structure can be used in any place, the optional structure can 
also be complemented. The function of determining the universe must there­
fore also be capable to determine the universe of the optional structure. Since 
the universe serves as a character counting mechanism, the universe for op­
tional structures is defined as follows: 

((A)a-b) u =(A a) uu (Aa+l) u U ... U (A b) u 

((A)a)u= (Aa)uu(Aa+l)uu .. . 

((A)) u = {E} UA u 

0u 

The clause 0 u = E is included for the zero repetition case. 

3.6.2 The simultaneous operator 

The simultaneous operator can be introduced analogously to the alternative 
operator. Thus, the general format is as follows: 
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All arguments are non-empty patterns. The simultaneous structure can have 
2 or more arguments. The intuitive meaning of this structure is that where 
it is specified the input string should meet the requirements of all arguments. 
Retaining the symmetry with alternation, simultaneity is defined as follows: 

X,Y= if X= [i] then A,YnB Yn ... nC,Y (3.24) 

For the simultaneous operator, too, the universe must be defined. In the 
light of the character count it is defined as follows: 

Combining these definitions with the current formalism, the complete for­
malism which defines the interpretation of patterns is given by tables 3.VII, 
3.VIII and 3.IX. For reasons which will become clear this formalism is called 
the semi-compositional formalism for extended regular expressions. 

3. 7 Properties of the semi-compositional formalism 

3. 7.1 Explicit nofits 

Concatenating the succeeding structure to the individual arguments of the 
simultaneous structure fits in the philosophy of excluding explicit nofits. Con­
sider, for instance, pattern (3.25): 

(3.25) 

Here, cons is a macro which denotes all consonantal segments, which includes, 
for instance, 'b', 'c', 'd' and 'f'. 
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Table 3.VII: The semantics of patterns. 

Semantics: 

{X) =X,® 

~ = {€} 

® = u* 

X,Y= if X=0 then 

if X=x then 

if X={f} then 

if 
X= [f] then 

if X=-,A then 

if X= (A)a-b then 

if X= (A)a then 

if X= (A) then 

X=X,0 - --

x,.,_.y = {dtd21 dt EX Ad2 E Y} 
A0 0 
Ai=A,Ai-t i;:::l 

y 

{x}""'Y where x is {prim) 

A,YUB,YU ... UC,Y -- --

A,YnB Yn ... nC,Y 

Au,.,_.Y\A""'Y 

A", YUA"+l, YU .. . UAb, Y 

A" , Y U A a+t , Y U ... 

YUA,Y 

where X is (strct) 
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Table 3.VIII: The syntax of patterns. 

Syntax: 

(patt) ::= 0 I (ne-patt) 

(ne-patt) ::= (strct} I (strct}, (ne-patt} 

(strct) ::= (prim) I { ~::::::::; } I [ ~~=~:::;]1 ...,[(ne-patt) ]I 

(ne-patt} (ne-patt} 

-,(strct} I ( (ne-patt} )a-b I ( (ne-patt) )a I ( (ne-patt}) 

(prim) ::= a I b I ... I z 

Table 3.1X: The universe of patterns. 

Universe: 

(A,B)u = AurvBu 

({i})u=Auunuu. ucu 

( [Hu=Auunuu ... ucu 
(-,A)u =Au 

((A)a-b) u = (Aa) uU (Aa+l) uU ... U (Ab) u 

{ (A )a) U = {A a) U U (A a+ 1) U U .. . 

((A))u = {E}UAU 

where x is (prim) 

where A is (strct) 
and B is (ne-patt) 
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If the succeeding structure (f) were not concatenated to the individual 
arguments before the meaning is determined-as would be the case in a strict 
compositional definition-the string 'bff...' would match this pattern. This 
is not the kind of thing one wants to happen when 'bff' is excluded from 
pattern (3.26): 

(3.26) 

With the given definition (3.24), however, it can be seen fairly easily that 
(3.25) will exclude at least the same strings as (3.26): 

[
(cons)l-2] { b} 
·{c~d} ,f,181=(cons)l-2,f,181n• c,d ,f,181 (3.27) 

The second term of the righthand side of (3.27) equals pattern (3.26). 

3. 1. 2 Relation to the compositional formalism 

The given definition is thus consistent with the philosophy of excluding ex­
plicit nofits. There is, however, a complication with simultaneity which does 
not occur with complementation and alternation. Consider, for instance, pat­
tern (3.28): 

(3.28) 

According to the definition, (3.24), this pattern denotes all strings starting 
with 'att': 

( [a: t] , t) =a, t, 181 n a, t, t, 181 =a, t, t, 181 = (a, t, t) (3.29) 

This is an example of the property that simultaneity distributes over concate­
nation. This is not so surprising since it is defined that way: 
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However, the point is that, as opposed to alternation, simultaneity does not 
distribute over concatenation in the compositional case. In the compositional 
case concatenation and simultaneity are defined as follows4 : 

A,B = A~B 
-- --

[f] =AnBn ... nc 

Thus: 

a, e t,e t,e 

[ 

{ t,e} l 
a,t,{t~e} =a,{ e }na,t,{ e }=a,t,e 

willie: 

(3.30) 

Therefore, beside the inconsistent patterns, this is a second case for which 
the proposed semantics differs from a compositional one. In this case, however, 
it is not so clear that {3.29) is a more expected or desirable interpretation 
than (3.30). On the other hand, it may be argued that patterns like these, 
which can be characterized by the fact that simultaneity operates on paths of 
different length, have very little intuitive meaning to begin with. 

3. 7.3 de Morgan's laws 

Since the formalism now features an 1or', an 'and' and a 'not', one may wonder 
whether an equivalent of de Morgan's laws is valid. From the field of logics we 
know that ~(a V b) =~a/\ ~band ~(a I\ b) = ~a v~b. Is something equivalent 
valid in the semi-compositional formalism, in other words, are equations (3.31) 
and {3.32) valid? 

4 The double underlining serves to distinguish this definition from the proposed 
formalism. 
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(3.31) 

(3.32) 

It turns out that these equations are not valid in general. This can be 
seen, for instance, as follows: 

= ·{ a },t,®= o,u 

{ a } u rvt, 0\ { a }rvt ® = a 1
•
2 ta* \ (ata* U outa*) :::? 

o,u --- o,u 

(3.33) 

•a 't '® n •[o 'u] 't '® (ata* \ ata*) n (aata* \ outa*) :::? 

(3.34) 

Here, a 1 •2 denotes all strings of length 1 or 2. 

Thus, (3.33) and (3.34) disprove (3.31 ). The other law, (3.32) can be disproved 
in a similar way. 

The equivalent of de Morgan's laws is thus not valid in general. It should 
be noted, however, that in the compositional formalism the two equations are 
not valid either5 . This can be verified by taking A = a and B = o, u. 

5 0nly in a. compositional formalism where the universe is defined as U = u• will de 
Morgan's laws be valid: 

.., { ~} = u* \ (~ U !!) = (u* \ ~) n (u* \B)= 

The other law is proved analogously. 
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On the other hand, it is not so that the equations are always invalid. If, 
for instance, the lengths of all paths in the complemented structure are equal, 
it can be shown that the equations are valid. Thus, for instance: 

(3.35) 

3. 1.4 Complementing simultaneity 

A final pattern which deserves some discussion is the use of complementation 
in co-ordination with simultaneity. Consider, for instance, pattern (3.36): 

[ a ] u .-vt ' ® \ [ a ] .-vt ' 0 = 
a,t -- a,t --

[a: t] u rvt ® 0 ()1,2tu* (3.36) 

Here, the result is somewhat unexpected. One could expect the strings 
'att ... ' to be excluded from this pattern, since they match pattern (3.29), 
which only differs from (3.36) in the absence of a complementation sign. 

The reason for this phenomenon is that explicit nofits are defined as ArvB 
rather than A, B. Then, when A= 0 the explicit nofits are empty, too. 
does not necessarily have to be-the case for A, B, as exemplified in (3.29). 
This phenomenon of the explicit nofits being empty did not occur previously 
in simple complemented structures (no nested complementation) since there 
is no pattern for which A= 0. So (3.36) is a simple complemented structure 
of which one may feel that the semi-compositional does not behave in the 
expected manner. 

3.8 Discussion 

In general, the phenomenon that not all strings are excluded which one would 
expect to be, occurs when A"""B f. A, B. Apart from simultaneous structures 
with paths of unequallengths,this can only occur when A contains a comple­
mented structure (also) containing paths of different lengths. So only when 
complementation is nested to a level of two or more does this phenomenon oc­
cur. This is exactly the reason why double complementation may not always 
be annihilated. 
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In this light it would be more consistent to define explicit nofits as A, B. 
In fact, this is the most logical choice since A, B denotes precisely those 
structures which match •A, B if the '...,' sign is omitted. This would resolve 
the above particular case (3.36), but not all of the problems attached to this 
matter. Appendix 3.D discusses this option with regard to double comple­
mentation. The following is probably an even stronger argument against this 
option. 

One of the main consequences of this choice is that complex patterns 
must be evaluated as a whole. When for instance a pattern is specified with 
complementation nested to a certain level, the full pattern is important to 
determine the meaning of the most deeply nested complementation, something 
which also holds for all the other complementations. This tends to get so 
complicated that the only way to evaluate patterns in which complementation 
is nested to level two or more is to write a computer program which patiently 
executes the definition. This is not conducive to quick design of complex 
patterns. 

This is, in fact, a plea for compositionality. In a compositional system, the 
meaning of any pattern, however complex, is determined by the composing 
parts. The meaning of a part is not changed by altering something outside 
that part. The meaning of a pattern is determined from small to large rather 
than having to view the pattern as a whole to start with. 

The current definition, with the explicit nofits defined as A"'B, can be 
seen as a compromise between the two extremes. It resolves the objection to 
the compositional system which does not exclude explicit nofits. On the other 
hand, within complementation the succeeding structure is 'hidden', i.e., in de­
termining the meaning of a complemented pattern one can separately deter­
mine Au, A and B, and combine these afterwards. When complementation is 
nested, thesucceeding structure does not extend outside the complementation 
which is nested one level less deep. As we have seen, double complementation 
may for this reason not always be annihilated. On the other hand, all patterns 
can, with some practice, now be evaluated by hand, since the patterns can be 
decomposed into smaller parts which can be evaluated separately. 

On theoretical grounds the semi-compositional formalism is thus not com­
pletely satisfactory. For practical purposes, however, it might be satisfactory, 
because the cases which are not resolved satisfactorily, such as double comple­
mentation, deeply nested complemented structures or complementing simul­
taneity which contains paths of different lengths, are highly unlikely to be used 
in practice. The semi-compositional definition excludes explicit nofits in the 
practical cases and has a semi-compositional behaviour for complex patterns. 
It thus seems a practical compromise between the conflicting requirements 
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of strict compositionality on the one hand and interpretation according to 
expectation on the other. 

Based on these practical grounds it was decided to implement the semi­
compositional formalism in ToorjP to investigate its merits. In the next chap­
ter the implementation of the formalism will be discussed, and in the con­
cluding chapter (among other things) the merits of the semi-compositional 
formalism will be considered. 

3.9 Conclusion 

In this chapter a formalism is proposed in which a complementation opera­
tor (the 'not') and a simultaneous operator (the 'and') are included in the 
formalism of regular expressions. 

Regular expressions are defined in a compositional manner. This is an 
important theoretical and practical property, since the meaning of any ex­
pression, however complex, can be determined in parts, from small to large. 

The inclusion of the new operators in regular expressions in a composi­
tional manner has the practical objection that for a certain class of patterns, 
the so-called inconsistent patterns, the formal interpretation does not corre­
spond to the impression the patterns create. 

The main motivation to try and resolve this objection is of an ergonom­
ical nature. The main users of the system in which the formalism must be 
implemented cannot in general be expected to be familiar with the details of 
the behaviour of such extended regular expressions. 

The attempt to resolve this objection has resulted in a slightly different 
formalism, which can best be characterized as a semi-compositional formal­
ism. Although the pattern succeeding a specific structure must be included 
in determining the meaning of that structure, it remains possible to decom­
pose complex patterns into smaller parts, determine the meaning of each 
of those parts, and determine the meaning of the whole pattern from the 
meaning of the individual parts. The extent, however, to which the pattern 
may be decomposed is smaller than in the compositional case. In the semi­
compositional case patterns can be decomposed only with respect to comple­
mentation, whereas in the compositional case patterns can be decomposed 
with respect to all structures. 

In defining the semi-compositional formalism three essential choices have 
been made. The first one concerns the choice of universe. Rather than taking 
the set of all strings, (J*, as universe, a character counting mechanism has 
been defined. As a consequence, the user does not explicitly have to specify 
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the desired universe for each complemented structure that is used. On the 
other hand, the validity of the equivalent for de Morgan's laws is lost. Both the 
compositional and the semi-compositional formalism described in this chapter 
feature the character counting universe. 

The second choice is to exclude explicit nofits. This is the main differ­
ence between the semi-compositional and the compositional formalism. As a 
consequence strict compositionality is lost, but the patterns behave more to 
expectation. 

The third choice is the definition of explicit nofits. In the semi­
compositional formalism which is proposed here this is defined as ArvB, 
whereas the more logical choice would be A , B. As a consequence the semi­
compositional formalism still does not always behave as expected, i.e., not 
always are the 'real' explicit nofits (A, B) excluded. On the other hand, 
compositionality is not all together losr.--

From a theoretical point of view the semi-compositional formalism is thus 
not completely satisfactory. For practical purposes, however, it might be satis­
factory, because the cases for which it does not behave satisfactorily are highly 
unlikely to be used in practice. The semi-compositional definition excludes ex­
plicit nofits in the practical cases and has a semi-compositional behaviour for 
complex patterns. It thus seems a practical compromise between the conflict­
ing requirements of practical needs and theoretical elegance. Based on these 
practical grounds it has been decided to implement the semi-compositional 
formalism in ToorjP. 
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Distributivity of patterns 
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In this appendix it is proved that, given the semantics of Table 3.II or 3.V 
and the definition of string concatenation, alternation is distributive over 
concatenation for patterns. 

Propositions (A-1) and (A-2) hold in general for sets of strings. 

Proof: 

(AUB)""'C = (ArvC)U(B"'C) 

Arv(BUC) = (ArvB)U(ArvC) 

(AUB)"-~C ~ {dld2 IdlE (AUB) 1\ d2 E C} = 
{ dl d2 I ( dl E A 1\ d2 E C) v ( dl E B 1\ d2 E C)} = 
{ dl d2 I dl E A 1\ d2 E C} u { dl d2 I dl E B 1\ d2 E C} = 
(ArvC) U (B""C) 

(A-2) is proved analogously. 

(A-1) 

(A-2) 

From these general properies of string sets the distributivity of concatenation 
over alternation for patterns follows directly: 

Similarly, 

= (X UYU ... U Z) ""B 
(A,;l) X""'BUYrvBU ... UZ""B 

----
X BUY ,BU ... UZ B 

{
X,B} 
Y,B 

Z,B 

(A-3) 

(A-4) 
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Appendix 3.B 
Simplification of complementation 

In this appendix it is proved that the definition of complementation as given 
in (3.15) can be simplified to (3.16): 

Proof: 

X = ((P\A)rvB) \ (ArvB) 
Y = (PrvB) \ (ArvB) 

dE X ::::} 
{ 3dt, d2 I d = dt d2, dl E P, dl rf. A, d2 E B 

d rf. ArvB 

::::} 
{ 3dt, d2 I d = dl d2, dt E P, d2 E B 

d rf. ArvB 

- dEY 

dEY ::::} 
{ 3dt, d2 I d = dl d2, dl E P, d2 E B 

d rf. ArvB 

{ 3d,,d,l d ~ d,d,,d, E P,d, E B 
::::} Vdt, d2•(d = d1d2 1\ dt E A 1\ d2 E B) 

d rf. ArvB 

::::} 
{ 3dt, d2 I d = dt d2, dl E P, dl rf. A, d2 E B 

d rj. ArvB 

- dE X 

(B-1) 
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Appendix 3.C 
Equivalence of semantics 

In this appendix it is proved that for consistent patterns the semantics given 
by Table 3.V and Table 3.VI are equivalent. For this purpose, the semantics 
of Table 3.V is referred to by a single underlining, the semantics of Table 3.VI 
by a double underlining. 

First, the formal definition of consistent and inconsistent patterns is given. 
Next, given the consistency of a pattern, the equivalence of the two seman­
tics are shown. Finally, two characteristics of appearance, which guarantee 
consistency, are discussed. 

Definition: A pattern X is consistent if Cons(X) =true, and inconsistent 
if Cons(X) =false. 

Cons(X) is given by: 

Cons(0) =true 

Cons(®)= true 

Cons(X) = Cons(X, 0) 

Cons(X ,Y) = if X= 0 

if X= (prim) 

if X= ·A 

then Cons(Y) 

then Cons(Y) 

then Cons( A, Y) A Cons(B, Y) 
A ... A Cons( C, Y) 

then Cons( A) A Cons(Y) 

A [CA u\ A)-vY nA'""Y 0] 
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For consistent patterns the semantics of Table 3.V and the semantics of Ta­
ble 3.VI yield the same results. This can be shown as follows: 

181 =a-*= 181 

:: = {X} = {X}"-'{ E} = {X}"-'~ = X, 0 = ::_ 

{f} AUBU ... UC = A,0UB ,0u ... UC ,0 i~. 

A,B= if A=0 --+ Bi~. B=A,B 
- - --

if A=x --+ {x}""'B i~. {x}""'B = A,B 

if A~ {I} --+ (XUYU ... U Z)""'B 
(A-=1) 

X""'BU Y""'BU ... UZ""'B 

= X ,BUY ,Bu ... UZ ,B ----in d. 
X ,BUY ,BU ... UZ ,B = -- ---- -- --
A,B 
--

if A= ·X --+ (Xu\ X)""'B i~. (Xu\ X)""'B 
cons. 

(Xu\X)""'B\X""'B 
(B-1) 

xu""'B\X""'B = •X ,B 

A,B 
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Characteristics of appearance 

If a pattern consists exclusively of positive structures, it follows directly from 
the definition that it is consistent. 

If a pattern contains a complemented structure which contains exclusively 
patterns of a certain specific length, it can be shown that this pattern is 
consistent: 

1) d is a candidate for -,X , Y => 3 d1 d2 I d1 E Xu\ X 11 d2 E Y 
d~d~=d1d2=d ___, - -

a) ld~ I f. ldd •P«~ngth d~ rf_ X => 
no reason for d~ d; E X~ Y 

b) ld~l = ldd => d~ = d1 => d~ rf_ X=> 
no reason for d; d; E X~ Y 

2} dis an explicit nofit for .,x, Y => 3 d,dz I d, EX II dz E Y => 
d1 rf_ Xu\ X=> d1d2 rf_ Xu\X~Y - -
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Appendix 3.D 
Alternative formalisms 

In this appendix some alternatives for defining complementation are discussed. 
A drawback of the semantics of Table 3.VI is that double negation may not 
unconditionally be annihilated. The reason for this is that complementation 
on the inner level loses track of the succeeding structure of the outer level. 
Therefore, the inner complementation cannot fully compensate for the explicit 
nofits of the outer complementation. For instance, consider pattern (D-1): 

--,--, { a } , t 
o,u 

(D-1) 

The inner complementation, •{0 au}, does not see the succeeding structure t. 
' Therefore, the string 'at' will not be excluded from •{0 au}· Then, 'atrvt ... ' 

' is an explicit nofit of the outer complementation, and thus not an element of 
the set of strings denoted by (D-1). 

A solution to this could be to redefine complementation so that the inner 
complementation can also see the succeeding structure of the outer comple­
mentation. This can be done by defining complementation as follows: 

·A , B = Au"' B \ A , B (D-2) 

Compared with the proposed definition (3.16), the two only differ in the set 
which is subtracted from the generating set Au rvB. It is as if the explicit 
nofits have been redefined. With this definition ofcomplementation one can 
prove that a double complementation may always be annihilated: 

= A,BnAui"VB = A,B (D-3) 
-- -

However, this interpretation of complementation can lead to unexpected 
results. Consider the pattern •A , B, where 

A = { Xy } X = --, { a } Y = --, { e } and B = t , @ 
o,u a,t 

(D-4) 
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This leads to pattern (D-5): 

Applying (D-2) to interpret this pattern, (D-5) will include for instance the 
strings 'att ... '. However, if we examine the candidates of , B, we find that 
there are none; the universe of the structure (Au) is equal to the meaning 
of the structure (A), the difference (Au\ A) being empty. It seems awkward 
that the new complementation includes strings which are not candidates in 
the first place. 

The reason for this is that the simplification of (3.15) into (3.16) is not 
valid if explicit nofits are defined differently. In other words, the generating 
set of (3.16) as compared with the generating set of (3.15) includes strings 
which are not excluded by A , B. 

A logical way to overcome this objection is to redefine complementation 
as follows: 

(D-6) 

Here, we start by selecting the candidates, rather than the strings which 
satisfy the length condition as required by the universe, so the objection to 
the previous attempt is automatically removed. 

Unfortunately, (D-6) does not satisfy the double complementation require­
ment. This can be seen as follows: 

••A,B 

= 

= 

( ( ( •A) u \ •A) ""B] \ -,A , B 

[Au\(Au\A)""B] \ [(Au\A)"'B\A,B] 

A""B\ [CAu\A)"-'B\A,B] (D-7) 
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attu* E ..,..,A B 
} => attu* fl. A , B 

Thus, when complementation is defined as in (D-6), double complementation 
may not always be annihilated. It must be noted, however, that in the semi­
compositional formalism, where explicit nofits are defined as A.-vB, this effect 
is more frequent than for the last definition. In the semi-compositional case 
this occurs for all inconsistent patterns, i.e., when A, B =I= A,.,_, B. When 
definition (D-6) is applied this only occurs when Au = A or A -0. These 
last two cases will probably never occur in practical situations. 

As is argued in the main section of the chapter, (D-6) is the most consis­
tent choice in the philosophy of excluding explicit nofits. A further discussion 
on this matter is included in section 3.8. For this appendix it suffices to con­
clude the two attempts illustrate the dilemma: either unexpected results are 
yielded for certain patterns, or the double complementation may not always 
be annihilated. 

Other attempts also do not seem very promising, either. In the philosophy 
of excluding explicit nofits no other options seem available. Thus either one 
must try and find a solution in a totally different direction or accept that 
the property of being allowed to annihilate double complementation is lost. 
Since double complementation will probably not occur very often in practi­
cal situations (the simple positive statement is more transparent), and other 
attempts will probably violate the philosophy of excluding explicit nofits, it 
was decided to accept the loss of this property. 



Chapter 4 

Some aspects of the implementation of 
ToorjP 

Abstract 

In this chapter those aspects of the implementation of TooJjP are 
described which concern the process of matching patterns to the 
input, where input should be understood in the general sense of 
synchronized buffers. 

For this purpose first the internal representation of patterns is dis­
cussed. The user-specified patterns are transformed into a dynamic 
data structure which is accessible for the matching routine. The dy­
namic structure codes the structure of the patterns, but some simple 
adjustments have been made also, which facilitate pattern matching 
during run-time. 

Next, the algorithms which perform the pattern matching are 
presented. First the situation of a single input buffer is considered. 
In view of this input situation most of the functions for matching a 
particular structure in a pattern are given. Special attention is paid 
to the function for matching the complementation operator, since its 
definition gives rise to some additional computational complexity. 

Then the more general situation of synchronized buffers is consid­
ered. The algorithm for matching primitives is somewhat altered in 
this situation. Since the synchronization mechanism is important for 
this routine, two possible synchronization mechanisms are discussed 
and compared. The more general one is chosen to be implemented 
and the buffer switching algorithm is given. 

On the whole, with respect to the processing of patterns, TooJjP 
can be viewed as a compiler /interpreter. The user-defined patterns 
are compiled from high-level source code to an internal representa­
tion. The internal representation is then interpreted by the functions 
for pattern matching. 
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4.1 Introduction 

T HE previous two chapters served to give a more or less complete func­
tional specification of Toor}P. In chapter 2 the overall architecture is 

discussed, together with the mechanisms available to define an arbitrary con­
version scheme. In chapter 3 the kernel of the linguistic rule, the pattern, is 
discussed, and its meaning is formalized in Table 3.VII. Together, the two 
chapters fully describe Toor}P's behaviour. 

