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SUMMARY

The interconnect layouts of chips can be modeled by large resistor networks. In order to be able to
speed up simulations of such large networks, reduction techniques are applied to reduce the size of the
networks. For some class of networks, an existing reduction strategy does not provide sufficient reduction
in terms of the number of resistors appearing in the final network. In this paper we propose an approach
for obtaining a further reduction in the amount of resistors. The suggested approach improves sparsity of
the conductance matrix by neglecting resistors which do not contribute significantly to the behavior of the
circuit. Explicit error bounds, which give an opportunity to control the errors due to approximation, have
been derived. Numerical examples show that the suggested approach appears promising for multi-terminal
resistor networks and, in combination with the existing reduction strategy, leads to better reduction.

KEY WORDS: Resistor networks; model order reduction; generalized eigenvalue problem; Cholesky
factorization; singular value

1. INTRODUCTION

The interconnect layouts of chips can be modeled by large resistor networks. Such networks may
contain up to millions of resistors, hundreds of thousands of internal nodes and thousands of external
nodes and, as a result, simulations of such networks may be very time consuming or not possible.
In order to be able to carry out simulations, model order reduction techniques are used. In [1],
an exact reduction technique for resistor networks has been suggested. The approach is based on
finding a special order in which internal nodes are eliminated. This allows to minimize sparsity
of conductance matrix, and, therefore, the number of resistors in the reduced model. However the
above approach does not always deliver a good reduction in terms of the number of resistors in
the final circuit. For instance, resistor networks with many terminals, extracted by the use of finite
element method [2], cannot be reduced efficiently, since any elimination of any internal nodes will
lead to hardly any reduction in the amount of resistors.

In this paper we propose an approach for obtaining a reduction in the amount of resistors. The
suggested approach improves sparsity of the conductance matrix by neglecting resistors, which do
not contribute significantly to the behavior of the circuit. Further we refer to it as simplification of
resistor networks. In order to control the quality of approximation, we derive explicit error bounds
and analyze them from different perspectives (sharpness, implementation issues). The suggested
approach appears promising for multi-terminal resistor networks and, in combination with ReduceR,
can improve reduction.

This paper is organized as follows. In section 2, we summarize the modeling of resistor networks.
In section 3, we suggest two criteria, which are used to measure approximation of resistor networks.
In sections 4 and 5 we derive correspondent error estimations for each criterion. Suggested
algorithms for simplification are discussed in section 6. In section 7, we provide numerical examples
and discuss the performance of the suggested algorithms. Section 8 concludes.
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2. CIRCUIT EQUATIONS

The nodal admittance formulation is based on Kirchhoff current law, which states that the algebraic
sum of currents leaving any node is zero. For an 𝑛-port resistor network it can be written as [3]:

𝐺v = i, (1)

where 𝐺 =∈ ℝ𝑛×𝑛 is symmetric positive semidefinite conductance matrix (𝐺 ર 0), v ∈ ℝ𝑛 are the
node voltages, and i ∈ ℝ𝑛 are the currents injected in ports (external nodes). Subdividing a set of
nodes into external and internal, one can rewrite (1) in a block form:(

𝐺11 𝐺12

𝐺𝑇
12 𝐺22

)(
v𝑒

v𝑖

)
=

(
𝐵
0

)
i𝑒, (2)

where v𝑒 ∈ ℝ𝑛𝑒 and v𝑖 ∈ ℝ𝑛𝑖 are the voltages at external and internal nodes, respectively (𝑛 = 𝑛𝑒 +
𝑛𝑖), i𝑒 ∈ ℝ𝑛

𝑒 are the currents injected in external nodes, 𝐵 ∈ {−1, 0, 1}𝑛𝑒×𝑛𝑒 is the incidence matrix
for the current injections, and 𝐺11 = 𝐺𝑇

11 ∈ ℝ𝑛𝑒×𝑛𝑒 , 𝐺12 ∈ ℝ𝑛𝑒×𝑛𝑖 and 𝐺22 = 𝐺𝑇
22 ∈ ℝ𝑛𝑖×𝑛𝑖 .

A 𝑘-th current source between terminals 𝑎 and 𝑏 with current 𝑗 leads to contributions 𝐵𝑎,𝑘 = 1,
𝐵𝑏,𝑘 = −1, and i𝑒(𝑘) = 𝑗. If current is only injected in a terminal 𝑎, then 𝐵𝑎,𝑘 = 1 and i𝑒(𝑘) = 𝑗.
Systems (2) must be grounded, i.e. the equation corresponding to the ground node must be removed
from the system.

Deleting a single conductance 𝑔 between two nodes 𝑎 and 𝑏 from the conductance matrix 𝐺 leads
to a network with a new conductance matrix �̃�, obtained from 𝐺 as

�̃� = 𝐺− (e𝑎 − e𝑏)𝑔(e𝑎 − e𝑏)𝑇 , (3)

where e𝑎 and e𝑏 are the 𝑎-th and 𝑏-th unit vectors, respectively. In this case we say that �̃� is obtained
from 𝐺 by a rank-1 correction: rank-1 matrix (e𝑎 − e𝑏)𝑇 𝑔(e𝑎 − e𝑏) is a stamp corresponding to the
conductance 𝑔. Introducing the notation

(e𝑎 − e𝑏) = m, (4)

the conductance matrix can be rewritten as a sum of rank-1 corrections:

