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Abstract

We consider a system consisting of a single server serving a fixed number of stations. At each station there
is an infinite queue of customers that have to undergo a preparation phase before being served. This model is
connected to layered queueing networks, to an extension of polling systems, and surprisingly to random graphs.
We are interested in the waiting time of the server. For the case where the server polls the stations cyclically, we
give a sufficient condition for the existence of a limiting waiting-time distribution and we study the tail behaviour
of the stationary waiting time. Furthermore, assuming that preparation times are exponentially distributed, we
describe in depth the resulting Markov chain. We also investigate a model variation where the server does
not necessarily poll the stations in a cyclic order, but always serves the customer with the earliest completed
preparation phase. We show that the mean waiting time under this dynamic allocation never exceeds that of the
cyclic case, but that the waiting-time distributions corresponding to both cases are not necessarily stochastically
ordered. Finally, we provide extensive numerical results investigating and comparing the effect of the system’s
parameters to the performance of the server for both models.

Keywords: Layered queueing networks, polling systems, machine-repair model

1 Introduction
We study a model that involves one server polling multiple stations. We initially assume that the server visits
N stations in a cyclic order, serving exactly one customer per visit to a station. At each station there is an
infinite queue of customers that needs service. Before being served by the server, a customer must first undergo a
preparation phase. Thus the server, after having finished serving a customer at one station, may have to wait for
the preparation phase of the customer at the next station to be completed. Immediately after the server concludes
his service at some station, another customer from the infinite queue begins his preparation phase there. Our goal
is to analyse the transient, as well as the long-run, probabilistic behaviour of this system by quantifying the waiting
time of the server, which is directly connected to the system’s efficiency and throughput.

This model finds wide applications in enterprise systems, for example when the order of service of the cus-
tomers is important. A typical operating strategy in healthcare clinics is to have a specialist rotate among several
stations. The preparation phase represents the preliminary service a patient typically receives from an assistant
or a nurse. The model, however, originates from warehousing. It was introduced in [14], who consider a storage
facility with bi-directional carousels, where a picker serves in turns the carousels. The preparation phase rep-
resents the rotation time the carousel needs to bring the item to the origin, while the service time is the actual
picking time. The authors study the case of two carousels under specific assumptions. Later on, this special case
for two stations has been further analysed under general distributional assumptions in [22]. The model we con-
sider in this paper generalises this work from two stations to multiple stations. This extension leads to significant
challenges in analysis, but provides valuable managerial insights. Little work has been done on multiple-carousel
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warehouse systems. Multiple-carousel problems differ intrinsically from single-carousel problems in a number of
ways. Such systems tend to be more complicated. The system cannot be viewed as a number of independently
operating carousels [13], since the separate carousels interact by means of the picker that is assigned to them.
Almost all studies involving systems with more than two carousels resort to simulation; see [12] for a complete
literature review. This paper offers the first analytic results for such systems.

This system can also be viewed as an extension of a 1-limited polling-type system; cf. [5, 7, 21]. In general,
polling models have attracted a lot of attention in the literature; see e.g. [4, 19, 26], and the extensive references
therein. Limited polling systems are notoriously difficult to analyse as the k-limited service discipline does not
satisfy the so-called branching property; see [16]. In our case, we have the added difficulty of an additional
preparation phase before service. We assume that when the service of a customer at a station ends, there is always
a new customer waiting in front of the same station. In the carousel setting, this means that there is always an
ample supply of items to pick. Furthermore, in many service systems, appointments with customers occur on a
scheduled basis, so that this assumption is also a natural one in that setting. As a result of this assumption, the
analysis of the model is parallel to the study of the server in a 1-limited polling-type system, where each of the
queues is critically loaded. Note that our main interest in this paper is in the waiting time of the server, rather than
that of the customers.

Yet another way to view the system is a layered network in which a server, while executing a service, may
request a higher-layer service and wait for it to be completed. Layered queueing networks occur naturally in all
kinds of information and e-commerce systems, grid systems, and real-time systems such as telecom switches; see
[8] and references therein for an overview. Layered queues are characterised by simultaneous or separate phases
where entities are no longer classified in the traditional roles of ‘servers’ and ‘customers’, but may also have a
dual role of being either a server to other entities (of lower layers) or a customer to higher-layer entities. Think
of a peer-to-peer network, where users are both customers when downloading a file, but also servers to users who
download their files. For our system, one may view the preparation time of a customer as a first phase of service.
The service station (lower layer) acts in this case as a server. However, the second phase of service (the actual
operation) does not necessarily follow immediately. The service station might have to ‘wait’ for the server to
finish working on other stations. At this stage, the service stations act as customers waiting to be served by the
higher layer, the server. Thus, we see that each service station acts both as a ‘server’ (preparing the customer) and
as a ‘customer’ (waiting until the server completes his tasks in the previous stations).

We study the waiting time of the server for this model. Under cyclic routing assumptions, the waiting time
satisfies the recursion (2), which surprisingly emerges when studying maximum weight independent sets in sparse
random graphs. Specifically, consider an n-node sparse random (potentially regular) graph and let the nodes of the
graph be equipped with non-negative weights, independently generated according to some common distribution.
Rather than only the size of the maximum independent set, consider also the maximum weight of an independent
set. It is shown in [9] that for certain weight distributions, a limiting result can be proven both for the maximum
independent set and the maximum weight independent set. What is crucial in this computation is recursion (2); cf.
[9, Eq. (3)]. This recursion provides another surprising link between queueing theory and random graphs.

This paper is an extended version of our conference paper [15]. We extend the conference paper mainly in
two directions. First, we analyse the system more rigorously, and provide several additional limiting results for
the waiting-time distribution, such as its tail asymptotics, under cyclic routing assumptions of the server. Second,
we study extensively the question of how the waiting-time distribution of the server is affected when we drop the
assumption that the server is forced to visit the stations cyclically. Then, the server will always visit the service
station which has its preparation phase completed first in an effort to reduce his overall waiting time. Thus, the
order in which stations are served will become dynamic. The removal of the cyclic condition has a significant
impact on the analysis, since the waiting time in the new dynamic model does not satisfy a recursion such as (2)
anymore. Several results comparing the two models were already derived in [24] for the special case of two service
stations, but these results generally either do not hold for a larger number of service stations or their derivation is
not trivially extended to a general number of service points.

The dynamic model which arises after removal of the cyclic condition turns out to be equivalent to the classical
machine-repair problem. This problem, also known as the computer-terminal model (cf. [2]) or as the time-sharing
system (cf. [11, Section 4.11]), is well studied in the literature. In the machine-repair problem, there is a number
of machines working in parallel, and one repairman. As soon as a machine fails, it joins a repair queue in order
to be repaired by the repairman. This model is one of the key models to describe problems with a finite input
population. A fairly extensive analysis of the machine-repair model can be found in Takács [18, Chapter 5]. The
extensive literature available on the machine-repair problem mainly focuses on the waiting times of the machines,
but ignores the idle times of the repairman. The latter question has not been treated extensively in the classical
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literature, perhaps because in the machine-repair problem, the operating time of the machine is usually more
valuable than the utilisation of the repairman. In our setting, however, we are concerned with the idle times of the
repairman.

At a glance, other than the analytical results, the major insights we gain for both models are summarised as
follows. First, we observe that, in the cyclic model, variability in preparation times has a greater influence than
the variability in service times. In the healthcare setting, one could summarise it as follows: it pays more to have
a reliable nurse than a reliable specialist. In the dynamic model however, it appears that the waiting time of the
server is almost insensitive to the variability of the preparation times. Second, a small variability of preparation
times actually improves the performance of the server under cyclic routing assumptions, in the sense that he waits
less frequently; cf. Figure 2. However, it also decreases the throughput. Thus, the system’s designer may wish to
consider how to balance these conflicting goals. However, again this effect does not occur in the dynamic model.
Next, when deciding how many stations to assign to a server in the cyclic model, the shape of the distribution
plays a role. However, in general, when preparation times are smaller than service times and when the preparation
times variability is low, only few stations per server (about 5 or 6) already come close to the optimal throughput.
When dropping the cyclic assumption though, the expected waiting time of the server decreases, so that even
fewer stations are required per server to guarantee a high utilisation rate of the server. The last major insight we
gain is of mathematical nature. We observe that as the number of stations goes to infinity, the waiting times of the
server become uncorrelated. The correlation structure of the waiting times however turns out to be very surprising
and very different for both cyclic and dynamic routing. We additionally provide an analytic lower bound on the
throughput for the cyclic case and an empirical upper bound. Both of these bounds are easy to compute, converge
exponentially to the true throughput as N goes to infinity, and are tight in some cases. Thus, we get quick and
accurate estimates on the system’s performance. For a discussion of these and other observations, see Section 4
and Section 5.3.

The rest of the paper is organised as follows. The general model is presented in Section 2, along with detailed
descriptions of the cyclic and dynamic model variations. In Section 3, we provide analytical results for the cyclic
model. More specifically, we give a sufficient condition for the existence of a limiting waiting-time distribution and
investigate the tail behaviour of the waiting time. Under the assumption that preparation times are exponential, we
also study the transient behaviour of the waiting time and provide the transition matrix of the underlying Markov
chain. Section 4 provides insights into the effect of all parameters on the system’s performance for the cyclic
model. Finally, we compare the server’s waiting-time distribution of the cyclic model with that of the dynamic
model in Section 5. We show that these distributions are not necessarily stochastically ordered. Nevertheless,
the mean waiting time in the cyclic case turns out to always be at least as large as the mean waiting time in the
dynamic case. Finally, we investigate how the insights obtained for the cyclic model compare to the behaviour of
the waiting-time distribution in the dynamic model.

