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1. Introduction 

1.1 Flow measurement in large-scale transport systems for 
natural gas 

In the past det:adel;! the USe of gaseous fuels has grown sharply. Consequently, thl!: impor. 
tance of accurate measurement of la.t~ amounts of gas has been a major inte1'e!;lt of all 
gas transport companies. This has resulted in eophisticated calibration techniques and in 
the development of accepted flow standards. However, recent studies reveal tha.t) the un­
certainty in the measurement of large volumes of gas must be estimated to be, at best, 
0.7% of the actual flow (van der K8JIl (1990)). According to tb.i~ study the origin of the 
uncertainty lies. primarily in the metering device) and is caused by uncertainties in the flow 
standards and by installation clfecta of the device in the metering station. The present 
study is devoted to the characterization of the flow upstream of the flow metering deviCf: 
and thus deals with the second cause of uncertainty described ",hove_ 

FOI a.;CUIOlote flow mea.$uretn.ents most flow metering devices, e.g. orifice plates and 
turbine meters, need a certain length of straight pipe upstream of the device. This allows 
the de<::"'y of the disturb:a;Qcea io.trodll.wd by benda, valv~ and other components normally 
encountered in transport systems for natural gas. IT the length of the straight pipe is. 
!>ufficiently luge the flow will obt;l.in a $I,dficiently developed state to allow accurate flow 
measurements. The length required depends on the type of metering device and on several 
parameters such as, the Reynolds number of the flow, the wall roughness and of course the 
type of the disturbances. 

Traditionally, the length of the straight piece of pipe upstream of the flow meter 
needed for thE flow to settll!: down, hil.$ been detemli1Jed from previouJ> experieuce- How­
ever, often this design requirement is obtained from results for flows at different Reynolds 
numbers or with different disturbances. Recent research has shown that the strlLight pipe) 
for example prescribed by the ISO standard on orifice plate metering and used in existing 
installations, might have an inadequate length for certain types of upstream disturbances. 
The result is that this uncertainty on installation requirements leads to an increased un­
ccrt;l.inty in the results of the How metering. 

An obviou5 possibility to reduce the uncertainty in flow metering is the in-situ cali­
bration of the metering devi=_ However, for economical and practical reasons this option 
jl;! I)ot fea."lible. A second possibility is to condition the flow by means of flow straightl!:ners_ 
However, even though flow straighteners may remOVE ccttiloin type>;! of disturbances very 
efficiently, they do not deliver ide;;!.! flow oonditions in all situations. Furthermore, the dis­
turbances introduced by the straighteners themselves, again need a straight length of pipe 
to >;I4;!H1e down. Finally, straighteners will introduce undesira.ble extra pr_\,1t1l: 10B$l$. 
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The present. study is devoted to a third a.Itern30tive: Prediction of the influence of 
specific pipe arrangements on the flow to determine the correct inst30llation of the flow 
meter. Obviously, an important part of the prediction of Ul(~ installation effects is the 
pr(;didioJ\ of the decay of disturbances presf;Dt in the flow. As mentioned above recent 
research has shown that the upstream pipe length requirements as po~cd by the metering 
standards (e.g. ISO-5167 or ANSII API-2530) might be inadequate for certain types of 
disturbances. A plausible cau!l(~ for the inadequacy is an under-prediction of the relaxation 
lengths, i.e. the length needed for a disturbance to decay fully. As illustrated by, for example 
Klein (1981) the distance required for a full development of turbulent pipe flows may exceed 
140 pipe diameters. In contra8t, in most standards for flow metering and in most standard 
textbooks (e.g. Schlichting (1967)) the flow is considered to be fully devdoped a.fter 25 to 
1.00 pipe diameters. 

A disturbance which is notorious for its slow decay, is the disturbance generated by 
a combinat.iotl of two out-of-plane bends of the pipf::. When the gas passes through ~uch a 

L
'·' 

'. ,.·.U If r: , .\ ....... , 
.... ;~. ____________ .Wi.::...1.\ .... ____ . 

; ; ~ --j -- ~ 
I ' '.,r' '-, 

Figure 1. 1: A schematk view of ~wjrliflg pipe flow 

configuration the flow acquires 3.0 axial vorticity component, which results in the so-called 
"swirlini' flow. The flow downstream of the bends is characterized by streaJJJ.li,l()s with a 
helical shape (Fig, 1.1). In addition to the slow decay of the swirl, swirl also affects the 
performance of the metering devices considerably. In II. turbine metf;r, ~ Salami (1984) 
concludes, even 3. swirl angle of 2D means a likely error nf 2% in the measured m<U!H flow. 

Clearly, near a surface mdering station, in underground irll.Il.sport systems for natural 
g30S, 3. (:mnbinatioll of two out-of-plane b~~nds is very likely to be en(:olllitered j see Fig. (1.2). 