𝐺 =

𝑁∑
𝑖=1

m𝑖𝑔𝑖m𝑇
𝑖 . (5)

3. SIMPLIFICATION OF RESISTOR NETWORKS

In general, networks arising during parasitic extraction contain large resistor subnetworks and
nonlinear elements like diodes and transistors. Simulation of such complex networks may be very
time consuming or unfeasible. A way to overcome this problem is to use model order reduction
techniques for resistor subnetworks which will lead to decreased simulation times of the complex
networks. In [1], the problem of reduction of a large resistor network is defined as follows: given a
very large resistor network described by (1), find an equivalent network that:

(a) has the same terminals;
(b) has exactly the same path resistances between terminals;
(c) has �̂�𝑖 ≪ 𝑛𝑖 internal nodes;
(d) has �̂� ≪ 𝑁 resistors;
(e) realizable as a netlist.

If the number of external nodes (ports) is large, the full elimination of internal nodes sometimes
is not the best option, since it leads to violation of condition (d): the number of resistors �̂� =
(𝑛2

𝑒 − 𝑛𝑒)/2 in the dense matrix may be larger than the number of resistors, 𝑁 , in the sparse original
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network. The algorithm for exact reduction of resistor networks, ReduceR [1], uses two concepts:
graph algorithms and matrix reordering strategy (AMD) which together with node elimination
usually lead to a sparser reduced conductance matrix than a straightforward elimination of all
internal nodes. However, there are networks for which ReduceR fails. For example, networks which
come from substrate extraction based on the Finite Element Method (FEM) usually have a specific
quadrilateral structure with large and sparse conductance matrices [2],[4]. The exact reduction of
such networks with many terminals is challenging: full or partial elimination of internal nodes may
not lead to efficient reduction.

The following small example will demonstrate the problem. In Figure 1, the network has 32
nodes (16 internal nodes, 16 external nodes) and 64 resistors, which correspond to edges of the
cubes. Elimination of all internal nodes is not an option here, because the reduced network will give
a dense matrix with 120 resistors. Reduction by ReduceR does not help much: the reduced network
has 15 internal nodes, 16 external nodes and the same 64 resistors. In fact the best exact reduction
for this network is quite poor: 12 internal nodes, 16 external nodes and 64 resistors. Note that the
original network has 8 nodes (in the corners) with degree 3, 16 nodes with degree 4 and 8 nodes
with degree 5. At this point, elimination of any internal node in the corners does not decrease the
number of resistors (edges) and elimination of any non-corner internal node will only increase the
number of resistors. Consequently, one cannot reduce the network further.

Figure 1. Network with 16 external nodes (black dots), 16 internal nodes and 64 resistors (edges of the
cubes).

In order to deal with such cases, we suggest a new approach, which we will further call
simplification. The idea of simplification is to neglect some resistances which do not affect
significantly the behavior of the network. This approach does not deliver exact reduction as in
case of ReduceR, however the error of reduction is supposed to be controlled explicitly. The goal
of the simplification is to improve sparsity of the conductance matrix before or after reduction.
Thus if the number of terminals is large and exact reduction is poor, simplification can be a good
alternative to exact reduction. The drawback of simplification is that success will depend on the
value of resistances in the network and a given tolerance for approximation.

Before going further we need to choose an error which we want to control under a certain
tolerance. The first proposition is to consider a relative error of voltages at all nodes:

𝐸𝑟𝑟𝑣 :=
∣∣v − ṽ∣∣
∣∣v∣∣ =

∣∣𝐺−1i − �̃�−1i∣∣
∣∣𝐺−1

𝑠 i∣∣ < 𝜖, (6)

i.e. for a given 𝜖 and 𝐺 one has to find a simplified �̃� such that (6) holds true. It is supposed that
�̃� is obtained from 𝐺 by neglecting certain entries. Since in practice, the current, i is unknown
in advance, computing (6) requires the knowledge of an error bound (estimation) which must be
independent of i. An error estimation based on the condition number of 𝐺, 𝜅(𝐺), can be derived, for
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instance, based on the approach presented in [5]:

∣∣v − ṽ∣∣
∣∣v∣∣ ≤ 𝜅(𝐺) ⋅ 𝑡𝑜𝑙 = 𝜖, (7)

where parameter 𝑡𝑜𝑙 has to be chosen no larger than 𝜖
𝜅(𝐺) . Moreover 𝑡𝑜𝑙 satisfies

∣∣𝐺− �̃�∣∣ ≤ 𝑡𝑜𝑙 ⋅ ∣∣𝐺∣∣. (8)

Thus for a given 𝜖 resistors satisfying (8) can be deleted. From a practical point of view estimation
(7) is not sharp and does not deliver significant improvements in sparsity neither for original nor
for reduced resistor networks [6]. In section 4 we will derive a different estimation for (6) which is
sharp and cheap to compute.

The second proposition is to consider an error which is based on neglecting resistors that do not
affect much all path resistances, i.e.,

𝐸𝑟𝑟𝑝 :=

∣∣∣∣𝑅𝑖𝑗 − �̃�𝑖𝑗

𝑅𝑖𝑗

∣∣∣∣ < 𝛿, 𝑖, 𝑗 = 1, . . . , 𝑛𝑒, (9)

where 𝑅𝑖𝑗 is the path resistance between the external nodes 𝑖 and 𝑗 in the original network, �̃�𝑖𝑗 is
the path resistance of the simplified network, and 𝛿 is a given tolerance. From a practical point of
view such choice of error is useful since it helps to control condition (b). If 𝑛 is large, then direct
computation of (9) is expensive (𝑂(𝑛3)) for each deleted resistor (or group of resistors). Therefore
there is a need for the error bound which accurately enough estimates (9) and has less computational
cost than the direct computation.

