EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Hitting the right target : noninvasive localization of the
subthalamic nucleus motor part for specific deep brain
stimulation

Citation for published version (APA):

Brunenberg, E. J. L. (2011). Hitting the right target : noninvasive localization of the subthalamic nucleus motor
part for specific deep brain stimulation. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Biomedical
Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR715250

DOI:
10.6100/IR715250

Document status and date:
Published: 01/01/2011

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR715250
https://doi.org/10.6100/IR715250
https://research.tue.nl/en/publications/5ee43e41-5547-4441-88ab-d528a7871ab4

®

HITTING THE RIGHT TARGET

Noninvasive localization of the
subthalamic nucleus motor part

for specific deep brain stimulation

Kllan :Bnmnloerg




Hitting the right target

Noninvasive localization of the subthalamic nucleus
motor part for specific deep brain stimulation



Colophon

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school. ASCI dissertation series
number 232.

Netherlands Organisation for Scientific Research

This project was financially supported by a Toptalent grant (number 021.001.055)
from NWO, the Netherlands Organisation for Scientific Research.

Financial support for the publication of this thesis was kindly provided by the ASCI
graduate school and Eindhoven University of Technology.

Travel grants were awarded by the International Society for Magnetic Resonance
in Medicine (ISMRM) and the Medical Image Computing and Computer Assisted
Intervention Society (MICCALI).

The cover of this thesis was designed by the author (Ellen Brunenberg).

The contents were typeset by the author using IATEX2.. The main body of the text
was set using a 10-point Computer Modern Bright font.

Printed by Off Page, Amsterdam, the Netherlands.

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-2526-3

(© 2011 Ellen J.L. Brunenberg, Tilburg, the Netherlands, unless stated otherwise at
the beginning of chapters. All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the copyright owner.



Hitting the right target

Noninvasive localization of the subthalamic nucleus
motor part for specific deep brain stimulation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op donderdag 8 september 2011 om 16.00 uur
door

Ellen Johanna Leonarda Brunenberg

geboren te Weert



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. B.M. ter Haar Romeny
en
prof.dr. V.E.R.M. Visser-Vandewalle

Copromotor:
dr.ir. B. Platel



Il
Z/

What seems astonishing is that a mere three-pound object, made of the same atoms that
constitute everything else under the sun, is capable of directing virtually everything that humans
have done: flying to the moon and hitting seventy home runs, writing Hamlet and building the
Taj Mahal - even unlocking the secrets of the brain itself.

Joel Havemann
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Summary

Hitting the right target
Noninvasive localization of the subthalamic nucleus
motor part for specific deep brain stimulation

Deep brain stimulation of the subthalamic nucleus (STN) has gained momentum
as a therapy for advanced Parkinson's disease. The stimulation effectively alleviates
the patients’ typical motor symptoms on a long term, but can give rise to cognitive
and psychiatric adverse effects as well. Based on primate studies, the STN has
been divided into three functionally different parts, which were distinguished by their
afferent and efferent connections. The largest part is the motor area, followed by
an associative and a limbic area.

The serious adverse effects on cognition and behavior occurring after deep brain
stimulation are assumed to be caused by electrical current spread to the associative
and limbic areas of the STN. Therefore, selective stimulation of the motor part of
the STN seems crucial, both to obtain the best possible therapeutic effect on the
motor symptoms and to minimize the debilitating effects on cognition and behavior.
However, current medical imaging techniques do not yet facilitate the required ac-
curate identification of the STN itself, let alone its different functional areas. The
final target for DBS is still often adjusted using intraoperative electrophysiology.

Therefore, in this thesis we aimed to improve imaging for deep brain stimulation us-
ing noninvasive MRI protocols, in order to identify the STN and its motor part. We
studied the benefits and drawbacks of already available noninvasive methods to tar-
get the STN. This review did not lead to a straightforward conclusion; identification
of the STN motor part remained an open question. In follow-up on this question, we
investigated the possibility to distinguish the different functional STN parts based on
their connectivity information. Three types of information were carefully analyzed
in this thesis.

First, we looked into the clustering of local diffusion information within the STN re-
gion. We visually inspected the complex diffusion profiles, derived from postmortem
rat brain data with high angular resolution, and augmented this manual segmen-
tation method using k-means and graph cuts clustering. Because the weighing of
different orders of diffusion information in the traditionally used L, norm on the
orientation distribution functions (ODFs) remained an open issue, we developed a
specialized distance measure, the so-called Sobolev norm. This norm does not only
take into account the amplitudes of the diffusion profiles, but also their extrema.
We showed that the Sobolev norm performs better than the L, norm on synthetic



Summary

phantom data and real brain (thalamus) data. The research done on this topic
facilitates better classification by clustering of gray matter structures in the (deep)
brain.

Secondly, we were the first to analyze the STN's full structural connectivity, based on
probabilistic fiber tracking in diffusion MRI data of healthy volunteers. The results
correspond well to topical literature on STN projections. Furthermore, we assessed
the structural connectivity per voxel of the STN seed region, and discovered a gra-
dient in connectivity to the motor cortical areas within the STN. While going from
the medial to the lateral part of the STN, the connectivity increases, confirming the
expected lateral location of the STN motor part. Finally, the connectivity analysis
produced evidence for the existence of a "hyperdirect” pathway between the motor
cortex and the STN in humans, which is very useful for future research into stimula-
tion targets. The results of these experiments indicate that it is possible to find the
motor part of the STN as specific target for deep brain stimulation using structural
connectivity information acquired in a noninvasive way.

Third and last, we studied functional connectivity using resting state functional MRI
data of healthy volunteers. The resulting statistically significant clusters provided
us with the first complete description of the STN's resting state functional connec-
tivity, corresponding to the expectations based on available literature. Moreover,
we performed a reverse-regression procedure with the average time-series signals in
motor and limbic areas as principal regressors. The results were analyzed for each
STN voxel separately and also showed mediolateral gradients in functional connec-
tivity within the STN. The lateral STN part exhibited more motor connectivity, while
the medial part seemed to be more functionally connected to limbic brain areas, as
described in neuronal tracer studies. These results show that functional connectivity
analysis also is a viable noninvasive method to find the motor part of the STN.

The work on noninvasive MRI methods for identification of the STN and its func-
tional parts, as presented in this thesis, thus contributes to future specific stimulation
of the motor part of the STN for deep brain stimulation in patients with Parkinson’s
disease. This may help to maximize the motor effects and minimize severe cognitive
and psychiatric side effects.



Samenvatting

Diepe hersenstimulatie van de nucleus subthalamicus (STN) is een populaire therapie
geworden voor de ziekte van Parkinson in een gevorderd stadium. De stimulatie ver-
licht de typische motorische symptomen van de patiénten op effectieve wijze en op
lange termijn, maar kan ook cognitieve en psychiatrische bijwerkingen veroorzaken.
Op basis van experimenten met primaten is de STN onderverdeeld in drie verschil-
lende functionele gebieden, die onderscheiden konden worden door hun afferente en
efferente verbindingen. Het motorisch gebied is het grootste deel, gevolgd door een
associatief en een limbisch gebied.

De serieuze bijwerkingen op het gebied van cognitie en gedrag die optreden na diepe
hersenstimulatie worden vermoedelijk veroorzaakt door een spreiding van elektrische
stroom naar de associatieve en limbische gebieden van de STN. Het lijkt daarom
essentieel om selectief het motorisch deel van de STN te stimuleren, zowel om het
best mogelijke therapeutische effect op de motorische symptomen te bereiken, als
om de invaliderende effecten op cognitie en gedrag te minimaliseren. Echter, met
de huidige technieken voor medische beeldvorming is het nog niet mogelijk om de
STN zelf precies te identificeren, laat staan de verschillende functionele gebieden.
Het uiteindelijke doel bij diepe hersenstimulatie wordt daarom nog vaak bijgesteld
met behulp van intraoperatief elektrofysiologisch onderzoek.

De doelstelling van dit proefschrift was dan ook het verbeteren van de beeldvorming
voor diepe hersenstimulatie door middel van niet-invasieve MRI protocollen, om zo
de STN en zijn motorisch deel te identificeren. We hebben de voor- en nadelen van
reeds beschikbare niet-invasieve methoden om de STN te vinden bestudeerd. Dit
overzicht heeft niet geleid tot een duidelijke conclusie; de vraag naar identificatie van
het motorisch deel van de STN bleef open. Als vervolg hierop hebben we onderzocht
of het mogelijk is om de verschillende functionele delen van de STN te onderscheiden
op basis van hun connectiviteit. In dit proefschrift zijn drie soorten informatie met
betrekking tot connectiviteit nauwkeurig onderzocht.

Als eerste hebben we gekeken naar het clusteren van lokale diffusie-informatie in het
STN gebied. We hebben de complexe diffusieprofielen, afgeleid van data met een
hoge hoekresolutie, gemaakt van postmortem rattenhersenen, eerst visueel gein-
specteerd. Deze handmatige segmentatiemethode is vervolgens uitgebreid met k-
means en graph cuts clustering. Omdat het wegen van verschillende ordes van
diffusie-informatie in de traditionele L, norm op de oriéntatie-distributiefuncties
(ODF's) een belemmering vormde, hebben we een speciale afstandsmaat ontwikkeld,
de zogenoemde Sobolev norm. Deze norm houdt niet alleen rekening met de am-
plitudes van de diffusieprofielen, maar ook met hun extrema. We hebben laten zien
dat de Sobolev norm beter presteert dan de L, norm op synthetische fantoomdata
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en echte data van de thalamus in de hersenen. Dit onderzoek maakt het mogelijk
om kernen van grijze stof (diep) in de hersenen beter te classificeren door middel
van clustering.

Ten tweede hebben we als eerste de volledige structurele connectiviteit van de STN
geanalyseerd, gebaseerd op probabilistische fiber-tracking in diffusie-gewogen MRI
data van gezonde vrijwilligers. De resultaten komen goed overeen met de projecties
van de STN zoals beschreven in de literatuur. Bovendien hebben we de structurele
connectiviteit van elk voxel in de STN regio bepaald, waarbij we ontdekten dat de
connectiviteit met de premotorische cortex een verloop vertoont binnen de STN.
Deze connectiviteit neemt toe als we van het mediale naar het laterale deel van de
STN gaan en bevestigt daarmee de verwachte laterale lokatie van het motorische
deel van de STN. Tenslotte vonden we op basis van onze analyse ook bewijs voor
het bestaan van een "hyperdirecte” baan tussen de motorische cortex en de STN in
de mens, wat heel nuttig is voor toekomstig onderzoek naar mogelijke gebieden voor
stimulatie. De resultaten van deze experimenten geven aan dat het mogelijk is om
op basis van structurele connectiviteit, informatie verkregen op een niet-invasieve
manier, het motorisch deel van de STN te vinden als specifiek doel voor diepe
hersenstimulatie.

Als derde en laatste hebben we functionele connectiviteit bestudeerd, gebaseerd op
functionele MRI data van gezonde vrijwilligers in rust. De resulterende significante
clusters geven ons de eerste complete omschrijving van de functionele connectiviteit
in rust van de STN, die overeenkomt met de verwachtingen gebaseerd op de beschik-
bare literatuur. Bovendien hebben we ook een omgekeerde regressie uitgevoerd, met
de gemiddelde signalen over tijd in motorische en limbische gebieden als belangrijkste
regressor variabelen. De resultaten zijn voor elk voxel van de STN apart geanalyseerd
en vertoonden ook een mediolateraal verloop in functionele connectiviteit in de STN.
Het laterale deel van de STN liet meer motorische connectiviteit zien, terwijl het
mediale deel meer functioneel verbonden leek met limbische hersengebieden, zoals
beschreven in experimenten met neuronale tracers. Deze resultaten laten zien dat
analyse van functionele connectiviteit ook een uitvoerbare niet-invasieve methode is
om het motorisch deel van de STN te vinden.

Het werk op het gebied van niet-invasieve MRI methoden voor identificatie van de
STN en zijn functionele gebieden, zoals gepresenteerd in dit proefschrift, draagt dus
bij aan toekomstige specifieke stimulatie van het motorisch deel van de STN voor
diepe hersenstimulatie in patiénten met de ziekte van Parkinson. Dit zou kunnen
helpen om de motorische effecten te maximaliseren en de ernstige cognitieve en
psychiatrische bijwerkingen te minimaliseren.
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(GGeneral introduction

Alice laughed. “There’s no use trying,” she said “one can'’t believe impossible things.”
“I daresay you haven't had much practice,” said the Queen. “When | was your age,

| always did it for half-an-hour a day. Why, sometimes I've believed

as many as six impossible things before breakfast.”

Lewis Carroll - Alice in Wonderland



1.1 Preface

ser-en-dip-i-ty | seron'dipité | (noun)
the occurrence and development of events by chance in a happy or beneficial way:
a fortunate stroke of serendipity | a series of small serendipities

Throughout the history of science, serendipity has played an important role in many
discoveries. Famous examples include the “Eureka” that Archimedes exclaimed while
bathing, and the epiphany that Newton experienced under his apple tree. In modern
medicine, the discovery of new therapies is still often serendipitous. The lucky stroke
that provided us with penicillin is well-known, but other widespread drugs such as
chlorpromazine (an antipsychotic drug [199]) and cisplatin (a chemotherapy agent
[4]) were also discovered while looking for something different.

The same holds for the series of events that enabled high-frequency stimulation
of a small part in the brain, the subthalamic nucleus, in patients with Parkinson's
disease. The idea of “switching off” brain areas in order to cure these patients stems
from a serendipitous discovery by Irving Cooper, one of the pioneers in functional
neurosurgery [147, 291, 319]. In 1952, he wanted to perform a pedunculotomy, i.e.,
lesion the motor pathway at the level of the midbrain, to paralyze the patient and
stop his tremor. During the intervention, Cooper ruptured an artery in the brain,
forcing him to ligate (tie off) the artery and abort the pedunculotomy. To everyone's
surprise, when the patient awoke, his tremor had gone and no signs of paralysis were
present. Consequently, people investigated how to mimic the lesion that was caused
by the ligation of the artery and the subsequent small brain infarct.

Another serendipity that has been very important for research on deep brain stimu-
lation and Parkinson’s disease, is the discovery of parkinsonism induced by MPTP
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in the early 1980s [176]. This hap-
pened by means of a dramatic outbreak of parkinsonism among young drug-abusers
in California, caused by a contaminated batch of drugs. Analysis of the drugs that
were used, the symptoms, and autopsy data of an earlier case in 1976, pointed
towards degeneration of a brain part called the substantia nigra caused by the toxic
MPTP. The biggest breakthrough came when MPTP appeared to induce Parkin-
son's disease in primates, as research on Parkinson's was until then restricted by the
lack of an animal model on which to test possible therapies.

Even Alim-Louis Benabid (see Figure 2.1), the man who developed deep brain stim-
ulation for Parkinson's disease with his Grenoble group in the late 1980s, rather
modestly put his discovery down to luck [327].

During the research done for this thesis, no serendipitous findings were done. Fortu-
nately, we did find answers to the research questions that we had started with. The



context of our research and the rationale and outline of this thesis will be discussed
in the next sections.

1.2 Context of this research

Deep brain stimulation (DBS) involves a chronic implantation of electrodes into a
specific part deep in the brain, in order to deliver continuous high-frequency stimu-
lation to this area. Soon after its introduction in 1993 [246], deep brain stimulation
of the subthalamic nucleus (STN), a gray matter nucleus of 240 mm? in humans,
became a widely recognized therapy for advanced Parkinson’s disease (PD). With
respect to typical PD motor symptoms, it has been proven that DBS of the STN is
an effective treatment, which has a significant long-term beneficial impact on these
symptoms [34, 259, 321].

However, stimulation-induced adverse effects such as cognitive alterations and psy-
chiatric side effects occur in a substantial number of patients [41, 245, 258, 277,
300, 318]. Although dopaminergic withdrawal, premorbid neuropsychiatric vulnera-
bility, and psychosocial factors play a role as well, it is believed that these behavioral
side effects can be accounted for by a spread of current beyond the functional target
in the STN. Primate studies have shown that the STN can be divided into three
functionally different parts, namely a motor, an associative, and a limbic part, from
large to small [136, 233, 298]. Hence, it is assumed that the side effects are caused
by a spread of current induced by the stimulator beyond the STN motor part, to
the associative and limbic pathways running through the STN [298].

Therefore, accurate targeting and subsequent selective stimulation of the motor part
of the STN is of utmost importance: not only to achieve the best possible effect on
the PD motor symptoms [123, 308], but also to minimize the undesirable adverse
effects on cognition and behavior. Yet, current medical imaging techniques do not
facilitate such an accurate planning procedure. The method for primary targeting
of the STN before DBS still varies greatly between centers [185]. In addition, most
DBS procedures involve a secondary targeting step using intraoperative assessments,
such as microelectrode recordings (MER) or macrostimulation, to adapt the position
of the electrodes to the clinical aim of stimulation of the STN motor part [55, 87].

Unfortunately, noninvasive methods to stimulate the motor part of the STN specifi-
cally do not yet exist. Furthermore, it is still unknown to what extent the functionally
different subregions actually overlap in the human STN. The effect of a more ac-
curate stimulation of the motor part is related to this level of segregation. Current
literature describes that the different parts of the STN play a role in different func-
tional pathways, and as such can be distinguished by their afferent and efferent
projections [136, 233, 298]. These projections can be mapped by noninvasive MRI



techniques that provide information on brain connectivity. On the one hand, the
MRI acquisition can be sensitized to diffusion, which enables estimation of the nerve
fibers between different regions of the brain and the so-called structural connectivity.
On the other hand, neural activity can be measured with functional MRI, in order
to visualize correlations in brain activity (the so-called functional connectivity).

We hypothesize that it is possible to distinguish the different functional parts of the
STN using noninvasive MRI protocols. From this hypothesis, we have derived some
research questions that we would like to answer in this thesis:

1. Can the local fiber structure within the STN region be assessed using diffusion
MRI?

2. Is it possible to map the projections of the STN and thus structural connec-
tivity of the STN based on diffusion MRI?

3. Can the brain regions that display correlation in activity, and as such are
functionally connected to the STN, be identified using functional MRI?

4. Given the answers to questions 1 to 3, to what extent do the different STN
parts overlap and is it possible to stimulate the motor part specifically?

If segmentation and subsequent specific stimulation of the STN motor part would
be feasible, motor results of deep brain stimulation in Parkinson's disease could be
enhanced and the serious side effects reduced.

1.3 Outline

The aim of this thesis is to investigate whether the structural and functional con-
nectivity of the STN can be mapped using noninvasive MRI protocols. Moreover,
we would like to determine the level of segregation of the motor and non-motor
parts of the STN based on these connectivity results, possibly combined with local
diffusion information.

In Chapter 2, we will elucidate the clinical background of this research. In addition to
discussing historical forms of electrical stimulation therapy, we will also show how the
typical symptoms of Parkinson’s disease are caused by a disbalance in the so-called
basal ganglia system. Subsequently, we will explain how therapy for Parkinson’s
disease has evolved into contemporary deep brain stimulation.

The technical background of this research will be elaborated on in Chapter 3. This
chapter will discuss principles that have been used for our data acquisition, ranging
from MR physics to specific diffusion and functional MRI sequences. In addition,



we will explain fiber tracking in diffusion MRI data and different modes of brain
connectivity, based on both diffusion and functional MRI.

We have reviewed the noninvasive methods already available to identify the STN and
we will present the results in Chapter 4. This chapter will give a systematic overview
of techniques for primary targeting of the (dorsolateral part of the) STN, discussing
both indirect and direct targeting studies, as well as comparative papers. Finally, the
advantages and disadvantages of the targeting techniques will be discussed. The
overall focus of this review will lie on MRI, because this modality is most widely
used, and has also proven to be more effective than ventriculography and CT.

Since anatomical MRI did not seem to be sufficient to segment the STN parts, we
proceeded with diffusion MRI. We started with a feasibility study, locally investigating
the added value of noninvasive diffusion MRI and specifically HARDI (high angular
resolution diffusion imaging), by visual inspection of the rat STN region. The results
of this experiment will be presented in Chapter 5. In addition to the visual inspection,
we have also performed automatic clustering experiments on the rat data, using k-
means and graph cuts algorithms. Lastly, we will introduce a new norm for clustering
of diffusion MRI, the so-called Sobolev norm. This norm does not only take into
account the amplitudes of the diffusion profiles, but also the coincidence of extrema,
and performs well on synthetic and real data.

We have also used diffusion MRI beyond the STN region, of which we will present the
results in Chapter 6. We will give a full description of the structural connectivity of
the STN in human volunteers based on diffusion MRI and probabilistic fiber tracking.
Furthermore, we have investigated the level of separation between the motor and
non-motor parts of the STN based on local differences in structural connectivity.
Apart from these results, we will also show the evidence for the existence of the
so-called “hyperdirect” pathway. This pathway is important because it could be used
to target the STN motor part using electrophysiology and might also be a new
stimulation target in itself.

In addition to the structural connectivity analysis, we have followed a similar ap-
proach to determine the functional connectivity of the STN, based on resting state
BOLD functional MRI. The results of this analysis will be presented in Chapter 7. In
this chapter, we will first present a complete account of the functional connectivity
of the STN, based on a seed correlation approach. Afterwards, we will proceed with
the local functional connectivity per voxel of the STN, in order to investigate the
overlap between the motor and other parts of the STN.

Finally, in Chapter 8 we will provide a general discussion, including conclusions and
implications for future research.
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When prescribing one of the drugs | take, my doctor warned me of a common side effect:
exaggerated, intensely vivid dreams. To be honest, I've never really noticed the difference.
I've always dreamt big.

Michael J. Fox



2.1 A history of electrical stimulation

Since antiquity, humans have used electrical stimulation to modulate the nervous
system [260, 270]. Apparently, the ancient Egyptians already used Nile catfish to
treat headaches and neuralgia (nerve pain) [163]. However, the first written record
stems from the Roman era, when the physician Scribonius Largus suggested the use
of electric rays as therapy for headaches and gout in 46 A.D. [164]. Fortunately,
electrical stimulation as a therapy has progressed since then, although the so-called
electro-ichthyotherapy continued to be applied in Europe until the middle of the
nineteenth century, and even longer among American and African tribes [164].

In the late 1800s, the invention of the voltaic cell and the electrical generator fa-
cilitated the application of electric currents for a variety of disorders. The patient
response (e.g., contralateral movement) occurring during such procedures induced
pioneering experiments on cortical excitability in dogs by Fritsch and Hitzig [114],
and seriously ill patients by Bartholow [23] and Horsley [148] (see Figure 2.1).
However, the technology back then was not yet advanced enough to consider stim-
ulation electrodes that did not hinder patient motility. For decades, ablations were
performed instead, for example cortical ablations [149] and ablations of the basal
ganglia [207]. In addition, the operating microscope did not yet exist, so ablation
procedures were open interventions with significant morbidity and mortality rates.
The latter issue was reduced upon the introduction of the stereotactic frame [281].
Unfortunately, there were still cases of inaccurate stereotactic targeting, possibly
due to patient-specific anatomy or brain shift.

Electrical stimulation and recording therefore became of great help in stereotactic le-
sioning procedures. These techniques were used during the intervention to probe the
location of vital structures and consequently avoid them [142], and for several days
before a thalamotomy [98]. The development of the stereotactic frame and elec-
trophysiological recordings boosted the use of stereotactic functional neurosurgery

Figure 2.1 Pioneers of deep brain stimulation. (a) Eduard Hitzig (1838-1907). (b) Gustav
Fritsch (1838-1927). (c) Robert Bartholow (1831-1904). (d) Victor Horsley (1857-1916). (e)
Alim-Louis Benabid (1942). Images (a)—(d) from Wikipedia, image (e) from www.inserm.fr.



in the late 1950s. To treat pain and psychiatric disease, cingulotomy, anterior cap-
sulotomy and subcaudate tractotomy replaced the ice-pick frontal leukotomies by
Freeman [297]. For Parkinson's disease and dystonia, pallidotomy and thalamotomy
were introduced. In addition, the 1960s brought the first implantable pacemaker [59]
and radiofrequency-driven spinal cord stimulator [260].

A decade later, stereotactic functional neurosurgery for psychiatric diseases ground
to a halt due to the introduction of chlorpromazine medication [168]. For Parkin-
son’s disease, something similar happened, as we will see in Section 2.4. However,
before discussing Parkinson's disease, it is convenient to explore the anatomy and
functionality of the basal ganglia, the brain area where this disorder originates.

2.2 The basal ganglia

The basal ganglia are a group of subcortical structures (see Figure 2.2), which have
a critical influence on movement planning and cognitive behaviors [122]. The group
comprises two input nuclei, namely the striatum (consisting of the caudate nu-
cleus and putamen) and the subthalamic nucleus (STN). These input nuclei receive
excitatory signals from the cerebral cortex, many parts of the brainstem (via the
thalamus), and the limbic system. The main output nuclei are the substantia nigra
pars reticulata (SNr) and the medial globus pallidus (GPi). They provide mostly in-
hibitory efferents to nuclei of the thalamus (which then project back to the cerebral
cortex) and to premotor areas of the midbrain and brainstem. The external globus
pallidus (GPe) has only an intrinsic function. This also holds for the substantia nigra
pars compacta (SNc), that provides the striatum with important modulatory signals
[248].

The projections that are received and emitted by the basal ganglia are organized
in several so-called cortico-basal ganglia-thalamocortical circuits. Each of these
circuits originates from specific parts of the cortex, travels via specific thalamic
nuclei, and projects back to at least one of the cortical input areas. Five different
circuits are distinguished, namely the motor, oculomotor, limbic, and two prefrontal
(dorsolateral and lateral orbitofrontal) circuits [5, 298], of which the motor circuit
is most relevant to the pathophysiology of movement and thus Parkinson’s disease.

In Figure 2.3(a) the functional motor circuit for the basal ganglia is shown. Two
circuits can be distinguished: a direct pathway, from the cortex via the putamen,
GPi/SNr complex, and the thalamus back to the cortex; and an indirect pathway,
that includes the GPe and the STN in this loop. The existence of a hyperdirect
pathway from the cortex to the STN has been described in primates [217, 218] and
is still subject to research in humans. In Parkinson's disease (see Figure 2.3(b)),
the decreased dopamine production in the SNc causes decreased inhibition of the
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STN. This gives rise to hyperactivity of the STN, which in turn leads to a decreased
excitation of the cortex. The direct and indirect pathway thus form a delicate dual
control mechanism that is disturbed in Parkinson's disease.

Figure 2.2 The basic anatomy of the brain showing the major regions within the basal ganglia: the
striatum (blue), the globus pallidus (green, consisting of a medial and a lateral part, abbreviated
as GPi and GPe, respectively), the subthalamic nucleus (yellow, abbreviated as STN), and the
substantia nigra (red, abbreviated as SN). Image from Wikipedia.

2.3 Parkinson’s disease

Parkinson's disease (PD) is a common, progressive neurological condition, estimated
to affect 100-180 per 100,000 of the population [219]. This prevalence will grow
as populations shift in age, and is expected to be doubled in Western Europe’s five
and the world’s ten most populous nations by 2030 [88]. The disease is named after
James Parkinson, who vividly described it in his 1817 essay [236].

PD is a progressive neurodegenerative disorder, caused by the preferential cell death
of dopaminergic neurons in the SNc. This degeneration leads to a marked deficit of
the neurotransmitter dopamine, which normally modulates the striatal output in the
direct as well as in the indirect pathway. The shortage causes neurons in the direct
pathway (see Section 2.2 and Figure 2.3(b)) to be activated less easily, reducing
their inhibitory influence on GPi and SNr and contributing to the excessive output
activity. The neurons in the indirect pathway experience reduced inhibition due to
the dopamine decrease. This leads to overinhibition of GPe, disinhibition (and thus
hyperactivity) of STN, and also to increased excitation of GPi and SNr. In short,
PD can be said to involve a pathological non-equilibrium between the direct and
indirect pathway of the motor circuit [122, 290].
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Figure 2.3 A simplified representation of the motor cortico-basal ganglia-thalamocortical circuit
in normal state (a) and Parkinson’s disease (b). GPe = lateral globus pallidus; GPi = medial globus
pallidus; SNr = substantia nigra pars reticulata; SNc = substantia nigra pars compacta; STN =
subthalamic nucleus. Adapted from [225] and [290].



People with PD present classical symptoms associated with parkinsonism, such as
rigidity, bradykinesia, hypokinesia, akinesia, and rest tremor, declining people’s ability
to complete even simple motor tasks [70]. Rigidity refers to the increased stiffness
of a patient’s limbs. Bradykinesia (i.e., slowness of movement), hypokinesia (i.e.,
poverty of movement), and akinesia (i.e., absence of normal unconscious move-
ments, such as arm swing in walking) can manifest themselves as a variety of symp-
toms, for example a decreased size and speed of handwriting, a decreased stride
length, and drooling [77]. Although PD is predominantly a movement disorder, pa-
tients frequently suffer from other impairments, including psychiatric problems such
as depression and dementia [219].

Unfortunately, there is no preventive therapy for PD, as the underlying mechanism
of the dopaminergic cell degeneration remains elusive. About 85—90% of PD cases
are idiopathic, i.e., without known cause, while the remainder are familial, caused
by gene mutations. Previous research has suggested that PD is a multi-factorial
disease, that can be attributed to several factors working in conjunction, such as
intracellular toxic aggregates, formed through oxidative modification, mitochondrial
dysfunction, or genetic alterations, and the susceptibility of the dopaminergic neu-
rons to these conditions [165]. Parkinsonism can also be caused by drugs and less
common conditions such as cerebral infarction, progressive supranuclear palsy and
multiple system atrophy [219].

2.4 Evolution of therapy for Parkinson’s disease

As discussed in Section 2.1, lesioning of the thalamus (thalamotomy, reducing
tremor) and of the globus pallidus (pallidotomy, reducing both tremor and rigid-
ity) were used to treat Parkinson's disease from the 1950s onward [270]. However,
this development was soon replaced by another revolution: the introduction of oral
levodopa (L-dopa) therapy in 1968 [116, 117]. Levodopa is a precursor of dopamine,
which proved to exert a positive influence on akinesia as well as the other symp-
toms. However, after a few years, people came to realize that levodopa was not
the magic cure it had initially seemed to be [116]. Side effects of chronic levodopa
treatment such as dyskinesias (diminished voluntary movements and increased in-
voluntary movements) and motor “on-off” fluctuations, caused by the continuing
progress of PD and a decreasing levodopa response, became apparent [288, 315].

These issues revived the interest in stereotactic functional neurosurgical procedures.
Although the thalamus had been the preferred target before the uprise of medication,
new studies were focusing on pallidotomy [170, 171], because of growing insights
in outcome measures [297] and basal ganglia circuitry [80]. Given the experience
with stimulation of the thalamus for chronic pain [254] and tremor [36, 43], which



showed that high-frequency stimulation has the same clinical effect as lesioning, and
the reduced safety risks of this procedure in comparison to thalamotomy [271], it did
not take long to adapt deep brain stimulation (DBS) of the pallidum as alternative
to pallidotomy [275].

At the same time, another line of research focused on a new target for DBS: the
subthalamic nucleus [246]. Although the STN and zona incerta target had been
investigated in the 1960s [13], most surgeons chose to avoid this region for fear
of causing ballism (involuntary movements). However, primate experiments [30]
nursed the idea of an important role for the STN in brain circuitry in PD. This idea
could be put to the test when a primate model of PD was developed by means of the
MPTP ((1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey [53]. The outcome
was positive: lesioning or stimulation of the STN in MPTP monkeys alleviated
tremor, rigidity, and bradykinesia, without causing ballism [19, 38, 40].

2.5 The subthalamic nucleus

As described in Section 2.2, the STN, the most recent target for DBS in PD, is a very
important input nucleus of the basal ganglia. The STN displays a hyperactivity that
causes inhibition of the motor circuit target structures in a patient with Parkinson's
disease. Anatomically, the STN can be described as a biconvex or peanut-shaped
structure that is surrounded by white matter bundles, as is shown in Figure 2.4. In
humans, it contains about 560,000 neurons and has a volume of 240 mm3. Anteriorly
and laterally, the STN is enveloped by the internal capsule that separates the nucleus
from the globus pallidus. Rostromedially, the STN borders the Fields of Forel and
the posterior lateral hypothalamic area, while it is adjacent to the red nucleus on
its posteromedial side. The STN is limited ventrally by the cerebral peduncle and
the substantia nigra, while dorsally the fasciculus lenticularis and the zona incerta
separate it from the ventral thalamus.

