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Lightweight high-precision motion stages pose a challenge to the control design. 

Due to the low-frequent resonances, conventional control techniques can no longer 

be applied. Transfer function data, obtained from frequency response data, can be 

used as an extension of loop-shaping techniques. As an example it is shown how a 

root-locus can be drawn for an experimental set-up, without the use of a parametric 

model. The root-locus is then used to optimise the gain of the controller such that 

the settling time is minimised. 

Data-based control  of lightweight 
 high-precision  motion systems

the system becomes less stiff causing flexible dynamics to 
shift to lower frequencies. Figure 1 shows typical Bode 
magnitude plots for a conventional system and a 
lightweight motion system. It can be seen that for the 
lightweight system resonances appear below the target 
bandwidth (BW). This has major consequences for the 
control design. 

TThe trend that the number of transistors on a chip increases 
while the cost of a chip decreases leads to increasing 
performance requirements for high-precision motion 
systems that are used in the chip manufacturing industry. 
To satisfy the specifications on the throughput and 
resolution, higher accelerations and improved accuracies 
are required. The current motion stages are designed to be 
very stiff to achieve the required accuracy. This makes 
these stages relatively heavy such that strong actuators are 
required. Following this design principle, increasing the 
accuracy would require even stiffer and consequently 
heavier stages. Especially for the future stages that will 
carry the larger 450mm wafers this will be a problem. 
Achieving higher accelerations with heavier stages is not 
feasible anymore because the high-power actuators that 
would be required would be inaccurate and very expensive. 

Therefore, the next-generation positioning systems are 
designed to be lightweight to enable high accelerations 
using limited actuator force. At the same time, however, 

Figure 1. Typical Bode magnitude plots for a conventional high-
precision motion system (black) and a lightweight motion system 
(orange).
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Rigid-body assumption
The current generation of stages is controlled in six degrees 
of freedom (DoFs) using multiple actuators and sensors, 
which makes a stage a multiple-input, multiple-output 
(MIMO) system. The system is decoupled by using 
transformation matrices in the input and output channels, 
such that each DoF can be controlled independently of the 
other DoFs. In that way, the control design of this MIMO 
system can be made using single-input, single-output 
(SISO) techniques. The computation of these 
transformation matrices uses the assumption that the 
system behaves as a rigid body. When all resonances lie 
above the target bandwidth, this is a valid assumption and 
an acceptable decoupling can be achieved. PID controllers 
in combination with low-pass and notch filters are used to 
control these systems. The notches prevent the excitation 
of the resonances that are present at high frequencies. 
Active control of these high-frequent flexible dynamics is 
not necessary for conventional stages, since the resonances 
lie well above the target bandwidth.

Advanced control
The future lightweight systems that have flexible dynamics 
at low frequencies cannot be decoupled by the same 
techniques, because they cannot be assumed to be rigid. 
The low-frequent resonances cause the system to display a 
lot of interaction between the DoFs. Furthermore, the 
resonances will have to be actively controlled because they 
lie under the target bandwidth. Therefore, advanced control 
techniques are required to control the future lightweight 
motion stages. In academia, many advanced control 
techniques are available, but most of them rely on an 
accurate model of the system. Finite-element models 
(FEM) are often inaccurate and computing an accurate, 
low-order MIMO model from frequency response 
measurements is also not straightforward. Therefore, the 
research described here focuses on data-based techniques 
that lie close to the loop-shaping techniques that are 
currently used. 

Poles for performance
One of the aspects currently under investigation is how the 
pole locations can be computed without a model of the 
system. Each resonance in the Bode diagram corresponds 
to a complex pole pair. For a future flexible motion stage, 
some of these open-loop poles of the system will lie at low 
frequencies. Furthermore, these resonances will have a 
very low damping due to the use of materials with low 
damping such as metals and ceramics. Without proper 
control, the settling time of these systems would be very 
long. Therefore, controllers are required that can add 
damping to the poles to improve the settling time. 
Conventional loop-shaping, however, does not incorporate 
analysis of pole locations, since these are not known when 
only frequency response data of the system is available. 
This calls for novel control design and analysis techniques.

Experiment set-up
The techniques that have been developed will be explained 
by means of the experiments that were conducted on a 
benchmark motion system. Theory that was used will be 
explained along the way. The system depicted in Figure 2 
consists of two inertias connected via a rotational spring. A 
motor is used to drive one of the inertias and the angle of 
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Transfer function data
Closed-loop transfer functions all share the same 
denominator, 1+ H(s)C(s). Consider for example the 
sensitivity function S(s) or complementary sensitivity 
function T(s) of a system H(s) with controller C(s),

 1  H(s)C(s)
S(s) =  ––––––––––– , T(s) =  –––––––––– . (1)
 1 + H(s)C(s)  1 + H(s)C(s)

This shows that the closed-loop poles lie at the points s 
where the denominator equals zero

p
cl
 = { s | 1+ H(s)C(s) = 0 } (2)