We define the problem of simplification of large resistor networks as follows: given a resistor
network described by (1), find a reduced network that satisfy the above conditions (a), (d), (e) and
the extra conditions

(f) has the same internal nodes;
(g) for a given tolerance condition (9) or (6) holds true.

Thus the difference between simplification and exact reduction of resistor networks is that after
simplification the number of internal nodes, always, stays the same while the number of resistors
may decrease and path resistances may differ from the original path resistances. Another issue that
is subject to further research is that simplification can be obtained by decreasing the number of
nodes in the network. For example, if a resistor between two nodes is relatively small, then current
goes through such resistor without obstruction, and as a result, two nodes can be considered as one
node. We will not consider this case since in considered practical examples it was not a case.

The idea of simplification (neglecting of resistors) is not new, see, for instance [7, 1, 5], however
it has not been deeply developed. In [7], a simple criterion to simplify resistor networks has been
suggested. The criterion is based on a physical intuition that large resistors do not affect the behavior
of the network and, therefore, can be removed from the network. According to the criterion, a
resistor between nodes 𝑖 and 𝑗 is removed if

∣𝐺𝑖𝑗 ∣
∣𝐺𝑖𝑖∣ < 𝑡𝑜𝑙, and

∣𝐺𝑖𝑗 ∣
∣𝐺𝑗𝑗 ∣ < 𝑡𝑜𝑙, (10)

where 𝑡𝑜𝑙 is a user defined tolerance. The disadvantage of the criterion is that the condition (6) or
(9) is not controlled explicitly and, therefore, accuracy of the simplified network is not guaranteed.

We will consider simplification and reduction by ReduceR as totally independent and
complementary procedures. We will distinguish different strategies: 1) simplification, 2) reduction,
3) simplification and then reduction, 4) reduction and then simplification. One may expect that
simplification before reduction may improve further reduction because neglecting some resistors
in the original network changes network topology. Note that the simplification procedure may
disconnect the network or even lead to a singular matrix, therefore extra care should be taken to
prevent such cases. In this paper we create a framework: when to simplify (before or after reduction)
and how to simplify networks according to the criteria (9) and (6) in an efficient way.
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4. ERROR ESTIMATION FOR ∣∣v−ṽ∣∣
∣∣v∣∣

In this section we suggest an error estimation for the maximum relative error of vector of voltages
which shows to be much more sharp than the error estimation based on the condition number (7).
In order to derive it we consider:

max
𝑖∈𝒜

∣∣v − ṽ∣∣2
∣∣v∣∣2 = max

𝑖∈𝒜
∣∣𝐺−1i − �̃�−1i∣∣2

∣∣𝐺−1i∣∣2 = max
𝑖∈𝒜

∣∣(𝐼 − �̃�−1𝐺)f∣∣2
∣∣f∣∣2 (11)

≤ max
𝑖∈ℝ𝑛,i ∕=0

∣∣(𝐼 − �̃�−1𝐺)f∣∣2
∣∣f∣∣2 = 𝜎1, (12)

where f = 𝐺−1i𝑛, 𝜎1 is maximum singular value of (𝐼 − �̃�−1𝐺), and

𝒜 = {i ∈ ℝ𝑛∣(i)𝑘 = 1, (i)𝑙 = −1, 𝑘, 𝑙 ∈ {1, . . . , 𝑛𝑒} , 𝑘 ∕= 𝑙} . (13)

Thus we obtain

𝐸𝑟𝑟𝑣 =
∣∣v − ṽ∣∣2
∣∣v∣∣2 ≤ max

i∈ℝ𝑛,i ∕=0

∣∣(𝐼 − �̃�−1𝐺)f∣∣2
∣∣f∣∣2 =

(
𝜆𝑚𝑎𝑥

(
(𝐼 − �̃�−1𝐺)𝑇 (𝐼 − �̃�−1𝐺)

)) 1
2 (14)

= 𝜎1 = 𝐸𝑟𝑟𝑣𝑠, (15)

where 𝜆𝑚𝑎𝑥 denotes the largest eigenvalue, and 𝐸𝑟𝑟𝑣𝑠 demonstrates estimation for the relative
error 𝐸𝑟𝑟𝑣. Computation of maximum singular value can be performed, for instance, by implicitly
restarted Lanczos bidiagonalization methods [8], or Krylov-Schur method [9], which is used for
numerical examples in section 7(C). We note that within the Krylov-Schur method there is no need
to compute (𝐼 − �̃�−1𝐺) directly, one only requires to compute matrix-vector product of the form
(𝐼 − �̃�−1𝐺)x, which is perform by solving one linear system and one matrix-vector product. This
requires �̃� to be nonsingular and therefore the network has to be grounded. If the network is not
grounded, one can temporarily ground an arbitrary external node and after simplification unground
it, i.e. to insert back the corresponding row and column in 𝐺. In section 6 we will exploit the
estimation (15) for developing simplification algorithms which allow to delete resistors by groups
while keeping 𝐸𝑟𝑟𝑣 under control.

