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Time Delay Compensation in Bilateral

Teleoperations Using IMPACT
Alper Denasi, Dragan Kostić, Member, IEEE and Henk Nijmeijer Fellow, IEEE

Abstract—Teleoperated systems may be subject to destabilizing
and performance degrading effects due to time-delays. An appeal-
ing remedy is an application of the Internal Model Principle And
Control Together (IMPACT) structure as it is done in this paper
in the problem of position error based bilateral teleoperation.
The IMPACT algorithm proposed in this paper allows time-delay
compensation and rejection of disturbances from a known class
that act at the output of the slave manipulator. Simulation and
experimental results illustrate the effectiveness of the algorithm.

Index Terms—IMPACT structure, position error based bilat-
eral teleoperation, disturbance rejection, time delay compensa-
tion, robust stability, Smith predictor.

I. INTRODUCTION

TELEOPERATED systems are a popular research subject

in the robotics community for several decades. They are

utilized in applications that take place in hazardous environ-

ments such as nuclear power plants for nuclear waste disposal,

in hospitals to perform minimally invasive surgery, in space to

perform repair of orbital modules, etc [1]. For a more extensive

survey about the developments in this field the interested

reader is refered to the references [1], [2]. The teleoperated

tasks are carried out by a slave manipulator located at a

remote environment. The slave receives commands sent by

a human operator through a communication channel. As the

name suggests, when bilateral teleoperations are considered,

the sensor data from the slave is sent back to the operator

through the same or another communication channel. The

control problem in this case is more challenging due to the

fact that the master and slave manipulators are coupled by a

control algorithm implemented in the software.

Long distances or communication media such as Internet

can lead to time-delayed responses of the slave manipulator

to the commands sent by the operator. Furthermore, the

sensor data sent from the slave can also be delayed, which

can lead to delayed corrective actions of the operator. The

time-delays can hamper the performance of teleoperations

or even destabilize the complete system. One of the early

studies on the performance of telerobotic systems is conducted

by Sheridan and Farrell, in [3]. They have found out that

whenever the communication loop features time-delays, the

operator adopts a move and wait strategy from which it can

This work is done in the frame of the Remote Robotics project funded from
a Pieken in de Delta grant of the Dutch Ministry of Economy.
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be deduced that the task completion time is linear with respect

to the induced time-delay in the loop. A comparative study on

teleoperation control schemes in the presence of time delays is

performed by Arcara et. al. [4]. That comparison consideres

five different aspects: stability as a function of time delay,

perceived inertia and damping in free motion, position tracking

performance, perceived stiffness in the case of interaction with

a structured environment, and position drift between master

and slave manipulators.

Among many available approaches, a popular remedy for

time-delays is application of Smith predictors in the cont-

rol structure. The main purpose of a Smith predictor is to

render the control system time-delay free. An overview of

Smith predictor type control architectures for time-delayed

teleoperations is given in [5]. There, a force-position type

predictive control architecture is proposed which combines

two neural networks to online estimate and map the slave

and environment dynamics at the master side. A nonlinear

extension of the Smith predictor is developed by Wong et.

al. in [6]. In [7], a time-delay compensation is applied to

control systems with nonlinear dynamics and process dead-

time. Normay-Rico et. al. give a broad review of dead-time

compensators in [8], where they analyse the basic Smith pre-

dictor and propose design of suitable dead-time compensators

for unstable systems. Scattering (or wave variables) is another

common technique which aims to passify the communication

channel. In [9], Miyoshi et. al. modified the approach by

introducing wave filters in the scattering variables, designed

by H∞ method.

It is pointed out by Matijević et. al., in [10] that Smith pre-

dictor type control architectures are characterized by limited

robustness and disturbance rejection capabilities. A new cont-

rol architecture for systems with Smith predictors is proposed

by Stojić et. al. to improve their robustness and performance of

disturbance rejection. This architecture is based on the internal

model principle and control together (IMPACT) approach.

This approach is first proposed in [11], as a way to combine

the internal model principle (IMP) and internal model control

(IMC). The former (IMP) is used to cope with the disturbances

that affect the plant, and is also known as the absorption

principle. The latter (IMC) includes a nominal model of

the plant in the controller structure in order to incorporate

modeling uncertainty into the control system. Therefore, the

IMPACT structure provides a systematic and intuitive way to

separate the problems of predictor design and the disturbance

rejection.

There exist different types of control architectures in bilat-

eral teleoperation systems. These can be categorized based



2

on the exchanged sensory information between the master

and slave manipulators. Among these, the most common are

position error (PERR) based, force error based and 4-channel

control architectures.

In this paper, we address time-delay compensation and

disturbance rejection in position error (PERR) based bilateral

teleoperation. We employ the benefits of the IMPACT structure

for this purpose. These are robustness against uncertainties

and external disturbances. The problem is approached from a

more engineering perspective. A more generic framework is

utilized to model the master and slave manipulators by means

of a feedback connection of a linear dynamical system and a

nonlinear element. By doing so, incorporating nonlinear com-

pensators into the local feedback controllers is possible. This

allows us to deal with some practical issues such as friction

or gravity compensation. Furthermore, a pragmatic rational is

applied in the design of local controllers which is based on

frequency response function (FRF) measurements and a pole

placement method. Keeping the number of design parameters

small, leads to an easy and straightforward way of tuning. The

robust stability of the designed controller is analysed by means

of the Nyquist criterion. The effectiveness of the approach is

demonstrated through extensive experimentation. Preliminary

results of this work are contained in [12].