Similar to the rest of the basal ganglia, the STN plays a role in multiple circuits.
Tracer studies in primates have reported that within the motor circuit, the STN
is connected with the primary motor cortex, premotor and supplementary motor
cortex, and the somatosensory cortex [140, 216, 218, 232]. With respect to the
deep brain nuclei, the STN exhibits connectivity with the striatum, the central and
ventrolateral part of the lateral globus pallidus (GPe), the ventrolateral part of the
medial globus pallidus (GPi), and the thalamus [57, 158, 233, 262, 274]. Concern-
ing the associative loop, the STN is connected to the orbitofrontal and dorsolateral
prefrontal cortex, as well as the centromedian-parafascicular nuclei of the thalamus,
the nucleus accumbens, the ventral part of the putamen and caudate nucleus, the
ventral pallidum, the ventral tegmental area, and the medial part of the substantia
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nigra reticulata [5, 6, 7, 57, 140, 215, 233]. For the limbic circuit, tracer studies
have presented connections with the (para)limbic cortical areas such as the anterior
cingulate and the medial orbitofrontal cortex [6]. Subcortically, the limbic loop com-
prises the nucleus accumbens, ventral pallidum, ventral tegmental area, substantia
nigra pars reticulata, globus pallidus, thalamus, hippocampus and amygdala [6, 129].

The different afferent and efferent connections per circuit in primates have led to
a tripartite functional subdivision of the STN in current literature [136, 233, 298].
With respect to this subdivision, the medial tip of the nucleus is devoted to the limbic
circuit and the associative part is situated ventrolaterally. The motor subterritory,
which is the largest part, comprising two-thirds of the nucleus, is located at the
dorsolateral side of the STN. Though schematic figures such as Figure 2.5 exist
that show the three functional parts of the STN, it is still not obvious to what
extent these functional areas are segregated within the human STN.

Figure 2.4 Representation of the major anatomical structures and fiber tracts associated with the
subthalamic nucleus. AL = ansa lenticularis; CP = cerebral peduncle; FF = Fields of Forel; GPe =
lateral globus pallidus; GPi = medial globus pallidus; H1 = H1 Field of Forel (thalamic fasciculus);
IC = internal capsule; LF = lenticular fasciculus (H2); PPN = pedunculopontine nucleus; Put =
putamen; SN = substantia nigra; STN = subthalamic nucleus; Thal = thalamus; ZI = zona incerta.
Image taken from Hamani et al. [136].
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Figure 2.5 The functional subdivision of the STN into different parts and circuits is illustrated
here. The STN is divided in the somatomotor part (red) located dorsolaterally, the associative part
(blue) located ventromedially and the limbic part (green) on the medial tip. Image adapted from
Benarroch [37].

2.6 Deep brain stimulation of the STN

Soon after its introduction in a case report in 1993 [246], DBS of the STN became
a widely recognized therapy for advanced PD. STN DBS has a significant long-term
beneficial impact on PD motor symptoms [34, 259, 321]. It involves the implantation
of one or two quadripolar electrodes into the STN. These electrodes are connected
to an internal pulse generator, a battery-powered neurostimulator that is placed
subcutaneously below the clavicle (see Figure 2.6) and sends electrical currents to
the brain to interfere with neural activity at the target site. The inhibitory effect
is reached by high-frequency stimulation, most often monopolar at 130 or 185 Hz,
with a typical pulse width of 60 us and a voltage around 3 V [134].

There is still no complete theory regarding the mechanism of these electrical cur-
rents working on deep brain structures. As has been described by Temel et al. [298],
a popular hypothesis is that DBS causes a reduction of neuronal activity through a
depolarization block, leading to an interruption of spontaneous activity within the
neurons [42]. Another idea is that the silencing of target nuclei is achieved by the
stimulation of inhibitory afferents and the consequent release of inhibitory neuro-
transmitters [213]. Even more complex is the statement that DBS can have oppos-
ing effects on structures being stimulated, depending on the cellular architecture.
The similarity in clinical outcomes between DBS and lesions led to the proposition
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that DBS inhibits the target being stimulated. Recordings of the stimulated nu-
cleus show inhibition during and after the stimulus train [39, 103, 292]. However,
electrical recordings in efferent nuclei indicate that DBS increases the output of the
stimulated nucleus [141, 328].

Patients are only eligible for a DBS operation when they meet a list of require-
ments. In the first place, the clinical findings have to be consistent with idiopathic
Parkinson’s disease. Second, the patient should suffer from severe fluctuations in
the pharmacological response and/or dyskinesias, despite optimal pharmacological
treatment. Finally, a good initial levodopa response is necessary (except for patients
who suffer from levodopa-resistant resting tremor) [33, 83, 315]. Exclusion criteria
are significant brain atrophy, multiple white matter lesions, other focal anomalies in
the brain (as visible on MRI), parkinsonism with known causative factors, classifi-
cation in phase 5 of the Hoehn and Yahr scale at the best moment of the day (the
patient is then completely invalidated), psychoses, significant cognitive disfunction,
and severe affective disorders. Naturally, the general contra-indications for surgery,
like severe hypertension or coagulation diseases, are also applicable [315].

Figure 2.6 The deep brain stimulation system includes quadripolar electrodes inserted into the
brain, that are connected with the internal pulse generator via inline extensions running behind the
ear. Image adapted from Thevathasan and Gregory [302].



As described in the beginning of this section, STN DBS induces a distinct long-term
improvement in motor function [34, 259, 321]. On the other hand, the procedure
can be accompanied by a set of complications and side effects, which may occur
at any time from surgery to several years postoperatively. The rate of surgical
complications in DBS is usually low and their severity mild and reversible. These
complications can be infections (most often superficial and manageable), or related
to the hardware, such as lead fracture and dislocation. In addition, problems can oc-
cur due to electrode insertion, e.g., hemorrhages, a rare but severe complication, or
epileptic attacks. Some patients experience confusion immediately postoperatively,
from which they recover within 2—3 days on average [33, 300, 315].

However, on the long run, stimulation-induced adverse effects such as cognitive
alterations and psychiatric side effects occur in a substantial number of patients
[41, 245, 258, 277, 300, 318]. Psychiatric side effects can include depression and
(hypo)mania, or scarcer complications such as anxiety disorders, personality changes,
hypersexuality, apathy, and aggressiveness. It is believed that these behavioral side
effects can be accounted for by a spread of current to the associative and limbic
pathways running through the STN [298], although dopaminergic withdrawal, pre-
morbid neuropsychiatric vulnerability, and psychosocial factors play a role as well.
Hence, accurate targeting and subsequent selective stimulation of the motor part
of the STN is of great importance: to achieve the best possible effect on the PD
motor symptoms [123, 308], but also to minimize the undesirable adverse effects
on cognition and behavior.
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3.1 Magnetic resonance imaging

3.1.1 Spin physics

Without taking all the workup into account, an MRI scan typically starts with the
excitation of the nuclei under investigation [159, 204, 316, 323]. Before the ex-
citation, the net magnetization vector Mg of these nuclei is aligned with the main
magnetic field Bg. After excitation with a 90-degree radiofrequency (RF) pulse,
the net magnetization vector is flipped into the plane perpendicular to the main
magnetic field. As a result, the longitudinal component of the magnetization M),
lying along Bg, will diminish, while the transverse magnetization M, lying in the
perpendicular plane, will increase.

Immediately afterwards, different processes will begin. The longitudinal component
M, will gradually return to its steady-state magnitude. This so-called longitudinal
relaxation takes places with time constant T;. The transverse component M, also
experiences relaxation: the spins will dephase and the transverse magnetization
will be restored to equilibrium (i.e., zero magnitude), with time constant T5. If the
magnetic field is inhomogeneous, the dephasing will speed up, causing the transverse
relaxation constant to be shorter than T,, then defined as T5.

Simultaneously, the direction of M, rotates around the axis of Bg, a process called
Larmor precession. The frequency of this precession is determined by the experienced
magnetic field (in this case Bg) and the gyromagnetic ratio, a constant specific to
the nucleus under examination. Protons in a field strength of 3.0 T rotate with
a Larmor frequency of 128 MHz. This precession enables detection of transverse
magnetization through the emission of electromagnetic radiation. In the next section
we will see how the emitted signals are exploited during MR imaging.

3.1.2 Imaging protocols

Anatomical MR images can be constructed by detecting emitted radiation from a
given location. The amount of radiation is proportional to the proton density and
thus the amount of water molecules at that location. However, if equal proton den-
sity occurs at different locations, these locations cannot be resolved using the main
magnetic field Mg only. To this end, we can add a gradient field to the main field,
resulting in a spatially varying magnetic field strength. Consequently, precession
at different locations now occurs at distinct frequencies. The now inhomogeneous
magnetic field will cause faster transverse relaxation with time constant 75

The dephasing results in accelerated signal loss, which can be partially recovered by
the application of a second RF pulse that tilts the magnetization by 180 degrees.



This flip in the perpendicular plane will transform all the “fast” spins, with a phase
lead, into “slow” spins, with a phase lag, and the other way around. This event in
turn will lead to rephasing of the spins, until all spins assemble and emit a burst
of electromagnetic radiation, the so-called spin-echo [133]. This echo, occurring at
echo time TE after the initial 90-degree flip, can be detected by an MR receiver
coil. The spin-echo sequence is depicted in Figure 3.1.

A multitude of variations on this basic spin-echo scheme have been developed in
order to acquire different kinds of MR images. Examples are inversion recovery (IR)
and turbo spin-echo (TSE), which have been used in this thesis for the generation of
anatomical (structural) MR images of the brain. In addition, pulsed gradient spin-
echo (PGSE) and echo-planar imaging (EPI) have been used for diffusion-weighted
and functional MRI acquisition, respectively. These protocols will be explained in
the appropriate sections.
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Figure 3.1 Spin-echo MRI protocol. (a) Spin-echo pulse sequence (TE = echo time). Spins
initially in phase (b) dephase naturally (c) until the 180-degree RF pulse is applied (d). Immediately
after the pulse the phases are reversed, but they continue to dephase in the same direction (e)
forming an echo (f) and then dephasing again (g). Figure adapted from [204].



3.2 Diffusion MRI

3.2.1 Diffusion

Diffusion is a mixing process that occurs without the need for stirring or other ways
of bulk motion. This phenomenon is described by Fick's first law [102], stating that
the net particle flux is proportional to any difference in concentration, by means of
the diffusion coefficient D:

J=-DVC, (3.1)

with J the net particle flux and C the particle concentration. D, which relates
the flux to the difference in concentration, is called the diffusion coefficient. This
coefficient is an intrinsic property of the medium, dependent on the size of the
diffusing molecules, the temperature, and the microstructure of the environment.
Although the net flux vanishes in a thermodynamic equilibrium, microscopic motions
of molecules still exist. This process is called Brownian motion, after its discoverer
Robert Brown, who reported on the random motions of pollen grains under a mi-
croscope [46]. Independently, Einstein came to the same conclusion [96] and, using
a probabilistic framework for the description of diffusion, united the theories of Fick
and Brown with the following formula:

(RTR)(T) = 6D, (3.2)

where (RTR)(T) is the mean-squared displacement of particles during a diffusion
time 7, and D again the classical diffusion coefficient from Fick's law.

The random motion of water molecules within neural tissue such as the brain is very
much influenced by the environment. The presence of cell membranes, elements of
the cytoskeleton, and macromolecules restricts the otherwise free motion of water.
In gray matter, no macroscopic preferred directions in tissue structure can be distin-
guished. The measured diffusion in gray matter is therefore often rather isotropic
and its properties can be represented by a single (scalar) apparent diffusion coeffi-
cient (ADC). On the other hand, in white matter, but also in skeletal and cardiac
muscle for example, water molecules can move more freely along the direction of
the axonal (or muscle) fiber bundles than perpendicular to it. In these environments,
anisotropic diffusion takes place. Estimation of the principal directions of diffusion
within neural tissue could therefore be related to orientations in tissue structure.



3.2.2 Magnetic resonance and diffusion

MRI can be used to probe the orientations in tissue structure noninvasively, by
sensitizing the MR acquisition to diffusion of water molecules in different directions.
The principle of such a diffusion-sensitive protocol was devised by Carr and Purcell
[58] and improved upon by Stejskal and Tanner [286]. The so-called pulsed gradient
spin-echo (PGSE) sequence involves the addition of a pair of opposing (one positive
and one negative) pulsed magnetic field gradients to the normal spin-echo MRI
sequence, as represented in Figure 3.2 [209, 211]. After the excitation RF pulse,
protons at different locations within a pixel start to emit electromagnetic signals
at the same frequency, as they all experience the same magnetic field Bg. During
the application of the first gradient, protons experience a different magnetic field,
dependent on their locations. After the gradient application, the system returns to
the homogeneous By and thus one frequency for all protons, but the phases of the
different water molecules are no longer equal. This dephasing leads to a loss of
overall signal. The second gradient has opposite polarity but identical strength and
length, and therefore enables the protons to rephase, i.e., all return to the same
phase at the end of this gradient.

The MR signal is now diffusion-weighted, because perfect refocusing of the spins
happens only when there is no diffusion of water molecules between the two gradi-
ents. When diffusion has occurred, this will be detected by the signal attenuation
due to imperfect rephasing. Note that this experiment only measures water diffusion
along a given axis. In Figure 3.2, it can be seen that for this case, only molecules
moving in the horizontal direction (the direction in which the gradient was applied)
can be detected, and diffusion along the vertical axis goes unnoticed. Besides on
the gradient direction, the sensitivity to diffusion and thus the resulting signal is
also dependent on several other factors, such as the duration and amplitude of the
gradients and the time during which diffusion takes place.

The MR signal attenuation or normalized MR signal can be expressed as

S(q. 7)

E(q,7) = S

(3:3)

with S(q, 7) the signal in the presence of diffusion gradients and Sy the baseline
(unweighted) signal. E and S are dependent on q, a 3D vector q = v6G with 7y
the gyromagnetic ratio, and 4 and G the duration and magnitude of the gradients,
respectively, and on the effective diffusion time 7 = A — §/3, with A the time
between two complementary diffusion gradients [159].
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Figure 3.2 Effect of diffusion in an MRI experiment with a pair of opposing gradients. Each
circle represents a water molecule at a different location within a pixel. The vectors in the circles
indicate phases of the signal at each location. If water molecules move between the two gradient
applications, the second gradient cannot perfectly refocus the spins, which leads to signal loss.
Note that in this example, horizontal motion leads to signal attenuation, but vertical motion does
not affect the signal intensity. Figure adapted from [211].

Stejskal and Tanner [286] showed that the signal attenuation is related to the prob-
ability density function (PDF) of the displacement of the water molecules (i.e., the
averaged diffusion propagator) p, if the gradient pulses are short enough:

E(q.7) = %;)T) = /}R3 p(R|T)e " RdR, (3.4)

where R is the net displacement vector of the water molecule. Intuitively we under-
stand that to reconstruct the diffusion PDF, we need to sample the diffusion along
many q vectors [187]. In clinical practice the b-value, a quantity proportional to the
squared gradient strength, is often used to characterize the level of sensitivity to
diffusion. This parameter is given by b = q°7, where q = y6G and 7 = A — §/3.

3.2.3 Models applied to diffusion MRI

The acquired diffusion MR signal can be modeled to resolve the underlying structure
of the measured tissue. These models come in different levels of complexity.

The simplest model approximates the apparent diffusion coefficient (ADC) in a voxel.
When the displacement of the water molecules is Gaussian and behaves according
to the Einstein equation (3.2), the attenuation is given by

E(a,7) = 5‘;” =e P =e?, (3.5)
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Figure 3.3 Different DT and HARDI glyphs in the centrum semiovale. (a) FA map of a coronal
brain slice, with the ROI indicated by the yellow rectangle. (b) DTI ellipsoids within the ROI,
derived from diffusion tensor D, color-coded by FA. (c) ODFs derived from DTI data according to
Equation (3.9), RGB color-coded by orientation and min-max normalized. (d) Regularized Q-ball
ODFs of order 6, based on diffusion MRI data with b-value 3000 s/mm2 and 121 unique gradient
directions. Figure adapted from [249].

dependent on the b-value and the diffusion coefficient D. So, to obtain quantitative
maps of the diffusion per voxel, we need at least two measurements, typically one
diffusion-weighted and one unweighted measurement.

However, as described in Section 3.2.1, diffusion in white matter is often anisotropic.
For this case, we can use an anisotropic Gaussian model using diffusion tensor
imaging (DTI). This method describes the diffusion profile in a voxel as an ellipsoid.
The diffusion coefficient D is thus generalized to a symmetric 3x3 diffusion tensor



D with 6 unique values:

Dxx ny sz
Dxy Dyy Dy (3.6)

sz Dyz Dzz

If we again assume the diffusion to be Gaussian, the MR signal attenuation for this
case is given by:

E(q,7) = %;T) =909, (3.7)

with g the unit vector \%I and b again equal to g?7. In order to construct this
tensor D, we need a minimum of six diffusion-weighted images with fixed b-value
but varying g, and one unweighted image [24]. Eigenanalysis of D can provide
us with eigenvectors e;, e,, es (the principal diffusion directions) and eigenvalues
A1 < A2 < A3 > 0 (the corresponding diffusion coefficients).

From these parameters, scalar measures characterizing the diffusion can be derived,
such as fractional anisotropy (FA) [25]:

\/(>\1 —X2)2+ (A2 —A3)2+ (A1 — A3)?

V2AT+ X3+ X3)

FA =

(3.8)

Besides an FA map, we can also visualize the ellipsoid derived from the diffusion
tensor D describing the diffusion profile in each voxel. The 3D anisotropic Gaussian
PDF is rarely depicted in DTI. Another option that is sometimes used is the orien-
tation distribution function (ODF). To obtain this ODF, a sphere is deformed by
the values of the ADC for each direction u:

D(u) = u'Du, (3.9)

which results in a peanut-shaped ODF. The different DT visualizations are depicted
in Figure 3.3 (b) and (c).

Although DTI does not require a long acquisition time and is therefore popular
in clinical practice, it cannot resolve complex intravoxel diffusion patterns such as
crossings. Typical diffusion MRI voxels are 2 mm in size, while white matter axons
have radii in the range of 0.1-10 um [159]. This is a serious limitation, because
according to Behrens et al. [31], between one and two thirds of voxels in the human
brain white matter contain multiple fiber bundle crossings, in which case the second-
order model described above breaks down (see Figure 3.4). This deficiency caused
the emergence of higher-order mathematical models to describe the PDF, which
require denser sampling in g-space and are therefore collectively called high angular
resolution diffusion imaging (HARDI).



HARDI acquisition schemes do not assume anything about the form of the diffusion
propagator p but just sample g-space as well as possible in order to reconstruct this
propagator [187]. Modeling methods that can resolve multiple diffusion directions
per voxel include [159]:

e Multi-tensor models [311] are the simplest extensions of the DTI method in
which the diffusion PDF is modeled as a mixture of multiple Gaussian PDFs.
Though the models are simple, they involve predefined constraints such as the
number of orientations to recover.

e Spherical deconvolution (SD) [9, 305] attempts to recover the fiber orientation
distribution function (fODF) directly, using an inverse convolution process.
The fODF quantifies the fraction of fiber pieces with different orientations
within a voxel and is thus zero apart from spikes in the fiber directions, while
the diffusion orientation distribution function (dODF) is a smoother function
that gives the probability that a diffusing water molecule moves in a particular
direction. The main drawback of the spherical deconvolution method is its
sensitivity to noise.

e Diffusion spectrum imaging (DSI) [311, 322] uses sampling of the whole g-
space on a Cartesian grid and then estimates p as a dODF by inverse Fourier
transformation. The main limitation of this method is the long acquisition
time, due to the dense sampling of g-space.

e Persistant angular structure (PAS) MRI [154] tries to find the persistent an-
gular structure, which is a projection of p onto the sphere that resembles the
fODF. Nonlinear optimization and numerical integration schemes make the
PAS MRI algorithm rather slow.

e Q-ball imaging [309, 312] approximates the dODF estimated by DSI using
a spherical measurement scheme. Q-ball imaging will be discussed further
below.

e Diffusion orientation transform (DOT) [228] is related to Q-ball imaging and
calculates a variant of the dODF, in this case a single contour of p at a fixed
radius Ry (while the dODF contains contributions from all contours). DOT
requires some parameter tuning, but for sensible choices of 7 and Ry, the
result is similar to Q-ball imaging.

For the studies described in this thesis, we mainly used Q-ball imaging [309, 312].
The spherical acquisition scheme for this technique is less time-consuming and thus
more suitable in practice than the dense sampling required for DSI, although the
dODF approximation might suffer from some reduction in angular resolution and
precision of peak directions [159].



Figure 3.4 Various axon fiber configurations arising frequently in brain white matter voxels (top
row: (a) parallel, (b) crossing, (c) bending, (d) fanning. The bottom row images (e) to (h) show
the fODF for each configuration. DTl would only be able to resolve the parallel fibers. Figure
adapted from [159].

g-space

equator (a)

Figure 3.5 Funk-Radon transform. (a) Principle of the Funk-Radon transform. The FRT of
the signal sampled on a sphere for a given orientation u (represented by the gray arrow) is equal
to the integral of the signal along the equator (gray ellipse) of u. (b) HARDI signal with one
fiber. (c) FRT of the signal in (b). (d) HARDI signal with two orthogonal fibers. (e) FRT of the
signal in (d). The thin lines are the true underlying orientations, while the thicker tubes are the
detected maxima. The radius of the spherical functions was scaled by the corresponding value on
the surface. Figure (a) adapted from [244], other figures from [81].

In Q-ball imaging, the dODF is approximated using a transformation of spherical
functions called the Funk-Radon transform (FRT). Intuitively, the dODF value at a
given point on the sphere (corresponding to a unique orientation), resulting from the
FRT, is the great circle integral of the attenuation signal on the sphere defined by
the plane through the origin perpendicular to the point of evaluation (see Figure 3.5)
[187].

While the original Q-ball algorithm has a numerical solution [309], people have
introduced an analytical solution based on spherical harmonics that is faster, more
robust to noise and less stringent in acquisition requirements [81, 82]. In this case,
the HARDI signal is first represented using spherical harmonics (SH) basis functions.



Subsequently, the FRT can be solved analytically using an SH basis. For this purpose,
a modified real and symmetric SH basis is defined, with Y}, the SH of even order
1 (l=0,2..., oo) and degree m (m = —/, ..., ). A single index j is defined in
terms of / and m, such that j(/, m) = (/> +/+2)/2+ m. The modified SH is then
given by:

\/ERG(Y/‘,,,O, if m<oO,
V=4 Yim, if m=0, (3.10)
V(=)™ m(Yim),  if m> 0,

where Re(Y),) and Im(Y),,) are the real and imaginary parts of Yj,,, respectively.

Then, the dODF W can be analytically estimated by:

NSH

(0, ¢) = 2mP;)(0)GY(6. d), (3.11)

=1

with 6 € [0, 7] and ¢ € [0, 2] the spherical coordinates, nsy = 3(/ + 1)(/ + 2)
the number of SH elements, ¢; the SH coefficients describing the HARDI signal,
and Py the Legendre polynomial of order I1(j)2. An example of the resulting Q-ball
glyphs can be seen in Figure 3.3 (d).

3.2.4 Fiber tracking

Fiber tracking algorithms integrate the fiber orientations derived from diffusion pro-
files at a voxel level. These algorithms are the only tools for noninvasive and in
vivo identification of longer pathways and thus global connectivity of the brain. The
fundamental aim of tractography methods is to find pathways through the diffusion
MRI data along which diffusion is least hindered. Although this aim is common, the
means by which to achieve it vary greatly from method to method. Often, fiber
tracking algorithms are classified as either deterministic or probabilistic. In addition,
the complexity of the diffusion representation is an important factor [159].

The simplest method is deterministic streamline tracking. Streamlines are recon-
structed starting from a seed point and simply following the local principal direction
(when working with DTI input). Multiple algorithms implementing this method ex-
ist, exploiting varying step sizes and different integration and interpolation schemes.
A commonly used algorithm is fiber assignment by continuous tracking (FACT)
[210], applying the measurement from each voxel over the entire voxel. However, it
was shown that smooth interpolation between grid points leads to decreased error
propagation in fiber tracking [178]. Other important features of the tractography
algorithm are the stopping criteria. The most used constraints are a minimum FA,
a maximum curvature, and a minimum length. Deterministic methods can be ex-
tended to a more complex (HARDI) diffusion profile by simply choosing which of



the multiple directions to follow at each step. One strategy is to select the direction
that lies closest to the direction of the previous step [131], but it is also possible to
use the shape and peak orientation of the dODFs for this purpose [243].

The error propagation that is inherent to streamline tracking can be incorporated
and visualized by the use of probabilistic fiber tracking methods. These methods
use a random walk method, starting a large number of particles from a seed point
and counting the number of paths passing a given voxel. In this way, it is possible to
determine the confidence level of the path from the seed point to the given voxel. An
important feature of these probabilistic algorithms is a function that characterizes
the uncertainty in the fiber orientation, which we can call the uncertainty ODF
(uODF) [159, 187].

The probabilistic method used in this thesis is called probabilistic index of connec-
tivity (P1Co) [235]. This algorithm exploits the uncertainty in the orientation of the
principal direction of diffusion and generates connection probability maps based on
repeated streamline tracking. P1Co was developed for streamline tracking using DT]
data [235], using the uncertainty in the orientation of the first eigenvector e; of the
diffusion tensor D in two ways. The first manner includes a simple uncertainty term
based on tensor anisotropy only, thus resulting in an isotropic normal distribution,
centered around the original e;. The more complex method also exploits the skew-
ness of the tensor based on the magnitudes of the eigenvalues A» and A3 and the
orientations of the eigenvectors e> and es, which yields a more accurate distribution
for oblate tensors. Based on this uncertainty information, probability distribution
functions (PDFs) for the fiber orientation are generated. Subsequently, these PDFs
are repeatedly sampled by the streamline propagation algorithm. Finally, a map is
generated that defines the probability of a given voxel to be connected to the seed
point for tracking as the ratio between the number of streamlines crossing the voxel
and the total number of tracked streamlines.

This algorithm was extended to work on multi-tensor models, still using the tensor
anisotropy as uODF [65, 67]. Although this improved tracking through fiber cross-
ings, the method suffered from the limitations of multi-tensor models, such as the
need to specify the number of fiber populations per voxel a priori. Incorporation
of Q-ball (or PAS MRI) input was facilitated by Parker and Alexander [234]. They
used peak directions as estimates of fiber orientation, and the sharpness of these
peaks to predict the uncertainty: the broader the peak, the higher the uncertainty.
The drawback of this approach is that it does not take into account anisotropy in
the uncertainty, which occurs in regions of fanning or bending fibers, for example.
Seunarine et al. [273] solved this problem by using the peak shape, particularly the
anisotropy of the peak cross section, to estimate the uODF.



3.3 Functional MRI

3.3.1 The BOLD effect

Functional MRI (fMRI) is an indirect method to measure the activation of the brain
and therefore brain function. The most commonly used fMRI technique is the so-
called blood-oxygen-level-dependent fMRI, or BOLD fMRI [99].

In 1890 already, the regional cerebral blood flow (CBF) was found to be connected
to neuronal activity [261]. Although the rate of glucose metabolism and the change
in CBF appeared to be coupled closely [251], Fox et al. reported that the change
in CBF exceeds the oxygen metabolic rate [109, 110]. The oxygen demand of the
activated neurons increases and therefore the blood oxygen supply will have to rise.
However, because of the involved vascular dilatation mechanism, the cerebral blood
volume (CBV) and CBF increase as well. As a result, blood cells then have a smaller
probability to deliver oxygen to the neurons, and the oxygen extraction fraction will
decrease. This in turn leads to an elevated oxygenation level in the veins, as can be
seen in Figure 3.6 [197, 198].

Consequently, the ratio of deoxygenated hemoglobin (de-oxy-Hb) to oxygenated
hemoglobin (oxy-Hb) will diminish. Because de-oxy-Hb has different magnetic prop-
erties from oxy-Hb and the surrounding brain tissue, it locally distorts the magnetic
field. The resulting inhomogeneities cause quick dephasing of the magnetic spins,
so deoxygenated blood has a short T3 [226]. Using the BOLD mechanism, ac-
tivated areas display a higher blood oxygenation level, which results in less field
inhomogeneities and therefore a longer T5. This response can be measured with
a Tj-sensitive EPI sequence, which will be discussed in the next section. Typi-
cally, the signal difference is determined, by acquiring both baseline and activated
measurements.

3.3.2 fMRI EPI acquisition

When acquiring an MRI image of n x n pixels with a conventional spin-echo sequence,
during each repetition (lasting TR seconds), one line of n samples is measured in
the so-called k-space. The sequence thus has to be repeated n times in order to
fill the complete image. However, when measuring the dynamic BOLD response,
we need to reconstruct the entire image volume in the shortest possible time (while
still long enough for the response to develop) [99]. This can be achieved by filling
the k-space in one TR (typically in the order of 2 seconds), using an echo-planar
imaging (EPI) protocol.
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Figure 3.6 The origin of the BOLD effect. In activation (bottom), the large provision of fully
oxygenated blood leads to a relative reduction in de-oxy-Hb and an increase in local T3 in the veins
as compared with the rest condition (top). Figure adapted from [204].

In this thesis, a BOLD contrast sensitive gradient-echo echo-planar imaging protocol
was used. In the case of a gradient-echo protocol, the signal echo is not generated
by a 180-degree RF pulse, but by using a pair of bipolar gradient pulses. A gradient-
echo sequence starts with an excitation pulse which tilts the magnetization by a flip
angle a (in our case 90°). A negative pulse gradient then dephases the spins before
they are rephased by an opposite gradient in order to prompt the echo. In standard
gradient-echo imaging, this basic pulse sequence is repeated as many times as image
lines have to be acquired, similar to the traditional spin-echo imaging. In case of
a gradient-echo-based EPI sequence the initial part is very similar to a standard
gradient-echo sequence. However, in EPI a train of echoes is generated, by fast and
periodical reversion of the gradients. The benefits of the faster imaging come at a
price: EPI is very sensitive to distortions and to image artifacts such as ghosting
and chemical shift.

3.3.3 Experiment design and analysis

Using EPI acquisition, an fMRI image volume is acquired every few seconds. A
typical fMRI experiment therefore yields hundreds of volumes in total. Often, some
of these volumes were taken as the subject was stimulated (i.e., coerced into brain
activity by a certain task), while others were acquired with the subject at rest.
The images measured during stimulation should show higher signal intensity in the



activated brain regions than the images in rest, due to local changes in the blood
oxygenation. Statistical analysis can identify whether there is a significant contrast
between the signal intensities in voxels during the task and during rest. This analysis
can be done by fitting a general linear model (GLM) to the data.

The GLM aims to describe the variation of the BOLD time course y(t) in terms of
a linear combination of explanatory variables and an error term. In case of a simple
model with only one time-dependent explanatory variable x(t), the GLM would look
as follows:

y(t) = Bx(t) +€(t), (3.12)

with 3 the slope and €(t) the error term.

If the model incorporates p > 1 explanatory variables (also called regressors) it is
convenient to write the GLM in discrete matrix form:

y(t) = BX(t) + (1), (3.13)

where y(t) is the nx1 time course signal vector of n observed time points, B is the
px1 vector of coefficients, and e(t) the nx1 vector of error terms. The so-called
design matrix X(t) now has n rows, one for every time point t in the original data,
and p columns, one for every explanatory variable (or regressor) in the model. For
simplicity, the time-dependency will be omitted from the notation further on.

One of the most important columns of the design matrix for a task-based fMRI
experiment is the timing of the stimulation (see Figure 3.7). This column contains
values corresponding to the stimulation and rest conditions. By estimating the
coefficient vector B belonging to these values with B, the response of the BOLD
signal to the stimulation paradigm can be assessed.

% BOLD change
- pa
HF oo

)
o in -
o )

|
)
L i

Figure 3.7 BOLD time course (magenta) from a region in the visual cortex during a simple
opening and closing eyes task. The stimulus function is shown in blue (corrected for a delay in
hemodynamic response). Subtraction analysis identifies a signal intensity difference in the visual
cortex (as shown on the right). Figure from [107].



The vector B can be solved by a least squares estimation [111]:

B=X"X)"'X"y. (3.14)

The stimulus function is often convolved with a hemodynamic response function to
account for the delay in brain activation. Other regressors can be easily included as
well; the general linear model provides a comprehensive framework for data modeling
and can eliminate effects that may confound the analysis, such as drift or respiration,
provided that they can be modeled. In the end, the model is fit to the fMRI data
in each voxel, yielding an estimate of the “goodness of fit" of each regressor to the
signal. This estimate can then be converted into a useful statistic, to see whether
the coefficient is significantly different from the null hypothesis [279].

During fMRI experiments using a stimulation paradigm, spontaneous modulation of
the BOLD signal that does not correlate with the stimulus function is also present.
Though regarded as noise in task studies, spontaneous brain activity actually rep-
resents a specific organization of the resting human brain [107]. Therefore, resting
state fMRI measurements are also done, while subjects lie still in the scanner but
are not allowed to fall asleep. The resulting data can be analyzed using independent
component analysis (ICA) [28, 72, 203]. This method analyzes the entire data set
and decomposes it into components that are maximally independent. ICA is data-
driven and very powerful, but is sensitive to the number of components chosen and
interpretation of the results can be cumbersome. Another possibility, that was used
for this thesis, is seed-region-based correlation analysis [68, 69, 108]. In this case,
the BOLD time course is extracted from a seed region and used as a regressor in a
GLM, to compare the seed region signal with the time course of all other voxels in
the brain. Though a very simple technique, suitable for the analysis of a specific re-
gion of interest, it can suffer from dependency on the seed region segmentation and
from the fact that the extracted waveform might not be an independent variable.