However, not only has Toor}P's behaviour been defined, Toor}P has also 
been implemented and has been operational in evolving versions since 1986. 
A chapter on the implementation may therefore not be omitted from its de­
scription. This chapter deals with those implementation aspects. However, 
no attempt has been made to cover all aspects of the implementation com­
pletely, since that would be a rather technical and tedious matter. Only the 
more important parts are dealt with. 

To be precise: this chapter deals with those aspects of the implementation 
which have to do with matching a pattern to the input. Here, 'input' should be 
understood in a general sense, it is not necessarily the input given by the user. 
It can also be an intermediate result of a module, or the synchronized results 
of several modules. The function which matches patterns to the input is the 
kernel of the system: a linguistic rule is evaluated by examining the patterns 
of the focus, left and right contexts successively; the result of a module is 
determined by repetitive application of rules; the overall conversion, in turn, 
is determined by successive execution of the modules. 

The implementation of this structured repetition will not be described. 
The exact nature of this structure has been described in detail in chapter 2 and 
its implementation is rather straightforward; each function (such as evaluating 
a rule) is embedded in the function that directly needs it (such as executing 
the module). The algorithm closely resembles the functional specification 
given in Appendix 2.A. Since it does not seem very useful to repeat this in 
detail once again, that part of the implementation is not included. 

As to pattern matching, Toor}P contains functions which are similar to 
those found in compilers. The patterns, which are specified in a certain user­
friendly notation, often called source code, are parsed and represented inter­
nally, before actual pattern matching takes place. However, some functions 
are not implemented according to standard compiler techniques, such as given 
by Abo, Sethi & Ullman (1986). The functionality of the system is, of course, 
of primary interest. Moreover, Toor}P features extensions to the standard 
theory, the extended regular expressions, in respect of which it is not obvious 
how automata can be constructed to evaluate them. Throughout the chapter, 
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however, the relation to the standard theory and techniques will be indicated 
where possible. 

Thus, the main topic of this chapter is how patterns are matched against 
input (in the general sense). For this purpose it is first discussed how the 
patterns specified by the user in the linguistic source files are represented 
internally (section 4.2). Then, the strategy of matching these (internally 
represented) patterns to the input is formulated explicitly in algorithmic-like 
structures (section 4.3). The matching process is initially derived for the 
special case of a single input buffer (for instance an intermediate module 
result). Derivational history cannot yet be accessed. The general case of 
synchronized input buffers, which provide this information, is the topic of 
section 4.4. A general discussion on the characteristics of ToorjP-as far as 
the implementation is concerned-is included in section 4.5. Finally, the most 
important conclusions of this chapter are summarized in the last section. 

4.2 The internal representation of patterns 

In almost all computer applications there is a conversion phase of the instruc­
tions a user has specified in source code to a computer internal code (object 
code). For instance, programs written in Pascal should be compiled first be­
fore they can be executed. In ToorjP there also exists a high-level source code, 
the linguistic rules. These are coded in a format which adheres as closely as 
possible to the linguist's wishes. Just like source code in other applications, 
the linguistic rules are also converted to an internal format. This contains the 
same information but is more efficiently processed by the computer. 

Fig. 4.1 depicts this process. The high-level linguistic rules are compiled 
into an internal representation, which is input to the pattern matcher. In this 
case the internal representation is a dynamic data structure rather than a 
sequence of machine instructions. The data structure reflects the organization 
of the linguistic input in a way which is accessible more quickly for a computer 
program. 

In this section it is discussed what the internal representation of patterns 
looks like. For this purpose first an informal strategy for matching patterns 
is formulated. With the informal strategy in mind we will then consider the 
internal representation of patterns. The construction of the compiler which 
translates the source code into this representation is not discussed, as it closely 
resembles the parsing phase of a compiler (see for instance Aho et al. ( 1986)). 
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Figure 4.1: More detailed inside view of ToorjP. The linguistic 
input is compiled into an internal representation, which in turn 
is input to the pattern matcher. 

4.2.1 An informal matching strategy 

The semantics, which is derived in chapter 3 and given in Table 3.VII, provides 
a meaning to a pattern. To be precise, it defines the set of strings which are 
denoted by the pattern. It is the kind of thing a linguist is interested in, 
since when he specifies a pattern, he must be able to determine which strings 
match that pattern. What we shall be considering throughout this chapter 
is an algorithm which determines whether or not an arbitrary input string 
matches an arbitrary pattern, that is, whether or not the input is part of the 
set denoted by the pattern. 

In general, the set denoted by a pattern is not finite; the pattern describes a 
set of strings which 'start' in a certain manner; in other words, the head of the 
string must satisfy certain requirements. It is therefore not a very promising 
approach to try and determine the full set of strings and then determine 
whether the input is part of that set. Instead, it seems more appropriate to 
start with the actual input string and try to establish whether or not it is one 
of the possible heads. 

From the syntax, Table 3.VIII, it can be seen that a non-empty pattern is a 
concatenation of structures. In the semantics the concatenation discriminates 
between the different possibilities for the leftmost structure. Five possible 
structures can be encountered, if we exclude the trivial case of empty patterns. 
They are discussed in relation to the matching routine. 

If a primitive is used, one of the segments it denotes should be found 
at the appropriate place in the input and it should be followed by a string 
denoted by the succeeding pattern (this is the definition of string concatena­
tion). Therefore, if such a segment is not found, we can stop the matching 
procedure, since the current input string can never lead to the desired head 
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of the strings denoted by the pattern. Only when the segment matches the 
primitive do we have to continue matching. 

If an alternative structure is specified, the individual arguments of the 
structure should be concatenated to the succeeding pattern before the mean­
ing of the thus formed patterns is determined, as explained above. For the 
matching routine this means that we can test for these patterns one by one, 
terminating with a positive result if one of the patterns is found, since they 
are ordered in an 'or' relation. 

The simultaneous structure is similar to the alternative structure, save for 
the fact that the current input string should be present in all concatenated 
sub-patterns. Therefore, the same strategy as above can be followed, only in 
this case the matching fails if the string does not match a sub-patterns. 

The strategy which is to be applied inside the complemented structure 
differs from the strategy described above. So far, when a primitive does not 
match, we can conclude that the path of concatenated primitives which we 
are considering does not match. We can start matching the next path in the 
case of alternatives, or conclude that the whole pattern does not match in 
the case of simultaneity. Inside complementation, however, a mismatch of a 
primitive will lead to the conclusion that that part of the complementation 
matches, which may~but does not necessarily have to-lead to a positive 
result value of the pattern as a whole. On the other hand, if a primitive 
matches inside a complemented structure, this may but does not necessarily 
have to lead to a negative result value of the pattern. Therefore, in both cases 
further processing is necessary as no direct conclusion can be drawn, and so 
the matching may not terminate in either case. 

The optional structure is actually a shorthand notation for an alterna­
tive structure. It saves coding time for the users and improves legibility of 
the rules. Since the optional structure is only a notational shorthand for a 
certain alternative structure, the optional structure (for normal, positive pat­
terns) can internally be represented as an alternative structure. This includes 
patterns denoting infinite repetition. Inside complemented patterns, how­
ever, this is not appropriate. As explained above, the matching routine must 
fully consider all cases inside complementation, which in the case of infinity 
would lead to non-termination. Therefore, a different internal representation 
is needed in the case where optionality is used inside complementation. 

Thus, in positive structures, we may terminate the matching of the cur­
rent path when a primitive does not match the input. Inside complemented 
structures this is not the case. Amongst other things a separate internal rep­
resentation is then needed for optionality. With these characteristics in mind 
we can now take a closer look at the internal representation of patterns. 
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4.2.2 The representation 

The internal representation of patterns is a modified syntax tree. A syntax 
tree is a hierarchical structure which accounts for the relationship of the el­
ements in an expression (in this case a pattern). The modification involves 
some simple adjustments which can take place at compile-time, so as to speed 
up the run-time performance. 

Two basic data structure concepts are used to represent patterns inter­
nally. These are the record type, in which one can join elements of arbitrary 
types into a compound type, and the linked list, in which one can store a list 
(an arbitrary number) of elements (for instance a record) and access them se­
quentially. As illustrated below, the record type is portrayed by a rectangular 
box, possibly sub-divided, while the linked list is represented by an open cir­
cle with an arrow (the link) pointing at an element, a rectangular box, which 
contains a link to the next element. The end of the list is represented by a 
filled circle. 

As follows from the syntax, a pattern is a concatenation of structures. 
The number of concatenations is free, and varies significantly in practical 
situations. Therefore, a linked list of structures is an elegant way to represent 
patterns, rather than a fixed array. Each link represents a concatenation, each 
element of the list represents a structure: 

Note that the filled circle, which indicates the end of the list, can be inter­
preted as the ®-pattern, to which all strings match. So as soon as this point 
is reached, one may conclude that the pattern which is searched for is present. 

A structure can be any of the given five types. The kind of information a 
type represents differs per type. As only one type at a time can be used at 
a certain place, the different types of linguistic data (graphemes, phonemes, 
features, etc.) can be stored at the same place, provided an additional indi­
cation of which type is used. In Pascal terms this is called a variant record. 
The record which represents a structure then contains three fields: a type 
indication, the linguistic data, and a link field: 

The internal representation will now be discussed for all possible struc­
tures. This comprises the four types of primitives: graphemes, phonemes, 
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grapheme features and phoneme features, and the four 'real' structures: al­
ternation, simultaneity, optionality and complementation. 

Graphemes 

Graphemes refer to orthography, and can be any printable character. For 
instance, the pattern o , u, t (throughout the chapter all example patterns 
are printed in bold face) is internally represented as follows: 

8----4 gra 1 o IGH gra 1 u IGH gra 1 t I• I 

Phonemes 

Phonemes refer to pronunciation. They are defined by the user and consist 
of a limited set. They are represented in a way similar to graphemes. For 
instance, the pattern SJ, 00 is represented as follows: 

Grapheme features 

Grapheme features are user-defined, and are used to describe common proper­
ties of graphemes. A feature specification can consist of any positive (nonzero) 
mnnber of features, each of which has a value ('+'or '-') and a name ('cons', 
'son', etc.). For example, the feature specification <+cons, -son> denotes all 
consonantal graphemes which are not sonorant. Since the number of features 
used in a specification varies per rule, a linked list of feature elements is ap­
propriate to represent them. The representation, for instance for the above 
specification, is as follows: 

Used as part of a pattern, the linked list representing the feature specifi­
cation forms the data part of the structure, as illustrated below: 

~ succeeding pattern 

I + I cons IGH -I son I• I 
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Phoneme features 

Phoneme features describe common properties of phonemes, analogous to 
grapheme features. These, too, follow from the definition tables. Their rep­
resentation is equal to grapheme features, save for the type indication. So 
for instance, the pattern L, <+CONS>, which refers to a sequence of the 
phoneme /L/ followed by a consonantal phoneme, is represented as follows: 

Alternative structures 

An alternative structure can have any number of arguments, each of which 
can be a non-empty pattern. In accordance with the earlier solutions, this 
can be represented elegantly by a linked list. In this case, the elements of the 
linked list are patterns, i.e., linked lists of structures. Thus, here we see the 
same recursion in the internal representation as is present in the syntax. 

The true syntax tree of the pattern {0 au} , t (presented in the way patterns 
' are represented) is as follows: 

G--1.___at___._t lf--+--'IG____.+--1 ---------+-~·1 gra I t I I 
lfiGH gra I a 1•1 
leiGH gra I o IGH gra I u I• I 

However, the semantics prescribe that the succeeding pattern should be 
concatenated to each alternative to form new patterns, whose meaning then 
should be determined. This transformation can be performed explicitly in 
the compiling phase by linking the end of each alternative to the succeeding 
structure. Thus, the above representation is adjusted to the following: 
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i leiGH gra I o IGH gra I u IGf---J 
The original link, from the element marked as 'alt' to the succeeding structure 
is now spurious, but on the other hand it does no harm, so it may as well 
remain present. To achieve this representation, the compiler routine which 
constructs the internal representation must perform some additional compu­
tations, of course. Before parsing the arguments of the alternative structure, 
first the continuation entry for the succeeding structure should be computed, 
so it can be patched at the end of each argument. Per rule, this only needs 
to be done once. Moreover, constructing the internal representation is done 
off-line, as a preparation phase for the pattern matcher, so this does not affect 
the run-time performance. 

Simultaneous structures 

The simultaneous structure is similar to the alternative structure, be it that 
the interpretation differs. As this is the task of the matching routine, the 
internal representation for simultaneity only differs in the type indication 
from the alternative structure: 

Optional structures 

As previously explained in chapter 3, an optional structure is generally char­
acterized by (A)a-b, where the parentheses denote the optional structure, A 
denotes an arbitrary pattern, and a and b denote the minimum and maximum 
number of times the pattern is required. Here, a ~ b, and a and b may be 
any non-negative number. One may, however, use a notational shorthand and 
omit either b or both a and b. In the first case, the pattern expresses infinite 
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repetition, that is, it should be present at least a times, but may be present 
any higher number of times. In the second case, the structure is interpreted 
in the true optional sense: it may be present or not, so it is as if a = 0 and 
b = 1. 

As mentioned, in normal positive structures it can be represented by an 
alternative structure. This saves the need to code a separate routine for 
positive optional structures. If b is limited, the pattern (A)a-b is represented 
as follows: 

·-·tUn~ { ··. 

Typically, a and b are small, so explicitly representing the structure as 
a sequence of similar elements does not burden the computer memory too 
heavily. If b is omitted, and thus codes infinite repetition, the above scheme 
cannot be used, since one cannot go on infinitely creating new alternatives. 
However, the infinite repetition can be coded by a self-reference pointing back, 
so that for the matching routine it seems as if the pattern continues endlessly: 

If the minimum number of times the pattern must be present is zero (a= 0), 
this undergoes a slight change: 
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succeeding pattern 

These representations effectively code infinity, and therefore a terminating 
mechanism should be provided for when the patterns are matched outside the 
range of the input. On the other hand, in practical situations this mechanism 
will seldom be used; either at some point the succeeding pattern matches 
(leading to a positive result and terminating the matching process) or the 
optional structure A does not match (leading to a negative result and also 
terminating the matching process). 

However, inside complemented structures such a safety mechanism cannot 
be used. As argued in the previous section, inside complemented structures all 
alternatives must be considered. If no further provisions are taken the match­
ing routine will always encounter a new alternative which it will investigate, as 
it might add new information. These provisions could be taken, of course, but 
that would burden the matching routine with extra processing, which then 
would also be executed when finite structures are used. This would deterio­
rate run-time performance, and therefore a separate internal representation 
is used in the circumstances that optionality is used inside complementation: 

Here, the type field indicates that an optional structure is used, which 
will cause the matching routine to select the part with the necessary extra 
processing. The data field contains a pointer to a data item which provides 
information on the minimum and maximum number of times the optional 
structure should and may be present. A negative number for the maximum 
codes infinity. This way of explicitly coding infinity provides the matching 
routine with additional information, which enables it to determine when the 
matching process can be terminated. 
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Complemented structures 

The argument of a complemented structure is an arbitrary non-empty pattern. 
This is the first structure which follows the complementation sign. If one 
wants to complement a sequence of structures, these should be enclosed in 
square brackets, •[ ... ], thus indicating the range of the complementation 
(the normal parentheses are already used for optional structures). Confusion 
with the simultaneity does not occur, since in this case the structure (which 
is being complemented) only consists of one argument. 

The non-empty pattern which is complemented is represented in the same 
way as it would be, and forms the data field of the complemented structure. 
For instance, the pattern •[o, u] , t is represented as follows: 

gra o IGH gra u I• I 

4.2.3 Summary 

With this, all structures and their internal representation have been discussed. 
It was stated that the internal representation was a modified form of the 
syntax tree. The goal of the internal representation is to represent the data 
in such a manner that the matching routine can process them reasonably 
well and reasonably fast. For that purpose, for instance, the arguments of an 
alternative structure are linked to the succeeding structure, and the optional 
structure has been translated to an alternative structure in positive structures. 
On the other hand, computations which are difficult and laborious to do 
off-line, such as determining which strings possibly match a complemented 
structure, are postponed to the run-time part of pattern matching, where 
they are computationally less complex since only a particular input string has 
to be matched to the pattern. 

The internal representation of patterns is thus a hybrid kind of repre­
sentation somewhere between a syntax tree and a non-deterministic finite 
automaton with E-transitions (NFA) (see for instance Hopcroft & Ullman, 
1979). The representation for complementation and optionality typically con­
tains structural information of a syntax tree, whereas an alternative structure 
and concatenations can be viewed as an NFA 1 . 

1The open circles with arrows can be considered as states, the filled circle is the accepting 
state. The data part of the record, the primitives, are labelled transitions, and the list of 
structures in the alternative representation are E-transitions. 
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From the viewpoint of compiler design, this is probably not the most ele­
gant type of representation. The choice for this representation rests mainly on 
practical grounds. Translating the optional structure to an alternative saves 
the need to code a separate routine for matching positive optional structures. 
Linking the succeeding structure to the arguments of an alternative or simul­
taneous structure saves administrative effort during run-time. On the other 
hand, computing during run-time whether or not a string matches a comple­
mented structure is probably less complex than transforming the syntax tree 
of the complementation into some kind of finite automaton. These consid­
erations have resulted in the internal representation to represent patterns as 
described above. 

4.3 The algorithm for pattern matching 

We can now consider the matching strategy in more detail. As depicted in 
Fig. 4.1, the internal representation is one input to the pattern matcher, the 
user-provided input the other. The pattern matcher is an interpreter which 
is driven by the organization of the linguistic rules. At the basis patterns are 
interpreted by the pattern matcher and matched to the input. This is the 
kernel of the system. In this section the algorithm for matching patterns will 
be given. 

The general task of the matching routine is to determine whether or not 
a certain pattern-internally represented by the linked list of structures-is 
present in the input buffers or uot. For the present, it is assumed that there is 
only one input buffer, containing either graphemes or phonemes. In the next 
section the situation of synchronized buffers is dealt with. 

The task of the matching routine is the following. Suppose the rule ( 4.1} is 
specified to deal with the pronunciation of words like 'container' and 'trailer'. 

( 4.1} 

Suppose the word 'container' is typed, and suppose the focus pattern has been 
tested and found. Then the internal status will be as follows: 

input: c o n t alilnlelrl 
T 

output: K 0 N T 
(4.2) 
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The arrow points at the position where the matching of the right 
context will commence, directly to the right of the focus pattern. 
The output buffer has partly been filled, as a result of rules 
included in the same module, which have already been applied. 
From the fact that the output buffer is filled to the left of the 
focus it can be concluded that the module scans its input from 
left to right. 

The task of the matching routine is to match the right context of ( 4.1) to the 
internal status of (4.2), and return a boolean-valued result: true (it matches) 
or false (it does not match). 

Thus, the matching routine can be seen as a function which returns a 
boolean value and is fed by two parameters: the pattern which to match 
against the buffer contents, and the position at which to start matching the 
pattern. The last parameter can actually be subdivided into two parts: the 
buffer in which to match (momentarily a constant), and the position in the 
buffer at which to start matching. The combination of buffer and position is 
called internal position. 

function Match(patt :pattern; 
inLpos : internaL position) : boolean; 

Here, pattern is the data structure of the linked list of struc­
tures, and internaLposition a record which contains buffer and 
position information. Customarily, algorithms will be presented 
in the above manner; functions and procedures (both starting 
with a capital letter), variables and types are printed in italics 
and keywords are printed in bold face. 

The functionality of the matching routine can be formalized as follows: 
Match(patt, inLpos) is true iff (if and only if) the pattern patt matches a 
string starting at position Pos(int_pos) in the buffer Buf(int_pos). Pos and 
Buf respectively select the position and buffer of inLpos. Inside this func­
tion, we may expect the same differentiation between structures as is present 
in the syntax and the semantics. In this respect, however, it is relevant to 
separate the types into two groups: primitives versus 'real' structures. The 
primitives are characterized by the fact that they refer to exactly one segment 
in a buffer, whereas the structures do not refer directly to the input buffer 
but indicate how to combine sub-patterns. 

Structures can be concatenated in any order. However, when a structure 
is used, the semantics prescribes that the full succeeding pattern (the pattern 
succeeding the structure concerned) must be included in the determination of 
the meaning of the structure. Therefore, if the function Match encounters such 
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a structure, control will be given to a routine which handles these structures, 
including their succeeding patterns. 

On the other hand, if a primitive is encountered, the matching value of 
that specific primitive can be determined. If a negative value results, the 
matching process can be terminated (until a complementation sign is encoun­
tered, we are matching a positive structure). If a positive value results, it 
should continue. Then, both the starting position at which to match and the 
pattern with which to match must be updated. 

Such a recipe can be formulated compactly and explicitly in an algorithm. 
For this purpose I use a pseudo-Pascal code; Pascal since the program is 
implemented in that language, and a pseudo variant to be able to leave out 
irrelevant detail. Thus, the function Match can be formalized as follows: 

function Match(patt :pattern; 
inLpos : internal_ position) : boolean; 

begin 
r-esult := true; 

while result and Type(patt) =primitive 
do 

od; 

result:= Match_primitive(patt, inLpos); 
inLpos := Update( inLpos ); 
patt := Select_next(patt) 

if result and Type(patt) = structure 
then result := Match_structure(patt, inLpos) fi; 

Match:= result 
end; 

Type is a function that returns the type field of the current pat­
tern. Update updates the internal position. In the current case 
of one input buffer this consists of shifting the arrow in ( 4.2) one 
position to the right or the left, depending on the matching di­
rection. In this case, this is to the right since the right context is 
being matched, but for left contexts, for instance, this would be 
to the left. SelecLnext updates the pattern, i.e., selects the next 
element in the linked list of structures. In true Pascal code this 
is equivalent to the statement: patt := pattj. next, but to abstract 
from the implementation this is presented a.S a function. 

Note that as soon as result turns false the matching process terminates with 
negative result. On the other hand, if the end of the linked list is reached and 
result is still true, the process terminates with positive result; both tests, 
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Type(patt) =primitive and Type(patt) = structure, fail (it is assumed that 
Type recognizes the empty list and returns a unique code for that case). 

The division between the primitives and structures manifests itself in a 
call to two different functions, Match_primitive and Match_structure. These 
form the topics of the next sections, 4.3.1 and 4.3.2. Amongst other things, 
Match_structure deals with complementation. As will be explained, matching 
inside complementation differs from matching outside, which is the normal 
mode. In section 4.3.3 the matching strategy inside complementation is dis­
cussed. A brief discussion in section 4.3.4 concludes this section on how 
patterns are matched against a single input buffer. 

4.3.1 Matching primitives 

Match_primitive is a boolean function that matches a single primitive 
to a single segment in a certain buffer. Its functionality is given by: 
Match_primitive(prim, inLpos) returns true iff the primitive pattern prim 
matches the element at the internal position inLpos. 

Four primitive types can be used: grapheme, phoneme, grapheme features 
and phoneme features. When a grapheme or phoneme is specified in the rules, 
that specific grapheme or phoneme must be found in the input buffer. The 
matching value can be determined with a single statement. 

result := Data(patt) = Segment( inLpos ); 

Data returns the contents of the data field, Segment selects the 
segment at the internal position. 

When features are specified in the rules, the segment in the input buffer must 
satisfy all feature specifications. One by one, these specifications are verified, 
a process that terminates if one specification fails, or when all specifications 
have been dealt with: 

result := true; 
feat := Data(patt); 
segm := Segment( inLpos ); 
while result and Present(!eat) 
do 

result:= ( segm in Feature_set(feat)) = Value (feat); 
feat := SelecLnext(feat) 

od; 

Present is a boolean function that returns true if there are still 
elements in the linked list to be checked. In this place it is 
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equivalent to the Pascal statement feat =/= nil. Feature_set is a 
function that returns the set of all segments which are described 
by the given feature. Value is a boolean function which returns 
true if the specified feature value in the rule is '+', false if this 
is'-'. 
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The test whether the input-buffer segment is in correspondence with the fea­
ture specification consists of two parts. The first test determines whether 
the current segment is an element of the set denoted by the feature: 
segm in Feature_set(feat). The second test checks if that was intended: "ele­
ment of feature-set" = Value(feat). Then, of course, after testing one feature 
specification, the next one must be selected, which is performed by SelecLnext. 
If all features have been dealt with, this will cause the test Present to fail. 
Thus, the result will only be positive if the input segment satisfies all the 
feature specifications. As soon as one of the requirements is not met, the 
matching process terminates. 