This paper is organized as follows. In the next section,

we present mathematical definitions to be used in the fol-

lowing sections of the paper. We introduce the problem of

PERR based bilateral teleoperations together with a friction

compensation scheme in Section III. In Section IV, we pro-

pose a time-delay compensation scheme for the PERR based

bilateral teleoperations using the Smith predictor structure

and an application of the IMPACT approach to increase

the robustness, disturbance rejection and trajectory tracking

performance. Simulation results are given in Section V-B. In

Section V-C, illustrative experimental results are given. The

conclusions and final remarks are given in Section VI.

II. MATHEMATICAL PRELIMINARIES

In what follows, the mathematical formulation of the prob-

lem is given in Laplace domain. In order to deal with certain

type of nonlinearities, we consider the master/slave robots as

Lur’e type of systems in this work. This means that they can

be seen as a feedback interconnection of a linear dynamical

system and a nonlinear memoryless element [13], as shown

in Fig. 1, where G(s) represents the transfer function of the

G(s)

ψ(·)

+
−

r u y

Fig. 1. Feedback connection of a linear dynamical system and a nonlinear
element.

linear dynamical system and ψ(·) is a memoryless, possibly

time-varying, nonlinearity, which is piecewise continuous in

time and locally Lipschitz in the output y. A similar type of

modeling approach which takes into account several sources

of nonlinearities was also used in [14].

III. POSITION ERROR BASED TELEOPERATIONS

In a PERR based teleoperation scenario, the slave manipula-

tor, being subject to modeling uncertainties and disturbances,

is required to realize the commands sent from the master

device handled by the operator. Only the position information

is exchanged between the master and slave manipulators as

presented in Fig. 2 [1]. In the given figure, Gm(s) and Gs(s)
denote transfer functions of the master and slave manipulators,

respectively. Here, ϕm(·), ϕs(·) are the nonlinear terms such

as friction or cogging torques/forces and ϕ̂m(·), ϕ̂s(·) are the

suitable nonlinear compensation torques/forces for the master

and slave manipulators, respectively. The control laws for the

master and slave manipulators are given by

Um(s) = Km,1(s)(Qref (s)−Qm(s))

+Km,2(s)(Qs(s)e
−Tds −Qm(s)), (1)

Us(s) = Ks(s)(Qm(s)e−Tds −Qs(s)), (2)

where Km,1(s), Km,2(s) and Ks(s) are the local controllers

for the master/slave manipulators, respectively, Qm(s) is po-

sition of the master, Qs(s) is the slave position, and Td
represents the time delay in the communication channel.

Remark 1: It should be mentioned that, in (1) using two

different control laws for the two different kind of errors,

Qref (s) − Qm(s) and Qs(s)e
−Tds − Qm(s), provides extra

degrees of freedom for tuning and higher performance, even-

tually. Keeping that in mind, we should emphasize that, for

the sake of easy tuning, the local controllers Km,1(s) and

Km,2(s) are selected identical to each other (i.e. Km,1(s) =
Km,2(s) = Km(s)). Therefore, the design and stability

analysis of the teleoperated system is performed for the case

Km,1(s) = Km,2(s) = Km(s).
In this work, single degree-of-freedom manipulators are

considered at the master and slave sides. Furthermore, the

nonlinear terms which we are interested in, are related to the

friction torques/forces. The dynamics of these manipulators

in time domain, that apply as they conduct free motions, are

given by

Jmq̈m + τf,m (q̇m) + Cmqm = τm, (3)

Jsq̈s + τf,s (q̇s) + Csqs = τs, (4)

where Jm, τf,m (q̇m), Cm and Js, τf,s (q̇s), Cs are the masses

(for translational dynamics)/mass moments of inertia (for

rotational dynamics), the friction forces/torques and the spring

coefficient of the master and slave manipulators, respectively,

while τm and τs are the input forces/torques. Appropriate

parameters and their respective units are selected depending

on whether the dynamics is translational or rotational.

There are many different models in the literature to represent

the friction phenomena that exist in robotic systems [15]. The

complexity of these models depends on the velocity regime

at which the system operates. In this work, we concentrate

on a relatively simple friction model which is comprised of

Coulomb friction and viscous friction terms:

τf,m (q̇m) = τc,msgn (q̇m) +Bmq̇m, (5)

τf,s (q̇s) = τc,ssgn (q̇s) +Bsq̇s, (6)



3

Qref (s)

Km,2(s)

Gm(s)Km,1(s)

Um(s)
e−Tds
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Communication channel

ϕm(·)

ϕ̂m(·)

ϕs(·)
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−
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++
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+

Fig. 2. Position error based teleoperation scheme.

