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Abstract. We report about experiences with component-based devel-
opment supported by formal techniques at Philips Healthcare. The for-
mal Analytical Software Design (ASD) approach of the company Verum
has been incorporated into the industrial workflow. The commercial tool
ASD:Suite supports both compositional verification and code generation
for control components. For other components test-driven development
has been used. We discuss the results of these combined techniques in a
project which developed the power control service of an interventional
X-ray system.

1 Introduction

We describe our experiences with the use of a formal method during an indus-
trial component-based development project. Our focus is the embedding of the
method in the industrial workflow. As observed in [5, 30], there are quite a num-
ber of reports about industrial case studies with formal methods, but very few
publications describe second or subsequent use. Similarly, the literature about
the incorporation of formal methods in the standard industrial development pro-
cess is very limited.

We present a workflow which combines test-driven development of compo-
nents with a commercial formal approach and describe experiences with it at
Philips Healthcare. In this introduction, we describe the motivation behind these
approaches, the main characteristics of the formal techniques used, related work,
and the main research questions.

This work has been carried out at the business unit interventional X-Ray
(iXR) of Philips Healthcare, for developing components of a power control service
(PCS) of the X-ray machine depicted in Figure 1. The developed components
are part of innovative X-ray systems that are used for minimally-invasive surgery
where catheters are used to improve, for instance, a patient’s blood vessels. This
requires only a very small incision and physicians are guided by X-ray images.
In this way, often open heart surgery can be avoided.

? Supported by ITEA project Care4Me and COMMIT project Allegio.
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Fig. 1. Interventional X-Ray system

To support a fast realization of the quickly increasing amount of medical
procedures that use this type of image guided surgery, a component-based de-
velopment approach is introduced. New components are developed according to
this paradigm and existing parts are gradually replaced by components with
well-defined formal interfaces. The definition of formal interfaces supports par-
allel, multi-site development and improves the integration with the increasing
amount of 3rd party components.

At Philips Healthcare, the component-based development approach is based
on a formal approach called Analytical Software Design (ASD). This approach
is supported by the commercial tool ASD:Suite of the company Verum [29].
ASD [7, 19] enables the application of formal methods into industrial practice
by a combination of the Box Structure Development Method [23] and CSP [16].

An analysis of the first usage of the ASD approach at Philips Healthcare
shows that it leads to the development of components with fewer reported de-
fects compared to components developed with more traditional development
approaches [14, 15]. Therefore, formal methods are gradually becoming more
and more credible in developing software within Philips Healthcare. However,
in the healthcare domain this requires validated tools and the incorporation of
these new techniques into well-defined development and quality management
processes. This requires an answer to a number of questions such as:

– How can formal techniques be tightly integrated with standard development
processes in industry? To which extent does the formal verification affect
the test and integration phase? Are certain tests no longer needed? Which
tests are still essential to guarantee the quality of components? Can formal
interface models be used to generate test cases?
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– What is the impact of the modeling and formal verification on the project
planning? Is more time needed during the design phase? Can the test and
integration phase be shortened?

– Which artifacts have to be included in the version management system; do
we need the models, the generated code, or also the version of the tool?

– How to deal with changes; how flexible is the approach?
– How does the approach fit into the existing quality management system, e.g.,

concerning the required review procedures.

We report about the experiences with these issues during the development
of components of the PCS for the interventional X-ray system. Note that this
is not a case study, but a real development project for a service that is used by
different parts of the system which are developed at different sites.

This paper extends [1] with relevant details. It provides more explanation on
the compositional construction and verification approach of ASD and shows by
an example how components are built in isolation, considering only interfaces
of boundary components. We also explain the formal checks that can be carried
out by ASD:Suite. Additionally, more detailed information is given about the
modeling and verification of the PCS at Philips Healthcare and the issues en-
countered. In particular, we describe two typical errors that were not discovered
by the formal checks. Although these errors escaped both specification review
and formal verification using model checking, they were easy to detect and to
fix. Another extension concerns information about the evolution of the code of
the PCS and the effort spent for developing its components.

This paper is structured as follows. Section 2 describes other work which is
related to the ASD approach. Section 3 introduces the ASD approach as far
as needed to understand the remainder of this paper. Section 4 presents the
workflow that has been used to combine formal and traditional approaches for
developing software components. Section 5 introduces the PCS and its role in the
interventional X-ray system. Section 6 describes the application of the presented
workflow to the PCS. In Section 7 we present two errors which were found after
completing the formal verification using ASD:Suite. In Section 8 we discuss the
results achieved in this project. Section 9 contains our main observations and
current answers to the questions raised above.