2 Model description
We assume that there are N ≥ 2 identical service stations Q1, . . . , QN operated by a single server. Each of these
service stations has an infinite supply of customers. Before being served by the server for a durationA, a customer
must first undergo a preparation phase with duration B (not involving the server). Thus, the server, after having
finished serving a customer at one station, may have to wait for the preparation phase of the customer at the next
station to be completed. Immediately after the server concludes his service at some station, another customer
from the queue begins his preparation phase there while the server moves to the next station. Consequently, at
each point in time, there is exactly one customer at a service station who is either in service, waiting for service
or undergoing preparation. Unless otherwise stated, we assume that A and B are continuous random variables
with finite means, general distribution functions FA (FB) and Laplace-Stieltjes transforms α(s) = E[e−sA] and
β(s) = E[e−sB ].

Initially, we are interested in the waiting time of the server when assuming he serves the stations in a cyclic
order. Thus, after having served a customer at service station Qi, the server will move to service station Qi+1 to
serve a customer there. Note that indices of service stations are to be understood moduloN , so that service station
Qi actually refers to service station Q((i−1) mod N)+1. We will refer to this as the cyclic model, or equivalently,
the cyclic case. Later on, we compare the performance of this model to the dynamic model, or dynamic case. In
this model, the server no longer moves through the service stations in a cyclic manner after completing a service,
but visits the service station corresponding to the customer that finishes or has finished its preparation phase the
earliest. Thus, in the dynamic model, it is also possible that he visits the same service station twice in a row. We
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comment on both scenarios in more detail below.

The cyclic model. Let Bn denote the preparation time of the n-th customer served and let An be the time the
server spends on this customer. We assume that {Bn}n≥1 and {An}n≥1 are comprised of independent, identically
distributed (i.i.d.) realisations of the random variables B and A. The waiting time WC

n incurred by the server just
before serving the n-th customer then satisfies the equation

WC
n+1 =

(
Bn+1 −

n∑
i=n−N+2

Ai −
n∑

i=n−N+2

WC
i

)+
. (1)

This equation can be rewritten as

WC
n+1 =

(
Xn+1 −

n∑
i=n−N+2

WC
i

)+
, (2)

whereXn+1 = Bn+1−
∑n
i=n−N+2Ai. Note that {Xn, n ≥ 0} is comprised of identically distributed realisations

of a random variable X . However, these realisations are not necessarily independent. They are only independent
with an (N − 1)-lag. For example, {XN , X2N−1, X3N−2, X4N−3, . . .} are independent. Furthermore, we
assume without loss of generality that in the cyclic case, the server first visits Q1 after time zero. Define RCj,n
to be the residual preparation time at Q(n+j) mod N just after the completion of the (n − 1)-st service in the
cyclic case, n ≥ 1, j = 1, . . . , N − 2. Clearly, RCN−1,n = Bn+N−1 and RCN,n = WC

n . Then, the process
{(WC

n , R
C
1,n, R

C
2,n, . . . , R

C
N−2,n), n ≥ 1} is a Markov chain, of which the evolution is given by WC

n+1 =
(
RC1,n−

WC
n −An

)+
and RCj,n+1 =

(
RCj+1,n −WC

n −An
)+

for j = 1, 2, . . . , N − 2.

The dynamic model. As the number of station visits between two visits of the same station is now stochastic,
there is no simple equivalent of (1) available for the waiting times {WD

n , n ≥ 0} of the server in the dynamic
case. When defining RDj,n to be the residual preparation time at Qj just after the (n − 1)-st service, the process
{(RD1,n, . . . , RDN,n), n ≥ 1} also forms a Markov chain. Evidently, we have that WD

n = minj∈{1,...,N}{RDj,n}.
Furthermore, we have that RDj,N is an independent copy of B if the (n − 1)-st customer was served at Qj .

Otherwise, we have that RDj,n+1 =
(
RDj,n −WD

n −An
)+

.

3 Waiting time analysis of the cyclic model
In this section, we study the waiting-time distribution of the server in the cyclic model. First, we investigate the
existence of a unique limiting waiting-time distribution in Section 3.1. Then, we study the tail behaviour of the sta-
tionary waiting time in Section 3.2 for several classes of preparation-time distributions. Finally, Section 3.3 shows
how to compute the distribution ofWC

n for any n ≥ 1 under the assumption of exponential preparation times. The
analysis presented in this section can conceptually be extended easily to allow for phase-type preparation times.

3.1 Existence of a limiting waiting-time distribution
We will argue in this section that a unique limiting waiting-time distribution exists, under the natural assumption
that P(X ≤ 0) > 0. Note that the stochastic process {WC

n , n ≥ 1} is an aperiodic (possibly delayed) regenerative
process with regeneration times {n : WC

n = WC
n+1 = . . . = WC

n+N−2 = 0}. Let j be any regeneration time
after t = N − 1. Furthermore, let τ = inf{n : n > 0,WC

j = WC
j+1 = . . . = WC

j+N−2 = WC
j+n = WC

j+n+1 =

. . . = WC
j+n+N−2 = 0}, so that τ can be interpreted as the time between two regeneration moments. We show

below that the mean cycle length E[τ ] is finite, which implies by standard theory on regenerative processes that
the limiting distribution of the waiting time exists and the waiting-time process converges to it (see e.g. [1, Cor.
VI.1.5 and Thm. VII.3.6]). To see that the mean cycle length E[τ ] is finite, observe that for any n ≥ N − 1, we
have

P(τ > n) = P(
j+n⋂
i=j+1

{N−2∑
k=0

WC
i+k > 0

}
) ≤ P(

j+n⋂
i=j+N−1

{N−2∑
k=0

WC
i+k > 0

}
).
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Due to (2) and the fact that waiting times are non-negative, Xn is stochastically larger than WC
n . Thus,

P(τ > n) ≤ P(
j+n⋂

i=j+N−1

{N−2∑
k=0

Xi+k > 0
}
) ≤ P(

b n
N−1 c⋂
i=1

{N−2∑
k=0

Xj+i(N−1)+k > 0
}
)

= P(
N−2∑
k=0

Xj+N−1+k > 0)b
n

N−1 c, (3)

where the equality follows from the fact that the process {Xn, n ≥ 0} exhibits no auto-correlation for lag N − 1
or more. Additionally, we have that

P(
N−2∑
k=0

Xj+N−1+k > 0) ≤ 1− P(
N−2⋂
k=0

{
Xj+N−1+k ≤ 0

}
)

= 1− P(Xj+N−1 ≤ 0)P(Xj+N ≤ 0 | Xj+N−1 ≤ 0) · . . . · P(Xj+2N−3 ≤ 0 |
N−3⋂
k=0

{
Xj+N−1+k ≤ 0

}
)

≤ 1− P(X ≤ 0)N−1 < 1. (4)

The second-to-last inequality holds since the process {Xn, n ≥ 0} exhibits positive auto-correlation with a lag
up to N − 2. This implies that Cov[1{Xn≤0},1{Xn−k≤0}] > 0 for any n > 0 and 0 < k ≤ N − 2, so that
P(Xn ≤ 0 | Xn−k ≤ 0) > P(X ≤ 0). The last inequality follows from the assumption that P(X ≤ 0) > 0.
Finally, from (3) we have that

E[τ ] =
N−2∑
n=0

P(τ > n) +

∞∑
n=N−1

P(τ > n) ≤ N − 1 +

∞∑
n=0

P(
N−2∑
k=0

Xj+(N−1)+k > 0)b
n

N−1 c

≤ N − 1 +

∞∑
n=0

P(
N−2∑
k=0

Xj+(N−1)+k > 0)n = N − 1 + (1− P(
N−2∑
k=0

Xj+(N−1)+k > 0))−1 <∞,

where the last inequality follows from (4). Therefore, we conclude that a unique limiting distribution exists for
the waiting time when P(X ≤ 0) > 0. The existence of such a distribution in the theoretical case P(X < 0) = 0
is proved in [23, Section 2.2] for N = 2, but this result seems hard to extend to a general N .

3.2 Tail behaviour
We now study the tail behaviour of WC , the stationary waiting time. For two classes of preparation-time distribu-
tions, we derive the asymptotic behaviour of the probability that the waiting time WC exceeds some large value
x. The tail behaviour may be useful when, for example, the distribution of WC cannot be computed exactly or
when knowledge on the full distribution of WC is not necessary. In the remainder of this section, we write f ∼ g
for two functions f(x) and g(x) when limx→∞ f(x)/g(x) = 1. We also require the notion of regularly varying
and rapidly varying functions.

A measurable function f > 0 is called regularly varying of a finite index κ if

lim
x→∞

f(lx)

f(x)
= lκ

for any l > 0. Observe that this definition demands that the index κ is finite. The definition can be extended
to include cases for which κ is not finite, leading to the notion of rapid variation. A measurable function f :
(0,∞)→ (0,∞) is rapidly varying of index −∞ if it satisfies

lim
x→∞

f(lx)

f(x)
=


0 if l > 1,

1 if l = 1,

∞ otherwise.

A comprehensive account of the theory and applications of regular variation is given in [3]. By convention, we will
call a random variable regularly varying or rapidly varying if its complementary cumulative distribution function
has the corresponding property.
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We first start with the class of preparation-time distributions that satisfies

lim
x→∞

P(B > x+ y)

P(B > x)
= e−κy

for some finite constant κ ≥ 0, or equivalently

lim
x→∞

P(eB > exey)

P(eB > ex)
= (ey)−κ.

Thus, we regard the class of distributions of B for which eB is a regularly varying random variable with index
−κ ≤ 0. For κ = 0, this means that the random variable B is long-tailed, and thus, in particular, heavy-tailed. If
κ > 0, then B is light-tailed, but not lighter than the tail of an exponential distribution.

In order to study the tail behaviour of WC for this class of preparation-time distributions, we will use the
following proposition obtained in [6, Corollary 3.6].