Note that at these points H(s)C(s) = –1, which is of course 
the well-known “–1 point” of the Nyquist plot. The transfer 
functions are denoted as a function of s and not jω, since 
solutions to this equation are not likely to lie on the 
imaginary axis. Solutions on the imaginary axis would 
mean that there are closed-loop poles that have zero 
damping, which is of course very undesirable. This means 
that information on H(s) and not H(jω) is required to solve 
this equation. This leads to the concept of transfer function 
data. While frequency response data H(jω) only gives 
information on the transfer function H(s) for points s=jω 
that lie on the imaginary axis, transfer function data H(s

i
) 

gives information on the transfer function for points s = s
i
 

that can lie anywhere in the complex plane. Thus

the inertias is measured by encoders. For this experiment, a 
feedback loop is closed over the motor encoder, creating a 
collocated control scheme as schematically depicted in the 
bottom part of the figure. 

The feedback controller C(s) consists of a gain, a lead-lag 
filter and a low-pas filter. The lead-lag filter creates phase 
lead which will add damping to the poles. Frequency 
response measurements have been conducted on the set-up 
to obtain frequency response data H(jω). Figure 3 depicts 
the open-loop Bode plot of the system with controller. 
Three choices for the gain are shown; the low-gain case is 
plotted in blue, the medium-gain case in green and the 
high-gain case in red. But which of the open-loop transfer 
functions that are shown gives the best closed-loop 
performance? This question cannot be answered from this 
figure. Information on the damping of the closed-loop 
poles is necessary to answer this question. 

Figure 2. Top: Experimental set-up consisting of load encoder (1), 
load side inertia (2), rotational spring (3), motor side inertia (4), 
motor (5) and motor encoder (6). 
Bottom: Schematic representation of the system and the feedback 
loop.

Figure 3. Bode diagram of the open loop of the experimental set-
up. Three possible choices for the gain are depicted: low (blue), 
medium (green) and high gain (red).
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of the transfer function is obtained on the whole complex 
plane. 

Transfer function data has been computed for the 
experiment set-up. Figure 4 shows the 3D-Bode magnitude 
plot of the transfer function data of the set-up. In a 
3D-Bode magnitude plot, the magnitude of the transfer 
function |H(s

i
)| is plotted as a function of both the real part 

σ
i
 and the imaginary part ω

i
 of s

i
. The measured frequency 

response data is also shown in the figure in orange. Unlike 
the frequency response data, the transfer function data is 
very smooth, almost as if they were obtained from a model, 
which is of course not the case. This smoothness is caused 
by the integral (4), which has an averaging effect on 
measurement noise. From the figure it can also be observed 
that the open poles of the system (the peaks) lie on the 
imaginary axis, showing that the open-loop system is 
highly undamped such that the transfer function data is 
symmetric with respect to the origin of the complex plane.

Data-based root-locus
The transfer function data is obtained for the open-loop 
system. Next, the influence of the controller is discussed. 
The controller adds damping to the poles, placing the 
closed-loop poles somewhere in the left half plane. It is 
desirable to know the locations of the closed-loop poles 
such that the settling time and dominant frequencies in the 
response can be predicted. One approach is to evaluate (2) 
in a data-based way using the computed transfer function 
data of the system H(s

i
) and the value of the controller 

C(s
i
) yielding

p
cl
 = { s

i
 | 1+ H(s

i
)C(s

i
) = 0 }. (6)

A numeric algorithm could be used to perform a search 
over all computed grid points s

i
 to look for points s

i
 that 

satisfy this equation. This would give the closed-loop poles 
for one specific controller. For SISO systems, however, it 
is even possible to compute a root-locus in a fully data-
based way. The root-locus gives all possible closed-loop 
pole locations as a function of the gain of the controller. 
The controller gain k is extracted from (5) according to

p
cl
 = { s

i
 | 1+ kH(s

i
)C(s

i
) = 0 }. (7)

                             1
p

cl
 = { s

i
 | H(s

i
)C(s

i
) = – – }. (8)

                             k

s
i
 = σ

i
 + jω

i
, (3)

where σ
i
 denotes the damping and ω

i
 the frequency at this 

point. The subscript i emphases that s
i
 is a single data point 

in the complex plane. For lightly damped mechanical 
systems there is a technique to compute a point H(s

i
) from 

the measured frequency response data H(jω) using the 
following Cauchy integral

 1   ∞ H(jω)
H(s

i
) =  ––––  ∫    –––––– dω, (4)

 2p	 	–∞	 (si 
	– ω)

where s
i
 is a point in the right half plane. The integral (4) 

can only be computed for points that lie in the right half 
plane, because the right half plane does not contain open-
loop poles. Fortunately, the systems under consideration 
are very lightly damped such that the open-loop poles lie 
almost on the imaginary axis. This makes the system 
symmetric in the origin such that points in the left half 
plane can be computed from points in the right half plane 
according to