The one-input buffer situation which is assumed here does not yet dis­
criminate between graphemes and phonemes. In section 4.4, which deals with 
the synchronized buffers situation, the distinction will lead to a slightly dif­
ferent algorithm, for which reason the full algorithm for Match_primitive will 
be given there. 

4,3.2 Matching structures 

As argued in chapter 3, when any of the structures is encountered, the pattern 
succeeding that structure is necessary to determine the meaning of the struc­
ture. For this reason control is transferred to the function Match_structure 
when a structure is encountered. The task of this function is to match the 
remainder of the input to the remainder of the pattern. The first element of 
this pattern is a structure. 

Basically, the matching strategy differs for each structure. Therefore, the 
only thing the function needs to do is to differentiate between the possible 
types and transfer control to a function which is specialized to deal with the 
encountered structure. Since optional structures are coded as alternatives 
in positive (non-complemented) structures these cannot be encountered, only 
the alternative, simultaneous and complementation structures must be dealt 
with: 
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function Match_structure(patt :pattern; 
inLpos : internaLposition) : boolean; 

begin 
case Type(patt) of 
alternative :result := Match_alt(patt, inLpos ); 
simultaneous :result := Match_sim(patt, inLpos ); 
complementation: result := Match_cmp(patt, inLpos) 
end; 
Match_structure := result 

end; 

For each of the three possible types a different function is called. These will 
be discussed in this order. 

Alternative structures 

The alternative structure is represented by a list of patterns. The head of each 
such pattern consists of one of the arguments of the alternative structure, the 
tail of each argument consists of the succeeding pattern: 

--tl-------------.- succeeding pattern 

arg. 1 

arg. 2 

arg. n 

Each pattern in the list is exactly like the patterns we encountered at the 
highest level: they are a linked list of structures. This means that we can use 
the function we already 'have', Match, to determine the matching values of 
the patterns in the list. Actually, this recursive call follows directly from the 
semantics, which prescribes how to rearrange the pattern and apply the same 
function, "the meaning of" to the new patterns. 

With this, the strategy for matching an alternative structure becomes 
simple: Match the patterns of the list one by one until one of them matches, 
and terminate matching with negative result if all patterns fail. Note that 
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each time a new pattern is tested, it is matched starting at the same internal 
position as the first time. 

function Match_alt(patt :pattern; 
int _pos : internal_position) : boolean; 

begin 
result false; 
alternative := Data(patt); 
while not result and Present( alternative) 
do 

od; 

result:= Match(Pattern(alternative), int_pos); 
alternative := SelecLnext( alternative) 

Match_alt := result 
end; 

Pattern selects the following pattern from the list of alternatives. 

The number of patterns which are represented in the linked list is finite. Ei­
ther it directly follows from the number of arguments the user has specified, 
or the alternative structure consists of two elements when it is derived from 
an optional structure. The routine specified above will therefore always ter­
minate, provided that the internally used routines terminate. 

Simultaneous structures 

The simultaneous structure can be treated analogously to the alternative 
structure, with appropriate adjustment of combining the results. Apart from 
the type indication, the internal representation is the same. Therefore, the 
simultaneous structure can be treated with the following algorithm: 

function Match_sim(patt :pattern; 
inLpos : internaLposition) : boolean; 

begin 
result := true; 
simultan := Data(patt); 
while result and Present( simultan) 
do 

od; 

result := Match( Pattern( simultan ), inLpos); 
simultan := SelecLnext( simultan) 

Match_sim := result 
end; 
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This routine only terminates with positive result if all of the patterns are 
found. If one of them fails, the result is negative. 

Complemented structures 

The complementation structure is represented as a pattern embedded within 
complementation marks: 

~ 'ucceeding pattern B 

complemented pattern A 

To determine whether a string belongs to the pattern, the semantics pre­
scribes that it should be an element of A u""'B, but not at the same time be an 
element of A""'B, where A is the complemented pattern and B the succeed­
ing pattern:-Ifthis is implemented straightforwardly, the membership of the 
input must be established for both sets. There is no simple shortcut, since 
in chapter 3 it has been shown that in general A u,....,B \ A"'B =f= (Au\ A)rvB 
(the lefthand side is the semi-compositional definition, the righthand side the 
compositional one). So this would mean more or less a redoubling of the 
amount of work, as compared to positive structures. Therefore, a more effi­
cient implementation has been searched for. 

The definition of complementation is derived from a formulation which 
reflects its origin (see chapter 3, page 55): 

(4.3) 

Thus, complementation can be interpreted as follows. -,A , B denotes those 
strings which are candidates, but which at the same time are not explicit 
nofits. Candidates are defined as the strings that can be fitted to the pattern 
such that the segments fitted to the complemented part (A) do not match and 
those to the succeeding pattern (B) do ( = (Au\ A)"-' B). Explicit nofits are 
defined as the strings that can be fitted such that theirsegments both match 
the complemented part and the succeeding pattern (=ArvB). The string 'att' 
for instance, is both a candidate and an explicit nofitforpattern (4.4) (and 
should, for that reason, not be included by the set of strings denoted by that 
pattern). 

(4.4) 
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In patterns we can distinguish paths of concatenated primitives, or briefly: 
paths. For instance, pattern (4.4), the internal representation of which is 
depicted below, contains four paths: •a, t, •a, r, •[o, u], t and -.[o, uJ, r. 

~cmp191o1 

~ 
leiGH o IGH u lei 

A certain string can be a candidate for a specific path, it can be an ex­
plicit nofit, or it can be neither, but it cannot be both at the same time for 
the same path. If a string is both a candidate and an explicit nofit for the 
pattern, this is due to different paths. Now we can separate the 'matching 
value' of a string for a certain path into two parts: one for the complemented 
part, and one for the succeeding pattern. In this way we have a tuple of two 
boolean values, and thus four possible combinations: (false-false), (false­
true), (true-false) and (true-true). Here, the value is not yet adjusted 
for whether or not being complemented, so (true-true) means the first part 
matches the complemented structure and the second part matches the suc­
ceeding pattern. 

The definition of complementation, as given in (4.3), can now be inter­
preted as follows: the input string must result in a (false-true) tuple for a 
certain path (it must be a candidate), but it may not result in a (true-true) 
tuple for any other path (it may not be an explicit nofit). 

Therefore, the general strategy could be: compute and consider all tuples. 
If there is a (true-true) tuple, the pattern as a whole does not fit, as this 
is an explicit nofit. If there is no (true-true) tuple, then look for a (false­
true) tuple. If such a tuple is found a positive result must be returned, as a 
candidate is found which is not an explicit nofit. If such a (false-true) tuple 
is not found, the routine must return a negative result; the string is neither 
an explicit nofit nor a candidate. 

In this scheme, however, the matching value of the succeeding pattern must 
be determined for each path in the complemented pattern. If the position at 
which to start matching is different for each path, this has to be done anyhow. 
For instance, in pattern ( 4.4), {~} (the succeeding structure) must be matched 
to the second character (relative to the starting position of the whole pattern) 
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for the first path, •a, and to the third character for the second path, •[o, u]. 

On the other hand, if certain paths of a complemented pattern are of equal 
length, such as in pattern •{!}, t the starting position for the succeeding 
pattern is the same, and therefore the matching values of those cases will all 
be similar. So in these cases some increase in efficiency can be gained. 

This can be done by combining the results of those complemented paths 
which have equal lengths. For paths within an alternative structure the com­
bining operator is the logical or: if one of them matches, this leads to an 
explicit nofit if the succeeding pattern also matches. Analogously, for paths 
within simultaneity this is the logical and. 

In fact, it is not the length of the complemented pattern that is essential, 
but the position where the matching of the succeeding pattern should com­
mence. Therefore, the results of all paths which lead to the same internal 
position are combined. Thus, we obtain a list of matching values for the com­
plemented part, of which each element is associated with a different internal 
position. Now, for each list element the matching value of the succeeding 
structure is determined, and the same strategy for combining result-tuples as 
before can be applied to determine the matching value for the pattern as a 
whole. 

Yet, there is still some efficiency to be gained. If the list of matching values 
for the complemented part is ordered in such a way that first for all true­
values the succeeding pattern is matched, and next for all false-values, we 
can terminate matching the succeeding pattern as soon as a positive result is 
returned. If the accompanying complemented path is true the string appears 
to be an explicit nofit and thus a negative result can be returned directly. 
If the accompanying complemented path is false, the string appears to be a 
candidate. But since true-values in the result list precede the false values, 
explicit nofits can no longer be encountered. Therefore, a positive result 
can be returned directly. If the succeeding structure fails to match for all 
list elements, again a negative result for the whole pattern must be returned. 
Note that only in this case does the succeeding pattern have to be matched for 
all list elements. This strategy can be formalized in the following algorithm: 

function Match_cmp(patt :pattern; 
inLpos : internaLposition) : boolean; 

begin 
res_list := Exh_match(Data(patt), inLpos); 
result false; 
succ_patt := SelecLnext(patt); 
while not result and Present( res_list) 
do 



4.3 The algorithm for pattern matching 

od; 

neg_res := Res_value(res_list); 
result:= Match(succ_patt,InLpos(res_list)); 
res_list := SelecLnext( res_list) 

Match_cmp :=result and not neg_res 
end; 

Res_ value select the matching value of the current element of a 
result list, lnLpos selects the internal position from that element. 
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Exh_match determines for each patch in the complemented pattern its match­
ing value and the resulting internal position. It combines the results for paths 
with the same resulting internal position, and it orders the results in a list 
such that those paths that match are included first, and returns this list. In 
the next section, ( 4.3.3), this function is discussed in more detail. While no 
definite decision can be made, i.e., when result = false, which means neither 
an explicit nofit nor a candidate has been found, the succeeding pattern is 
matched at the internal position of the next element of the result list. Storing 
the accompanying result of each result list element in neg_res enables a quick 
computation of the final result. This can be done with the single statement: 

Match_cmp :=result and not neg_res 

If the succeeding pattern matches for a certain path, then the while-loop ter­
minates with result = true. The final result should now become the inverted 
value of the accompanying complemented part, which is stored in neg_res; if 
neg_res true then an explicit nofit has been found, and thus the final result 
is negative, if neg_res = false this indicates a candidate, and thus the final 
result is positive. On the other hand, if the succeeding pattern did not match 
for any of the paths (no candidates are found), the loop eventually terminates 
with result = false, in which case a negative result is returned. 

4.3.3 Exhaustive matching 

The function Exh_match deserves some additional discussion. It performs the 
task inside complemented structures that is performed by Match outside (in 
positive structures). Compared to Match, it differs in some aspects. First 
of all, it does not return the matching value of a pattern, but it returns a 
list of matching values for all paths inside the complementation. Second, for 
each matching value it includes information on where to start matching the 
succeeding pattern. Third, it only terminates matching at the end of the 
complemented part, rather than as soon as result turns false. 

Despite these differences, there is quite some similarity in task. We will 
find the same differentiation in type of structure as we saw in Match. Also, 
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more or less similar algorithms are encountered. Again, these algorithms will 
differ from the previously presented ones in the respects given above. Since 
for each path an indication is needed on where to commence matching the 
succeeding pattern, we cannot simply terminate matching a path and return 
a negative result when a certain primitive appears not to be present. One 
solution for this is to continue matching until the end of the complemented 
pattern is encountered. This only affects the termination criterion for the 
routine. Another solution is to only count the remaining elements of the path, 
but this has more consequences for the algorithm; more or less a redoubling 
of source code is necessary, since the structures that can be encountered are 
the same, only the matching of the primitives differs. 

As in practical situations complementation is not used with high frequency, 
and, moreover, the patterns being complemented are fairly simple (mostly 
consisting of one or two paths of one or two characters), one may not expect a 
very spectacular increase of run-time performance when the second solution is 
chosen in favour of the first. Therefore, in the implementation I chose the first 
solution. For this reason the routine is called Exh_match, as it exhaustively 
matches each path to its end. 

With this, the important differences of Exh_match with its positive coun­
terpart Match have been discussed, except the fact that optionality must also 
be dealt with. This structure has not yet been discussed, as it does not occur 
in positive structures. Therefore, how to deal with this structure and where 
this is done are discussed in the next section. The algorithms for matching 
the other structures (alternation, simultaneity and complementation) inside 
a complemented structure are given in Appendix 4.A. 

Optional Structures 

The only case in which a separate internal representation for optional struc­
tures can occur is when optionality is used inside complementation. The 
general appearance of such a pattern is as follows: 

X ,..,[y ,(A)min-max,B] ,z (4.5) 

Here, A, B, X, Y and Z are arbitrary patterns, all of which may be absent, 
except A. A is also called the optional pattern and B is the pattern succeeding 
the optional pattern within the complementation. Within the remainder of 
this section ( 4.3.3) B will also be called in short the succeeding pattern, in 
contrast to the general convention where it means the pattern succeeding the 
complementation (which is Z, here). A and B are of interest for the routine 
dealing with optionality, X, Y and Z are dealt with by other routines. 
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The internal representation of pattern ( 4.5) is as follows: 

succeeding pattern B 

optional pattern A 

The sub-pattern matches if the optional pattern A is present at least min times 
and up to at most max times before the succeeding pattern B. Of course, in 
the end the matching result should be inverted, since the structure is present in 
a complementation. However, the interpretation of the complemented struc­
ture as a whole is dealt with by the routine dealing with complementation, 
Match_cmp. Here, we are concerned with determining the matching values 
of the paths inside the complemented structure, that is, determining the first 
values of the result-tuples described in the previous section ( 4.3.2). Therefore, 
the task of this routine, which will be called Exh_match_opt, and which deals 
with optionality inside complementation, is to determine whether the optional 
structure (A) followed by the succeeding pattern (B) is present or not. 

A straightforward strategy to determine this is as follows. First match the 
optional pattern A min times and then match the succeeding pattern B. This 
gives the first matching result to be put out in the result list. Just before B 
is matched, the current internal position is saved, so that the next option, 
Amin+l, can be checked without having to match the first min occurrences 
once again. Then, after matching A once, B is matched again and the result 
is added to the result list. Each time a next occurrence of the optional pattern 
has been matched the internal position is saved. This continues until the op­
tional structure has been matched up to max times. The following algorithm 
does the job: 

for nr := 1 to min do "match optional pattern A" od; 
save := inLpos; 
"match succeeding pattern B"; 
res_list := result; 
for nr := min + 1 to max 
do 

inLpos :=save; 
"match optional pattern A"; 
save := inLpos; 
"match succeeding pattern B"; 
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res_list := Unite( res_list, result) 
od; 
return res_list; 

Unite is a function which simplifies two result lists such that 
each internal position only occurs once. 

As to this algorithm, there are, however, two complicating factors: 

• for each matching operation, a list of result values may result, as match­
ing takes place inside complementation. All elements of the list should 
be dealt with. 

• max may be infinite, which cannot be dealt with by the routine above. 

As to the first factor, we may assume that when we encounter the optional 
structure, we are investigating a specific path. There can of course be more 
paths before an optional structure, but for each path the optional structure 
will be investigated individually. So we start matching the optional structure 
at a certain internal position, transported to the routine by means of the 
variable int_pos. 

It is possible that the optional structure contains an alternative structure, 
which contains paths of different lengths. The result of matching structure A 
may therefore be a list of result values. If, in succession, we must once again 
match A or match the succeeding pattern B, we must do this for each list 
element. So, generally, on the one hand a list of result values is returned by 
the matching process (the result list), and on the other hand a list of states at 
which to commence matching is presented to the matching process (the state 
list). Only the first time we start matching we know we have to deal with 
exactly one state. This can be seen as a state list containing one element. 

The result list and the state list are essentially of the same type: each ele­
ment of a list contains information on where to continue or commence match­
ing (by means of the internal position) and the resulting or initial matching 
value. The matching value of an arbitrary pattern inside complementation 
can then be seen as a function of the pattern and the list of commencing 
values, which results in a list of result values: 

resulLlist := LisLmatch(pattern, commence_list); 

Inside the function LisLmatch the pattern concerned should be matched 
for each list element. Each list element contains an internal position and 
an initial matching value. The internal position is selected by Int_pos, the 
initial matching value by Res_value. The initial matching value is needed 
for a correct result; if the first n - 1 occurrences of A do not match, then, 
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despite the fact that the nth occurrence may be present at that particular 
position, the sequence An still does not match. This is taken care of by the 
function Adjust. Each matching process produces a result list, and all the 
result lists are combined as before, that is, simplified for paths ending at the 
same internal position by the function Unite. This is expressed below: 

function LisLmatch(patt :pattern; 
comm_list: result_list): result_list; 

begin 
res_list := empty; 
while Present( comm_list) 
do 

od; 

inLpos := InLpos( comm_list); 
prv_val := Res_ value( comm_list); 
tmp_list := Exh_match(patt, inLpos); 
tmp_list := Adjust(prv_val, tmp_list); 
res_list := Unite( tmp_list, res_list); 
comm_list := SelecLnext( comm_list) 

LisLmatch := res_list 
end; 

Now, the routine for matching optional structures, given above in an in­
formal style, can be made more explicit. For non-infinite matching of optional 
patterns in complemented structures we can give the following routine: 

function Exh_match_opt(patt :pattern; 
comm_list: resulLlist): resulLlist; 

begin 
opLpatt := Data(patt); 
succ_patt := SelecLnext(patt); 
for nr := 1 to min 

do comm_list := LisLmatch( opLpatt, comm_list) od; 
res_list := LisLmatch( succ_patt, comm_list); 
nr :=min; 
while nr =/= max 
do 

nr := nr + 1; 
comm_list := LisLmatch( opLpatt, comm_list); 
res_list := Unite (List_ match( succ_patt, comm_list), res_list) 

od; 
Exh_match_opt := res_list 

end; 
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Saving the internal positions is now done implicitly in the result lists, 
which serve as state lists for the next matching process. Note that also the 
internal position where matching is first to commence is transferred to the 
function by means of a state list. That state list, comm_list, contains, apart 
from the internal position, also the initial matching value, the result of (one 
of the paths) of pattern Y. 

The last for-loop is replaced by a while-loop to be able to make the 
last step: to make the routine suited to deal with 'infinite matching', this 
is when max = and the routine would therefore not terminate. In a 
practical system the physical string is always finite. This means that the end 
of that string will always be reached by repetitive matching of the optional 
structure. This can be detected by Exh_matclLopt by means of a special 
function, Out_of_bounds. This function returns true when all of the position 
pointers are outside of the input range. This can be added to the termination 
criterion: 

while nr =/::.max and not OuLof _bounds( comm_list) do ... 

Thus the relevant repetitions are dealt with, since the paths of the op­
tional structure which fall outside of the input range will cause the pattern 
succeeding the complementation ( Z) to fall outside of the input range as 
well, and therefore a candidate can never result for those paths. Therefore, 
Exh_matclLopt can be terminated as soon as repetitions reach beyond the 
input range. 

The algorithm for exhaustive matching 

Now we can return to the general routine which deals with matching inside 
complementation, the function Exh_match. As stated above, this function 
resembles the function Match, but differs in three respects: it returns a list of 
matching values rather than a single result, it also returns the accompanying 
internal position, and only terminates at the end of a pattern (which is the 
end of the complementation). Thus, the following algorithm results: 

function Exh_match(patt : pattern; 
inLpos : internaLposition) : boolean; 

begin 
result := true; 
while Type(patt) = prim 
do 

od; 

result := Match_primitive(patt, inLpos) and result; 
inLpos := Update( inLpos ); 
patt := SelecLnext(patt) 
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res_list := Create_list( result, inLpos ); 

case Type(patt) of 
alternative : res_list := Exh_match_alt(patt, res_list); 
simultaneity : res_list := Exh_match_sim(patt, res_list); 
complementation: res_list := Exh_match_cmp(patt, res_list); 
optionality : res_list := Exh_match_opt(patt, res_list) 
esac; 

Exh_match := Sort( res_list) 
end; 
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The first part is the same as function Match, save for the fact that the 
routine does not terminate when result turns false. When all initial primi­
tives have been matched, an initial state list is created by Create_list. This list 
serves either the as starting point for the routines which deal with structures, 
or as a result list when no structures are used and the end of the comple­
mentation or pattern has been reached. If a structure is encountered the 
structure-specific routines are called. The last, Exh_match_opt is discussed 
above. The first three, Exh_match_alt, Exh_match_sim and Exh_match_cmp 
are the exhaustive matching counterparts for 'positive' routines discussed in 
section 4.3.2, and are given in Appendix 4.A. When the remainder of the 
complemented pattern has thus been handled, the last task of the routine 
is to rearrange the result lists such that those paths that match are in first 
position, so that the routine Match_cmp can terminate as soon as an explicit 
nofit or a candidate has been found. This is done by the function Sort. 

4-3.4 Summary 

With this, the important characteristics of the matching routine have been 
discussed, when the input consists of a single buffer containing segments. The 
matching routine is part of an interpreter, which interprets the linguistic rules 
one by one. The kernel of the interpreter is the function Match, which matches 
an arbitrary pattern to arbitrary input. 

The function Match is syntax-directed, that is, the same structure which 
is found in the syntax of patterns is found in Match. Essentially, Match is 
called recursively, just as non-empty patterns can be used recursively. How­
ever, due to the implementation of complementation (which avoids redoubling 
of computational effort), inside complementation a slightly different match­
ing strategy is applied. Therefore, when complementation is used, Match is 
not called recursively, but the function ExlLmatch is called. This function 
exhaustively matches the complemented pattern, and returns a list of match­
ing values and internal positions, essentially one pair for each path. Inside 
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Exh_match all recursions of non-empty patterns call on Exh_match, so here 
recursion is restored. 

The situation of synchronized buffers, as opposed to a single input buffer, 
only affects the routine for matching primitives. The routines for matching 
structures remain unaltered. In fact, the only extra task Match_primitive 
must perform is to determine in which of the synchronized buffers the specified 
primitive is to be looked for. This is the topic of the next section. 

4.4 Synchronized buffers 

Synchronized buffers are needed to synchronize the input with the output. 
The term synchronization is used in imitation of Susan Hertz, who intro­
duced the notion in her Delta system (Hertz, Kadin & Karplus, 1985). Al­
though synchronization is generally used to indicate time alignment between 
processes, here it will be used to indicate segment alignment between buffers. 
In Toorj.P synchronization is needed for two purposes. On the one hand it is 
needed to be able to use information on orthography and pronunciation si­
multaneously in the rules. This will be called internal synchronization, since 
it does not necessarily manifest itself on the level of original input and final 
output. On the other hand it is needed to determine overall input-to-output 
relations, that is, how the characters of the original input correspond to those 
of the final output. This will be called overall synchronization. Both over­
all synchronization and the possibility to use information on orthography and 
pronunciation are special features which were required in the design of Toorj.P 
(see chapter 2). 

Synchronization of buffers, or, more in general, synchronization of two or 
more levels means that each segment or sequence of segments at one level can 
be associated with a (sequence of) segments at another level. For instance, 
the orthography and pronunciation of the word 'cadeau' /KAADOO/ (present) 
are associated as follows: 

input: 
output: l claldleaul 

K AA D 00 

In words: the letter 'c' is pronounced as a /K/, the 'a' as an 
/AA/, the 'd' as a /D/ and the sequence 'eau' as an /00/. 