Proposition 3.1. If Y > 0 is a regularly varying random variable with index −κ, κ ≥ 0, and Z > 0 is a random
variable independent of Y satisfying E[Zκ+ε] <∞ for some ε > 0, then Y Z is also regularly varying with index
−κ. In particular, we have that

P(Y Z > x) ∼ E[Zκ]P(Y > x).

Now, let Y = B − A and let Z be a random variable with a distribution equal to the limiting distribution of
WC
n +

∑n−1
i=n−N+2(Ai+W

C
i ) as n→∞ under the conditions of Section 3.1. Then we have, due to the recursion

in (1), that WC d
=Y − Z. The following theorem states that the tail of W behaves asymptotically as the tail of B

or the tail of Y multiplied by a constant.

Theorem 3.2. Let eB be regularly varying with index −κ. Then, we have for the tail of WC that

P(WC > x) ∼ E[e−κ(A+Z)]P(B > x) and P(WC > x) ∼ E[e−κZ ]P(Y > x).

Proof. We have from (1) that P(WC > x) = P(B − A − Z > x), or equivalently, P(eWC

> ex) =

P(eBe−(A+Z) > x). Note that e−(A+Z) is a positive random variable, which for any ε > 0 satisfies

E[e−(κ+ε)(A+Z)] ≤ 1 <∞,

as A + Z cannot take negative values. Therefore, we obtain by applying Proposition 3.1 with Y = B and
Z = A+ Z that

P(eW
C

> ex) ∼ E[e−κ(A+Z)]P(eB > ex) = E[e−κ(A+Z)]P(B > x).

For the second part of the theorem, note that E[e−(κ+ε)A] ≤ 1 < ∞ for any ε > 0 as A only takes non-negative
values. Therefore, since eB is regularly varying with index −κ, eY is too by Proposition 3.1. The expression for
the tail of WC in terms of the tail of Y now follows from an analysis similar to the one above using Proposition
3.1 with Y = Y and Z = Z.

An example of a random variable B that satisfies the conditions of this theorem is the one having asymp-
totically the tail distribution P(B > x) ∼ c0x

c1e−c2x, for some real-valued constants ci, i = 0, 1, 2, where
c0, c2 > 0.

We now consider the class of preparation-time distributions for which eB is rapidly varying with index −∞,
that is

lim
x→∞

P(eB > exey)

P(eB > ex)
= lim
x→∞

P(B > x+ y)

P(B > x)
=


0, if y > 0,
1, if y = 0,
∞, if y < 0.

This is equivalent to letting the index κ that was given previously go to infinity. For the random variable B this
means that it is extremely light-tailed. As an example, one can think of a distribution for which the tail is given by
P(B > x) = e−x

p

, where p > 1.

6



For this class of preparation-time distributions, we derive the asymptotic behaviour of the tail of WC , under
the assumption that P(Z = 0) > 0. Thus, we assume among other things that the distribution of A has an atom
at zero. The following theorem states that, as before, the tail of WC then behaves asymptotically as the tail of Y
multiplied by a constant. A similar result under more general assumptions on the distribution of A and B seems
hard to obtain, unless N = 2 (cf. [23]).

Theorem 3.3. Let eB be rapidly varying with index −∞. If P(Z = 0) > 0, the tail of WC satisfies

P(WC > x) ∼ P(Y > x)P(Z = 0).

Proof. Note that according to (1),

P(WC > x) = lim
n→∞

P(Bn −
n∑

i=n−N+2

Ai −
n∑

i=n−N+2

WC
i > x) = P(Y − Z > x)

= P(Y > x)P(Z = 0) + P(Y − Z > x | 0 < Z < ε)P(0 < Z < ε)

+ P(Y − Z > x | Z ≥ ε)P(Z ≥ ε) (5)

for some ε > 0. Since the last two terms of the right-hand side of (5) are non-negative, we conclude immediately
that

lim inf
x→∞

P(WC > x)

P(Y > x)P(Z = 0)
≥ 1. (6)

Concerning the upper limit, observe that P(Y − Z > x | 0 < Z < ε) ≤ P(Y > x) and that P(Y − Z > x | Z ≥
ε) ≤ P(Y > x + ε). As eB is rapidly varying, eY is too (see e.g. [23, Lemma 1]). Therefore, we have for ε > 0
that

lim
x→∞

P(Y > x+ ε)

P(Y > x)
= 0.

Combining the above arguments, we obtain from (5) that

lim sup
x→∞

P(WC > x)

P(Y > x)P(Z = 0)
≤ 1 +

P(0 < Z < ε)

P(Z = 0)
. (7)

By taking the limit ε→ 0 we therefore have that

lim sup
x→∞

P(WC > x)

P(Y > x)P(Z = 0)
= 1,

since the inequalities in P(0 < Z < ε) are strict, P(Z = 0) > 0 and the left-hand side of (7) does not depend on
ε. Combining (6) with this expression leads to the theorem.

3.3 Transient analysis

In this section, we assume that preparation times are exponentially distributed with rate µ. Note that the analysis
can extend to phase-type preparation times, but at the cost of more cumbersome expressions. Furthermore, little
insight is added by such an extension. We first show that the waiting time (has an atom at zero and), provided
that it is positive, is also exponentially distributed with rate µ. We then compute the atom at zero by computing
the transition matrix of the underlying Markov chain. We show that the matrix has a nice structure that can be
exploited for numerical computations. Particularly for three stations, we provide further analytic results. We
compute the steady-state distribution, and give closed-form expressions for the covariance between two waiting
times and for the mean time between two zero waiting times, both for the transient and the steady-state cases.
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3.3.1 The behaviour of WC
n+1

We show that the waiting time, given that it is positive, is exponentially (µ) distributed. For n ≥ N − 1, we have
that

P(WC
n+1 > x |WC

n = wn, . . . ,W
C
n−N+2 = wn−N+2) = P(Bn+1 >

n∑
i=n−N+2

Ai +

n∑
i=n−N+2

wi + x)

=

∫ ∞
yn−N+2=0

· · ·
∫ ∞
yn=0

e−µ(
∑n

i=n−N+2(yi+wi)+x)dFAn(yn) . . . dFAn−N+2
(yn−N+2)

= (α(µ))N−1e−µ(
∑N

i=n−N+2 wi+x), (8)

where we defined α(µ) = E[e−µA]. From this equation, we conclude that

P(WC
n+1 > x |WC

n+1 > 0,WC
n = wn, . . . ,W

C
n−N+2 = wn−N+2)

=
P(WC

n+1 > x |WC
n = wn, . . . ,W

C
n−N+2 = wn−N+2)

P(WC
n+1 > 0 |WC

n = wn, . . . ,WC
n−N+2 = wn−N+2)

=
(α(µ))N−1e−µ(

∑n
i=n−N+2 wi+x)

(α(µ))N−1e−µ(
∑n

i=n−N+2 wi)
= e−µx,

meaning that WC
n+1, provided that it is positive, is not affected by the previous N − 1 waiting times. A direct

conclusion is that P(WC
n+1 > x |WC

n+1 > 0) = e−µx so that

P(WC
n+1 > x) = P(WC

n+1 > x |WC
n+1 > 0)P(WC

n+1 > 0) + P(WC
n+1 > x |WC

n+1 = 0)P(WC
n+1 = 0)

= e−µxP(WC
n+1 > 0). (9)

That is, the distribution of WC
n is a mixture of a mass at zero and the exponential distribution with rate µ, in case

n ≥ N − 1. The same result for 1 ≤ n < N − 1 follows by performing a similar analysis. The argument can
also be applied for WC , the limit of WC

n as n→∞. That is, P(WC > x) = e−µxP(W > 0). We now calculate
P(WC

n+1 > 0) for all n, and P(WC > 0). In order to do that, we will define a Markov chain and calculate its
one-step transition probability matrix.

3.3.2 Construction of a Markov Chain

Recall that the process (WC
n , R

C
1,n, R

C
2,n, . . . , R

C
N−2,n) is a Markov chain. We have just showed thatWn, provided

that it is positive, is distributed according to B irrespective of the previous waiting times when B follows an expo-
nential distribution. It is also trivial to see that a residual preparation time RCj,N , given it is positive, has the same
distribution as B, because of the memoryless property of the exponential distribution. Due to these observations,
the process {(FCn , GC1,n, . . . , GCN−2,n), n ≥ 1} is a Markov chain on the state space SC = {0, 1}N−1, where
FCn = 1{WC

n >0} and GCj,n = 1{RC
j,n>0}. A state i = (i1, . . . , iN−1) ∈ SC describes the residual preparation time

in each station (positive or zero) at the start of the n-th waiting time of the server (including zero waiting times).
The only station that does not appear in this description is the station the server has just served before this instant,
since the residual preparation time there is always larger than zero (or, in other words, GCN−1,n = 1 for all n).

Before we derive the one-step transition probabilities of this Markov chain, we first observe that the Markov
chain, provided that it is in state i ∈ SC , may not be able to transition directly to any state j ∈ SC . This is a
result of the fact that a preparation phase that is already completed when transitioning to state i, obviously remains
completed until after the following transition, unless its corresponding service station is served in between the two
transitions. In that case, a new preparation phase starts at the next transition. In order words, the Markov chain can
only move from a state i to a state j, when jk−1 = 0 for each k ∈ {2, . . . , N−1} for which ik = 0. Therefore, we
define the set T (i) = {j : jk−1 ≤ ik∀k ∈ {2, . . . , N − 1}} to be the set of possible states the Markov chain can
transition to after a visit to state i. For any state i, we also define ki =

∑N−1
r=1 ir to be the number of preparation

phases that were initiated before the transition to this state, but are still not completed at the time of this transition.
We also define di,j = ki − kj to be the difference between these numbers corresponding to states i and j. Using
these definitions, we can now derive the one-step transition probabilities Pi,j from any state i ∈ SC to any state
j ∈ SC . These derivations are summarised in the following proposition.
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Proposition 3.4. The one-step transition probabilities of the Markov chain {(FCn , GC1,n, . . . , GCN−2,n), n ≥ 1}
are given by

Pi,j =


∑di,j+1
l=0

(
di,j+1
l

)
(−1)lα((kj + l)µ) if i1 = 0, and j ∈ T (i),∑di,j

l=0

(
di,j
l

)
(−1)l α((kj+l)µ)kj+l+1 if i1 = 1 and j ∈ T (i),

0 otherwise,

for any i, j ∈ SC .