Ori fice Plales 

Inlel 

20U 

Figure 1.2: A schematk vi~w of 1/1(' pipe manifold in the:3 )( et orifke-plate metcccun "Ol"l~ Statenzijl 
No<m:J" of D"t<,ll G&lunie 

Hence, for the prediction of installation effects in large-scale transport aystemB for llatural 
gil.!l, the study of swirling pipe flows is very relevant, The work described in this thf~sis is 
devoted to the prediction of the decay of disturb3.m:(~s with swirl in turbulent pipe flows. 
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1.1.1 Experiments on the decay of swirl 

Although the dfed of swirl on flow meter performance was a.lready obBel'ved in the eN"ly 
1900's, detailed experiments were only possible with the advent of advanced experimental 
techniques, such as hot·wire, hot-film probes and laser-doppler velocimetry. Consequently, 
the amount of detailed experimental work available in the literature is limited. Work found 
in the literature aimed at the prediction of the deca.y of 8wirl in turbulent :flows is equally 
limited. The first study in this connection has heen performed by Kreith & Sonju (1965). 
Other studies have been performed by, Nystom & Padmanabhan (1985), McManus et al. 
(1985), Mottram & Ra.wat (1986), Algifri et al. (1987), Halsey (1987), Mlilottingly & Yeh, 
(1988) and Kitoh (1991). Perusal of these studies reveals that apparently the deayof 
swirl is not fully understood, although all studies agree in the sense that they predict a 
slow decay of the swirl. It is reported that typical "half distances" for swirl decay are jn 
the order of 50 pipe diameter$. However, the reported decay rates exhibit a considerable 
scatter. For example, Mottram & Rawat (1986) predict that the swirl deca.ys with a decay 
roefficient >., operating through the factor exp(->.x/D), equal to >.;;;;;; 0.5!, where f is the 
friction factor for fully developed flow as defined by Blevins (1984). On the other hand 
Nystom & Padm<LDa.bhan (1985) and Habey (1987) eugge,t that a. better estimate would 
be a>. of 0.75/. 

Furthermore, roost experimeJ;lb rolllltioned hen: co;J;leider Q;J;Ily one type of swirl, are 
perfonned for only one Reynolds number and are performed in pipes with fixed degree 
of roughness. As a consequence, the relevance of these studies to the metering problem is 
limited. Most experimental work is performed at a. much lower Reynolds number (typica.J. 
values are Re ;;= O(lO~)) than the Reynolds number occurring in large-scale transport 
syateme for ga.srous fuels (typical values al"e Re = 0(101 ) ••• 0(108 )). For a l>u(:C¢$sful 
extrapolation of the experimental results to operational conditions} detailed knowledge on 
the deca.y rate of the disturbance is needed of the effect of parameters such as the Reynolds 
number, the wall roughness, and the swirl type. As illustrated by the scatter in the reported 
decay coefficients, apparently the knowledge for a reliable extrapolation is incomplete. 

Though, for the purpose of obtaining mor-e information O;J;l the effect of pa:rameters 
such a.!! the Reynolds number, the wall roughness, and the swirl type, in this study BOme 
exploratory measurements at a low Reynolds number will be reportw, the empha.sis ie put 
On thr;: numerical modelling of the decay of swirl in turbulent pipe flows, rather than on 
performing extensive parameter studlea through measurements 

1.1.2 Numerical modelling of the decay of 8wirl in turbulent pipe ftOW8 

Since the early eighties} numerica.l prediction of turbulent flows has become common prac­
tice for engineering purpOSe!!. Since then a. massive amount of work concerning the pre­
diction of turbulent :flows is reported in the open literature. However, very little work is 
directly applicable to the problem of the n:laxa.tion of disturbances in pipe flows. Oontrary 
to the bulk of the work for engineering purposes, the geometry of the ptoblem at hand 
is very simple. However, the requirement on the accuracy of the prediction of the devel· 
opment of the pipe flow is stronger than the commonly required accuracy for engineering 
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purposes. Since the numeri(:a] pn.-dic.tioll of turbulent flows involves moddling of certain 
aspects of the flow) this modelling has to be considered very carefully for its effect on the 
accuracy of the prediction of the decay of the swirL 

In the present study the turbulence modelling is biUled on the so-caned one-point­
closure schemes for turbulence. At prt;aent and in the foreseeable future, in an engineering 
enviromDf..-nt, only these schemes seem to be among the few fea.sible for the prediction of 
tmbuletJ.t flows at high Reynolds numbers. Unfort,matcly the one-point closures Me not, 
and will not be, the ultimi'l.te a.ilswer to the prediction of turbulent flows. Especially the 
modelling of the class of "complex" flows, to which the swirling flows belong, provides 
serious difficulties. Since the one-point-closure schemes hea.vily rely on empirical input, for 
eVEry neW daBS of flow much work is required to tu.ne the coefficients in the scheme. 

Baaed on predidions of flows in complex geometries like industrial burners and vor­
tex tubes, it appears thl).t for flows with swirl most researchers agree that only second-order 
dosme schemes are capable of ca.pturing the physicli of the flow. However, for rela.tivcly 
simple swirling flows, like the swirling :How in a. straight pipe, Dot much information is 
av.,.jla.bh: in literature and it is felt that additiona.] research is necessary. 

1.2 Thesis overview 

In the second chapter or this thesis an overview is given o{ the most widely used models 
of turbulence. A description is given of the assumptions on which the models are based, 
sta.rting from the most general closure s(:hl-:m!;, the Reynolds Stress Model of turbulence. 
To reveal some of the conccptual differences the lower-order schemes are derived from the 
more getJ.eral schemes. Focus is on the moddling of flows with swirl. 

