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ABSTRACT 
In this paper, we present a new simulation-based 
approach with capabilities for analysing the impact of 
advanced control strategies on building performance 
during the building design phase. This environment 
consists of ESP-r as building simulation tool, Matlab 
as software for advanced building controllers and 
BCVTB as middleware for data exchange per time 
step between the two programs. 
After describing the implementation details, we 
illustrate usability of the design support environment 
in a case study. This application example 
demonstrates model predictive control of a building 
with a thermally activated floor and solar shading. 
Furthermore, we show the use of explicit state 
initialization in ESP-r and a method to include 
uncertain weather predictions in the controller.1 
 

INTRODUCTION 
On our way towards nearly zero-energy buildings, 
there is increasing attention for integrated building 
and systems designs. Among the most popular 
concepts are the use of thermally activated building 
systems (Lehman et al., 2007), dynamic daylighting 
and shading systems (Jelle et al., 2011), and onsite 
energy generation and storage with renewable 
technologies (Arteconi et al., 2012).  
These concepts aim to take advantage of the multiple 
interactions between the building’s shape and 
structure, ambient conditions, occupants’ behaviour, 
and building services, for achieving high levels of 
indoor environmental quality while saving energy for 
space conditioning. Although this high degree of 
complex, dynamic and non-linear interactions, serves 
as basic working principle for the integrated building 
and systems concepts, it also introduces extra 
challenges in the design process (Kolokotsa et al., 
2010). Some of these may be attributed to the 
stronger mutual dependence between design 
decisions and operational performance of integrated 
concepts compared to ‘conventional’ buildings. 

                                                           
*  Current address: United Technologies Research Center;  

411 Sylver Ln; East Hartford, Connecticut, US.  

The performance space that can be traversed by 
operational strategies after construction is to a large 
extent confined by choices for building-specific 
design attributes (e.g. orientation, glazing percentage, 
system sizes). Well-informed design decisions may 
increase opportunities for successful building 
operation. Similarly, there is also a risk that 
unfavourable design decisions, based on e.g. intuition 
and rules of thumb, limit the scope for further control 
optimization, and result in performance lower than 
expected (Torcellini et al., 2004). 
It is therefore important to take realistic control 
aspects into account already in the design phase. Due 
to the strong dependency between their design and 
operation, this is especially important for integrated 
building and system concepts. Experimentation with 
different controller configurations helps in gaining 
better understanding of the challenges that are met in 
design of these concepts. In turn, this may help in 
refining the design for achieving the prospective 
higher levels of performance during operation. 
In addition, there is also a need to analyse the 
potential of advanced supervisory control strategies. 
Recent studies show that conventional rule-based 
strategies can only partially capture the complexities 
encountered in integrated building and systems 
control, and that more advanced operation strategies 
are needed to achieve the higher levels of 
performance as intended (Oldewurtel et al., 2012). 
Currently, however, there is a lack of design support 
tools that can provide such insights (Trcka and 
Hensen, 2010; Treado et al., 2011). 
In this paper, we introduce a virtual environment for 
performance evaluation of integrated building design 
and advanced control aspects, by using ESP-r, 
BCVTB and Matlab. This simulation-based approach 
enables users to experiment with different controller 
settings and configurations, in order to get more 
realistic information about operational performance 
already during the building design phase.  
In the next section, we provide more details on the 
software environment and its implementation. After 
that, these principles are illustrated in an application 
example. 
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ADVANCED DESIGN AND CONTROL 
ENVIRONMENT 
For effective and realistic performance prediction of 
advanced control strategies in the building design 
phase, we identified the following requirements: 
 All physical principles and their interactions, 

which are necessary to study the impact of design 
decisions on performance during operation, are 
preserved in the simulation process. 

 The method is scalable, and can be applied to 
many building types and climates. 

 The method does not rely on availability of 
training data or system identification procedures. 

 Energy performance and comfort evaluation can 
be studied at a high level of detail. 

 The method offers sufficient flexibility for 
modelling  innovative building energy concepts. 

 The building model allows the user to manipulate 
a large number of sensor and actuator variables. 

 Relevant uncertainties, including weather 
forecasts and occupants’ behaviour can be taken 
into account for assessment of robustness. 

Using these requirements, we consider whole 
building simulation as the favourable tool to use as 
basis for the design support environment. 