Proof. When i1 = 0 and j ∈ T (i), a service phase starts immediately when the Markov chain enters state i.
Therefore, the time between the transition to state i and the next transition to state j amounts exactly to the
duration of this service phase. As the transition to state i marks the start of a new preparation phase at the service
station served just before this transition, the number of preparation phases in progress just after this transition
equals ki + 1. If the chain then transitions to j, it means that exactly kj of these preparation phases should still
be in progress after the transition to state j. The other (ki + 1)− kj = di,j + 1 preparation phases however must
finish over the course of a service time A. Therefore, we have in this case that

Pi,j =

∫ ∞
y=0

(1− e−µy)di,j+1e−kjµydFA(y) =

di,j+1∑
l=0

(
di,j + 1

l

)
(−1)lα((kj + l)µ).

When i1 = 1 and j ∈ T (i), the time until the transition to state j does not only consist of a service time A,
but also of some waiting time needed for the preparation phase at the server’s location to finish. We have seen
in Section 3.3.1 that the distribution of this waiting time equals that of B, independently of other waiting times.
Of the ki + 1 preparation phases just after the transition to state i, the preparation phase at the server’s location
finishes at any rate before the next transition. Consequently, for the Markov chain to transition from state i to state
j, exactly kj of the remaining ki preparation phases must still be in progress after the transition to state j, and the
other ki − kj = di,j should not. Thus, for this case we have that

Pi,j =

∫ ∞
x=0

∫ ∞
y=0

(1− e−µ(x+y))di,je−kjµ(x+y)µe−µxdFA(y)dx =

di,j∑
l=0

(
di,j
l

)
(−1)lα((kj + l)µ)

kj + l + 1
.

Finally, it is obvious by definition of T (i) that Pi,j = 0 if j /∈ T (i). This completes the derivation of the
one-step transition probability matrix.

Now that the one-step transition probabilities are derived, the one-step transition probability matrix P =
(Pi,j)i,j∈SC can be constructed, e.g. by arranging all states in lexicographic order. Using this matrix, one can
compute the unknown P(WC

n > 0) needed to obtain the transient distribution of WC
n for any n (cf. (9)) or, in case

n→∞, the stationary distribution of WC . Without loss of generality, we can assume that the system starts in an
arbitrary state k ∈ SC . Let ek be the unit vector of which the entry at the index which corresponds to state k equals
one (and all other elements equal zero). Then, by standard theory on Markov chains, P(WC

n > 0) equals the sum
of the entries of the vector ekPn−1 that, according to the ordering of states chosen, correspond to states for which
the first element equals one (i.e., a non-zero waiting time). Likewise, the steady-state probability P(WC > 0) can
be found by computing the unique vector π satisfying π = πP and

∑
i∈SC πi = 1. The probability P(WC > 0) is

then again given by the sum of the entries of π that correspond to states of which the first element equals one. For
illustratory purposes, we present a detailed analysis for the case with N = 3 stations in the next section. We again
consider exponentially distributed preparation times, although the analysis can evidently extend to phase-type
distributions.

3.3.3 Analysis for N = 3 stations

In this section, we calculate the limiting distribution (W,R) of the Markov chain and the (transient) distribution of
WC
n when N = 3. We also derive the covariance Cov[WC

n ,W
C
n+k] and the distribution function of the number of

visits between two successive zero waiting times of the server. Observe that these are not necessarily regenerative
points. We first derive the one-step transition probability matrix of the Markov chain.

For the case N = 3, there are only four relevant states in the corresponding Markov chain so that SC =
{(0, 0), (0, 1), (1, 0), (1, 1)}. We arrange the states lexicographically, so that the columns and rows of the matrix
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P correspond to (0, 0), (0, 1), (1, 0) and (1, 1) respectively. Then, by using Proposition 3.4, we have that the
one-step transition probability matrix is given by

P =



1− α(µ) α(µ) 0 0

1− 2α(µ) + α(2µ) α(µ)− α(2µ) α(µ)− α(2µ) α(2µ)

1− 1
2α(µ)

1
2α(µ) 0 0

1− α(µ) + 1
3α(2µ)

1
2α(µ)−

1
3α(2µ)

1
2α(µ)−

1
3α(2µ)

1
3α(2µ)


. (10)

The unique limiting distribution of the Markov chain is given by the vector π satisfying π = πP and
∑
i∈SC πi =

1. After some computations, we obtain

π(0,0) =
12− 6α2(µ)− 12α(µ) + 4α(µ)α(2µ)− α2(µ)α(2µ) + 8α(2µ)

12 + 6α2(µ) + α2(µ)α(2µ) + 8α(2µ)
,

π(0,1) =
4α(µ)(3− α(2µ))

12 + 6α2(µ) + α2(µ)α(2µ) + 8α(2µ)
, π(1,0) =

2α(µ)(α(µ)α(2µ) + 6α(µ)− 6α(2µ))

12 + 6α2(µ) + α2(µ)α(2µ) + 8α(2µ)
,

π(1,1) =
12α(µ)α(2µ)

12 + 6α2(µ) + α2(µ)α(2µ) + 8α(2µ)
.

When the system starts, we assume that a preparation phase is initiated at each service point. Thus, the Markov
chain starts in the state (1, 1) at n = 1. The event WC

n > 0 coincides with the event that the Markov chain finds
itself in the state (1, 0) or (1, 1) after n − 1 transitions. The probability of the latter event equals P (n−1)

(1,1),(1,0) +

P
(n−1)
(1,1),(1,1), so that a combination with (9) yields the following expression for the transient waiting-time distribu-

tion:

P(WC
n > x) = e−µx

(
P

(n−1)
(1,1),(1,0) + P

(n−1)
(1,1),(1,1)

)
for all x > 0. Similarly, an expression for the steady-state waiting time distribution is given by

P(WC > x) = e−µx
(
π(1,0) + π(1,1)

)
.

Next, to calculate the auto-covariance Cov[WC
n ,W

C
n+k] = E[WC

n W
C
n+k]− E[WC

n ]E[WC
n+k], observe that for

all k ≥ 0

E[WC
n+k] = E[WC

n+k |WC
n+k > 0]P(WC

n+k > 0) =
1

µ
P(WC

n+k > 0) =
1

µ

(
P

(n+k−1)
(1,1),(1,0) + P

(n+k−1)
(1,1),(1,1)

)
.

Furthermore, we have that E[WC
n W

C
n+k] = E[WC

n W
C
n+k |WC

n > 0,WC
n+k > 0]P(WC

n > 0,WC
n+k > 0), where

E[WC
n W

C
n+k |WC

n > 0,WC
n+k > 0] =

∫ ∞
w=0

wE[WC
n+k |WC

n+k > 0]µe−µwdw

=

∫ ∞
w=0

w
1

µ
µe−µwdw =

1

µ2
,

and

P(WC
n > 0,WC

nk
> 0) = P(WC

n+k > 0 |WC
n > 0)P(WC

n > 0)

= P(WC
n+k > 0 |WC

n > 0, RC1,n = 0)P(WC
n > 0, RC1,n = 0)

+ P(WC
n+k > 0 |WC

n > 0, RC1,n > 0)P(WC
n > 0, RC1,n > 0)

=
(
P

(k)
(1,0),(1,0) + P

(k)
(1,0),(1,1)

)
P

(n−1)
(1,1),(1,0) +

(
P

(k)
(1,1),(1,0) + P

(k)
(1,1),(1,1)

)
P

(n−1)
(1,1),(1,1).

Therefore, we obtain by combining the expressions above that

Cov[WC
n ,W

C
n+k] =

1

µ2

((
P

(k)
(1,0),(1,0) + P

(k)
(1,0),(1,1)

)
P

(n−1)
(1,1),(1,0) +

(
P

(k)
(1,1),(1,0) + P

(k)
(1,1),(1,1)

)
P

(n−1)
(1,1),(1,1)

)
− 1

µ2

(
P

(n−1)
(1,1),(1,0) + P

(n−1)
(1,1),(1,1)

)(
P

(n+k−1)
(1,1),(1,0) + P

(n+k−1)
(1,1),(1,1)

)
. (11)

10



Last, we compute the distribution and expectation of visits between two consecutive zero waiting times. Sup-
pose that WC

n = 0 and define CCn to be the length from the moment that WC
n = 0 until the next time that the

server’s waiting time is zero. In other words,

CCn = inf
k≥1
{k :WC

n+k = 0 | WC
n = 0}.

Observe that for N = 2, the points {CCn , n ≥ 1} constitute regenerative times for the waiting-time process
{W c

n, n ≥ 0}, as a zero waiting marks a regenerative point in that case. However, for larger N , this is not
necessarily the case. The results are summarised in the following proposition.

Proposition 3.5. The distribution of CCn is given by

P(CCn = 1) = 1−
P

(n−1)
(1,1),(0,1)

P
(n−1)
(1,1),(0,0) + P

(n−1)
(1,1),(0,1)

α(µ),

P(CCn = 2) =
P

(n−1)
(1,1),(0,1)

P
(n−1)
(1,1),(0,0) + P

(n−1)
(1,1),(0,1)

α(µ)

(
1− 1

2
α(2µ)

)
and

P(CCn = k) =
P

(n−1)
(1,1),(0,1)

P
(n−1)
(1,1),(0,0) + P

(n−1)
(1,1),(0,1)

α(µ)

(
1

2
α(2µ)

)(
1

3
α(2µ)

)k−3(
1− 1

3
α(2µ)

)
for k ≥ 3.