Chapter 3 d(~als with the numerical techniq,l(:s used in this study. Most of these 
techniques are existing techniques, though not often used for pipe flows with swirl. 

In chapter 4 the prediction ofaxi.symmetric Bwirling pipe flows will be discu.ssed in 
detail. Employing exiating turbulence closure schemes we will derive simplified exp(c9sions 
for the turbulent stresses. These simplified expressions allow us to a,sHCSS the predicted 
effects of swirl on the turbuleoCf; a.s predicted by the various rndhods. A detailed description 
is given of the conscqU(~I\Ce9 of the various assumptions on the prediction of the decay of 
swirl in tutbulent pipe flows. 

The question whether th!; assumption ofaxisymmdry in swirling pipe flows is valid 
will be i'tddr-essed in chapter 5. Numerica.l experiments are used to investigate the sta.bility 
of the :How against non-axisymmetric disturbances. 

In chapter 6 elCperimental results are presented. The results presented in this chapter 
are first results of an extensive systematic study of turbulent pipe :Hows with swirl. 

Finally) in chapter 7 the results of the preceding chapters Me 8UInmarized and the 
numerically obtained predictions are compared with the results of the experiment. The 
thesis is concluded by a discussion on the feasibility of numerical predictions of insti'l.llation 
effects. 
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2. Turbulence modelling and swirl 

2.1 Introduction 

Though it is generally accepted that tht! bi!.llic physics of turbulence is captured by the com­
bination of the continuity equation, the time-dependent Navier-Stokes equations and the 
energy equation, 1 2 limita.tions in computer capacity make it impossible to solve the equa­
tions directly for most flows in practical situa.tions of technological interest. Many of the 
flow~ encountered in practice involve complex geometries and are of a thre&dimensional 
and non-homogeneous nature. The result is that virtually all scientific and engineering 
calculations of nOD,-hivial turbulent flows at high RcYD,olda-number involve some kind of 
rnodelliJlg. The only class of models Cil.p<Ioble of handling the wide variety of Bow~ eD,coun­
tered in an engineering environment is the class of one-point closun::~. In this chapter an 
overview of the m~t commonly used one-point-dosuJ:c schemes is given. 

A "difficult>! class of flows from the modelling point of view is the di!.ll~ of the 
"complex" flows. They distinguish themselves from "simple" flows in the sense that instead 
of to one strain the flow is subjected to additional rates of strain. These additional strains 
can be caused by velocity gradientll- in other directions than the main strain, curvature of 
strearnlin~, buoyancy and ooriolis forces. As dj~cussed by Bradshaw (1973) thc~e secondary 
strains can have surprisingly strong effects on the turbl,llenCEl" structure. 

A relatively Bimple "complex" flow is a swirling flow. A swirling flow is 11. flow with 
a mean vorticity component in the direction of the main flow. The structure of this flow 
indeed strongly differs from the structure of the simple shear flow. Hence not all turbulence 
closures are capable to oorrectly describe this How. To appreciate some of the causes of 
the deficiencies of some turbulence closures we will start by describing tbe most general 
one-point-dooure schemes, the schemes ba.sed on transport equations for the second-order 
moments of the turbulent motio:p,s. Emanating from these clooures we will derive the lower­
order closure schemes, in order to address the conceptual differences between the models. 
At the end of this chapter a. few typical examples of calculations of swirling flows l.I~ing the 
different turbulence dO$ures are given. 

I. llere we will often denote the rombination of the eontinuity, N avier-Stokes ~d energy equations, 
!limply by the term "Nl\lIier-Stokes equatiol1Jl" . 
2. For the flows under eon.eider~tion in this study; tile energy equation is superl!.UOIl&. 
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2.2 Second-order-closure schemes 

2.2.1 The Reynolds-averaged N~viet'-Stokes equations 

The nlotion of fluids is governed by the continuity equation and the Na,vier-Stokes equa­
tions. In an incompressible Newtonian flow these equations arc written as, 

(2.1 ) 

and 
aO ( ~ ) ~ 1 2 ~ ~ 
~ + U· V U + - 'V P - vV U ;;; F 
vt p 

(2.2) 

where 
o denotes the velocity, 
P the pressure, 
/I the kinematic viswaity, 
p the density of the fluid 

and 
F the external forces acting em the fluid. 

The Navier-Stokes equa.tions are a set of non-linear equations. A measure for the 
nonlinearity ill the Reynolds number, 

with 

and 

UL Re",,-
1/ 

U denoting a typical velocity scale) in this work the mean velocity 
Umo= is used, 

L denoting a. typical length scale, in this work often the radillB 
R, or the diameter D, of the pipe; ia used. 