5. ERROR ESTIMATION FOR
∣∣∣𝑅𝑖𝑗−�̃�𝑖𝑗

𝑅𝑖𝑗

∣∣∣
The path resistance between two nodes 𝑖 and 𝑗 is defined as the ratio of voltage across 𝑖 and 𝑗 to the
current injected into them. In practice, path resistances from the input of one device to the output of
one or more devices are used. Path resistances can be used for example for the analysis of the power
dissipation, and in electro static discharge analysis to check whether unintended peak currents are
conducted well enough through the resistive protection network to prevent damage to the chip [1].

The path resistance between ports 𝑖 and 𝑗 is defined as [10]

𝑅𝑖𝑗 = (e𝑖 − e𝑗)𝑇𝐺−1(e𝑖 − e𝑗), (16)

where e𝑖 and e𝑗 are the 𝑖th and 𝑗th unit vectors, respectively. It is easy to show that path resistances
of the original network, with conductance matrix 𝐺, are equal to the path resistances of the network
obtained after elimination of (all) internal nodes. Indeed, if 𝐺 has been split into blocks as in (2)
and e𝑇𝑡 =

(
ẽ𝑡 0

)𝑇 then

𝑅𝑖𝑗 = (e𝑖 − e𝑗)𝑇𝐺−1(e𝑖 − e𝑗) = (ẽ𝑖 − ẽ𝑗)𝑇 (𝐺11 −𝐺12𝐺
−1
22 𝐺

𝑇
12)

−1(ẽ𝑖 − ẽ𝑗) (17)

= (ẽ𝑖 − ẽ𝑗)𝑇𝐺−1
𝑠 (ẽ𝑖 − ẽ𝑗), (18)
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which follows based on the inverse of 2× 2 block matrix [11]. Note that if a network has only
positive resistors, then all path resistances in the network are positive.

We will treat simplification of the network from the point of view that the path resistances of
the simplified network should not differ much from the path resistances of the original network.
Substituting (16) into (9) leads to

𝐸𝑟𝑟𝑝 =

∣∣∣∣∣e𝑇𝑖𝑗𝐺−1e𝑖𝑗 − e𝑇𝑖𝑗�̃�−1e𝑖𝑗
e𝑇𝑖𝑗𝐺−1e𝑖𝑗

∣∣∣∣∣ < 𝛿, (19)

where 𝑒𝑖𝑗 = e𝑖 − e𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛𝑒, and 𝑖 ∕= 𝑗.
We note that computing (19) directly is not an option, especially, if the number of terminals, 𝑛𝑒,

is large. Therefore it is a good idea to have an estimation for (19), which is sharp enough and can
be easily computed.

A grounded network guarantees that 𝐺 is positive definite (𝐺 ≻ 0). If a network is not grounded,
one can temporarily ground an arbitrary external nodes and after simplification to ungrounded it,
i.e. to insert back corresponding row and column in 𝐺. Let 𝐿 be the Cholesky factor of 𝐺, i.e.
𝐺 = 𝐿𝐿𝑇 , then 𝐸𝑟𝑟𝑝 for arbitrary 𝑖, 𝑗, (𝑖, 𝑗 = 1, . . . , 𝑛𝑒) is less or equal then the maximum relative
error between all path resistances, i.e.,

𝐸𝑟𝑟𝑝 ≤ max
𝑒𝑖𝑗∈𝒜

∣∣∣∣∣e𝑇𝑖𝑗𝐺−1e𝑖𝑗 − e𝑇𝑖𝑗�̃�−1e𝑖𝑗
e𝑇𝑖𝑗𝐺−1e𝑖𝑗

∣∣∣∣∣ = max
e𝑖𝑗∈𝒜

∣∣∣∣∣e𝑇𝑖𝑗(𝐺−1 − �̃�−1)e𝑖𝑗
e𝑇𝑖𝑗𝐿−𝑇𝐿−1e𝑖𝑗

∣∣∣∣∣ , (20)

where
𝒜 = {e𝑖𝑗 ∈ ℝ𝑛∣e𝑖𝑗 = 1, e𝑖𝑗 = −1, 𝑖, 𝑗 ∈ {1, . . . , 𝑛𝑒} , 𝑖 ∕= 𝑗} . (21)

Setting up 𝑦 = 𝐿−1e𝑖𝑗 , one can rewrite (20) as follows

𝐸𝑟𝑟𝑝 ≤ max
e𝑖𝑗∈𝒜

∣∣∣∣∣e𝑇𝑖𝑗(𝐺−1 − �̃�−1)e𝑖𝑗
e𝑇𝑖𝑗𝐿−𝑇𝐿−1e𝑖𝑗

∣∣∣∣∣ ≤ max
y∈ℝ𝑛

∣∣∣∣y𝑇𝐿𝑇 (𝐺−1 − �̃�−1)𝐿y
y𝑇 y

∣∣∣∣ = max(∣𝜆1∣, ∣𝜆𝑛∣), (22)

where 𝜆1 and 𝜆𝑛 are the largest and the smallest eigenvalues of

𝐿𝑇 (𝐺−1 − �̃�−1)𝐿. (23)

The advantage of (22) is that it is independent of e𝑖𝑗 , however, it contains inverse matrices. In order
to make computations efficient, we would like to get rid of the inverse matrices. First, we consider
the following eigenvalue problem:

𝐿𝑇 (𝐺−1 − �̃�−1)𝐿x = 𝜆x, (24)