Moreover,

E[CCn ] = 1 +
P

(n−1)
(1,1),(0,1)

P
(n−1)
(1,1),(0,0) + P

(n−1)
(1,1),(0,1)

α(µ)

(
6 + α(2µ)

6− 2α(2µ)

)
. (12)

Proof. For k = 1, we have that

P(CCn = 1) = P(WC
n+1 = 0 |WC

n = 0)

= P(WC
n+1 = 0 |WC

n = 0, RC1,n = 0)P(RC1,n = 0 |WC
n = 0)

+ P(WC
n+1 = 0 |WC

n = 0, RC1,n > 0)P(RC1,n > 0 |WC
n = 0)

=
(
P(0,0),(0,0) + P(0,0),(0,1)

) P
(n−1)
(1,1),(0,0)

P(WC
n = 0)

+
(
P(0,1),(0,0) + P(0,1),(0,1)

) P
(n−1)
(1,1),(0,1)

P(WC
n = 0)

=
P

(n−1)
(1,1),(0,0)

P(WC
n = 0)

+ (1− α(µ))
P

(n−1)
(1,1),(0,1)

P(WC
n = 0)

= 1−
P

(n−1)
(1,1),(0,1)

P
(n−1)
(1,1),(0,0) + P

(n−1)
(1,1),(0,1)

α(µ).

The results for

P(CCn = i) = P(WC
n+i = 0,WC

n+i−1 > 0, . . . ,WC
n+1 > 0 |WC

n = 0)

with i > 1 follow by expanding this expression into P(WC
n+1 > 0 | WC

n = 0) as well as probabilities of the
form P(WC

j+2 > 0 | WC
j+1 > 0,WC

j = 0) and P(WC
j+2 > 0 | WC

j+1 > 0,WC
j > 0); see also [25, Section 3.2].

Similar to the derivations above, these probabilities can be computed by using the Markov chain formulation of
the previous section. The expectation in (12) then follows by computing E[CCn ] =

∑∞
k=0 kP(CCn = k).

Remark 3.1. Throughout this section, we assumed that preparation times are equally distributed at each of the
service stations. One might also be interested in the case where the duration of a customer’s preparation phase at
service station Qi is exponential with a station-specific rate µi. Then, it follows immediately from the analysis of
Section 3.3.1 that the server’s waiting time at Qi, provided that it is positive, is also exponentially (µi) distributed.
Furthermore, the size of the mass at zero can still be computed by constructing a Markov chain, using the same
conceptual methods. However, in this case the current position of the server needs to be included in the state
space to retain the Markov property, and the residual preparation times in the system are not necessarily identically
distributed anymore. Therefore, the expressions will become more cumbersome, providing little additional insight
in the behaviour of the system.
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Figure 1: Throughput vs. the number of stations for moderately variable preparation and service times (solid),
highly variable service times (dotted) and highly variable preparation times (dashed).

Remark 3.2. In this section, we mainly studied the waiting time WC of the server as a performance measure.
Another important performance measure pertaining to the system is the throughput θC , i.e., the mean number of
customers that finish their service per unit of time. Observe that θC is equal to the number of customers N served
per cycle over the expected cycle length, which has duration N(E[WC ] + E[A]). Thus,

θC = (E[WC ] + E[A])−1,

see also [14]. As such, the results of this section can be readily applied to analyse the throughput of the system,
since E[A] is a known constant. In Section 4, we will focus on the impact of the parameter settings on the
throughput of the system.

4 Insights
In the previous sections, we gave closed-form expressions for exponentially distributed preparation times. Here,
we obtain general insights into the behaviour of the cyclic model by simulation on a larger range of parameter
settings. We vary, among other, the number of stations and the distributions of the preparation and service times.
We focus on the effect of the first two moments of preparation and service times to the throughput. For their
distributions, we choose phase-type distributions based on two-moment-fit approximations commonly used in
literature, see e.g. [20, p. 358–360]. We discuss several interesting conclusions based on the simulation results.

Variability of preparation and service times. When controlling the system, the variability of the preparation
times seems to play a larger role than the variability of the service time. This is because the server’s waiting-time
process is much more sensitive to the former than to the latter. See e.g. Figure 1, where the throughput θC is
plotted versus the number of queues N . We observe the throughput for various variability settings for both time
components. We fix the means at E[A] = E[B] = 1, and first consider the same phase-type distributions with low
variability for both the preparation and service time, i.e. E[A2] = E[B2] = 1.5 (solid curve). We also consider
the case with highly variable service times only, i.e. E[A2] = 10,E[B2] = 1.5 (dotted curve) and highly variable
preparation times only, i.e. E[A2] = 1.5,E[B2] = 10 (dashed curve). Although the variability of preparation
times and service times are varied in similar ways, the dotted curve nears the solid curve as N grows larger much
faster than the dashed curve. Therefore, predictability of the preparation times seems to be much more important
than that of the service times. This is to be expected; when we observe (1) we see that as the number of stations
tends to infinity, the squared coefficient of variation of the sum of service times at the right-hand side of (1) goes
to zero, and thus the effect of the sum of the service times is minimal.

In other words, it is more important that one has a reliable assistant than a reliable server, in particular for
large systems. In the carousel setting, this is more or less guaranteed; although the preparation times (i.e. rotation
times) depend on the picking strategy followed, they are bounded by the length of the carousel and as such exhibit
small variability. Whether the picker is robotic (small variability) or human, does influence the system, but not as
dramatically as the preparation times do. The influence of variable service times decreases very fast as the number
of stations increases, even for highly variable service times. The influence of variable preparation times decreases
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Figure 2: Mean time between two zero waiting times vs. E[B2] (solid) and E[A2] (dashed).

too but so slowly that it converges to the benchmark case only at infinity. It is natural to expect that as N tends to
infinity preparation times become less important. One expects that the preparation will almost surely have expired
after serving a very large number of stations and that the total throughput will simply equal the rate of service.

This statement is reinforced by Figure 2, where the mean time between two zero waiting times is plotted ver-
sus the second moment of the preparation time B (solid curve) or that of the service time A (dashed curve). It is
assumed that N = 4 and E[A] = E[B] = 1 throughout for both of these lines. For the first curve, the service
times A are taken to be exponentially distributed, while for the second, the preparation times B are taken to be ex-
ponentially distributed. From Figure 2, it is apparent that the mean time between two zero waiting times increases
(i.e. the frequency of zero waiting times decreases) as the service times becomes more variable. However, mostly
the opposite is observed for the preparation times. Although the expected waiting time increases in the variability
of the preparation times by Figure 1, apparently the mean time between two zero waiting times now decreases
anomalously. From this, we conclude that the server’s waiting time process behaves more and more erratically
as the variability of the preparation times increases and seems to be more resistent against highly variable service
times. Again, this effect may be explained by the nature of the waiting time (see (1)), which is expressed in terms
of one preparation time, but a sum of service times. The squared coefficient of variation of the sum goes to zero.

In summary, we can say that variability of preparation times, as long as it is small, improves the performance
of the server, in the sense that he waits less frequently, while variability of service times always improves the
performance of the server in the same sense. However, both scenarios decrease the throughput of the system –
although waiting times occur less frequently under some variability. When they occur they tend to be longer,
thus decreasing the total throughput. Simulation results show about a 10% decrease in throughput under common
scenarios when ranging the preparation time variability (i.e. the worst case) from a deterministic to an exponential.
Nonetheless, in some service systems this may be an advantage, as it gives the opportunity to perform an additional
task (e.g. administration).

Correlations. In general, this system has an interesting correlation structure. In Figure 3 we plot the correlation
between two waiting times of lag k against the lag for exponential preparation and service times with rates 1 and
10 respectively. As we see in Figure 3, correlations exhibit a periodic structure, which is natural as it corresponds
to a return to the first station. Moreover, as time goes to infinity, the waiting times become uncorrelated, which
is again a natural conclusion, as the process is ergodic. As shown in Section 3.1, there exists a unique limiting
distribution and the system converges to it, thus as time (or the number of stations for that matter) goes to infinity,
the system converges to steady-state regardless of the initial state. Thus, the correlation between waiting times
goes to zero because the system loses its memory due to ergodicity. Although the convergence to zero correlations
is expected, the way this happens is intriguing. One may expect some form of periodicity, but it is not clear why
the first cycle looks different than the rest or why correlations should be forming alternatingly convex and concave
loops after the first cycle.

Number of stations to be assigned to a server. One of the important management decisions to be made is the
number of stations to be assigned to a server. Think of the warehouse example given earlier. The more carousels
assigned to the picker, the better his utilisation. However, the utilisation of each carousel decreases. We wish to
understand this interplay. An important measure to be taken into account is the throughput of the system. Note
that the throughput is linearly related to the fraction of time the server is operating, since service is completed at
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Figure 4: Throughput vs. the number of stations for small (dashed), moderate (solid), and large preparation times
(dotted).

rate E[B]−1 whenever the server is not forced to wait. The number of stations to be assigned to a server in order to
reach near-optimal throughput depends very much on the distributions of the preparation time B and the service
time A. This effect is observed in Figure 1, where we see that for highly variable preparation times (dashed line),
the throughput increases for every additional station assigned to the server. Evidently, it will converge to the rate
of service, but this convergence is very slow. On the other hand, variability in the service times influences the
system, but the convergence follows more or less the pattern of the exponential case.