For small values of the lteynold~ numher the non-lincar character ill not significant. Distur­
bances in the flow will be damped by viscous effects (repreaentcd by /I'\;12U), and tbe flow 
will be stahle. Hence the equa.tion Carl be solved by numerical means. When the Reynolds 
number becomcB higher) the relative importance of the villcous t(;rms will diminish. The 
possihility arises that above a critical ma.gXlihldf~ of Re disturbances in the flow will grow. 
'l'iHl( .. ~dependent vortex-like 8iructures) in turbulence terminology often d~~noted as ~ed· 

dies") appear in the Bow. The largest eddies CaJl n:main in existence by extracting energy 
from the mca.n flow. Owing to proceS!le8 like vortex stretching the energy contained in these 
eddies is transferred to smaller scale eddies. The Reynolds number b<L!:l(xl 011 this smallaca.lc 
is of ord(.~r unity and the energy contained in the small-aca.le eddies is eventually dissipated 
by molecular effects. The cascade of eddies will have a. strong effect on the la.rge-acaJe struc­
ture of the flow. Apart from extracting energy from the mean flow, th~; eddies also serve 
as: a carrier of mmncnlUIIl. Hence, in turb\llcnt l1ows, the excha:og(~ of momentum will he 
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strongly enhanced a.g compared to the sta.ble laminar :O.ow. Thus if one wants to describe 
such un!ltable :O.ows, one has to take all these eddy-like structures into account. However, 
in most flows relevant to engineering purposes the reoolution of the small scale structUre!> 
is beyond the capabilities of the current generation of computers. An illustration is given 
by Speziale (1991): "To gain appreciation of the task, ~onsider the fa~t that eecnomiaJlly 
feasible direct simulations of a turbulent pipe flow at a Reynold.; number of 5001000-4 
tUt"bulllnt jll)'W that, although nontrivial, is far from the most difficult encountered-would 
require a computer 10 million timeS' fq,qtcr than the GRAY YMPJff So in general obtaining 
a solution by numerical means is not feasible. 

To obtain a «ljOlvable" problem the mathematical artefact of turbulent stresses is 
introduced_ These apparent stresses are obtained by splitting the flow-field quantities into 
a mean (time averaged for "steady" flows and ensemble a:veraged fot tirnf.~dt::pendent flows) 
part and a fluctuati-og part, i,e,; 

Utota.l = (j + i1, Ptotal "" P + p and Ftotal = F + f 
Here the uppercase symbols denote the mean components, 
the lower case symbols the :O.uctuating components_ 

These expressions are then substituted into the original NOLv1er-Stokes equations. The next 
step is to apply the averaging procedure aga.in on the equations. The result resembles 
the original Navier"Stokes equa.tion!l but contains an extra term, the divergence of the 
second-order correlations of the fluctuating parts. 

(2.3) 

atj+(D.V)D+~VP_!lV2ii+V.(: :: :)~j (2.4) 
{jt P mlI i1W UIW 

The second-order velocity correlations arc usually denoted as «Reynolds stresses". 
They serve, like the viscoue terms, as a distribution mechanism for momentum_ Hence the 
unsta.ble, essentially time-dependent, character of the original equations is weakened. Since 
the effect of all small-scale structUTe$, On the mean-flow quantities is now contained in the 
Reynolds-stre!l!;l ten!lOr, Eq. (2.4) is solvable by conventional numericaJ methods, provided 
that the Reynolds str¢S!le!;l ca.n be expressed in terms of mean-flow quantities. In order to 
obtain a. cloeed !;let of equations at least six additio1;lii!.l equations have to be provided. Thill 
is kp-own as the closure problem for turbulent flows. 

2.2.2 The R@ynolds-stress transport equations 

To solve the dosure problem of turbulence a. relation hM to be established between the 
Reynolds stresses and the mean flow_ It seems natural to investigate the interaction of 
Reynolds stresses and the mean flow by formulation of transport equa.tions for the Reynolds 
stresses. The succe38ive steps in the deriva.tion of a transport equation for any component 
of the Reynolds-stress tensor are: 
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• Subtract the mean-momentum equations from the full momcnlutn equations, the 
fluctuating momentum equations arc obtained. In index notation this yields; 

au, + U
j 
au, = ~tLj au, _ a (UiUj - i.I;UJ) _ ~ f}p + 11 8~uj . (2.5) 

at f):r;j {)Xj {)Xj pax, 8xJ 

• Multiply the equation for u, by Uj, multiply the eq\latiOII tLj by Uj and add the 
results. 

• Apply the average opera.tion to the resulting expression, and rearrange lhe different 
terms. 

The result is the following set of transport equations for the Reynolds ~tresses, 

Rate 0( change 

f'roduetion: P;j 

Diffusive transport 

i}u:ifIJ U fhr;rrJ --+ k--"" 
iJt OXk 

+~ 
p 

{j (-- fi'Ui S J71IJfj 8mTli) -- U;U·Uk+- k+- jk-V~-
fJ:r.: k ] P J P f)n 

(2.6) 

The procedure outlined above does nol autorna.tically yield this representation of the tran~­
port equations. They are obtained after some rearranging of terms in the original f..'ql~a.tions. 
The rearrangement presented ",hove reaults in terms with a. dear physical intcrpreta.tion 
(which is given at the side of each term). 

2.2.3 Interprdation of terms in the ReynoldB~Btre66 h'anaport equations 

The terms in Eq. (2.6) can he interpreted as follows: 
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• Rate of chatlgc of the turbulent stresses 
This term represents th!; uaua.1 transport term for a quantity, here UiUj, (:O~lveded 

by the flow. 