(4.6) 

For retaining the input-to-output relations each unit which converts input to 
output (in ToorJ.P these are modules) must have separate buffers for input 
and output. During the conversion process these buffers are synchronized 
according to the rules that apply. For instance, in ( 4.6) apparently a rule of 
the form "c -+ K j some context" has been applied. Apart from adding the 
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I original input I 

1 
I 

grapheme input I 
I 

grapheme-to-grapheme 1 copy 

I grapheme output I 
I 

grapheme-to-phoneme 1 
I phoneme input I 

I 
phoneme-to-phoneme 1 copy 

I phoneme output I 
I 

Figure 4.2: Buffer architecture of ToorjP. 

'K' to the output, the system will also synchronize the 'K' in the output with 
the 'c' in the input. 

To achieve overall synchronization, that is between the input and there­
sult of the consecutive modules, one can create a buffer for the initial input 
and a separate buffer for the output of each module, which simultaneously 
serves as input buffer for the next module. Synchronization between each two 
subsequent buffers then directly determines the overall synchronization. Thus 
one needs n + 1 buffers where n is the number of modules. 

There is a way, however, to make the number of buffers fixed and inde­
pendent of the number of modules. As explained in chapter 2, there are three 
types of modules in ToorjP: one which manipulates graphemes, one which 
transforms graphemes into phonemes, and one which manipulates phonemes. 
Instead of creating an output buffer for each module, it is also possible to cre­
ate an output buffer for each type of module. Then, four buffers are needed 
for the conversion process: one for the input of the first type of module, and 
three for the output of each type of module. In this scheme the contents of the 
output buffer are copied to the input buffer in the case of successive modules 
of the same type. For overall synchronization one extra input buffer is needed 
to preserve the original input (see Fig. 4.2); for if two or more grapheme-to­
grapheme modules are used in the four-buffer scheme, the original input is 
overwritten by the output of the first module. 
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scanning direction: ~ 

rule: 

internal situation: 
input: 

output: 

user v1ew: 
graphemes: 

n, k ~ n, k, # / cons, voc _ consl , voc 

g e d e 
g e - d e 

left context +-

focus 
n k 

~ right context 
d a g 

left +- I focus I ~ right 
g e - d e n k d a g 

Figure 4.3: Selecting buffers in GTG modules. 

In ToorjP the scheme of five data buffers is implemented. In section 4.4.1 
it is discussed how the situation of five synchronized buffers affects the rou­
tine Match_primitive. In section 4.4.2 two possible mechanisms to implement 
synchronization are discussed, which are compared in section 4.4.3. The im­
plementation of the one that is to be preferred is discussed in section 4.4.4. 

4.4.1 Matching primitives to synchronized buffers 

In section 4.3.1 a strategy for matching primitives is presented for the case of 
a single input buffer. There, it is assumed by pre-condition that the buffer in 
which to match and the position at which to match are known. Each time a 
primitive is matched, afterwards the new matching position is computed, thus 
satisfying the pre-condition for the next time a primitive will be matched. 

The actual situation with synchronized buffers is slightly different. There 
are three situations to be distinguished, corresponding to the three types 
of modules. In the grapheme-manipulating modules so-called grapheme-to­
grapheme (GTG) rules are used. One may only refer to graphemes, since at 
that point no phonemes are yet available. When graphemes are referred to, 
either the grapheme input buffer or the grapheme output buffer is consulted. 
This depends on the pattern which is being matched and the direction in 
which the module's input is scanned. If the input string is scanned from 
left to right ( ~) then the left context will be matched against the output 
buffer, and the right against the input buffer (see Fig. 4.3). Conversely, if 
the input string is scanned from right to left ( +-), the buffers against which 
the patterns are matched are exchanged accordingly. The focus pattern, of 
course, is always matched against the input buffer. In this way, it seems to 
the user as if there is only one buffer, where all transformations are executed 
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scanning direction: -t 

rule: 

internal situation = 
user view: 

input: 
output: 

a, u -t 00 I SJ _ 

graphemes left - focus 
c h a u 
SJ 

phonemes left -

-t right context 
f f e u r 

Figure 4.4: Selecting buffers in GTP modules. 

scanning direction: -

rule: 0 -t <*lstress*> I { g,a } 1 p 
e,n,v,e ' -

internal situation: graphemes left - focus -t graphemes right 
graphemes: e n v e 1 0 p j e 

input: E N V C L 0 p J c 
phonemes left - focus 

output: PJ C 
-t phonemes right 

user view: graphemes left - focus - graphemes right 
graphemes: 1~1:1;1~1~ 0 p j I e 
phonemes: 0 PJ C 

phonemes left - focus - phonemes right 

Figure 4.5: Selecting buffers in PTP modules. 

immediately. 
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In the second type of module, grapheme-to-phoneme (GTP) rules are used. 
These transform graphemes in the input buffer to phonemes in the output 
buffer. Therefore, when graphemes are referred to, these should always be 
searched for in the input buffer. Phonemes, on the other hand, are searched for 
in the output buffer (see Fig. 4.4). However, one may only refer to phonemes 
in contexts where they are present, so for left-to-right scanning this is the 
left context and for right-to-left scanning the right context. If one refers to a 
phoneme in the other context, a compile-time error occurs. 

In the phoneme-manipulating modules phoneme-to-phoneme (PTP) rules 
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are used. Since derivational history is being retained, one may refer to 
graphemes as well as phonemes, or require that a phoneme is derived from 
a (sequence of) graphemes. Reference to phonemes in these modules works 
the same as reference to graphemes in the GTG modules, that is, phonemes 
are searched for in the output buffer if that already contains information, and 
otherwise in the input buffer. However, when graphemes are referred to in 
PTP rules, these must be searched for in the grapheme level. In this case the 
last grapheme level preceding the phoneme level is used, the grapheme output 
buffer, in which the results of the last GTG module are stored (Fig. 4.5). 

Particularly in the last two types of modules, when graphemes and 
phonemes may both be referred to, the buffer to which the primitive should 
be matched depends upon which of the two is used. This means that the 
pre-condition of the original algorithm, having selected the internal position, 
cannot be satisfied without knowledge of the type of the primitive that is 
used. 

Therefore, a different strategy is more appropriate: select and adjust the 
internal position just before matching the current primitive, rather than pre­
pare it afterwards for the next matching action. In other words, the new 
pre-condition is that the internal position indicates the position where the 
previous primitive has been matched. This new condition on the one hand 
implies that the internal position should be initialized properly before the first 
matching action takes place, but on the other hand, it is not prepared in vain 
after the last matching action. 

For the algorithms presented thus far, this has some consequences. The 
selection of the position-previously done in Match-will now be part of 
Match_primiti1Je, to be combined with the selection of the buffer. As this 
depends on the type of primitive (grapheme or phoneme), inside this routine 
differentiation between these cases must be made. Therefore, as to matching 
primitives, the following routines perform the tasks. 

function Match(patt : pattern; 
inLpos : internaLposition) : boolean; 

begin 
result := true; 
while result and Type(patt) =primitive 
do 

od; 

(result, inLpos) := Match_primitive(patt, inLpos ); 
patt := SelecLnext(patt) 

if result and Type(patt) = structure 
then result := M atch_structure (patt, inLpos) fi; 
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Match:= result 
end; 

function Match_primitive(patt :pattern; 
inLpos : internaLposition) 

: (boolean, internaLposition); 
begin {pre: buffer and pos pointing at last matched segment} 

( inLpos,fail) := SelecLinLpos ( Type(patt), inLpos); 
if fail then result:= false 
else 

fi· 
' 

segm := Segment( inLpos ); 
case Type (patt) of 
grapheme, phoneme : 

result := Data(patt) = segm; 
g_feat, p_feat: begin 

result true; 
feat Data(patt); 
while result and Present(Jeat) 
do 

result := ( segm in Feature_set(feat)) = Value(Jeat); 
feat := SelecLnext(feat) 

od end 
esac 

Match_primitive := (result, inLpos) 
end; 
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The major part of the routines is simply copied from the previous algo­
rithms. New in Match_primitive is the function SelecUnLpos, which deter­
mines the new internal position. The first parameter indicates the type of 
the pattern to be matched, the second is the current internal position, the 
value of which has to be adjusted. The variable fail indicates whether the 
returned values are valid; the position parameter might have been moved 
outside the buffer boundaries, or at the current position there might not be 
synchronization with the desired buffer. Note that this construction serves as 
a termination criterion when infinite repetition is used. 

4.4.2 Synchronization mechanisms 

The task of routine SelecUnLpos is to determine the new internal position. If 
this happens to be in the same buffer this is easy, just increment or decrement 
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pos by one. If, on the other hand, it turns out to be in a different buffer, one 
must first find the position in that buffer which is aligned with the original 
position in the original buffer. For this it is important to know how the 
synchronization mechanism works. 

One can probably think of several mechanisms to synchronize buffers. Two 
of them are prompted directly from the two different purposes for which syn­
chronization is needed in ToorjP. In this section I will discuss these two mecha­
nisms, how they relate to each other, how-by means of synchronization--one 
can switch from one buffer to another, and what is needed to have synchro­
nization operate correctly. 

Two mechanisms 

The first mechanism stems from the need to select an adjacent buffer if both 
graphemes and phonemes are referred to in one pattern. The idea is to switch 
from the current position in the current buffer directly to the correct posi­
tion in the adjacent buffer by means of a direct synchronization between the 
segments of each buffer. This synchronization mechanism will therefore be 
called direct buffer switching (DBS). An integer is attached to each segment 
in a buffer, which points to the segment in the adjacent buffer with which it 
is synchronized. In this way, individual segments can be synchronized with 
values that fall within the buffer range. 

Apart from synchronization of individual segments, it must also be possible 
to synchronize a sequence of segments as an inseparable unit to a segment or 
another sequence. For instance, the 'eau' sequence of the word 'cadeau' is 
pronounced as a single phoneme /00/, which one would like to represent 
in the system as the grapheme sequence 'eau' being synchronized with the 
phoneme segment '00'. Also, it must be possible to represent insertions or 
deletions, that is, when a segment in one buffer is not associated with any 
segment in another buffer. These two cases of alignment can be represented by 
pointer values that fall outside the buffer range. For synchronization purposes 
insertions and deletions are the same, and can therefore be represented by a 
single value. This value will be denoted by a'=' sign. Inseparable sequences 
will be represented by a different value, which will be denoted by a '-' sign. 

To synchronize two buffers in the DBS mechanism, the leftmost segment 
of an inseparable sequence (which can consist of a single segment) receives a 
pointer value. This is either a normal value (inside the buffer range), or the 
insertion value'=' to denote an insertion or deletion. The other segments of the 
sequence receive the 'inseparable' value. For instance, the synchronization of 
the orthography of 'cadeau' with the pronunciation of 'KADOO' is as follows 
(compare with (4.6)): 
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gra c 
next: 1 

a d e 
2 3 4 

prev: 1 2 3 4 
phon K AA D 00 
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a u 

The 'c' is associated with the first element of the next buffer, the 'K', which 
in turn is associated with the first element of the previous buffer. Similarly, 
the 'a' is synchronized with the 'AA', the 'd' with the 'D' and the sequence 
'eau' with the '00'. 

The second mechanism stems from the need to determine overall input­
to-output relations, and is inspired by the synchronization method used by 
Susan Hertz e.t al. (1985) in her Delta System. This mechanism is called 
overall synchronization (OS). Rather than directly synchronizing segments 
with each other, the positions between the segments are synchronized. Before 
and behind each segment one or more synchronization marks are placed, and 
buffers are synchronized at a certain place if the values of the synchronization 
marks are the same. Thus, synchronization is defined between any number 
of buffers, rather than between two adjacent buffers. This mechanism can 
for instance be implemented by attaching a (list of) synchronization marks 
(sync marks) to each segment, which represents the sync marks behind the 
segment. In front of the first segment a similar list is placed. 

'Normal' one-to-one synchronization of segments is characterized by the 
fact that sync marks enclosing the segments have the same value. Inseparable 
sequences are characterized by the fact that certain sync marks are present in 
one buffer but absent in another. Insertions and deletions are characterized by 
the fact that between certain segments more than one sync mark is present. 
With this mechanism the synchronization for 'cadeau', for instance, is as 
follows: 

gra c a d e 
sync: 0 3 7 6 8 

phon 
sync: 

K 
0 3 

AA D 
7 6 

00 
5 

a u 
1 5 

The values of the sync marks are arbitrary; of importance is only whether 
the values are the same. Here, the grapheme 'c' and the phoneme 'K' are 
aligned as they are 'enclosed' between sync marks with the same values 
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(0 and 3). The same goes for a-AA and d-D. Since there are no sync marks 
with the values 8 and 1 in the phoneme sync buffer the grapheme sequence 
'eau' is associated with the phoneme 'OO'. 

Equivalence 

The two synchronization mechanisms are equivalent in the sense that they 
both describe synchronization fully and can be transformed into each other. 
Taking a broader viewpoint than only the scheme of grapheme and phoneme 
buffers, both synchronization mechanisms can be transformed into the already 
implicitly introduced scheme of vertical lines (see for instance (4.6)) for an 
arbitrary number of buffers. The OS mechanism is a direct implementation of 
this representation: the sync mark values can be placed between the segments, 
and the marks of equal values can be connected with ragged lines, which, so 
to speak, are then pulled straight: 

buf 1: a 
sync 1: 0 1 

buf 2: a 
sync 2: 0 1-2 

buf 3: a 
sync 3: 0 1-2-3 

b c 
2 3 
c d 
3 4 
d 
4 

d 
4 

a b c d 
a c d 
a d 

Oa1b2c3d4 
0 a 1-2 c 3d 4 
0 a 1-2-3 d 4 

The correspondence of the DBS method to the vertical line representation 
is more complex. A normal pointer value, that is, a value which falls within the 
buffer range, should be interpreted as a sync mark to the left of the character 
to which it belongs; the segment which is pointed to has an associated pointer 
pointing back. This is called consistency of DBS synchronization. Thus, the 
two adjacent buffers are synchronized between those two segments. Such 
synchronization can be extended to other buffers if they, too, at that position 
have such a synchronization: 
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buf 1: X X X a 
next 1: /3 XXX 3 a 
prev 2: 4 I 

buf2: X X a XX 4 a 3 
next 2: 2 I 
prev 3: 3/ x 2 a 

buf 3: X a 

-t 

Inseparable sequences are characterized by the fact that they do not have 
left-synchronization to one of the adjacent buffers (but perhaps do to the 
other one): 

buf 1: a b c d 
next 1: 1 2 3 4 
prev 2: 1 2 3 4 

buf 2: a b c d 
next 2: 1 - 3 
prev 3: 1 4 

buf 3: X y d 

a I b I c 
a b c 

X I y 

1 a 
I 
1 a 
1 
I 
1 X 

d 
d 
d 

2 b 
I 
2 b 

- y 

3 c 4 d 
I I 
3 c 4 d 
- 3 

/ 
4d 

Deletions and insertions can only be detected in the buffer where they oc­
cur, since in the relevant adjacent buffer there is no character to be associated 
with them. Here the synchronization lines have to "propagate" through the 
buffers; deletions propagate forwards and insertions backwards. Deletion and 
insertion lines stick, so to speak, to the closest synchronization line to their 
right. 
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Deletion: 

buf 1: a 
next 1: 1 
prev 2: 1 

buf 2: a 
next 2: 1 
prev 3: 1 

buf3: a 

Insertion: 

buf 1: 
next 1: 
prev 2: 

buf 2: 

b c 
- 2 -
3 4 
c d 
- 2 
3 
d 

a b 
1 3 

d 
3 

1 = 2 
a c b 

d 
d 
d 

-
1 a 
I 
1 a 
1 
I 
1 a 

= b 2 c 

// 
~ b ~ c 
/ 

3d 

a b c 
c 

d 
d 
d 

a 
a 

sd 

Via the vertical line representation the two synchronization mechanisms 
can be tranformed into each other and hence they are equivalent. The vertical 
line representation is the most natural way to represent synchronization, and 
therefore in ToorjP it is the actual user interface. On the one hand, when 
synchronization information is given, this is done in the vertical line represen­
tation. On the other hand, the concatenation comma and the square brackets 
the user uses in the rules can be mapped directly on synchronization marks. 

Buffer switching 

Synchronization between buffers is defined by means of the vertical line repre­
sentation: one may switch to another buffer along the synchronization marks. 
So for instance, when the internal status of the system is as depicted below 
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in the vertical line representation, starting at the 'a' in the third buffer and 
moving one position to the right (this is typically needed when patterns are 
matched; after testing one segment an adjacent one must be tested), one can 
shift to the first buffer and reach the 'b', or shift to the second buffer and 
reach the 'c', or stay in the third buffer and reach the 'd': 

buf 1: 
buf 2: 
buf 3: 

arne d a c d 
a d 

To state it in general: between each two segments a list of sync marks 
is present. The list always contains at least one element. The first element 
that is encountered is the synchronization point (that is, the leftmost sync 
mark when scanning -, or the rightmost sync mark when scanning+-); all 
buffers which contain the same sync mark (that is: with equal sync values) 
are synchronized at that position. Thus, in principle, one can switch to any 
of those buffers. In that respect, starting at the 'a' in the third buffer once 
again and moving -t, one cannot end up in the 'c' in the first buffer by taking 
the second sync mark between the 'a' and the 'd' in the third buffer. 

Also, inside an inseparable sequence one cannot shift to the adjacent buffer 
which 'caused' the sequence to be inseparable. For instance, moving to the 
right, one cannot shift from the 'e' in the grapheme buffer to the 'OO' in the 
phoneme buffer: 

gra: 
phon: I 

c I a I d 11 e~ a1.l u11 
K AA D '}--- 00 ~ 

\Vhat is possible, is to move from the grapheme 'd' to the phoneme 'DO', 
or from the grapheme 'u' to the phoneme following the '00', or to require 
alignment of 'eau' with '00'. 

Installing synchronization 

Since synchronization is introduced for two purposes, it must meet the two 
requirements of being able to switch from one buffer to another and to deter­
mine the overall input-to-output relationships. For both mechanisms we will 
now look at how this influences the installation of synchronization, that is, 
which actions must be taken to fulfil the two requirements. 

When a rule applies, that is, when all three patterns of focus, left and right 
context match, the structural change is added to the output and synchronized 
with the focus part of the input. Thus, one or more segments in one buffer 
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are synchronized with zero or more segments in another buffer. The case 
of zero segments corresponds with an insertion or deletion, the case of one 
segment with a 'normal' synchronization, the case of more than one segment 
corresponds with an inseparable sequence. 

In the OS method the structural change which is added to the output is 
synchronized with the input segment or sequence at the outer ends: the sync 
marks to the left and right of the structural change are synchronized with 
(given values equal to) the sync marks of the input buffer, which are defined 
in a previous stage. If the structural change consists of a single segment no 
further action is necessary. Between the segments of an inseparable sequence 
new sync marks are generated in the output buffer. 

If a rule deletes one or more characters, no character is added to the output, 
but at that place the output buffer is synchronized with the input buffer at 
two places, thus representing the deletion. Thus, a list of sync marks results 
in the output, the head of which is (the list of) sync marks to the left of the 
deleted segment(s), and the tail of which is the synchronization to the right 
of the segment(s). Such a list will propagate forwards through the buffers 
automatically: 

buf 1: a b c d 
buf 2: a c d 
buf 3: a d 
buf 4: a e 

Insertions, however, are a little different, for in the input buffer left and 
right sync marks are not both available; only one side (depending on the 
scanning direction) is available. For instance, when the rule 

0-+ c/a_b (4.7) 

is specified, and the input buffer consists of: 

the character 'c', which is added to the output, only has the sync mark be­
tween the 'a' and the 'b' to refer to. Therefore, a new sync mark is introduced 
at the outer side of the insertion, that is, at the right side in forward scanning, 
and at the left in backward scanning. This sync mark must propagate back­
wards through the existing buffers to distinguish the case from an inseparable 
sequence. Compare, for instance: 
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a b 
a b 
a c b 

new 

0-+c/a_b 
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a b 
a b b-+c,b 
a c I b 

new 

The difference between these two cases is that in the insertion case one can 
switch to a previous buffer along the new sync mark, and in the inseparable 
sequence case one cannot. 

With insertions propagating backwards, the OS mechanism both ensures 
correct buffer switching and overall synchronization, irrespective of the num­
ber of buffers which are actually implemented. The only demand is that 
insertions propagate back in previous buffers as far as they can. 

Since the DBS mechanism is equivalent to the OS mechanism, DBS auto­
matically also meets these two requirements. However, the preassumption for 
this equivalence is that the basic synchronization of adjacent buffers is con­
sistent, i.e., that pointers are always mutually pointing at each other. If each 
module has its own output buffer, this condition is automatically satisfied, for 
when output is added to the output buffer it is synchronized consistently, and 
no changes to this information are made further along the derivation. How­
ever, if the five-buffer scheme is used (see Fig. 4.2), this is not automatically 
the case. Suppose, for instance, that a GTG module has been applied and 
that the output is synchronized with the input. The synchronization of the 
original input with the output of this module is only defined via the grapheme 
input buffer, and hence one may not delete the synchronization information 
by overwriting it with the information of the output buffer. 

Therefore, both the pointers of the original input pointing at the input 
buffer and the pointers of the input buffer pointing backwards will have to be 
recomputed so as to make the synchronization consistent. Rather than going 
into the details of this algorithm, I will give an example of how these buffers 
are adjusted. 

Consider the situation depicted below: 

org in: a c 
next 1: 1 3 

org in: 
prev 2: 1 2 

a c 

grain: b d 
next 1: 1 = a 
prev 2: 1 

next 2: 1 2 
prev 3: 1 2 

grain: a b e 

gra out: a b e 
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Apparently the 'a' in the original input has expanded to the sequence 'ab' 
in previous modules. The 'c' has been changed into a 'd'. In the current 
module, the 'b' expands to 'be', and the 'd' is deleted. Considering the over­
all synchronization-which at that moment is the synchronization of original 
input and grapheme output-it is as if the 'a' has expanded via 'ab' to 'abe', 
and the 'c' has been deleted (via 'd'). When the grapheme output is copied 
into the grapheme input buffer, the synchronization pointers should be ad­
justed such that they code the cumulative effects of all previous modules, as 
is depicted above. 

Summarizing, it can be stated that both mechanisms need some special 
attention during the conversion process to ensure that they are reliable. For 
the OS method insertions must propagate backwards through existing buffers, 
for the DBS method resynchronization is needed when an output buffer is 
copied to the input buffer. 

4.4.3 Comparison of the two mechanisms 

To be able to use synchronization for the two intended purposes, four functions 
must be implemented in the system. The first one installs the synchronization, 
that is how the segments in the output are associated with those in the input. 
The second function is the mechanism to switch from one buffer to another. 
A third function is to keep the synchronization consistent when the contents 
of the output buffer are shifted to the input buffer when the next module 
is to be consulted. The last function determines the overall synchronization 
from input to output, that is, from the original input grapheme to the final 
phoneme output. 

In particular the last two functions are sensitive to the mechanism used. 
In the OS method, they are more or less trivial, since the sync marks directly 
code the desired information. In the DBS method, however, considerable 
computing effort is needed, since the information is coded indirectly, that is, 
only between the adjacent buffers synchronization information is available, 
which will have to be made more global, in a manner described above. 

On the other hand, one may expect the DBS method to be more appro­
priate for the second function, since the information to switch between two 
adjacent buffers is coded directly by means of the pointers, except for the rare 
occurrences of an insertion or deletion. Most commonly it is desired to switch 
between two adjacent buffers, and otherwise there is only one intermediate 
buffer, in which case a second buffer switch is needed. In the OS method the 
synchronization will have to be searched for, a process one may expect to be 
slower than direct switching. 
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The first function is more or less of the same complexity for both mech­
anisms. In both cases the sync marks have to be installed according to the 
mechanisms scheme, which in both cases comprises comparable action. 

The order of magnitude in which these functions are used varies greatly. 
The first function, installation of sync marks, is needed in each module in 
the order of magnitude of the number of segments to be transcribed by the 
module. The need for buffer-switching (the second function) depends greatly 
on the kind of rules being used. In PTP modules this may be a number of 
times within one rule, but it may also be absent. The third function, keeping 
the database consistent is needed less than the number of modules per overall 
transcription, and the fourth function is needed only if one is interested in the 
derivational history, and in that case once per transcription. 