Qref (s)

Km(s) Gm(s) e−Tds Ks(s) Gs(s) e−Tds

2

Gd
scl

(s)

Um(s) Us(s)

Qm(s) Qs(s)

+
−

+
−

+

−

ϕm(·)

ϕ̂m(·)

+

−

+

ϕ̂s(·)

ϕs(·)

+

−

+

Fig. 3. Position error based teleoperation scheme redrawn.

where sgn(·) is the signum function and τc,m, Bm and τc,s, Bs

are the Coulomb friction and viscous friction coefficients of

the master and slave manipulators, respectively. The effect of

the Coulomb friction can be compensated by using Coulomb

friction compensation, if the inputs to the master and slave

robots are taken as,

τm = τ̂c,msgn (q̇m) + um, (7)

τs = τ̂c,ssgn (q̇s) + us, (8)

where τ̂c,m, τ̂c,s are Coulomb friction compensation coeffi-

cients and um, us are the new control inputs. These new

control inputs can be used to design suitable control laws such

as (1) and (2). From (3), (4), (5) and (6), we can determine

the transfer functions of two manipulators as

Gm(s) =
1

Jms2 +Bms+ Cm

, (9)

Gs(s) =
1

Jss2 +Bss+ Cs

. (10)

In the following, we will assume that the effect of Coulomb

friction is exactly compensated.

IV. INTERNAL MODEL PRINCIPLE AND CONTROL

TOGETHER

A. Control Structure

This section describes an IMPACT structure which is suit-

able for the considered PERR teleoperation problem. The

block diagram of the IMPACT structure is shown in Fig.

4. Here, D denotes a disturbance at the slave side of the

telemanipulation system, such as undesired vibrations acting

at the output of the slave manipulator. The structure shown

in Fig. 4 implements a Smith predictor at the master side,

while at the slave side G̃d
scl is the internal nominal plant

model and A(s)/C(s) is the transfer function representing an

internal model of the disturbances. The difference between

the outputs of the actual and nominal plants are filtered by

the transfer function (1/R(s))(A(s)/C(s)), where R(s) is a

transfer function in the disturbance estimator whose design

will be introduced in the next section. The resulting signal D̂
is the disturbance estimator. The nominal plant model is given

by

G̃d
scl(s) =

Ks(s)G̃s(s)

1 +Ks(s)G̃s(s)
e−2Ls, (11)

where G̃s(s) is the nominal model of the slave manipulator

and L is the nominal value of the time-delay Td in a single

direction of the communication channel. In our control design,
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the nominal value L is considered to be constant, known and

same for both forward and backward directions; it can be

determined by practical measurements, as an average of the

actual time-delays. Since Td is known upto a certain degree of

accuracy, the effect of the mismatch between Td and L can be

investigated via robustness analysis. The actual plant is given

by,

Gd
scl(s) =

Ks(s)Gs(s)

1 +Ks(s)Gs(s)
e−2Tds, (12)

where Gs(s) represents the actual transfer function of the slave

manipulator.

B. Controller Design

This section presents designs of the local controllers for

the master and slave manipulators and describes a method for

disturbance absorption. Following the rationale given in [7],

the local feedback controllers Km(s) and Ks(s) for the master

and slave manipulators, respectively, are designed based on the

inverse plant model

Km(s) =
1

W (s)− 1

1

G̃m(s)
, (13)

Ks(s) =
1

W (s)− 1

1

G̃s(s)
, (14)

where G̃m(s) and G̃s(s) are the nominal models of the

master and slave manipulators, respectively, and W (s) is the

characteristic polynomial describing the desired location of the

closed-loop poles for the local feedback loops at the master

and slave sides

W (s) = (ǫs+ 1)r. (15)

Here, ǫ > 0 and r is the relative order of the nominal models of

the master and slave manipulators. Polynomial (15) is selected

such as to keep the number of tuning parameters small. We

assume that the dynamics of the master and slave manipulators

described by (9) and (10) are known and given by

G̃m(s) =
1

J̃ms2 + B̃ms+ C̃m

, (16)

G̃s(s) =
1

J̃ss2 + B̃ss+ C̃s

, (17)

where J̃m, J̃s, B̃m, B̃s, C̃m and C̃s are the nominal model

parameters that are determined, for instance, using system

identification. For the manipulator dynamics of the second

order, r equals to 2 in (15).

Remark 2: The local control laws (13) and (14) may or may

not have integral action depending on the nominal master/slave

manipulator models (16)-(17). For example, when the nominal

models do not have stiffness terms (i.e. C̃m = C̃s = 0), the

local control laws can be written as,

Km(s) =
J̃ms+ B̃m

ǫ2s+ 2ǫ
,

Ks(s) =
J̃ss+ B̃s

ǫ2s+ 2ǫ
(18)

which are of lead or lag type depending on the location of

their poles/zeros. In the case when the stiffness terms of the

nominal models are nonzero (i.e. C̃m 6= 0 and C̃s 6= 0), we

obtain the following local control laws,

Km(s) =
J̃ms

2 + B̃ms+ C̃m

s (ǫ2s+ 2ǫ)
,

Ks(s) =
J̃ss

2 + B̃ss+ C̃s

s (ǫ2s+ 2ǫ)
(19)

which have an integral action in their structure.