• Production of the turbulent stresses Pi; 
'fh!~ produdion term represents the transfer of energy from the mean components 
of the flow to the fluctuating componcnk 

• PreBsure-strain interactioo, qii, 

The pressure· strain term represents the redi~tribution of energy between the com­
ponents of the Reynolds-stress tcn~or. hI order to represent only redistribution of 



energy it is necessary that this term is traceless. This can be achieved by a special 
decomposition of the original pressure tenna, that results from the last step in the 
procedure outlined above 

The l~t term on. the right-hand side is traceless, which can be shown using the 
continuity equation. The traceless terms are combined in the pressure-strain term. 
The non-tracele$$ remainders <LrC included in the diffuaion term. 

• Viac.oua diaaip:;I.tioo of the turbulent stresses f-ii 

This term arises from a decomposition of the viscous terms. 

• Diffusive transport of the turbulent stresses 
The diffusion consists of three wntributions. 

A turbulent-diffusion term 
Thia term involves the third-order correlations of the velocity. 
A pressure-diffusion tenn 
This is the non-traceless part of the pressure-velocity correlation. 
A viscoWl-diffuaion term 
Again this term is the result of a rearrangement of terms. 

Apart from terms depending on the mean-flow quantities only and the Reynolds 
stresses themselves, the Reynolds-stress transport eq1.lationa also contain triple-velocity 
and velocity-pressure correlations. Thus the formulation of the transport equations for the 
second-order correlations has led to new unknown correlations of ",till higher order. To 
obtain 2L closed set of equations these higher-order correlations have to be expressed in 
terms of known quantities, such as mean velocity, mea.n pressure and the Reynolds stresses 
themselves. 

2.2.4 The modelling of the Reynolds~stre8S tranBporl equationB 

For a highly turbulent flow in parts of the flow field far away from walls or other in­
terfering objects it is possible to find <Iopproximations for the higher.order terms in the 
Reynolds-stre!is transport equations in terms of known quantities. These approxima.tions 
are individually fitted to a set of simple "test" flows in which the different effect", they 
represent can be considered in isolation, i.e. :Bow problems dominated by one of the effects. 
To obtain some degree of genetality {Of the ca.se where several effects are simultaneously 
to be accounted for, the minimum requirements the approxima.tions should obey are: 

• invariance: ea.ch of the approximations must be independcl;It of the coordinate system 
used; 

• realizability; the approximations must yield physically realistic results, e.g., the 
total kinetic energy contained in the Reynolds·stress tensor must remain POSI-
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tive 3.nd certain 8ymmetry conditions ha.ve to be preserved (Schwarz inequality) 
(Schumann 1976); 3.nd 

• il.ccura.cy; for Gild! of the individual ~test~ /iow~ the predictions have to be accurate. 
Even the set minimum requirement.~ leads to depressingly complica.ted a.pproximate expr~s­
sions for the terms that mquire modelling. In the p~t they were viewed too complicated 
for practical use Lumley (1978). liowev!.~r, recently some propos3.b have been put forwa.rd 
for models satisfying cOlllpldt: realizability Shih et al. (1991) for a limited class of flows. 

MOI'I!. apprmcimations are derived under the Mlsumption of the "high-Reynolds­
nUlnber hypothesis" which implies that: 

• the large-scale motions are not a.ffected by viscosity (the coeflkients axc independent 
of llr;:); and 

• the small-scale motions are isotropi(: (the viscous dissipation does not depend on 
geometrical effects). 

The terms in Eq. (2.6) which do contain higher-order torrelations and thus ne(:d mod­
elling a.m Ul(~ diffusion, pressure-strain (l.nd dissipation terms. Especially the accuracy of 
the model for the press1m:-shaill interaction term proves to be important for realistic 
predictions of flow~ mllploying turbulence models bi'lSt~d OIl the Reynolds-stress equations. 

2.2.5 The model for the PJ:"~s9ur'e-8train interaction term, $;j 

The ba.!lic form of the pressure-strain interaction model is due to RottiJ. (1951), Naot et al. 
(1970) and Laun(kr d al. (1975). It is based on the notioll that: 

• the pressure-strain interadi{m only redistributes energy; 
• a turbulent. now not subjected to any strain tends to become isotropic; and 
• in turbulent flow Bubject to a single mean strain the ani60tropy of the turbulence 

tends to grow. 
Hence the pressure-aLrain interaction term consists of two redistribution mecha.niam~: 

• the ~return to iaoLropy" term, ~ij.l; and 
• tll!~ "rapid part", ~I].l' 

The return-to-isotropy term a.riS<.~s dut: to the mutual interaction of the fluctuating velocity 
cornponent~ oIlly. The simplest model to mimic this effect is linear in the anisotropy tensor 
(Rotta 1951), i.e. 

witb 

and 
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G\ (I. dimensionless constant, 
t. the rate-of-dissipation of th~ total energy contained in the 

Reynolds-stress tensor, 

aij the anisotropy tensor given by, 

("!T,1l] - 18;j k) 
k 

(2.7) 



with 
k the contraction of UiIZi given by: 

the tu.rbu.lent kinetic energy. 

The value of C1 reported in litera.ture varies between 1.5 and 5-0-
Some extensions to this linear apprw;:imation ha.ve been proposed by for example 

Lumley (1978) and Reynolds (1984). At this moment none of these extensions has obtained 
a wide acceptance. 