2 Related work

The ASD approach has been inspired by the formal Cleanroom software engi-
neering method [21, 24] which is based on systematic stepwise refinement from
formal specification to implementation. As observed in [6], the method lacks
tool support to perform the required verification of refinement steps. The tool
ASD:Suite can be seen as a remedy to this shortcoming. The additional code
generation features of the tool make the approach attractive for industry. Related
to this combination of formal verification and code generation are, for instance,
the formal language VDM++ [11] and the code generator of the industrial tool
VDMTools [9]. Similarly, the B-method [3], which has been used to develop
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a number of safety-critical systems, is supported by the commercial Atelier B
tool [8]. The SCADE Suite [10] provides a formal industry-proven method for
critical applications with both code generation and verification. Compared to
ASD, these methods are less restricted and, consequently, correctness usually
requires interactive theorem proving. ASD is based on a careful restriction to
data-independent control components to enable fully automated verification.

3 Fundamentals of Analytical Software Design

ASD is a component-based, model-driven approach that combines formal math-
ematical methods with industrial software development methods. The approach
is supported by the commercial tool ASD:Suite of the company Verum. The
tool supports two types of models which are both based on state machines and
described by a similar tabular notation: interface models and design models. At
Philips, these models are exploited as follows:

– The interface models are used to define the interaction protocol between
important system components in a formal way. An interface model describes
not only signatures of methods to be invoked by other components but also
the external behavior exposed to client components. Internal interactions
with lower-level components are not present in this model.

– The design model describes the internal behavior of a component given its
interface model and typically uses the interface models of other components.
By means of the ASD:Suite it can be verified formally whether the design
model refines the interface model. Very important in our industrial context
is that ASD:Suite supports complete code generation from design models to
a number of programming languages (C, C++, C#, Java). Hence, design
models provide a platform-independent description of internal component
behaviour.

ASD uses a Sequence-Based Specification Method [25] to obtain complete
and consistent specifications. This means that the response to all possible se-
quences of input stimuli has to be defined. Sequences that cannot happen must
be declared illegal explicitly. The tool ASD:Suite translates the sequence-based
specifications into CSP. The FDR2 model checker [12] is used to verify a pre-
defined fixed set of properties such as refinement and absence of deadlock and
livelock. Error traces are visualized by means of sequence diagrams.

ASD:Suite hides the CSP and FDR2 details, which is important to enable in-
dustrial usage. To enable automated refinement checks, the use of design models
is restricted to components with data-independent control decisions. Compo-
nents that involve data manipulations or algorithms are implemented by other
techniques. Hence, it is important that the ASD approach is compositional [18];
the formal verification uses only the interfaces of the used components, without
knowing their implementation.

To illustrate the above concepts we introduce a small example, focusing more
on the specification and verification of ASD models. Figure 2 depicts an example
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system that includes a controller component (Ctr) and a sensor device. The
sensor is assumed to monitor the status of a door of the X-ray examination room.
When the sensor detects that the door is open, it notifies the top controller which,
in turn, notifies its clients. As a result, these clients might stop the generation
of X-ray and display user messages.

Ctr

ICtr

DoorSensor 

(Hardware)

IDoorSensor

IDoorSensorCB

Clients

Fig. 2. An example of a controller and a sensor device

3.1 Specification of ASD models

The structure of the ASD models related to the example of Figure 2 is depicted
in Figure 3.

In general, each component has an ASD interface model which captures
the external behavior related to clients. In our example, a small ASD interface
model related to the Ctr component is shown in Figure 4, using a screenshot of
ASD:Suite version 6.2.0.

The specification is straightforward and consists of four sub-tables, repre-
senting states Created, Initializing, Initialized and initializeFailed, each having
four rule cases (rows in the table). A rule case includes a number of items such
as a communication channel (interface), a stimulus event (a method) supplied
by optional data parameters, predicates (conditions on the stimulus), response
events, transition to a next state, comments and tags to informal requirements.

In order to force developers to be complete, all rule cases must be filled in.
That is, in all states the response to all stimuli must be specified. Events that
are forbidden in a certain state are declared Illegal while events that may not
happen at a state are declared Blocked. The Null response is assigned for ignoring
stimulus events.
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Ctr

IDoorSensor

Interface model

Design model

Refinement

Channel 

ICtr

Used by client 
components

Design model uses 
sensor interface 

IDoorSensor
IDoorSensorCB

External behavior 
of sensor

Timer 

Queue 

Combined 
model

External 
behavior of 

Ctr 

Fig. 3. Structure of ASD models

The specification describes the behavior with respect to clients. In the Created
state client components can initialize Ctr by invoking the initialize stimulus
through the ICtr channel. The ICtr.NullRet response indicates the completion
of the request after which the Ctr transits to the Initializing state. In the Created
state invoking the unInitialized stimulus is not allowed.

Internal interactions not visible to clients are specified by means of mod-
eling events. Moreover, ASD components can notify clients using the callback
mechanism. For specification readability we usually add the postfix ‘INT’ to the
channel name of internal modeling events and ‘CB’ to channels of client callback
events. For example, rule case 15 specifies that when the sensor internally be-
comes active, the Ctr sends the stopXray callback event via the ICtrCB callback
channel to clients.