3.4 Brain connectivity

3.4.1 Introduction

In the seventeenth century, brain connectivity schematics were still pretty much de-
termined by philosophical ideas, such as in Figure 3.8. Since then, a multitude of
methods to measure and describe brain connectivity have emerged [282]. These
methods include microscopic examination of histological sections, of which the or-
nate Brainbow technique (see Figure 3.9) is an example, electrical recordings of
single nerve cells (local field potentials), and noninvasive functional imaging of the
brain.
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Figure 3.8 Mind and universe (Robert Fludd, ca. 1621). Seventeenth-century illustration by
English physician Robert Fludd, which relates the soul's faculties to realms such as the sensible, the
imaginary, and the divine. A writhing worm connects imagination (which overlaps with perception)
and cognition (which is linked to judgment). Many theories were just passed along since Galen's
time (1500 years earlier) because of a lack of anatomical knowledge. Empiricism would soon be
reintroduced during the Renaissance. Figure from [268].



Figure 3.9 Motor neuron axons traveling side by side through a mouse brain, on their way to
the ear muscle whose contraction they regulate. The axons are colored by a genetic manipulation
technique called Brainbow [196]. Figure from [268].
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Figure 3.10 Different types of brain connectivity. Sketches at the top illustrate (a) structural
connectivity (fiber pathways), (b) functional connectivity (correlations), and (c) effective connec-
tivity (information flow) among four brain regions in macaque cortex. Matrices at the bottom
show (a) binary structural connections, (b) symmetric mutual information, and (c) non-symmetric
transfer entropy. Figure from [268], based on data from [146].

In this thesis, we will concentrate on the latter. Three types of brain connectivity can
be distinguished, which will be discussed in the following sections, namely structural,
functional, and effective connectivity (see Figure 3.10).

3.4.2 Structural brain connectivity

Structural connectivity refers to a set of structural (anatomical) connections be-
tween different areas of the brain. The scale of these connections can vary from
local circuits of single cells to large networks of pathways through the whole brain.
With respect to time, the connection pattern is relatively static at shorter time
scales (for example during an MRI scan), but may be plastic at longer time scales
including development and learning. The connection matrix resulting from structural
connectivity analysis might be binary, but could also contain other values, depending
on the method used. Furthermore, the matrix does not have to be symmetrical
[282].

Structural connectivity can be estimated using postmortem examination of dissected
tissue, histologically stained samples, and neural tract tracing. Noninvasive brain



imaging techniques that can be applied in vivo include cortical thickness correlation
(based on structural MRI) and streamline counting after probabilistic fiber tracking
in diffusion MRI, which is used in this thesis [159, 282].

3.4.3 Functional and effective brain connectivity

Functional connectivity captures dependency in time-series data between different
areas of the brain [112, 113]. These time series can be generated by local field
potential recordings, EEG, MEG, and fMRI, for example, and are analyzed by esti-
mating measures like correlation, covariance, and spectral coherence. Brain function
and functional connectivity are far from static even at short time scales. Another
characteristic is that an observed statistical dependence does not infer a causal in-
teraction between brain areas, and therefore, the resulting connection matrix will be
symmetrical.

Effective connectivity describes causal effects between brain areas [113], which can
be determined by statistical modeling, and experimental perturbations, amongst
others. Effective connectivity is as time-dependent as functional connectivity and
requires complex data processing and modeling techniques. Due to the resulting
causal relationships, the connection matrix will be asymmetrical.

3.4.4 Connectivity-based parcellation

The division of the brain in anatomically segregated regions is often based on cy-
toarchitecture alone, for example for Brodmann's areas. However, microstructurally
coherent regions can have functional subdivisions and furthermore, studying the mi-
crostructure is not feasible in vivo [282]. Brain connectivity analysis provides us
with complementary information that can aid in the segmentation of brain regions,
because we assume that neurons in a coherent region share the same projections.
The brain connectivity information can be used in a couple of ways.

Using prior knowledge about the position of brain structures from atlases, the con-
nectivity patterns in different brain regions can be analyzed, either for the whole
brain or at least a large number of cortical and subcortical regions [120, 130, 131,
132, 152, 153], or for individual anatomical structures [29, 89, 182, 183, 184, 201].

Behrens and Johansen-Berg reviewed two other methods to parcellate brain struc-
tures using structural connectivity information, that do not use prior information
about the locations of brain structures [30]. First, segmentation can be based on
the clustering of local diffusion profiles [47, 320, 325]. Second, people have used
changes in structural connectivity within a region of interest without any prior knowl-
edge on anatomy [160].
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This chapter is based on:

“Magnetic resonance imaging techniques for visualization of the subthalamic nucleus: a review.”
Ellen Brunenberg, Bram Platel, Paul Hofman, Bart ter Haar Romeny, and Veerle Visser-Vandewalle.
In Journal of Neurosurgery, DOI:10.3171/2011.6.JNS101571, in press (accepted June 8, 2011).

4.1 Introduction

A precise targeting of the dorsolateral (motor) part of the STN for deep brain
stimulation is of great importance for two reasons: first of all, to obtain the best
possible effect on motor symptoms, second, to minimize undesirable side effects
on cognition and behavior [123, 308]. Yet, the operative technique of STN DBS
including the imaging method for primary targeting of the STN still varies greatly
between centers [186]. Magnetic resonance imaging (MRI) is one of the most
frequently used modalities, alone or in combination with computed tomography
(CT) or ventriculography [301]. Most procedures also involve a secondary targeting
step using intraoperative assessments, such as microelectrode recordings (MER) or
macrostimulation, to adapt the electrode position to the clinical aims [55, 87].

The aim of this study is to review the multitude of available methods and give a
systematic overview of techniques for primary targeting of the (dorsolateral part of
the) STN. This review discusses both indirect and direct targeting procedures, as
well as comparative studies. The overall focus of this review lies on MRI, because
this modality is most widely used. The next section of this chapter will focus on
a summary of indirect and direct targeting methods using MRI. Subsequently, the
results of the systematic review will be presented. Finally, the advantages and
disadvantages of the targeting techniques will be discussed.

4.2 Summary of targeting methods

Methods for targeting of the dorsolateral STN can be classified as either direct
or indirect. Indirect methods rely on contextual information, while direct methods
focus on visualizing the STN itself on preoperative images of the patient.

4.2.1 Indirect targeting

Indirect targeting can rely on two types of contextual information. On the one
hand, patient-specific landmarks can be used, while on the other hand, generic atlas
information can be adapted to the patient's anatomy.



The gold standard in indirect targeting using anatomical landmarks involves the
anterior (AC) and posterior commissure (PC) [284]. Having localized the AC, PC,
and the midcommissural point (MCP), the stereotactic coordinates of the STN
follow from fixed distances based on classical atlases such as the Schaltenbrand-
Wahren brain atlas, as can be seen in Figure 4.1 [266]. The second most used
landmark is the red nucleus (RN, see Figure 4.2) [18, 32]. Less widespread methods
include the use of the nigrocapsular angle (as explained in Figure 4.3) [118], the
supramammillary commissure (SMC) [181], the postmammillary commissure (PMC)
[303], and the line connecting the mammillary bodies and the PC [256].

Furthermore, regions of interest can also be determined by mapping an anatomical
and/or functional atlas onto the patient's MRI (see Figure 4.4). Anatomical atlases
incorporate information about the position of brain structures [227, 265]. The most
popular ones are the Talairach-Tournoux atlas [293], the Schaltenbrand-Wahren
atlas [266], and the MNI atlas [64]. Functional atlases consist of point sets that are
collected during MER, postoperative imaging or neurological assessments [84, 124,
126, 222, 230].

4.2.2 Direct targeting

Direct targeting involves the use of specific MRI protocols that enable direct visu-
alization of the STN, avoiding the need to employ contextual information.

An often used method is the T,-weighted fast spin-echo (FSE) MR imaging proto-
col [283, 285], on which the STN shows as a hypointense area (see Figure 4.5(a)).
Another popular technique for direct visualization is the inversion recovery (IR) pro-
tocol (see Figure 4.5(b)) [166]. Still subject to more research are the use of re-
laxation time maps [44] and susceptibility-weighted (SWI, T5) imaging [86] (see
Figure 4.5(c)), together with special postprocessing methods to reduce signal loss
and enhance contrast.

4.3 Systematic review

In order to present a review on different targeting methods, we performed a thorough
search for papers on STN targeting. The used criteria are briefly outlined below.

4.3.1 Search strategy

First, we searched PubMed and ScienceDirect for papers published from January
1999 until January 2011, using the terms “targeting”, “magnetic resonance imaging”,



"mri”, “visualization” in combination with “subthalamic nucleus” or “STN". Second,
we explored the bibliographies of relevant publications, until no further additional
studies were found. Papers were selected if they provided qualitative descriptions or
quantitative results of direct or indirect MRI-based STN targeting methods. Lan-
guage other than English was an exclusion criterion.

We included 70 publications, of which 33 studies contained quantitatively validated
results of patient trials. The quantitative results are reported in tables in the next
sections. The details extracted from the studies for this purpose included the follow-
ing: number of subjects, targeting techniques used (landmark, MRI protocol, atlas,
registration method), validation method, outcome, and the main conclusion.

4.3.2 Indirect targeting
Anatomical landmarks

Publications on landmark-based targeting presenting quantitative results can be
found in Table 4.1. After the ventriculography-based study by Schuurman et al.
in 1999 [269], one of the first MRI-based studies was presented by Starr et al.
[284]. Their AC-PC-based targets differed 1-1.5 mm from directly visualized STNs.
Due to the variability in manual selection of AC-PC [231], the need for automated
methods became apparent. The resulting landmarks of an atlas-based method by
Ardekani et al. were very close (within 1 mm) to points determined manually [14].
A similar study by Pallavaram et al. yielded more accurate targets than achieved by
manual selection [229].

The first studies on RN-based targeting have been presented by Aziz et al. [18] and
Bejjani et al. [32]. The latter reported selection of the central electrode in 19 out
of 24 cases. However, other studies, based on best response [71] and anatomical
relationships [76], have stated that the RN is not reliable enough. To solve this, Liu
et al. used the RN and substantia nigra (SN), but did not report quantitative results
[195]. Pollo et al. exploited the AC-PC, RN, thalamus, internal capsule (IC), SN
and the midline, resulting in a mean target in the inferior STN [247].

Regarding less widespread methods, according to Giller et al. [118], the use of the
nigrocapsular angle was justified by the higher visibility of the IC and SN on MRI.
Lee et al. proposed the SMC [181], which lacked reliability. Toda et al. used the
PMC and selected the central electrode in 81% of cases [303]. Finally, Rijkers et
al. suggested the line connecting the mammillary bodies and PC [256], though this
should still be validated.



4.3. Systematic review

Figure 4.1 Diagram showing AC-PC-based targeting in a sagittal plane. After localizing the AC
and PC, the MCP is determined. From there, the STN position can be calculated using fixed
distances (often 12 mm lateral, 3 mm inferior and 3 mm posterior) that are based on an atlas.

Figure 4.2 Diagram showing RN-based targeting in an axial plane. The center of the STN lies
on the same line as the anterior boundary of the RN.
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Figure 4.3 Diagram showing targeting based on the nigrocapsular angle in a sagittal plane. The
STN lies in the corner that is formed by the descending IC and the SN.

Figure 4.4 Diagram showing the idea of indirect targeting based on atlas mapping. On the left-
hand side, at the top, an atlas slice with anatomical information can be seen, containing labeled
structures. At the bottom, a functional atlas is represented, consisting of a cloud of target points
that were used in previously performed DBS operations. On the right-hand side, the patient's MRI
data can be seen. The gray arrows represent the transformation that is necessary to map the
atlases to the patient’s MRI data, resulting in overlaid information (as shown in the middle).
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Figure 4.5 Coronal slices of (a) To-weighted FSE and (b) IR MRI data sets, and an axial slice of
an (c) SWI MRI data set, visualizing the STN directly.

Brain atlas registration

Table 4.2 summarizes the papers found on atlas-based STN targeting that presented
quantitative results. Ortega et al. digitized the anatomical Talairach-Tournoux atlas,
registered it nonlinearly, and compared the resulting targets with recorded micro-
electrode positions, obtaining good results [227]. However, Nowinski et al. demon-
strated inconsistency of the three planes for an anatomical atlas in the STN region,
restricting the use of the atlas in 3D [223].

Sanchez Castro et al. collected MRI data with visible STNs to use as a brain atlas
[264, 265]. Duay et al. [92] increased the speed of the registration algorithm and
showed that the atlas targeting variability is comparable to an expert, with a reg-
istration error similar to those reported by Sanchez Castro et al. [265]. Bardinet
et al. [21] combined two kinds of anatomical information, namely histological and
MRI data, into a human basal ganglia atlas (cf. Yelnik et al. [334]). After atlas
registration, the resulting STN coordinates correlated well with MER and postop-
erative MRI. The authors improved the registration step, enabling a better match
with individual patient anatomy (error <1 mm) [20].

With respect to functional atlases, Nowinski et al. investigated the differences in
spatial position between the anatomical and functional STN [224]. The anatomical
STN was derived from the Schaltenbrand-Wahren atlas [266], while the functional
STN was constructed from ventriculography, MER, and X-ray data, and neurological
assessment of 184 Parkinson’s patients [222]. The anatomical and functional STN
correlated well.

D'Haese et al. developed a targeting method using MER and optimal electrode
contacts determined postoperatively, and showed that automatic target prediction



is feasible [84]. Pallavaram et al. extended this, achieving a better correlation of the
electrophysiological maps with the underlying anatomy [230]. Guo et al. compared
six methods using functional data, among which a brain atlas, MER data, and
a collection of previous targets [124, 126]. The combination of all data perfomed
best, followed by the previous targets and the MER data. All three methods provided
a more accurate estimation than techniques solely dependent on anatomy. The
authors used these results to construct probabilistic maps for STN DBS trajectory
planning [125].

4.3.3 Direct targeting
T>-weighted MRI

As can be seen in Table 4.3, a multitude of papers have reported validated results
of Tr-weighted MRI for direct STN identification. Starr et al. [285] showed that
direct targeting is possible on To-weighted FSE MRI, leading to consistent electrode
placement in the dorsolateral STN [283]. Bejjani et al. selected the central track
for implantation in 19 out of their 24 clinical cases [32]. Egidi et al. reported even
slightly better results: their visualized target track was chosen in 85% of cases [95].
Dormont et al. examined postmortem tissue and showed that the hypointense signal
reported by these first studies correlates with the presence of iron and corresponds
anatomically to the STN [86]. They noted, however, that the most posterior part
of the STN was not visible in any of the cases.

In addition, research has been done on the correspondence between MRI-based and
landmark-based STN coordinates. Zhu et al. [337] and Richter et al. [255] con-
cluded that MRI is needed, because atlas-based coordinates suffer from interpatient
variability in STN size [255] and position [255, 337]. Littlechild et al. [193] and
Slavin et al. [276] both reported that the STN target varies considerably in relation
to the MCP, again suggesting that direct visualization on MRI enables more accu-
rate targeting than the atlas-based method. Ashkan et al. confirmed this, finding
a significant difference between this target and the STN as visualized on MRI [17].
The latter lies on average 1.7 mm more medial, 0.7 mm more anterior, and 0.7 mm
more ventral than the atlas target.

A substantial interindividual variability of STN size, orientation and position and a
significant difference between MRI-based and atlas-based coordinates in 66 patients
was also demonstrated by Patel et al [238]. Davies and Daniluk found similar varia-
tion, based on series of 60 and 62 patients [74, 78]. In the latter, the STN's lateral
coordinate varied by as much as 5.8 mm and the anteroposterior size of the STN
varied by 8 mm [75], implying that the use of atlas-based targeting may result in
failure to identify the STN during MER.



Patel et al. validated direct targeting on axial and coronal MRI [237]. In a first
series, they used macrostimulation for target adjustment, while subsequently, target
verification was based solely on preoperative MRI. The latter yielded a mean error of
0.3-0.4 mm only. Together with a follow-up study on the improvement of activities
of daily living and the motor score, this led to the conclusion that T>-weighted-MRI-
based targeting is safe and effective [239].

Inversion recovery MRI

Researchers have also investigated IR methods for direct visualization of the basal
ganglia. Starr et al. [283] identified the globus pallidus internus (GPi), while Benabid
et al. [35] depicted the GPi and the thalamus. The protocols they used were not
suitable to visualize the STN. Though many research groups have tried to improve
upon this, no quantitative studies on this subject are available yet.

Kitajima et al. proposed the short inversion time inversion recovery (STIR) method
and compared this to To-weighted FSE MRI [166]. FSE depicted the upper and
lateral STN margins more clearly, while fast STIR was superior with respect to the
visibility of the lower margin and provided a better contrast between STN and SN. In
addition, Taoka et al. developed two sets of guidelines that facilitate identification
of the STN on STIR images, the so-called “Sukeroku sign” and the “dent internal-
capsule sign” [295]. Ishimori et al. [151] investigated phase sensitive IR and showed
that the STN position on IR MRI differs at most 2 mm from the coordinates found
with AC-PC-based targeting, comparable to the results obtained with T,-weighted
images [17].

Susceptibility-weighted MRI

Apart from Ty-weighted and IR MRI, it it also possible to acquire T3-weighted
(susceptibility-weighted) MR scans. T3 imaging is even more sensitive to local iron
deposits, as occur in the STN amongst others. Dormont et al. [86] established
the correlation of these iron deposits and the hypointensities on T;-weighted MRI,
while Slavin et al. [276] applied this to 3T data. Taoka et al. also visualized the
iron content of the STN using T}-weighted MRI [296]. They compared the results
with STIR MRI and found that the posterior STN parts were not visible on the
T>-weighted images, leading to the conclusion that a combination with STIR might
be more useful to target the STN.

Bonny et al. generated multiple images with increased T5-weighting to maximize
the contrast between the STN and surrounding structures [44]. Elolf et al. also
used multiple gradient-echoes to add contrast to conventional Ti-weighted MRI



[97]. Wu et al. used a steady-state free precession (SSFP) MRI method, facilitating
the visualization of midbrain nuclei with a heavy T;-weighting and relatively short
TE [331]. However, none of these studies presented quantitative results on STN
targeting.

To enhance T;-weighted images, Volz et al. presented a method to reduce sig-
nal loss, resulting in good contrast [317]. Another applicable technique is SWI
(susceptibility-weighted imaging), a method that uses the phase data. Young and
Chen exploited this to produce T3 contrast additive to the T; or T, contrast intrin-
sic to the imaging protocol, in this way improving the contrast between the nuclei
of interest [335]. Rauscher et al. [253] and Vertinsky et al. [314] also performed
postprocessing with phase images, giving rise to a higher visibility of the STN and
even of the subthalamic fasciculus. However, for these methods, the STN position
as identified on MRI again has not been validated.

Relaxation time maps derived from MRI

Apart from T1-, To- or T;-weighted acquisitions, it is also possible to map the true
relaxation time for each voxel by performing multiple MR acquisitions with different
parameters. Bonny et al. already reconstructed T maps from their measurements in
2001 [44]. Helms et al. used T5 maps for improved delineation of iron rich structures,
in particular the STN and SN [143]. Lebel et al. investigated 75 mapping of the
basal ganglia at 4.7 T, in order to increase spatial resolution and sensitivity to iron
content [180].

Guo et al. [127] were the first to introduce relaxation time maps, for 77 and T,
into their DBS targeting application [124, 126]. This study compared the centers of
basal ganglia nuclei based on the relaxation time maps with the coordinates derived
from the Schaltenbrand-Wahren atlas and the actual surgical targets of 15 patients
that underwent surgery. As the mean displacement was 3.21 + 0.80 mm, these
results indicated the potential of the relaxation time maps for DBS targeting.

High-field-strength MRI

Following the example of Lebel et al. [180], recently more studies have been published
on direct visualization of the STN and other basal ganglia using MRI scanners with
high field-strengths. Abosch et al. acquired susceptibility-weighted MRI data at
7.0 T and showed that the superior resolution and contrast at this field strength
dramatically improves delineation of the STN [1]. Cho et al. also visualized the
STN using T5-weighted scans on 7-T MRI [61], and in addition imaged the SN in
9 healthy controls and 8 PD patients, revealing distinct morphological changes due



to PD [62].

4.3.4 Comparative studies

Much research has been done on the comparison of direct and indirect targeting.
Table 4.4 summarizes the comparative papers that presented quantitative results.

Studies that favor indirect targeting

Zonenshayn et al. investigated STN targeting using four different methods, namely:
1) coronal MRI, 2) the STN center on a Schaltenbrand-Wahren atlas, 3) AC-PC-
based targeting, and 4) a composite target based on all three methods [340]. The
results were compared to the final target (found with help of MER). The combination
of three methods appeared to be best, while only MRI gave the worst result. Cuny et
al. also compared three methods [71]. The first technique was direct identification
on Tr-weighted MRI (see Table 1). The second and third method both involved
indirect targeting based on the AC-PC line, determined by ventriculography or MRI,
respectively. The most effective contact was taken as the gold standard. The
authors concluded that indirect targeting based on MR worked best, while direct
targeting gave the worst outcome.

Andrade-Souza et al. investigated direct targeting using coronal MRI, indirect tar-
geting using the AC-PC, and a technique using the RN as a landmark [11]. The
implantation was optimized using MER, while the most effective contact was iden-
tified using postoperative MRI. After comparing the mean distances between the
targets and optimal contact, the authors concluded that the RN is a reliable marker
for STN targeting. This is contradictory to the results of Danish et al. [76] (see
Table 4.1). Breit et al. also evaluated coronal T>-weighted MRI, this time in com-
parison to AC-PC-based targeting using ventriculography [45]. The implantation
was refined using MER, and the actual target was chosen to be the most effective
contact. Their findings showed that targeting of the STN using AC-PC from ven-
triculography is more accurate than direct targeting on MRI. Sanchez Castro et al.
[264] compared coronal To-weighted (IR) MRI with indirect targeting using a regis-
tered atlas, which was based on MRI data with visible STNs. Their results showed
an average error of 1.72 mm, according to Sanchez Castro et al. small enough to
justify the use of the atlas.

In further research, Andrade-Souza et al. compared 2D T,-weighted axial and 3D
reconstruction MRI [12]. They found that indirect and direct targets based on 3D
reconstruction more closely approximate the optimal contact than targets chosen
using 2D MRI. However, both indirect targets were better than the direct targets.



Studies that favor direct targeting on MRI

Starr et al. performed MRI and MER to target the STN [284]. They used a combi-
nation of indirect AC-PC-based targeting and direct targeting on To-weighted MRI.
The authors managed to visualize the STN directly for 92% of procedures, which
supports the choice for direct imaging instead of AC-PC-based methods for STN
targeting. The reliability of indirect methods as compared to direct targeting was
also investigated by Schlaier et al [267]. They determined STN targets in five dif-
ferent ways: 1) direct targeting using axial To-weighted MRI, 2) direct targeting
on coronal To-weighted MRI, 3) indirect targeting using an axial atlas slice, 4) indi-
rect targeting on a coronal atlas slice, 5) indirect targeting using AC-PC references.
Direct targeting seemed more reliable than atlas-based targeting, due to large inter-
patient variability in the STN coordinates as derived from MRI. Ashkan et al. [17]
confirmed these results on variability in STN position. Their direct target differed
on average 0.7-1.7 mm in all three directions.

Although all studies described above preferred direct targeting, they did not validate
this claim with intra- or postoperative information. Koike et al. did use the identified
STN thickness during MER and clinical parameters, namely the effect on the disease
and on the medication dose, as evaluation parameters [167]. They compared direct
targeting on Tr-weighted FSE MRI to the conventional indirect AC-PC method.
The results showed a significantly larger mean STN thickness (indicating a longer
electrode track through the STN and thus a better targeting) in the direct group
and clinical parameters also displayed larger improvements for the direct group.

Though all studies mentioned previously in this section used 1.5-T MRI, Acar et
al. investigated the benefit of direct targeting on 3.0 T over traditional AC-PC-
based targeting using 1.5 T [2]. They calculated Euclidean distances between the
directly and indirectly determined coordinates in three dimensions, resulting in mean
differences between the two locations of 0.45 mm, 0.72 mm, and 0.98 mm in the
X, Y, and Z axes, respectively. According to the authors, MRI has advanced such
that direct targeting of the STN is no longer imprecise.

4.4 Discussion

In this chapter we reviewed indirect and direct STN targeting methods based on
MRI. The most common indirect methods use either landmarks such as AC-PC
[17, 229, 231, 284] and RN [18, 32, 71, 76] or atlases built from anatomical [20,
21, 92, 264, 265] and/or functional [84, 124, 126, 222, 230] information. These
methods are applicable in all cases but are not very patient-specific. Direct methods
already in use clinically comprise To-weighted FSE [32, 86, 95, 285] and IR MRI



[151, 166, 295]. These techniques can account for interpatient variability [17, 75,
193, 238, 276] but often suffer from low contrast and technical issues [139], such as
a long acquisition time [32, 237, 337], required reformatting of images, and the need
for preparatory Ti-weighted sequences used to plan the acquisition of T>-weighted
planes [32, 284].

The comparative studies presented do not provide us with a straightforward conclu-
sion on the best STN targeting protocol. Earlier publications tend to be in favor of
indirect methods, mainly AC-PC-based, while more recent studies are more inclined
to prefer direct visualization. Most publications report the use of 1.5-T MRI and the
majority of hospitals still use this field strength, so the recent preference for direct
targeting is not likely to be due to 3-T MRI. The phenomenon might be caused by
advances in MR imaging at 1.5 T, with respect to contrast, noise and distortion,
resulting in a targeting method that is more specific than AC-PC-based targeting.
Due to continuous progress in MRI technology, direct targeting is still expected to
improve in the future.

Although it seems that the future of STN targeting will be focused on patient-specific
direct methods, it is still important to keep in mind the limitations of STN visual-
ization on anatomical MRI. Often, only the anterior STN is visible as a hypointense
region [86]. In addition, the contrast between the STN and surrounding struc-
tures is not optimal, hindering identification of the STN boundaries [97, 143, 166].
Furthermore, the question remains whether the visualized STN coincides with the
functional target for DBS (often determined by MER) [135, 138, 193]. Promising
new methods such as relaxation time maps and susceptibility-weighted imaging, as
well as imaging at 7 T, have not been validated yet in large clinical studies. Besides,
technical issues strongly influence the MRI procedure and quality. Examples are
the MR compatibility of the stereotactic frame, image artifacts (which will be even
larger at higher field strengths) due to patient movement and magnetic field dis-
tortion, although the latter can be controlled reasonably for the midbrain [75, 206].
Because of these issues, further research into STN localization methods, both direct
and indirect, seems necessary.

The comparative studies that have validated the targeting with the most effective
contact location also have their limitations. The conclusions of Cuny et al. [71],
Andrade-Souza et al. [11, 12] and Breit et al. [45], that indirect targeting is more rel-
evant for electrode placement, should thus be considered with care. As the primary
targeting in these studies was indirect, the final contact, even after intraoperative
adjustment, was close to the original indirect target by definition. In addition, analyz-
ing indirect versus direct targeting according to the optimal contact only underlines
differences between the final position and the primary targets. This bias would of
course also exist if primary targeting were to be performed using a direct method.
Caire et al. also compared STN localization methods based on AC-PC and 1.5-T



MRI [55], revealing significant differences in all three dimensions. Instead of drawing
conclusions on which targeting method is more suitable, the authors stated that ap-
parently, it would be better to conclude that the indirect AC-PC-based target does
not coincide with the center of the STN as visualized on anatomical MRI. Moreover,
various follow-up [137, 177, 185, 263] and post-mortem [289] studies state that the
best clinical target is located in the dorsolateral part of the STN and the area just
superior to the STN (zona incerta, field of Forel).

The results from several papers show that stimulating the dorsolateral motor part
of the STN is more effective than stimulating the center [55, 137, 177, 185, 263,
289]. As conventional direct targeting on anatomical MRI cannot distinguish the
dorsolateral STN part due to lack of contrast, it is useful to further investigate
the use of other MRI-based methods in order to facilitate specific targeting of this
part. Examples of techniques that have not yet proven their clinical usefullness
but that might aid in the localization of the STN are the use of landmarks such
as the nigrocapsular angle [118], the mammillary commissures [181, 303], and the
line connecting the mammillary bodies [256]. In addition, a fast-developing line of
research focuses on susceptibility-weighted MRI and T; mapping in order to improve
the contrast in the STN region [143, 180, 314, 317, 331]. However, it is improbable
that this improved contrast would give rise to idenfication of the dorsolateral STN
part specifically.

Besides trying to find the dorsolateral STN part, possibilities to divide the STN
functionally and identify the motor part should also be investigated. Modalities such
as functional or diffusion-weighted MRI could yield features that facilitate separation
of the motor part of the STN. Diffusion-weighted MRI sensitizes the MR acquisition
to water diffusion in specific directions. Afterwards, the diffusion profile in a voxel
can be fitted as an ellipse (DT [211]) or a higher-order shape (HARDI [311]). By
analyzing these profiles in the STN itself, it was shown that different parts of the
STN in a rat brain could be separated visually and automatically [48, 49]. Recently,
Coenen et al. also published a case study on DTl-based fiber anatomy in the STN
region, to help identification of the tremor suppression target [63].

Apart from the primary targeting based on (MR) imaging, there are other parts of the
surgical pipeline that influence the clinical outcome of a DBS procedure and should
not be ignored. The most important are the type of stereotactic frame, the selection
of the trajectory (this can be done manually or automatic [52]), registration of
different imaging modalities, intraoperative brain shift [150], intraoperative electrode
adjustment, and postoperative parameter estimation. Whilst striving for the best
possible results of deep brain stimulation, all these factors should be given appropriate
attention.
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Table 4.2 Table summarizing indirect studies based on brain atlases.

Study Subjects Atlas information Registration method Validation method Outcome Conclusion
Ortega et al. 10 Digitized Nonlinear  registra- Final microelectrode Difference in coordinates: System matching the atlas
2008 [227] Talairach- tion position 1.89 £ 1.00 mm to Ti—weighted MRI offers
Tournoux atlas good targeting results
Sanchez Cas- 8 MRl of subject Nonrigid registration Direct STN target- Smallest difference in coor- Automatic STN location
tro et al. 2005 with best visible (affine and nonlin- ing by expert dinates: 1.80 4+ 0.62 mm using nonrigid atlas regis-
[265] STN ear) tration is possible and ac-
curate
Bardinet et al. 16 Postmortem MRI Rigid and affine reg- Electrophysiological 81.5% of recordings and Atlas/MRI  coregistration
2005 [21] and histology data istration recordings (6) 70% of electrodes within  could be used as a standard
and final electrode  STN as defined by atlas method for targeting of
position (10) deep brain structures
Nowinski et al. 184 Ventriculography, Linear scaling along  STN in  The functional STN (prob-  The functional STN can be
2007 [224] MER, neurological ~ AC-PC line Schaltenbrand- ability > 0.5) is completely  used for identification of
assessment Wahren atlas inside the anatomical STN the STN on images
D’'Haese et al. 21 MER, stimula Nonlinear  registra- Preoperative AC-PC  Average distance: 3.66 mm Automatic prediction of
2005 [84] parameters,  final tion and retrospective au- for AC-PC, 2.71 mm for the STN target from pre-
electrode positions tomatic targeting automatic targeting (right  vious targets and elec-
STN) trophysiology data is an
achievable goal
Guo et al 28 Atlas, MER, op- Nonrigid registration Actual surgical tar- Average distance smallest The method with both
2007 [125] timal contacts, get location for combination of all atlas  anatomical and functional

MRI-based meth-
ods

data: 1.7 = 0.7 mm

data provides the most re-
liable STN target
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Table 4.4 Table summarizing studies comparing indirect and direct methods.