The "rapid part" is caused by the interaction of the mean flow with the ftuctua.ting 
velocity components. The corre~ponding model is based on the symmetry properties of an 
CX;!.I;t expression for the pressure-strain interaction where the pressure term itself does not 
appear (derived u~ing a Poisson equation for the pressure). For the "rapid part" Launder, 
Reece and Rodi (1975) Buggested, 

(2.8) 

_ 8C2 + 2 (D .. _ ~8.-P) 
11 ., 3tJ 

with 
Cz a dimensionless consta.nt, 
Pi; the production of 'lP,!Zj, see Eq. (2.6), 
P the contraction of ~j, 

a.nd 
D,j given by, 

Dii = - (UiW:~ + ijjlTr~~;) 
In literature the model due to L<l.under d (l.l. i~ ~ometimes referred to as the "Quasi­
lsotropil;" model (QI model)_ Launder et al. found the first group of terms on the right­
hand side of Eq. (2_8) to be the dominant one, so a somewhat simpler model proposed by 
N wt et al. (1970) should provide a. good a.pproximation: 

4>;i,2 = -C2{P;i - ~6;iP) (2.9) 
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The constant C~ in Eq. (2.9) will differ somewhat in magnitude from the (:odTiclent of the 
first term involving c~ in Eq- (2-8), th;~ i~~ (l(d(:r to compensate for the omitted terms in 
Eq. (2.8). This model is sometim~ referred to as the UIsotropization of Production" modd 
(lP model). 

Experimentally isolating the effects of the redistribution of energy, or "pre6s~lre 
6crambling~, between the components of the Reynolds-Stress tensor by the action of shear, 
is not a realistic option_ Instead the model is tuned to an analytical model of t.urbulence 
for the CMe of isotropic turbulence 6ubjeded to a fa.!:lt distortion_ This theory (Rapid 
Distortion Theory) Batchelor & Proudman (1954)) is based on the observa.tion I.hal., on a 
time scale which is small enough, the interaction of the turbulence with itself is negligible. 
As a consequence the fluctuating momentum eql)atil)rlil, Eq_ (2_5) may be linearized and 
solved for the fluctuating velocity components. The "rapid-part" of the presBure-strain iH 
required to conform to this ROT limit. Expression (2.8) conforms automatically to this 
limit, irrespective of the magnitude of C:!. ,The second form, Eq- (2_9) satisfics I.hc RDT 
limit only wheu C2 ta.kes a value of 0.6. 

According to Fu et Q.l. (1987) the shorter form, Eq. (2.9)) contains a deficiency. De­
pendiug on the rotation of the reference frame it predicts a different beha.viour- The reason 
is that individually the production term and the convection term in the Reynolds-stress 
transport equations, Eq_ (2_6), depend on the kinematic state of the frame of rd€rencc_ 
However, it can be shown that the difference between the producl.ioIl term a.tld the con­
vection term does not depend on the rotation of the fri'l.me of rt~ft~rellce. As a remedy Fu et 
(lJ (1987) propose I.be following form for the rapid part 

with 

and 

Cij the convection of Reynolds stresses, given by, 

8fr;uj 
C;j :::;: UI-f)-­

XI 

C the contraction of Co], 

(2.10) 

In general, the flow configurations for which the modds are used hardly ever resemble 
the test flows that are used to tune the coefficients of the model. Hence, the magnitude of 
these coefii.:;ient!! (:annot be considered rigidly fixed. On the contrary, when one wants 1.0 
conform to simple flows, like a developed boundary-laycr flow, extra conditions are posed 
on the value of the coefficients of the pressure-strain iotcra(:i.ioIl_ If all transport terms 
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of turbulence ate neglected) which indeed is iiL valid assumption in the outer region of a 
developed boundary layer, the model fot: the Reynolds-stress transport equations simplify 
drastically. Oomparison of theee a.pproximate transport equations with the measured stress 
levels indicates that for the IP pressure-strain model, ' 

1- C2 ----c;- :;:::: 0.27 . (2.11) 

It ig clear that in general it will be impo~sible to simultaneously satisfy OIlI conditions 
with a single set of coefficienh. Especially when the IP model is used) the consequence 
is tha.t different sets of coefficients have to be ueed for different flows. The "$tanda.rd" 
coefficient set for the pressure-attain intera.ction is obtained by reiiiLXing the constraint for 
"Return to isotropy" and giving priority to the ~Rapid distortion" result, C2 = 0.6. In 
combination with the boundary-layer condition, Eq. (2.11), this results in, 

and c~ "" 0.6. 

For flows with swirl Or streamline curvature Gibson & Younis (1986) argued that the 
coefficients should obey a second relation, also based on a. comparison of meaaured stress 
levels in a. curved flow and the l;Iimplified transport equations for the Reynolds stresses in 
a curved flow, 

Combining the condition act by tbe flat boundary layer, Eq. (2.11), and one for the curved 
boundary ia.yer n~slJ.lts in, 

c~ = 3.0 

Finally, for buoyant flows the fla.t boundary-layer condition) Eq. (2.11), imposes 

1 ;lC2 ~ 0.22 

Hence, Gibson & Launder (1978) proposed 

and 

for flows with buoyancy effects. For clarity the different sets that are in use for the different 
flows a.re summarized in Ta.ble (2.1). 