When all distributions are exponential, it is evident that the only quantity that matters in the determination
of the throughput is r = E[A]/E[B]. In order to determine the optimal number of stations to assign to a server,
we plot in Figure 4 the throughput θC versus the number of stations N for three cases of r, namely for r = 2
(top curve), r = 1 (solid curve), and r = 0.5 (dotted curve). In all three cases, the underlying distributions are
exponential. What we observe is that when r ≥ 1, i.e. the top two curves, the throughput converges fast, and
little benefit is added by assigning one more station to the server. This is to be expected, as in this case the mean
service time is not smaller than the mean preparation time, and so the server rarely has to wait. In other words, he
works at almost full capacity, and thus convergence to the maximum service rate (equal to 1 in all scenarios), is
fast. However, when r < 1, the convergence is very slow. We conclude that the shape of the distribution plays a
role, but in general for r > 1 and low variability in preparation times, only few stations per server (say about 5 or
6) are needed to already come close to the maximum throughput.

A rough estimate. In Figure 4 we also plot a rough first-order upper bound and an analytic lower bound of the
throughput that we derive as follows. Recall that the throughput θC satisfies

θC = (E[WC ] + E[A])−1.

A first-order approximation of θC can be produced by estimating E[W ] in the denominator with the mean residual
preparation time multiplied with a rough estimate that the server has to wait, i.e. P(B > A1+ · · ·+AN−1). Then,

14



for exponential preparation times B,

θ̃CN =
1

αN−1(µ)
µ + E[A]

.

We observe that this expression is a lower bound of the throughput, since the actual (stationary) probability a
server has to wait equals limn→∞ P(B > An−N+2 + · · · + An +Wn−N+2 + · · · +Wn), and is thus smaller.
We also observe empirically that θ̃CN+1 provides an upper bound of the throughput in the scenarios we examined.
Observe that the analytic lower bound becomes tighter as r increases, while the empirical upper bound provides a
better estimate for small values of r. As a result, the system’s designer can have a quick, easy, and accurate bound
on the throughput for all parameter settings.

5 Comparison with the dynamic model

In this section, we compare the performance of the cyclic model with that of the dynamic model described in
Section 2, which in literature is known as the machine-repair problem. In the classical machine-repair problem,
there is a number of machines that are served by a unique repairman when they fail. The machines are working
independently and as soon as a machine fails, it joins a queue formed in front of the repairman where it is served in
order of arrival. A machine that is repaired is assumed to be as good as new. The machine-repair problem with N
machines is thus completely equivalent to the model studied in the previous sections, after we drop the assumption
that the server visits the service stations cyclically. After a service, the server will instead visit the service station
corresponding to the customer who completes or has had its preparation completed earlier than all of the other
customers that are first in line at the other service stations. It is thus also possible for the server to serve two
customers in a row at the same service station, in case all other service stations still have a preparation phase in
progress when the preparation phase following the service of the first customer completes. In the machine-repair
model, there are N machines that work in parallel (the service stations), the preparation time of the customer is
equivalent to the life time of the machine until it fails and the service time of the customer is the time the repairman
needs to repair the machine. Thus, the waiting time of the server in the dynamic model is equivalent to the idle
time of the repairman between the repair of one machine and the breakdown of the next. Although the machine-
repair problem is thoroughly treated in the literature, relatively little attention has been given to the idle time of
the repairman. In the following we will refer to the server or customers instead of the repairman or machines in
order to illustrate the analogies between the two models.

Although the waiting time of the server has received little attention, this quantity of interest may be analysed
using a Markov chain approach when assuming phase-type preparation times. For exponentially (µ) distributed
preparation times, the waiting-time distribution is obtained as follows. Evidently, a non-zero waiting time occurs
in the system only if just after the end of a service, a preparation is in progress at every service station. The
waiting time then lasts until one of these N preparation times finishes. Due to the memoryless distribution of the
exponential distribution, the waiting time, provided that it is positive, is thus exponentially (Nµ) distributed:

P(WD
n > x) = e−NµxP(WD

n = 0).

To compute P(WD
n = 0), the size of the atom at zero, we formulate a Markov chain similar to Section 3.3. Let ZDn

be the number of preparation phases in progress in the complete system just after the service of the n-th customer.
Then, again due to the memoryless process of the exponential distribution, {ZDn , n ≥ 0} constitutes a Markov
chain on the state space {1, . . . , N}. Observe that zero is not included in the state space, as the end of a service
always marks the start of a preparation phase. The one-step transition probability from state i to state j is then
given by

Pi,j =


(
i

j−1
)∑i−j+1

k=0

(
i−j+1
k

)
(−1)kα((k + j − 1)µ) if i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , i+ 1},(

N−1
j

)∑N−j
k=0

(
N−j
k

)
(−1)kα((k + j − 1)µ) if i = N , j ∈ {1, . . . , N},

0 otherwise.

The expression for i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , i + 1} follows by noting that in such case i − j + 1
preparation phases have been completed during the service time that marks the transition, and j − 1 preparation
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phases have not. The distribution of the number of phases completed during this service time A is obviously
binomially distributed with parameters i− 1 and 1− e−µA. Therefore, we have that

Pi,j =

∫ ∞
x=0

(
i

j − 1

)
(1− e−µx)i−j+1(e−µx)j−1dFA(x)

=

(
i

j − 1

) i−j+1∑
k=0

(
i− j + 1

k

)
(−1)kα((k + j − 1)µ).

for i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , i + 1}. The one-step transition probability for i = N and j ∈ {1, . . . , N}
follows by noting that in that case first one preparation phase has to finish before service can start. Therefore,
PN,j = PN−1,j for all j ∈ {1, . . . , N − 1}. Finally, transitions corresponding to any other combination of i and
j are not possible, leading to a transition probability of zero. Now that the Markov chain is constructed, we have
that

P(WD
n = 0) = P(ZDn−1 < N).

Thus P(WD
n = 0), as well as its steady-state version limn→∞ P(WD

n = 0), can be computed using standard
Markov chain techniques. Note that the latter limiting probability indeed exists, since we have an aperiodic and
irreducible Markov chain due to the fact that the distributions of A and B are continuous. Similar to computations
in Section 3.3.3, also expressions for the auto-covariance and expected number of transitions between two zero
waiting times can be computed by analysing the constructed Markov chain. This concludes the analysis for expo-
nential preparation times. Evidently, this analysis can conceptually easily be extended to phase-type distribution
times, at the cost of more cumbersome expressions.

Now that we know how to compute the waiting-time distribution of the dynamic model for phase-type prepara-
tion times, we investigate whether there is any connection between the waiting-time distributions of both models.
In Section 5.1, we will observe that the waiting times of both models are not necessarily stochastically ordered.
Nevertheless, Section 5.2 shows by means of a sample-path argument that the mean waiting time in the cyclic
case is never shorter than that of the dynamic case, for any distribution of the preparation time and the service
time. Finally, in Section 5.3, we study how the insights obtained in Section 4 for the cyclic model compare to the
dynamic model using numerical results.

5.1 Stochastic ordering of the waiting times
Intuitively, one might argue that the waiting time WC of the cyclic system is stochastically larger than or equal
to the waiting time WD of the dynamic system, since one expects that large waiting times occur with higher
probability in the cyclic system. In other words, one may conjecture that P(WC > x) ≥ P(WD > x) for all
x ≥ 0. However, this is not necessarily true. One may think of a theoretical setting where the duration of a service
time always equals zero. Then, we have for the cyclic case that the n-th waiting time is zero if the preparation
time Bn preceding the n-th service is already completed when the server arrives at the service station. This
happens for example when the duration of this preparation phase does not exceed any of the preparation times
Bn−N+1, . . . , Bn−1 preceding the previous N − 1 services at the other service stations. As the latter event occurs
with positive probability for any distribution of B, we must have that P(WC > 0) < 1. In the dynamic case
however, we only have a zero waiting time if two preparation phases of different service stations finish at exactly
the same point in time. This cannot occur as preparation times are continuously distributed. Hence, we have that
P(WD > 0) = 1, providing a counterexample to the conjecture mentioned above.

This theoretical setting is not the only possible counterexample. Figure 5(a) depicts the distributions of the
waiting times for both the cyclic and dynamic case in a system with N = 3, standard-exponential preparation
times and exponential (10) service times. This figure shows that a lack of stochastic ordering can occur in a
realistic setting, as there clearly exist values of x in this case for which P(WC > x) < P(WD > x). Of course,
there also exist systems for which the waiting times are actually stochastically ordered. Figure 5(b) for instance
shows the waiting-time distributions for the same example, but the preparation times are now exponentially (0.5)
distributed instead. We see that the waiting-time distributions now never intersect, which implies that they are
indeed stochastically ordered. Observe though that a stochastic ordering is not possible in case N = 2. It was
shown in [24, Theorem 4] that for that case in fact P(WC > 0) ≤ P(WD > 0) for all distributions of A and B
and that there does not exist a stochastic ordering for the waiting-time distributions in case preparation times are
non-deterministic.
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Figure 5: Waiting-time distribution for the cyclic (solid) and dynamic model (dashed) for N = 3 and standard-
exponential preparation times. Service times are exponentially distributed with E[A] = 0.1 (a) and E[A] = 2
(b).

As it is now clear that the waiting-time distributions are not necessarily stochastically ordered, one may still
argue that there must at least exist a convex ordering. In other words, one might expect that E[φ(WC)] ≤
E[φ(WD)] for any increasing convex function φ. If the waiting-time distributions intersect exactly once like in
Figure 5(a), the Karlin-Novikoff cut-criterion (cf. [17]) implies that a convex ordering indeed exists. However,
the final example mentioned above shows that there is not always such an intersection, so that the existence of a
convex ordering for the general case is hard to prove. Therefore, we focus on the expected waiting times instead
in the next section.

5.2 Mean waiting times
Although the waiting-time distributions of the cyclic case and the dynamic case are not necessarily stochastically
ordered, one may still reasonably expect that E[WC ] ≥ E[WD]. In this section, we prove that this weaker
conjecture, contrary to the ones in the previous section, holds true for any distribution of A and B by using a
sample-path argument. We assume the sequences of realisations {bi, i ≥ 1} and {ai, i ≥ 1} for the preparation
and service times respectively to be the same for both scenarios. More specifically, we assume that in both cases
the i-th customer that leaves the system does so after having received a service with duration ai, after which a
new customer at the same service station initiates a preparation phase with duration bi. Furthermore, we assume
that when both systems start up, the remaining preparation time of the customer at Qj at time zero equals ζj ,
j = 1, . . . , N .