Study Subjects Methods Validation method Outcome Conclusion
Zonenshayn et 15 Coronal  MRI (T»- Final target based on Distance between MRI and tar- Combination of three targeting
al. 2000 [340] weighted/IR), atlas, MER get: 2.6 £ 1.3 mm; between  methods offers best correlation
AC-PC, combination composite and target: 1.3 & 1.1 with the final target
mm
Cuny et al 14 T>-weighted MRI, Most effective contact Distance between AC-PC Indirect targeting based on MR
2002 [71] AC-PC with ventricu- (MRI)/best contact: 2.6 +  works best, direct targeting gives
lography, AC-PC with 1.2 mm; between direct/best  worst outcome
MRI contact: 3.9 £ 1.9 mm
Andrade- 14 Coronal MRI, AC-PC, Optimal contact (MER Distances to optimal contact: RN is a reliable marker to approx-
Souza et al. RN-based targeting and postoperative MRI) MRI: 4.7 mm; AC-PC: 3.4 mm; imate the optimal contact posi-
2005 [11] RN: 3.2 mm tion
Breit et al. 30 Coronal T>-weighted Most effective contact Mean targeting error 4.1 + 1.7 AC-PC using ventriculography is
2006 [45] MRI, AC-PC based mm for MRl and 2.4 £ 1.1 mm more accurate than direct tar-
on ventriculography for AC-PC geting on MRI
Sanchez Cas- 39 Coronal T»-weighted Comparison of STN co- Best atlas registration method Automatic STN targeting is pos-
tro et al. 2006 MRI, anatomical atlas  ordinates in MRI coordi- (B-splines): average error 1.72  sible and as accurate as current
[264] based on direct tar-  nates + 0.48 mm expert methods
gets
Andrade- 14 Axial T>-weighted Optimal contact (MER Distances to optimum: 2D MRI 3D reconstruction leads to better
Souza et al MRI, 3D reconstruc- and postoperative MRI) direct: 4.7 mm; 3D reco direct: approximation of optimal con-
2005 [12] tion (both direct and 3.5 mm; 2D MRI indirect: 3.4  tact; indirect methods are better
indirect) mm; 3D reco indirect: 2.6 mm than direct targets
Starr et al. 44 Coronal T»-weighted ~ Comparison in atlas coor-  In 34% the STN lies >1 mm Direct targeting accounts better
2002 [283] FSE MRI, AC-PC dinate system more lateral than 12 mm and in for interpatient variability than
40% the STN lies >1 mm more indirect targeting
inferior than 4 mm
Schlaier et al. 14 Axial /coronal To- Comparison in atlas coor- All STN coordinates displayed a Direct targeting seemed more re-
2005 [267] weighted MRI and  dinate system range of 4 to 5 mm liable due to large interpatient
atlas, AC-PC variability
Ashkan et al. 29 Axial T>-weighted Comparison in atlas coor- Direct: 1.7 mm more medial, 0.7 Direct targeting more accurate
2007 [17] MRI, AC-PC dinate system mm more anterior, 0.7 mm more  due to variability in STN position
ventral
Koike et al. 44 T>-weighted FSE MER and clinical param- Direct group: longer track Direct targeting with single-track
2008 [167] MRl (using RN), eters through STN and larger clinical  recording can be standard for
AC-PC improvement DBS
Acar et al. 20 Axial T>-weighted Comparison in atlas coor- Mean distances were 0.45 mm, Direct targeting is no longer im-
2007 [2] FSE MRI (3.0 T), dinate system 0.72 mm and 0.98 mm in X, Y,  precise
AC-PC (1.5T) Z directions
Caire et al. 22 Coronal T»-weighted Comparison of STN cen- Significant differences in coordi- MRI-based and AC-PC-based

2009 [55]

TSE MRI, AC-PC

ter coordinates

nates in all three directions

targets do not coincide
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Science never solves a problem without creating ten more.

George Bernard Shaw



This chapter is based on:

“Untangling a fiber bundle knot - Preliminary results on STN connectivity using DTI and HARDI on
rat brains.” Ellen Brunenberg, Vesna Prckovska, Bram Platel, Gustav Strijkers, and Bart ter Haar
Romeny. In Proceedings of Seventeenth Annual Meeting of the International Society for Magnetic
Resonance in Medicine (ISMRM) 2009, pp. 740.

“"K-means and graph cuts clustering of diffusion MRI in rat STN.” Ellen Brunenberg, Erik Pelgrim,
Bart ter Haar Romeny, and Bram Platel. In Proceedings of Eighteenth Annual Meeting of the
International Society for Magnetic Resonance in Medicine (ISMRM) 2010, pp. 4045.

“"A Sobolev norm based distance measure for HARDI clustering - A feasibility study on phantom
and real data.” Ellen Brunenberg, Remco Duits, Bart ter Haar Romeny and Bram Platel. In
Proceedings of Medical Image Computation and Computer-Assisted Intervention (MICCAI) 2010,
Lecture Notes in Computer Science 6361, pp. 175-182.

5.1 Introduction

5.1.1 Background

Deep brain stimulation in Parkinson’s disease patients can be improved by enhancing
the motor effect and minimizing cognitive and emotional side effects. In this study,
we wanted to investigate the added value of noninvasive diffusion MR imaging for
this purpose. We hypothesized that the underlying axonal connectivity is different
for distinct functional parts of the STN, for example, that the STN motor part is
connected to the motor cortex, but the associative and limbic parts are not [136].
This principle enables a segmentation based on either the local fiber orientation and
thus the local diffusion information or on the contextual information given by fiber
bundles departing from or arriving in the STN.

5.1.2 Related work

Recently, many studies have been published on segmentation of gray matter nu-
clei from brain diffusion MRI data. A rich variety of classification and clustering
algorithms has been employed, together with a multitude of dissimilarity measures,
mainly focusing on diffusion tensor imaging (DTI).

Wiegell et al. [325] clustered DTI tensors in the thalamus, using k-means and the
Frobenius norm. Ziyan et al. used graph cuts [338] and consistency clustering [339]
on the same data set to investigate other metrics, namely the angular difference and
the K-L (Kullback-Leibler) divergence. Duan et al. [91] classified diffusion within the
thalamus using mean-shift clustering and the Frobenius norm, while Jonasson et al.



[161] investigated a level set approach. Apart from the thalamus, researchers have
tried to segment other structures as well. Lenglet et al. [188] addressed the segmen-
tation of cerebral white matter structures from DT and proved that the dissimilarity
measure has a deep impact on tensor statistics and thus also on achieved results.
They presented a statistical surface evolution framework and implemented this with
the Euclidean distance, K-L divergence and a Riemannian geodesic distance.

For high angular resolution diffusion imaging or HARDI [310], fewer choices for
the dissimilarity measure are available. The L, norm has been used most often
to compare ODFs, possibly represented by spherical harmonics (SH) coefficients.
Grassi et al. [121] published a similar study as Wiegell et al. [325], performing k-
medoids clustering of HARDI data in the thalamus using the L, norm on the ODFs.
Similarly, Descoteaux [81] and Wassermann et al. [320] used the L, norm on SH
coefficient vectors. According to Descoteaux [81], one could use K-L divergence
between 2 ODFs. However, this problem would quickly become too computationally
expensive, because all N points on the sphere (~200) are used, instead of only nsy
SH coefficients (~15).

Apart from a clustering using SH coefficient vectors, there are other ways to rep-
resent the ODF and segment the data. Some studies have modeled the ODF by
mixtures of von Mises-Fisher distributions [202] or other directional functions and
mixture models [252]. Others have used a model-free representation of the ODF
[60, 119], the latter proposing the geometric anisotropy as a scalar measure.

5.1.3 Aim

We started with a visual inspection of the local diffusion profiles within the rat STN
ROI, to investigate the feasibility of this approach by determining whether HARDI
glyphs can distinguish between the rat STN motor part on the one hand, and the
cognitive and emotional part on the other hand. The first part of this chapter
(Section 5.2) presents the results of our feasibility study on the added value of
HARDI in comparison to DTI.

Afterwards, in Section 5.3, we discuss the clustering experiments that we performed
on the rat STN ROI using k-means and graph cuts algorithms. Rats were used
for these tests because postmortem rat measurements enable very high-resolution
imaging. In addition, neural tract tracing studies have provided us with considerable
knowledge on rat neuroanatomy and connectivity.

Subsequently, after experiencing some difficulties with respect to the weighing of
different orders of diffusion information in the distance measure for clustering, we
aimed to improve upon the commonly used IL, norm. To this end, we developed the
so-called Sobolev norm, that incorporates all orders of spherical harmonics intuitively.



More importantly, this norm does not only take into account the amplitudes of the
glyphs under comparison, but also the coincidence of extrema. In Section 5.4, we
elaborate on our new dissimilarity measure for HARDI clustering.

corpus callosum

external capsule

stratum radiatum

molecular layer

Figure 5.1 R( parameter tuning using linear diffusion profiles. (a) Weighted FA map of a rat
brain slice, with red square indicating the ROI. Color coding: red: left-right, green: anterior-
posterior, blue: inferior-superior. (b) Enlarged region of interest. The DOT parameters should be
tuned in such a way that the diffusion profile is linear in the corpus callosum, external capsule, and
hippocampus (stratum radiatum and molecular layer).

5.2 Exploration of the rat STN

5.2.1 Methods
Data acquisition

Rat brains (17-week old male Wistar rats) were extracted after transcardiac perfusion
with 4% paraformaldehyde in phosphate buffered saline (PBS). The brains were
stored in the fixation solution for 14 weeks, subsequently rinsed and put in pure PBS
for 48 hours. Afterwards, the brains were immersed in Fomblin (Fens Chemicals,



5.2. Exploration of the rat STN

Goes, The Netherlands) for magnetic susceptibility matching.

Imaging was performed on a 9.4-T Bruker Biospec AVANCE-III system. Anatomical
T>-weighted images were recorded using a RARE sequence (RARE-factor 8, TE 36
ms, TR 2500 ms, NA 16, total time 32 minutes). Fifteen coronal slices with matrix
size 384x384 were measured. The FOV was 25.6x25.6 mm, leading to an in-plane
pixel dimension of 67 um. Slice thickness was 500 um and the interslice gap 50
wm. HARDI was acquired using a diffusion-weighted spin-echo sequence with two
unipolar pulsed field gradients placed symmetrically around the 180 degree pulse
(TE 27 ms, TR 4000 ms, NA 1, total time 19 hours). Some parameters (number
of slices, slice thickness, and FOV) were identical to the RARE acquisition. For
HARDI, the matrix was 128x128, zero-filled to 256x256, leading to an in-plane pixel
dimension of 100 um. A series of 132 images with different gradient directions and
b-value 3000 s/mm?, together with an unweighted image, was measured.

Data processing

Processing of the diffusion MRI data was done in the DTITool developed at Eind-
hoven University of Technology [90]. Three of the available HARDI techniques (as
elaborated on in Section 3.2.3) were implemented in this tool: analytical Q-ball
imaging [82] and parametric and non-parametric DOT [228]. DOT has two extra
parameters that require tuning: the effective diffusion time 7 and the radius of a
shell of the reconstructed probability profile Rg.

Figure 5.2 Anatomical MRI and FA map of a rat brain slice. (a) Anatomical RARE image, with
the inlay representing a weighted FA map around the STN. Color coding as in Figure 5.1. (b)
Enlarged STN region with part of the Paxinos rat atlas [240] as overlay (eml = external medullary
lamina, ic = internal capsule, ns = nigrostriatal bundle, stn = subthalamic nucleus, zid = dorsal
zona incerta, ziv = ventral zona incerta) and a smaller ROl in red.



Using the imaging parameters, we determined 7 = A — /3 = 12 ms, with A repre-
senting the time between two complementary diffusion gradients and ¢ the gradient
duration. The Ry parameter was varied, such that the correct probability profile
would be reconstructed. This parameter tuning was validated using the elongated
fibers in the corpus callosum, analogous to Ozarslan et al. [228], as can be seen in
Figure 5.1. The order of the spherical harmonics was varied between 4 and 8. Fiber
bundle crossings in the area around the STN could be observed even at fourth order.
As a preprocessing step, we included Laplace-Beltrami smoothing for both methods,
with smoothing parameter A = 0.00005 as an empirical optimal value for our data
with a signal-to-noise ratio (SNR) of 30. We assumed that the fiber directions are
given by the local maxima of the probability profile.

5.2.2 Results
Anatomical MRI and FA map

The RARE MRI protocol resulted in detailed anatomical images, as shown in Fig-
ure 5.2(a). In this coronal slice, the STN is visible as a middle-gray nucleus, lying
along the dorsal border of the internal capsule. The image inlay represents the FA
(fractional anisotropy) map that was calculated from the HARDI data for this slice.
The map is colored according to maximum eigenvector direction (red: left-right,
green: anterior-posterior, and blue: inferior-superior). In Figure 5.2(b), this inlay is
enlarged and overlaid with the corresponding slice from the Paxinos rat brain atlas
[240]. The STN and several neighboring areas, such as the internal capsule, are
indicated. A smaller region of interest (ROI) aligned with the STN is drawn in red.

Different diffusion glyphs

Three different types of glyphs, visualizing the diffusion in a voxel, were rendered for
the ROl shown in Figure 5.2(b). The rectangle was rotated approximately 50 degrees
clockwise to enable a better view. Figure 5.3(a) displays superquadrics based on the
second-order diffusion tensor, as derived from the HARDI data. Figures 5.3(b) and
(c) show more advanced HARDI-based models, namely Q-ball and DOT glyphs.

Comparing the images of Figure 5.3(a), (b), and (c), it is clear that DTI su-
perquadrics are unable to resolve the diffusion in the STN region. Figure 5.3(a)
shows linear (anteroposterior) diffusion in the internal capsule (IC), but oblate ten-
sors in the rest of the ROI. The linearity in the internal capsule is preserved in the
Q-ball and DOT glyphs (Figure 5.3(b) and (c)). Moreover, the rest of the ROI
shows more heterogeneity compared to the superquadrics.



Figure 5.4(a) provides us with the anatomical context of the diffusion glyphs, by
means of an atlas overlay. We clearly observe crossings in the lateral part of the
STN and the ventral zona incerta. A more linear configuration can again be seen in
the upper left corner of the ROI. This area corresponds with the medial part of the
STN and the nigrostriatal bundle. Based on this difference in diffusion profiles, we
might be able to distinguish the two subterritories of the rat STN, the lateral motor
part and the medial cognitive/emotional part (see Figure 5.4(b)).

5.3 Preliminary clustering experiments

5.3.1 Methods

Atlas registration

We used the anatomical (RARE, 67-um pixel, 500-um slice) and HARDI data (b-
value 3000 s/mm?, 132 directions, 100-um pixel) of a fixed rat brain measured at
9.4 T, acquired as described in Section 5.2.1. Instead of identifying the STN region
using the RARE images (which do not always provide sufficient contrast) or manual
registration with slices from the Paxinos rat brain atlas [240], for this experiment we
registered a digitized version of that atlas, reconstructed by the Institute of Basic
Medical Sciences in Oslo, Norway [145, 241]. A slice of this 3D rat brain atlas can
be seen in Figure 5.5.

Because of the differences in contrast between the HARDI data and rat atlas la-
bels, registration was performed using a To-weighted MRI template matching the
atlas as an intermediate [272]. Since Hjornevik et al. [145] used another version
of the Paxinos atlas [240, 241] than Schweinhardt et al. [272], the template de-
veloped by the latter did not exactly match with the atlas anymore. Therefore, we
adapted the deformation matrix between the atlas and template by manual scaling
and translation.

Nonlinear registration between the T,-weighted rat brain MRI template and our
T>-weighted RARE data was done using FSL's FNIRT [10]. Subsequently, the
deformation between the T»>-weighted RARE data and the HARDI data was resolved
with a rigid 2D method implementing the intensity-gradient-based registration by
Haber et al. [128]. An ROI of 21 by 21 pixels around the right STN was extracted
from the slice on which the STN was largest (see Figure 5.6).
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Figure 5.3 Different types of diffusion glyphs in the STN region (corresponding to the rectangular
ROI shown in Figure 5.2(b)). (a) Second-order diffusion tensor superquadrics, color-coded accord-
ing to FA (blue: low FA ~0.25, yellow: high FA ~0.75). (b) Normalized Q-ball glyphs represented
by 6t-order spherical harmonics. (c) DOT glyphs with the same order spherical harmonics.



Figure 5.4 Diffusion glyphs in the STN region with anatomical context. (a) Normalized Q-ball
glyphs in the STN region (from Figure 5.3(b)), with atlas overlay based on [240] (ic = internal
capsule, ns = nigrostriatal bundle, stn = subthalamic nucleus, zid = dorsal zona incerta, ziv = ventral
zona incerta). (b) Supposed subdivision of rat STN into the large lateral motor part (motor) and
the smaller medial associative and limbic part (a/l), indicated by the dashed line.

Clustering

Clustering was done using two algorithms that have proven useful for classifying dif-
fusion MRI data of the thalamus, namely k-means [121, 325] and spectral clustering
involving graph cuts [338]. In Section 5.2, we already showed that HARDI results
in more heterogeneous diffusion glyphs than DTI, which provides mainly isotropic
profiles. Therefore, we performed clustering with the L, norm on the spherical har-
monics coefficients as a distance measure, analogous to Wassermann et al. [320].
Each diffusion profile was reconstructed using spherical harmonics basis functions of
even orders, up to 8™ order.

To investigate the influence of different orders on the clustering results, we experi-



Figure 5.5 Coronal slice of 3D digital rat brain atlas [145]. Each gray value represents another
anatomical structure. Labeled here are the subthalamic nucleus (stn) and the internal capsule (ic).

mented with several weighting factors denoted in a 5-element vector. Each element
represents one of the even orders (0", 2", 4t 6™ or 8t™") and can have value 0 or
1. The vector {1,1,0,0,0} means that the distance measure contains no informa-
tion of 4t 6th, and 8" order, but is the result of the L, norm on 0" and 2"9-order
coefficients only.

Prior to the k-means clustering, we selected four seed points. One seed point was
located within the STN, one in the IC (internal capsule) and two in the surrounding
(background) structures. With regard to the graph cuts clustering, we chose to
execute 10 clustering steps, yielding 11 clusters.

5.3.2 Results

The clustering results of the right STN ROI, processed with k-means and graph
cuts algorithms and different weighting vectors, are presented in Figure 5.7. The
k-means clustering finds one IC cluster, the best result being generated without
0t-order information (Figure 5.7(d)). However, this technique is apparently unable
to distinguish the STN from surrounding structures. In three cases of graph cuts
results, the medial STN is separated (Figures 5.7(b), (c), and (f)). This might
correspond to the cognitive/emotional part of the rat STN. The STN motor part
would still be connected to the environment.



5.3. Preliminary clustering experiments

Figure 5.6 Selection of ROI around the right STN. (a) ROI indicated as a red square on To-
weighted RARE anatomical image. (b) Selected ROl of 21 by 21 pixels around the right STN
in the resampled T,-weighted RARE data, with contours of the rat brain atlas [145] overlaid in
red (ic = internal capsule, stn = subthalamic nucleus). (c) Contours of the rat brain atlas in red,
overlaying the HARDI data that were averaged over all directions.

Figure 5.7 Preliminary clustering results for the right STN ROI (see Figure 5.6). (a) K-means
result for weighting vector {1,1,0,0,0} (identical for {1,1,1,1,1}). (b) Graph cuts result for weight-
ing vector {1,1,0,0,0}. (c) Graph cuts result for weighting vector {1,1,1,1,1}. (d) K-means result
for weighting vector {0,1,0,0,0} (identical for {0,1,1,1,1}). (e) Graph cuts result for weighting
vector {0,1,0,0,0}. (f) Graph cuts result for weighting vector {0,1,1,1,1}.



5.4 A specialized distance measure: the Sobolev norm

Because of the difficulties with respect to the weighing of different orders of diffusion
information in the previous section, we attempted to improve upon the L, norm. To
this end, we developed the so-called Sobolev norm, which will be explained below.

5.4.1 Theory

Consider HARDI-image! U : R3 x S? — R* and assume it is square integrable, i.e.,
U € Ly(R3 x S2). By restricting this HARDI-image to two fixed points, say xi, X2
in R3 we obtain two functions on the 2-sphere:

S 3n— U(xy,n) e RY

and

S$® 5 n U(xa,n) € RY,

which we from now on denote by U(xi,-) and U(xz,-). These functions can be
represented by a so-called glyph S, (U)(x1) and S, (U)(x2) as defined below.

Definition 1 A glyph of a distribution U : R3 x S?> — R™* on positions and orien-
tations is a surface S, (U)(x) = {x+ pU(x,n) n | n € S?} C R for some x € R3,
w > 0. A glyph visualization of distribution U : R3 x §2 — R* s a visualization of
a field x — S, (U)(x) of glyphs, where u > 0 is a suitable constant.

A common approach to compare two glyphs S, (U)(x1) and S, (U)(x2) is to compute
the L, distance between U(xy,-) : S — R* and U(x,,-) : S? = R™, i.e.,

AUx, ), UG, ) = \/ [ 106, m) = U, ) o)

where o denotes the surface measure on S2.

However, this distance only compares glyph amplitudes (using the same p > 0 in
both cases). It does not take into account robust regularization and more impor-
tantly, it does not consider whether the extrema of the glyphs coincide. Therefore we

lin case a DTl image is given, set U(x,n) = n” D(x)n, analogous to Equation (3.9).



include a blob-detector [192] in our distance. We do not use higher-order derivatives
because they hinder damping before the Nyquist frequency and are more ill-posed
due to a higher operator norm.

We have defined the (squared) Sobolev distance between two glyphs as
(daye(U(x1, ), U(xa,-)))? =
/ (e 2= )0 m) — (e 4" U)o, )| dor(m) +
s2

2, A @ A @ 2
K / \lAszl“wf‘ 2 U) (k1) — |Ag|*(e 052! u><xQ,n>! do(n)
52

=1 [U(x1, ) = Ulxa, )llzza(s2) - (5.1)

This Sobolev distance basically is a sum of a (smoothed) standard intensity-sensitive
L, part (first integral) and a (smoothed) blob-sensitive second part (second inte-
gral). Next we provide a brief explanation on the involved parameters:

e The parameter a € [% 1] denotes the a-scale space regularization on a sphere

[93], applied at time t > 0 (or scale t3). Note that e 52" denotes a
smoothing operator generated by a fractional power of the Laplace-Beltrami
operator As2, i.e., Wy(x,n, t) = e~t122I*J(x, n) is the solution of

oWy
ot

(x,n, t) = —|Ag|*"Wy(x,n, t), (5.2)

withx € R3, ne S2,t >0, and

Wu(x,n,0) = U(x,n) . (5.3)

e The parameter t > 0 determines the stopping time of the spherical a-scale
space regularization.

e The parameter « (physical dimension [Length]?) determines the influence of
the blob-sensitive and the standard intensity-sensitive L, part of the Sobolev
norm.

The blob-sensitive part is the same as the total difference of all scale space dynamics
of the glyphs?. This follows from the fact that (5.1) can be rewritten as

2| ocal extrema are typically preserved over certain ranges of scale, until annihilation between
extrema and saddles takes place in so-called top-points, [73].
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where we use short notation W = W{. Roughly speaking, v > 0 balances the
similarity of the scale space extrema (blobs) and the similarity of the amplitudes of

Su(U)(x1) and S, (U)(x2).
Recall that the spherical harmonics {Y,m}’"_’_"{ """" ! form an orthonormal basis of
L>(S?), i.e.,

(Wmv W’m’)LQ(SQ) = 5//’5mm’

and

1 (F Y,y =0=f=0,

and that the Y/, are eigenvalues of the negative semi-definite, fractional Laplacian
operator:

A2 %Y = =1 + 1)*Yipm.

Thereby the solution of (5.2) and (5.3) is given by

3

W(x,n(0, ), 1) =>_ > (Yim Ux,)) e 42"Yj,(0, ¢) =

=0 m=—/
/

i > Vim Ulx, ) e %00, ) (5.4)

1=0 m=—

In particular for o = 3 (Poisson scale space [93, 100, 101]) the solution of (5.2) and
(5.3) is nearly equivalent to outward harmonic extension of the initial distribution
n — U(n) on the 2-sphere, where one must set the radius p = e™t, since

n(6, ¢) = (pcos psinb, psin ¢sin b, pcosb) — p/Y/m(G, 0]



is a harmonic function on R3 and p/ = e~t/ =~ e~ t VU+D! for [ sufficiently large. So
intuitively one may consider a radial scale axis for scale spaces on glyphs.

We can expand U(xy, -) and U(xz, -) into the orthonormal basis of spherical harmon-
ics:

o] !
Uxin(8.¢) =Y > c"Yim(n(6.¢)) . i=12,

1=0 m=—I/

with

@+ 1)(/—|m)!

img
an( 4y m(cos0)e™,

Y/m(e, ¢) =

with P, the associated Legendre polynomial of degree / and order m, and with
= (Yim, U(Xj, ))Lo(s?), I = 1,2. The squared Sobolev distance (5.1) then simply
reads:

00 !
(dary,t(U(x1,+), U(x2,-)) ) = S Z T

=0 m=—

which is a weighted £, inner product on the coefficients so we only have to study
the multiplier

,:;7;3(775 (1 + (’Y /(/ + 1)) ) 72t(l(l+1))o‘y

to see how the different spherical harmonics are weighted in the Sobolev distance.
Note that if vy = t = 0, the Sobolev norm is equivalent to the L, norm.

Analytical example

To qualify the behavior of the Sobolev norm in comparison to the L, norm, we
investigated several diffusion profiles. The basis for each profile is a single fiber
distribution

U(n) = (n" Mn)*,



with M the diagonal diffusion matrix with {1, ¢, €} as diagonal elements and n € 52
describing the tesselation orientations. The fourth power is taken to sharpen the
result. To this static part, a second single fiber profile is added, that is rotated over
angle ¢ with respect to the first profile. The total profile then amounts to

U(n) = (n" Mn)* + (n" RgMRjn)*,

with Ry a transformation matrix resulting in a clockwise rotation over angle ¢. We
compare the default diffusion profile f (¢ =0, f = U(xy, -)) with a set of profiles g
with ¢ varying between 0 and 7/2 (g = U(x2, -)).

Figure 5.8 shows the results for both the Sobolev and L, norm, normalized by their
maximum response:

If =gl

Anormalized (T, = s -
et 9) = a7 — gl

It can be seen that for ¢ = w/4, the diffusion profile has maxima that do not
overlap with those at ¢ = 0, while two of the four maxima at ¢ = 7/2 do coincide.
The Sobolev norm clearly punishes the deviations in extrema. For small differences
in angle ¢, the Sobolev norm gives a larger response, but in the case of partly
overlapping extrema, towards ¢ = /2, the Sobolev norm is again lower than its L,
counterpart. The latter yields its maximum at ¢ = 7/2, because the amplitudes of
the diffusion profiles differ most at that point.

Implementation

In practice, a discretization of the continuous spherical harmonics transform is used.
There are two options, namely the discrete spherical harmonic transform, or the
pseudo-inverse of the inverse spherical harmonic transform (DISHT), see for example
[94]. Similar to Descoteaux [81], we use only even orders of spherical harmonics
to represent our HARDI data, i.e., order | = 0,2,4,..., Lmax. As m still has
range —/, ..., 0,..., /, the total number of SH coefficients is defined as nsy =
%(Lmax+ 1)(Lmax +2). Since nsy should be smaller than the number N of samples
in a spherical sampling, but as large as possible within these boundaries, the DISHT
approach is more suited for our application.

We define a single index j in terms of / and m such that j(/, m) = (> +1+2)/2+m
and compute the spherical harmonic coefficients s € C"s# from the values f € (R*)N
by means of

s = (DISHT)"[f] = (MM ) 'Mf ,



with M = [M{] = [J=Yigyme) (ni)] and € = 3757 [Yi(jym(;(0, 0)[2, such that MTM
has a diagonal of ones. If f; € (R*)N denotes the discrete data on glyph U(x;, -),
i=1,2,ie, (f)k = UX,ng), k=1,..., N then the discrete Sobolev norm is

computed as

e (f f2) = \JZ |(DISHT)*[f[j] — (DISHT)* [f1][[> A" -

=1

5.4.2 Methods
Phantom and real brain data

Using the DTI and HARDI modeling part of the Mathematica package MathVision-
Tools, developed at our university, we computer-generated a HARDI phantom. For
signal generation, a multi-tensor model was employed [280], using a gradient table
of 121 different directions and a simulated b-value of 3000 s/mm?. The phantom
consists of 18 columns with different diffusion profiles. The collection of diffusion
profiles consists of single fiber profiles at angles {0, 1, 3, 6, 10, 15, 21, 28, 36, 45} de-
grees, two fibers crossing in-plane at angles {40, 45, 55, 70,90} degrees, and three
fibers crossing in-plane at angles {30, 40, 60} degrees. Each column of the phantom
contains the original diffusion profile as its first element, followed by ten times this
profile with random noise added. This noise is Rician, meaning that we applied the
transformation

((y.n) = U(y.n) )= ((y.n) = /(U(y.n)cosm +m2)2 + (U(y, n)sinm +m3)2 ),

with 12, m3 ~ N(0, ) normally distributed and 7, uniformly distributed over [0, 27).
To obtain data with SNR 30, comparable with real data, o was chosen to be 0.1.
Using the Funk-Radon transform as described by Descoteaux [81], the simulated
signal was converted to a representation in spherical harmonic coefficients, with
L max = 12. Comparing the £, norm of the SH coefficients, the noise was shown to
lead to a disturbance of approximately 10%.

We also tested our algorithm on real data, analogous to other HARDI clustering
experiments, for example that of Grassi et al. [121]. Human brain diffusion MRI
data were acquired at 3 T, measuring 52 slices of 128x128 2-mm isotropic voxels,
using TE 85 ms, 128 unique gradient directions and b-value 2000 s/mm?.
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Figure 5.8 Results of the analytic example: normalized response of the Sobolev norm (blue, solid
line) and the Ly norm (red, dashed line) for a combination of two single fiber profiles generated
with angle ¢ in between.

The data were registered onto the MNI152 template and the accompanying Ta-
lairach atlas, using an affine transformation within FSL [157]. Subsequently, an ROI
of 30 pixels wide and 39 pixels high, containing the subject’s right thalamus, was
selected on an axial slice. The data were again transformed to spherical harmonic
coefficients (Lmax = 12).

Parameter tuning

The Sobolev norm contains three parameters — o, 7y, t — that needed tuning, in
order to yield the desired behavior. Equivalent to Lindeberg [192], a was set to
1, the value for Gaussian regularization. We chose t to be 0, as our data were
sufficiently smooth. In addition, the L, norm lacks regularization, so setting t = 0
enables a fair comparison. To assess the optimal value for -y, we performed a 1-
nearest-neighbor classification, using the 18 original profiles of the phantom (i.e.,
without noise) as training and the whole phantom as test set, while v was varied
from 0 to 0.8 in steps of 0.01. The performance of the L, norm for this phantom is
71.2%. However, using the Sobolev norm with v > 0.69, the phantom classification
reached a performance of 100%.



5.4. A specialized distance measure: the Sobolev norm
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Figure 5.9 Plots of Sobolev multiplier, SH coefficients spectrum, and the product of these two
terms. (a) Behavior of the Sobolev multiplier 7" for {a = 1,y = 0.69, t = 0}. (b) Normalized
mean spectrum of spherical harmonic coefficients of the phantom diffusion profiles. (c) Product
of multiplier and spectrum.

The behavior of the multiplier m™™* for {& = 1,y = 0.69, ¢t = 0} is plotted in
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Figure 5.9(a). It can be seen that the function exponentially rises towards higher
values of /. However, the spherical harmonic coefficients of the used diffusion profiles
at higher orders are quite small, as can be seen in Figure 5.9(b). This means that the
product of the multiplier and the spectrum is damped well enough to be truncated
at / = 12 and avoid Gibbs artifacts (see Figure 5.9(c)).

K-means clustering

Following the example set by Wiegell et al. [325], we performed k-means clustering.
For both the synthetic phantom and the real brain data, a set of seed points to
serve as initial centroids was determined manually. The seed point placement for
the phantom was straightforward, with a seed point in the middle of each column.

The real brain ROl was masked using the Talairach atlas’ thalamus segmentation,
while the seven seed points for this ROl were chosen to lie in the different nuclei of
the thalamus, as defined by the atlas (see Figure 5.11 (b)). To associate each point
of the data sets with a cluster, we used both the L, norm and the Sobolev norm
with the parameters calculated in Section 5.4.2: {a = 1,7 = 0.69,t = 0}. The
new centroids of each cluster were calculated as the mean of the voxel positions
of all connected points. Since our dissimilarity measures only concerned diffusion
information, we calculated the distance between each data point and the mean
diffusion profile of all points associated with each cluster.

5.4.3 Results

The results of the k-means clustering for the phantom can be seen in Figure 5.10.
The L, norm yields only a 20.7% correct classification (Figure 5.10(a)). Clearly,
the Sobolev norm has performed much better, obtaining 73.7% correctly classified
diffusion profiles, as shown in Figure 5.10(b)).

With respect to the thalamus ROI, in Figure 5.11 we can see that the k-means
clustering succeeds to classify the thalamus nuclei reasonably well. The pulvinar
and ventral posterior medial nucleus are segmented but cannot be separated. The
results of the Sobolev norm seem more stable, i.e., less dependent on the weight
factor between diffusion and spatial information, introduced to the clustering as
defined by Wiegell et al. [325], than the results of the L, norm.



5.5 Discussion

5.5.1 Current findings

In this chapter, we began with visually comparing DT superquadrics and HARDI
Q-ball and DOT glyphs within the rat STN, to see whether HARDI could help to
identify the two STN parts. The results showed that the more heterogeneous HARDI
glyphs indeed provide more information on the neuroanatomy of the subthalamic
nucleus and its surroundings than the oblate traditional DTI glyphs. The HARDI
glyphs in the STN have different characteristics and it seems possible to distinguish
two parts of the STN. These parts could correspond with the two subterritories
of the rat STN, the lateral motor part and the medial associative and limbic parts
[298].