Multiplying (24) on the left side by 𝐿−𝑇 and setting up w = 𝐿x, one obtains:

(𝐺−1 − �̃�−1)w = 𝜆𝐿−𝑇𝐿−1w, (25)

or, equivalently,
(𝐺−1 − �̃�−1)w = 𝜆𝐺−1w. (26)

Multiplying (26) from the left on 𝐺 and setting up z = �̃�−1w, (26) becomes

(�̃�−𝐺)z = 𝜆�̃�z. (27)

Thus 𝐸𝑟𝑟𝑝 is approximated as follows:

𝐸𝑟𝑟𝑝 ≤ max(∣𝜆1∣, ∣𝜆𝑛∣) ≡ 𝐸𝑟𝑟𝑝𝑎, (28)

where 𝜆1 and 𝜆𝑛 are the largest and the smallest eigenvalues of the generalized eigenvalue problem
(27). 𝐸𝑟𝑟𝑝𝑎 is an error bound of 𝐸𝑟𝑟𝑝 and requires to compute one largest magnitude eigenvalue.
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Since not the full spectrum of eigenvalues is required, one can use iterative methods such as the
Lanczos method [12], the Arnoldi method [13], and the Jacobi-Davidson method [14] that exploit
the sparsity of the system to limit memory and CPU requirements. For numerical examples in
section 7 we will use Matlab build-in function eigs which uses the Arnoldi method.

Computing the estimations 𝐸𝑟𝑟𝑝𝑎 in (27) and 𝐸𝑟𝑟𝑣𝑠 in (15) involves calculation of eigenvalues
which are related to some extend. Multiplying (27) from the left by �̃�−1, the estimation 𝐸𝑟𝑟𝑝𝑎
requires computing the largest magnitude eigenvalue of the matrix 𝐴 := (𝐼 − �̃�−1𝐺), while 𝐸𝑟𝑟𝑣𝑠
requires computing the maximum eigenvalue of 𝐴𝑇𝐴. In the particular case of a symmetric matrix
𝐴, one obtains

√
𝜆𝑚𝑎𝑥(𝐴𝑇𝐴) = 𝜆𝑚𝑎𝑥(𝐴), or, equivalently,

𝜎𝑚𝑎𝑥(𝐴) = 𝜆𝑚𝑎𝑥(𝐴). (29)

Since in our case 𝐴 is nonsymmetric the relation between 𝜎𝑚𝑎𝑥(𝐴) and 𝜆𝑚𝑎𝑥(𝐴) is non-trivial.
Note that only those resistors can be considered for deleting which do not make �̃� singular. For
example, �̃� becomes singular when network is disconnected. Therefore care should be taken that
deleted resistor will not disconnect the network. This can be achieved by using graph algorithm
which computes strongly connected components (scc) [15]. If the number of scc’s is larger than 1,
then the network is disconnected.

Restriction on 𝐺 to be positive definite, is important because it allows us to use the Cholesky
factorization and to keep the matrix pencil (�̃�−𝐺, �̃�) regular. To demonstrate the last proposition,
let 𝑅-network not be grounded, then the matrix pencil (�̃�−𝐺, �̃�) is not regular, i.e., �̃�−𝐺− 𝛾�̃�
is singular for any 𝛾 ∈ ℂ:

(�̃�−𝐺− 𝜆�̃�)x = 0. (30)

Suppose a resistor has been deleted, i.e., �̃� has been obtained from 𝐺 by a rank-one update:

�̃� = 𝐺− ee𝑇 . (31)

Substituting (31) into (30), one obtains

(−𝜆𝐺+ (𝜆− 1)ee𝑇 )x = 0. (32)

If the network is not grounded (at least temporarily), then 𝐺 is singular and consists of stamps.
Adding a rank-one matrix (which is also singular) will lead to a singular matrix for any 𝜆. Therefore
(32) will not have a unique solution. If the network is grounded, 𝐺 becomes positive definite,
thus deleting any conductances which do not disconnect the network, will help to keep the pencil
(�̃�−𝐺, �̃�) regular.

In section 6 we will exploit the estimation (28) for developing simplification algorithms which
allow to delete resistors by groups while keeping 𝐸𝑟𝑟𝑝 under control.

6. IMPLEMENTATION ISSUES

In this section we suggest a few algorithms for simplification of resistor networks which exploit
computation of the error bounds 𝐸𝑟𝑟𝑣𝑠 in (15) or 𝐸𝑟𝑟𝑝𝑎 in (28). For convenience we will use 𝐸𝑟𝑟
for denoting a generic error estimate, i.e. 𝐸𝑟𝑟𝑣𝑠, 𝐸𝑟𝑟𝑝𝑎 or any other. Each algorithm consists of two
phases. In the first phase all conductors are sorted in increasing order. The next phase is selective
strategy for deleting resistors. We have considered three alternatives for this.

(1) Take resistors one by one and for each compute 𝐸𝑟𝑟. If computed 𝐸𝑟𝑟 is greater than a bound
𝐸𝑟𝑟𝑀𝑎𝑥 more than 𝑇𝑚𝑎𝑥 times, then stop the procedure. Since this turns out to give a slow
simplification, we will not consider this option any further.