Tool selection 
ESP-r is amongst the building performance 
simulation (BPS) tools that offer the widest range of 
modelling capabilities (Crawley et al., 2008); 
therefore, it is an interesting candidate for studying 
advanced building controls. Its open-source structure 
is an additional advantage. ESP-r has been under 
continuous development for more than three decades, 
and has currently a number of strategies available for 
both local and supervisory control of building 
integrated energy systems (Clarke, 2001). However, 
considering the ongoing trend of increasing diversity 
and complexity of building controls (Dounis and 
Caraiscos, 2009), this predefined set of options does 
likely not offer the level of flexibility that is needed 
to continue fulfilling the demand. Moreover, other 
software programs are more suitable for this task. 
One of the most popular control-oriented tools is 
Matlab. 
To take advantage of the complementary aspects of 
ESP-r for design, and Matlab for control aspects, 
interprocess communication between the two tools 
during simulation run-time is needed. To this end, we 
use BCVTB as middleware (Figure 1). BCVTB is a 
software environment that enables users to couple 
different simulations programs for co-simulation 
(Wetter, 2011). Matlab is one of the clients that is 
available for coupling in the standard BCVTB 
release, however, ESP-r is not. In the next 
subsection, we show how we implemented the 
connection between BCVTB and ESP-r. 

Figure 1: Design support environment for buildings 
with advanced building controls; BCVTB provides 
data exchange of sensor and actuator values between 
the building (ESP-r) and the controller (Matlab) 
during simulation run-time. 
The coupling of ESP-r to Matlab through BCVTB is 
modular, and results in a co-simulation approach that 
offers several advantages compared to 
implementation of advanced controllers directly in 
ESP-r, including: 
 It is relatively straightforward to implement new 

controller concepts, or to change controller 
settings; the latter does not require recompilation 
of ESP-r. 

 It requires only limited knowledge of ESP-r’s 
source code structure and users do not need to be 
experts in FORTRAN programming. 

 It enables efficient use of Matlab’s toolboxes with 
powerful capabilities for controller development. 

 It is reusable and extensible, and can therefore 
accommodate newest developments in building 
controls research. 

Extension of ESP-r with BCVTB subroutines 
We used the existing BCVTB library functions to 
add ESP-r as a new client to BCVTB. Figure 2 shows 
a schematic overview of the code modifications we 
made to introduce BCVTB functionality in ESP-r. 
We added subroutines to establish and close 
communication with BCVTB, and for exchange of 
initial values. Furthermore, a subroutine was added 
for the exchange of control variables at each time 
step. This subroutine is currently implemented in a 
generic way for ESP-r’s ‘basic’ heating and cooling 
controller. However, it is relatively easy to place 
these functions anywhere in the ESP-r code where 
exchange of data is needed. Some typical use cases 
of the new possibilities in ESP-r include, adaptive-
window opening behaviour, comfort-driven heating 
and cooling control, and external coupling to other 
simulation packages for simulation of selected 
physical phenomena at higher resolution. In the 
application example presented in the next section, it 
is used in the ESP-r complex fenestration facility 
(CFC) to control solar shading. 
A version of ESP-r with BCVTB functionality is 
available for download from the ESP-r developers 
branch ‘ESP-r_BCVTB’. Example projects and 
instructions are available in the standard BCVTB 
release. 
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Establish BCVTB connection
(MZNUMA/BMATSV.F)

Exchange initial values (t0)
(MZNUMA/BMATSV.F)

Close BCVTB connection
(MZNUMA/BMATSV.F)

Exchange time step values
(e.g. BCLxx/BCFUNC.F)

Start simulation

End simulation

Day loop

Hour loop

Zone loop

Establish client socket
(BCVTBESTABLISH/BCVTB.F90)

Declare BCVTB parameters
(BCVTB.H)

Exchange initial sensor and 
actuator values

(BCVTBEXCHANGE/BCVTB.F90)

Exchange sensor and actuator 
values

(BCVTBEXCHANGE/BCVTB.F90)

Close BCVTB connection
(BCVTBCLOSE/BCVTB.F90)

Configure BCVTB
(define which sensors and actuators 
are coupled using *BCVTB heading 

in the ESP-r control file)

Read control configuration file
(EZCTLR/ECONTROL.F)

 

Figure 2: New ESP-r subroutines for communication 
with BCVTB (in BCVTB.F90) and adapted existing 
subroutines. 
 