In addition to the feedback controllers (13) and (14), the

tracking performance can be improved by adding the feedfor-

ward terms related to the velocity and acceleration profiles of

the reference trajectory for the master manipulator. From (11),

(14) and (15), the nominal plant model is given by

G̃d
scl(s) =

1

(ǫs+ 1)2
e−2Ls. (20)

Referring to Fig. 4, we can determine the closed-loop transfer

functions, based on the nominal plant between the inputs

Qd
ref (s) and D(s) and the output Qs(s):

N(s) =
Qs(s)

Qd
ref (s)

=
Km(s)G̃m(s)Ks(s)G̃s(s)

ζ(s) +Km(s)G̃m(s)
, (21)

Qs(s)

D(s)
=
(

1 +N(s)e−2Ls
)

(

1

1 +Ks(s)G̃s(s)

)

×

(

1−
A(s)

R(s)C(s)

Ks(s)G̃s(s)e
−2Ls

1 +Ks(s)G̃s(s)

)

, (22)

with

ζ(s) =
(

1 +Ks(s)G̃s(s)
)(

1 +Km(s)G̃m(s)
)

where Qd
ref (s) = Qref (s)e

−Ls represents the delayed refer-

ence signal. When (13)-(15) and (16)-(17) are substituted into

(21) and (22), we obtain:

N(s) =
Qs(s)

Qd
ref (s)

=
1

ǫ4s4 + 4ǫ3s3 + 7ǫ2s2 + 6ǫs+ 1
, (23)

Qs(s)

D(s)
=
(

1 +N(s)e−2Ls
)

(

ǫs(ǫs+ 2)

(ǫs+ 1)2

)

×

(

1−
A(s)

R(s)C(s)

e−2Ls

(ǫs+ 1)2

)

. (24)

The stability of the closed-loop system described by the

transfer function (23) can be evaluated using the Routh’s

stability criterion [16]. It can be shown that the elements in

the first column of the Routh’s table are positive, since by

definition, ǫ > 0. According to the Routh criterion, this implies

that the poles of the closed-loop are all in the left half of the

complex plane.

By applying the final value theorem to (24), it can be shown

that the effect of the disturbance D on the steady-state motion
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+
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+
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Fig. 4. IMPACT structure for PERR based teleoperation system.

of the slave manipulator diminishes if

lim
s→0

s

(

s
(

1 +N(s)e−2Ls
)

s

(

ǫ(ǫs+ 2)

(ǫs+ 1)2

)

×

(

1−
A(s)

R(s)C(s)

e−2Ls

(ǫs+ 1)2

)

D(s)

)

= 0. (25)

Since

lim
s→0

(

1 +N(s)e−2Ls
)

= 2, lim
s→0

(

ǫ(ǫs+ 2)

(ǫs+ 1)2

)

= 2ǫ, (26)

to have (25) achieved, the following should hold:

lim
s→0

s2
(

1−
A(s)

R(s)C(s)

e−2Ls

(ǫs+ 1)2

)

D(s) = 0. (27)

The polynomial A(s) can be selected as any stable polynomial.

Here it is selected as

A(s) = (ǫs+ 1)2A0(s), (28)

where A0(s) is a polynomial which is determined based

on the disturbance. To guarantee stability of the disturbance

estimator, polynomials R(s) and C(s) should have stable

zeros. A simple way to select R(s) and C(s), which decreases

the number adjustable parameters, is proposed in [17]:

R(s) = 1, C(s) = (T0s+ 1)
n
, (29)

where T0 is a time constant and n is an order of the filter.

The design parameters T0 and n determine the speed of the

disturbance absorption process. The disturbance is absorbed

more quickly if lower values are selected for T0 and n. For

the particular choice of (28) and (29), condition (27) can be

rewritten as,

lim
s→0

s2
(

C(s)−A0(s)e
−2Ls

)

D(s) = 0. (30)

It can be realized from (30) that the absorption of a step

disturbance (i.e. D(s) = 1/s) can be achieved for any

A0(s) and C(s). For a class of polynomial disturbances

d(t) =
∑m

i=0
dit

i, after application of the L’Hôpital rule,

we can uniquely determine the polynomial A0(s) using the

following expression,

lim
s→0

dk

dsk
(

C(s)−A0(s)e
−2Ls

)

= 0, 0 ≤ k < m. (31)

As an example, for a ramp disturbance (i.e. D(s) = 1/s2) by

using (28) and (31) we obtain

A0(0) = 1, for k = 0. (32)

In the case of a disturbance that can be represented as a second

order function of time (i.e. d(t) = t2/2, thus D(s) = 1/s3),

we determine

A0(0) = 1 for k = 0, (33)

A0(s) = (nT0 + 2L)s+A0(0) for k = 1. (34)

For an arbitrary disturbance described by its Laplace transform

D(s) = Nd(s)/Dd(s), such as a sinusoid function (i.e.