Subsequently, we tried to automate and validate the separation obtained visually
by clustering experiments. We performed k-means and graph cuts clustering on
the right STN ROI, and found that while k-means clustering can segment the IC,
it is unable to separate the STN from its environment. Some weighting vectors
facilitate the graph cuts algorithm to find a cluster in the medial STN, which might
correspond to the cognitive/emotional part of the rat STN. The fact that the motor
part was connected to the background cluster, and the similarity of the medial part
to the nigrostriatal bundle and of the lateral part to the zona incerta in the feasibility
study, could be explained by the fact that the rat STN is not a closed nucleus, i.e.,
dendrites cross the STN borders into surrounding areas.

Finally, we introduced a new dissimilarity measure that can be employed for clus-
tering of HARDI data. Instead of comparing only the amplitudes of the diffusion
profiles, the Sobolev norm also takes into account whether the extrema of the pro-
files coincide. We illustrated the behavior of our norm for some simple synthetic
glyphs and then built a more difficult phantom. The optimal parameters were found
using 1-nearest-neighbor clustering of this phantom, and these parameters were used
for the subsequent k-means clustering. The Sobolev norm consistently performed
better than the L, norm, for both the phantom and the real brain data.

5.5.2 Future work

For the feasibility experiment, we used manual registration of a slice of the Paxinos
atlas [240] with the HARDI data. In the clustering experiment, we aimed to improve
upon this by using the digitized rat brain atlas [145]. However, the matching of that
atlas with the MRI template is done by manual scaling and translation. Therefore,
the identification of the STN ROI in the rat HARDI data is still subject to registration
errors.
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Figure 5.11 K-means clustering results for real brain data. (a) Thalamus ROI shown in red on an
axial slice of the MNI152 template. (b) Talairach atlas labels of thalamus nuclei and seed points for
k-means clustering. (c) to (f) Clustering results using Lo norm. (g) to (j) Clustering results using
Sobolev norm ({a = 1,y = 0.69,t = 0}). The ratio between diffusion and spatial information
was varied, from left to right: (g) ratio 1:1; (h) %-weight factor (as defined in [325]); (i) 1-weight
factor; (j) 5-weight factor.

Regarding the preliminary clustering study, the tuning of the parameters for the clus-
tering should be simplified. The first disadvantage with respect to parameters is the
seed point selection that is necessary for k-means clustering. This algorithm needs
manual or atlas-based points and will find clusters around these points by definition.
Although the graph cuts method does not have this bias, this method requires other
arbitrary parameters, e.g., the number of splitting and merging steps. Another issue
concerning the parameters of this clustering experiment is the incorporation of the



different orders of diffusion information into the distance measure. For k-means,
the results showed that the use of 2"9-order information is important, while the Ot
order can be excluded. Graph cuts showed a medial STN cluster for weightings
including 2"-order information. However, using only this order did not give satis-
factory results. The IC was split, probably because too much spatial information is
embedded in the affinity matrix for the graph cuts clustering.

We developed the Sobolev norm to deal with these weighting issues. During the first
tests using this norm, we set the regularization parameter t to zero, as this gave
the best results for our apparently sufficiently smooth data. This might indicate
that the Sobolev norm comprises too much regularization. We would like to test a
negative value for t and adapt the Sobolev norm and its parameters according to
the results. Furthermore, it would be nice to use the Sobolev norm in combination
with a graph cuts method instead of the easily biased k-means clustering.

Besides improvements on the methodological side, such as using clustering methods
that are not biased by seed point selection, and more intuitive regularization in the
Sobolev norm, a lot of work can be done in the future. Naturally, the Sobolev norm
still has to be tried on the STN ROI in rats and also humans. However, clustering
the diffusion profiles within the STN ROl is one thing, but there is more information
to be gained.

On a larger scale, the many crossings that were found during the explorative study
indicate that an entangled network of fibers can be found around the STN. From
literature, we know that this network includes the internal capsule, the ansa lentic-
ularis, the thalamic fasciculus or H1 Field of Forel, and the lenticular fasciculus or
H2 Field of Forel [136]. Future work could include visualization of these specific
bundles around the STN. This complex network could then be used as a contextual
guide to localize the STN more accurately.

Assessing the projections of the different STN parts, i.e., the connectivity of each
part with other brain areas, could help us to get insight into the level of separation
of the motor part. We could then judge the feasibility to identify this part with
greater certainty and minimize the cognitive and emotional side effects due to DBS.
The fiber tracking needed for these objectives should take into account information
on crossing fibers. The connectivity values for each STN voxel could then be used
as input for clustering, in addition to the information on the diffusion profile within
the voxel. If we would have more data, we could incorporate these into a classifier
and train this to segment the STN and its different parts for new cases.

However, we need proper ground truth for such a training process. Although results
could be compared with the literature on STN neuroanatomy and circuitry, it will
remain a challenge to interpret the results of the STN data and obtain a golden
standard. Histological experiments could provide a solution for this issue.



5.5.3 Conclusion

In conclusion, in this chapter we showed that HARDI data provide us with enough
information to distinguish two parts in the rat STN. The preliminary clustering
experiments showed that it is also possible to automatically segment the IC and the
medial STN part from the surrounding structures. We developed a new distance
measure to deal with the problem of weighing different orders of diffusion information
and showed that this new Sobolev measure outperforms the traditional L, norm for
phantom and real brain diffusion data. Future work should include the application
of the Sobolev norm to the STN region.
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The modern geography of the brain has a deliciously antiquated feel to it - rather like a medieval
map with the known world encircled by terra incognita where monsters roam.

David Bainbridge



This chapter is based on:

“Structural connectivity of the human subthalamic nucleus: identification of the “hyperdirect” path-
way and segregation of motor and non-motor STN parts.” Ellen Brunenberg, Pim Moeskops, Anna
Vilanova, Walter Backes, Mark Janssen, Veerle Visser-Vandewalle, Bart ter Haar Romeny, and
Bram Platel. Submitted.

6.1 Introduction

6.1.1 Background

Based on current literature, the STN is divided into three functionally different
parts [136]. The largest part is the sensorimotor area, which forms the dorsolateral
two-thirds of the STN. The associative area is located in the ventrolateral STN,
while the smallest part, namely the limbic area, lies in the medial tip of the STN
[136, 233, 298]. Although the literature presents the motor, associative, and limbic
cortico-basal-ganglia loops as parallel circuits, it is still not obvious to what extent
these functional circuits are integrated within the STN. The possibility of selective
stimulation of the motor STN, without affecting the associative and limbic circuits,
is strongly influenced by the level of integration of these loops within the STN. To
resolve these issues, we looked into the use of MRI methods providing functional
information for the identification of the different functional STN areas. In the
study described in this chapter, we investigated the structural connectivity of the
STN based on diffusion-weighted MRI. The results of this analysis provide us with
more insight on the level of segregation of the motor and non-motor cortico-basal-
ganglia loops at the level of the STN. Moreover, they support the existence of the
“hyperdirect” pathway (from motor cortex to STN) in humans.

6.1.2 Related work

Structural connectivity analysis of whole-brain networks based on probabilistic track-
ing in diffusion-weighted MRI has been performed for about 8 years [120, 130,
131, 132, 152, 153]. In their 2005 review article [30], Behrens and Johansen-Berg
discussed three methods for parcellation of gray matter nuclei based on diffusion-
weighted MRI data. First, parcellation can be done without any prior knowledge
about projections of the nuclei, using changes in connectivity profiles per voxel [160].
Second, local diffusion profiles can be clustered in order to separate different regions
without the use of contextual information [47, 320, 325]. Third and most common,
prior knowledge about projections (from atlases or functional MRI) can be used
to obtain a parcellation. This method has been practiced for the thalamus [29],



striatum (caudate nucleus and putamen) [182, 183, 184], and the combination of
thalamus, striatum and globus pallidus [89, 201].

As for the STN, to our knowledge, no studies have been published that analyze the
full structural connectivity of the STN. Aron et al. analyzed solely the pathways
between the STN and the inferior frontal cortex and pre-supplementary motor area
[16], while Forstmann et al. considered only the connectivity of the STN with the pre-
supplementary motor area, primary motor cortex, anterior cingulate cortex, inferior
frontal gyrus, and the striatum [106].

6.1.3 Aim

As a complement to the literature described above, a complete description of the
structural connectivity of the STN based on high angular resolution diffusion imaging
(HARDI) is useful. In addition, segmentation of the STN motor part based on
structural connectivity has not been attempted before. The aim of this study was
to assess the structural connectivity of the STN in healthy subjects based on HARDI
data. We hypothesize that the structural connectivity results offer insight into the
level of segregation of the motor area with respect to the limbic and associative
areas and the feasibility of selective stimulation of the STN motor part. In addition,
we assume that the results provide evidence for the existence of the “hyperdirect”
pathway in humans.

To test this, we reconstructed diffusion profiles using Q-ball imaging [312] and
performed probabilistic fiber tracking using the probabilistic index of connectivity
(PICo) algorithm [273]. Connectivity measures for each atlas region of interest
were derived from streamline counts and tested for significance. The results were
compared with existing literature on STN circuitry based on invasive neural tract
tracing or electrophysiology studies. Moreover, we studied the level of segregation
of the motor part of the STN, based on its connectivity. For this purpose, we
analyzed the connectivity to the motor cortical areas per STN voxel and indeed
found different values in medial and lateral STN parts.

6.2 Methods

6.2.1 Data acquisition

A group of 8 healthy adult subjects (4 males, 4 females, age 24—49 years, mean age
= 31.5) was scanned. Written informed consent was obtained from all volunteers
prior to participation, and the study was approved by the Medical Ethics Committee
of Maastricht University Medical Center.



Data acquisition was done on a Philips Achieva 3-T system. Structural images
were scanned using two protocols, namely a three-dimensional inversion recovery
(IR) T1-weighted sequence including 60 coronal slices and a three-dimensional turbo
spin-echo (TSE) T,-weighted sequence of 50 coronal slices. The latter involved
only part of the brain, situated around the midbrain region of interest, parallel to
the brain stem. High angular resolution diffusion imaging (HARDI) was performed
using a diffusion-weighted EPI protocol, acquiring a series of 128 diffusion-weighted
images with different gradient directions and b-value 2000 s/mm?, together with an
unweighted by image. Detailed scanning parameters can be found in Table 6.1.

Table 6.1 Parameters of MRI sequences.

Parameter Inversion recovery Turbo spin-echo Diffusion-weighted
TE (ms) 15 110 85

TR (ms) 5441 2500 6370

EPI factor - - 55

Direction coronal coronal axial

Number of slices 60 50 52

Slice thickness (mm) 3.0 1.0 2.0

Number of voxels 640x640 256x256 128x128

Voxel size (mm) 0.359x0.359 1.0x1.0 2.0x2.0

Scan duration 7 min 26 s 7 min 43 s 14 min 39 s

6.2.2 Data preprocessing

A flowchart representing the data analysis pipeline used for this study is shown in
Figure 6.1. To enable parcellation of the brain into regions of interest for the con-
nectivity calculation, all data were registered to match the (skull-stripped) MNI152
template and the accompanying Talairach atlas labels [293] (at 2 mm resolution),
as provided by FSL [115]. The HARDI images were transformed to match this atlas
with the T;-weighted IR data as intermediate step.

The registration pipeline can be seen in Figure 6.2. The process involved the affine
registration of the MNI152 template to the T;-weighted IR images by FSL's FLIRT
[157] as a first step, employing an affine transformation with 9 degrees of freedom
and mutual information as the cost function. This affine transformation was used
as the starting point for a subsequent nonlinear transformation using FSL's FNIRT
[10]. Second, intersubject matching of the IR data to the unweighted (by) HARDI
image was done using affine transformation in the same way as described above.
Third, FSL's eddy current correction (involving affine registration) was applied to
the remaining 128 diffusion-weighted volumes, in order to correct for distortions and
head motion. Finally, all transformations were sequentially applied to the MNI152



6.2. Methods

Figure 6.1 Flowchart of data analysis steps for structural connectivity.

template and the accompanying Talairach atlas labels, interpolating the latter in a
nearest neighbor fashion.

We chose to apply the transformations to the atlas images to avoid deformation
of the HARDI data and the involved correction of gradient direction. After the
analysis, scalar output maps of each subject can be inversely transformed to the
MNI152 space in order to enable group analysis.




Figure 6.3 STN centers of mass in MNI152 atlas space. (a) Projections of right STN ROls in
sagittal plane. (b) Projections of right and left STN ROlIs in coronal plane. (c) Projections of left
STN ROlIs in sagittal plane. (d) Projections of right and left STN ROls in axial plane. Legend:
circles: centers of mass of atlas-based STN ROlIs; stars: centers of mass of manually segmented
STNs.

6.2.3 Identification of the subthalamic nucleus ROIs

To identify the STN ROlIs in the MRI data, two methods were used. First, the
Talairach labels accompanying the MNI152 template were used to mask the right and
left STN. In addition, the STNs that were visible on the structural turbo spin-echo
images were segmented by an experienced neurosurgeon (Claudio Pollo), using ITK-
SNAP, a software application that facilitates 3D segmentation of medical images
[336]. This manual procedure led to 3 right STNs and 6 left STNs, segmented in 6
subjects.

To compare the two segmentation methods, the centers of mass of the labeled STNs
were projected onto planes in the MNI152 atlas space, as can be seen in Figure 6.3.
From this figure, it is apparent that the manually segmented STNs as seen on the
structural images differ from the atlas-based STNs. The directly visualized STNs
seem to lie more posterior and more ventral than the atlas-based structures. While



papers that compare direct and atlas-based targeting of the STN do not agree on
the difference in anteroposterior and mediolateral directions [17, 75, 255], they do
concur on the fact that the MRI-based STN seems to lie more ventral than the
atlas-based STN [17, 75], as can be seen in Figure 6.3 as well. The discrepancy
between atlas-based and MRI-based STN centers might be caused by the fact that
the Talairach atlas is based on only one brain specimen [255].

In the near future, the use of 7-T MRI will facilitate direct identification of the STN
[1, 61, 62]. For this study, however, we used the atlas-based segmentation because
it is available for all volunteers.

6.2.4 Probabilistic tractography

To enable analysis of the connectivity between different regions of interest from the
Talairach atlas, fibers estimating the trajectories of the white matter axonal bundles
were calculated using Camino [66]. We performed fiber tracking using Camino’s
probabilistic tractography method, a refined version [273] of the streamline-based
probabilistic index of connectivity (PICo) algorithm [67, 235].

As a first step, the diffusion profile in each voxel is reconstructed from the prepro-
cessed diffusion-weighted data. A threshold on the by images ensures that profiles
are only generated within the brain. Subsequently, the directions of principal diffu-
sion are detected as the peaks in the calculated orientation distribution functions
(ODFs). The shape of the peaks of the ODFs is used to estimate a probability
distribution function that describes the uncertainty of the principal diffusion direc-
tions. The actual probabilistic tracking procedure starts multiple streamlines from
the center of each seed voxel. Each of these streamlines can follow a unique trajec-
tory because the principal diffusion directions are perturbed by the randomly sampled
uncertainties. The repeated tracking yields maps that estimate the structural con-
nectivity of the selected seed voxel to other regions of interest in the brain, by
means of the number of fibers passing through or ending in a region. If the seed
region contains 16 voxels, the output of the tracking will thus consist of 16 distinct
connectivity maps.

In this study, we employed Q-ball imaging [309] based on 6%"-order spherical har-
monics for the reconstruction of the orientation distribution functions. As a seed
region, we used the STN mask from the Talairach atlas, matched to the subject’s
diffusion-weighted data. Concerning the tracking parameters, we generated 5000
different streamlines per seed voxel. These were terminated if curvature over a sin-
gle voxel exceeded 80 degrees, while no threshold was set on anisotropy values and
fiber length. The output of the tracking algorithm was saved as both raw streamline
data in VTK format, and connection probability maps in Analyze format.



6.2.5 Connectivity measures

One of the aims of this study was to determine the connectivity between the STN
and other gray matter regions in the brain (called target ROls in the rest of this
section). We calculated the connectivity based on the output of the fiber tracking
in Camino, which normally consists of as many probability maps as there were seed
voxels within the STN. Each of these probability maps contains the amount of
streamlines passing through every voxel in the brain. This amount is expressed as
a ratio of the total amount of streamlines starting from the given seed voxel in
the STN. A value of 0.5 would therefore mean that 2500 of the 5000 streamlines
starting in the STN seed voxel pass through the given brain voxel.

However, this could lead to multiple counts of a single streamline in a target ROI that
consists of more than one voxel. For example, a target ROl where a streamline ends
in a voxel on the boundary would then be seen as “less connected” than a target ROI
where the streamline ends in the middle of the region. Therefore, we also generated
streamline data as output of the fiber tracking algorithm. For each STN seed voxel,
a set of 5000 streamlines was tracked. We summed these streamline sets for all
distinct seed voxels of each subject in one volume.

To calculate the structural connectivity, we followed each streamline in the total
set from beginning to end, meanwhile checking the Talairach atlas labels of the
voxels that were traversed by the streamline. We considered all voxels with the
same Talairach atlas labels to belong to one target ROl and ensured that each of
these regions was counted only once per streamline.

Thus, for every target ROI, we obtained Niarget roI, the total number of streamlines
passing through or ending in this region. From this number, we calculated two
connectivity measures. The first measure C; was defined as:

C1(STN, target ROI) = o—A—— Niarget ROI-

VSTN Vtarget ROI

The number of streamlines Niarget ROl IS Normalized by Vetn and Varget RoI- VoTN
is the size in voxels of the STN region derived from the registered atlas (i.e., the
number of seed voxels). Vst varied between subjects, from 12 to 22 for the left
STN (mean size = 16 voxels), and from 13 to 18 for the right STN (mean size =
15 voxels). Viarget ROI represents the size in voxels of the target region of interest.

The second measure C, is a variation on C;. As streamlines are less likely to reach
a target ROI that is far away from the seed region than an ROI that is nearby, we
tried to avoid a bias of the tracking algorithm with respect to the streamline length,
by adding a term representing this property:



6.2. Methods
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Figure 6.4 lllustration of the streamline counting involved in the calculation of the connectivity
measures Cy1, Cp, and Cs. (a) Streamline counting per region of interest for C; and Ca. (b)
Streamline counting per voxel for Cs.
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with L; the distance along the /™" streamline between the STN and the first voxel

of the target region of interest. The calculation of C; and C, is illustrated in
Figure 6.4(a).

The connectivity measures C; and C, were calculated for the target regions of inter-
est of all 8 subjects. To test the statistical significance over this group of subjects,
we performed a one-sided Student t-test (test if C; > 0) with significance level
a = 0.05. The results of the two defined connectivity measures will be compared
in Section 6.3.

We also wanted to visualize the structural connectivity of the STN as a total proba-
bility map instead of streamlines. For this purpose, we needed another connectivity
measure, as we could not use the streamline information. Instead, we converted
the individual probability maps for each seed voxel into streamline counts (again, a
probability of 0.5 in a selected voxel means that 2500 of the 5000 streamlines leaving
the seed voxel pass through the given voxel) and cumulated these streamline count
maps for all STN seed voxels and all different subjects (Nsubjects) after registration
with the MNI152 template.

As mentioned above, this procedure did not provide us with individual streamline
information, but with a total streamline count per voxel Nyoxe. Therefore, we defined
a third connectivity measure Cs (illustrated in Figure 6.4(b)):

C5(STN, target ROI) = — L Y- Veseropy oy

nsubjectsvSTN Vtarget ROI j=1

C3 already incorporates all subjects, hence no t-test was performed for this connec-
tivity measure.

6.2.6 Segregation of motor and non-motor regions of the STN

To examine the possibility to distinguish the STN motor part from the associative
and limbic territories, we looked at the motor connectivity for each STN voxel
separately. In order to evaluate streamlines per target region and take into account
streamline length, C, was chosen as connectivity measure. We assessed C, between
the STN and four different motor cortical regions of interest: the primary motor
cortex (Brodmann area 4), the pre- and supplementary motor areas (Brodmann area
6), the precentral gyrus, and these three regions together. After registration to the
MNI152 template (using linear interpolation), the resulting maps were cumulated
over all subjects and masked by the atlas STN.



6.3 Results

6.3.1 Probabilistic tractography

After probabilistic tracking, the resulting streamlines were visualized in ParaView
[3], an open-source data analysis and visualization application, which allows for
interactive data exploration in 3D. For an example, see Figure 6.5.

Figure 6.6 shows a comparison between fibers tracked from an atlas-based STN ROI
and fibers tracked from a manually segmented STN ROI. Because the fibers overlap
quite extensively, and manual segmentations were only available for a limited number
of volunteers, we proceeded the structural connectivity analysis with just the atlas-
based STN ROIs. The normalized total probability map is presented in Figure 6.7.
Both the fiber visualization and the probability map indicated connections of the
right STN to motor regions of the cortex, to the temporal lobe, and the anterior
cingulate cortex, amongst others.

In addition to the visualization of the results, we also assessed whether the stream-
lines that were found to be going from the STN to motor regions of the cortex
supported the existence of the so-called "hyperdirect” pathway that directly con-
nects the motor cortex to the STN. For this purpose, we analyzed all streamlines
ending in the premotor and supplementary motor cortex, the primary motor cortex
and the precentral gyrus. We calculated the percentage of the streamlines that do
not pass through the thalamus, caudate, putamen or globus pallidus and thus can be
said to form a monosynaptic connection between the motor cortex and the STN. Of
the 16 analyzed STNs, 10 exhibited direct streamlines to the motor cortical areas.
For 3 STNs, the results showed streamlines that seemed to be collaterals of the
internal capsule, as expected from literature on primate circuits [136, 233]. These
streamlines are shown for subject 1 in Figure 6.8. A non-existing medial pathway
including the corpus callosum was found in 4 cases, while both the correct lateral
and the incorrect medial trajectories were found in 3 cases.

6.3.2 STN connectivity

The significant results of the calculated connectivity based on streamline tracking in
different subjects are shown in Table 6.2 for C; (without normalization for length)
and in Table 6.3 for C, (with normalization for streamline length). In these tables,
only the most significantly connected regions (p values < 0.010) are shown, the full
data (also for the left STN) can be found in Tables A.1 to A.4 of Appendix A.
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Figure 6.5 Visualizations of probabilistic fiber tracking results. (a) Sagittal view from the left.
(b) Coronal view from the front. (c) Oblique view. The images show 500 streamlines per seed
voxel in the right STN of one subject, color-coded for streamline direction (red = left-right, green
= anterior-posterior, blue = inferior-superior). The right STN seed is represented by the white
surface, indicated by the white arrow. Abbreviations: acc = anterior cingulate cortex, cc = corpus
callosum, ifg = inferior frontal gyrus, phg = parahippocampal gyrus, sfg = superior frontal gyrus,
sma = supplementary motor area, stg = superior temporal gyrus.

Figure 6.6 Comparison of fiber tracking results for the atlas-based and manual right STN ROI
of one volunteer. (a) Fibers tracked from atlas-based right STN ROI. (b) Fibers tracked from
manually segmented right STN ROI. (c) Both bundles overlaid (red: atlas-based STN ROI, yellow:
manual STN ROI). All images show sagittal views from the left.



6.3. Results

Figure 6.7 Total probability map of right STN connectivity in MNI152 space, using color coding
from red (low streamline count, ~ 5) to yellow (high streamline count, ~ 6000). (a) Axial view.
(b) Sagittal view. (c) Coronal view. (d) Volume rendering in 3D. In the 2D images, the crosshairs
indicate the plane positions. Abbreviations: acc = anterior cingulate cortex, cc = corpus callosum,
ins = insular cortex, M1 = precentral gyrus/primary motor cortex, phg = parahippocampal gyrus,
put = putamen, sfg = superior frontal gyrus, sma = supplementary motor area.

Tables 6.2 and 6.3 indicate that the right STN exhibits significant connections with
gray matter nuclei such as the thalamus, substantia nigra, caudate nucleus, red
nucleus, putamen, and globus pallidus. Furthermore, projections to cortical areas
with different functions were found, for example to the pre- and supplementary
motor area (motor function), and the medial frontal and anterior cingulate cortex
(limbic). The difference between the two connectivity measures C; and C, (without



and with normalization for streamline length) is small, as most connected structures
were found in both tables. Deviations occurred mostly in structures that lie next
to regions of interest that were detected in both cases. For instance, the medial
globus pallidus (GPi) can be found in Table 6.3, while the neighboring lateral globus
pallidus (GPe) is present in both Table 6.2 and Table 6.3.

We also calculated the connectivity based on the total probability map in MNI152
space (as shown in Figure 6.7), using connectivity measure C3. The results are
presented in brief in Table 6.4, arbitrarily thresholded at C3 > 1.00, while the
complete data (also for left STN) can again be found in Appendix A (Tables A.5
and A.6). Many regions that were found using C; and C, were again reported here,
such as the gray matter nuclei (thalamus, substantia nigra, red nucleus, caudate
nucleus, globus pallidus) and cortical areas like the pre- and supplementary motor
area, the cingulate cortex, and the medial frontal gyrus. However, this procedure
also resulted in connected regions that were not retrieved earlier, such as the primary
motor cortex/precentral gyrus (motor function), and the amygdala (limbic).

6.3.3 Segregation of motor and non-motor regions of the STN

The normalized maps of Co(STN, motor cortical areas), cumulated over all subjects,
are visualized in Figure 6.9, for both the left and right STN. The images show high
connectivity to the motor cortical areas in the lateral STN regions, especially for
the total motor cortical areas (Figure 6.9(a)) and Brodmann area 6 (Figure 6.9(c)),
while low connectivity is found medially.

6.4 Discussion

6.4.1 Current findings

In this chapter, we aimed to determine the full structural connectivity of the STN
based on streamline counts derived from probabilistic HARDI tractography. Stream-
line visualizations and probability maps revealed direct (“hyperdirect” pathway) and
indirect connections to motor, cingulate, and temporal cortical areas. We tested
the connectivity measures derived from streamline counts for significance over the
group of 8 subjects, which yielded a more specific description of connected areas.
These areas could be classified as belonging to a few major groups, such as the gray
matter nuclei, motor cortical areas (premotor and supplementary motor area), and
limbic cortex (medial frontal and cingulate cortex). The connectivity based on the
total probability map showed the same trends, while adding the primary motor cor-
tex to the motor cortical group, and the amygdala to the limbic system. Regarding



the subdivision of the STN, based on connectivity between the distinct STN voxels
and the motor cortical areas, we found high connectivity in the lateral STN and low
connectivity in the medial STN parts.

In the following sections, the correspondence of these findings with the existing liter-
ature on STN circuitry will be elaborated on, as well as the consequent implications
on the clinical practice of DBS procedures and possible future work.

6.4.2 Correspondence of findings with existing literature
The “hyperdirect” pathway

The first evidence of the presence of the so-called “hyperdirect” pathway in the non-
human primate was already provided in 1940 [221], and subsequent tracer studies
extensively described the cortico-subthalamic projections in the non-human primate
[57, 140, 169, 216, 218]. Later, an electrophysiological study by Nambu et al. [217]
confirmed the existence of “hyperdirect” pathway in non-human primates. To our
knowledge, our study is the first study which gives an indication for the existence of
the "hyperdirect” pathway in humans. In 7 out of 10 STNs that exhibited a direct
connection to the motor cortical areas, the "hyperdirect” pathway could be seen as a
small bundle traveling along the internal capsule, a route that corresponds with the
existing primate literature [136, 233]. With respect to the medial trajectory found
in some volunteers, the probabilistic fiber tracking method seems to be inclined to
follow anisotropic diffusion profiles from the fornix to the corpus callosum, via the
dural ligaments.

STN connectivity with motor areas

According to tracer studies in non-human primates, within the motor circuit, the
STN should exhibit connections with the following cortical areas: the primary motor
cortex, premotor and supplementary motor cortex, and the somatosensory cortex
[140, 216, 218, 232]. With respect to the deep brain nuclei, we expected to find
strong connectivity with the striatum, the central and ventrolateral part of the
lateral globus pallidus (GPe), the ventrolateral part of the medial globus pallidus
(GPi), and the thalamus [57, 158, 233, 262, 274]. In our results, considering the
motor cortical areas, the pre- and supplementary motor area is most significant,
though the primary motor cortex and somatosensory areas do appear in the C3
results and also significantly in the C; and C, tables (also as pre- and postcentral
gyrus, respectively). All expected gray matter nuclei present in the atlas are reported
as highly significantly connected to the STN.



That the premotor and supplementary motor area is more significantly connected to
the STN than the primary motor cortex might seem odd, but this finding is supported
by electrophysiological studies on frequency-specific functional connectivity [172,
194]. These studies also support the rather medial location on the motor cortex
that we found to be connected [144, 194]. Furthermore, we discovered significant
connectivity measures for the lingual gyrus in the occipital lobe. This gyrus was not
mentioned in the reviewed literature, however, more recent imaging studies using
PET and fMRI considered the lingual gyrus to be involved in movement velocity,
together with the basal ganglia [313, 329].

Figure 6.8 Streamlines from the right and left STN in subject 1, ending in the motor cortex,
that do not pass through thalamus, caudate, putamen or globus pallidus. These streamlines are
therefore an indication for the existence of the “hyperdirect” pathway. (a) Coronal view. (b)
Sagittal view on streamlines from the right STN. (c) Streamline rendering in 3D, showing an axial
plane of the unweighted diffusion image.
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Figure 6.9 Structural connectivity to the motor cortical areas per STN voxel, cumulated over
all subjects, in MNI152 atlas space. Each sphere represents one voxel in atlas space (voxel size
2x2x2 mm) and is color-coded by the C, connectivity: dark red means low connectivity, while yellow
means high connectivity.



STN connectivity with associative and limbic areas

Concerning the associative loop, we expected the STN to be connected to the
orbitofrontal and dorsolateral prefrontal cortex, as well as the CM-Pf nucleus of
the thalamus, the nucleus accumbens, the ventral part of the putamen and caudate
nucleus, the ventral pallidum, the ventral tegmental area, and the medial part of the
substantia nigra reticulata [5, 6, 7, 57, 140, 215, 233]. As reported above, the gray
matter nuclei present in the atlas were all found to be structurally connected to the
STN. With regard to the cortical areas, we found the superior temporal gyrus to be
highly significant. Other connected associative cortical areas include the temporal
fusiform, inferior temporal, and middle temporal gyri, as well as the orbitofrontal
cortex.

For the limbic circuit, the literature reported on connections with the (para)limbic
cortical areas such as the anterior cingulate and the medial orbitofrontal cortex [6].
Subcortically, the limbic loop comprises the nucleus accumbens, ventral pallidum,
ventral tegmental area, substantia nigra pars reticulata, globus pallidus, thalamus,
hippocampus and amygdala [6, 129]. The most significantly connected regions we
found included the medial frontal gyrus, the cingulate cortex, and the amygdala.
Other expected limbic areas such as the substantia nigra, globus pallidus, thalamus
and hippocampus, were also present in our resulting tables.

Segregation of motor and non-motor regions of the STN

According to the review articles on STN anatomy and function [136, 298], the tri-
partite functional subdivision of the STN is organized as follows: the medial tip of
the nucleus is devoted to the limbic circuit, the associative part is situated ventro-
laterally, and the motor subterritory is located at the dorsolateral side of the STN.
The subdivision results based on our experiments with connectivity to the motor
cortical areas indeed show a mediolateral gradient, yielding the highest connectivity
at lateral positions, where we expect the STN motor part, while connectivity in the
supposed medial tip is lowest. A clear segregation of motor and non-motor regions
was not found. Therefore, our data support the idea of open circuits, in which motor
and non-motor pathways are partially integrated within the STN.

6.4.3 Clinical perspective

The correspondence with the existing literature on anatomical tracer and electro-
physiological studies validates the performed structural connectivity measurements
based on diffusion-weighted MRI. Thus, our study indicates that it might be possible
to assess the STN connectivity in a noninvasive way. The voxel-wise connectivity



assessment of the motor cortical areas shows that the lateral part of the STN ex-
hibits the highest connectivity. This again emphasizes that the therapeutic target
for DBS is located in the dorsolateral STN part. To compensate for interindividual
variations, diffusion-weighted MRI may assist in optimization of the patient-specific
target.

In addition, our results support the existence of the “hyperdirect” pathway, running
between the motor cortical areas and the STN. The presence of the "hyperdirect”
pathway in humans validates current models on cortico-basal ganglia circuits. This
pathway could be used in electrophysiological studies to target the STN motor part
during DBS procedures, or might be subject to research as a new treatment target
for stimulation.