APPLICATION EXAMPLE: MODEL 
PREDICTIVE CONTROL OF TABS AND 
SOLAR SHADING 
In this section, we show an application example of 
the control and design environment. We use it to 
study the behaviour of a building with a thermally 
activated floor and solar shading. Since thermally 
activated building systems (TABS) are slow 
responding, we need a controller which is able to 
anticipate on future events to assure optimal 
performance. Therefore, the potential of operating 
the coupled system of TABS and solar shading with a 
model predictive controller (MPC) is investigated. 
MPC uses models to predict future events, so it can 
anticipate to these events with an appropriate control 
strategy. In Figure 3 we show the basic principles of 
a MPC (Braun, 1990; Henze et al., 2004).  

Figure 3: Schematic overview of the MPC controller 
for two consecutive horizons (A and B). In both 
horizons, the upper bar represents the real building; 
the lower bar the controller-embedded model with 
moving horizons.  

First, the MPC searches for the most optimal control 
sequence for the optimization horizon. Next, the 
MPC implements the first control signals of this 
optimized sequence. After this, the optimization 
starts again with a shifted optimization horizon and 
updated predictions of boundary conditions. 

Design environment set-up 
As discussed in the previous section, in our design 
support environment the ‘real’ building is emulated 
with an ESP-r building model, and the controller is 
programmed in Matlab. As mentioned, a MPC uses 
models to predict future events. In literature, two 
main methods are described for these embedded 
models, using (i) reduced order or statistical, data-
driven models, or (ii) detailed first principle models. 
An analysis of literature (Clarke et al., 2002; Coffey 
et al., 2010) suggests that the latter approach matches 
best with our requirements (see previous section). 
Therefore, in this application example, we use 
instances of the same ESP-r building model for both 
the ‘real’ building and the embedded MPC model 
(from here on referred to as the embedded building 
model). Figure 4 shows the design support 
environment with the MPC. 

Figure 4: Overview of the design support 
environment with the model predictive controller. 
BCVTB facilitates the data exchange between ESP-r 
(building) and Matlab (controller) during simulation 
runtime. Communication inside the controller is 
based on scripts.  
To simulate performance of MPC under realistic 
conditions, we have to take into account  
disturbances or uncertainties. These effects are 
introduced for two reasons:  
 Without disturbances, the performance of the 

MPC would be overestimated, since control 
actions would be based on hypothetical perfect 
predictions from the embedded building model. 

 The goal is to ensure robust performance in 
accordance with the degree of uncertainty that is 
present in the real world application. 

Later, we show the method that we used to introduce 
weather uncertainties to the controller. But before we 
focus on these MPC related issues, we first discuss 
the ‘real’ building model. 

Optimization horizon   

Control 
horizon

(A)

(B)

Time (days)
n n+1 n+2
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Building case study 
The ESP-r building model is based on the residential 
houses of the Zonne-entrée project (Tata Steel Star-
Frame and Courage Architecten bna) in Apeldoorn 
(The Netherlands). The Dutch reference climate data 
of NEN5060:2008 are used. The building consists of 
five zones: zone A (south orientated) and B (north 
orientated) on the ground floor and zone C, D (south 
orientated) and E (north orientated) on the first floor. 
In Figure 5 the building is shown with additional 
details. The building is heated using a thermally 
activated layer in the (concrete) floor. Controllable 
external horizontal venetian blinds are installed on 
the South façade. 
The dwelling is occupied by two persons during 
evenings (18h to 24h) and nights (24h to 8h) with 
average internal heat gains of 4 W/m2. 

Figure 5: Case study based on Zonne-entrée 
Apeldoorn, facing the south façade. 
The MPC controller is able to operate the TABS and 
blinds simultaneously. The controller is set-up to 
change the heating control signal every 4 hours from 
0 (no heating) to 1 (full capacity) with three 
intermediate steps. The controller can set the blinds 
to three different states: 0 (fully retracted), 0.5 
(lowered with slat angle of 0o) and 1.0 (lowered with 
slat angle of 80o). For comparison, we also defined a 
basic feedback controller. This controller operates the 
TABS by changing the heating control signal from 0 
to 1 (continuous) for every 12 minutes (which is one 
simulation time step). During summer months, the 
blinds are lowered with slats set to 80 degrees 
(horizontal position) when the solar irradiance on the 
façade is higher than 300 W/m2. 
The objective of both controllers is to keep the PPD 
in the rooms below 10% during occupied hours, 
while minimising the heating energy demand. 