The corresponding design model of the Ctr component is depicted in Figure 5.
It extends the interface model and includes further interactions with the used
sensor component. In general, each component has a queue where callback events
from its used components are stored. Rule cases dealing with callback events have
priority over client calls. In the example, the queue of the Ctr component will
contain callback events of the used sensor component.

Similar to the interface specification, in rule case 2, a client can initialize the
Ctr ; but in the design model this leads to an initialization of the sensor via the
IDoorSensor interface and the start of an ASD timer for 3 seconds. Next, the
controller transits to the Initializing state where it expects a callback event from
the sensor or a timeout event from the timer. In both cases, the Ctr component
informs its clients by means of corresponding callback events. It deactivates the
timer if a sensor event is received before the timer expires.
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1

Fig. 4. Interface model of the Ctr component

3.2 Verification of ASD models

ASD components are verified in isolation, using the interfaces of boundary com-
ponents. There is a fixed set of properties that can be verified. Figure 6 depicts
a screenshot of the standard formal checks performed for verifying the models
of the Ctr component:

– The first two properties verify whether the ICtr interface model is livelock
and deadlock free.

– The third and the fourth property specify whether the sensor and the timer
interface models are livelock free.

– The fifth property expresses that the design model of the Ctr component
should be deterministic.

– The sixth property specifies the absence of illegal scenarios and queue over-
flow cases in the design of the component. This check is based on the par-
allel composition of the design model and the interface models of the used
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1

Fig. 5. Design model of the Ctr component

components (this combined model is constructed in the background by the
ASD:Suite).

– The seventh property expresses that the combined model mentioned in the
previous point is deadlock free. Together with the previous properties it
guarantees that the design model of the component uses the interfaces of
the used components in a correct way.

– The last two properties are used to check conformance of the combined
model (asd Implementation) with respect to the corresponding ICtr interface
model (asd Specification), under both the Failure and Failure-Divergence
refinement models as supported by the FDR2 model checker [13].

Observe that when the last two checks succeed, the interface model ICtr is
a correct representation the design of the Ctr component combined with the
used components timer and sensor. Hence, clients of the Ctr component can be
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Fig. 6. Formal ASD checks

verified using only the interface model ICtr. In general, this mechanism often
mitigates the state space explosion problem, since the interface model is usually
much simpler than the combination of design model and used interfaces.

4 Integrating formal techniques in industrial workflow

The development process of software, used in projects within the context of iXR,
is an evolutionary iterative process. That is, the entire software product is de-
veloped through accumulative increments, each of which requires regular review
and acceptance meetings by several stakeholders. Figure 7 outlines the flow of
activities in a development increment, highlighting the steps to incorporate both
the ASD and the test-driven development (TDD) [4] approaches.

Incremental 

planning

ASD 

specification

Behavioral 

verification
Specification 

review

Code 

generation

Module 

testing

End of 

increment
Test 

cases

Code 

integration 
Software 

design
Requirements 

Test 

execution
Manual 

coding

Test + code 

review

ASD

TDD

Fig. 7. Steps performed in a development increment

Each increment starts with identifying a list of requirements to be imple-
mented by team members. As soon as requirements are approved by lead archi-
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tects, the development team is required to provide work breakdown estimations
that include, for instance, required functionalities to be implemented, necessary
time, potential risks, and efforts.

For planning and tracking a Work Breakdown Structure (WBS) is created.
A WBS consists of tasks that need to be completed in a certain order to obtain
a finished product. At the beginning of each increment a new WBS for that
increment is created. For each task, the time needed to complete the task is
estimated with the Wideband Delphi estimation method [27]; this means that
the effort needed for every task is estimated by two or more experienced software
designers in the first phase. In the second phase, software designers need to
get consensus on the estimate. The outcome of the estimate is then used in
the planning. Not all tasks of the WBS are estimated; some are derived from
historical data. Examples are overhead and average time needed to solve a defect.

Team and project leaders take these work breakdown estimations as an input
for preparing an incremental plan, which includes the list of functions to be
implemented in a chronological order, tightly scheduled with strict deadlines to
realize each of them. The plan is used as a reference during a weekly progress
meeting for monitoring the development progress.

The construction of software components starts with an accepted design,
i.e., a decomposition into components with clear interfaces and well-defined re-
sponsibilities. Usually such a design is the result of iterative design sessions and
approved by all team members. When the aim is to use ASD, a common design
practice is to organize components in a hierarchical control structure. Typically,
there is a main component on the top which is responsible for high-level, abstract
behaviour, e.g., dealing with the main modes and the transitions between these
modes. More detailed behaviour is delegated to lower-level components which
deal with a particular mode or part of the functionality.

The control components are then developed using ASD, whereas TDD is used
for the other components. These two approaches are explained below, describing
the well-known TDD approach only briefly.

4.1 The Test-Driven Development approach

The TDD approach starts each increment with the definition of a set of test cases.
To validate the test set, it is checked whether all tests fail on an empty imple-
mentation. Next the components are developed iteratively, gradually increasing
the set of passed test cases. When all tests succeed, the code of the components
is reviewed by the team before it is integrated with the code generated by the
ASD approach.