6.4.4 Future work

The pipeline that we used for the calculation of structural connectivity can still be
improved in multiple ways. First of all, for a clinically feasible MRI measurement,
we would need to reduce the acquisition time for the diffusion-weighted data. It
might be that 60 (or less) gradient directions are sufficient, thereby halving the
scan duration. On the other hand, if the spatial resolution could be increased,
we could probably improve the separation of the STN motor and non-motor parts.
Second, inaccuracies are inherent to image acquisition (i.e., EPI deformation, spatial
resolution) and registration. This influences the precision of for example the STN
segmentation and thus also the results of the experiment on the level of segregation
of the different STN parts.

The atlas-based STN segmentation which serves as the seed region for the proba-
bilistic tracking is sensitive to registration inaccuracies. We could probably perform a
better image registration if we were to acquire an isotropic structural (7;-weighted)
image of the brain, besides the currently used data with limited field-of-view or thick
slices. In addition, we could question the inherent precision of this ROI for the left
STN, as it contains two parts that only have a corner point of their voxels in com-
mon, instead of an edge or face. Although we showed that fibers based on manual
and atlas-based STN ROlIs overlap extensively, the use of the atlas-based STN could
be avoided by using 7-T MRI for the localization of the STN [1, 61, 62]. The evi-
dence for the "hyperdirect” pathway is also susceptible to registration inaccuracies,
via the atlas segmentations of gray matter nuclei that should be bypassed by this
pathway.

Furthermore, validation of diffusion-weighted data is a well-known issue. We can
only compare the found projections with the results of electrophysiological stud-
ies in humans, or tract tracing experiments in animals, but a ground truth for all
white matter tracts (also smaller bundles) in humans is not readily available. The



structural connectivity results, based on a probabilistic fiber tracking method that
inherently finds all possible pathways, could be corrected for non-existing anatomical
connections using such a ground truth. We did not perform such a correction in
this study and for instance found multiple contralateral connections of the STN.
However, according to literature on STN circuitry [232, 233], no direct contralat-
eral cortico-subthalamic pathways are to be expected. Although weaker than their
ipsilateral equivalents, indirect connections to the contralateral side do exist, via the
cortex, globus pallidus, substantia nigra, and brain stem. In addition, probabilistic
fiber tracking in some volunteers showed a non-existing medial trajectory for the
"hyperdirect” pathway from motor cortical areas to STN.

Future work could include a comparison of the structural connectivity found in this
study with STN functional connectivity based on resting state functional MRI data
[50]. In addition, all available information per voxel of the STN (structural connec-
tivity, functional connectivity, local diffusion information) could be joined to obtain
a more robust conclusion on the level of segregation of the motor, limbic, and as-
sociative regions of the STN. To this end, the connectivity of each STN voxel to
the different functional parts of the globus pallidus and striatum could also be taken
into account [22]. Another way to achieve more robust results would involve the
inclusion of more subjects.

6.4.5 Conclusions

By calculating the structural connectivity of the STN based on HARDI data, we were
able to confirm the STN's connections to motor, associative, and limbic areas that
have been found before by means of neuronal tract tracing and electrophysiological
studies. Furthermore, we produced evidence for the existence of the “hyperdirect”
pathway from motor cortex to STN in humans. We also reported that the con-
nectivity of distinct STN voxels to the motor cortical areas increased when going
from the medial to the lateral STN, though a clear segregation was not seen. This
gradient in connectivity might indicate that the STN motor part and therefore the
therapeutic target for STN DBS is located dorsolaterally. While improvements could
be made on the amount of data and the registration and validation steps, this work
is a promising step towards the use of diffusion-weighted MRI for the segmentation
of STN functional parts and subsequent DBS planning.
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Table 6.2 Regions significantly connected to the right STN after a t-test on Ci, using nsypjects
= 8. Here only the most important regions are shown, thresholded at p < 0.010. Full information
(also on left STN) is presented in Tables A.1 and A.2 of Appendix A.

Hemisphere Region of interest p value
Subcortical

Right Thalamus 0.000
Right Thalamus, Ventral Posterior Lateral Nucleus 0.002
Right Thalamus, Ventral Posterior Medial Nucleus 0.004
Right Thalamus, Ventral Anterior Nucleus 0.005
Right Thalamus, Ventral Lateral Nucleus 0.007
Right Thalamus, Lateral Posterior Nucleus 0.007
Right Caudate 0.003
Right Putamen 0.004
Right Lateral Globus Pallidus (GPe) 0.007
Right Red Nucleus 0.004
Right Substantia Nigra 0.001
Right Claustrum 0.007
Right Hypothalamus 0.006
Right Brainstem, Midbrain 0.000
Frontal

Right Pre- & Supplementary Motor Area 0.006
Right Medial Frontal Gyrus 0.010
Right Cingulate Gyrus 0.000
Left Anterior Cingulate, Brodmann area 24 (limbic lobe) 0.008
Right Anterior Cingulate, Brodmann area 25 (limbic lobe) 0.010
Temporal

Right Superior Temporal Gyrus 0.007
Occipital

Right Lingual Gyrus, Brodmann area 18 0.009




Table 6.3 Regions significantly connected to the right STN after a t-test on Ca, using Ngypjects
= 8. Here only the most important regions are shown, thresholded at p < 0.010. Full information
(also on left STN) is presented in Table A.3 and A.4 of Appendix A.

Hemisphere Region of interest p value
Subcortical

Right Thalamus 0.000
Right Thalamus, Ventral Posterior Lateral Nucleus 0.001
Right Thalamus, Ventral Anterior Nucleus 0.003
Right Thalamus, Medial Dorsal Nucleus 0.004
Right Thalamus, Ventral Posterior Medial Nucleus 0.004
Right Thalamus, Lateral Posterior Nucleus 0.008
Right Thalamus, Ventral Lateral Nucleus 0.009
Right Caudate 0.003
Right Putamen 0.004
Right Lateral Globus Pallidus (GPe) 0.010
Right Medial Globus Pallidus (GPi) 0.009
Right Red Nucleus 0.003
Right Substantia Nigra 0.001
Right Claustrum 0.007
Right Hypothalamus 0.004
Right Brainstem, Midbrain 0.000
Frontal

Right Pre- & Supplementary Motor Area 0.006
Right Medial Frontal Gyrus 0.010
Right Cingulate Gyrus 0.001
Left Anterior Cingulate, Brodmann area 24 (limbic lobe) 0.010
Left Limbic Lobe 0.010
Temporal

Right Superior Temporal Gyrus 0.005
Occipital

Right Lingual Gyrus, Brodmann area 18 0.008
Cerebellar

Cerebellum 0.007




Table 6.4 Regions connected to the right STN derived from the total probability map (C3). Here
only the most important regions are shown, thresholded at C3 > 1.00. Full information (also on
left STN) is presented in Tables A.5 and A.6 of Appendix A.

Hemisphere Region of interest Connectivity
Subcortical
Right Thalamus 42.09
Right Thalamus, Ventral Posterior Lateral Nucleus 246.77
Right Thalamus, Ventral Posterior Medial Nucleus 161.61
Right Thalamus, Lateral Posterior Nucleus 130.62
Right Thalamus, Ventral Lateral Nucleus 63.19
Right Thalamus, Mammillary Body 61.56
Right Thalamus, Pulvinar 14.44
Right Thalamus, Medial Geniculum Body 4.40
Right Caudate 2.82
Right Medial Globus Pallidus (GPi) 1.57
Right Red Nucleus 68.39
Right Substantia Nigra 76.47
Right Amygdala 1.53
Right Mammillary Body 58.67
Left Mammillary Body 1.87
Right Hypothalamus 103.55
Hypothalamus 1.48
Right Midbrain 7.14
Right Brainstem, Midbrain 23.23
Right Brainstem, Midbrain, Medial Geniculum Body 23.89
Frontal
Right Precentral Gyrus 1.09
Right Primary Motor Cortex 5.87
Right Pre- & Supplementary Motor Area 1.47
Right Medial Frontal Gyrus 1.79
Right Cingulate Gyrus 2.83
Right Anterior Cingulate (limbic lobe) 1.63
Right Anterior Cingulate, Brodmann area 24 (limbic lobe) 26.86
Left Anterior Cingulate, Brodmann area 25 (limbic lobe) 1.62
Right Subcallosal Gyrus 9.41
Left Subcallosal Gyrus 1.20
Right Subcallosal Gyrus (limbic lobe) 2.50
Right Subcallosal Gyrus, Brodmann area 34 3.31

Right Subcallosal Gyrus, Brodmann area 34 (limbic lobe) 3.34







Functional conneativity

Humor is by far the most significant activity of the human brain.
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This chapter is based on:

“Resting state functional connectivity of the motor and non-motor areas of the human subthalamic
nucleus.” Ellen Brunenberg, Walter Backes, Claudio Pollo, Leila Cammoun, Mark Janssen, Veerle
Visser-Vandewalle, Bart ter Haar Romeny, Jean-Philippe Thiran, and Bram Platel. Submitted.

7.1 Introduction

7.1.1 Background

As we saw before, in topical literature, the STN has been divided into three func-
tionally different parts, which were distinguished by their afferent and efferent con-
nections in the non-human primate. The largest part is the sensorimotor area,
which encompasses the dorsolateral two-thirds of the STN. The associative area is
located ventrolaterally, while the limbic area is positioned at the medial tip of the
STN [136, 233, 298]. To what extent these functional areas overlap within the
STN is not clear yet. The level of segregation determines the possibility of selective
stimulation of the motor STN, without affecting the associative and limbic circuits.
Resting state BOLD functional MRI enables us to examine correlations in resting
state activity between the STN and other brain regions. The resulting functional
information can be used to investigate the spatial organization of the different func-
tional STN parts and the consequent possibilities for specific identification of the
STN.

7.1.2 Related work

A number of studies have already applied fMRI-based functional connectivity anal-
ysis to basal ganglia nuclei. Some have investigated the motor network in healthy
subjects [257] or patients with PD [332], without looking at the STN specifically.
Others have examined the resting state functional connectivity of specific nuclei
such as the red nucleus [220] or the striatum [85]. Barnes et al. [22] identified
subdivisions in the caudate and putamen based on the functional connectivity data.

To our knowledge, the only resting state functional connectivity study concentrating
on the STN was reported by Baudrexel et al. [26, 27]. However, they reported only
on alterations in the functional connectivity pattern caused by PD and did not discuss
the "normative” functional connectivity of the STN with the rest of the brain. Other
studies concerning STN connectivity make use of more invasive techniques, such as
PET [179, 242, 287] and electrophysiological recordings in humans [8, 287, 326]
and in the mouse brain [200]. The functional connectivity of the STN and the
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implications for the subdivision of the STN have not yet been investigated in a
noninvasive way.

7.1.3 Aim

Accordingly, the aim of the present study was to investigate the functional connec-
tivity of the STN with cortical and subcortical structures in healthy subjects based
on resting state BOLD fMRI. We hypothesized that the functional connectivity in-
formation clarifies the level of segregation of the motor area from the limbic and
associative areas of the STN. This level of segregation indicates to what extent
selective stimulation of the STN motor part is feasible.

For this purpose, we conducted a resting state BOLD fMRI experiment on healthy
volunteers and postprocessed the data using linear regression analysis. This approach
calculates the correspondence of the resting state fMRI signal in an arbitrary voxel
of the brain with the signal in the STN ROlIs (based on both manual and atlas-
based segmentations) and other explanatory variables such as the motion correction
parameters and the global mean signal.

structural acquisition. MNI template/Talairach atlas
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7.2 Methods

7.2.1 Data acquisition

A group of 10 healthy adult subjects (4 males, 6 females, age 24—35 years, mean
age = 27.5 years) was recruited from the Eindhoven University of Technology and
Maastricht University Medical Center. Written informed consent was obtained from
all subjects prior to participation, and the study was approved by the Medical Ethics
Committee of Maastricht University Medical Center.

Figure 7.2 STN centers of mass in MNI152 atlas space. Top left: right STN in sagittal plane.
Bottom left: left STN in sagittal plane. Top right: right and left STN in coronal plane. Bottom
right: right and left STN in axial plane. Color legend: yellow dots: average coordinates of atlas-
based STNs; red, green, cyan, and magenta dots: average coordinates of manually segmented
STNs (different color for each subject).



MRI data were acquired on a Philips Achieva 3-T system. Structural images were
obtained using a multi-slice turbo spin-echo (TSE) T,-weighted sequence (TE =
110 ms, TR = 2.5 s, 50 1I-mm thick coronal slices with 256x256 matrix, pixel size
1x1 mm).

Functional imaging was performed using a blood-oxygen-level-dependent (BOLD)
contrast sensitive gradient-echo echo-planar imaging protocol (TE = 35 ms, TR =
2.2 s, flip angle = 90°, 25 3-mm thick coronal slices with 128x128 matrix, pixel
size 1.563x1.563 mm). One dynamic run of 200 time points was acquired. Both
acquisitions covered only part of the brain (coronal FOV of 50 mm for structural
and 75 mm for functional imaging), situated around the midbrain region of interest,
parallel to the brain stem. The total acquisition time for the two scans was about
15 minutes.

Figure 7.3 Significant clusters for the right STN ROI, shown on three coronal slices of the
MNI152 template. (a) 3 manually segmented right STN ROIs. (b) 3 atlas-based right STN ROls
(same volunteers). (c) All 10 atlas-based right STN ROls. The yellow lines on the axial image on
the left-hand side show the position of the coronal slices. Red clusters exhibit positive regression
coefficients, while blue clusters yield negative coefficients.



7.2.2 Data preprocessing

A flowchart of all the data analysis steps performed for this study is represented in
Figure 7.1. First, the functional data were preprocessed to reduce image artifacts
and signal variance due to factors other than neuronal activation. Preprocessing
steps included (i) correction for head movement using MCFLIRT [156] in FSL [115]
, (ii) brain extraction with FSL's BET [278], (iii) removal of the first 5 time points to
correct for T 1-saturation effects, (iv) slice timing correction, (v) spatial smoothing
(3 mm FWHM) (both in SPM5), (vi) linear detrending, (vii) temporal bandpass
filtering (0.01 Hz<f<0.1Hz) (both using the REST toolbox for MATLAB [333]).

The structural images were registered to the functional image data using FSL's
FLIRT [157], employing a rigid body transformation (6 degrees of freedom). The
data from different subjects were spatially normalized by means of registration with
the MNI152 template [64] and the accompanying Talairach atlas labels [173, 293]
using an affine transformation, also in FSL's FLIRT.

7.2.3 Identification of the subthalamic nucleus ROIs

Two methods were used to identify the STN ROIs in the subjects. First, the STNs
that were visible on the structural images were segmented by an experienced neu-
rosurgeon (Claudio Pollo), using ITK-SNAP, a software application that facilitates
3D segmentation of medical images [336]. This manual procedure led to 3 right
STNs and 4 left STNs, segmented in 4 subjects. Furthermore, the Talairach labels
indicating the left and right STN were used to determine the ROls.

To compare the two segmentation methods, the centers of mass of the labeled
STNs were projected into the MNI152 atlas space, as can be seen in Figure 7.2.
For each orientation, the slice on which the atlas-based STN lies is shown, whereas
the manually segmented STNs are projected onto this slice. From this figure, it is
apparent that the manually segmented STNs as seen on the structural images differ
from the atlas-based STNs. The directly visualized STNs seem to lie more posterior
and more ventral than the atlas-based structures.

While papers that compare direct and atlas-based targeting of the STN do not agree
on the difference in anteroposterior and mediolateral directions [17, 75, 255], they
do concur on the fact that the MRI-based STN seems to lie more ventral than the
atlas-based STN [17, 75], as can be seen in Figure 7.2 as well. The discrepancy
between atlas-based and MRI-based STN centers might be caused by the fact that
the Talairach atlas is based on only one brain specimen [255].



7.2.4 Linear regression analysis

For all STN ROls (left, right, atlas-based and manually segmented), whole-brain
correlation maps were generated by linear regression. Let y(t) be the resting state
signal over time in an arbitrary voxel within the brain mask. This y(t) can be
expressed as a linear combination of the signal in the STN ROI and some confounds.

The BOLD fMRI signal at time t, averaged over all voxels of our STN ROI, is de-
noted by r(t). This signal can be standardized according to 7(t) = ’(t}%“ where y is
the mean and o the standard deviation of the signal. So, y(t) = B-7(t)~+ confounds,
with B the “goodness of fit" and thus an estimate of functional connectivity. The
confounds include an offset (- 1), the motion correction parameters from our pre-
processing (y-M(t)), and the global mean signal over all brain voxels (8 -5(t)). We
did not include a regressor for low frequency drift, because we already detrended
the functional data during the preprocessing. Taken together, we performed linear
regression using the following system for each STN ROI:

y(t)=a-14+6-7(t)+v-M(t)+6-5(1).

We implemented this linear regression system in the MATLAB programming envi-
ronment. After performing the regression algorithm, we saved the estimated 3 maps
for further (statistical) analysis.

7.2.5 Statistical analysis

For each voxel within the atlas’ brain mask, and not labeled as white matter or
cerebrospinal fluid, we performed a Student t-test on the B maps for the same STN
ROI across subjects. The regression coefficients were normalized first, using the
Fisher z-transform.

The resulting test statistic T for each voxel was corrected for multiple comparisons
using the cluster thresholding method based on random field theory (implemented
in the fmristat toolbox for Matlab [330]). A critical cluster size was calculated for
test statistics larger than a given threshold, for a given significance level. We used
threshold T = 2.7 at p < 0.05, resulting in a critical cluster size of 14 voxels.

We separated the thresholding procedure for voxels with negative regression coef-
ficients (T < 2.7) and voxels with positive regression coefficients (T > 2.7). This
procedure resulted in significant clusters of voxels with negative and positive re-
gression coefficients, respectively, instead of clusters with mixed responses. The
locations of the significant clusters were compared with Talairach atlas labels to
generate lists of functionally connected regions.
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Figure 7.4 Functional connectivity per STN voxel in atlas space (see (a)) after applying the
reverse-regression procedure. (a) STN masks (yellow) derived from the Talairach atlas, overlaid on
MNI152 template. From left to right: axial, coronal and sagittal images. Crosshair is positioned
at the right STN. (b) Connectivity to motor areas per voxel of the left and right STN, cumulated
over all subjects. (c) Connectivity to limbic areas per voxel of the left and right STN, cumulated
over all subjects. Each sphere in (b) and (c) represents one voxel and is color-coded by functional
connectivity: dark red means low connectivity, while yellow means high connectivity.



7.2.6 Reverse regression for segregation of STIN regions

To get more insight in the level of segregation of the motor area from the other
STN areas, and thus to what extent selective stimulation of the STN motor part
is feasible, we performed a reverse-regression procedure. We chose the primary
motor cortex, precentral gyrus, and premotor and supplementary motor area as ROls
representing the motor loop, while the hippocampus, amygdala, parahippocampal
gyrus, anterior cingulate, and cingulate gyrus formed the ROlIs for the limbic group.
These ROIs were taken from the MNI152/Talairach atlas in FSL, and transformed
into individual subject space using the inverse of the affine transformations calculated
in Subsection 7.2.2.

Linear regression was performed in the same way as in Subsection 7.2.4, using the
average signals of both groups of ROlIs as principal regressors (the right motor and
limbic ROIs for the right STN voxels, and the left ROIs for the left STN voxels,
respectively). This procedure yielded two regression coefficient maps, Bmotor and
ﬁ,,-mb,-c for both the right and left STNs. These maps were registered back towards
the MNI152 template (using linear interpolation), masked by the atlas STN ROls,
and summed over all subjects.

7.3 Results

7.3.1 Whole-brain STN connectivity

The significant clusters were visualized onto the MNI152 template within MATLAB,
as can be seen in Figure 7.3 for the right STN. The left STN results can be found
in Figure B.1 of Appendix B. The figures indicate that clusters that are significantly
correlated to the STN ROIs were found in various cortical and subcortical structures.
Figures 7.3(a), 7.3(b), B.1(a) and B.1(b), based on only the subjects for which
manual segmentation of the STN was feasible, show a larger number of significant
clusters than Figures 7.3(c) and B.1(c), based on the atlas-based STNs of all 10
subjects.

For each significant cluster, the voxel with the maximum response (maximum ab-
solute value of test statistic T) was selected. The characteristics of these voxels
are specified in Tables 7.1 to 7.4 for the right and left atlas-based STN ROlIs. X,
Y and Z represent the coordinates (in atlas space) of the maximum response for
each cluster. The related value for T and the cluster extent (in voxels) are given,
as well as the other structures belonging to the cluster. The same was done for
the manually segmented STN ROls. Those results are presented in Appendix B, in
Tables B.1 and B.2 for the right and in Tables B.3 and B.4 for the left STN ROls.



Tables 7.1 to 7.4 and B.1 to B.4 report functional connectivity of the STN ROls
with a multitude of other brain areas. The most significantly correlated structures
include a group of subcortical areas such as the thalamus, caudate, putamen, globus
pallidus, and midbrain. The cerebellum is functionally connected to the STN ROls
as well. Furthermore, connected structures in the frontal cortex encompass the pre-
and supplementary motor area, the medial and middle frontal gyri, and the cingulate
gyrus, while correlations to the temporal cortex incorporate the superior temporal
gyrus and the fusiform gyrus.

We can further classify the results in several ways, for example by looking at the
differences between automatic (atlas-based) and manual STN segmentation. Ac-
cording to Tables 7.1 to 7.4, the atlas-based STN ROlIs are functionally connected to
subcortical structures including the thalamus, caudate, putamen, and the midbrain
in general. With respect to the frontal cortex, the premotor and supplementary mo-
tor area, medial frontal gyrus, and cingulate gyrus, insula are found to be correlated
to the STN ROIls. Connected temporal cortex areas include the parahippocam-
pal gyrus, superior temporal gyrus, and the fusiform gyrus. The cerebellum shows
functional connectivity as well.

Tables B.1 to B.4, containing the results of the manually segmented STN ROls,
show more connected structures in subcortical, frontal, temporal, and cerebellar
areas, but also in the parietal cortex. In Figures 7.3(b) and B.1(b), we show the
significantly correlated clusters for the atlas-based STN ROls of only the subjects
for whom manual segmentation of the STN was possible. It can be seen that this
test yielded more significant clusters than the test over all 10 subjects, of which the
results are presented in Figures 7.3(c) and B.1(c).

With regard to laterality, many functional connections are found bilaterally (i.e., the
right STN ROl is correlated with both left and right putamen) and show up in the
results of both the right and the left STN ROIs. The only exceptions are the anterior
cingulate and the supramarginal gyrus, which are found only in relation to the right
STN.

Finally, we can evaluate the similarities and differences of the results for positive and
negative correlation coefficients. Many structures exhibit both positive and negative
clusters, such as the thalamus, midbrain, pons, precentral gyrus, pre- and supple-
mentary motor area, cingulate gyrus, parahippocampal gyrus, and cerebellum. The
basal ganglia structures (caudate, putamen, globus pallidus) only show a positive
correlation with the STN ROIs, while for example the postcentral gyrus yields only
negative clusters. In general, the subcortical structures, give rise to more positive
than negative correlation, while the parietal and temporal cortex show more negative
than positive correlation.



Table 7.1 Brain regions showing significant positive correlations with the 10 atlas-based right
STN ROIs. X, VY, and Z represent the coordinates (in atlas space) of the maximum response for
each cluster. The related test statistic T and the cluster extent (in voxels) are given, as well as
the other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Other structures in cluster
Subcortical
8 -20 4 Right Thalamus 171 7.73 Midbrain, Substantia Nigra, Red Nucleus,
Subthalamic Nucleus
-26 -12 4 Left Putamen 86 6.78 Lateral Globus Pallidus, Claustrum, Insula
-20 8 -6 Left Putamen 24 4.81 -
-22 4 8 Left Putamen 23 5.12 -
24 -2 8 Right Putamen 22 5.70 Lateral Globus Pallidus
-14 -12 -12 Left Midbrain 122 5.90 Thalamus, Substantia Nigra, Subthalamic Nu-
cleus
Frontal
-48 10 46 Left Pre- & Supplementary Motor 85 6.31 Precentral Gyrus, Middle Frontal Gyrus,
Area
Inferior Frontal Gyrus
-12 34 38 Left Medial Frontal Gyrus 19 5.18 Superior Frontal Gyrus
-2 24 28 Left Cingulate Gyrus 34 3.74 -
Temporal
24 -36 -12 Right Parahippocampal Gyrus 15 4.13 -
-46 -20 0 Left Superior Temporal Gyrus 145 7.04 Precentral Gyrus, Insula, Postcentral Gyrus,
Transverse Temporal Gyrus
66 -14 6 Right Superior Temporal Gyrus 37 3.95 Postcentral Gyrus, Transverse Temporal Gyrus
-36 -50 -20 Left Fusiform Gyrus 16 5.25 Cerebellum
Occipital
-12 -50 0 Left Lingual Gyrus 34 4.45 Parahippocampal Gyrus
Cerebellar
-34 -54 -28 Left Cerebellum 28 3.74 =
-22 -50 -30 Left Cerebellum 21 5.15 -
14 -48 -16 Right Cerebellum 15 3.58 -

Table 7.2 Brain regions showing significant negative correlations with the 10 atlas-based right
STN ROIs. X, VY, and Z represent the coordinates (in atlas space) of the maximum response for
each cluster. The related test statistic T and the cluster extent (in voxels) are given, as well as
the other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Otbher structures in cluster
Subcortical
16 -26 -18 Right Midbrain 22 -2.73 Substantia Nigra
2 -14 -28 Right Pons 65 -2.70 Midbrain
Frontal
42 -10 46 Right Precentral Gyrus 31 -2.70 Primary Motor Cortex,

Pre- & Supplementary Motor Area,
Middle Frontal Gyrus

16 44 16 Right Medial Frontal Gyrus 17 -2.72 Anterior Cingulate
Parietal

-52 -12 22 Left Postcentral Gyrus 22 -2.72 Precentral Gyrus
Temporal

28 -12 -16 Right Parahippocampal Gyrus 35 -2.72 Amygdala

48 6 -28 Right Superior Temporal Gyrus 19 -2.75 Middle Temporal Gyrus

-60 -20 -10 Left Middle Temporal Gyrus 15 -2.75 -




Table 7.3 Brain regions showing significant positive correlations with the 10 atlas-based left STN
ROIs. X, Y, and Z represent the coordinates (in atlas space) of the maximum response for each
cluster. The related test statistic T and the cluster extent (in voxels) are given, as well as the
other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Otbher structures in cluster
Subcortical

-12 -14 2 Left Thalamus 39 7.78 Midbrain, Substantia Nigra, Subthalamic Nu-
cleus

12 8 6 Right Caudate 44 5.71 Putamen

-18 2 10 Left Putamen 41 4.57 -

30 -10 10 Right Putamen 81 5.44 Lateral Globus Pallidus, Claustrum, Insula,
Superior Temporal Gyrus, Transverse Tempo-
ral Gyrus

26 0 0 Right Putamen 76 7.51 Lateral Globus Pallidus

6 -14 -6 Right Midbrain 94 4.90 Thalamus, Substantia Nigra, Red Nucleus,
Subthalamic Nucleus
Frontal
12 4 64 Right Medial Frontal Gyrus 16 3.97 Pre- & Supplementary Motor Area
Parietal
-44 536 26 Left Inferior Parietal Lobule 21 4.13 >
Temporal
-50 -18 2 Left Superior Temporal Gyrus 16 3.82 -
Cerebellar
-36 -50 -28 Left Cerebellum 51 5.59 -
4 -64 -40 Right Cerebellum 41 4.47 -

Table 7.4 Brain regions showing significant negative correlations with the 10 atlas-based left STN
ROIs. X, Y, and Z represent the coordinates (in atlas space) of the maximum response for each
cluster. The related test statistic T and the cluster extent (in voxels) are given, as well as the
other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Otbher structures in cluster
Subcortical
18 -20 -14 Right Midbrain 22 -2.71 Parahippocampal Gyrus
Frontal
20 18 48 Right Superior Frontal Gyrus 29 -2.71 Pre- & Supplementary Motor Area, Medial

Frontal Gyrus,
Cingulate Gyrus

22 34 46 Right Superior Frontal Gyrus 23 -2.70 -
Temporal
-18 -16 -16 Left Parahippocampal Gyrus 18 -2.70 Hippocampus
-22 -26 -18 Left Parahippocampal Gyrus 15 -2.72 -
18 -6 -20 Right Parahippocampal Gyrus 15 -2.72 Midbrain, Amygdala

7.3.2 Segregation of STN regions

The results of the reverse-regression procedure for the right and left STN of all
subjects can be seen in Figure 7.4. The masks of the STN ROlIs in the atlas are
depicted in Figure 7.4(a).



Figure 7.4(b) represents the functional connectivity of the STN voxels to the motor
cortical areas (precentral cortex, primary motor cortex, premotor and supplementary
motor area). The posterior lateral part of the STN shows the highest functional
connectivity to the motor areas, while the anterior medial part yields the lowest
values. Figure 7.4(c) shows the functional connectivity of the STN voxels to the
limbic areas (amygdala, hippocampus, parahippocampal gyrus, anterior cingulate,
cingulate cortex). Especially for the left STN, the posterior lateral part reveals the
lowest functional connectivity to the limbic areas, while the anterior medial part
returns higher values.

7.4 Discussion

7.4.1 Current findings

In this study, we investigated the functional connectivity of the STN, based on cor-
relations in resting state BOLD-signal time series between the STN ROIs and other
brain structures. Cluster maps displayed connections to various cortical and sub-
cortical structures. The resulting significant clusters for the atlas-based STN ROls
predominantly belonged to a few major groups of structures, such as subcortical
structures, the frontal cortex, temporal cortex, and cerebellum.

The results of the manually segmented STN ROlIs in general exhibited more clusters
in subcortical and cerebellar areas, frontal and temporal cortex, but also showed
significant clusters in the parietal cortex. Because the atlas-based analysis involved
10 STNs on both sides, instead of 3 right STNs or 4 left STNs (for which manual
segmentation was possible), the decrease in the number of significant clusters is
probably due to an increasingly strict Student t test with an increasing number of
subjects. This is supported by the cluster map for the atlas-based STN of only the
subjects for whom manual segmentation was possible, which yielded more significant
clusters than the test over all 10 subjects. There was no evidence for an asymmet-
rical distribution of functional connectivity of the STN, as many connections were
found bilaterally and showed up in the results of both right and left STN ROls.

With respect to the level of segregation of the functional parts of the STN, the
posterior lateral part of the STN shows the highest functional connectivity to the
motor areas, while the anterior medial part yields the lowest values. For the connec-
tivity of the STN voxels to the limbic areas, it is the other way around: the posterior
lateral part reveals the lowest functional connectivity to the limbic areas, while the
anterior medial part returns higher values.

Below, we will discuss the correspondence of these connectivity results with existing
literature, consequent implications for DBS procedures, and possible future work.



7.4.2 Correspondence of findings with existing literature
Motor circuit

With respect to the motor circuit, tracer studies in non-human primates reported on
connections between the STN and the primary motor cortex, premotor and supple-
mentary motor area, and the somatosensory cortex [140, 216, 218, 232]. Deeper in
the brain, we would expect to find connectivity with the striatum, the central and
ventrolateral GPe, the ventrolateral GPi, and the thalamus [57, 158, 233, 262, 274].

Our functional connectivity analysis indeed yielded significant clusters for primary
motor cortex (precentral gyrus), pre- and supplementary motor area, and somatosen-
sory cortex (postcentral gyrus). In addition, the expected gray matter nuclei were
also discovered to be strongly connected to the STN.

Associative and limbic circuits

Concerning the associative loop, we expected correlations in activity between the
STN and the orbitofrontal and dorsolateral prefontral cortex, as well as the thala-
mus, the nucleus accumbens, the ventral part of the putamen and caudate nucleus,
the ventral pallidum, the ventral tegmental area, and the medial part of the sub-
stantia nigra pars reticulata [5, 6, 7, 57, 140, 215, 233]. Again, the gray matter
nuclei present in the atlas were all found to be functionally connected to the STN.
Cortically, the analysis resulted in significant clusters in the frontal, temporal, and
parietal cortex.

With regard to the limbic function, the literature reported on connections with the
(para)limbic cortical areas such as the anterior cingulate and the medial orbitofrontal
cortex [6]. Subcortically, the limbic circuit includes the nucleus accumbens, ventral
pallidum, ventral tegmental area, substantia nigra pars reticulata, globus pallidus,
thalamus, hippocampus and amygdala [6, 129]. Cortical areas such as the anterior
cingulate, the medial frontal, and the parahippocampal gyrus indeed showed signif-
icant regression coefficients. The same holds for all gray matter nuclei present in
the atlas that belong to the limbic loop.

Segregation of motor and non-motor regions of the STN

Review articles on STN anatomy, circuitry and function [136, 298] have reported
on a tripartite functional subdivision of the STN. The medial tip of the STN is
devoted to the limbic circuit and an associative part is located ventrolaterally, while
the motor subterritory is positioned at the dorsolateral side of the STN.