It is hard to tell on theoretical grounds how the balance will dip. Therefore, 
the two have been implemented as alternatives, and have been tested on 
a practical situation. The pronunciation of Dutch words was determined 
by some 8 modules, where buffer switching was used frequently in only one 
module which contained some 80 rules. It turned out that the two mechanisms 
were more or less in balance, that is, the DBS method was some 5% faster 
than the OS method. 

However, I favour the OS method above the DBS method. The main rea­
son for this is that it directly relates to the vertical-line representation. And 
in spite of the fact that the DBS method originated from the idea of directly 
switching to adjacent buffers, synchronization and buffer switching are de­
fined in terms of the vertical line representation. In the common situation 
of one-to-one synchronization of input-to-output segments the DBS method 
is undoubtedly faster, but when inseparable sequences and in particular in­
sertions and deletions occur, in one way or another the DBS representation 
must locally be transformed to the vertical line representation before a cor­
rect buffer switch can be made. This also means that the designing of buffer 
switching algorithm is simpler for the OS method than for the DBS method. 
For a complex system in development, simplicity of such a mechanism, which 
influences several parts of the system, was thought to compensate a 5 % loss 
of run-time efficiency. Moreover, when the system needs to be extended in 
the sense that extra layers of information must be synchronized with existing 
ones, the OS method is superior to the DBS method. With the OS method 
the extra layers are the same as any other buffer, with the DBS method the 
original buffers have to be extended with extra pointer buffers, and some of 
the algorithms have to be extended, too. For comparison both mechanisms 
have been implemented, but for the above reasons the latter mechanism, the 
OS method, is preferable and has therefore been chosen to serve as the syn­
chronization mechanism both for ToorjP in the released versions and ToorjP 
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in future development. 

4-4-4 The algorithm for buffer switching 

At this point we can return to the algorithm and see how it works out in the 
function SelecLinLpos. The task of this routine is to determine the new inter­
nal position based on the position where the previous primitive was matched. 
The routine will be presented for the OS mechanism. 

In general terms, the adjustment of the internal position takes place in 
three phases. First the appropriate buffer must be determined, then the 
position in this buffer which is synchronized with the old one in the old buffer 
must be determined, and finally the new position must be determined by 
shifting one position to the left or to the right. In the following algorithm 
these three phases can be distinguished, although they are not fully separated: 

function SelecLinLpos(prim : prim_type; 
inLpos : internaLposition) 

: ( internaLposition, boolean); 

begin {pre : lower _boundary < pos < upper _boundary} 
desbuf := Desired_buffer(patLtype, scan_dir, mod_type, prim); 
(buffer,pos) := inLpos; 
if ( match_dir = +-) 
then pos := pos- 1; 

fail := (pos < lower _boundary) fi; 

if desbuf # buffer and not fail 
then 

fi; 

sync_list := Synchronization( inLpos ); 
if ( match_dir = -+) 

then sync_val := Leftmost( sync_list) 
else sync_val := Rightmost( sync_list) fi; 

(pos ,Jail) := Search_sync( desbuf, sync_val) 

if ( match_dir = -+) and not fail 
then pos := pos + 1; 

fail := (pos > upper _boundary) fi; 

inLpos := ( desbuf, pos); 
SelecLinLpos := ( inLpos ,Jail) 

end; 

The first phase of determining the appropriate buffer depends on the pat­
tern (focus, left or right context), the scanning direction ( +- or -+), the type of 
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module (GTG, GTP, PTP) and the type of primitive (grapheme or phoneme), 
as described in section 4.4.1. Only the type of primitive can vary during the 
process of matching a pattern, and therefore only the type information is 
transferred to Select_int_pos by means of parameter prim. The other infor­
mation is constant during the process of matching a pattern, and is therefore 
available inside the procedure by means of global variables, which are adjusted 
by higher level routines only when necessary. To emphasise the dependence 
they are included in the parameter list for the function Desired_buffer. This 
routine directly determines the appropriate buffer from these parameters, and 
is a straightforward implementation of the rules given in section 4.4.1. 

If the thus determined buffer differs from the original buffer, the position 
in that buffer which is aligned with the original position in the original buffer 
must be determined by means of the synchronization information. The sync 
mark attached to a certain position is the sync mark behind the segment. If 
the matching direction is backwards ( +-), (which it is, for instance, when a 
left context is being matched,) the relevant sync marker is the one before the 
current position, and can be selected by first decrementing pos. The relevant 
sync marker can now be determined by selecting the first element of the sync 
marker list at that position (see 4.4.2). Synchronization selects the list, and 
Leftmost or Rightmost determines the first element, which again depends on 
the matching direction. Then, the sync mark is searched for in the new buffer 
by Search_sync. This routine searches for the value sync_val in buffer desbuf 
and returns the position where it is found, pos. Since nothing special is known 
of the sync marker, this is done by means of a linear search. 

If the sync marker is not found, there is no synchronization between the 
two buffers at the original position. This means that the path of the pattern 
that is being matched is not present. This is transferred by the second value 
which Search_sync returns, fail, which is true if the search fails, and false if 
it succeeds. 

Finally, the new internal position is determined. In the case of backwards 
matching ( +-) no further action is needed, due to the fact that the sync marks 
denote the synchronization points behind the segments. The decrementing 
action has been done beforehand, before the buffer switch has been made. In 
the case of forwards matching ( -4) the correct position is one position to the 
right, just across the synchronization mark, so in this case pos is incremented 
by one. As when decrementing, it should be checked whether the buffer 
boundaries have been crossed. 

The variable fail thus performs a double task: it either indicates that there 
is no synchronization between the two buffers at the original internal position, 
or it indicates that the new internal position falls outside of the buffer range. 
In both cases the investigation of (that specific path of) a pattern can be 
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terminated, and since it is not important to know which of the two is the 
case, this can be coded by means of one variable. 

4.4.5 Summary 

In this section the implications of synchronized buffers for the matching algo­
rithm Match have been discussed. First, the architecture of the synchronized 
buffers as is present in ToorjP has been shown and how this specific architec­
ture affects the algorithm for matching primitives. Then a more general view 
on synchronization has been taken, that is, how an arbitrary number of buffers 
can be synchronized, what the characteristics of synchronization are, and how 
one can switch in general from one buffer to another. Next, two alternative 
mechanisms to implement synchronization have been presented, one prompted 
by the need for buffer switching, the other by the need for overall synchroniza­
tion. They are functionally equivalent, but the main difference between the 
two is that the first mechanism is somewhat faster in run-time performance, 
whereas the second is a more simple and elegant algorithm as it directly codes 
the definition for buffer switching and overall synchronization. For this reason 
the latter mechanism is preferable, and is therefore implemented in the re­
leased versions of ToorjP. For this synchronization mechanism the algorithm 
which performs the task of buffer switching is given in SeLinLpos, which is 
an important part of the routine for matching primitives. 

4.5 Discussion 

In the foregoing, the important aspects of how patterns can be built, what they 
mean, how they are represented internally, and how they are matched against 
synchronized buffers have been dealt with. Looking at the way patterns are 
processed, ToorjP can be viewed as a compiler/interpreter. The patterns, 
specified by the user in a high-level language, are compiled into their internal 
representations, which are then interpreted by Match. This is undoubtedly 
slower than full compilation of patterns into machine code, but it has an 
advantage that might be of importance to the future development of the 
system. The internal representations of the various patterns are stored in 
a dynamic structure in the order in which they are to be matched. Each 
pattern is a separate and traceable entry in that structure. This means that 
each such entry can in principle be replaced by a new one, for instance by a 
compiled version of an adjusted pattern. This could be done on-line, during a 
test session of the rules, which means that a linguist can interactively tune his 
rules. Such an extension of the system can be implemented relatively easily in 
the compiler /interpreter architecture of ToorjP, in contrast to a full compiler 
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system. Only the rule which undergoes a change has to be recompiled, which 
is typically so fast that it does not disturb the development session. The new 
internal representation then must be patched over the old one, which can be 
done instantaneously. Patching machine code, which would be the equivalent 
in the full compiler scheme, is generally viewed as a cumbersome enterprise, 
which requires detailed knowledge of the object code and is error-prone, and 
is therefore not to be recommended. Therefore, when slight adjustments 
mu't be made, generally in a full-compiler scheme the whole system is to 
be recompiled, which generally takes orders of magnitude longer than the 
incremental compilation in the compiler/interpreter scheme. Since ToojjP is 
first and foremost a development tool, such a feature of being able to test 
modifications quickly is interesting. The implementation of such a feature is 
planned in the near future. 

On the other hand, the run-time performance of Tooi}P is indeed that of 
an interpreter, that is, some 10 times slower than comparable fully compiled 
systems. It is difficult to give an exact figure of relative performance, since 
there is no system available with the same functionality that is fully compiled. 
The figure of 'some 10 times slower' is derived from a comparison with the 
SPE rule compiler of Kerkhoff, Wester & Boves (1984), called Fonpars, run 
on the same machlne for the same input. In this comparison Fonpars differs 
from ToojjP in at least five respects. First of all, Fonpars is a compiler: 
the linguistic rules and modules are compiled into a Pascal program rather 
than some kind of dynamic internal representation. The Pascal program is 
then compiled into machine code in the usual way. The second difference is 
that Fonpars does not support complementation in the way 'lbojjP does. 
It does support a notion of complementation, but. only for strings of the 
same length. This restricts the use of this operator, but on the other hand 
simplifies the algorithm which evaluates patterns. A third aspect is that 
Fonpars does not keep track of the derivation, and therefore does not make use 
of synchronization between buffers. A fourth point is that Fonpars does not 
include extensive interactive debugging facilities which are present in TooJjP 
(see 2.4.1 and 5.4.4). Finally, the rule sets which define the conversion differ in 
structure and maguitude. The Fonpars includes some 250 rules for grapheme­
to-phoneme conversion which includes conversion of numbers, acronyms, etc., 
and the assignment of word accent. Tooi}P, on the other hand, uses some 
550 rules for the same purpose. The reason for this rather large difference 
in number has not been investigated. It is important to mention, however, 
that should the Fonpars rules be more concise, this is not an artefact of 
Tooi}P. The formalisms supported by the two systems are comparable in 
power of expression (see 2.6.3). The relative contribution of each of these five 
factors is hard to measure exactly without considerable programming effort, 
and presumably not very interesting since these are only two of many systems 
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processing linguistic rules. 

Comparison with existing similar systems is often a suitable manner to 
put into perspective one's own. As far as detailed implementation aspects 
are concerned, such as presented above, this is difficult to do, since in the 
literature there is no information available on this subject on other systems. 
Generally, only general characteristics of a system are described, such as how 
a user may formulate rules (the formalism), whether or not synchronization 
is used (not how this is implemented), whether it is a compiler-like structure 
or not, and so on. Such a functional comparison has been made in chapters 2 
and 5. 

4.6 Conclusion 

In this chapter an algorithm is given which matches an arbitrary pattern 
against arbitrary input, where 'input' should be viewed in the general sense 
of synchronized buffers. 

First, the internal representation is given into which the patterns, given by 
the user in this high level language, are transformed. Since the transformation 
process closely resembles the parsing pha.<>e of ordinary compilers, this has 
not been touched upon, so only the output of this process is given. The 
internal representation is more than a parse tree, but less than an NFA (non­
deterministic finite automaton) with €-transitions. This representation has 
been chosen on practical grounds; those computations which can be done at 
compile time are processed into the internal representation, those which are 
simpler during run-time are done at run-time. 

Next, the interpreter for these (internally represented) patterns is pre­
sented, the function Mate h. This is done in two phases. First, the simplified 
case of a single input buffer, to which the pattern is to be matched, is dis­
cussed. Guided by the syntax and semantics of the patterns the various sub­
routines in the matching function are presented. Special attention has been 
given to the routine which deals with complementation. The recursion, which 
is directly present in the syntax, is interrupted at the highest level due to an 
efficient implementation of complementation. Once inside complementation, 
recursion is restored. 

The second phase is the generalization to synchronized buffers. This only 
affects a small part of Match, the part which deals with the actual compari­
son of the buffers and the requirements imposed by the pattern. Two possible 
mechanisms to implement synchronization are presented and compared, one 
which is somewhat faster but more complicated, the other which is slower 
but simple and elegant. In a system which is in development and which for 
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instance could need to be extended in the respect of synchronizing capabil­
ities, run-time performance is not a top priority, whereas transparency of 
algorithm is, and therefore the slower but elegant algorithm is preferable. For 
this mechanism the algorithm to switch from one buffer to another has been 
presented. 

With respect to the processing of patterns ToorjP can be viewed as a 
compiler/interpreter. User-defined rules are compiled from high-level source 
code to an internal representation, which are further interpreted by Match. As 
a consequence, ToorjP is not as slow as an interpreter which interprets directly 
from source code, but not as fast as a compiler which compiles the source 
code directly into machine code. Nevertheless, an important characteristic 
of an interpreter has potentially been preserved, the possibility to modify 
a rule interactively and directly see the effect of the modification. This is 
an attractive feature of a development tool and is therefore planned to be 
implemented in the near future. 
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Appendix 4.A 
Matching inside complementation 

In this appendix the algorithms are given for matching structures inside a 
complemented structure. Of the four possible structures only for optionality 
has the algorithm been given in the main text (section 4.3.3). Therefore, the 
algorithms for alternation, simultaneity and complementation will be given 
here. 

Alternation 

function Exh_match_alt(patt :pattern; 
comm_list: resulLlist): resulLlist; 

begin 
inLpos := InLpos( comm_list); 
prv_val := Res_value( comm_list); 
results := empty; 
alternative := Data(patt); 
while Present( alternative) 
do 

od; 

res_list := Exh_match( Pattern( alternative), inLpos); 
res_list := Adjust(prv_val, res_list); 
results := Unite( res_list, results); 
alternative := Select_ next( alternative) 

Exh_match_alt := results; 
end; 

The structure of Exh_match_alt is similar to Match_alt. comm_list consists of 
only one element (see page 106) and serves to carry int_pos and prv_val into 
the routine. prv_val denotes the matching value of the path inside the comple­
mented structure before the alternative structure was encountered. Compared 
to the non-complemented routine, the while-loop contains two extra state­
ments. One is to include prv_val in the list that the current alternative has 
yielded. This is done by a routine called Adjust. This routine is not given, but 
consists of intersecting each individual result of the result list with prv_val. 
The second is the statement that prepares the result to be returned. This is 
done by the function Unite, which is given below. 

function Unite( new: resulLlist; 
res : resulLlist): result_list; 
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begin 
while Present( new) 
do 

od; 

ip := lnLpos(new); 
SelecLfirst( res); 
while Present( res) cand ip =f: lnLpos (res) 

do res := SelecLnext( res) od; 
if Present( res) {This means : ip InLpos( res)} 

then res[result] := Res_value(res) or Res_value(new) 
else Append( new, res) fi; 

new := SelecLnext( new) 

Unite := res; 
end; 
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The purpose of Unite is to combine the various result lists. If the inter­
nal positions of the various elements are not equal, they should both be 
included in the resulting return list. This is dealt with by the statement: 
Append( new, res). If the internal positions of two elements are the same they 
are united: res[result] := Res_value(res) or Res_value(new). The surround­
ing control structure serves to compare each element of the new list with the 
existing list. 

Simultaneity 

function Exh_match_sim(patt :pattern; 
comm_list: resulLlist): resulLlist; 

begin 
inLpos := lnLpos( comm_list); 
prv_val := Res_value( comm_list); 
results := empty; 
simultan := Data(patt); 
while Present( simultan) 
do 

od; 

res _list := Exh_match (Pattern( simultan), inLpos); 
res_list Adjust(prv_val, res_list); 
results := Intersect( res_list, results); 
simultan := SelecLnext( simultan) 

Exh_match_sim :=results; 
end; 
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The structure of Exh_match_sim is symmetrical to Exh_match_alt. Instead of 
Unite the function Intersect is used. 

function Intersect( new : resulLlist; 
res : resulLlist): resulLlist; 

begin 
if not Present( res) 
then 

res := new {Initialize} 
else 

fi· 
' 

while Present( new) 
do 

od 

ip := InLpos( new); 
Select_first( res); 
while Present( res) cand ip -f= InLpos( res) 

do res := SelecLnext( res) od; 
if Present( res) {This means : ip = InLpos (res)} 

then res[result] := Res_value( res) and Res_value( new) 
else res[new] :=false; 

Append( new, res) fi; 
new := SelecLnext( new) 

Intersect := res; 
end; 

Intersect is the counterpart of Unite. There are two significant differences. 
The main one is that each new internal position which is added to the resulting 
list is initialized false. Intersecting result lists means that internal positions 
must be equal and matching values must be true. If these are not both true, 
this may not lead to an explicit nofit. For the matching values this is accounted 
for by the statement: res[result] := Res_value(res) and Res_value(new). If 
the internal positions are not equal this means that the new internal position 
must be added to the list with a result value which is false. As a consequence, 
res must be initialized the first time Intersect is called. In Unite no explicit 
test is needed, since Unite simply adds new internal positions to the list 
without changing the matching values. 

Complementation 

function Exh_match_cmp(patt : pattern; 
comm_list: resulLlist): resulLlist; 
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begin 
prv_val := Res_value(comm_list) 
cmp_list := Exh_match( Data(patt), lnLpos( comm_list)); 

succ_patt := SelecLnext(patt); 
results := empty; 
while Present( cmp_list) 
do 

res_list := Exh_match( succ_patt, lnLpos( cmp_list)); 
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res_list := Cmp_adjust(prv_val, Res_value( cmp_list), res_list); 
results := Unite( res_list, results); 
SelecLnext( cmp_list) 

od; 

Exh_match_cmp := Cmp_simplify( results); 
end; 

Exh_match_cmp is set up in the same manner as Exh_match_alt and 
Exh_matcluim. There are three noticeable points. Cmp_adjust is similar 
to Adjust except that a facility has been included to keep track of the explicit 
nofits. In Match_cmp this was not necessary because of the sorted result list. 
Here, this is not possible since all the results must be returned instead of 
stopping when an explicit nofit has been detected. Therefore, the explicit 
nofits must be distinguished from regular non-matching paths. For this pur­
pose expnof has been introduced as a third 'boolean' value. Only inside 
Exh_match_cmp the explicit nofits have to be known explicitly. Therefore, 
before returning the result list, the expnof values are simplified to false. As 
a consequence however, Unite must now be able to handle expnof values. 
Given their function this is defined as follows2

: 

expnof or true 
expnof or false 

expnof 
expnof 

Cmp_simplify and Cmp_adjust are given below. 

function Cmp_simplify( res: result_list): resulLlist; 
begin 

while Present( res) 
do if Res_value( res) = expnof then res.result :=false fi; 

SelecLnext( res) od; 
Cmp_simplify := res; 

end; 

2 The behaviour of expnof to 'and' is not necessary here, but can be defined analogously. 
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function Cmp_adjust(firsLpart, com_part: boolean; 
res_list : resulLlist): resulLlist; 

begin 
while Present( res_list) 
do 

od; 

if firsLpart and com_part and Res_value( res _list) 
then res_list.result := expnof 
else res_list. result := 

firsLpart and not com_part and Res_value(res_list) fl.; 
res_list := SelecLnext( res_list) 

Cmp_adjust := res_list; 
end; 



Chapter 5 

Evaluation 

Abstract 

In this chapter the merits of ToorjP are evaluated, and some recom­
mendations for future development are made. Three sides of ToorjP 
are evaluated: (a) the outside, i.e., how ToorjP is used in a practi­
cal application, (b) the inside, i.e., how satisfactory was the semi­
compositional formalism in practice, and (c) the surroundings, i.e., 
how does ToorjP relate to other systems which have been designed 
for similar purposes. 

The main application for which ToorjP has been used is the de­
sign of a grapheme-to-phoneme conversion system. Two aspects of 
this application are discussed. The first is the spelling out of in­
teger numbers, which is part of a pre-processing phase, the second 
concerns the linguistically slanted modules which perform the actual 
grapheme-to-phoneme conversion. 

The second side of the evaluation concerns the use of the comple­
mentation operator. A semi-compositional formalism was devised to 
overcome the problems which occurred with respect to complemen­
tation in the compositional formalism. The usage of the complemen­
tation operator in the above practical application will be reviewed 
in the light of the choices which were made in chapter 3, and thus 
the validity of these choices are evaluated. 

The third side concerns some more general aspects. For a num­
ber of features which can be seen to characterize development tools 
for linguistic rules, ToorjP is compared to seven important existing 
systems. This gives an overview of what is unique in ToorjP and 
what is common practice in such systems. 

Finally, for the future development of ToorjP some recommenda­
tions are given which are concerned either with improving the system 
or extending it along natural lines. 
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5.1 Introduction 

I N the previous three chapters a detailed inside view of Toor.}P has been 
given. In chapters 2 and 3 the functional specification has been given and 

in chapter 4 the implementation. In this last chapter ToorjP will be viewed 
from somewhat more distance, once again, to put the system in some broader 
perspective. For three topics its merits will be investigated. 

In the first place the major application for which ToorjP has been used 
will be discussed, viz. how it is applied as a grapheme-to-phoneme conver­
sion system (section 5.2). Secondly, the complementation operator will be 
reviewed. Based on practical assumptions the semi-compositional formalism 
was implemented. The validity of these assumptions will be investigated, and 
with that the usefulness of the semi-compositional formalism (section 5.3). 
Finally, ToorjP will be evaluated as a development tool. The system will be 
reviewed in the light of some important features and is compared in those 
respects to some important similar systems (section 5.4). 

By way of conclusion some aspects which are not yet included in ToorjP 
are discussed: some recommendations are made for extensions to ToorjP to 
increase its power and user-friendliness (section 5.5). 

5.2 Applications 

As reported in chapter 2, the main application for which ToorjP has been used 
is the development of a grapheme-to-phoneme conversion system for Dutch 
(Berendsen, Langeweg & Van Leeuwen, 1986). This application will now be 
discussed in greater detail than was provided in that chapter, without going 
into too much linguistic detail, however. 

The conversion scheme is depicted in Fig. 5.1. It is subdivided into three 
major parts: text preprocessing, the actual grapheme-to-phoneme conver­
sion, and some postprocessing. The text preprocessing serves to normalize 
the orthography, and concerns for instance the spelling out of numbers and 
acronyms. No full text-normalizing component has been achieved as yet, 
since this is quite an intricate problem. In principle, however, all input the 
normalizing component can handle is put out in a spelled out form. 

This output is input to the grapheme-to-phoneme conversion, which con­
sists broadly of three parts. First a morphosyntactic analysis takes place, 
which aims at locating the important morpheme boundaries. Next the 
spelling-to-sound conversion takes place, and finally word stress is determined. 
These processes are rule-driven. Exceptions are stored in a small exception 
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WORDS 

Figure 5.1: Modular composition of the mam application, 
grapheme-to-phoneme conversion. 

lexicon which is consulted first. The output of this grapheme-to-phoneme 
conversion is then sent to the post processing modules, the task of which is 
to deal with inter-word processes (such as assimilation) and to relocate sen­
tence accent. Some of these tasks, such as assigning word stress or spelling 
out numbers, are divided into several physical modules. This is done because 
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some processes are 'crucially ordered', which will be elaborated on presently. 

The less linguistically slanted modules, such as the spelling out of integer 
numbers and the relocation of sentence accent, have been devised by the 
author; the others have been devised by the users for whom the system is 
intended, linguists. The spelling out of numbers will be discussed in detail as 
an example of how specific tasks can be achieved with Tooi)P. The linguistic 
modules will be discussed from somewhat more distance, for instance what 
type of constructs have been used frequently and which not. Finally some 
possible other applications are discussed. 

5.2.1 Integer numbers 

The rules 

The spelling out of integer numbers is pre-eminently suited to be achieved by 
rule, since it is extremely regular. The automatic translation of numbers into 
Dutch has already been solved (Brandt Corstius, 1965), but the implementa­
tion into Tooi)P was considered to be a good test case for the system. 