(2) Golden search 1. Choose 𝑘, which is less than the number of all resistors. (For instance, 𝑘 can
be chosen as 10% from the whole amount of resistors.) Try to delete at once 𝑘 resistors and
check whether network becomes disconnected. If the network is still connected, then compute
𝐸𝑟𝑟. If 𝐸𝑟𝑟 < 𝛿, then try to delete the next 2𝑘 resistors, otherwise try to delete 𝑘/2 resistors.
If the network is disconnected, then try to delete ℎ/2 resistors. Continue the procedure till
𝐸𝑟𝑟 > 𝛿 and ℎ = 1 appear 𝑇𝑚𝑎𝑥 times.
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(3) Golden search 2. It is the same procedure as ”Golden search 1” but with a different stop
criterion. Simplification has to be stopped immediately after 𝐸𝑟𝑟 > 𝛿 and ℎ = 1 (parameter
𝑇𝑚𝑎𝑥 = 1).

The Golden search 2 is faster than Golden search 1 though it usually allows to delete fewer resistors.
To make the choice between these approaches, one needs to find a compromise between time and
amount of resistors to delete.

The above algorithms are just some suggested algorithms for selecting resistors that are
candidates to be eliminated. Within these algorithms an error bound, 𝐸𝑟𝑟, is used to determine
whether the error is below the prescribed tolerance 𝛿. The set of resistors to be eliminated is adapted
for deleting as many resistors as possible, while keeping the error under control.

7. NUMERICAL RESULTS

We will show how the suggested above approach for simplification of resistor networks and
reduction by ReduceR work for the networks from industry. The networks I,II and IV come
from realistic designs of very-large-scale integration chips [1] and the network III comes from
handlewafer model which has a specific structure similar to the one in the Fig. 1. The simplification
algorithms based on the selective strategies (Golden search 1 and Golden search 2) have been
implemented in Matlab 7.5 and have been tested on Core 2 Duo 1.6 GHz PC. Since given resistor
networks are not grounded, in order to compute 𝐸𝑟𝑟𝑝𝑎 and 𝐸𝑟𝑟𝑝, we initially ground the first
terminal and after simplification (reduction) plug it back to the networks.

7.1. Simplification by 𝐸𝑟𝑟𝑝𝑎 and 𝐸𝑟𝑟𝑣𝑠 applied to the original networks

Table I compares results of simplification (option Golden search 1) applied to the original networks.
In order to investigate how sharp 𝐸𝑟𝑟𝑝𝑎 is in comparison to 𝐸𝑟𝑟𝑝, we performed each selective
strategy with 𝐸𝑟𝑟𝑝𝑎 and 𝐸𝑟𝑟𝑝 independently. It can be seen that simplification with 𝐸𝑟𝑟𝑝𝑎 works
faster than simplification with 𝐸𝑟𝑟𝑝. However for the networks I and II, 𝐸𝑟𝑟𝑝𝑎 appears less sharp
than 𝐸𝑟𝑟𝑝, since it allows to delete fewer resistors.

Table II shows a similar experiment but with the use of option Golden search 2. Golden Search 2
works faster than Golden search 1 because it works till the first occurrence 𝐸𝑟𝑟𝑝𝑎 > 𝛿 and 𝑘 = 1,
and it allows, in general, to delete fewer resistors.

Table III shows the results obtained after applying simplification with 𝐸𝑟𝑟𝑣𝑠 to the original
networks. For 𝛿 = 5%, simplification by 𝐸𝑟𝑟𝑣𝑠 works slower than simplification by 𝐸𝑟𝑟𝑝𝑎. This
happens due to the costs of computing the matrix vector product of the form (𝐼 − �̃�−1𝐺)x within
the Krylov-Schur method [9], which involves solving the system of the form �̃�y = (𝐺x) for y. For
the networks with large scale 𝐺 (e.g., network III), this step becomes time-consuming. Nevertheless
estimation 𝐸𝑟𝑟𝑣𝑠 shows to be sharper than 𝐸𝑟𝑟𝑝𝑎.

Figure (2) shows values of 𝐸𝑟𝑟𝑣𝑠 ≡ 𝜎𝑚𝑎𝑥 < 5% and correspondent 𝐸𝑟𝑟𝑝𝑎 ≡ 𝜆𝑚𝑎𝑥 computed
on the sequence of conductance matrices obtained during Golden search 2. For the network III,
10222 resistors from 70006 have been deleted and 34 computations of 𝜎𝑚𝑎𝑥 from 53 correspond
to 𝜎𝑚𝑎𝑥 < 5%. The plot demonstrates noticeable difference in computed values of 𝜎𝑚𝑎𝑥 and 𝜆𝑚𝑎𝑥

which is result of nontrivial relation between the error estimations.
From the above we conclude that simplification applied to the original networks is not

recommended to be considered as independent reduction since the number of resistors is not
decreased significantly. However for the network III simplification by 𝐸𝑟𝑟𝑝𝑎 noticeably improves
sparsity in reasonable time. Another observation is that with 𝛿 = 5% simplification by 𝐸𝑟𝑟𝑣𝑠 usually
delivers better reduction in the amount of resistors than simplification by 𝐸𝑟𝑟𝑝𝑎.