Uncertainties using a weather generator 
As mentioned, we use different uncertainty scenarios 
in the building controller to resemble the degree of 
uncertainty inherent in weather predictions. 
Therefore, the controller requires a method that is 
able to generate variability in daily weather forecasts 
depending on ‘observed’ weather variables (here the 
reference year used in ESP-r). This method should 
consider the following when generating weather 
forecasts (Wilks and Wilby, 1999): 

 Cross-correlation: The statistical correlation of 
weather variables with each other. 

 Persistence: The weather state of previous 
days. 

Rajagopalan and Lall (1999) introduce a weather 
generator with these features, which is based on 
historically recorded observed data at a specific 
location. Their weather generator is used to generate 
daily weather sequences for weather erosion 
prediction models. Basically, the weather generator 
searches for weather patterns in the historical data 
which are similar to the observed weather at the day 
of interest. The search is limited to a time window of 
several days around the day of interest to account for 
seasonal effects. 
Searching for similar weather patterns is done using a 
k-Nearest Neighbour approach. The nearest 
neighbours are historical days which show the 
‘closest’ statistical similarities with the observed 
weather data on day n. Three of these nearest 
neighbours are then selected, and the observed values 
for the subsequent days are adopted as predicted 
values for days after day n (n+1 and n+2 for horizon 
a in Figure 3). 
In our case study, we use historical weather data 
(1953-2011) recorded in De Bilt (The Netherlands), 
as input dataset to the k-Nearest Neighbor algorithm. 
We use hourly values of diffuse and direct solar 
intensity, dry bulb temperature and relative humidity 
to represent the daily weather state. In Figure 6 we 
show an example of a weather forecast generated for 
the 20th of May of the reference year. We show this 
day, because it is in an intermediate season and 
therefore is more likely to show uncertainties in 
predictions. In the figure, the neighbours show good 
agreement with the observed weather. Furthermore, 
realistic uncertainties are observed in the predicted 
weather variables. 
This method seems useful for our purpose and will 
therefore be used in the MPC controller. 

State initialization in ESP-r 
Another MPC issue we address here is the state 
initialization of BPS tools. According to literature 
(Wetter and Haugstetter, 2006; Coffey et al., 2009), 
one of the main drawbacks of using detailed BPS 
tools for MPC applications are the time-consuming 
preconditioning periods which are necessary to 
guarantee stability in starting conditions. Depending 
on operational schedules, and thermal time constants 
of constructions, this initialization period may 
consume up to 80% or more of the actual simulation 
time (Nghiem and Pappas, 2011; Corbin et al., 2012). 
In earlier MPC studies with BPS as embedded 
building model, it was not, or only partly (Coffey, 
2011) possible to remove this initialization period, 
because the programs they used (e.g. TRNSYS and 
EnergyPlus) did not allow access to the state 
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variables. An advantage of ESP-r is that it does give 
the user access to the building and system’s state 
variables. We used this flexibility to circumvent the 
need for repeatedly running initialization periods. For 
that purpose, we added a subroutine, which stores all 
state variable values in a text file before the start of a 
new control horizon. At the first time step of the 
MPC optimization horizon, these state variables are 
used to explicitly overwrite ESP-r’s default 
initialization values (while setting the start-up period 
to zero days). 

Control sequence optimization 
The final MPC feature we discuss, is the optimization 
procedure that is used to search for the optimal 
control strategy. We use the Matlab genetic 
algorithm (single objective) to optimize each 
optimization horizon. In this case study, the length of 
the optimization horizon is 48 hours, to account for 
the system’s slow response time (Candanedo and 
Athienitis, 2011). The control sequence of this 
optimization horizon consists of 12 signals for the 
TABS (every four hours) and 4 signals for the blinds 
(two in the morning and two in the afternoon). The 
objective of the algorithm is to minimize the average 
energy demand of the uncertainty scenarios, while 

maintaining the average PPD < 10% during 
occupation. 
The following settings are used for the genetic 
algorithm: cross-over fraction of 0.8, population of 
30 and 2000 iterations per optimization horizon. To 
aid convergence, the previously optimized control 
sequence (shifted with one control horizon length) is 
added to the initial population. 
As an example, we show the optimized control 
sequence for zone A (Figure 7) and the resulting 
thermal comfort (Figure 8) for the previously 
generated weather scenarios. The figures show that 
the algorithm chooses to heat the building during the 
first day, this is caused by the high probability of 
relatively low temperatures and almost no solar gains 
(two out of three uncertainty scenarios). On the third 
day, the algorithm choses to close the blinds, since it 
predicts a high probability of high solar gains (two 
out of three uncertainty scenarios). 