To prove that the mean waiting time of the server in the dynamic case does not exceed that of the cyclic case,
we require some additional notation. We will denote by ζ(j) the j-th order statistic of ζ1, . . . , ζN , i.e. the j-th
smallest value among ζ1, . . . , ζN . Let dCi be the departure time of the i-th customer after time zero in the cyclic
case. Denote with qCi the service station at which the server completes a service at time dCi in the cyclic case.
Note that qCi = ((i−1) mod N)+1 for i > 0. Furthermore, let hCi,j be the first moment after dCi that a customer
at service station ((qCi + j − 1) mod N) + 1 has its preparation phase completed and is ready to be served by
the server in the cyclic case, j = 1, . . . , N − 1.

With these definitions, we obviously have for the first departure that dC1 = ζ1 + a1. Subsequent departures,
marked by dCi , occur exactly ai time units after the server starts serving the i-th customer. For 1 < i ≤ N − 1
(thus, during the remainder of the first cycle), the start of the i-th service occurs at time max{dCi−1, ζi}, whereas for
i ≥ N (corresponding to later cycles) the i-th service is initiated at time max{dCi−1, hCi−1,1} = hCi−1,1. Therefore,

dCi =


ζ1 + a1 if i = 1,
max{dCi−1, ζi}+ ai if 1 < i ≤ N − 1,
hCi−1,1 + ai otherwise.

(13)

As for the h-values, we have for i ≤ N − 1 that the first point in time hCi,1 after dCi that a customer at Qi+1

has its preparation phase completed obviously equals either dCi or ζi+1 (whichever happens last). Hence, for
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1 ≤ i ≤ N − 1,

hCi,1 = max{dCi , ζi+1}. (14)

For i ≥ N , this expression is more involved. When the server has finished his (i−1)-th service, a new preparation
phase starts at the corresponding service station, while the server switches from this station to the next. The newly
started preparation phase ends at dCi−1+ bi−1. It takes N −1 additional switches of the server before the customer
corresponding to this preparation phase can be served. Hence, hCi,N−1 takes the maximum value of this number
and dCi . For other values of j, hCi,j retains the value hCi−1,j+1 corresponding to the situation after the (i − 1)-st
service, in case this value exceeds dCi . The shift in the second index is caused because the server has moved one
position in the cycle to the next service station between the (i− 1)-st and the i-th service. To summarise, we thus
have, for i ≥ N :

hCi,j =

{
max{dCi , hCi−1,j+1} if j 6= N − 1,

max{dCi , dCi−1 + bi−1} if j = N − 1.
(15)

To finalise the notation, let dDi , qDi , and hDi,j be defined similarly as dCi , qCi and hCi,j . In the dynamic case, the
server always moves to the service station with the earliest completed preparation phase. For 1 < i ≤ N − 1, the
preparation phase of the i-th served customer finishes before or at time ζ(i). Therefore, we have for 1 ≤ i ≤ N−1
that

dDi ≤ max{dDi−1, ζ(i)}+ ai. (16)

For values of i larger than N − 1, we have that the preparation phase the i-th customer goes through finishes
exactly at time minj∈{1,...,N−1}{hDi−1,j}, provided that the (i − 1)-st customer was served at another station.
Otherwise, it obviously finishes at time dDi−1 + bi. Thus, for i ≥ N , we have

dDi = min{ min
j∈{1,...,N−1}

{hDi−1,j}, dDi−1 + bi}+ ai. (17)

As hDi,1 is connected to the end of the preparation phase which is the first to finish after the end of the preparation
phase of the i-th served customer, it is now not hard to see that, for 1 ≤ i ≤ N − 1,

hDi,1 ≤ max{dDi , ζ(i+1)}. (18)

For values of i larger than N − 1, one needs to keep careful track of the position of the server, but otherwise hDi,j
is expressed similarly to (15). Namely, for i ≥ N , we have

hDi,j =

{
max{dDi , hi−1,j+((qDi −qDi−1) mod N)} if j 6= N − ((qDi − qDi−1) mod N),

max{dDi , dDi−1 + bi−1} if j = N − ((qDi − qDi−1) mod N),
(19)

where (qDi − qDi−1) mod N represents the shift in position of the server between time dDi−1 and time dDi in the
dynamic case.

Now that we have introduced all notation required, we perform two preliminary steps before proving the
desired result. First, we show in Lemma 5.1 that dCi ≥ dDi for i = 1, . . . , N − 1. Thus, we first establish that
dCi ≥ dDi for the special case of the first cycle, at the start of which a preparation phase commences at each
service point. Then, Lemma 5.2 shows that this inequality in fact also holds for i ≥ N . In other words, the result
dCi ≥ dDi persists after the first cycle. Based on these lemmas, Theorem 5.3 finally states that E[WC ] ≥ E[WD]
without any assumption on the non-negative distributions of the preparation and service times.

Lemma 5.1. For the first cycle, namely for i = 1, . . . , N − 1, we have that

dCi ≥ dDi and hCi,1 ≥ minj∈{1,...,N−1}{hDi,j}.

Proof. We first focus on the first part of the lemma and prove that dCi ≥ dDi for i = 1, . . . , N − 1 by induction.
We obviously have that

dC1 = ζ1 + a1 ≥ ζ(1) + a1 = dD1 ,
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which acts as a first step of the induction argument. We proceed by showing that dCi ≥ dDi for any 1 < i ≤ N − 1
under the assumption that dCk ≥ dDk for all k < i. More specifically, we conclude based on (13) and (16) that

dCi = max{dCi−1, ζi}+ ai ≥ max{dDi−1, ζ(i)}+ ai ≥ dDi ,

for any 1 < i ≤ N − 1, by showing that each of the arguments of the second maximum-operator does not exceed
max{dCi−1, ζi}. To see this for the first argument, note that max{dCi−1, ζi} ≥ dCi−1 ≥ dDi−1 by the induction
assumption. A similar observation for the second argument follows by noting that

max{dCi−1, ζi} ≥ max{ max
j∈{1,...,i−1}

{ζj}, ζi} = max
j∈{1,...,i}

{ζj} ≥ ζ(i),

where the first inequality holds since dCi−1 must be larger than any of the times ζ1, . . . , ζi−1, as by time dCi−1 the
server has served one customer at the service stations 1, . . . , i− 1 already in the cyclic case.

For the second part of the lemma, we observe based on (14) and (18) that, for i = 1, . . . , N − 1,

hCi,1 = max{dCi , ζi+1} ≥ max{dDi , ζ(i+1)} ≥ hDi,1 ≥ min
j∈{1,...,N−1}

{hDi,j}. (20)

The first inequality follows by similar steps to those above, namely that max{dCi , ζi+1} ≥ dCi ≥ dDi by the first
part of the lemma already proved, and

max{dCi , ζi+1} ≥ max{ max
j∈{1,...,i}

{ζj}, ζi+1} = max
j∈{1,...,i+1}

{ζj} ≥ ζ(i+1).

The last inequality in (20) is trivial.

We now generalise the result obtained in Lemma 5.1 and show that dCi ≥ dDi for all i > 0 in the following
lemma.

Lemma 5.2. At every point in time, namely for every i ≥ 1, we have that

dCi ≥ dDi and hCi,1 ≥ minj∈{1,...,N−1}{hDi,j}.

Proof. For i = 1, . . . , N − 1, we have proved this statement in Lemma 5.1. To prove the result for larger i, we
again apply induction, where Lemma 5.1 acts as a first step.

To address the induction step, we now prove that dCi ≥ dDi and hCi,1 ≥ minj∈{1,...,N−1}{hDi,j}, under the
assumption that dCk ≥ dDk and hCk,1 ≥ minj∈{1,...,N−1}{hDk,j} for all k < i. The former statement dCi ≥ dDi is
easily seen to hold true by observing based on (13) and (17) that

dCi = hCi−1,1 + ai ≥ min{ min
j∈{1,...,N−1}

{hDi−1,j}, dDi−1 + bi}+ ai = dDi , (21)

where the inequality holds since hCi−1,1 ≥ minj∈{1,...,N−1}{hDi−1,j} as per the induction assumption.
For the latter statement hCi,1 ≥ minj∈{1,...,N−1}{hDi,j}, we derive from (15) that for the cyclic case

hCi,1 = max{dCi , hCi−1,2} = max{dCi , hCi−2,3} = . . . = max{dCi , hCi−N+2,N−1} = max{dCi , dCi−N+1+bi−N+1}.
(22)

Similarly, it can be derived from (19) that there exist k, l ∈ {1, . . . , N − 1} so that hDi,k = max{dDi , hDi−N+2,l}.
This leads to the inequality

min
j∈{1,...,N−1}

hDi,j ≤ max{dDi , max
j∈{1,...,N−1}

{hDi−N+2,j}}. (23)

We now show that hCi,1 ≥ minj∈{1,...,N−1}{hDi,j} by arguing that hCi,1 is not smaller than each of the arguments in
the outer maximum-operator in the right-hand side of (23). For the first argument, we have by using (22) and (21)
respectively that

hCi,1 = max{dCi , dCi−N+1 + bi−N+1} ≥ dCi ≥ dDi .

To deal with the second argument of the maximum-operator, note that, by (19), maxj∈{1,...,N−1}{hDi−N+2,j} can
evaluate either to 1) dDi−N+2, or to 2) one of the values from the set {dDj + bj : j ∈ {1, . . . , i−N + 1}}, or to 3)
ζ(N). We treat each of these cases separately below.
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1) By (22) and (21), we have

hCi,1 = max{dCi , dCi−N+1 + bi−N+1} ≥ dCi ≥ dDi ≥ dDi−N+2.