D(s) = 1/(s2+ω2) for d(t) = sinωt), the following condition

is induced from (30),

C (s)−A0 (s) e
−2Ls = Φ(s)B (s) , (35)

where Φ(s) represents the absorption polynomial determined

by Φ(s) ≡ Dd(s). In order to solve equation (35) for A0(s)
which is used in the design of the disturbance estimator, the

exponential term e−2Ls can be approximated by the Taylor

series expansion as

e−2Ls ∼=
N
∑

k=0

(−2Ls)k

k!
, (36)

with N being the number of terms used in the approximation

and then substituted into (35) which leads to the Diophantine

equation given by

A0 (s)
N
∑

k=0

(−2Ls)k

k!
+B (s) Φ (s) = C (s) . (37)

The obtained relation does not have a unique solution in terms

of A0(s) (cf. [18]). A solution procedure for the Diophantine
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equation is given in [19]. The only constraint is due to

causality, i.e.

deg(A(s)) = 2 + deg(A0(s)) ≤ deg(C(s)). (38)

The solution procedure roughly works as follow. First select

C(s), N and the degree of the polynomials A0(s) and B(s),
and then substitute the corresponding absorption polynomial

Φ(s) for the disturbance. After that, equation (37) can be

solved for the polynomials A0(s) and B(s), by equating the

coefficients of the terms of equal order on both sides.

C. Robustness Analysis

Since the control design is based on the nominal plant model

G̃d
scl(s), it should be investigated how uncertainties in the plant

parameters and unmodeled dynamics influence stability and

control performance of the considered teleoperated system.

As the starting point of our robustness analysis, we assume

that the real plant Gd
scl(s) belongs to the set Π of plants that

differ from the nominal plant up to an additive uncertainty.

Mathematically, this set can be defined as follows

Π =
{

Gd
scl :

∣

∣

∣
Gd

scl(jω)− G̃d
scl(jω)

∣

∣

∣
≤ l̄a(ω)

}

. (39)

where l̄a(ω) is the worst-case bound on the additive uncer-

tainty. Thus, each member of this set satisfies:

Gd
scl(jω) = G̃d

scl(jω) + la(jω), (40)

where la(jω) is the additive uncertainty and |la(jω)| ≤ l̄a(ω).
According to [20], [18], in order to have all elements of the

set Π stable, it is sufficient that,

|la(jω)| < β(ω) (41)

holds. Here, β(ω) is given by

β(ω) =

∣

∣

∣

∣

∣

G̃d
scl(jω)

Gcl,des(jω)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Gff (jω)

Gfb(jω)

∣

∣

∣

∣

, (42)

where Gcl,des(s) represents the desired closed-loop transfer

function given by (23), while Gff (s) and Gfb(s) are defined

by

U(s) = Gff (s)Qref (s)−Gfb(s)Qs(s), (43)

where the transfer functions Gff (s) and Gfb(s) represent the

feedforward and feedback parts of the overall control structure,

respectively. The robust stability condition (41) can be derived

by rewriting the overall control structure in a more compact

form and then employing the Nyquist stability criterion. The

overall control structure can be derived using (15), (28) and

(29) as,

U(s) =
(ǫs+ 1)2C(s)

C(s)−A0(s)e−2Ls

[

1

Γ(s) + e−2Ls
Qref (s)

+
C(s)−A0(s)

(

Γ(s) + e−2Ls
)

C(s) (Γ(s) + e−2Ls)
Qs(s)e

−Ls

]

(44)

with

Γ(s) = (ǫs+ 1)
4
+ ǫs (ǫs+ 2) .

By using (15), (28) and (29), the robust stability bound (42)

can be rewritten as

β(ω) =

∣

∣

∣

∣

∣

Γ(jω)

(ǫjω + 1)
2

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

C (jω)

C (jω)−A0 (jω) (Γ(jω) + e−2Ljω)

∣

∣

∣

∣

(45)

with

Γ(jω) = (ǫjω + 1)
4
+ ǫjω (ǫjω + 2) .

Inclusion of the disturbance estimator within the IMPACT

structure can increase robustness of the system to uncertainties

in the plant parameters. At high frequencies, β(ω) converges

to a constant value if degC(s) = degA(s) = 2 + degA0(s).
This can be shown by selecting C(s) = (T0s + 1)n and

A0(s) = an−2s
n−2 + an−3s

n−3 + · · ·+ a1s+ a0, since

lim
ω→∞

β(ω) =
Tn
0

ǫ2an−2

. (46)

In the case when degC(s) > degA(s), β(ω) goes to infinity

at high frequencies, i.e.

lim
ω→∞

β(ω) → ∞. (47)

Another observation is that selecting a lower value for ǫ, in

order to reduce the transient in setpoint tracking, reduces the

robustness of the system. Thus, there exists a tradeoff between

performance and robustness.

V. NUMERICAL AND EXPERIMENTAL ANALYSIS

In this section, our experimental setup is introduced. Then,

simulation results based on identified system models are given.

Finally, experimental results are presented.

A. Experimental Setup

The experiments are conducted on two similar five degree-

of-freedom manipulators, fabricated by the Centre for Man-

ufacturing Technology (CFT) Philips Laboratory. The experi-

mental setup that is used in the experiments is shown in Fig. 5

with its schematic representation shown in Fig. 6, respectively.

During the experiments, the horizontal degree-of-freedom

marked with number 1, shown in Fig. 6, is used in both

manipulators. Two manipulators are connected to the same PC

via ethernet connection and control software is implemented

in Matlab/Simulink 2006a. The sampling frequency of the

controller is 500 Hz. The time delay Td due to communication

between the master and slave robots is emulated in software.