7.2. Simplification by 𝐸𝑟𝑟𝑝𝑎 together with reduction

We will show how simplification by 𝐸𝑟𝑟𝑝 and 𝐸𝑟𝑟𝑝𝑎 with Golden search 1 approach works together
with reduction by ReduceR. Tables IV-VII demonstrate results of simplification and reduction
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Table I. Results of simplification by 𝐸𝑟𝑟𝑝 and 𝐸𝑟𝑟𝑝𝑎 (Golden search 1) applied to three networks (I,II,III).
Table includes the original number of resistors, CPU time of simplification, the number of deleted resistors

after simplification and the number of computations of 𝐸𝑟𝑟𝑝 and 𝐸𝑟𝑟𝑝𝑎. 𝛿 = 5%, 𝑇𝑚𝑎𝑥 = 5, ℎ = 50

I II III

#res. originally 23222 2476 70006
CPU time 𝐸𝑟𝑟𝑝 272 s. 2.7 s. 1185 s.
CPU time 𝐸𝑟𝑟𝑝𝑎 3.2 s. 0.7 s. 208 s.
#deleted res.𝐸𝑟𝑟𝑝 576 29 9878
#deleted res.𝐸𝑟𝑟𝑝𝑎 35 2 9878
#comput. 𝐸𝑟𝑟𝑝 74 23 78
#comput. 𝐸𝑟𝑟𝑝𝑎 14 10 23

Table II. Results of simplification by 𝐸𝑟𝑟𝑝 and 𝐸𝑟𝑟𝑝𝑎 (Golden search 2) applied to three networks (I,II,III).
Table includes the original number of resistors, CPU time of simplification, the number of deleted resistors

after simplification and the number of computations of 𝐸𝑟𝑟𝑝 and 𝐸𝑟𝑟𝑝𝑎. 𝛿 = 5%, 𝑇𝑚𝑎𝑥 = 5, ℎ = 50

I II III

#res. originally 23222 2476 70006
CPU time 𝐸𝑟𝑟𝑝 245 s. 0.8 s. 377 s.
CPU time 𝐸𝑟𝑟𝑝𝑎 2.1 s. 0.5 s. 57.6 s.
#deleted res.𝐸𝑟𝑟𝑝 570 18 9695
#deleted res.𝐸𝑟𝑟𝑝𝑎 35 2 9695
#comput. 𝐸𝑟𝑟𝑝 64 6 78
#comput. 𝐸𝑟𝑟𝑝𝑎 9 5 23

Table III. Results of simplification by 𝐸𝑟𝑟𝑣𝑠 (Golden search 2) applied to three networks (I,II,III). Table
includes the original number of resistors, CPU time of simplification, the number of deleted resistors after

simplification, the number of computations of 𝐸𝑟𝑟𝑣𝑠. 𝛿 = 5%, 𝑇𝑚𝑎𝑥 = 5, ℎ = 50

I II III

#res. originally 23222 2476 70006
CPU time 𝐸𝑟𝑟𝑣𝑠 23.4 s. 1.7 s. 1385 s.
#deleted res. 𝐸𝑟𝑟𝑣𝑠 35 2 10222
#comput. 𝐸𝑟𝑟𝑣𝑠 9 5 53

Table IV. Results of simplification by 𝐸𝑟𝑟𝑝𝑎 (𝑆1), 𝐸𝑟𝑟𝑝 (𝑆𝑑), 𝐸𝑟𝑟𝑣𝑠 (𝑆2) and reduction by ReduceR (R) of
the network I. 𝛿 = 5%, 𝑇𝑚𝑎𝑥 = 5

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅 𝑆1 +𝑅 𝑅+ 𝑆1 𝑅+ 𝑆𝑑 𝑅+ 𝑆2

# terminals 160 160 160 160 160 160
# int nodes 12661 138 157 138 138 138
# resistors 23222 3315 3315 1359 1244 1187
CPU time - 23.8 s. 31.2 s. 25.7 s. 229 s. 28 s.
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Figure 2. For the network III: values of 𝜎𝑚𝑎𝑥 < 5% and correspondent values of 𝜆𝑚𝑎𝑥 which were computed
during performance of Golden search 2

Table V. Results of simplification by 𝐸𝑟𝑟𝑝𝑎 (𝑆1), 𝐸𝑟𝑟𝑝 (𝑆𝑑), 𝐸𝑟𝑟𝑣𝑠 (𝑆2) and reduction by ReduceR (R) of
the network II. 𝛿 = 5%, 𝑇𝑚𝑎𝑥 = 5

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅 𝑆1 +𝑅 𝑅+ 𝑆1 𝑅+ 𝑆𝑑 𝑅+ 𝑆2

# terminals 39 39 39 39 39 39
# int nodes 1503 8 8 8 8 8
# resistors 2476 702 702 589 541 510
CPU time - 1 s. 1.7 s. 1.7 s. 6.2 s. 1.9 s.

Table VI. Results of simplification by 𝐸𝑟𝑟𝑝𝑎 (𝑆1), 𝐸𝑟𝑟𝑝 (𝑆𝑑), 𝐸𝑟𝑟𝑣𝑠 (𝑆2) and reduction by ReduceR (R) of
the network III. 𝛿 = 5% 𝑇𝑚𝑎𝑥 = 5

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅 𝑆1 +𝑅 𝑅+ 𝑆1 𝑅+ 𝑆𝑑 𝑅+ 𝑆2

# terminals 55 55 55 55 55 55
# int nodes 31356 0 0 0 0 0
# resistors 70006 1485 1485 1480 1479 455
CPU time - 62.4 s. 107 s. 68.8 s. 65.7 s. 79 s.