The subdivion results based on our reverse-regression experiment (Figure 7.4) display
a mediolateral gradient in motor and limbic connectivity. The highest connectivity to
the motor regions is obtained in the posterior lateral STN part, where we expect the
STN motor part, while the anterior medial part (the supposed limbic tip) contains
voxels that are more connected to the limbic ROIls. The gradient indicates some
level of separation between the functional parts of the STN, though no complete
segregation of motor and non-motor regions was found. The latter supports the
idea of open circuits, in which all pathways are partially integrated within the STN.

7.4.3 Clinical perspective

The reported consistency between the existing literature on anatomical tracing and
electrophysiological studies validates the performed functional connectivity measure-
ments based on resting state BOLD fMRI. Our study thus indicates that it might be
feasible to determine STN functional connectivity in a noninvasive way. The voxel-
wise assessment of motor and limbic connectivity per STN voxel proves that there is
some separation between the different functional STN parts. The high motor con-
nectivity found in the dorsolateral STN part underlines that the therapeutic target
for STN DBS is located in this dorsolateral part. To compensate for interindividual
variations in motor connectivity, functional connectivity analysis based on resting
state BOLD fMRI may assist in optimization of the patient-specific planning of the
DBS procedure.

7.4.4 Future work

There are multiple ways in which the functional connectivity pipeline employed in
this study can still be improved. First, we found some atlas regions to be correlated
that have not been reported in previous literature, such as the red nucleus, midbrain
in general, pons, medulla, insula, claustrum, paracentral lobule, parietal lobules,
supramarginal gyrus, lingual gyrus, and cerebellum. Some of the structures may be
considered as the output of the motor circuit, for example the midbrain, while the
insula might to some extent be associated with the limbic loop. However, most of
these areas are located close to brain parts that are known to be connected to the
STN, so the connectivity found in this study might be due to small shifts in the
data.

These inaccuracies could be caused by BOLD image deformation, a too course
spatial resolution, spatial smoothing, the inherent physiologic nature (i.e., point-
spread function of the neurovascular coupling mechanism) of the spatial response,
or registration errors. The image registration would benefit from the acquisition
of whole-brain three-dimensional T;-weighted data, besides the currently used data



with limited field-of-view or thick slices. The STN segmentations are sensitive to
registration inaccuracies and we could also question the inherent precision of the
atlas-based STN ROI, as it contains two parts for the left STN that are only con-
nected by a corner point. The use of atlas-based STN segmentations could be
avoided by using 7-T MRI for the localization of the STN [1, 61, 62].

Future work should include a larger number of healthy subjects to increase the
robustness of the analysis. Data acquisition should include a whole-brain three-
dimensional structural scan with isotropic voxels to facilitate image registration and
preferably also susceptibility-weighted image data at high field-strength, to enable
high-resolution manual segmentations of the STN for all subjects. Ultimately, similar
work remains to be done on PD patients to be able to validate the direct and reverse-
regression procedure for DBS planning.

Moreover, it would be useful to compare the functional connectivity found in this
study with STN structural connectivity based on diffusion-weighted MRI data and
probabilistic fiber tracking [51]. In addition, all available information per voxel of the
STN (functional connectivity, structural connectivity, local diffusion profile) could
be collected in order to achieve more robust results on the level of segregation of
the motor, associative, and limbic STN parts. To this end, the connectivity of each
STN voxel to the different functional parts of other gray matter nuclei such as the
globus pallidus and striatum could also be considered [22].

7.4.5 Conclusions

We have shown that the resting state functional connectivity of the STN in healthy
subjects corresponds with the anatomical connectivity that has been described in
literature. Areas that have been described in relation to all three STN circuits,
namely motor, associative and limbic, were found to be correlated in activity. In
addition, functional connectivity measures per STN voxel, based on the correlation
with motor and limbic areas, showed promising results with respect to segregation
in functional STN parts. Although improvements could be made on the amount of
data and the segmentation and registration steps, this work is an important step
towards the use of functional connectivity analysis for segmentation of the STN
motor part, which in turn could optimize patient-specific STN DBS planning.
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When one does a thing, it appears good, otherwise one would not write it.
Only later comes reflection, and one discards or accepts the thing.
Time is the best censor, and patience a most excellent teacher.

Frédéric Chopin



8.1 Contributions

In this section, we will summarize the studies presented in this thesis. Subsequently,
a non-exhaustive list of methodological considerations and possible areas of future
research will be provided, to put our experiments into a broader perspective.

The context and outline of our research was sketched in Chapter 1. We investigated
whether it is possible to distinguish the different functional STN parts based on three
types of connectivity information, inferred from noninvasive MRI protocols. First,
clustering of local diffusion information, derived from diffusion MRI, was examined.
The second experiment involved an analysis of the structural connectivity of the
STN, based on probabilistic fiber tracking using diffusion MRI data. The third and
last feature we studied was functional connectivity based on resting state BOLD
fMRI.

To understand the clinical context of this thesis, some basic knowledge on Parkin-
son's disease and its mechanism, symptoms and possible therapies is necessary. We
provided this medical and anatomical background information in Chapter 2. In
addition, in Chapter 3, we explained the technical concepts necessary to under-
stand our experiments, such as diffusion and functional MRI, and brain connectivity
modes. In Chapter 4, we gave a systematic overview of noninvasive methods al-
ready available to target the STN, together with their benefits and drawbacks. The
review did not lead to a straightforward conclusion on which targeting technique to
use; identification of the dorsolateral and motor part of the STN remained an open
question.

In an attempt to answer this question, the research presented in this thesis has
led to more insight in the possibilities of noninvasive imaging to identify the STN
and its functional parts. The main contributions of the remaining chapters can be
summarized as follows:

e Chapter 5 addressed the feasibility studies that were done on clustering of lo-
cal diffusion profiles within the STN region, in order to segment the different
functional parts of the STN. For the first experiments, post mortem rat brain
diffusion MRI data were acquired using a 9.4-T system and a long acquisition
time. We began with a visual inspection of these data, which perfectly illus-
trated the added value of complex HARDI ODFs as compared to second-order
DTI glyphs, in order to distinguish different kinds of diffusion profiles within
the STN region. To expand upon this manual segmentation method, we im-
plemented k-means and graph cuts clustering, using the traditional L, norm on
the ODFs as a distance measure. Because the weighing of different orders of
diffusion information in this distance measure was not trivial, we developed a
specialized distance measure, the so-called Sobolev norm. This norm does not



only take into account the amplitudes of the diffusion profiles, but also their
extrema. We illustrated the principle of this norm with an analytical example,
and tuned the parameters using 1-nearest neighbor classification on synthetic
diffusion MRI data. During a k-means experiment on the same synthetic and
also real thalamus diffusion MRI data, our Sobolev norm outperformed the L,
norm in both cases. In the synthetic data, the percentage of correctly classi-
fied voxels was much higher for the Sobolev norm than for the L, norm. With
respect to the thalamus data, the results of the Sobolev norm were less de-
pendent on the weight factor between diffusion and spatial information, which
alleviates the issue of the tuning of this parameter. In conclusion, in this chap-
ter we introduced a specialized distance measure for HARDI clustering which
enables better clustering of gray matter structures in the brain.

In Chapter 6, we were the first to investigate the full structural connectivity
of the STN based on diffusion MRI data of healthy volunteers. We performed
probabilistic fiber tracking with the STN as a seed region. The resulting
streamline counts were used in three different connectivity measures. The
first and second measure counted the streamlines per target region, with the
second measure normalized for streamline length whereas the first was not.
These measures were calculated per subject and subsequently tested for signif-
icance over all subjects. The third measure was calculated from the streamline
count per voxel, cumulated for all volunteers. From these results, we obtained
a complete description of the structural connectivity of the STN, correspond-
ing well to topical literature on STN projections. Furthermore, assessing the
results per voxel of the STN seed region, we discovered a gradient in motor
connectivity within the STN. While going from the medial to the lateral STN,
the connectivity to the motor cortical areas increases, confirming the expected
lateral location of the STN motor part. Finally, the connectivity analysis pro-
duced the first evidence for the existence of the “hyperdirect” pathway from
the motor cortex to the STN in humans, which is very useful for future re-
search into stimulation targets. The results of this chapter indicated that it is
possible to localize the STN motor part as target for deep brain stimulation
using structural connectivity information based on noninvasive diffusion MRI
measurements. However, further evaluation is necessary before specific stim-
ulation of this motor part, which would increase motor effects and reduce side
effects, can be tested.

Chapter 7 showed the results of another brain connectivity mode, namely
functional connectivity. We were the first to analyze the full functional con-
nectivity of the STN based on resting state BOLD fMRI. For this experiment,
data from the same group of healthy volunteers were used. We defined the
STN, both manually segmented and based on the Talairach atlas, as a seed
region for correlation analysis. Specifically, we performed linear regression with



the time-series signal, averaged over the STN, as the principal regressor. As
such, for each voxel in the brain, we obtained the “goodness-of-fit", a measure
for how well the fMRI time-series signal in that voxel resembled the average
STN signal. This measure was statistically tested over all subjects and thresh-
olded on cluster size. The resulting significantly correlated clusters provided us
with a complete description of the STN's resting state functional connectivity,
which again corresponded with the expectations based on available literature.
Moreover, we performed two reverse regressions, with the average time-series
signals in motor and limbic areas as principal regressors, respectively. The
results were analyzed for each STN voxel separately and also showed medio-
lateral gradients in functional connectivity within the STN. The lateral STN
part exhibited more motor connectivity, while the medial part seemed to be
more functionally connected to limbic brain areas, as was to be expected from
literature. In summary, this chapter showed that functional connectivity anal-
ysis is another noninvasive method to find the motor part of the STN. This
knowledge can also be applied to enhance deep brain stimulation procedures
after thorough evaluation.

8.2 Methodological considerations

As described by Jones and Cercignani [162], it is a challenge to obtain reliable and
robust results from diffusion MRI. The methods described in this thesis can certainly
be improved upon, to avoid some of the pitfalls that were described. Naturally, this
also holds for the functional MRI processing. In this section, we will discuss some
of the issues and possible enhancements.

8.2.1 Localization and registration

Accurate localization of the STN is of great importance for the definition of the ROI
for clustering of diffusion profiles, the starting points for fiber tracking, and the seed
region for functional connectivity analysis. In the first case, small errors can result in
imprecise seed point definition for clustering and incorrect clusters. Regarding the
fibers, starting the tracking from erroneous points can give rise to wrong streamlines
and therefore false positives and negatives in structural connectivity measurements.
Finally, an inaccurate seed region definition for the correlation analysis could lead to
less strong true correlations, or yield false correlations.

With respect to the localization, manual segmentation on To-weighted images ac-
quired at 3 T is very dependent on the observer that performed the segmentation,
and hindered by the low image contrast in the region under consideration. High-



field-strength images, for example at 7 T, which display the STN and its boundaries
in a more conspicuous manner, could help to resolve this issue [1, 61, 62], although
not yet in a clinical setting.

The other method used to identify the STN ROI, employing a digitized brain at-
las, is very sensitive to the used atlas to begin with. Furthermore, the registration
procedure undoubtedly introduces inaccuracies. The image registration would ben-
efit from an additional measurement, namely a whole-brain three-dimensional T;-
weighted scan, in addition to the limited FOV or thick slices of the current data. We
did not include such a measurement in the healthy volunteer acquisitions because
of the already long scanning time. However, the isotropic voxels of such a scan and
coverage of the whole brain would facilitate the registration procedure.

Moreover, the affine registration procedure that was used to match the different
diffusion-weighted images to the by data could be replaced by a nonlinear method,
including correction of the gradient direction. We used available software from FSL
to do this registration, but nonlinear transformations and corrections of the gradients
would probably lead to a more accurate registration and therefore more reliable fiber
tracking.

In addition, errors are not only caused by the registration procedure, but they are also
inherent to image acquisition, such as deformation caused by the MRI sequence (for
example EPI), the selected spatial resolution, and spatial smoothing (either during
image processing or due to the intrinsic point-spread function of the data).

8.2.2 Diffusion MRI and structural connectivity

As for the reconstruction of the diffusion profiles used for this research, we used
the Q-ball reconstruction method that was commonly used a couple of years ago.
Meanwhile, HARDI research has progressed rapidly and new modeling techniques
have appeared. As we acquired data on a single spherical shell, we could not use
techniques that require a dense sampling of g-space, such as diffusion spectrum
imaging (DSI). With our acquisition, we could have used spherical deconvolution
(SD), but the drawback of this method is that it is rather sensitive to noise. However,
in the past years, multiple constrained SD methods that impose regularization have
been developed [79, 304, 306], so this method would now be a serious option,
because it directly recovers the fiber orientation (fODF), instead of an estimate of
the dODF as in Q-ball.

With respect to the clustering of the diffusion profiles, even though we introduced
the new Sobolev norm to get rid of the weighting parameters for the different SH
orders, we still experience problems with parameter tuning. The parameters v and
t in the Sobolev norm seem to have opposite effects on the resulting norm: while y



determines to what extent details on the sphere are taken into account, resulting in
more details at higher orders of SH, t on the other hand results in more smoothing
of the data at higher orders. Furthermore, because the Sobolev norm and the L,
norm (with -y = Q) are not scaled to operate in the same range, the weight factor
between spatial and diffusion information does not have exactly the same influence
in these two cases.

Regarding the structural connectivity, some improvements would be possible as well.
We could improve our connectivity measurements by introducing quantitative di-
mensionless measures. In addition, we should check the sensitivity to the STN seed
region of our fiber tracking and structural connectivity algorithm. However, the
most important issue is the validation of the probabilistic fiber tracking. How do
we know which connections are “real” and how can we detect outliers? In general,
neuronal tracing or electrophysiological studies have described projections, but not
the trajectories along which the projections run.

8.2.3 Functional MRI and functional connectivity

Considering the functional MRI experiments and the resulting functional connectivity
data, it would be wise to investigate the sensitivity of the method to the STN seed
region used for the correlation analysis. In addition, the results of such an analysis
are very much dependent on the general linear model that was used. Therefore, the
influence of the regressors included in (for example the global mean) or excluded
from (for example low-frequency drift) our GLM should be subject to research.
The results could then also be compared with a model-free method such as ICA
(independent component analysis) [203].

Furthermore, the BOLD fMRI mechanism itself has some shortcomings. The con-
trast between activated and resting states is small and the temporal resolution poor.
Because of the nature of the hemodynamic response, the position of the detected
signal might not correspond to the actual activation site. Another interpretation is-
sue is that of clusters displaying negative correlation with the seed region. Are they
mainly introduced by the regression with the global mean, as suggested by Murphy
et al. [214], and if not, what does the negative correlation mean?

8.2.4 Ethical considerations

In most experiments described in Chapter 5 we made use of animal data. The
necessary brains were excised from rats that had been perfused transcardially after
cardiovascular research, approved by the Institutional Ethical Review Committee for
animal experiments of Maastricht University. We considered it justifiable to use the



brains of sacrificed rats that would otherwise be disposed of.

For a small part of Chapter 5 and for Chapter 6 and 7, we used MRI data of
healthy volunteers. Written informed consent was obtained from all volunteers prior
to participation, and the study was approved by the Medical Ethics Committee of
Maastricht University Medical Center. Because the conventional MRI acquisition did
not involve any safety risks for the subjects (only the risk of coincidental findings),
we considered it justifiable to use healthy volunteers for these experiments. Healthy
volunteers can better endure the long scanning time than Parkinson's patients, and
are less likely to cause motion artifacts.

8.3 Future work

As a final objective for this research we foresee a patient-specific MRI scan of the
brain, including a visible STN, with a segmentation of the three different functional
STN parts as an overlay. The steps necessary to bridge the gap between this
ultimate goal and the preliminary results presented in this thesis will be discussed in
this section.

8.3.1 Imaging for deep brain stimulation

First of all, we need to validate the robustness of our results with respect to the
STN subdivision. This could be realized by acquiring and processing more volunteer
data, in order to test the reproducibility of our results. Moreover, it is possible to
combine the structural connectivity data, functional connectivity information, and
local diffusion profiles within the STN into one feature vector for clustering, in order
to achieve a more robust estimate of the different functional STN parts.

When sufficiently robust results are obtained in healthy volunteers, this research
should find its way to the clinic. We started this project using rat data and performed
subsequent studies on human volunteer data. However, to assess the added value
for deep brain stimulation operations, it is necessary to conduct experiments on data
from Parkinson’s disease patients that are eligible for DBS as well. Initially, we should
examine the clinical requirements for the necessary MRI acquisitions. Of course,
the scanning procedure for Parkinson's patients should be as short as possible, to
reduce both the burden for the patient and the occurrence of (movement) artifacts.
However, the scans should also provide us with useful and complete MR data. To
search for the right compromise between these two objectives, we should first answer
some questions on the accuracy and reproducibility of the volunteer data used in
this thesis.



With respect to the diffusion-weighted imaging, we could for example ask ourselves
whether we really should consider 128 unique gradient directions. Would less di-
rections, for example 54 or 80, also be enough for the probabilistic fiber tracking
and structural connectivity calculation, as suggested by Pr¢kovska et al. [250]? The
required number of gradient directions could be tested by subsampling the set of
diffusion-weighted measurements from our healthy volunteers. Furthermore, new
techniques to reconstruct fiber crossings for a sparse diffusion MRI acquisition are
being developed [174, 175, 249]. In addition, is the one by measurement that was
used for the structural connectivity study good enough or should we use an aver-
age of multiple unweighted images? As we did acquire five by measurements for
each volunteer, we could examine this issue as well. Also for the fMRI experiments,
we can wonder whether the time series of 200 time points with TR 2.2s could be
shortened while still yielding reliable functional connectivity maps [307]. This claim
could be tested by dividing each series into two (or more) parts and assessing the
reproducibility of the functional connectivity results based on the separate parts.

In contrast to adaptations in the image acquisition, we could also consider other
processing techniques for our data. For fiber tracking maps based on diffusion
MRI, track-density imaging (TDI) seems to be very promising [56]. With this post-
processing procedure, spatial resolution can be gained, in order to reveal fiber struc-
tures beyond the resolution of the acquired imaging voxel.

Besides, the issues with respect to diffusion and functional MRI described above
could possibly be bypassed by state-of-the-art anatomical imaging techniques such
as very-high-field-strength imaging. Abosch et al. combined a 7-T scanner with
multiple acquisition schemes and images contrast, which enabled them to clearly
separate the STN from the SN and distinguish internal thalamic nuclei at 7 T [1].
Cho et al. also showed that 7-T MRI is superior to 1.5 and 3 T for visualization
of DBS targeting structures such as STN and GPi [61]. In addition, these authors
visualized the SN at 7 T in 10 PD patients and 9 control subjects and identified mor-
phological changes that could be used as a diagnostic marker for PD [62]. However,
thus far, 7-T MR imaging is not applicable in a clinical setting.

When the image acquisition is optimized for clinical practice, we will be able to in-
vestigate the structural and functional connectivity properties of the STN and its
functional parts in PD patients. Naturally, the first thing to examine is whether these
properties of the STN are the same in patients with Parkinson's. Hopefully, the re-
sults, whether the same or different, will support our hypothesis that noninvasive
MR imaging techniques such as dMRI and fMRI facilitate patient-specific mapping
of the STN parts with high motor connectivity and/or low limbic connectivity. Sub-
sequently, this knowledge can be used to optimize motor effects and reduce side
effects involved with DBS, and to decrease the time necessary for the planning and
implantation phases of this operation.



8.3.2 Deep brain stimulation and other therapies for Parkinson’s

On top of studies focusing on enhanced imaging for deep brain stimulation, other,
complementary, lines of research exist. For instance, Mclntyre's group modeled the
voltage distribution generated by deep brain stimulation and the consequent volume
of activated tissue after stimulation [54, 208]. This knowledge could be used to
produce electrodes that facilitate an asymmetric stimulation volume, adapted to
patient-specific conditions.

Besides the STN, the medial globus pallidus (GPi) is also a possible target for deep
brain stimulation in Parkinson's disease. A recent study by Follett et al. reported
similar motor improvement after GPi and STN stimulation [105]. The same study
also showed an argument against switching to pallidal instead of subthalamic stim-
ulation in order to reduce side effects, namely that patients after GPi stimulation
remain more dependent on medication than after STN DBS. However, the GPi
is successfully used for deep brain stimulation procedures in patients with dysto-
nia [205] and Huntington's disease [212]. For the latter, the lateral globus pallidus
(GPe) is a possible target as well [190]. In addition, different thalamic nuclei have
been identified as effective stimulation sites: the anterior nucleus for epilepsy [104],
the centromedian-parafascicular nuclear complex (CM-Pf) for Tourette syndrome
[324], and the ventral intermediate nucleus (Vim) for tremor [191]. The imaging
methods described in this thesis could also be applied to enhance identification of
the stimulation targets within the globus pallidus and thalamus.

Other researchers zoom in on the underlying anatomical and physiological mecha-
nisms of deep brain stimulation of the STN. For example, Temel et al. found that
STN DBS inhibits 5-HT (serotonine) neurons in the limbic system, which in turn
evokes the depression-related behavioral changes after DBS [299]. Recently, Tan
et al. proposed that the mechanism behind the vulnerability to depressions in PD in
general and after STN DBS is probably a combination of alterations to the 5-HT
system and altered network activity within the basal ganglia [294]. On the other
hand, Janssen et al. concentrated on the motor circuit and investigated the feasi-
bility of motor cortex stimulation to evoke a spatially specific response within the
motor part of the STN [155].

However, in the long term, transcranial magnetic stimulation (TMS) instead of
deep brain stimulation might be a treatment option for Parkinson’s disease. In
2008 already, Arias-Carrion considered rTMS (repetitive TMS) to play a role in
the neurogenesis of dopaminergic neurons to replace degenerated neurons in PD
[15]. Maybe replacing neurons as a whole is not even necessary. A recent study
by LeWitt et al. reported on a successfull clinical trial applying gene therapy to
Parkinson's disease [189]. PD patients exhibit a shortage of the neurotransmitter
GABA in their subthalamic nucleus. LeWitt et al. used a virus to infect neurons with



a gene to increase the GABA production, resulting in a mild reduction of symptoms
in half of the cases.

In any case, taking into account the rapid current and future developments with
respect to imaging and other improvements for deep brain stimulation in Parkinson’s
disease, which hopefully result in more effective and less burdensome treatment
options for PD patients, it is unavoidable that this thesis will be outdated relatively
soon.

8.4 Conclusion

The aim of the research presented in this thesis was to determine the possibility to
distinguish the different functional parts of the STN based on noninvasive MR imag-
ing. We experimented with three modes of connectivity information for the STN
region. First, we clustered local diffusion profiles and found that although HARDI
shows diffusion profiles with different complexities within the STN, parameter tun-
ing for the clustering remains rather difficult. Second, we analyzed the structural
connectivity of the STN, based on fiber tracking derived from diffusion MRI. This
experiment confirmed the connections expected from literature, and showed high
structural connectivity to the motor cortical areas in the lateral STN, which is use-
ful information for targeting of the STN motor part. Finally, we also studied the
functional connectivity of the STN based on resting state BOLD fMRI. This study
again verified the expected connections of the STN and also showed high motor
connectivity in the lateral STN, while the medial part exhibited higher functional
connectivity to the limbic system. In spite of the fact that many methodologi-
cal improvements can be thought of, this research has brought us one step closer
to specific stimulation of the motor part of the STN in patients with Parkinson’s
disease.
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A. Appendix to Chapter 6

Table A.1 Regions significantly connected to the right STN after a t-test on Cy, using Nsypjects

=8 and a = 0.05.

Region of interest p value Region of interest p value

Right Brainstem, Midbrain 0.000 Left Uncus, Brodmann area 28 0.021

Right Thalamus 0.000 Right Medial Globus Pallidus (GPi) 0.022

Right Cingulate Gyrus 0.000 Right Transverse Temporal Gyrus 0.023

Right Substantia Nigra 0.001 Right Brodmann area 11 (orbitofrontal 0.023
cortex)

Right Thalamus Ventral Posterior Lat- 0.002 Right Anterior Cingulate 0.024

eral Nucleus

Right Caudate 0.003 Left Brainstem, Pons 0.025

Right Red Nucleus 0.004 Right Brodmann area 47 (orbitofrontal 0.025
cortex)

Right Putamen 0.004 Right Rectal Gyrus 0.026

Right Thalamus Ventral Posterior Me- 0.004 Right Posterior Cingulate, Brodmann 0.026

dial Nucleus area 30

Right Thalamus Ventral Anterior Nu- 0.005 Left Posterior Cingulate, Brodmann 0.027

cleus area 29

Right Brodmann area 6 (pre- & supple- 0.006 Right Inferior Temporal Gyrus 0.027

mentary motor area)

Right Hypothalamus 0.006 Left Medial Frontal Gyrus 0.028

Right Thalamus Ventral Lateral Nucleus 0.007 Left Thalamus Ventral Anterior Nucleus 0.030

Right Lateral Globus Pallidus (GPe) 0.007 Right Insula 0.030

Right Superior Temporal Gyrus 0.007 Left Anterior Cingulate, Brodmann area 0.030
24

Right Claustrum 0.007 Right Mammillary Body 0.030

Right Thalamus Lateral Posterior Nu- 0.007 Left Fusiform Gyrus 0.031

cleus

Left Limbic Lobe, Brodmann area 24 0.008 Left Red Nucleus 0.031

Right Occipital Lobe, Lingual Gyrus, 0.009 Right Limbic Lobe, Brodmann area 24 0.032

Brodmann area 18

Right Anterior Cingulate, Brodmann 0.010 Right Posterior Cingulate, Brodmann 0.033

area 25 area 29

Right Medial Frontal Gyrus 0.010 Left Subcallosal Gyrus 0.035

Left Hippocampus 0.011 Left Thalamus, Pulvinar 0.036

Left Brainstem, Midbrain 0.011 Left Brodmann area 6 (pre- & supple- 0.037
mentary motor area)

Limbic Lobe, Parahippocampal Gyrus 0.012 Right Hippocampus 0.037

Left Brodmann area 47 (orbitofrontal 0.013 Left Inferior Frontal Gyrus 0.039

cortex)

Cerebellum 0.013 Right Limbic Lobe 0.039

Left Insula 0.013 Right Thalamus 0.039

Right Inferior Frontal Gyrus 0.014 Left Thalamus 0.039

Left Thalamus Medial Dorsal Nucleus 0.014 Right Anterior Cingulate, Brodmann 0.040
area 24

Left Mammillary Body 0.014 Right Subcallosal Gyrus, Brodmann area 0.041
34

Left Putamen 0.015 Left Posterior Cingulate, Brodmann 0.042
area 30

Right Brainstem 0.015 Right Brodmann area 13 0.044

Right Superior Frontal Gyrus 0.016 Right Middle Temporal Gyrus 0.044

Right Thalamus, Mammillary Body 0.017 Left Cingulate Gyrus 0.045

Right Thalamus, Medial Dorsal Nucleus 0.019 Inter-Hemispheric Precuneus 0.045

Right Anterior Cingulate, Brodmann 0.019 Right Occipital Lobe, Lingual Gyrus 0.046

area 33

Left Limbic Lobe 0.019 Left Parietal Lobe, Precuneus 0.047

Left Posterior Cingulate 0.020 Left Anterior Cingulate, Brodmann area 0.048
25

Right Parahippocampal Gyrus 0.020 Right Fusiform Gyrus 0.049

Left Middle Frontal Gyrus 0.020 Right Thalamus, Anterior Nucleus 0.049

Right Occipital Lobe, Lingual Gyrus, 0.021 Right Brodmann area 2 (primary so- 0.050

Brodmann area 19 matosensory)

Left Claustrum 0.021




A. Appendix to Chapter 6

Table A.2 Regions significantly connected to the left STN after a t-test on Cy, using Nsubjects =
8 and a = 0.05.

Region of interest p value Region of interest p value

Left Brainstem, Midbrain 0.000 Left Occipital Lobe, Lingual Gyrus, 0.024
Brodmann area 19

Left Thalamus 0.000 Left Thalamus, Medial Dorsal Nucleus 0.024

Left Substantia Nigra 0.000 Limbic Lobe, Parahippocampal Gyrus 0.024

Left Thalamus, Mammillary Body 0.001 Left Brodmann area 10 (orbitofrontal 0.025
cortex)

Left Mammillary Body 0.001 Left Superior Temporal Gyrus 0.026

Left Red Nucleus 0.001 Left Cingulate Gyrus 0.030

Left Thalamus Ventral Anterior Nucleus 0.001 Right Thalamus Lateral Dorsal Nucleus 0.031

Left Thalamus Pulvinar 0.002 Left Anterior Cingulate, Brodmann area 0.033
32

Left Thalamus Ventral Posterior Lateral 0.002 Left Subcallosal Gyrus 0.033

Nucleus

Right Thalamus Anterior Nucleus 0.003 Right Occipital Lobe, Lingual Gyrus, 0.034
Brodmann area 19

Left Posterior Cingulate 0.003 Right Posterior Cingulate, Brodmann 0.034
area 29

Left Thalamus Ventral Posterior Medial 0.003 Right Precentral Gyrus 0.034

Nucleus

Left Thalamus Ventral Lateral Nucleus 0.004 Right Uncus 0.035

Right Red Nucleus 0.004 Right Anterior Cingulate, Brodmann 0.036
area 32

Right Brainstem, Midbrain 0.005 Right Anterior Cingulate 0.037

Right Thalamus Medial Dorsal Nucleus 0.005 Left Medial Frontal Gyrus 0.037

Left Posterior Cingulate, Brodmann 0.005 Left Uncus, Brodmann area 34 0.037

area 29

Right Thalamus Midline Nucleus 0.006 Right Lateral Globus Pallidus (GPe) 0.037

Right Parahippocampal Gyrus 0.007 Left Uncus, Brodmann area 28 0.038

Left Hypothalamus 0.007 Left Inferior Frontal Gyrus 0.039

Left Thalamus Lateral Posterior Nucleus 0.007 Left Parahippocampal Gyrus 0.039

Left Putamen 0.008 Left Claustrum 0.039

Right Insula 0.009 Left Brodmann area 13 0.040

Right Subcallosal Gyrus, Brodmann area 0.010 Left Precentral Gyrus 0.040

34

Right Posterior Cingulate 0.011 Right Thalamus, Mammillary Body 0.041

Left Medial Globus Pallidus (GPi) 0.012 Left Sub-lobar Gray Matter, Lateral 0.041
Geniculum Body

Hypothalamus 0.015 Left Amygdala 0.041

Right Caudate 0.015 Right Limbic Lobe 0.041

Right Limbic Lobe, Brodmann area 30 0.017 Left Brodmann area 11 (orbitofrontal 0.042
cortex)

Left Caudate 0.017 Right Posterior Cingulate, Brodmann 0.043
area 30

Cerebellum 0.018 Left Superior Frontal Gyrus 0.044

Right Anterior Cingulate, Brodmann 0.018 Left Uncus 0.045

area 24

Right Fusiform Gyrus 0.019 Right Brodmann area 3 (primary so- 0.045
matosensory)

Left Frontal Lobe 0.020 Left Limbic Lobe 0.045

Left Insula 0.020 Right Anterior Cingulate, Brodmann 0.046
area 33

Right Claustrum 0.020 Left Occipital Lobe, Lingual Gyrus 0.046

Left Lateral Globus Pallidus (GPe) 0.021 Left Anterior Cingulate, Brodmann area 0.047
24

Right Thalamus Pulvinar 0.023 Left Inferior Temporal Gyrus 0.047

Left Subcallosal Gyrus, Brodmann area 0.023 Right Hippocampus 0.048

34

Right Thalamus 0.023 Right Posterior Cingulate, Brodmann 0.049
area 23

Right Mammillary Body 0.024
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Table A.3 Regions significantly connected to the right STN after a t-test on Cp, using Ngypjects
=8 and a = 0.05.