2) We show that hCi,1 is not smaller than any value in the set {dDj + bj : j ∈ {1, . . . , i − N + 1}}. For any
j ∈ {1, . . . , i−N + 1}, we have by (22), (21) and the observation that hCk,1 ≥ hCl,1 if k ≥ l, that

hCi,1 ≥ hCj+N−1,1 = max{dCj+N−1, dCj + bj} ≥ dCj + bj ≥ dDj + bj .

3) By (22) and again the observation that in the cyclic case hCk,1 ≥ hCl,1 if k ≥ l, we have that

hCi,1 ≥ hCN,1 ≥ dCN,1 ≥ ζ(N),

where the first inequality again follows from the observation that hCk,1 ≥ hCl,1 if k ≥ l. The second inequality
follows from the fact that at time dCN,1, the server has served exactly one customer at each of the service
stations, and therefore dCN,1 cannot be smaller than each of the initial residual preparation times ζ1, . . . , ζN .
By these observations, we have that hCi,1 ≥ minj∈{1,...,N−1}{hDi,j}, which concludes the induction step. The

lemma now follows by induction on i.

Lemma 5.2 now readily establishes the following result.

Theorem 5.3. Given any two non-negative distributions for the service time A and the preparation time B, we
have that E[WC ] ≥ E[WD].

Proof. Given any two sets of i.i.d. sequences {ai, i ≥ 1} and {bi, i ≥ 1} from the random variables A and B, and
any initial set of preparation times (ζ1, . . . , ζN ), Lemma 5.2 states that dCi ≥ dDi for all i ≥ 1.

Observe that dCi =
∑i
j=1(w

C
j +aj), where wCj is the time the server has to wait directly before the start of the

j-th service in the cyclic scenario. Likewise, we have that dDi =
∑i
j=1(w

D
j + aj), where wDi is defined similarly

to wCi for the dynamic scenario. Therefore, the lemma implies that for all i > 0

i∑
j=1

(wCj + aj) ≥
i∑

j=1

(wDj + aj), (24)

which, after subtracting
∑i
j=1 aj , dividing by i and taking limits on both sides, leads to

lim
i→∞

∑i
j=1 w

C
j

i
≥ lim
i→∞

∑i
j=1 w

D
j

i
.

The left-hand side (right-hand side) represents the asymptotic mean waiting time of the server in the cyclic (dy-
namic) scenario given the realisations {bi, i ≥ 1}, {ai, i ≥ 1} and (ζ1, . . . , ζN ). Therefore, the theorem follows
by conditioning on these realisations.

Remark 5.1. It is suggested by (24) that
∑i
j=1W

C
j is stochastically larger than or equal to

∑i
j=1W

D
j for all

i > 0, where WC
j (WD

j ) is the random variable representing the j-th waiting time of the server in the cyclic
(dynamic) case. Although there is not necessarily stochastic ordering in the limiting distributions WC and WD

(cf. Section 5.1), it thus appears that there exists a stochastic ordering in partial sums of transient waiting times
starting at j = 1.

5.3 Numerical comparison
In Section 4, we obtained several insights into the effect of the system’s parameters on its performance in the
cyclic model. More specifically, we commented on the effect of variability of the preparation and service times,
we observed the correlation structure of the waiting times and we studied the number of stations to be assigned to
a server. In this section, we compare the insights obtained for the cyclic model with equivalent observations for the
dynamic model based on additional simulation results, and we explicitly comment on similarities and differences
between the two models.
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Figure 6: Throughput vs. the number of stations for moderately variable preparation and service times (solid),
highly variable service times (dotted) and highly variable preparation times (dashed) in the dynamic model.
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Figure 7: Waiting time vs. c2A (a) and c2B (b) for the cyclic (thick) and dynamic (thin and marked) model with the
values r = 0.5 (solid), r = 0.8 (dashed) and = 1.2 (dotted).

Variability of preparation and service times. We observed in Section 4 that the variability of the preparation
time in the cyclic model seems to have a bigger impact on the server’s waiting-time process than the variability of
the service times. This observation does not extend to the dynamic case. Although the impact of the variability
of the service times is similar, the variability of the preparation times hardly seems to matter for the waiting-time
process. In Figure 6, we have plotted the counterpart of Figure 1 where the server now visits the service stations
dynamically rather than cyclically. Thus, for the same variability settings considered before, we now plot the
throughput θD versus the number of queues N .

It turns out that the solid curve and the dotted curve corresponding to moderately variable preparation times
are similar to the ones corresponding to the cyclic model, other than the fact that these curves converge faster
to the maximum throughput as expected. However, whereas the dashed curve corresponding to highly variable
preparation times was farthest away from the solid curve in Figure 1, the solid and dashed curves now almost
coincide. This indicates that the variability of the preparation times hardly matters for the server’s waiting time
in the dynamic model. This can be explained by the fact that the dynamic model has many similarities with an
Erlang loss model. In fact, if the service time A were exponentially distributed, the dynamic model would reduce
to an M/G/N/N queueing system. The service completions in the dynamic model are then equivalent to Poisson
arrivals to the M/G/N/N queue, of which the number of customers present represents the number of preparations
in progress. A distinctive feature of the M/G/N/N queue is that its performance measures are insensitive to the
distribution of B apart from its first moment (see e.g. [10]). Thus, if we would have chosen exponential service
times, the solid curve and the dashed curve would have coincided. As this is not the case in our current example,
the curves do not completely coincide, but the majority of the insensivity remains.

To further study the effects of the variability of the two time components, define the squared coefficient c2A =
Var[A]/E[A]2. Let c2B be defined similarly and let r = E[B]/E[A] represent the ratio of the two time components.
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Figure 8: Correlation structure for c2B = 0.5 (a), c2B = 1 (b) and c2B = 10 (c).

Consider the systems with N = 3, E[A] = 1, and the values r = 0.5, r = 0.8 and r = 1.2. Figures 7(a) and 7(b)
plot the waiting time E[W ] versus c2A (keeping c2B fixed at 1.5) and c2B (keeping c2A fixed at 1.5) respectively. In
these two graphs, thick lines correspond to the cyclic case, whereas the thin, marked lines indicate results where
the server visits the stations dynamically. From Figure 7(a), we conclude that as c2A increases, the waiting time
also increases for both cases, but that the rate of change is bigger in the cyclic case. The difference between a curve
corresponding to the dynamic case and its equivalent for the cyclic case is however eventually almost constant and
this difference increases as the value of r decreases. In Figure 7(b), we see that the mean waiting time in the
cyclic model is more sensitive to c2B than c2A as observed before. However, for the dynamic system it is indeed
almost insensitive to c2B . From these graphs, we conclude that the mean waiting time generally becomes larger
for smaller values of r. This may strike as odd, since r is a measure of the workload offered to the server, while
in most queueing models waiting times decrease as r decreases. However, recall that we study the waiting time
of the server rather than that of the customers. Finally, we observe that for c2B = 0 (i.e., deterministic preparation
times), the mean waiting times for the cyclic and the dynamic model coincide. Since deterministic preparation
phases will always complete in the order they were initiated, the server will also serve the service points in a fixed
cyclic order in the dynamic case, which leads to this behaviour.

Correlations. In Section 4, we observed that the correlation structure of the waiting times behaves rather sur-
prisingly for the cyclic model. The correlation structure in the dynamic model turns out to behave as unexpectedly,
but otherwise it behaves very differently from the cyclic case. In Figure 8, we plot the correlation structure of the
dynamic model based on the same system settings as those used to construct Figure 3, namely exponentially (1)
distributed preparation times, exponentially (10) distributed service times and N = 3. However, apart from the
exponential case c2B = 1, we now also observe the correlation structure for the values c2B = 0.5 and c2B = 10.
In the cyclic case, increasing the value of c2B does not alter the shape of the curve depicted in Figure 3, although
the correlation generally becomes less significant. Figures 8(a)-8(c) show not only that in the dynamic case the
correlation becomes more significant and converges to zero slower as c2B increases, but also that the shape of the
curve is sensitive to c2B . Figures 8(a) and 8(b) clearly show that also in the dynamic model periodicity effects
are present, as alternatingly convex and alternating loops can be observed. However, an increasing c2B also seems
to have a significant upwards effect on the correlation itself. For c2B = 0.5, the correlation is negative for small
k, whereas this is not the case for c2B = 1.0. For c2B = 10, Figure 8(c) even shows a monotonously decreasing
curve. It is not clear why these effects are present. The increased sensitivity to the variability of the preparation
times to the correlation structure for the dynamic model is highly surprising, as we observed that the waiting-time
distribution itself in the dynamic case is hardly sensitive to c2B . Such peculiar behaviour is also present for the
variability of the service time, but in an opposite fashion. Whereas the waiting-time distribution is sensitive to c2A
in the dynamic case (cf. Figure 7(a)), numerical results show that this number has little effect on the correlation
curves as depicted in Figure 8.

Number of stations to be assigned to a server. We now study how the number of stations to be assigned to
a server changes when one switches from a cyclic to a dynamic regime. In Figure 9 we plot the same curves as
those depicted in Figure 4, and we add the curves one would obtain when the server visits the service stations
dynamically. This figure shows intuitive results. Obviously, the throughput θD for the dynamic model is larger
than its equivalent θC for the cyclic model. This is not surprising, since we found in Section 5.2 that E[WC ] ≥
E[WD]. As such, the number of stations to be assigned to a service in order to be close to maximum throughput
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Figure 9: Throughput vs. the number of stations for small (dashed), moderate (solid), and large preparation times
(dotted) for the cyclic (circles) and the dynamic model (squares).

decreases. Whereas we concluded before that about 5 or 6 generally are needed for the cyclic case, it seems that
for the dynamic case about 3 to 4 servers is already enough.
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