4.2 The Analytical Software Design approach

An overview of the activities in the ASD approach is depicted in Figure 8.
Starting point is a structure of the components as described above.
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1. 2. 3. 4. 5. 6.

Fig. 8. The ASD approach to develop components

ASD components can be developed in a top-down, bottom-up or middle-
out fashion. Each component is developed using ASD according to the steps 1
through 6 of Figure 8:

1. Specification of externally visible behaviour. At first, an ASD interface
model of the component being developed is created. This interface model might
already exist if the component is used by a component that has been developed
already, as explained in the next step.

2. Specification of external behaviour of used components. Similarly, ASD in-
terface models are constructed to formalize the external behaviour of components
that are used by the component under development.

3. Model component design. An ASD design model of the component is cre-
ated; it describes the complete behaviour of the component, including calls to
used interface models (as created in step 2) to realize proper responses to client
calls.

4. Formal verification of the design model. Using the FDR2 model checker
controlled by the ASD:Suite tool, the design model is exhaustively checked on the
absence of deadlocks, livelocks, and illegal interactions with the used interface
models. When an error is detected by FDR2, ASD:Suite presents a nice sequence
diagram and allows users to trace the source of the error in the models.

5. Formal refinement check. ASD:Suite is used to check whether the design
model created in step 4 is a correct refinement of the interface model of step 1.
As in the previous steps, errors are visualized and related to the models to allow
easy debugging.

6. Code generation and integration. After all formal verification checks are
successfully accomplished, source code can be generated from the model.

5 Context of the Power Control Service

The embedded software of the interventional X-ray system is deployed on a clus-
ter of PCs and devices that cooperate with one another to achieve various clinical
procedures. The control of power to these components is the responsibility of a
central power distribution unit (PDU). Clinical users of an individual PC cannot
control the power of the PC without using the PDU, as depicted in Figure 9. The
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PDU also controls communication signals related to the startup and shutdown
of the PCs.

PDU

UIM

PC PCPCPC PC

MAINS

Power

Ethernet

Power 

Taps
PCS PCS PCS

Controller

PCS PCS

Fig. 9. The PCS in the context of power distribution

As can be seen in Figure 9, each PC includes a PCS which is used for ex-
changing power-related communication commands between running applications
within a PC and the PDU through an Ethernet network. As a typical example of
powering off the system, the PDU sends a message instructing all PCSs to grad-
ually shutdown first the running applications and next the operating systems
(OS), in an orderly fashion. The PDU is connected to a User Interface Module
(UIM).

Figure 10 sketches the PCS in a PC as a black-box, surrounded by a number
of internal and external concurrent components, located inside and outside the
PC. For instance, the PDU interacts with the PCS to reboot or shutdown the
PC. Moreover, the PCS can also send events to the PDU to enable or disable a
number of buttons on the UIM.

Another example of a concurrent component is the InstallApplication which
is an external component used to install and upgrade software on the PC. During
the installation of software on a PC, the PCS instructs the running applications
to stop, start or restart.

The main function of the PCS is to coordinate all requests to and from these
parallel components. Due to the concurrent execution, controlling the flow of
events among the components is rather complex, and the architecture sketched in
Figure 10 is prone to deadlocks, livelocks, race conditions and illegal interactions.
Since the PCS is deployed on every PC, any error is replicated on every PC and
potentially leads to serious problems of the entire system.

Moreover, the PCS may lose connection with other components at any time
due to a failure of other components (e.g., applications) or with the PDU (e.g.,
due to a network outage). The PCS has to be robust against such failures,
especially when the PCS is in the middle of executing a particular scenario. When
the PCS detects that the system is in a faulty state, it should take appropriate
actions and log the events for further diagnostics by the field service engineer.
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Fig. 10. The PCS as a black-box surrounded by concurrent components

As soon as the cause of malfunctions has disappeared, the PCS ensures that all
its internal components are synchronized back with other external components
to a predefined state.

Due to the high complex behaviour of the PCS and the many possible regular
and exceptional execution scenarios that need to be considered carefully, the
ASD technology has been used to develop the control part of the service, and
to specify the external behaviour of the components on the boundary of the
PCS. The TDD approach has been applied to develop the non-control part of
the service and the components on the boundary of the PCS.

6 Steps of developing components of PCS

In this section we report about the component-based development of the PCS
from October 2010 till October 2011. The development process contained five
increments, each implementing part of the PCS functionality. The ASD-based
development of control components and the development of other components
using TDD has been carried out in parallel, as depicted in Figure 7. Below we
describe the development process in more detail, concentrating on the ASD part,
since the TDD approach is more conventional.