2.2.6 The rate of dissipation of turbulence, (ij 

The ba.!lia {or the dissipa.tion model is the concept of local isotropy. In the high Reynolds­
number limit it is assumed that the small-scale motions are isotropic. Since the villCOUB 

dissipation takes pia<;e at the small~t length scales it is assumed that) 

(2.12) 

where deJlot~ the rate of dissipation of the turbulent kinetic energy, k 
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Flow C1 C~ Reference 
~tanda.rd 1.5 0.6 La.under et al. (1975) 
curvature 3.0 0.3 Gibson & Vounis (1986) 
buoyanq 1.8 OJ) Gibson & Launder (1978) 

......... ·.1 

Thble 2.1: A f~w eumples of lilt co~fficitnts tlstd for tht IP PN:88t1N:-strnin mQd~IIQr diff~1?Rt Iype of 
!lQWB 

However, also the rate of disaipati()ll, l, of the turbulent kinetic energy is unknown. 
Again a transport equation provides an expression for €. In the high-ReY)Jolds-nllInber limit 
two terms in the transport equation for ~ are dominant: 

• genera.tion of ama.ll-scale vorticity due to "self stretching" of turbulence; a.nd 
• viscous destruction of small-scale vorticity. 

Most commonly used is the following model, which is rompa.tiblc with decaying grid tur­
bulence a.nd also pruvide~ a source term necessary for shear layers, 

Since the diffusion of fluctuating vorticity is of minor importance it ia approximat~-d with 
a relatively crude gradient diffusion model. The resulting transport !.-"qua.tion reads as, 

(2.13) 

where 
C" C,l, C(2 

denote dimensionless constants. 

Eq. (2.13) is subject to much criticism and numerous a.mendmcnta bave been proposed, for 
example by Pope (1978) to correct for the otherwise anomalous predictions for the round­
jd flow, a.nd by Sardina tt 61. (1985) to account for effects of system rotati()n. What 
is considered to be a ma.jor weakness is that Eq. (2.13) neglects any rotational strain. 
Hence for isotropic decaying grid turbulence it yields the Bame decay rat~ independent 
of the rotation of the frame of reference. In strong oontra.(!t to this result) experiments 
and numeric:al simulati()n~ indicate that the decay rate of turbulent kinetic: energy c:<tn be 
strongly ,educ.ed by a 8ystem rotation (Bardinaet al. (1985), TriLugott (1958) and Wigeland 
& Nagib (1978)). 

In fact the rate of dissipiLtioo, c" fixes a length scale, £O, of the large-scale motions, 

Obviously, for conceptual reMOns it is very easy to criticize the construction of a turbu­
lence macro scale based on small·scale information. Moreover, this ddlnition or length scale 
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contains no directional information. Especially for flowlJ. with shear in multiple directions 
this appears inadequate. Some researchers have attempted to develop all equation for the 
length scale based on a two-point velocity correlation tensor (Wolfshtein (1980)). For ho­
mogeneous turbulence it can be shown that the resulting models are equivalent to the 
sta.ndard form of the model for the dissipation-rate equation. It is also po~sible, without 
too much loss of generality, to derive the dissipation equation from the two· point correla.­
tion tensor, see Speziale (1989). Hence it is concluded that at least some of the criticism 
mentioned above is DOt justified. 

None of the proposed modifications to the approximate dissipation-ra.te equation 
did result in a generally well-behaved model applicable to wide da.ss of flows. Therefore, 
they did not find a wide acceptam:e in the CFD community. Eq. (2.13) is still the most 
widely used iWd successful form for the dissipation equation, even though it contains a. 
number of serious deficiencies. In the light of this Speziale (1989) stated that "the kind 
of ad hoc adjustments in the modelled dissipation rate equation that hav(! been considered 
during the past decade appear to be cQ'Unter-prQductive~. 

2.2.7 The diffusive transport of Reynolds stresses 

Owing to the relative minor importance of the diffusion of the Reynolds stresses, the modela 
for the diffusion term received not aR much attention as the pressure-strain and di!;lsipatioll 
te~ms. Mostly only one of the three diffusion terms is taken into a.t.oount, namely the 
turbulent diffusion of the turbulent stresses given by the third·order correlation. The model 
for this term is again inspired by a transport equation for this third-ordet correlation. Upon 
drastic simplification of this transport equation one arrives at the following expression for 
"U;fIj"ilk . 

k (lffljIl1" ~ 8u;'U j ) 
~ "" -C.- U;ILI-a-- + Uj!lI-J;l-- + 'mlZI-[J--

t XI VXI XI 
(2.14) 

Even this cxp,(;$sioll generates a massive amount of terms in anything but a simple shear 
flow in a cartesian coordinate system. For this reason expression (2.14) is often simplified 
into: 

(2.15) 

which is simply !lxprcssion (2.14) with the first two terms on the right-hand side discarded. 
As a result of this simplification expression (2.15) does not satisfy the inva.ria.ncc condition. 
Despite this fundamental shortcoming expression (2.15) has been used with about equal 
success as expression (2.14), indicating the minor role the diffu~ion of the stresses plays in 
the transport equations fot the Reynolds.stresses. 