In all experiments, the following smooth Coulomb friction

compensation law is used,

τm = τ̂c,mtanh (αmq̇m) + um, (48)

τs = τ̂c,stanh (αsq̇s) + us, (49)

for the master and slave robots respectively. The Coulomb

friction compensation coefficients, obtained by means of an

empirical estimation procedure, are αm = αs = 50, τ̂c,m = 1
and τ̂c,s = 0.6 for the master and slave robots, respectively

[15]. The nominal transfer functions, G̃m(s) and G̃s(s) for
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Fig. 5. Philips CFT robot.

1

2

3

4

5

Fig. 6. Schematic representation of Philips CFT robot.

the master and slave robots, respectively, are obtained using

frequency response function (FRF) measurements, with a

multisine excitation signal [21]. For simplicity, we consider

only inertia and viscous friction terms for the nominal manipu-

lator dynamics. Therefore, the following second order transfer

functions are fitted to the frequency response measurements

of the master and slave manipulators,

G̃m(s) =
0.0641

s2 + 1.005s
=

1

15.601s2 + 15.673s
, (50)

G̃s(s) =
0.1013

s2 + 0.2325s
=

1

9.871s2 + 2.295s
(51)

respectively. In all experiments, the local control laws are

designed in continuous time using (13)-(14) and then dis-

cretized using Tustin approximation. Furthermore, the tuning

of the control laws is performed for the optimal tracking error

performance.

B. Illustrative Simulations

In this section we present results of a simulation case-study

which illustrates application of the proposed IMPACT struc-

ture to the PERR based bilateral teleoperation problem. First,

the absorption of a ramp type of disturbance is considered.

Then, robustness of the system dynamics against parametric

uncertainties is analysed. The master and slave models that are

used during the simulations are given by the transfer functions

TABLE I
PARAMETERS USED IN SIMULATIONS

Parameter Master Slave

Sampling time [s] 0.002
Real mass, Jm & Js [kg] 15.601 9.871

Modeled mass, J̃m & J̃s [kg] 7.801 4.935
Real viscous friction, Bm & Bs [kg/s] 15.673 2.295

Modeled viscous friction, B̃m & B̃s [kg/s] 23.51 3.443
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Fig. 7. Results for disturbance absorption of a ramp disturbance. Reference
(- -) and actual (–) master angles are shown in the upper left part of the figure.
Delayed reference (- -), actual slave (–) angles and the disturbance (− · −)
are shown in the lower left part.

(50) and (51), respectively. The parameters of the master and

slave manipulators are given in Table I. These parameters

are obtained by fitting (16) and (17) to the transfer functions

(50) and (51). For simplicity, in simulations we consider only

inertia and viscous friction terms in both the real and nominal

manipulator dynamics. The modeled values of the inertias

and viscous friction coefficients correspond to 50% level of

uncertainty.

The first case-study is related to absorption of a ramp

disturbance. The corresponding results are shown in Fig. 7. In

this simulation, the reference is a step-function qref (t) = h(t),
defined as,

h(t) =

{

0.1, t ≥ 0

0, t < 0
. (52)

The two plots at the top of this figure show the reference

qref , position qm of the master manipulator, and the difference

(error) between them. The position qs of the slave manipulator,

the reference delayed by Td, and the scaled disturbance (with

a scaling factor of 0.01, being scaled for the ease of plotting)

are shown in the two plots at the bottom of Fig. 7. The

disturbance absorption polynomial is selected as A0(s) = 1
and the lowpass filter parameters are n = 3 and T0 = 2. The

main controller parameter is selected as ε = 0.045. The actual

time delay is Td = 0.25 [s] and the modeled time-delay is

L = 0.3125 [s] corresponding to an uncertainty of 25%. It can

be observed from Fig. 7 that the influence of the disturbance is
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Fig. 8. Robustness analysis for different n values.

absorbed reasonably fast and that the steady-state value of the

output remains the same as before the disturbance is applied.

Furthermore, it can be observed that the master-manipulator is

also affected by the disturbance, however its influence vanishes

after the transients. Smaller values for ǫ, n and T0 can be

selected to improve the control performance, however at the

cost of decreasing the robust stability.

In Figs. 8 and 9, we show results of the robustness analysis

when the disturbance absorption polynomial is A0(s) = 1.

The main controller parameter is selected as ǫ = 0.03. The

modeled and actual time delays are the same as in the previous

case. The additive uncertainty bounds |la(jω)| together with

the robust stability bounds β(ω) are depicted in these figures.

The robust stability bounds are plotted in Fig. 8 for T0 = 0.15
and for three values of n: (n1, n2, n3) = (15, 8, 3). It can be

observed from this figure that the robustness of the system

improves if n is increased. The robust stability bounds are

plotted in Fig. 9 for n = 3 and for three values of T0:

(T01, T02, T03) = (10, 5, 0.15). It can be observed from this

figure that the robustness of the system improves for higher

values of T0. The fluctuations observed in Figs. 8 and 9 at

frequencies higher than ω = 100 rad/s are caused by the

mismatch between the real and nominal values of the time-

delay.