Requirements and incremental planning. The development process was
started by identifying the scope and the requirements of the PCS. At early stages
of development it was difficult to reach agreement with all stakeholders, since
they had different wishes concerning the required functionality. The process of
getting consensus took up to two-thirds of the total time. During this negotiation
phase, requirements and design documents were iteratively written and reviewed
by team members to reflect the current view of the solution and as input for
further discussions.
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Hence, the development process initially took place in a context where scope
and requirements were very uncertain and changed frequently - even within a
single increment. Additionally, the features required to be implemented in every
increment were only known at a very abstract level, such as: “In increment
2 automatic logon of the default user of a PC has to be implemented”. The
requirements of each increment were only acquired just at the beginning of the
increment, which put more pressure on meeting the strict deadlines.

Software design. The design of the PCS consists of a hierarchy of com-
ponents, as depicted in Figure 11. In this decomposition, ASD components are
depicted in a gray color, whereas light colored components have been developed
using TDD. Not shown in the picture are commonly used components such as
tracing (to facilitate in-house diagnostics by developers) and logging (to facilitate
diagnostic by field service engineers in the field).

Fig. 11. Components of the PCS

The decomposition of PCS components was accomplished top-down in steps,
such that each level comprises components with high-level of abstracted behav-
ior. Below we describe each ASD component individually sketching briefly their
related responsibilities.
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– The PduEventController component mainly serves commands issued by the
external components: the PDU and the InstallApplication, for instance. It
contains a top-level state machine that captures overall global states (or
modes) of a PC: normal mode, installing, starting/stopping applications,
operational, ..etc.

– The InstallTransitioning component implements the detailed behavior of the
installation mode of the top-level state machine. The component is responsi-
ble of safeguarding the detailed transitions from normal mode to installation
mode, and vice versa.

– The Starting component launches the clinical applications of a PC and logs-
on/off the default clinical user. It ensures that clinical applications are suc-
cessfully started.

– The Stopping component is responsible for ensuring that closing the running
applications and then shutting down or rebooting the OS is done sequentially.

– The Filter components are responsible for starting, restarting, and stopping
the applications within a predefined fixed time. They are the facade to the
components of located outside the boundary of the PCS.

Experience shows that most novice ASD users tend to design rather large
components leading to large ASD models [26, 15]. Although this might be ac-
ceptable in traditional development methods, it leads to serious problems when
using formal techniques such as ASD:Suite. The key issues encountered with
large models were as follows.

– Verifiability: while verifying large models one quickly runs into the main lim-
itation of model checking, namely the state-space explosion problem. Veri-
fication may take a large number of hours or might even be impossible for
large models.

– Maintainability: design models which contain a substantial number of input
stimuli and states are difficult to adapt or to extend. This leads to problems
when requirements change or functionality has to be added.

– Readability: large design models are hard to read and to understand. Design
reviews will consume a large amount of time.

During the development of the PCS, the first point was the main concern.
Earlier experience showed that as soon the state space explosion problem is
faced, the development process is blocked and components have to be refined
and redesigned from scratch. Since code generation is only allowed when the
formal verification checks succeed, this causes some visible deviations between
hours estimated in the WBS’s and actual hours spent for development.

Therefore, the design of the PCS has been decomposed into rather small
components, described using small models. Although the ASD approach shown
in Figure 8 does not prescribe an order in which the components are realized, we
used a top-down, step-wise refinement approach. This effectively helped us dis-
tributing responsibilities and maintaining a proper degree of abstraction among
all components. In this way we obtained a set of formally verifiable components.
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Specification and formal verification of ASD models. The ASD models
were specified using the ASD:Suite version 6.2.0, following the ASD recipe. Each
component was modeled in isolation with interfaces of boundary components. An
example structure of ASD models related to the Stopping component is depicted
in Figure 12.

Stopping

IFilter_v1.0 IOsActions

IStopping

Filter_v1.1Filter_v1.0

IFilter_v1.1

IF2 IF2

Used by upper 
client components

Combined model 
refines IStopping

Design model 
uses interfaces of 
used components 

IOsActions

Fig. 12. Structure of ASD models of the Stopping component

The Figure depicts the interface model IStopping that describes the external
behavior of the Stopping component excluding related lower-level interactions.
As shown in the figure, the interface is refined by a design model and a number
of interface models that represents lower-level ASD and non-ASD components.

Upon the completion of specification, the models were verified also in sepa-
ration. The formal verification was performed on a remote server located at the
company Verum.

The ASD formal properties introduced in Section 3.2 were performed step
by step for the models of each component. We first started checking correctness
of interface models. When this check succeeded, we searched for illegal scenarios
and then for deadlocks in the design model. After that we checked determinism
and finally refinement of designs against the interfaces.

Note that although we followed this order, the entire verification process is
rather iterative. That is, when a property fails and certain changes to the models
are required, we re-check all previously succeeded properties.

Usually, this reveals quite a number of errors, both in design and interface
models. Since changes in interface models affects other boundary components
this sometimes leads to a chain of changes. However, since our components are
kept small, it is easy and fast (usually less than a second) to re-check these other
components.