To pronounce Dutch numbers correctly, two phenomena should be dealt 
with. The first is characteristic for arabic numbers, viz. the value of a digit de­
pends on its position. This is not expressed explicitly in the orthography, '56', 
but in the pronunciation it is: 'fifty six' instead of 'five six'. The relative value 
of the digits will therefore have to be recovered. The second phenomenon is 
characteristic for Germanic languages, viz. the fact that the digits of numbers 
between 13 and 99 are pronounced in inverse order. Instead of 'fifty six' 'six 
and fifty' is said. So after determining the relative values, the 'tens' and the 
'ones' should be inverted. 

These two processes are the kernel of the number grammar. Since knowl­
edge of the units is needed to invert some of the digits, this information must 
be available before inversion can take place. This motivates a separate mod­
ule for each process. Beforehand some number normalization may take place, 
such as deletion of leading zeros and spurious dots (in Dutch '1,000,000' is 
written as '1.000.000'). Afterwards 'and' insertion (we say 'six and fifty' rather 
than 'six fifty') and the actual spelling must take place. Thus we have five 
modules, which will be discussed in order: 

• NUMBER_1: for normalization 
• NUMBER_2: for unit determination 
• NUMBER_3: for digit inversion 
• NUMBERA: for 'and' insertion 
• NUMBER-5: for spelling out 
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NUMBER-I: The normalization module currently consists of two simple rules. 
The first, (5.1), deletes all leading zeros in a number (D stands for a digit, 
# stands for a space). The second rule, (5.2), deletes all spurious dots. The 
module scans the input from left to right (--+ ). Note that this scheme only 
functions satisfactorily for integer numbers, and that no account has been 
taken of other types of numbers, such as telephone numbers or numbers with 
decimals. 

zero --+ 0 I # _ { ~ } (5.1) 

- o I D (5.2) 

A single '0' in the focus or change denotes an insertion or deletion. To 
refer to the single character '0' one must specify 'zero', as exemplified in (5.1). 
However, when the character '0' is part of a sequence there is no ambiguity 
and it can be used as any other character, as will be exemplified in rules (5.10) 
and (5.11). 

NUMBER_2: As to the determination of units it can be observed that num­
bers naturally fall apart in groups of three (which for that reason are often 
separated by a comma in English and a dot in Dutch). The first group (seen 
from the right) are the ones, the second group the thousands, the third group 
the millions, and so on. Within each group of three, the leftmost digit denotes 
the hundreds, the middle digit the tens and the rightmost digit the ones. 

The division into groups of three takes place from right to left, since the 
relative weight of a digit depends on the number of digits to its right. There­
fore, assigning the relative weights to the digits is preferably also done from 
right to left. 

For this purpose we define the module to scan backwards, i.e., from right 
to left (f-). The input of the module will be a normalized number, for instance 
'1234567890'. The output must be a number where each digit is followed by 
an indication of its relative weight, thus the previous number must be put 
out as '1n2h3t4m5h6t7d8h9t0'. Here 'n' indicates milliard, 'm' million, 'd' 
thousand, 'h' hundred and 't' ten. 

The rules included in Table 5.! perform the task. First some often oc­
curring constructs are defined. D is an arbitrary digit, B is a boundary at 
the righthand side of a trio, and DDD is a trio into which the hundreds and 
tens are already inserted. Then the rules are stated. Each time, between 
two digits the appropriate unit is inserted. Tens will be inserted before any 
digit which has a trio boundary on its right side (the first rule). The first 
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time this will be a space, but the second time a 'd' (the thousands marker) 
will be present. Similarly, the hundreds are only inserted when the tens have 
just been inserted, the thousands only when a space (or other non-segment) 
delimits the trio, and so on. Note that this scheme makes use of information 
provided by a previously applied rule. Note also, because of the left contexts 
of all the rules, that only between two digits will unit-markers be inserted, 
and that only one rule at a time can operate. 

NUMBER_3: With these unit-markers the task of inverting digits can be 
tackled. As stated, normally inversion takes place between 13 and 99, that 
is around any place where now a 't' is present. However, this is not the only 
place, for numbers consisting of 4 digits also exhibit this phenomenon. In 
English 'one thousand two hundred' is as correct as 'twelve hundred', but in 
Dutch the latter is preferable. This means that 1234, which is represented 
by ld2h3t4 at this stage, should be transcribed to 2tlh4t3 in the next stage. 
Note that apart from inversion the units have changed as well. This string 
now codes twelve (2tl) hundred (h) four (4) and thirty (t3). Inversion around 
the thousands-marker 'd' also occurs for numbers bigger than one million, the 
digits of which for hundred-thousand and ten-thousand are zero: 1002300 is 
pronounced 'one million twenty three hundred'. If one of these digits is not 
zero, the thousands digit clings to the thousands trio: 1032300 is pronounced 
'one million, two and thirty thousand, three hundred', and thus only the 

Table 5.1: Module NUMBER_2: inserting unit markers. 

definitions 
# = <-segm> 

:~uJ 
DDD=D,h,D,t,D 

insertions 
0 --+ t I D - D ,B 
0 --+ h I D - D,t 
0 --+ d I D- DDD,# 
0 --+ m I D _ DDD, d 
0 --+ n / D DDD , m 
0 --+ o I D _ DDD ,n 
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'normal' inversion (within a trio) occurs. The normal and special inversion 
can be expressed by the following two rules: 

<+dig>i 't '<+dig>j - <+dig>j 't '<+dig>i (5.3) 

d • . d [<+dig>j] < + Ig> t , , -,O -

d • . d' . I { o , h#, o , t } _ <+ Ig>J , t , <+ Ig>z (5.4) 

The first rule deals with the normal cases and inverts all digits around a 
't '. The second rule deals with the thousands case and replaces the thousands 
marker by a tens marker. The exclusion of the zero in the focus ensures 
that 'multiples' of thousands are not included. The left context ensures that 
inversion only applies in the appropriate circumstances. 

Since in ToorjP the i and j indices only select the unequal digits, one 
additional rule is needed for the 1100, 2200, etc. cases: 

. . [<+dig>i] <+dig>z, d, ...,0 -

d . . d' . I { o, h#, o , t } _ <+ Ig>z,t,<+ 1g>z (5.5) 

Note that for normal inversion such a rule is not necessary, since in the cases 
of 11, 22, etc., nothing needs to be changed. 

This module, too, must scan from right to left ( +-). If it were scanned 
forwards, rule (5.3) would perform normal inversion inside the second trio of a 
number like 1002345 (. 002 ... - . Oh0t2d ... - . Oh2t0d ... ) which is not the 
intention, in this case. If the input string is scanned backwards, the desired 
effect will be achieved, since now rule (5.4) applies at the appropriate place 
and blocks rule (5.3) from working in the second trio. This is shown in the 
derivation below. The internal situation, when the inversion module is called 
for, is shown in (5.6). 

input: 

output: 

1 m 0 h 0 t 2 d 3 h 4 t 5 
l (5.6) 

Now, rule (5.3) applies, plus an additional copy action, which is performed 
since there are no rules which apply for the 'h': 
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input: 1 m 0 h 0 t 2 d 3 h 4 t 5 

r (5.7) 
output: h 5 t 4 

Then, rule (5.4) applies: 

input: 1 m 0 h 0 t 2 d 3 h 4 t 5 

r (5.8) 
output: 3 t 2 h 5 t 4 

Rule (5.3) now cannot apply any more because the matching position has 
been advanced too much to the left. Thus, the other digits and unit markers 
will simply be copied. 

NUMBERA: The and-insertion is governed by the next module. There is one 
small point of attention. In Dutch we say 'six teen' to 16 but 'six and twenty' 
to 26. Only numbers above 20 have an 'and'-insertion. Further, multiples 
of 10 also lack the 'and'; we don't say 'zero and twenty', but just 'twenty'. 
Nevertheless, one rule suffices, (5.9): 

t &,t I [D] 
·0 

(5.9) 

At this stage, the digits have been inverted, thus the restriction of a mul­
tiple of ten is imposed by the left context and the restriction of 20 and greater 
by the right context. The additional restriction that it concerns digits is to 
ensure that normal text containing a 't' will not receive an additional & (the 
symbol coding the 'and'). 

NUMBER_5: The module for spelling out the numbers has now become fairly 
straightforward. The units are marked, digits are inverted, the 'and' marker 
is inserted, and thus most of the symbols just code a sequence of letters. The 
only part which needs some attention is the units whose value is zero or one. 

Generally, if a digit is zero, the accompanying unit marker should not be 
pronounced. This can be dealt with using the following rules: 

O,h 
t,O 
zero 

0 

0 

0 

(5.10) 

(5.11) 
(5.12) 

When all three digits of a trio are zero, the unit marker accompanying the 
trio must not be pronounced either. This is accounted for by rule (5.13): 
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d 
m 

O,h,O,t,O, n 
0 
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--+ 0 (5.13) 

In contrast to all other zeros, a single zero must be pronounced ('nul' is 
the Dutch pronunciation for 'zero'): 

zero --+ n , u, 1 I # _ # (5.14) 

Finally, one extra rule is needed to deal with a special case. Numbers of 
the type 1002345 have a slightly deviating form when they enter this module: 
'1m0h0t3&t2h5&t7'. The '0' between the 'h' and the 't' denotes tens (of 
thousands). This is in contrast to all other digits before a 't', which denote 
the 'ones' due to the inversion. Only in this specific case, consisting of numbers 
with two zeros on the fifth and sixth digit ( ... DOODDDD), no inversion has 
been applied (in the trio of thousands) and therefore the zero and the 't' 
should be deleted: 

O,t --+ 0 I - D,(&),t (5.15) 

The right context specifies the circumstances in which this should happen. 
Only when a tens marker is followed by a digit and another tens marker is 
this the case. 

When a digit's value is one, this number is generally pronounced. An 
exception to this is when it concerns hundreds and thousands. In Dutch we 
say 'hundred three and twenty' to '123' rather than 'one hundred ... '. This is 
expressed in rule (5.10): 

1 --+ o 1 (5.16) 

Here, too, one special case has to be dealt with. In numbers of the form 
' ... DOOlODD' the '1' may not be pronounced as it denotes 'one thousand' just 
like the previous case. The '1', however, has become separated from the 'd': 
' ... DmOhltOdOhDtD', since normal inversion has been applied. Therefore, 
only if the '1' is enclosed by two zeros must it be deleted. However, by the 
time we reach the '1' in the rule base, part of the string will already be spelled 
out (the part to its left). In the left context we only have available the spelled­
out form. Thus, the spelled-out form of 'h' ( = honderd) may not be present, 
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since when it is, apparently the digit of the hundreds is not zero. In the right 
context the second digit, originally directly to its left, must also be zero. This 
is expressed in (5.17): 

1 -+ 0 / ...,[h, o, n, d, e, r, d] _ t, 0, d (5.17) 

Now, spelling out the codes is trivial, and consists of some thirty rules of 
the following type: 

5 v,i,j,f 

t '5 v' i ,j 'f' t 'i' g 

The full rule set of module NUMBER_5 is included in the appendix. 

Discussion 

(5.18) 

(5.19) 

Looking at the functionality of the modules we can observe the following. The 
task of the first two modules, normalizing and determining the units, needs 
to be done in all languages using arabic numbers. Inversion of digits and 
'and'-insertion, which is achieved by the next two modules, is necessary for 
Germanic languages. The last module is language-dependent but rewriting it 
for another language will mainly consist of translating the spelling of numbers. 
So, for instance, German numbers can be handled by translating the last 
module. The same goes for English numbers, only in this case the third and 
fourth module can be omitted. 

It would be too strong a conclusion to put forward that spelling out num­
bers is solved for all languages using arabic numbers, since many languages 
will probably have their own specific exceptions. In French, for instance, num­
bers between 90 and 100 ('quatre vingt dix neuf') behave so differently from 
the numbers between 20 and 90 that this cannot be handled elegantly in the 
language dependent module. Probably this would motivate a separate '90-
exception' module. The scheme, however, of describing different phenomena 
in separate modules is of course advantageous, and can probably be followed 
for a large number of languages. 

As to the implementation in Toorj.P some further observations can be 
made. In the first place the possibility of scanning the input from right to 
left is advantageous. In spite of the fact that we read from left to right in 
many languages, some phenomena can be dealt with better from right to left. 
Integer numbers, which have their anchor at the right side, are an example of 
this, but also stripping suffixes can be done best from right to left. 

A second observation is that using the output buffer as a reference for 
those contexts for which it already contains information-as explained in the 
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previous chapter, and which for the user has the functionality of working with 
one string, in which the transformations are available directly-is generally 
advantageous, too. The unit insertion module advantageously makes use of 
this by referring to the last inserted unit marker. Thus the rules become sim­
pler, and therefore more transparent and faster. Only in one case, rule (5.17), 
one might argue that the rule becomes more complicated than necessary. 

A third observation is that metathesis, inversion of characters as exem­
plified in rules (5.3) and (5.4), is advantageous for a number grammar. In 
fact, it was first implemented when this application was developed, for in the 
conversion of normal words into a sound representation this had not yet ap­
peared to be necessary (nor has it been used in the final set of rules). The 
alternative for rule (5.3) would in this case be an enumeration of 90 special 
case inversion rules of the type: 

5,t,6 ~ 6,t,5 (5.20) 

which is, of course, not very elegant. 

5.2.2 Linguistic modules 

Functionality 

The central part of the conversion system consists of the linguistic modules 
which perform the grapheme-to-phoneme conversion (see Fig. 5.1). This com­
prises a crude morphologic analysis, letter-to-sound transcription and stress 
assignment. The great majority of the 550 rules which define the total con­
version are included in these seven modules. 

The first three modules are a rule-based approach to the morphological 
problem. By means of rules it is attempted to determine the important mor­
phological boundaries. No morpheme lexicon is utilized. Of course, in the 
morphological sense errors will be made, but for grapheme-to-phoneme con­
version it does not seem necessary to have the full morphologic structure of 
the word available in all cases. Some boundaries are crucial in the sense that 
missing them will introduce a pronunciation error, other boundaries are not. 
The first three modules aim at locating these important boundaries. 

Since prefixes and suffixes form a relatively small and closed group they can 
be identified reasonably elegantly by means of rules. Morpheme boundaries in 
compound words (which occur frequently in Dutch) can often be determined 
on morphosyntactic grounds. The sequence 'kp', for instance, does not occur 
in Dutch morphemes, and therefore a morpheme boundary between these two 
letters may be assumed. Combining the two, stripping affixes and applying 
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morphosyntactics, it appears (Berendsen, Lammens & Van Leeuwen, 1989) 
that only few crucial boundaries are missed. 

The first 'morphological' module is the largest of aJ1 modules and scans 
the input from right to left ( +- ). It strips the suffixes and inserts morpheme 
boundaries. The boundaries which are inserted before the suffixes, differ, 
where needed, in coding in order to indicate whether the suffix is stress­
bearing, stress-attracting or stress-neutral. The second module scans its input 
(this is the output of MORPH_1) from left to right (-+) and strips the prefixes. 
The last morphological module serves to delete some of the boundaries which 
were inserted wrongly by the previous two modules, which apparently were 
too difficult to exclude at the appropriate stage. 

The fourth module, GRAPHON, deals with the second major task, the 
letter- to-sound transcription. Since most of the morpheme boundaries are 
placed correctly, this module consists to a considerable extent of relatively 
simple rules, without too many context restrictions. Quite some effort, how­
ever, is put into controlling the pronunciation of loan words, which in Dutch 
are extracted from several foreign languages. 

The last task, assigning word stress, is separated into three modules, too. 
Rather than assigning stress to a syllable, stress is associated with vowels in 
this implementation, since accent-lending pitch movements are related to the 
vowel onset in Dutch ('t Hart & Cohen, 1973; 't Hart & Collier, 1975). Stress, 
in Toor}P, is implemented by means of labels rather than by inserting special 
characters as is done with the morpheme boundaries. 

The assignment of stress is more or less an implementation of the cur­
rent theories on stress assignment in Dutch (Nunn, 1989; Kager, Visch & 
Zonneveld, 1987), expressed in the Toor}P formalism. Not every notion of 
non-linear representation, such as binary feet, can be expressed in Toor}P, 
but the effect of heavy and super-heavy syllables can be captured in the rules. 
In principle, primary and secondary stress are distinguished. In the first mod­
ule, all vowels (except the schwa) are marked such that they can potentially 
bear stress. Then, in the second module, rather than directly marking pri­
mary stress, the appropriate vowels are marked with secondary stress, making 
use of the previously inserted morpheme boundaries. In the last module, the 
appropriate secondary stress labels are raised to primary stress and other 
vowels (which have not received any stress at all) are reduced or shortened. 

Discussion 

Since these modules constitute the main application, it is interesting to study 
the rules which constitute these modules, for they reveal which constructs are 
often used and therefore useful in practice, and which are not. 
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Two of the observations made for the rule grammar can also be made here. 
By having the applied transformations available directly, and by being able 
to scan the input in inverse order, suffixes can be stripped off recursively. The 
suffix boundary which is inserted by one rule triggers a next, similar rule. 

Another observation is that macro patterns, which abbreviate frequently 
used constructs, are used extensively. Not only the more common voc (vowel) 
and cons (consonant) definitions, but also more complicated structures are 
used to indicate well-formed consonant clusters, syllable boundaries and vowel 
clusters. 

Next, nearly all constructs which are available to the user are employed, 
the operators presented in chapter 2 are used frequently throughout all mod­
ules. In one of the stress modules, extensive use has been made of the 
possibilty to refer to graphemes and phonemes simultaneously. The two­
dimensional notation in which alternation and simultaneity is expressed has 
been used to good advantage for devising patterns that would be utterly un­
readable in a one-dimensional representation. 

5.2.3 Other possible applications 

Virtually any rule-governed segmental conversion scheme can be defined in 
Too:[jP. Apart from the applications which have been discussed above, Too:[jP 
can therefore also be used for other purposes. In the first place it can be used 
to describe or deal with other processes in a text-to-speech system, such as the 
recognition and spelling out of abbreviations, other types of numbers (tele­
phone numbers, reals, etc.), or addresses. In the second place it can serve 
as part of other modules in the text-to-speech system. For instance, Too:[jP 
could be used to perform morphological tasks, such as correcting for root mu­
tation due to affixation, or deriving the singular forms from the plural. Also 
applications outside the text-to-speech range can be thought of. For exam­
ple, one could build a module which can recognize syllables, with which one 
could build an automatic hyphenation machine. Another possibility might be 
to automatically determine inflectional forms. Or one can go the other way 
around and define phoneme-to-grapheme conversion. Also, a braille trans­
lation machine could be built, i.e., a program that translates text files into 
ASCII representative grade 2 braille files. Finally, also other rule-based sym­
bolic transcriptions might possibly be expressed with Too:[jP. For example, 
Bliss-to-text or Dominolex-to-text might be possible. Although these last ap­
plications are somewhat speculative, a Bliss-to-text system has been reported 
(Carlson, Granstrom & Hunnicutt, 1981), implemented with functions which 
are either present in Too:[jP or can be simulated. 



150 Chapter 5 Evaluation 

5.3 The complementation operator 

In chapter 3 the introduction of the complementation operator in the semi­
compositional formalism has been discussed. The semi-compositional formal­
ism is a compromise between the practical needs of excluding the explicit 
nofits of a complemented structure and the theoretical elegancy of compo­
sitionality. It was decided to implement the semi-compositional formalism, 
since on the one hand it would 'succeed' in excluding the explicit nofits where 
the compositional formalism would 'fail', and on the other hand would fail 
only on patterns which are highly unlikely to be specified in practice. The 
patterns for which the compositional case would fail, however, are such that 
can be expected to be used in practice, and thus it was felt that ToorjP should 
be able to handle these cases. 

Now that the first major application has been completed, it is interesting to 
see how frequently the added functionality has been used. Added functionality 
means the functionality provided by the semi-compositional formalism which 
is not present in the compositional formalism. It is also interesting to see 
whether, despite their low probability, patterns are used for which the semi­
compositional formalism fails. 

It turns out that complementation is used quite frequently. In a total of 
some 700 rules the operator is used 214 times (for comparison: this is twice 
as often as the simultaneity, as often as optionality and one fifth as often 
as alternation). Its use can be subdivided into three classes. The first class 
is where complementation is used to exclude cases from a limited set, for 
instance as in pattern (5.21)1 : 

(5.21) 

In other words, the universe to which the complementation 'operates' is pro­
vided by the user. 

The second class is where complementation is used without explicitly spec­
ifying the universe and where the resulting pattern is consistent, as in pat­
tern (5.22): 

1These three examples, (1>.21)-(5.23), are directly taken from the existing rulebase. 
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-.a,a 
-.o,o 
-.u,u 

-,[o, e], i (5.22) 

-.{~},e 

The third class is where complementation is used without explicitly spec­
ifying the universe and where the resulting pattern is inconsistent, such as 
pattern (5.23): 

{ 
i,n,g } 

..., voc, <-segm> (5.23) 

All complemented structures fall into one of these three classes. The first 
class comprises 50% of all cases, the second 42.5% and the third 7.5 %. This 
means that in 50% of the cases the complemented patterns are naturally 
suited also for a compositional formalism where the universe is defined as 
U = rJ*. If the universe were indeed defined as such, complementation could 
only be used in practical situations if the universe is specified explicitly. Thus 
it turns out that in 50% of the cases the user feels the need to do so anyhow. 
On the other hand it probably also means that in the other 50% of the cases 
he is glad that he does not have to do so. 

In 92.5% of the cases the compositional formalism where the universe is 
defined as in Table 3.IX is satisfactory, since in the additional 42.5% the 
universe is not specified explicitly, and only consistent patterns result. 

Only in 7.5% of the cases, 16 in total, does the functionality of the semi­
compositional formalism appear to be necessary. This is not a large number, 
but nor is it negligible. No patterns have been specified of a complex form 
(for instance, double complementation of inconsistent patterns) for which the 
semi-compositional formalism is not adequate. This means that the practical 
choice of implementing the compromise between practical needs and compo­
sitionality has not been invalidated by this particular application. 

5.3.1 Conclusion 

On the whole it can be concluded that the choice of defining the universe as 
the character count of a pattern has been validated by practical use. Having to 
define the universe for each complemented pattern explicitly would needlessly 
burden the user and mistify the patterns. Furthermore, the choice to exclude 
explicit nofits by means of the semi-compositional formalism has on the one 
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hand not been invalidated, but on the other hand has not fully been validated 
either, since this functionality has been needed too infrequently. Given the 
theoretical objections to the semi-compositional formalism (not fully exclud­
ing explicit nofits, not being fully compositional, and its relative complexity), 
it can be argued that these objections and the increased computational com­
plexity cannot be justified by the relatively small ergonomical advantages for 
the user. With some rewriting these few cases can probably be made suited 
for the compositional formalism. 

5.4 Toor).P in relation to comparable systems 

In this section TooJjP will be compared with a number of existing systems, 
most of which are used as the grapheme-to-phoneme conversion component 
of a text-to-speech system. The comparison will be guided by a number of 
properties which characterize the functioning and possibilities of such systems. 
First the systems will be introduced, and then each of them, including TooJjP, 
will be viewed with regard to those properties. 

The systems included in the comparison are all more or less high-level 
rule-based systems. Systems which approach grapheme-to-phoneme conver­
sion, the main application of TooJjP, from a different angle, such as a lexicon­
based (Lammens, 1989) or morpheme decomposition approach (Pounder & 
Kommenda, 1986), differ too much from TooJjP for there to be any point 
in comparing them. Also, other systems which are rule-based, but in which 
the rules are compiled by hand into a general-purpose programming language 
(Daelemans, 1987; Riihl, 1984) do not have enough interface with TooJjP for 
an interesting comparison. Finally, some well-known text-to-speech systems, 
such as MITalk (Allen, Hunnicutt & Klatt, 1987), cannot be included in the 
comparison as the linguistic contents rather than the technique of implemen­
tation have been described in literature. In the following order, the systems to 
be compared with TooJjP are: Rulsys, Fonpars, SPL, Depes, TWOL, Delta 
and Parspat. The first four systems, like TooJjP, are based on SPE-based 
notations borrowed from generative phonology, whereas the latter three each 
have their own approach to rule-based conversion. The systems will now be 
introduced briefly. 