Table VII. Results of simplification by 𝐸𝑟𝑟𝑝𝑎 (𝑆1), 𝐸𝑟𝑟𝑝 (𝑆𝑑), 𝐸𝑟𝑟𝑣𝑠 (𝑆2) and reduction by ReduceR (R)
of the network IV. 𝛿 = 5% 𝑇𝑚𝑎𝑥 = 5

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅 𝑆1 +𝑅 𝑅+ 𝑆1 𝑅+ 𝑆𝑑 𝑅+ 𝑆2

# terminals 76 76 76 76 76 76
# int nodes 1134 383 308 308 308 308
# resistors 1936 1397 1397 1269 1269 1264
CPU time - 1.12 s. 1.7 s. 2.1 s. 14 s. 2.8 s.

by ReduceR applied in different combinations: 1) reduction, 2) simplification by 𝐸𝑟𝑟𝑝𝑎 and then
reduction, 3) reduction and then simplification by 𝐸𝑟𝑟𝑝𝑎, and 4) reduction and then simplification
by 𝐸𝑟𝑟𝑝.
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Simplification applied after reduction works better than before reduction. This happens because
simplification does not make crucial changes in the topology of the networks which can be
recognized by ReduceR. Thus combinations 3 and 4 are, in general, better in the amount of resistors
than the combination 2. When a reduced network has many internal nodes and terminals (see tables
IV,VII), combination 3 shows better compromise between the amount of deleted resistors and time
than combination 4. In this case direct computation of 𝐸𝑟𝑟𝑝 becomes very time-consuming. If the
number of terminals and internal nodes is not large (tables V,VI), then combination 4 is preferable
since it allows to delete more resistors in small extra time.

Simplification of a reduced network with many internal nodes is, in general, more efficient than
simplification of the reduced network with only a few internal nodes: the more internal nodes, the
more options for neglecting resistors which do not affect path resistances. This explains why the
simplification after reduction (in the amount of resistors) of the networks I and IV is better than in
the case of the networks II and III.

The larger parameter 𝑇𝑚𝑎𝑥, the more resistors can be deleted and more time is required. For the
network IV (table VII), we used 𝑇𝑚𝑎𝑥 = 5. This allowed us to delete after reduction 128 resistors
in 0.9 sec., while with 𝑇𝑚𝑎𝑥 = 80 one could delete 153 resistors in 4 sec.

Fig. 3 confirms that after simplification by 𝐸𝑟𝑟𝑝𝑎, the relative error of path resistances (9) stays
smaller than 𝛿 = 5%.
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Figure 3. Comparison of computed error 𝐸𝑟𝑟𝑝 with 5% error for each path resistance for the networks I
(left) and III (right).

7.3. Simplification by 𝐸𝑟𝑟𝑣𝑠 together with reduction

In the previous section we have shown that simplification applied after reduction leads to fewer
resistors than simplification applied before reduction. Therefore in this section we consider only
applying simplification by 𝐸𝑟𝑟𝑣𝑠 after reduction by ReduceR. Tables IV-VII demonstrate that
simplification applied after reduction by ReduceR allows to delete more resistors in reasonable extra
time than simplification by 𝐸𝑟𝑟𝑝𝑎 and 𝐸𝑟𝑟𝑝 applied after reduction. Noticeable reduction has been
achieved for the networks I and III, where the number of resistors has been decreased by 65% and
70% respectively.

For the purpose of illustration, Figure (4) shows values of 𝐸𝑟𝑟𝑣𝑠 ≡ 𝜎𝑚𝑎𝑥 < 5% applied after
ReduceR and correspondent values of 𝐸𝑟𝑟𝑝𝑎 ≡ 𝜆𝑚𝑎𝑥 computed on the sequence of conductance
matrices obtained during Golden search 1. One can observe that 𝜆𝑚𝑎𝑥 increases monotonically.
This happens due to the fact that path resistance is a monotonic function [10]. To show it let 𝑔 and
𝑔 (0 ≤ 𝑔 ≤ 𝑔) be conductances and 𝐺, �̃� be correspondent conductance matrices. Since 𝐺 ⪯ �̃�,
then e𝑇𝑖𝑗𝐺−1e𝑖𝑗 ર e𝑇𝑖𝑗�̃�−1e𝑖𝑗 , i.e. 𝑅𝑖𝑗 ≥ �̃�𝑖𝑗 . Therefore deleting each new resistor from 𝐺 makes
the relative error, 𝐸𝑟𝑟𝑝, in (19) and its estimation, 𝐸𝑟𝑟𝑝𝑎, non-decreasing functions.
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Figure 4. For the network I (left) and II (right): values of 𝜎𝑚𝑎𝑥 < 5% and correspondent values of 𝜆𝑚𝑎𝑥

which were computed during performance of Golden search 1

8. CONCLUSIONS

In this paper we have considered approach for reduction of resistors in resistor networks. The
suggested approach, so called simplification, can improve the sparsity of the original and/or reduced
conductance matrix by neglecting resistors which do not contribute significantly to the behavior
of the circuit. Two criteria for measuring the quality of approximation have been suggested and
corresponding error bounds have been derived. Obtained error bounds demand less computational
effort than the direct error computations and, thus, constitutes the base for simplification algorithms.
The considered simplification algorithms, applied after reduction by ReduceR, improved total
reduction by 70%. Since the success of simplification depends on the values of conductances in
resistor networks, simplification can be considered as a complementary procedure to existing exact
reduction techniques.
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