Specification review, code generation and integration. Although the
formal verification is very useful to detect errors, it does not guarantee that the
design model realizes the intended behaviour. For instance, the correct relation
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between client calls and calls to used components is not checked. Also the value
of parameters is not verified. Hence, when all formal checks succeed, the ASD
models were reviewed by the project team. The review process performed for
the ASD models was similar to the review process of any normal source code
developed manually. After the team review, including corrections and a re-check
of the formal verification, C# source code was generated automatically using
ASD:Suite. This code is then integrated with the manually coded components.

Testing. At the end of each increment the ASD generated code plus the
manually coded components were exposed to black-box testing. Corresponding
test cases were specified and implemented before and in parallel to the imple-
mentation of the increment. As a result of the black-box testing, a total of three
errors were found, two of which were related to ASD components and one to
the manually coded components. Note that the manually coded components are
rather straightforward and less complex than the control part developed in ASD.
The error in the manually coded components was due to the existence of a null
reference exception. We detail ASD errors in subsequent section.

The entire PCS code was exposed to further testing on module level at the
end of all increments. After that, both manually written code and test code were
carefully reviewed by team members. As a result of review, minor issues were
identified and immediately resolved. Test cases were rerun in order to assure that
the rework after review did not break the intended behaviour of the service.

7 Errors which were not detected by the ASD verification

As a result of the black-box testing, two errors were found in the ASD code
throughout all increments. We refer to the two errors as:

– the ordering error, since it concerns the ordering of messages of multiple
components, and

– the multi-client error, since it results from the interaction between multiple
clients.

Below we explain the details of these errors, highlighting their sources and po-
tential solutions.

The ordering error. This error was caused by the impossibility to specify
and verify properties about the order of messages of two components in ASD. In
our case study, this concerns the Stopping and the Filter components. Consid-
ering Figure 11, the Stopping component can receive a request to shutdown the
PC from the PduEventsController component. The Stopping component first
instructs the Filter component to stop the running applications and then waits
for the result before it instructs the OsActions component to shutdown the OS.

As specified in rule case 19 in Figure 13 of the Filter design model, the Fil-
ter component starts its timer, instructs the clinical applications to stop, and
transits to the Stopping state waiting some seconds for a notification from the
applications indicating the completion of the stop request. Meanwhile, if the
timer expires while waiting for the notification, the Filter notifies the Stopping
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Fig. 13. Design model of the Filter component

component using the Stopped callback and then logs a “FinishedStoppingAfter-
TimeOut” message; see rule case 28 in Figure 13.

When the Stopping component receives the notification from the Filter, it
instructs the OsActions component to shutdown the operating system and then
logs a “Shutdown” message indicating that the system is shutting down.

A test case was implemented which requires the log messages to be received
in a logical order. That is, the “FinishedStoppingAfterTimeOut” is received fol-
lowed by the “Shutdown” message. But the test case failed since it unexpectedly
received the messages in the reverse order.

The reason of this error was that when the timer expired, the Filter com-
ponent sent the Stopped callback to the queue of the Stopping component and
then tries to log the “FinishedStoppingAfterTimeOut” message. Since the queue
runs in a separate execution thread, the execution context was switched such
that the Stopping component quickly de-queued the callback, sent the shutdown
request to the OS and immediately logged the “Shutdown” message before the
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Filter component logged the “FinishedStoppingAfterTimeOut” message; see the
sequence diagram of Figure 14.

OSActionsStopping Filter Application Timer

Stop

Shutdown

OS Test

Stop
Start timer

Few seconds
Time out

Stopped

Context switched. Log 

message is blocked.

Shutdown
Log message “Shutdown”

Context switched. 

Filter continues.
Log message “FinishedStoppingAfterTimeOut”

Unexpected. Test 

case asserts.

Shutdown

Fig. 14. Error caused by concurrent execution of events due to wrong ordering

This error was easy to find by testing, but it was hard to reproduce due to
its concurrent nature. The scenario was not detected by the model checker due
to the compositional verification. That is, verification of the Filter design model
did not include the design of the Stopping design model.

Fixing the error was straightforward. We changed the order of responses in
rule case 28 of the Filter component such that the “FinishedStoppingAfterTime-
Out” message is logged before notifying the Stopping component.

The multi-client error. Although the model checker of ASD:Suite verified
the absence of illegal events, testing showed an illegal event during the execution
of the PCS. Figure 15 depicts the structure of the three components involved
in the error: the PduEventController, the InstallTransitioning and the Stopping
components. The Stopping component was initially in the Created state, waiting
to be initialized by its client components. Upon receiving the initialize call,
it initializes other lower-level components and then transits to the Initialized
state, where any other initialize call is illegal. However, the Stopping component
received the first initialize call from the PduEventController component, and
then the second call from the InstallTransitioning component, causing the illegal
error in the Initialized state.