H(s
i
) = H(–s

i
). (5)

In this way it is possible to compute the value of a transfer 
function at any point s

i
 in the complex plane. More details 

on the computation of transfer function data can be found 
in [1]. By computing H(s

i
) on a grid of points s

i
, the value 

Figure 4. Transfer function data (black dots) and frequency 
response data (orange) of the experimental set-up.
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one peak at 207 rad/s can be distinguished in the spectrum, 
which corresponds to one of the two closed-loop pole pairs 
at ‘b’ in Figure 6. The second closed-loop pole pair, at 300 
rad/s, is not visible in the spectrum due to its high decay 
rate. The same holds for k = 17.16, where the peak in the 
spectrum at 257 rad/s corresponds to the points ‘c’ in 
Figure 5. 

While it is fairly simple to verify the frequencies of the 
closed-loop poles via the power spectrum, obtaining a 
numeric value for the real part of the pole location from the 
time domain response is not so straightforward. The 
amplitude of the response should be of the form

h(t) = c · e–σt (10)

Where c is a constant and σ is the real part of the pole. 
Fitting this function on so few peaks proved to be very 
inaccurate. Nevertheless, when comparing the responses it 
can be said that it is possible to conclude that the σ value 
of the controller with k = 8.58 is higher than that of the 
other two controllers. This shows that it is possible to 
optimise the gain of the controller using this technique. 

Conclusions
Lightweight high-precision motion stages pose a challenge 
to the control design of such systems. Due to the low-

This means that points s
i
 for which H(s

i
)C(s

i
) is negative 

and real, belong to the root-locus. In other words, a search 
for points s

i
 where the imaginary part of H(s

i
)C(s

i
) is zero 

must be performed. Moreover, the corresponding root-
locus gain is given by

 –1
k = –––––––– , (9)
 H(s

i
)C(s

i
)

which immediately gives the gain of the controller that is 
required to achieve these closed-loop pole locations. 

This computation is performed for the experimental set-up, 
see Figure 5. The orange and purple colour indicate the 
sign of the imaginary part of H(s

i
)C(s

i
). Points that belong 

to the root-locus are those points where the imaginary part 
crosses zero and where the real part is negative as well. 
These points are indicated by the black dots. Along the 
lines formed by these dots, the gain of the controller goes 
from zero at the open-loop poles to infinity at the zeros of 
the plant. From the root-locus it is obvious that the optimal 
closed-loop pole locations are indicated by ‘b’, since for 
this choice the poles lie the farthest in the left half plane 
which will give the fastest settling time. At ‘b’ the gain k = 
8.58, which is computed using (9). Apparently, there is a 
certain optimal gain in terms of settling time. Increasing or 
decreasing the gain will deteriorate the response. To show 
this, the closed-loop pole locations ‘a’ and ‘c’ are analysed 
as well. At ‘a’ and ‘c’ the gains are half and twice the 
value of b. Thus at ‘a’ k = 4.29 and at ‘b’ k = 17.16. These 
are also the three values for the gain that were shown in 
Figure 3, hence the corresponding colours. 

Time domain response
To verify that the controller with gain k = 8.58 indeed has 
the best response, time domain measurements have been 
conducted on the set-up with all three controllers, see 
Figure 6. As predicted, the controller with k = 8.58 indeed 
has the shortest settling time. The power spectral density of 
the three responses is computed as well, see Figure 7. It 
can be seen that the dominant frequencies in the spectra 
correspond to the frequencies of the predicted closed-loop 
pole locations. The frequency is in rad/s for ease of 
comparison with Figure 6. The controller with k = 4.29 
shows two peaks; one at 120 rad/s and one at 377 rad/s. 
This corresponds to the predicted locations in Figure 6, 
since the imaginary parts of the closed-loop poles at 
location ‘a’ have exactly those values. For k = 8.58 only 

Figure 5. Root-locus computed from transfer function data. The 
points a, b, and c give the selected closed-loop pole locations. 
Open loop poles x and zeros o are indicated as well.
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frequent resonances, conventional control techniques can 
no longer be applied. In this article it is shown that transfer 
function data, obtained from frequency response data, can 
be used as an extension of loop-shaping techniques. As an 
example it is shown how a root-locus can be drawn for an 
experimental set-up, without the use of a parametric model. 
The root-locus is used to optimise the gain of the controller 
such that the settling time is minimised. Time domain 
measurements on the set-up confirm the accurate prediction 
of the closed-loop poles. 

Although the experiments shown here were conducted on a 
SISO system, extension to MIMO systems is 
straightforward. In the near future, experiments will be 
conducted on a 6-DoF high-precision motion system to 
validate the approach on a MIMO set-up.
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Figure 6. Time domain responses for the three selected gains; 
k = 4.29 (blue), k = 8.58 (green) and k = 17.16 (red). Figure 7. Power spectral density plots of the responses of 

Figure 6.