Rulsys is the grapheme-to-phoneme conversion component of the multi­
lingual text-to-speech system devised by Carlson & Granstrom (1976), 
(see also Carlson, Granstrom & Hunnicutt, 1989). It is one of the earlier 
systems which provide an environment for the development of linguistic 
rules. The rules are expressed by the user in a format borrowed from 
generative phonology, to be compiled and executed by the computer. 
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Fonpars is the system developed in Nijmegen by Kerkhoff, Wester & Boves 
(1984), especially for the linguistic front end of a text-to-speech system. 
Like Rulsys, the rules are expressed in a phonological format. Here, 
these rules are compiled into a Pascal program, which, in turn, needs to 
be compiled to obtain an executable program. 

SPL was developed in Copenhagen by Holtse & Olsen (1985) and closely re­
sembles the previous two. In correspondence with the above two sys­
tems, each rule operates on the output of the previous rule. 

Depes was developed by Van Coile (1989) in Ghent and also belongs to the 
SPE-based rule compilers. Inspired by the Delta System, instead of 
having only one buffer available to store input, intermediate results and 
output, the system supports multiple layers in which related informa­
tion can be stored and synchronized, for instance the relation between 
graphemes, phonemes and pitch movements. Also, control structures 
can be used to control the conversion process more freely. 

TWOL was developed by Koskenniemi (1983) at the University of Helsinki 
(see also Karttunen, Koskenniemi & Kaplan, 1987) and originated as 
a morphological processor. It differs from the SPE-based systems in 
that the rules are of a declarative nature rather than imperative. The 
rules are therefore not ordered and can lead to conflicts; for instance, 
two rules which both apply may want to change a character differently. 
Such conflicts can be detected by a computer but must be resolved by 
the user. 

Delta is the system developed by Hertz in Ithaca, N.Y. (Hertz, Kadin & 
Karplus, 1985). It was the first system to introduce a whole new ap­
proach to the linguistic front end of a text-to-speech systems. On the 
one hand the multi-layered, synchronized data structure, called a delta, 
was introduced, and on the other hand powerful control structures and 
functions to manipulate the delta became available. The customary no­
tational conventions of generative phonology are lost, however, which is 
partly due to the multi-layered data structure. 

Parspat is a system developed by Vander Steen (1987) in Amsterdam. Rather 
than devised only for grapheme-to-phoneme conversion the system is 
meant to generate programs for recognition, parsing and transduction. 
Grapheme-to-phoneme conversion is merely an application of this sys­
tem. This system is interesting as it emerged from computer science 
rather than from the field of linguistics, and thus the solutions to some 
problems differ from those in other systems. Like TWOL, the transcrip­
tion rules are declarative rather than imperative. An interesting aspect 
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of the system is that a complementation operator has been introduced 
fully in the regular expressions like formalism, be it in a different way 
than proposed in chapter 3. 

These seven systems plus ToorjP will be discussed with regard to some char­
acterizing properties, some of which will be subdivided. Not all systems can 
be viewed for all properties, since not every detail is reported for every system 
in the literature, but on the whole a reasonable overview can be given. Five 
main properties will be considered. 

1. The first property concerns the formalism or language in which the 
linguistic knowledge must be expressed. This is subdivided into five 
characteristics: (a) whether the formalism is based on the formal­
ism introduced by Chomsky & Halle (1968) in the Sound Pattern of 
English, which became very popular in generative phonology. This 
will be referred to as 'SPE-based'; (b) whether context specifica­
tions (patterns) are represented one-dimensionally or two-dimensionally; 
(c) whether and under what circumstances complementation can be 
used; (d) whether explicit control structures can be used to control the 
conversion process; and (e) whether numerical functions can be em­
ployed. 

2. The second main property concerns the central data structure on which 
the formalism operates. This can be multi-layered or not. If it is multi­
layered, the system provides information on different levels of represen­
tation, which are possibly co-ordinated. If the system is multi-layered, 
it will be discussed whether this induces the possibility of co-ordinated 
use of the different levels in the formalism, and whether it can be used 
to derive input-to-output correspondences. 

3. The third property is the manner in which the linguistic rules are eval­
uated, i.e., if the rules are evaluated in order, if one can define the 
scanning direction, and what assignment strategy is applied. 

4. The fourth property concerns whether or not a system provides support 
for the development of rules, and if so, which type of support is given. 

5. The last property concerns some implementation features, viz. the com­
puter language of implementation and the nature of the internal opera­
tor, i.e., whether it is a compiler or not. 



5.4 ToorJP in relation to comparable systems 155 

5.4.1 The formalisms 

As already mentioned, five of the systems are explicitly SPE-based, viz. Rul­
sys, Fonpars, SPL, Depes and ToorjP. TWOL has a representation which 
resembles SPE-type rules, but they are of a declarative nature. This means 
that they describe a relation between one representation and another rather 
than a description of how to derive the output from the input. In TWOL the 
application concerns the relation between a lexical representation (how the 
entries are stored in a morph lexicon) and a surface representation (how the 
entries are written, for instance wolf-s - wolves). Delta and Parspat have 
more deviating rule formats. In Delta the rules are adapted to the program­
ming language, which makes them more powerful but somewhat less readable. 
In Parspat the rules are expressed in the 'unifying formalism' described in Van 
der Steen (1987), which resembles the declarative BNF notation for Chom­
sky type-0 grammars. However, for both Delta and Parspat SPE-type rules 
can be transformed into the local formalism to produce the same effect. Ex­
cept ToorjP, none of the systems feature a two-dimensional representation 
of patterns. As argued in chapter 2, a two-dimensional representation takes 
more space and (off-line) computational effort, but results in more transpar­
ent rules; vertical positioning denotes alternatives for the same position or 
co-ordination between two layers, and horizontal positioning denotes juxta­
position. For comparison, in each formalism the pronunciation rule for the 'c' 
which precedes an 'e' or an 'i' has been expressed in Table 5.II. 

Most systems feature more or less the same operators to specify patterns 
as provided by ToorjP (see chapter 2). The complementation operator, how­
ever, is interesting since its introduction gives rise to unexpected problems, 
as discussed in chapter 3. Therefore, the presence and status of this opera­
tor has been investigated for the systems being compared. Not all reports in 
literature are as detailed, and in particular with respect to the complementa­
tion operation information is scarce, so the result will be presented with some 
reticence. 

Most probably, SPL does not feature complementation as an operator. In 
an internal report (Holtse & Olsen, 1985) the language's syntax is described, 
which does not mention a complementation operator. Probably, the same goes 
for Rulsys, Depes and TWOL, but here the available information was less de­
tailed, none of which contained any reference to complementation. In Fonpars, 
Delta and Parspat complementation is available. In Fonpars a restricted ver­
sion is available in the sense that only constructions which contain strings of 
equal length may be complemented. This is more restricted than demanding 
patterns to be consistent, but syntactically less involved. In Delta, inconsis­
tent patterns may be built, but from the documentation (Hertz, 1989) it is 
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unclear what the expressions mean. In Parspat complementation is defined 
exactly in accordance with Table 3.V, in other words in the compositional 
extension of regular expressions. As argued, this definition is not satisfactory 
for inconsistent patterns, but it is unclear whether this has been recognized 
in Parspat. 

A fourth aspect is the possibility to use control structures, i.e., the pos­
sibility to explicitly control the conversion process. In generative phonology 
these are not present, and only in Depes and Delta are they fully available, 
due to the programming language character of the formalism. In Rulsys and 
SPL some control is possible by indicating whether the rule should be applied 
once or cyclically (Rulsys) or whether the rule is obligatory or optional (SPL), 
but this can hardly be counted as full control structures. In the other systems 
(except perhaps Parspat) flow of control is determined by the system itself 
and cannot be manipulated by the user. 

A final aspect which characterizes the formalisms is whether or not numer­
ical functions are available. For front-end linguistic processing this generally 
is not necessary, but in more phonetic processing, such as control of segmental 
duration, such functions are needed, and discrete segments are still the main 
units. Therefore, several systems which originated for linguistic purposes have 
evolved to be able to deal with more phonetically oriented rules. Examples 
are Rulsys, SPL and Fonpars. A future version of Delta has also been an­
nounced to support these facilities. The other systems either do not mention 
such facilities, or do not support them (ToorjP). 

5.4.2 Central data structure 

A mutli-layered data structure is a convenient mechanism to be able to access 
derivational information in the rules and to be able to determine input-to­
output relations. For this purpose the system should ensure that synchro­
nization between buffers is reliable-this is the consistency requirement of 
4.4.2. For instance, if a character is inserted in one layer, some of the charac­
ters in the other layer must be re-associated with the characters whose indices 
have changed. 

Of the eight systems, Rulsys, Fonpars and SPL do not have a multi-layered 
data structure. TWOL and ToorjP both have two layers and keep the syn­
chronization consistent. Depes and Delta leave it to the user to define the 
number of layers. Parspat probably has a notion of multiple layers, that is, it 
could not be found explicitly in the literature, but in some examples it shows 
that one can refer to graphemes as well as phonemes within one rule. All 
systems with multiple layers support buffer switching. Depes and Parspat are 
unclear as to whether co-ordinated information can be used, such as referring 
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to an jo:f which is derived from 'eau'; the other three support co-ordination. 
As to overall input-to-output relations, in Depes and Delta one can write a 
program to compute these. Toor}P provides an option to file these relation­
ships. Parspat and TWOL are unclear as to this facility. 

5 .. 4-3 Inference mechanisms 

Two different inference mechanisms are used to evaluate the rules in the sys­
tems which are included in the comparison. Declarative rules are evaluated 
in parallel, imperative rules sequentially. Declarative rules describe a relation 
between input and output, and can therefore often be used in two directions. 
In TWOL, for instance, the same morphological rules can be used to derive 
the surface structure from the lexicon structure (wolf-s --t wolves), or to de­
rive the possible set of lexical structures from the surface structure (wolves 
--t wolf-sjwolv-sjwolves). Declarative rules are not ordered, that is, they are 
applied in parallel rather than sequentially. This has the disadvantage that 
rules can easily be conflicting and therefore have to be disjunct for the pur­
pose of grapheme-to-phoneme conversion. For instance, the character 'c' can 
give rise to quite some pronunciations: /s/, /k/, ///, /x/, etc. In sequential 
systems one can first deal with one case (for instance, when 'c' is followed by 
'e' or 'i') and then consider the remainder of the cases-which means one does 
not have to consider the previous cases, since those have already been dealt 
with, and therefore the individual rules can be simpler. 

On the other hand, imperative mechanisms only describe the path from 
input to output, not the other way around. Also they are much more deter­
ministic by nature and therefore less suited to deal with ambiguities. Within 
the sequentially evaluated imperative systems there are two strategies. One is 
the 'rule-by-rule' mechanism, where the input string is completely dealt with 
by the first rule, before the output is dealt with by the next rule. The second 
mechanism is the 'segment-by-segment' mechanism where the first character 
consults all rules from top to bottom before the second character is dealt with. 
Both strategies can be useful, depending on the application. Finally, the pos­
sibility to determine the scanning direction is of interest, since for certain 
applications, such as stripping suffixes, scanning backwards is convenient. 

TWOL and Parspat are of a declarative nature, evaluating the rules in 
paralleL The other systems are of an imperative nature, and hence the rules 
are inherently ordered. Most systems provide only rule-by-rule strategy, only 
Fonpars also provides a segment-by-segment strategy. Toor)P provides the 
segment-by-segment strategy, modules can be utilized for crucial ordering. Of 
the imperative systems most provide both forward and backward scanning, 
only SPL and Fonpars do not. 
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As to dealing with ambiguities, TWOL and Parspat are well suited to 
generate and handle them, due to their inference mechanism. SPL has a 
mechanism in the imperative setup to express the possibility of ambiguities. 
By means of defining a rule as 'optional', both the input and the output of 
the rule will be input for the following rules. 

5.4.4 Development support 

As the support which the various systems offer for rule development is scarcely 
documented in the literature, comparison of this characteristic cannot be com­
plete. 

Most systems, however, will probably feature some kind of syntax checking 
and accompanying error messages, since without it large sets of rules can 
hardly be debugged even on the syntax level. In ToorJP, when a syntax error 
has been encountered, the file, place and nature of the error are reported. In 
some cases, the error triggers some additional errors, but these will only occur 
within the rule in which the first error occurred. The other rules are parsed 
as if no error had occurred, so each first error of a rule can be taken seriously, 
and generally most error messages are of diagnostic value. In Delta, on the 
other hand, one syntax error generally triggers a whole lot of others (in the 
user manual the user is warned against this), so here generally only the first 
error message is diagnostic. This has the disadvantage that each real error 
will generally take an edit session and a compiler run before the next one can 
be identified. 

Once a program (set of rules) is syntactically correct one is set to the task 
of making it semantically correct, that is getting the program to do what you 
want. Despite the rare occasions that this is reached at once, some effort is 
generally needed to reach it. The output of the program tells you something 
is wrong, but often does not give a clue about why and where it went wrong, 
so one will either have to reduce the program to the simplest version that 
still contains the error (in which case the error often is discovered) or one can 
advantageously use some debugging tools to analyse the larger and erroneous 
program directly. Only when the latter fails does one turn to the former 
strategy. 

As to the debugging tools, two classes can be distinguished. One class is 
that of the tracing facilities, the other is often called the debugger. A tracer, 
when activated, reports the intermediate stages during conversion, reports 
which are generated by the system rather than by the user. Debuggers typi­
cally interrupt the program, whereupon the user can investigate the internal 
status by examining variables. Tracers are typically used in special-purpose 
programs, where flow of control is more or less the same for all applications, 
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and the number of central data structures is limited, so that special display 
routines can be devised. Debuggers are typically used in general purpose 
programs, where both control flow and data structures are user-determined. 
Tracers can often display the relevant information quickly and transparently, 
whereas debuggers only interrupt the program, whereupon the user must 
search the relevant information interactively. On the other hand, tracers are 
pre-programmed; if for some reason there is no access to sub-parts of the pro­
gram in which the error happens to be located, the user has no other option 
but to reduce the program. Debuggers do have access to all parts, so gener­
ally the user never has to decide upon the laborious reduction of his program. 
Thus, on the whole, debuggers are less user-friendly but more powerful. 

Of the eight systems, Fonpars, Parspat and TWOL do not report any de­
bugging facilities. Depes and Delta feature a debugger where the breakpoints 
can be set and examined at run-time, so no compilation is needed for each 
new examination. Rulsys, SPL and ToorjP feature a trace facility. The exact 
nature of the trace facilities in Rulsys and SPL are not reported, but in both 
cases it is claimed that quite a detailed view of the actions performed by the 
system may be obtained. 

On the trace facilities of ToorjP chapter 2 was not very specific and there­
fore some additional information will be given here. ToorjP distinguishes 
normal input from commands. Commands start with a dot followed by some 
mnemonic code indicating the type of command;' .h', for instance, gives help 
on the mnemonic codes by producing a list of commands which are available 
to modify the system's settings. 

Locating a semantic error is done in three steps. First the module in 
which the error occurs must be determined. For this purpose '. m' must be 
typed, whereupon the intermediate results of each module are printed. The 
module in which the error is located can be identified. Next, the rule which 
is erroneous can be identified by invoking the tracer with ' . t '. The user is 
prompted for the erroneous module. For that module a shorthand status 
report of each rule is given. If a rule has been applied its ranking number and 
its contribution to the output buffer is printed. If a rule has not been applied 
the pattern which did not match is printed: 'f' is the focus pattern failed, '1' 
for left context, 'r' for right context. 

A more detailed view of a rule's operation can be obtained by invoking 
the second level of the tracer. Once again giving the command ' . t' will 
achieve this ('. t1' and '. t2' are the explicit commands; '. t' increments the 
tracing one step to a maximum of two). Now, for a specific character and 
for a sequence of rules (for which the user is prompted) a detailed report 
on the rules operation is given. This may lead to a respectable amount of 
information (all primitive matching values are reported, as well as all operator 
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constructions and their conclusions), but generally the selection of the rules to 
be reported can be so limited that the information flow is not overwhelming, 
and on the other hand the report is minute enough to pinpoint the error. In 
the experience of users this three-step strategy is an efficient way to locate a 
semantic or conceptual error. 

The final step in program development is, when it is semantically correct, 
improving the efficiency of the program. Rulsys reports that statistics of rule 
productivity can be gathered, the other systems do not report on tools for 
this purpose. As touched upon in chapter 2, ToorjP features a rule coverage 
analysis, which reports on the frequency with which individual rules are con­
sulted. Like the trace facility, it can be invoked by a single command '.lr' 
(log rule coverage). The frequency rule consultations are then filed for all 
input cumulatively. Thus the infrequently consulted rules can be identified 
and be rewritten and rearranged. With this tool the efficiency of the existing 
grapheme to phoneme conversion rules has been increased by some 20 %. 

5.4.5 Implementation aspects 

As to the implementation, not many details are provided, either. Often, 
only a schematic and short section is included on the implementation, which 
states the language of implementation and gives a crude sketch of the sys­
tem's architecture. Not much more than a list of facts can be given here. The 
choice of programming language is often influenced by the local conditions 
and acquaintance of the programmer with programming languages. One con­
sideration which is heard is that the program should be transportable, but in 
this sense the generally known programming languages do not differ greatly. 

SPL and Rulsys do not specify in which programming language they are 
implemented. TWOL is implemented in Lisp, Delta inC, and the other four 
systems in Pascal. As for ToorjP, apart from acquaintance with the language, 
a consideration has been that list structures and recursion is needed in extent, 
which is supported by Pascal. On the other hand it has been suggested 
that the unifying capabilities of Prolog might be very well suited for pattern 
matching. Apart from some uncertainty as to the execution speed, there 
seems no real reason why it could not have been implemented in Prolog as 
well. 

All systems have been implemented as a compiler, except ToorjP which 
can be described as a compiler/interpreter. This topic has been discussed in 
the previous chapter, section 4.5. An advantage of an interpreter-like scheme 
is that on-line editing of rules is easily implementable. The price to be paid 
is often a slower execution of run-time. For the development of rules the 
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first argument is more important, for operation in an application such as a 
text-to-speech system the latter may be of more importance. 

5.4.6 Conclusion 

The most important characteristics have now been reviewed. For an overview, 
they are included in Table 5.III for all systems included in the comparison. 
By way of conclusion the merits of Toor}P can now be enumerated. Toor}P 
is a system which fits in the SPE tradition. The rules are expressed in a 
formalism which is familiar to linguists, the main users of the system. Two 
features of the formalism are characteristic for Toor}P and are not present 
in other systems. One is the two-dimensional representation of 'and' and 
'or' structures, and the other is the definition of complementation, the 'not' 
structure. Either the problem discussed in chapter 3 has not been recognized 
or it has not been elaborated on, but the solutions encountered in the various 
other systems are of a different nature of the solution in Toor}P. 

Another characteristic of Toor}P is the support of a two-level data repre­
sentation, one for graphemes, the other for phonemes. With it, grapheme-to­
phoneme relations are available, both for usage in the rules and for statistical 
purposes. In this respect two other systems might be compatible, be it that 
for statistical purposes the user must probably write his own program. Fur­
thermore, TooJJP provides relatively extensive development tools. Apart from 
clear diagnostic messages on the syntactic level and a powerful trace facility 
for semantic debugging, TooJJP also features a rule coverage analyser to im­
prove the efficiency of a rule set. Most of these features are rarely touched 
upon by reports on the other systems. 

Finally, Toor}P is restricted to deterministic symbol manipulation. It does 
not feature control structures in its formalism, nor numerical functions to 
specify for instance durational rules on the segmental level. From the input 
exactly one output is generated and thus ambiguous pronunciations cannot be 
generated. Furthermore, TooJJP does not provide any tools to represent tree­
like structures which are typically desired in syntactic analysis of sentences. 
Toor}P, therefore, is suited for front-end linguistic processing in a text-to­
speech system, which does not need tools to perform a complicated struc­
tural analysis. So typically TooJJP is suited for the applications it has been 
used for, such as spelling out acronyms, numbers, abbreviations, inserting 
boundaries on morphosyntactic grounds, performing grapheme-to-phoneme 
conversion and assigning word stress, but it is less suited to perform full mor­
phological or syntactical analysis in order to improve grapheme-to-phoneme 
conversion or insert phrase boundaries and determine sentence accent. 
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5.5 Possible Extensions 

This last section will discuss some possible future extensions of ToorjP. It 
comprises five topics concerned either with improving the system or extending 
it along natural lines. 

5. 5.1 Rule-by-rule assignment 

As mentioned in chapter 2 and in the previous section, processes can be 
crucially ordered, that is one process must be finished before the other can 
apply. For this purpose ToorjP features modules; the next module will apply 
only when the current has fully been applied. This is the only mechanism in 
ToorjP to express crucial ordering. Despite the limited number of modules 
needed in a full-grown application it might be attractive to implement a more 
direct mechanism to express crucial ordering. In the current implementation 
some modules consist of only one rule, for instance NUMBERA, as this rule 
must be applied after NUMBER __ 3 and before NUMBER_5. Also, a user who 
is accustomed to specifying in a crucially ordered manner does not want to 
create a module for each rule-which is a separate file for each module in the 
current implementation. The user retains more overview when such crucially 
ordered rules can be included in one file. 

A possible solution to this is to allow the user to indicate for each group 
of rules in a module how to process them, either in the rule-by-rule strategy 
or the segment-by-segment strategy. Internally, the crucially ordered rules 
can be interpreted as a separate module for each rule which gives them the 
desired functionality, but for external (debugging) purposes the rule must be 
accessed via the module in which they are included. This will probably require 
little effort for the functional implementation but somewhat more for the user 
interface. 

5.5.2 Simultaneous operator 

One of the functions of the simultaneous operator is to express co-ordination 
between graphemes and phonemes, and it has been used rather frequently for 
instance for the purpose of stress assignment. While the operator is satisfac­
tory for co-ordination and exclusion (such as "any consonant but 'c' "), the 
operator is not satisfactory for expressing non-synchronization, such as "the 
vowel 'II' which is not derived from 'ie' ". Currently, when a pattern like 

[ II ] 
[ ' [i, e] ] 

(5.24) 
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is expressed, this is interpreted as "the vowel 'II' which is synchronized with 
a sequence of two characters, the sequence 'ie' excluded". If the 'II' happens 
to be derived from a 'y' or a single 'i' this pattern will not match. 

One possibility is to express this pattern positively (and 'II' can only be 
derived from a limited number of characters), but in other situations this 
may lead to patterns of undesirable complexity, and moreover, in the line of 
complete availability of negation this does not seem elegant. 

Another possibility is to allow the user to explicitly denote non­
synchronization, for instance in the following manner: 

+[ II] 
- [i ,e] 

(5.25) 

Here, the minus in front of the square brackets denotes the fact that the 'II' 
may be synchronized with anything but 'ie'. 

The introduction of such a mechanism involves some additonal theoreti­
cal work. Currently, the simultaneous operator is defined symmetrically to 
the alternative operator, that is, analogously with appropriate exchange of 
disjunction and conjunction operators. This also implies that the pattern 
succeeding the simultaneous operator is put into braces. For the purpose 
of synchronization and non-synchronization this might not be appropriate. 
Perhaps an explicit distinction on the level of user programming between 
simultaneity used as an 'and'-operator and simultaneity used as a synchro­
nization operator is desirable. Detachment of the succeeding pattern from the 
synchronization operator, however, will have influence on the solution for the 
introduction of complementation, the exact nature of which will have to be 
studied closely before a satisfactory solution is found. 

5.5.3 Extension of layers 

In chapter 4 the architecture of a two-layered central data structure has 
been discussed, including the mechanism used to synchronize them. This 
architecture has been devised with the main application in mind, grapheme­
to-phoneme conversion. The first layer contains graphemes, the second 
phonemes. Both data-types are user-defined. 