C. Experimental Results

In this section, first experimental results demonstrating

the tracking error performance of the local controllers are

given. Then, tracking performance in the case of bilateral

teleoperations is presented. Finally, robustness of the IMPACT

structure to uncertainties in time-delay and its disturbance

rejection performance are shown. A repetitive second order

reference trajectory, which takes approximately 6 seconds, is

used during the tracking experiments whose details are given

in the Appendix A. The individual tracking error performance

of each manipulator for the local control laws given by (13)-

(14) is shown in Fig. 10. The local controller parameter for this

experiment is selected as ǫ = 0.04. It can be noticed from this
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Fig. 9. Robustness analysis for different T0 values.
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Fig. 10. Individual tracking performance of master and slave manipulators
using the local control laws. Reference (- -) and actual (–) master and slave
positions.

figure that the steady state errors remain for both the master

and slave robots, since the local controllers are only of the lead

filter type with no integral action included. The absence of the

integral action in the local control laws can be realized when

the fitted transfer functions of the master and slave robots (50)

and (51), respectively, are inspected according to the Remark

2.

The results related to the case when no IMPACT structure

is applied and without time-delay (Td = 0), are shown in Fig.

11. In this experiment, the teleoperation scheme shown in Fig.

3 is implemented with only local controllers given by equation

(13). The local controller parameter for this experiment is ε =
0.045. It can be observed from Fig. 11 that, even when time-

delays are not present in the teleoperated system, an offset

is present in the tracking errors and now also affecting the

master. The results when IMPACT structure is not applied and
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Fig. 11. Results for bilateral teleoperation without the IMPACT structure
and without any time-delay. Reference (- -) and actual (–) master positions
are shown in the upper left part of the figure. Delayed reference (- -), actual
slave (–) positions are shown in the lower left part.
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Fig. 12. Results for bilateral teleoperation without the IMPACT structure
for 0.25 second time delay. Reference (- -) and actual (–) master positions
are shown in the upper left part of the figure. Delayed reference (- -), actual
slave (–) positions are shown in the lower left part.

a time-delay of Td = 0.25 seconds is emulated, are shown in

Fig. 12. The local controller parameter for this experiment is

ε = 0.09. It can be observed that the position errors of both

master and slave manipulators are quite high (at the level of

50%) and fluctuate around a non-zero value.

The results when the IMPACT structure is applied are

presented in Fig. 13, with the local controller parameter,

ε = 0.045. The parameters of the lowpass filter C(s) are

selected as T0 = 2 and n = 3. It can be observed that

the offset in the error, which can be thought as a constant

output disturbance, is mostly reduced and the tracking error

is significantly improved (the maximum after the transient
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Fig. 13. Results for bilateral teleoperation with the IMPACT structure with
Td = 0.25 seconds. Reference (- -) and actual (–) master positions are shown
in the upper left part of the figure. Delayed reference (- -), actual slave (–)
positions are shown in the lower left part.
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Fig. 14. Results for bilateral teleoperation with the IMPACT structure with
Td = 0.5 seconds. Reference (- -) and actual (–) master positions are shown
in the upper left part of the figure. Delayed reference (- -), actual slave (–)
positions are shown in the lower left part.

vanishes, is below 5%). The remaining peaks in the error

occur when the position signal changes direction, which can

be due to imperfect cancellation of friction at low velocities.

The results with the IMPACT structure when a time-delay of

Td = 0.5 seconds is introduced, are shown in Fig. 14. For this

experiment, the values of the parameters of the local control

laws and the low-pass filter C(s) are, ε = 0.0535, T0 = 3 and

n = 3, respectively.

Finally, the results with the IMPACT structure in situation

when there are mismatches in time-delay and disturbances

are presented. The results of the experiment for a virtual

ramp disturbance acting at the output of the slave are shown
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Fig. 15. Results for disturbance absorption of a ramp disturbance. Reference
(- -) and actual (–) master positions are shown in the upper left part of the
figure. Delayed reference (- -), actual slave (–) positions and the disturbance
(− · −) are shown in the lower left part.

in Fig. 15. After the system is settled, approximately at 85

seconds, the disturbance is added to the output of the slave.

The local controller parameter is selected as, ε = 0.05.

The parameters of the lowpass filter C(s) are selected as;

T0 = 2 and n = 2. It can be observed that the effect of

the additional virtual disturbance is mostly absorbed and only

a small amount of steady-state error remains (at the level

of 2%). Finally, the effect of a mismatch in the modeled

time-delay is investigated, where Td = 0.25 and L = 0.275
corresponding to a perturbation of 10%. The results of this

experiment are presented in Fig. 16. For this experiment, the

values of the parameters of the local control laws and the

low-pass filter C(s) are, ε = 0.0675, T0 = 6 and n = 4,

respectively. It can be observed from Fig. 16 that the tracking

error increases since the controller parameter is increased.

However, the system is still stable against the mismatch in the

time-delay, which illustrates the robustness of the IMPACT

scheme to uncertainties in the plant model and unmodeled

dynamics.