Comparison of controller strategies 
For three winter days (December 9, 10 and 11), we 
tested the performance of the MPC and compared the 
results with the basic controller. The period covers 
two sunny days and one day with overcast sky 
(Figure 9). 

 

Figure 6: Temperatures and direct normal solar intensity of a day in the reference year (May 20; dashed line) 
and its three ‘nearest neighbours’ (May 16 of 1963, May 20 of 1984 and May 22 of 1969; resp. solid blue, 
green and red lines). The neighbours are selected from the historical data with a time window of 10 days 
around the reference day. A weather forecast of two days is generated using the historical data of these 
neighbours. 

May 21 (predicted) May 22 (predicted) May 20 (measured) 
Time [hrs] 

May 21 (predicted) May 22 (predicted) May 20 (measured) 
Time [hrs] 
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The resulting thermal comfort and control sequences 
for both controllers are shown in Figures 10 and 11 
respectively. The behaviour of both controllers shows 
clear differences during the first two days. The basic 
controller heats up the room with maximum capacity 
directly when the PPD rises above 10%. The MPC 
predicts the direct solar gains that occur later during 
the day, and anticipates by using these gains to heat 
the building in a passive way. This results in lower 

heating loads, and also produces less fluctuations in 
PPD compared to the basic controller.  
On the third day (no direct solar gains), the basic 
controller starts heating the building early in the day, 
whereas the MPC uses an optimized starting time for 
heating. Furthermore, the MPC demands less energy, 
since it maintained more constant temperatures 
during the previous days.  
Over the three days period in December, the MPC 

Figure 7: Optimized control signal. Solid line is control signal for the heat injection (signal*1kW). Dashed line 
is signal for the blinds (0 is retracted, 0.5 is lowered with angle of 0o (horizontal), 1.0 is lowered with angle of 
80o). 

Figure 8: Thermal comfort for each weather scenario using the optimized control sequence. The average PPD 
per hour is indicated with the solid lines. Occupied hours are indicated with the red bars on the x-axis. 

Figure 9: Temperature and direct solar gains on December 9, 10 and 11 of the reference year. 
 

 0:00  4:00  8:00 12:00 16:00 20:00  0:00  4:00  8:00 12:00 16:00 
May 21 May 22 

Time [hrs] 

 0:00  4:00  8:00 12:00 16:00 20:00  0:00  4:00  8:00 12:00 16:00 
May 21 May 22 Time [hrs] 

 0:00  4:00  8:00 12:00 16:00 20:00  0:00  4:00  8:00 12:00 16:00 
May 21 May 22 

Time [hrs] 
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strategy reduces the energy demand for heating with 
15% (MPC demands 11kWh for the simulated period 
and the basic controller 13kWh). At the same time, 
thermal comfort conditions in the room are 
improved. 
 

DISCUSSION 
The focus in the application example is on the 
demonstration of proof of principle, and to comment 
on the details of the ESP-r to Matlab coupling with 
the MPC implementation. In future work, this 
controller implementation will be used to study the 
influence of the building design and MPC controller 
configuration on the performance of the TABS. In 
such a study, the influence of the following MPC 
parameters should be investigated in more detail: 
 Choice of optimization algorithm; 
 Control horizon length; 
 Optimization horizon length; 
 Number of uncertainty scenarios; 
 Formulation of the objective function. 

Nevertheless, it is encouraging that our preliminary 
results show the potential benefits of a MPC that 
takes uncertainties into account. In follow-up studies, 
it would be worthwhile to demonstrate that the 
concepts presented in this paper also work in 
supervisory control of actual buildings. 
 

CONCLUSIONS 
This article presented a tool based on ESP-r, BCVTB 
and MATLAB, for performance prediction of 

advanced supervisory control in the building design 
phase. By using this tool, it is possible to analyse the 
mutual impacts of advanced building controls and 
integrated building and systems designs. As a result, 
it may help as a decision support tool to enable more 
effective design and operation of such complex 
systems. 
An application study of MPC for a building with 
TABS and solar shading showed the principles of 
this new way of performance prediction of advanced 
building controls in more detail. Furthermore, we 
showed the use of explicit state initialization and 
uncertain weather predictions with a k-Nearest 
Neighbour approach as useful additions to the 
growing body of research that focuses on 
investigating the potential of offline MPC. 
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