With this, the kernel of a multi-layered data structure has been achieved. 
Extra layers can be added without too much effort if the OS synchronization 
mechanism is used to synchronize them. However, if the DBS synchronization 
mechanism is used, this will involve considerable effort. 
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The extension of layers is not restricted to segments; there is no rea­
son why larger units such as morphemes (prefix/root/suffix) or words (lexi­
cal/number/abbreviation) should not be introduced. However, such an exten­
sion will also affect the formalism, which is the user's only tool for accessing 
the data structure. Currently, graphemes and phonemes are disjunct, so ref­
erence to either does not need disambiguation. When extra layers are defined, 
one possibility is that the elements they hold are disjunct to all other layers; 
another possibility may be that a layer selection mechanism is included in the 
formalism. The first solution may be undesirable in some applications, the 
latter may obscure the rules to an undesirable extent. A practicable solution 
might be a compromise of only having to disambiguate in ambiguous cases, 
and encouraging the user to use as few as possible equal sequences in different 
layers. 

5.5.4 On-line rule editing 

One of the characteristics of ToorjP is that the patterns are interpreted at a 
certain leveL As argued in chapter 4, this property may well be capitalized by 
implementing on-line editing and testing of rules. This can probably be done 
with little effort, since the infrastructure is present. The rule to be edited, 
inserted or deleted can be selected in the same way as the rules to be traced 
currently are. The source text is available, so this can be read into the buffer 
of an editor. When the rule has been adjusted the system can compile the 
rule into its internal data representation and patch it over the old one so that 
it can be tested. 

Of course, now the internal data differ from the original source. So a new 
source must be produced. Several solutions for this are possible. A safe and 
disk-space-friendly manner seems to be to store each change into a file with 
an indication which rule in which module it concerns. This serves as a journal 
file for recovery. Then, when the session is finished, like an editor, the system 
may ask whether the changes must be stored. For each module in which a 
rule has changed the system can generate the new source by appending all 
individual source texts. 

5. 5. 5 Compiler implementation 

An opposite extension is also possible, not serving the development tool but 
serving the run-time performance. When a rule set has been developed and 
performs satisfactorily, there is no reason why all development support tools 
should still be available. Therefore a full-compiler version of ToorjP is at­
tractive for implementation in the text-to-speech system. On the one hand 
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all development support tools can be omitted, but the major part of the in­
crease in run-time performance may be expected of the implementation of a 
full compiler. 

One possibility is to follow the scheme of Fonpars, to translate the lin­
guistic rules into a Pascal program, which in turn is compiled into machine 
code. An informal test, where a pattern was translated by hand into a Pascal 
program, indicated an increase of speed by a factor of 6, which seems a rea­
sonable indication of the possible gain in speed with this approach. Another 
possibility is to translate the patterns into finite state machines as is done in 
TWOL. However this involves some theoretical work, since it is not clear be­
forehand how complementation should be translated to a finite state machine. 
An estimate of the possible gain in speed is hard to give, since the theoretical 
work has not been done yet, but it seems reasonable to believe that, since the 
approach is more direct, the increase in speed will be greater than in the first 
approach. However, the amount of effort will presumably be greater, too. 
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In this appendix the full rule set of module NUMBER_5 is given. It serves to 
spell out the number when all important processes have been executed, viz. 
unit insertion, inversion and 'and' insertion. The rules follow below. 

definitions 
# = <-segm> 
D = <+cijf> 

grapheme 0 

O,h,O,t,o,{i} ~ 0 
O,t ___. 0 I - D,(&),t 
O,h ---> 0 
zero ---> n , u , I I # _ # 
zero ---> 0 

grapheme 1 

1 ___. o I _ {!} 
1 ---> 0 I •[h, o , n , d , e , r, d] _ t , 0 , d 
1,t,1 ---> e,l,f 
1 ---> e,e,n 

grapheme 2 
2,t,1 ---> t,w,a,a,l,f 
2 ---> t,w,e,e 

grapheme 3 
3,t,1 ---> d,e,r,t,i,e,n 
3 ---> d,r,i,e 

grapheme 4 
4,t,1 ---> v,e,e,r,t,i,e,n 
4 ---> v,i,e,r 

grapheme 5 
5 ---> v,i,j,f 

grapheme 6 
6 ---> z,e,s 

grapheme 7 
7 ---> z,e,v,e,n 

grapheme 8 
8 ---> a,c,h,t 
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grapheme 9 
9 - n,e,g,e,n 

grapheme & 
& - e,n 

grapheme t 
t,O - 0 
t,l - t,i,e,n 
t,2 - t,w,i,n,t,i,g 
t,3 - d,e,r,t,i,g 
t,4 - v,e,e,r,t,i,g 
t,S - v,i,j,f,t,i,g 
t,6 - z,e,s,t,i,g 
t,7 - z,e,v,e,n,t,i,g 
t,S - t,a,c,h,t,i,g 
t,9 - n,e,g,e,n,t,i,g 

grapheme h 
h - h,o,n,d,e,r,d I D 

grapheme d 
d - d,u,i,z,e,n,d I D 

grapheme m 
m - m, i, I ,j , o , e, n I D 

grapheme n 
n - m, i, I ,j , a, r, d I D 

grapheme o 
0 - b, i, 1 ,j, o, e, n I D 
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Summary 

F OR the purpose of automatically converting (printed) text into speech, 
among other things grapheme-to-phoneme conversion is required, i.e., the 

assignment of a pronunciation code to the orthography. Since many words in 
a language are regular and the number of words in a language principally is 
not finite, a rule-based approach to this matter seems appropriate for at least 
a major part of the task. Exceptions, then, can be stored in a small lexicon. 

In this thesis a tool is described for the development of linguistic rules with 
which one typically can define the transitions which are needed to derive the 
pronunciation from the orthography. The development tool is called ToorjP, 
which stands for "Tool for Linguistic Processing". And as the name suggests, 
although grapheme-to-phoneme conversion as yet has been the only major 
application for which ToorjP has been used, ToorjP is certainly not restricted 
to this application only. Probably any rule-based segmental transcription 
process can be implemented in ToorjP. 

A special characteristic of ToorjP is that input-to-output relations are 
preserved. This means that one can make use of derivational information in 
the linguistic rules, so for instance for stress assignment rules this can be used 
advantageously. On the other hand it means that the system can be used to 
gather statistics on input-to-output relations. Given the major application 
for which ToorjP has been used, the system can be used as an analysis tool 
for statistics on grapheme-to-phoneme relations. 

In this thesis ToorjP is treated from several points of view. In chapter 2 
a user's point of view is taken, and ToorjP is described as it presents itself to 
the user. First the basic configuration is discussed. Linguistic rules are the 
user's main tool to manipulate input characters. With them, one can select 
and transcribe characters dependent on the context. The possibilities for 
transcribing input characters and the facilities for defining contexts are then 
described. Such rules can be grouped into a module, which thus provides 
a mechanism to manipulate strings. Modules, in turn, can be concatenated 
to form a conversion scheme, which performs the desired task. The chapter 
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concludes with a discussion on some extensions which are included to increase 
its user-friendliness and applicability. Also, some characteristics of the system 
are discussed and compared to those of some other systems. 

In chapter 3 a mathematician's point of view is taken. It concerns a specific 
aspect of ToorjP, which remained underexposed in chapter 2, i.e., the exact 
meaning of patterns (the mechanism to denote sets of strings). In ToorjP 
patterns are an extended form of regular expressions. The extension con­
sists of the addition of two operators to the standard regular expressions for 
user convenience: complementation (the 'not') and simultaneity (the 'and'). 
The introduction of one operator, the complementation operator, specifically 
gives rise to an unexpected problem. If the complementation operator is intro­
duced in a compositional manner, the formal interpretation of a certain class 
of patterns differs from what one would expect them to mean. To be precise: 
certain strings one would expect to be excluded, are not. This is considered 
to be an undesirable characteristic, as generally users simply start using a 
system rather than first studying its exact nature. Therefore, an alternative 
definition for complementation is proposed, which for the mentioned class of 
expressions behaves in accordance with expectation. The essential difference 
with the compositional formalism is that now the 'explicit nofits' are always 
excluded. As a consequence, however, strict compositionality is lost, which 
shows, for instance, in the fact that double complementation may not always 
be annihilated. From a theoretical point of view the proposed formalism is 
thus not completely satisfactory. It might be satisfactory, however, from a 
practical point of view. Those patterns for which it behaves unsatisfactorily 
are highly unlikely to be used in practice, and the proposed formalism can 
be seen as a practical compromise between the practical needs and theoret­
ical elegance. On these practical grounds it has therefore been decided to 
implement the proposed (semi-compositional) formalism in ToorjP. 

In chapter 4 a technical point of view is taken, and some aspects of Toor}P's 
implementation are discussed. To be precise: those aspects of the implemen­
tation are described which concern the process of matching patterns to the 
input. Here, 'input' should be understood in the general sense of synchronized 
buffers, i.e., buffers of which the segments are aligned such that derivational 
information is available. For this purpose, first the internal representation 
of patterns is discussed. The user-specified patterns are transformed into a 
dynamic data structure which is accessible for the matching routine. The 
dynamic structure codes the structure of the patterns, but some simple ad­
justments are made also, which facilitate pattern matching during run-time. 
Next, the algorithms which perform the pattern matching are presented. First 
the situation of a single input buffer is considered. In view of this input situ­
ation the functions for matching a particular structure in a pattern are given. 
Special attention is paid to the function for matching the complementation 
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operator, since its definition gives rise to some additional computational com­
plexity. Then the more general situation of synchronized buffers is considered. 
The algorithm for matching primitives is somewhat altered in this situation. 
Since the synchronization mechanism is important for this routine, two pos­
sible synchronization mechanisms are discussed and compared. The more 
general one is chosen to be implemented and the buffer switching algorithm 
is given. On the whole, with respect to the processing of patterns, Toor}P 
can be viewed as a compiler/interpreter. The user-defined patterns are com­
piled from high-level source code to an internal representation. The internal 
representation is then interpreted by the functions for pattern matching. 

In the final chapter, chapter 5, the merits of Toor}P are evaluated. Three 
sides of Toor}P are considered: (a) the outside, i.e., how Toor.}P is used 
in a practical application, (b) the inside, i.e., how satisfactory is the semi­
compositional formalism in practice, and (c) the surroundings, i.e., how does 
Toor}P relate to other systems which have been designed for similar pur­
poses? The main application for which ToorJP has been used is the design of 
a grapheme-to-phoneme conversion system. Two aspects of this application 
are discussed. The first is the spelling out of integer numbers, which is part 
of a pre-processing phase, the second concerns the linguistically slanted mod­
ules which perform the actual grapheme-to-phoneme conversion. The second 
side of the evaluation concerns the use of the complementation operator. The 
usage of the operator in the above application is reviewed in the light of the 
choices which were made in chapter 3, and thus the validity of these choices 
are evaluated. The usage of the operator in the specific situation that the 
compositional formalism would fail whereas the semi-compositional one suc­
ceeds is relative scarce. In the light of theoretical objections the choice for the 
semi-compositional formalism does not seem fully justified in this particular 
application. The third side concerns some more general aspects. For a number 
of features which can be seen to characterize development tools for linguistic 
rules, ToorJP is compared to seven important existing systems. This gives an 
overview of what is unique in Toor}P and what is common practice in such 
systems. The thesis is concluded with some recommendations for the future 
development of Toor)P. These concern both the improvement of the system 
and its extension along natural lines. 



Samenvatting 

0 M langs automatische weg van gedrukte tekst naar spraak te komen is 
het onder andere nodig om over grafeem-foneem conversie te beschikken, 

dit is het toekennen van een uitspraakrepresentatie aan de geschreven vorm. 
Omdat veel woorden in een taal min of meer regelmatig in hun uitspraak zijn 
en het aantal woorden in een taal principieel niet eindig is, lijkt een aanpak die 
gebaseerd is op regels niet ongeschikt om een groot gedeelte van de woorden in 
een taal aan te kunnen. Uitzonderingen kunnen dan vervolgens in een kleine 
uitzonderingenlijst opgenomen worden. 

In dit proefschrift wordt een gereedschap beschreven, dat bedoeld is om 
taalkundige regels te ontwikkelen, waarmee men typisch het soort overgangen 
kan beregelen dat nodig is om van spelling naar uitspraak te komen. Het 
ontwikkelgereedschap heet 'ToorjP', hetgeen staat voor "Tool for Linguistic 
Processing" (gereedschap voor taalkundige verwerking). En, zoals de naam 
al aangeeft, ondanks het feit dat grafeem-foneem omzetting tot nu toe de 
voornaamste toepassing is waarvoor ToorjP gebruikt is, is het systeem beslist 
niet beperkt tot deze enkele toepassing. Waarschijnlijk kan elke segmentele 
omzetting die door regels beschreven kan worden in ToorjP gei"mplementeerd 
worden. 

Een speciale eigenschap van ToorjP is dat de individuele relaties tussen de 
invoer en de uitvoer behouden blijven. Dit betekent dat men in de taalkundige 
regels gebruik kan maken van de afleiding tot dan toe, wat bijvoorbeeld bij de 
toekenning van woordklemtoon erg handig kan zijn. Anderzijds betekent het 
ook dat het systeem geschikt is om statistische gegevens te verzamelen over 
de relatie tussen de invoer en de uitvoer. Gegeven de toepassing waar het 
systeem voor gebruikt is, kan ToorjP dus dienen als analyse gereedschap ter 
bepaling van welke orthografie hoe vaak tot welke klanken aanleiding geeft. 

In dit proefschrift wordt ToorjP van een aantal zijden belicht. In hoofd­
stuk 2 wordt een gebruikersstandpunt ingenomen, en wordt ToorjP beschreven 
zoals het zich aan de gebruiker presenteert. Allereerst wordt de basiscon­
figuratie geschetst. De taalkundige regels zijn het middel om karakters te 
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manipuleren; ze worden gebruikt om karakters te selecteren en te wijzigen 
afhankelijk van de kontekst. De mogelijkheden om ze te herschrijven en de 
kontekst te definieren worden vervolgens beschreven. Dit soort regels kunnen 
in een module gegroepeerd worden, om zodoende een mechanisme te vormen 
dat woorden of zinnen aan kan. Vervolgens kunnen modules weer in volg­
orde in een conversie schema geplaatst worden, dat zodoende de gewenste 
taak uitvoert. Het hoofdstuk besluit met de beschrijving van enkele uitbrei­
dingen op de basisconfiguratie, bedoeld om de gebruikersvriendelijkheid en de 
toepasbaarheid van het systeem te verhogen. Tevens worden een aantal eigen­
schappen van het systeem besproken en vergeleken met die van soortgelijke 
system en. 

In hoofdstuk 3 wordt een wiskundig standpunt ingenomen. Het betreft 
een onderdeel dat in hoofdstuk 2 onderbelicht is gebleven, namelijk de pre­
cieze betekenis van patronen (het mechanisme om verzamelingen strings aan 
te duiden). In ToorjP zijn patronen een uitgebreide versie van reguliere ex­
pressies. De uitbreiding bestaat erin dat twee operatoren aan het formalisme 
zijn toegevoegd terwille van het gebruikersgemak, te weten complementatie 
(de 'niet') en coordinatie (de 'en'). De introductie van complementatie geeft 
specifiek aanleiding tot problemen. Als de operator op een compositionele 
wijze aan het formalisme wordt toegevoegd, wijkt de formele betekenis van 
een bepaalde klasse van patronen af van wat je zou verwachten. Om precies 
te zijn: bepaalde strings waarvan je zou verwachten dat ze uitgesloten wor­
den, worden dat niet. Dit wordt onwenselijk geacht, omdat gebruikers in het 
algemeen een systeem gewoon gaan gebruiken zonder een voorafgaande studie 
van z'n exacte werking, zodat ze dan voor onverwachte en wellicht onnodige 
problemen komen te staan. Daarom wordt er in dit hoofdstuk een alter­
natieve definitie van complementatie voorgesteld, die voor de bewuste klasse 
van patronen wel volgens verwachting reageert. Het essentiele verschil met 
het voorgaande formalisme is dat nu de 'explicit nofits', de strings waarvan je 
expliciet verwacht dat ze uitgesloten zullen worden, nu wei altijd uitgesloten 
worden. De konsekwentie hiervan is echter wel dat strikte compositionaliteit 
verloren gaat, wat bijvoorbeeld gei1lustreerd wordt door het feit dat dubbele 
complementatie niet zomaar altijd geschrapt mag worden. Theoretisch gezien 
is het voorgestelde formalisme dus niet geheel bevredigend. Praktisch gezien 
zou het dit echter wel kunnen zijn. Het is uiterst onwaarschijnlijk dat de 
patronen waarvoor het voorgestelde formalisme niet bevredigend reageert ge­
bruikt worden in de praktijk, en zodoende kan het formalisme beschouwd 
worden als een compromis tussen praktische wensen en theoretische elegantie. 
Op grond van deze praktische overwegingen is er besloten om het voorgestelde 
(semi-compositionele) formalisme in ToorjP te implementeren. 

In hoofdstuk 4 wordt een technisch standpunt ingenomen en worden een 
aantal aspecten van de implementatie besproken. Om precies te zijn: die 



180 Samenvatting 

aspecten worden beschouwd die te maken hebben met het evalueren van pa­
tronen tegen de invoer. Rier moet 'invoer' gezien worden in de algemene zin 
van gesynchroniseerde buffers, dit zijn buffers waarvan de segmenten zodanig 
zijn opgelijnd dat de afleidingsinformatie beschikbaar is. Allereerst wordt de 
interne representatie van patronen besproken. De door de gebruiker gespeci­
ficeerde patronen worden omgezet naar een dynamische datastructuur die toe­
gankelijk is voor de evaluatieroutines. De dynamische datastructuur codeert 
de structuur van de patronen, waar enkele kleine aanpassingen aan gedaan zijn 
die het evalueren vergemakkelijken. Vervolgens worden de algoritmes gegeven 
die de patronen evalueren tegen de invoer. Eerst wordt de situatie beschouwd 
alsof er maar een enkele invoer buffer bestaat. Voor die situatie worden de 
functies voor het evalueren van een bepaalde structuur gegeven. De com­
plementatie operator wordt speciaal belicht omdat deze aanleiding geeft tot 
extra computationele complexiteit. Tenslotte wordt de algemene situatie van 
gesynchroniseerde buffers beschouwd. Ret algoritme om primitieven te eval­
ueren verandert hierdoor enigzins, maar de algoritmes voor structuren niet. 
Omdat het synchronisatiemechanisme belangrijk is voor genoemde routine 
worden twee mogelijke mechanismes besproken en vergeleken. Er is besloten 
om het algemenere mechanisme in ToorjP te implementeren. Tenslotte wordt 
het algoritme gegeven om van buffers te veranderen. Over het geheel gezien 
kan ToorjP als een compiler /interpreter gezien worden ten aanzien van het 
evalueren van patronen. De door de gebruiker in een taalkundig formaat 
gespecificeerde patronen worden gecompileerd naar de interne representatie. 
Vervolgens wordt die representatie geinterpreteerd door de evaluatie functies. 

In het laastste hoofdstuk, hoofdstuk 5, wordt ToorjP op zijn merites 
beschouwd. Drie zijden van ToorjP worden belicht: (a) de buitenkant, d.w.z. 
hoe is ToorjP gebruikt in een praktische toepassing, (b) de binnenkant, d.w.z. 
hoe voldeed het voorgestelde formalisme in de praktijk, en (c) de omgeving, 
d.w.z. hoe verhoudt ToorjP zich tot andere systemen die voor soortgelijke 
doeleinden zijn ontworpen? De voornaamste toepassing waar Toor}P voor ge­
bruikt is, is het ontwerpen van een grafeem-foneem omzettingssysteem. Twee 
aspecten van deze applicatie worden nader beschouwd. Enerzijds is dat een 
systeem om gehele getallen uit te schrijven, wat deel is van de voorbewerk­
ingsfase, en anderzijds zijn dat de taalkundig getinte modules die de echte 
letter naar klank omzetting uitvoeren. Ret tweede aspect van de evaluatie 
is het gebruik van de complementatie operator. Ret gebruik van deze ope­
rator in de genoemde toepassing wordt bekeken in het Iicht van de keuzes 
die in hoofdstuk 3 gemaakt zijn, en zodoende wordt de juistheid van die 
keuzes geevalueerd. Ret gebruik van de operator in de specifieke situatie dat 
het compositionele formalisme fout gaat maar het semi-compositionele for­
malisme goed is betrekkelijk gering. De keus voor het semi-compositionele 
formalisme lijkt hierdoor gezien de theoretische bezwaren in deze toepassing 
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niet geheel gerechtvaardigd. De derde zijde betreft wat algemenere aspecten. 
Voor een aantal eigenschappen die voor dit soort systemen van belang zijn, 
wordt ToorjP vergeleken met een aantal belangrijke vergelijkbare systemen. 
Zodoende ontstaat er een overzicht over wat uniek is in ToorjP en wat ge­
bruikelijk is in dit soort systemen. Het proefschrift wordt afgesloten met 
enkele aanbevelingen voor verder onderzoek. Deze betreffen enerzijds mo­
gelijke verbeteringen aan het systeem en anderzijds uitbreidingen langs een 
natuurlijk lijn. 
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Stellingen 

behorende bij het proefschrift 
ToorjP: A development tool for linguistic rules 

van Hugo van Leeuwen 

1. In veel bestaande tekst naar spraak systemen worden verschillende 
niveau's van informatie in elkaar geklapt tot een enkele informatiestroom. 
Het is raadzamer deze verschillende niveau's expliciet weer te geven door 
mid del van een gelaagde, gesynchroniseerde structuur, zoals die voor twee 
lagen besproken is in sectie 4.4 van dit proefschrift. 

2. Bij het luisteren naar spraak valt het doorgaans zeer snel op of een spreker 
spontaan spreekt of voorleest. Een belangrijke oorzaak hiervan is dat een 
spreker die voorleest begint te spreken voordat hij/zij de zin geheel gelezen 
en begrepen heeft, en daardoor accenten legt die in stijd kunnen zijn met 
de inhoud van de tekst. 

3. Dank zij de zgn. PSOLA-techniek, het eerst gerapporteerd door Hamon 
et al., die het mogelijk maakt om zonder veel verlies aan spraakkwaliteit 
toonhoogte en temporele structuur van spraak te manipuleren, zal de 
kwaliteit van kunstmatige spraak op korte termijn een belangrijke ver­
betering in kwaliteit ondergaan. 

Hamon, C., Moulines, E. & Charpentier. F. (1989): A diphone syn­
thesis system based on time-domain prosodic modifications on speech, 

ICASSP, 238-241. 

4. Zowel in de overheidssector als in het bedrijfsleven worden veelal de bud­
getten voor een afdeling of werkgroep voor het komende jaar vastgesteld 
op grond van budget en uitgaven van het huidige jaar volgens de formule: 

waar B het budget is, U de uitgaven, Min een functie is die het minimum 
van twee getallen bepaalt, en de indices de jaren in kwestie aanduiden. In 
tegenstelling tot de bezuinigende bedoeling hiervan is dit een verkwistende 
maatregel. 

5. Momenteel kan een verdachte bloedafname voor identificatiedoeleinden 
d.m.v. de zgn. DNA-print weigeren door zich te beroepen op de onschend­
baarheid van de lichamelijke integriteit. Het afnemen van vingerafdrukken 
kan de verdachte niet weigeren. Gezien de zekerheid waarmee de DNA­
print identificeert, client deze identificatiemethode dezelfde status te krij­
gen als de vingerafdruk, d.w.z. een verdachte client het recht ontnomen te 
worden dit te kunnen weigeren. 



6. Het is algemeen bekend dat specialisten en arts-assistenten in ziekenhuizen 
regelmatig onverantwoord lange werktijden maken. Als gevolg hiervan 
worden soms ernstige maar onnodige fouten gemaakt. Als specialisten van 
de toekomst rust er op de arts-assistenten speciale verantwoordelijkheid 
om aan deze misstand iets te doen. Zij dienen zich te verenigen om 
zodoende verantwoorde werktijden af te dwingen. 

7. Het file probleem zou voor een deel opgelost kunnen worden door het 
fietsenvervoer in de trein gratis te maken en speciale faciliteiten op NS­
stations te scheppen zodat men snel vanuit de trein per fiets uit het station 
kan komen en omgekeerd. 

8. Het is de vraag of het mer ken van eigendommen een afdoende bescherming 
tegen diefstal biedt; de praktijk leert dat ze doorgaans ongemerkt ver­
dwijnen. 