Remark 3: For the level of uncertainty considered in the

results, the tracking performance of the IMPACT algorithm

is comparable to approaches such as scattering [9]. However,

for higher level of uncertainty especially in the time-delay, the

tracking performance of the IMPACT algorithm would likely

be worser. Therefore, from the results obtained in this work,

the IMPACT algorithm can be considered as an alternative to

such approaches.

VI. CONCLUSION

An IMPACT structure to compensate for time-delays and

disturbances affecting a bilateral teleoperation system is pre-

sented in this paper. It incorporates a Smith predictor and

a disturbance estimator designed for an expected class of

disturbances. Both the Smith predictor and the disturbance es-
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Fig. 16. Results for bilateral teleoperation with the IMPACT structure with
Td = 0.25 and L = 0.275 seconds. Reference (- -) and actual (–) master
positions are shown in the upper left part of the figure. Delayed reference (-
-), actual slave (–) positions are shown in the lower left part.

timator are implemented at the master side of the teleoperated

system. We design local controllers for the master and slave

manipulators by means of frequency response measurements

and a suitable pole placement criterion. Coulomb friction

is compensated by means of a suitable nonlinear feedback

term in the local controllers. For formal stability analysis, the

Nyquist criterion is used. There is a significant improvement in

the tracking performance of the bilateral teleoperation system

compared to the case when the IMPACT structure is not

applied. The presented simulation results verify disturbance

rejection capabilities and robustness to parametric uncertain-

ties using our control approach. Moreover, the experimental

results confirm the benefits of the algorithm against the afore-

mentioned issues.

As the next step, the IMPACT approach should be extended

to teleoperated systems featuring manipulators of nonlinear

dynamics with multiple degrees-of-freedom. For this purpose,

nonlinear internal model control and different type of dis-

turbance observers can further be investigated. It could be

beneficial to investigate the compensation of more complicated

low velocity friction effects by means of friction observers.

Furthermore, the robustness and disturbance rejection capa-

bilities of the IMPACT approach can be investigated in other

bilateral teleoperation architectures, such as force error based

and 4-channel control architectures.

APPENDIX A

REFERENCE TRAJECTORY

The equations of the repetitive third order reference tra-

jectory mentioned in Section V-C are introduced here. The

acceleration of the reference trajectory is comprised of seg-

ments which are piecewise linear w.r.t. time. The equation of
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the reference position is given as follows,

qref (t) =































































q0,1(t), t0 ≤ t ≤ t1

q1,2(t), t1 < t ≤ t2

q2,3(t), t2 < t ≤ t3

q3,4(t), t3 < t ≤ t4

q4,5(t), t4 < t ≤ t5

q5,6(t), t5 < t ≤ t6

q6,7(t), t6 < t ≤ t7

(53)

with

q0,1(t) =
1

6
j
(

t3 − t3
0

)

+ p0,

q1,2(t) =
1

2
a (∆t1)

2
+ v1∆t1 + p1,

q2,3(t) = −
1

6
j
(

t3 − t3
2

)

+
1

2
a (∆t2)

2
+ v2∆t2 + p2,

q3,4(t) = v∆t3 + p3,

q4,5(t) = −
1

6
j
(

t3 − t3
4

)

+ v∆t4 + p4,

q5,6(t) = −
1

2
a (∆t5)

2
+ v5∆t5 + p5,

q6,7(t) =
1

6
j
(

t3 − t3
6

)

−
1

2
a (∆t6)

2
+ v6∆t6 + p6,

∆ti = t− ti for i = 1, . . . , 6

where v, a and j represent the selected bounds on the

maximum velocity, acceleration and jerk of the trajectory

respectively. Furthermore, the positions pi = qref (ti) and the

velocities vi = q̇ref (ti) for i = 1, . . . , 6 are given as,

p1 =
1

6
jt3

j
+ p0, p2 =

1

2
at2a + v1ta + p1,

p3 = −
1

6
jt3

j
+

1

2
at2

j
+ v2tj + p2, p4 = vtv + p3 (54)

p5 = −
1

6
jt3

j
+ vtj + p4, p6 = −

1

2
at2a + v5ta + p5,

p7 =
1

6
jt3

j
−

1

2
at2

j
+ v6tj + p6 (55)

v1 =
1

2
jt2

j
, v2 = ata + v1, v3 = v = −

1

2
jt2

j
+ atj + v2,

v5 = −
1

2
jt2

j
, v6 = −ata + v5 (56)

where p0 = qref (t0) is the initial position, with

tj = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6 =
a

j
, (57)

ta = t2 − t1 = t6 − t5 =
v2 − v1
a

, (58)

tv = t4 − t3 =
p4 − p3

v
(59)

which can be calculated using (54), (55) and (56). For the

experimental results introduced in Section V-C, p0 = 0.2[m],
v = 0.05[m/s], a = 0.05[m/s2], and j = 10[m/s3], respec-

tively. Once, the algorithm is started at t0 (i.e. t0 is given), then

the switching time instances ti for i = 1, . . . , 7 are calculated

accordingly.
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modified by internal models for integrating process with dead time,”
IEEE Trans. Autom. Control, vol. 46, no. 8, pp. 1293–1298, 2001.
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