The reason of not detecting this error using model checking when verifying
the PduEventController component is that the interface model of the Install-
Transitioning component exposes only the interaction with the client PduEvent-
Controller component, excluding any interaction with the Stopping component;
see Figure 15. More precisely, the initialize call from InstallTransitioning to the
Stopping component is excluded from the specification and formal verification,
causing a hidden dependency between the InstallTransitioning and Stopping
components not visible to the PduEventController.
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Fig. 15. Model checker could not detect the error due to a hidden dependency

Similar to the first error, solving this issue was also straightforward. We
ignored any initialize request in the Initialized state instead of assigning illegal
responses. We manually searched for similar occurrences in other components
and corrected them similarly.

8 Results of developing the PCS

Figure 16 depicts code evolution of the manually coded components, after min-
ing the code repository using TIOBE software [28]. The figure shows only the
effective lines of code (ELOC), i.e., all blank and comment lines are excluded
from calculations. The code was officially placed in the repository at the start of
May 2011, with approximately 1,600 ELOC of previously coded components. As
can be seen from the figure, the construction of the manually coded components
was smooth and gradually evolved throughout all increments. The figure also
indicates that there were no major redesign activities caused any removal of the
implemented code in any increment.

Similarly, Figure 17 depicts the evolution of test code. The reason of having
more testing code than product code at the early stages is that the manually
coded components were developed under the control of the TDD technique. As
mentioned earlier, the TDD approach implies that test cases have to be written
first, before the product code.

Figure 18 sketches the evolution of the ASD code, highlighting 5 versions from
5 stable baselines at the end of each increment, taken from a code management
system, called IBM ClearCase [20]. We extracted such figures manually since
the ASD code did not comply to the coding standard enforced by the TIOBE
technology and hence was excluded from calculation by the technology since the
early phase of the development process. As can be seen from the figure, the
PCS appeared to already be stable since the start of increment 3. In previous
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Fig. 16. Evolution of the manually coded components

Fig. 17. Evolution of test code

projects where ASD was used [15, 14], major redesigns were needed due to the
state space explosion problem. This did not happen in the PCS project since all
ASD components are kept small and fit within the limits of the model checker.
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Fig. 18. Evolution of ASD code

In Table 1 we provide statistical data of the final developed ASD components
after increment 5, listing all corresponding interface and design models. The first
and second column include all ASD interface and design models (IM and DM
respectively). The third column shows the number of rule cases of each model.
These rule case have been reviewed thoroughly by team members. The fourth and
fifth column reveal the states and transitions reported from the model checker
FDR to check deadlock freedom (which holds for all models). For the other
checks we obtained similar numbers.

Each interface model was verified separately, whereas every design model is
verified as a combined model that includes all interface models of used compo-
nents. The verification of all ASD models was conducted on a remote server at
the company Verum, the provider of ASD:Suite. All models were checked in less
than one second by FDR2, covering all possible execution scenarios. Compared
to more traditional testing this reduced both time and effort.

Last two columns present the total number of generated lines of generated
code (LOC), in the C# language. The LOC column denotes the sum of all
generated source code lines, including blank and comment lines.

Table 2 depicts metrics related to all developed code. It includes the sum of
all total and executable lines of code written for the product and test code.

The entire service includes 17,226 ASD generated and manually written code.
It includes a total of 30,264 LOC of test code. The end quality result of the PCS
service is remarkable, and the entire service exhibited only 0.17 defect per KLOC.
This level of quality is much better than the industry standard defect rate of
1-25 defects per KLOC [22].

Table 3 depicts the hours spent during each increment. The total hours spent
for developing the entire service is 1789, with average productivity of 1 effective
line of code per hour.
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Model Type Rule
cases

States Transitions LOC ELOC

IPdsEventController IM 102 55 139 112 58
PdsEventController DM 242 141 225 2891 2165
IPmFilter v10 IM 33 17 29 37 28
IStarting IM 10 3 4 36 13
IStopping IM 24 9 16 117 41
IPmFilter v11 IM 28 13 21 36 27
IPdsAdapter IM 12 3 6 21 12
IInstallTransitioning IM 45 11 14 61 22
ILog IM 8 3 4 35 12
InstallTransitioning IM 78 59 62 989 830
IStartStopInstall IM 10 3 4 20 11
IOsActions IM 14 3 7 22 13
PmFilter v10 DM 46 79 113 859 712
IPm v10 IM 25 9 13 50 19
ITimer IM 14 5 9 26 17
PmFilter v11 DM 32 45 59 651 549
IPm v11 IM 18 7 8 26 17
Starting DM 12 12 13 435 379
ICpActions IM 8 3 3 19 10
Stopping DM 78 51 58 1065 903
ASD runtime - - - - 803 701

Total 5D + 15I 839 - - 8311 6539
Table 1. The ASD models of the power control service

Code LOC ELOC

Manual Code 8,915 3,828
Simulator Code 2,553 1,275
Class Test Code 15,180 7,437
Module Test Code 12,531 5,946

Table 2. Statistical data of the power control service

Increment inc1 inc2 inc3 inc4 inc5

Requirements Specification 13 64 1 15 8
Design Specification 18 96 4 4 40
TDD/ASD 101 167 67.5 103 88
Verification Specification 49.5 46.5 40.5 22.5 4
Verification Report 18.5 5 2
Test code 182.5 91 94 91.5 42
Simulator 55.5 18 16
Other 24.5 63.5 33 97.5

Total 438 512 270.5 271 295.5
Table 3. Hours spent on the power control service
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The PCS service was deployed on all PCs, and further tested by independent
teams who are responsible of developing the clinical applications on each PC.
The result of testing was that no errors were found and the service appeared to
function correctly on every PC, from the first run.