Region of interest p value Region of interest p value

Right Brainstem, Midbrain 0.000 Right Anterior Cingulate 0.019

Right Thalamus 0.000 Left Thalamus, Medial Dorsal Nucleus 0.019

Right Cingulate Gyrus 0.001 Right Middle Temporal Gyrus 0.019

Right Substantia Nigra 0.001 Right Transverse Temporal Gyrus 0.019

Right Thalamus Ventral Posterior Lat- 0.001 Left Posterior Cingulate 0.019

eral Nucleus

Right Red Nucleus 0.003 Left Parahippocampal Gyrus 0.019

Right Caudate 0.003 Left Fusiform Gyrus 0.021

Right Thalamus Ventral Anterior Nu- 0.003 Right Thalamus Anterior Nucleus 0.022

cleus

Right Thalamus Medial Dorsal Nucleus 0.004 Left Middle Frontal Gyrus 0.026

Right Thalamus Ventral Posterior Me- 0.004 Left Medial Frontal Gyrus 0.028

dial Nucleus

Right Hypothalamus 0.004 Right Posterior Cingulate, Brodmann 0.028
area 30

Right Putamen 0.004 Right Limbic Lobe, Brodmann area 24 0.029

Right Superior Temporal Gyrus 0.005 Left Anterior Cingulate, Brodmann area 0.030
24

Right Brodmann area 6 (pre- & supple- 0.006 Right Rectal Gyrus 0.030

mentary motor area)

Right Claustrum 0.007 Left Thalamus Ventral Anterior Nucleus 0.030

Cerebellum 0.007 Right Mammillary Body 0.030

Right Thalamus Lateral Posterior Nu- 0.008 Right Brodmann area 47 (orbitofrontal 0.031

cleus cortex)

Right Occipital Lobe, Lingual Gyrus, 0.008 Right Insula 0.031

Brodmann area 18

Right Medial Globus Pallidus (GPi) 0.009 Left Subcallosal Gyrus 0.031

Right Thalamus Ventral Lateral Nucleus 0.009 Left Brodmann area 6 (pre- & supple- 0.036
mentary motor area)

Right Medial Frontal Gyrus 0.010 Left Posterior Cingulate, Brodmann 0.036
area 29

Left Limbic Lobe, Brodmann area 24 0.010 Left Uncus, Brodmann area 28 0.038

Right Lateral Globus Pallidus (GPe) 0.010 Right Occipital Lobe, Lingual Gyrus, 0.040
Brodmann area 30

Left Limbic Lobe 0.010 Left Parietal Lobe, Precuneus 0.040

Left Insula 0.011 Right Subcallosal Gyrus, Brodmann area 0.041
34

Right Parahippocampal Gyrus 0.011 Left Brodmann area 47 (orbitofrontal 0.041
cortex)

Left Hippocampus 0.012 Right Subcallosal Gyrus 0.041

Right Hippocampus 0.012 Left Anterior Cingulate, Brodmann area 0.042
25

Right Limbic Lobe 0.012 Right Uncus 0.043

Right Brodmann area 11 (orbitofrontal 0.013 Right Thalamus 0.043

cortex)

Right Thalamus, Mammillary Body 0.014 Left Posterior Cingulate, Brodmann 0.044
area 30

Left Mammillary Body 0.014 Left Cingulate Gyrus 0.045

Right Anterior Cingulate, Brodmann 0.015 Left Caudate 0.045

area 25

Right Occipital Lobe, Lingual Gyrus, 0.015 Left Subcallosal Gyrus, Brodmann area 0.046

Brodmann area 19 34

Right Superior Frontal Gyrus 0.016 Right Thalamus Pulvinar 0.047

Right Inferior Frontal Gyrus 0.016 Right Brodmann area 13 0.047

Left Inferior Frontal Gyrus 0.016 Inter-Hemispheric Precuneus 0.047

Right Inferior Temporal Gyrus 0.017 Right Sub-lobar Gray Matter, Lateral 0.047
Geniculum Body

Left Putamen 0.017 Right Anterior Cingulate, Brodmann 0.048
area 24

Right Anterior Cingulate, Brodmann 0.017 Right Thalamus, Medial Geniculum 0.050

area 33 Body

Right Fusiform Gyrus 0.018 Right Uncus, Brodmann area 28 0.050

Left Claustrum 0.018
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Table A.4 Regions significantly connected to the left STN after a t-test on Cy, using Nsybjects =
8 and a = 0.05.

Region of interest p value Region of interest p value

Left Brainstem, Midbrain 0.000 Right Mammillary Body 0.024

Left Thalamus 0.000 Right Thalamus Pulvinar 0.025

Left Substantia Nigra 0.000 Right Limbic Lobe 0.025

Left Thalamus, Mammillary Body 0.001 Left Brodmann area 10 (orbitofrontal 0.026
cortex)

Left Mammillary Body 0.001 Right Posterior Cingulate, Brodmann 0.026
area 23

Left Thalamus Ventral Posterior Lateral 0.001 Left Subcallosal Gyrus 0.026

Nucleus

Left Thalamus Medial Dorsal Nucleus 0.002 Left Cingulate Gyrus 0.027

Left Red Nucleus 0.002 Right Fusiform Gyrus 0.028

Left Posterior Cingulate, Brodmann 0.002 Left Posterior Cingulate, Brodmann 0.028

area 29 area 30

Left Thalamus Ventral Posterior Medial 0.002 Left Superior Temporal Gyrus 0.028

Nucleus

Left Thalamus Pulvinar 0.002 Right Thalamus Lateral Dorsal Nucleus 0.029

Left Posterior Cingulate 0.003 Right Precentral Gyrus 0.030

Left Medial Globus Pallidus (GPi) 0.004 Right Occipital Lobe, Lingual Gyrus, 0.030
Brodmann area 19

Right Thalamus Anterior Nucleus 0.005 Right Anterior Cingulate 0.030

Right Red Nucleus 0.005 Left Uncus 0.032

Left Thalamus Ventral Anterior Nucleus 0.006 Left Occipital Lobe, Lingual Gyrus 0.032

Right Brainstem Midbrain 0.006 Right Claustrum 0.033

Right Parahippocampal Gyrus 0.007 Left Inferior Frontal Gyrus 0.033

Right Thalamus Medial Dorsal Nucleus 0.007 Left Parahippocampal Gyrus 0.035

Left Thalamus Ventral Lateral Nucleus 0.007 Left Brodmann area 13 0.035

Left Putamen 0.007 Left Limbic Lobe 0.036

Right Thalamus Midline Nucleus 0.007 Left Uncus, Brodmann area 28 0.036

Left Thalamus Lateral Posterior Nucleus 0.008 Left Anterior Cingulate, Brodmann area 0.036
32

Left Hypothalamus 0.008 Left Medial Frontal Gyrus 0.037

Right Subcallosal Gyrus, Brodmann area 0.009 Left Brainstem, Midbrain, Medial 0.037

34 Geniculum Body

Right Posterior Cingulate 0.010 Left Precentral Gyrus 0.037

Cerebellum 0.011 Right Anterior Cingulate, Brodmann 0.038
area 32

Right Anterior Cingulate, Brodmann 0.011 Right Posterior Cingulate, Brodmann 0.040

area 33 area 29

Left Insula 0.012 Left Superior Frontal Gyrus 0.042

Left Frontal Lobe 0.013 Left Anterior Cingulate, Brodmann area 0.042
24

Hypothalamus 0.013 Left Occipital Lobe, Lingual Gyrus 0.042

Left Caudate 0.013 Right Thalamus 0.043

Right Insula 0.015 Right Brainstem, Pons 0.043

Left Occipital Lobe, Lingual Gyrus, 0.015 Left Occipital Lobe, Lingual Gyrus, 0.044

Brodmann area 19 Brodmann area 18

Left Uncus, Brodmann area 34 0.017 Right Thalamus, Mammillary Body 0.044

Right Caudate 0.017 Right Uncus 0.044

Left Lateral Globus Pallidus (GPe) 0.018 Right Limbic Lobe, Sub-Gyral 0.045

Left Subcallosal Gyrus, Brodmann area 0.018 Right Hippocampus 0.046

34

Right Limbic Lobe, Brodmann area 30 0.018 Right Limbic Lobe, Brodmann area 24 0.046

Right Anterior Cingulate, Brodmann 0.020 Left Amygdala 0.048

area 24

Limbic Lobe, Parahippocampal Gyrus 0.022 Right Brodmann area 3 (primary so- 0.048
matosensory)

Left Sub-lobar Gray Matter, Lateral 0.022 Left Middle Temporal Gyrus 0.049

Geniculum Body

Left Claustrum 0.023
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Table A.5 Regions connected to the

at C3 > 0.10.

right STN based on the total probability map, thresholded

Region of interest

Connectivity

Region of interest

Connectivity

Right Thalamus Ventral Posterior Lat-
eral Nucleus

Right Thalamus Ventral Posterior Me-
dial Nucleus

Right Thalamus Lateral Posterior Nu-
cleus

Right Hypothalamus

Right Substantia Nigra
Right Red Nucleus
Right Thalamus Ventral Lateral Nucleus

Right Thalamus, Mammillary Body
Right Mammillary Body

Right Thalamus

Right Limbic Lobe, Brodmann area 24

Right Brainstem, Midbrain, Medial
Geniculum Body

Right Brainstem, Midbrain

Right Thalamus Pulvinar

Right Subcallosal Gyrus

Right Midbrain

Right Brodmann area 4 (primary motor)
Right Thalamus, Medial Geniculum
Body

Right Subcallosal Gyrus, Brodmann area
34

Right Subcallosal Gyrus, Brodmann area
34

Right Cingulate Gyrus

Right Caudate

Right Subcallosal Gyrus

Left Mammillary Body

Right Medial Frontal Gyrus

Right Anterior Cingulate

Left Anterior Cingulate, Brodmann area
25

Right Medial Globus Pallidus (GPi)
Right Amygdala

Hypothalamus

Right Brodmann area 6 (pre- & supple-
mentary motor area)

Left Subcallosal Gyrus

Right Precentral Gyrus

Right Paracentral Lobule

Superior Frontal Gyrus

Right Thalamus Ventral Anterior Nu-
cleus

Left Hypothalamus

Right Uncus, Brodmann area 34

Right Subcallosal Gyrus, Brodmann area
13

Right Superior Frontal Gyrus

Right Brainstem

Right Thalamus, Medial Dorsal Nucleus
Left Thalamus, Ventral Posterior Lat-
eral Nucleus

Right Limbic Lobe

246.77

161.61

130.62

103.55

76.47
68.39
63.19

61.56
58.67

42.09

26.86
23.89

2
14.44
9.41
7.14
5.87
4.40

3.34

331

2.83
2.82
2.50
1.87
1.79
1.63
1.62

1.57
iL35
1.48
1.47

1.20
1.09
0.94
0.90
0.85

0.85
0.69
0.68

0.64
0.63
0.62
0.60

0.60

Right Brodmann area 3 (primary so-
matosensory)
Right Lateral Globus Pallidus (GPe)

Right Anterior Cingulate, Brodmann
area 25

Right Sub-lobar Gray Matter, Lateral
Geniculum Body

Left Thalamus Pulvinar

Right Thalamus

Right Subcallosal Gyrus, Brodmann area
25

Right Thalamus, Anterior Nucleus

Left Thalamus, Ventral Posterior Medial
Nucleus

Left Subcallosal Gyrus, Brodmann area
25

Right Frontal Lobe

Left Thalamus Lateral Posterior Nucleus

Left Thalamus Anterior Nucleus
Left Thalamus

Right Parahippocampal Gyrus
Right Limbic Lobe

Left Thalamus Midline Nucleus
Left Red Nucleus

Left Thalamus Mammillary Body
Right Putamen

Left Limbic Lobe, Brodmann area 24
Left Anterior Cingulate

Left Thalamus, Ventral Lateral Nucleus
Left Thalamus, Medial Dorsal Nucleus
Right Uncus, Brodmann area 28

Left Subthalamic Nucleus

Left Brainstem, Midbrain

Right Brodmann area 13
Right Middle Frontal Gyrus
Limbic Lobe, Uncus

Right Postcentral Gyrus

Left Caudate

Left Thalamus, Lateral Dorsal Nucleus
Right Hippocampus

Right Uncus

Right Thalamus Lateral Dorsal Nucleus

Left Cingulate Gyrus
Right Limbic Lobe, Brodmann area 35
Left Substantia Nigra

Right Brainstem, Pons

Left Thalamus Ventral Anterior Nucleus
Right Thalamus, Midline Nucleus

Right Uncus, Brodmann area 36

0.60

0.60

0.57

0.54

0.54
0.52
0.50

0.49
0.49

0.45

0.42
0.42

0.40
0.36
0.35
0.34
0.33
0.33

0.32

0.32

0.30
0.29
0.27
0.27
0.26
0.26
0.25

0.25
0.24
0.24
0.24

0.24
0.24
0.23
0.22
0.18

0.18
0.17
0.12

0.10
0.10
0.10
0.10
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Table A.6 Regions connected to the left STN based on the total probability map, thresholded at

C3 > 0.10.

Region of interest

Connectivity

Region of interest

Connectivity

Left Thalamus Ventral Posterior Lateral
Nucleus

Left Thalamus Ventral Posterior Medial
Nucleus

Left Hypothalamus

Left Mammillary Body

Left Red Nucleus

Left Thalamus Lateral Posterior Nucleus
Left Substantia Nigra

Left Thalamus, Mammillary Body

Hypothalamus

Left Thalamus

Left Limbic Lobe, Brodmann area 24
Left Thalamus Ventral Lateral Nucleus

Left Brainstem Midbrain
Left Thalamus Pulvinar
Left Thalamus Anterior Nucleus
Left Paracentral Lobule

Left Brainstem, Midbrain, Medial
Geniculum Body

Right Limbic Lobe, Brodmann area 24
Right Mammillary Body

Left Subcallosal Gyrus

Left Brodmann area 4 (primary motor)
Left Brodmann area 3 (primary so-
matosensory)

Left Caudate

Left Brodmann area 6 (pre- & supple-
mentary motor area)

Left Thalamus Ventral Anterior Nucleus
Left Thalamus Medial Dorsal Nucleus
Right Red Nucleus

Right Thalamus

Left Limbic Lobe, Brodmann area 25
Left Cingulate Gyrus

Right Brainstem

Left Brodmann area 5 (somatosensory
association)

Left Thalamus, Medial Geniculum Body
Left Sub-lobar Gray Matter, Lateral
Geniculum Body

Left Subcallosal Gyrus, Brodmann area
25

Left Subcallosal Gyrus, Brodmann area

Left Medial Frontal Gyrus
Left Claustrum

Right Limbic Lobe
Left Medial Globus Pallidus (GPi)
Right Brainstem, Midbrain

217.57

130.56

126.33
120.62
99.85
95.79
78.85
73.32

59.96
39.55
38.68
37.34

29.94
8.32
5.01
4.50

4.34

4.09
3.95

273
2.65
2.16

1.95
1.80

1.54
1.48
1.41
1.26
1.22
1.12

1.06
0.99

0.97
0.92

0.89

0.85
0.83

0.73
0.66
0.65

Right Thalamus Pulvinar
Left Brainstem, Pons

Left Thalamus Lateral Dorsal Nucleus
Right Cingulate Gyrus

Left Superior Frontal Gyrus

Right Subcallosal Gyrus

Left Anterior Cingulate

Right Thalamus Lateral Posterior Nu-
cleus

Left Limbic Lobe

Left Hippocampus

Right Thalamus, Mammillary Body
Right Thalamus Ventral Posterior Me-
dial Nucleus

Left Frontal Lobe

Right Substantia Nigra

Left Brodmann area 13

Right Thalamus Ventral Posterior Lat-
eral Nucleus

Left Lateral Globus Pallidus (GPe)

Left Middle Frontal Gyrus

Right Occipital Lobe, Lingual Gyrus,
Brodmann area 30

Right Thalamus

Left Parahippocampal Gyrus

Left Putamen

Right Limbic Lobe, Brodmann area 30
Left Postcentral Gyrus

Right Thalamus Medial Dorsal Nucleus
Right Thalamus Lateral Dorsal Nucleus
Right Hypothalamus

Parahippocampal Gyrus

Left Amygdala

Right Brainstem, Midbrain, Medial
Geniculum Body

Right Thalamus Ventral Lateral Nucleus
Left Precentral Gyrus

Right Subthalamic Nucleus
Right Caudate

Right Medial Frontal Gyrus
Right Brainstem, Pons

Right Thalamus, Anterior Nucleus

Left Occipital Lobe, Lingual Gyrus,
Brodmann area 30

Left Limbic Lobe

Left Parietal Lobe, Brodmann area 40

0.54

0.51

0.48
0.46
0.44
0.41
0.40
0.37

0.33
0.32
0.29
0.29

0.29
0.29
0.29
0.28

0.28

0.26
0.25

0.25
0.22
0.21

0.19
0.19

0.18
0.15
0.15
0.13
0.13
0.13

0.12
0.12

0.11
0.11

0.10

0.10
0.10

0.10
0.10
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B. Appendix to Chapter 7

Figure B.1 Significant clusters for the left STN ROI, shown on three coronal slices of the MNI152
template. (a) 4 manually segmented left STN ROls. (b) 4 atlas-based left STN ROls (same
volunteers). (c) All 10 atlas-based left STN ROls. The yellow lines on the axial image on the
left-hand side show the position of the coronal slices. Red clusters exhibit positive regression
coefficients, while blue clusters yield negative coefficients.
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Table B.1 Brain regions showing significant positive correlation with the manually segmented
right STN ROls. X, Y, and Z represent the coordinates (in atlas space) of the maximum response
for each cluster. The related test statistic T and the cluster extent (in voxels) are given, as well
as the other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Other structures in cluster
Subcortical
-8 -14 -2 Left Thalamus 201 70.80 Midbrain, Substantia Nigra, Subthalamic Nu-
cleus, Parahippocampal Gyrus
24 -30 12 Right Thalamus 304 88.18 Caudate, Midbrain, Substantia Nigra, Red Nu-
cleus, Pons
-24 -14 -2 Left Lateral Globus Pallidus (GPe) 24 17.33 Putamen
22 -2 -8 Right Lateral Globus Pallidus (GPe) 30 911.33 Putamen, Medial Globus Pallidus
-16 -4 -4 Left Medial Globus Pallidus (GPi) 20 49.44 Lateral Globus Pallidus
-36 -4 6 Left Claustrum 190 33.13 Precentral Gyrus, Primary Motor Cortex, Pre-

& Supplementary Motor Area, Inferior Frontal
Gyrus, Insula, Superior Temporal Gyrus, Mid-
dle Temporal Gyrus

-18 -34 -34 Left Pons 44 22.34 Cerebellum
-16 -28 -30 Left Pons 17 9.55 -
6 -28 -34 Right Pons 82 30.06 Midbrain
Frontal
-42 -12 42 Left Precentral Gyrus 33 32.04 -
-34 -6 50 Left Precentral Gyrus 21 15.38 Pre- & Supplementary Motor Area, Middle
Frontal Gyrus
-50 0 22 Left Pre- & Supplementary Motor 26 11.03 Precentral Gyrus, Inferior Frontal Gyrus
Area
62 4 26 Right Pre- & Supplementary Motor 270 91.04 Precentral Gyrus, Middle Frontal Gyrus, Infe-
Area rior Frontal Gyrus
18 -4 70 Right Pre- & Supplementary Motor 111 20.95 Precentral Gyrus, Superior Frontal Gyrus,
Area Middle Frontal Gyrus, Medial Frontal Gyrus
-22 2 68 Left Superior Frontal Gyrus 50 44.03 Precentral Gyrus, Pre- & Supplementary Mo-
tor Area, Middle Frontal Gyrus
-10 -6 58 Left Medial Frontal Gyrus 38 50.96 Pre- & Supplementary Motor Area, Superior
Frontal Gyrus
0 -2 44 Left Cingulate Gyrus 442 65.18 Pre- & Supplementary Motor Area, Superior

Frontal Gyrus, Middle Frontal Gyrus, Medial
Frontal Gyrus

-2 -32 32 Left Cingulate Gyrus 244 51.75 Posterior Cingulate

-42 -22 2 Left Insula 379 65.64 Postcentral Gyrus, Primary Somatosensory
Cortex, Inferior Parietal Lobule, Superior Tem-
poral Gyrus, Middle Temporal Gyrus, Trans-
verse Temporal Gyrus

-36 -28 14 Left Insula 22 10.34 Transverse Temporal Gyrus

40 2 14 Right Insula 21 15.13 -

Parietal

58 -28 32 Right Inferior Parietal Lobule 169 25.76 Insula, Postcentral Gyrus, Primary So-

matosensory Cortex, Supramarginal Gyrus,
Superior Temporal Gyrus, Transverse Tempo-

ral Gyrus

Temporal

-38 -24 -28 Left Parahippocampal Gyrus 29 25153 Fusiform Gyrus

-64 -4 -4 Left Superior Temporal Gyrus 15 14.93 Middle Temporal Gyrus

46 -24 6 Right Superior Temporal Gyrus 33 98.80 Insula, Transverse Temporal Gyrus
54 -10 -16 Right Middle Temporal Gyrus 15 20.93 Superior Temporal Gyrus

-58 -16 -28 Left Fusiform Gyrus 19 9.77 Inferior Temporal Gyrus

44 -38 -18 Right Fusiform Gyrus 21 10.01 Parahippocampal Gyrus, Cerebellum
Cerebellar

-2 -46 2 Left Cerebellum 56 18.80 Posterior Cingulate, Parahippocampal Gyrus
-14 -46 -44 Left Cerebellum 18 14.74 -

8 -56 -30 Right Cerebellum 29 17.84 -

44 -48 -38 Right Cerebellum 22 38.45 -
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Table B.2 Brain regions showing significant negative correlation with the manually segmented
right STN ROIs. X, Y, and Z represent the coordinates (in atlas space) of the maximum response
for each cluster. The related test statistic T and the cluster extent (in voxels) are given, as well
as the other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Otbher structures in cluster
Subcortical
-12 -32 4 Left Thalamus 39 -2.73 Parahippocampal Gyrus
12 -24 -2 Right Thalamus 24 -2.77 Midbrain
2 -16 -12 Right Midbrain 16 -2.81 -

-8 -48 -38 Left Pons 31 -2.73 Medulla, Cerebellum

-8 -24 -36 Left Pons 20 -2.72 -

10 -38 -38 Right Pons 31 -2.93 Cerebellum

Frontal
42 -12 66 Right Precentral Gyrus 65 -2.70 Primary Motor Cortex, Postcentral Gyrus, Pri-
mary Somatosensory Cortex
-62 -16 42 Left Primary Motor Cortex 272 -2.70 Precentral Gyrus, Pre- & Supplementary Mo-
tor Area, Postcentral Gyrus, Primary So-
matosensory Cortex, Inferior Parietal Lobule
56 -2 48 Right Primary Motor Cortex 21 -2.76 Precentral Gyrus, Pre- & Supplementary Mo-
tor Area
-50 4 36 Left Pre- & Supplementary Motor 88 -2.72 Precentral Gyrus, Middle Frontal Gyrus, Infe-
Area rior Frontal Gyrus

-24 -6 50 Left Pre- & Supplementary Motor 41 -2.79 Precentral Gyrus, Primary Motor Cortex, Mid-
Area dle Frontal Gyrus

-34 10 48 Left Pre- & Supplementary Motor 18 -2.71 Precentral Gyrus, Middle Frontal Gyrus
Area

40 10 32 Right Inferior Frontal Gyrus 15 -2.74 Precentral Gyrus

-12 -14 26 Left Cingulate Gyrus 19 -2.74 -

22 -8 40 Right Cingulate Gyrus 151 -2.71 Caudate, Pre- & Supplementary Motor Area,
Medial Frontal Gyrus, Cingulate Gyrus, Para-
central Lobule

12 6 46 Right Cingulate Gyrus 30 -2.74 -

40 -18 18 Right Insula 28 -2.74 Claustrum

Parietal

46 -24 B2 Right Postcentral Gyrus 376 -2.70 Precentral Gyrus, Primary Motor Cortex, Pri-
mary Somatosensory Cortex, Inferior Parietal
Lobule

58 -12 22 Right Postcentral Gyrus 31 -2.74 Transverse Temporal Gyrus

-2 -30 56 Left Somatosensory Association 112 -2.72 Pre- & Supplementary Motor Area, Medial

Cortex Frontal Gyrus, Paracentral Lobule
-56 -30 36 Left Inferior Parietal Lobule 27 -2.70 Postcentral Gyrus, Primary Somatosensory
Cortex
-38 -32 46 Left Inferior Parietal Lobule 15 -2.80 =
Temporal
-16 -10 -16 Left Parahippocampal Gyrus 27 -2.95 Amygdala
-30 -8 -26 Left Parahippocampal Gyrus 21 -2.78 Hippocampus
-20 -22 -16 Left Parahippocampal Gyrus 18 -2.75 -

22 -20 -14 Right Parahippocampal Gyrus 83 -2.71 Midbrain, Amygdala

36 -26 -16 Right Parahippocampal Gyrus 44 -2.74 Hippocampus

38 -28 -28 Right Parahippocampal Gyrus 20 -2.71 Inferior Temporal Gyrus

34 -16 -34 Right Parahippocampal Gyrus 17 -2.73 Inferior Temporal Gyrus

64 -38 16 Right Superior Temporal Gyrus 65 -2.73 Middle Temporal Gyrus

52 -8 0 Right Superior Temporal Gyrus 40 -2.71 Precentral Gyrus, Insula

-56 -38 -16 Left Middle Temporal Gyrus 99 -2.73 Inferior Temporal Gyrus

-56 -10 -18 Left Middle Temporal Gyrus 36 -2.70 Inferior Temporal Gyrus

-58 -38 0 Left Middle Temporal Gyrus 19 -2.80 -

-58 -8 -10 Left Middle Temporal Gyrus 18 -2.80 Superior Temporal Gyrus

66 -28 0 Right Middle Temporal Gyrus 83 -2.73 Superior Temporal Gyrus

-38 -50 -12 Left Fusiform Gyrus 53 -2.70 Hippocampus, Parahippocampal Gyrus

54 -40 -14 Right Fusiform Gyrus 15 -3.43 Middle Temporal Gyrus, Inferior Temporal

Gyrus
Cerebellar
-34 -42 -24 Left Cerebellum 71 -2.70 Parahippocampal Gyrus, Fusiform Gyrus
-20 -52 -28 Left Cerebellum 70 -2.72 -
-18 -46 -14 Left Cerebellum 27 -2.74 Parahippocampal Gyrus
-44 -52 -32 Left Cerebellum 24 -2.91 -

24 -38 -20 Right Cerebellum 211 -2.71 Hippocampus, Parahippocampal Gyrus,
Fusiform Gyrus

24 -50 -40 Right Cerebellum 74 -2.75 -

36 -44 -30 Right Cerebellum 15 -3.00 -
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Table B.3 Brain regions showing significant positive correlation with the manually segmented left
STN ROIls. X, Y, and Z represent the coordinates (in atlas space) of the maximum response for
each cluster. The related test statistic T and the cluster extent (in voxels) are given, as well as

the other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Other structures in cluster
Subcortical
-8 -6 6 Left Thalamus 582 49.67 Caudate, Putamen, Lateral Globus Pallidus,
Medial Globus Pallidus, Midbrain, Red Nu-
cleus, Subthalamic Nucleus
26 -30 0 Right Thalamus 23 28.54 Midbrain, Parahippocampal Gyrus
-24 2 4 Left Putamen 146 22.64 Lateral Globus Pallidus, Medial Globus Pal-
lidus
-28 -18 0 Left Putamen 21 13.92 Lateral Globus Pallidus
-36 -20 4 Left Claustrum 47 6.95 Insula, Superior Temporal Gyrus
-2 -38 -6 Left Midbrain 36 6.28 -
4 -18 -10 Right Midbrain 17 12.49 Red Nucleus
12 -38 -38 Right Pons 18 10.98 Medulla
-28 -22 -10 Left Hippocampus 23 11.69 Parahippocampal Gyrus
Frontal
50 6 46 Right Pre- & Supplementary Motor 20 6.66 Middle Frontal Gyrus
Area
12 16 68 Right Pre- & Supplementary Motor 15 5.45 Superior Frontal Gyrus, Middle Frontal Gyrus
Area
-16 14 68 Left Superior Frontal Gyrus 16 4.84 Pre- & Supplementary Motor Area, Middle
Frontal Gyrus
-40 8 38 Left Middle Frontal Gyrus 174 28.60 Precentral Gyrus, Pre- & Supplementary Mo-
tor Area, Inferior Frontal Gyrus
-16 4 52 Left Medial Frontal Gyrus 36 9.34 Pre- & Supplementary Motor Area, Cingulate
Gyrus
-14 -8 30 Left Cingulate Gyrus 36 8.44 Thalamus, Caudate
-4 14 42 Left Cingulate Gyrus 17 6.63 Medial Frontal Gyrus
16 -26 32 Right Cingulate Gyrus 330 31.31 Posterior Cingulate
Temporal
-6 -38 2 Left Parahippocampal Gyrus 18 11.72 -
16 -34 -2 Right Parahippocampal Gyrus 47 10.19 Midbrain
-48 -38 18 Left Superior Temporal Gyrus 38 13.34 Insula
Cerebellar
-8 -50 -22 Left Cerebellum 302 17.02 Midbrain, Pons, Medulla
-38 -56 -40 Left Cerebellum 69 8.50 -
26 -56 -40 Right Cerebellum 28 10.50 -
42 -54 -32 Right Cerebellum 18 5.91 -
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Table B.4 Brain regions showing significant negative correlation with the manually segmented
left STN ROIs. X, Y, and Z represent the coordinates (in atlas space) of the maximum response
for each cluster. The related test statistic T and the cluster extent (in voxels) are given, as well
as the other structures belonging to the cluster.

X Y z Hemisphere Anatomical landmark Extent T Other structures in cluster
Subcortical
38 2 6 Right Claustrum 21 -2.72 Insula
2 -24 -32 Right Pons 27 -2.70 -
Frontal
-28 -12 60 Left Precentral Gyrus 67 -2.70 Primary Motor Cortex, Pre- & Supplementary

Motor Area, Middle Frontal Gyrus, Postcen-
tral Gyrus, Primary Somatosensory Cortex

-54 6 36 Left Precentral Gyrus 18 -2.73 Pre- & Supplementary Motor Area, Middle
Frontal Gyrus
32 -22 64 Right Precentral Gyrus 542 -2.70 Primary Motor Cortex, Pre- & Supplementary

Motor Area, Postcentral Gyrus, Primary So-
matosensory Cortex, Inferior Parietal Lobule

60 -10 34 Right Precentral Gyrus 263 -2.71 Primary Motor Cortex, Pre- & Supplementary
Motor Area, Insula, Postcentral Gyrus, Pri-
mary Somatosensory Cortex, Inferior Parietal
Lobule, Superior Temporal Gyrus, Transverse
Temporal Gyrus

-6 -10 52 Left Pre- & Supplementary Motor 42 -2.72 Medial Frontal Gyrus
Area
8 -22 58 Right Pre- & Supplementary Motor 74 -2.72 Medial Frontal Gyrus, Somatosensory Associ-
Area ation Cortex, Paracentral Lobule
16 6 52 Right Medial Frontal Gyrus 38 -2.75 Pre- & Supplementary Motor Area, Cingulate
Gyrus
-46 -6 12 Left Insula 18 -2.84 -
38 -4 8 Right Insula 29 -2.71 Putamen, Claustrum
Parietal
-54 -24 32 Left Inferior Parietal Lobule 507 -2.71 Precentral Gyrus, Primary Motor Cortex,

Pre- & Supplementary Motor Area, Infe-
rior Frontal Gyrus, Postcentral Gyrus, Pri-
mary Somatosensory Cortex, Superior Tempo-
ral Gyrus, Transverse Temporal Gyrus

-52 -24 46 Left Inferior Parietal Lobule 61 -2.71 Postcentral Gyrus, Primary Somatosensory
Cortex
Temporal
-22 -16 -22 Left Parahippocampal Gyrus 40 -2.76 Hippocampus, Amygdala
-22 -40 -8 Left Parahippocampal Gyrus 22 -2.72 -
-32 -12 -36 Left Parahippocampal Gyrus 21 -2.75 Hippocampus, Inferior Temporal Gyrus
34 -24 -20 Right Parahippocampal Gyrus 47 -2.71 -
28 -12 -22 Right Parahippocampal Gyrus 30 -2.73 Lateral Globus Palidus, Amygdala
2 2 70 Right Parahippocampal Gyrus 27 -2.74 Pre- & Supplementary Motor Area, Superior
Frontal Gyrus, Medial Frontal Gyrus
34 -16 -34 Right Parahippocampal Gyrus 26 -2.72 Inferior Temporal Gyrus
24 -28 -18 Right Parahippocampal Gyrus 19 -2.75 Cerebellum
24 -22 -16 Right Parahippocampal Gyrus 18 -2.73 Midbrain
40 -32 -24 Right Parahippocampal Gyrus 17 -2.71 Cerebellum
-66 -32 10 Left Superior Temporal Gyrus 306 -2.70 Middle Temporal Gyrus, Inferior Temporal
Gyrus, Fusiform Gyrus, Cerebellum
-50 -2 -6 Left Superior Temporal Gyrus 27 -2.71 Insula
-52 -12 -4 Left Superior Temporal Gyrus 20 -2.75 Middle Temporal Gyrus
54 -26 -4 Right Superior Temporal Gyrus 106 -2.75 Insula, Middle Temporal Gyrus, Transverse
Temporal Gyrus
60 -38 14 Right Superior Temporal Gyrus 27 -2.72 Middle Temporal Gyrus
54 -6 -6 Right Superior Temporal Gyrus 26 -2.71 Middle Temporal Gyrus
-44 -28 12 Left Transverse Temporal Gyrus 15 -2.77 Superior Temporal Gyrus
32 -36 -18 Right Fusiform Gyrus 45 -2.70 Cerebellum
Cerebellar
-28 -36 -22 Left Cerebellum 24 -2.74 Parahippocampal Gyrus

10 -44 -10 Right Cerebellum 195 -2.71 Parahippocampal Gyrus, Lingual Gyrus
50 -48 -26 Right Cerebellum 29 -2.76 -
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