Feedbacks received from the independent test teams were very positive, and
the service seems to be stable and reliable. Team members of the PCS appreci-
ated the quality of the service, and decided to further incorporate the ASD tech-
nology to the development of other parts of the system. The behavioral verifica-
tion and the firm specification and code reviews provided a suitable framework
for increasing the quality, assisting the work, and decreasing potential efforts
devoted to bug fixing at later stages of the project.

9 Concluding remarks

We have described the experiences at Philips Healthcare with a component-
based development method which is supported by the commercial formal tool
ASD:Suite. The proposed workflow also includes test-driven development. This
approach has been used for the development of a basic power control service.
We list our main observations and lessons learned.

Test and integration. Concerning the code generated by ASD:Suite, state-
ment and function tests can be safely discarded since all possible execution sce-
narios have been covered by the model checker of this tool. However, it is impor-
tant to test the combination of ASD components and hand-written components.
In the PCS project this revealed a few errors.

Experience from other projects using more conventional approaches shows
that integrating concurrent components is usually a challenging task. It is often
the case that components work correctly on their own, but do not function
as expected when they are integrated with one another. Sometimes, errors are
profound in length, hard to analyze and often tough to reproduce due to the
concurrent nature of components. Moreover, fixing an error in the code often
causes others to emerge, but unpredictably others to be unveiled with a great
potential of causing unexpected failures in the field.

Our experience with ASD differs from the observations of the previous para-
graph. Design errors were detected by the model checker early and automatically
before any single line of code is being written or generated. The behavioural ver-
ification thoroughly checked the correctness behaviour of components under all
circumstances of use. It was often the case that fixing an error caused other errors
to emerge, which were deeper in length and complexity than a previous one, but
these design errors were detected with the click of a button. Fixing these errors
was done iteratively until components became neat and clean from all sources
of errors. Since formal verification of each ASD design model was done with the
interface specification of the boundary components, integrating the code of all
ASD design models is often quick and accomplished without errors.

Quality management. While applying the proposed workflow, we observed
a few tensions with the current quality management system. The code generated
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by ASD:Suite does not comply to the required coding standards provided by the
TIOBE technology. Moreover, the fact that ASD forces the designer to define
the response to all possible stimuli in all states leads to very robust code, but
it decreases the test coverage. In our case, it is acceptable for quality managers
to exclude ASD generated code from coverage metrics and coding standards. In
fact, the quality of the generated code turned out to be very good, since the PCS
components have been used frequently by several parts of the system without
any problem report.

In the version management system, ASD models and code are stored. Code
is used for fast build process, independent of the ASD:Suite tool. The models
are used for maintenance and to include change requests. New versions of the
ASD:Suite tool accepts models from previous versions.

Workflow. In the PCS project a lot of time was needed to clarify the re-
quirements, since there were many stakeholders at different sites. We believe
that in such a situation the formal ASD interface model are very useful. Since
ASD requires complete interface models, requirements have to be complete and
clear. Discussions to clarify the requirements resulted into new and changed
requirements and certainly improved the quality of the requirements.

Moreover, after identifying parts of the system that are most likely rather
stable, these parts can already be implemented using ASD in parallel with on-
going discussions about unclear requirements. If the design is based on a set
of small components this can be done, since adapting and extending small ASD
models has proven to be easy. When large models are being used, this could prove
to be cumbersome. Further, the definition of ASD interfaces enables concurrent
engineering of components.

As mentioned above, an important benefit of the proposed workflow is that
the test and integration phase becomes more predictable.

Design. The use of ASD has a clear impact on the design and the definition
of components. Because formal verification and code generation is only possible
for control components, the design should make a clear separation between data
and control. Control components are generated using ASD:Suite whereas test-
driven development is used for the data components. Especially for designers
used to object-oriented design this requires a paradigm shift.

Another important aspect is that ASD requires small components; as a guide-
line a design model should not contain more than 250 rule cases, a few asyn-
chronous callbacks, leading to not more than approximately 3000 lines of code.
With these restrictions, the formal technique is rather easy to use without much
training and models are easy to understand and to modify.

Future Work. A disadvantage of having many small components is that
it is less clear whether together they realize the desired functionality. In future
work we would like to investigate whether additional formal techniques can help
to check the overall functionality of a set of components. Another relevant direc-
tion that will be explored is the use of formal interface models for conformance
testing, using model-based testing techniques.
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