2.2.8 The basic;; Reynolds-$tress turbulence model 

If we collect all modelled terms, substitute them into the Reynolds-stress transport equa.­
tions, combine the equa.tions for the Rcynold8 stresses with tbe equation for the dissipation 
ra.te <tnd tbe equations for the mean :How variables one ends up with a. closed set of equa­
tions. The combination of Reynolds-stress transport equations and the equation for the 
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dissipation rate is uBually denoted as "the Reynolds-Stre~s Model" (RSM) of turbulence. 
It is emphasized that this basic version of the model is capable of handling flows at high 
Reynolds Ilumber, far away from walls} without buoyancy effects and chemical reactions 
and only in a stationary frame of reference. It has the following form: 

Rate of ebange 
(lUiUj U &u,'Uj --+ k~-= 

fJt {)X~ 

Production 

Pressure-strain inter&(:tion -Cl .: (u;u-; - ~6 .. k) - C2 (p. .. - ~ii .. p) k • J 3'J 'J 3 IJ 
(2.16) 

Disaipation 

Diffusive transport 

itnd 

(2.13) 

For mo~t flow configura.tions} defining appropriate initial and boundary conditions needE:d 
for these equations may be fu from trivial. Since the model is not suited fot regions close 
to solid walls, the "hounda.ry~ conditioos have to be prescribed in a region far away from 
solid walls. Often these "boundary" conditions are based on empirical reiatj(ms. Defining, 
a proper initial condition is especially difficult for the rate of dissipation f. For most flows 
of practical interest, direct mea.suremeot oC t is not feasible. Hence} yet again the initial 
condition for t must be derived using empirical relations. 

Th(mgh the modd Was developed during the seventies and the potential of it. was 
appreciated from the beginning, it took almost two decades until the practical use of the 
model reached some degree of acceptance. III 1981 at the land-mark Stanford Conference, 
Kline et at. (1982), the Evaluation Committee declined to acknowledge a. dernonstrated 
superiority of the second-order closures over traditional closures. According to Launder 
(1989) ooe of the rea.aons W<Yl UJ(~ linlited computational capability, resulting in, for exa.m­
pIe, solutions with una.cceptably high levels of numerically induced diffusion. HowcV(~r, since 
computer power has undergone a continual growth, it is Dilly now that the real capabilities 
of the second"order closure schemes are gaining full appre<;iation. 
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2.3 Derivation of lower-order models 

2.3.1 The Algebl."ak Stl."ess Model 

Now that a model for the second-order turbulence closure scheme is established, it is possi. 
ble to derive lower-order schemes from it. The first "closure schemesll were developed much 
earlit.-r than the RSM, the first one beiD.g the mixing-length model ofPrandtl (1925). Hence, 
by deriving the low-order schemes from the s~OD.d-ordcr closures we reverse the c;hrono­
logical order of events. However, by using this ordering of the presentation of the various 
turbulence models the connections between the dostlre schemes and more importantly the 
differences in approxinJ.;!.tions used, can be elucidated more deiiLrly. 

As indica.ted above, a.t the time the Reynolds-stress model was developed the com· 
putational capabilities were inadequate to make use of an "mcpensive" closure scheme like 
the RSM for a. wide class of flows. In an a.ttempt to reduce the costs of 7 additional partial 
differential equations the Algebr;Lic Stress Model was developed, The ASM ia based upon 
the observation that the only terms containing derivatives in the equations of the RSM of 
the Reynolds stresses are the convection and diffusion terms. Remove these terms and the 
equations become algebraic in the stresses. Instead of completely removing the differential 
forms of the Reynolds stresses, Rodi (1976) proposed to a.pproxima.te the convedion and 
diff\l~ion termS by terms which are algebraic in the Reynolds ~tresscs, i.e. 

Convection(ffil,i}) ~ U;;j Convcction( k) 

and 
O·ff . ( ) 'Ui'Uj D'ff ' (k) I US)On ~ ~ T I uSlon , 

In a stationary flow the total transport, i.e. the convedioo minus the diffusion, of the 
turbulent kindic energy equals the difference of production and dissipation of turbulence 

Convection(k) - Diffusion(k) "" P -~. 

Hence, 
Convedion(u;u;) _ Diffusion(tz;'l7j) ~ u:; (P _ €) , 

Substituting this expression into the basic RSM equa.tiona, (2.16) yields the ASM equations, 

u;ui (1- C~) (PiJ/€ - ~SIJP/€) 2 
k = C1 +P/E-l + "315;; (2.17) 

One unknowo remains in these expressions, the turbulent kinetic energy k. An equ;LtioD for 
Ie may be found by contracting the approximate Reynolds-stress transport equations (2.16), 
This yields a transport equation for k. 

ak + Ut ak = P _ € + ~ (Ck~~ &k ) 
{jt {jx, {Ix, E &x ... 

(2.18) 

with Ck a constant of order unity, 
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Instead of a!;V!;rI non-linear partial differential equations the clo~ur!: now consists 
of two nuu-linear partial differential equations, one for € a.nd on!: for k, and a system 
of six algebraic equatiuns. Oile of the consequences of the algebraic approximation of the 
tr;LJ1sport terms i~ that memory effects in the turbulence are neglected. Thf; Reynolds-stress 
tensor becomes an instantaneous function of the velocity field. 

2.3.2 Two-equation eddy-viscosity models 

In most calcula.tions for engineering purposes the k - f turbulence model is still u6(;d. 
Its merits are simplicity, roh\latnes8 and economy. However, it is based on further drastic 
<t!:ISu~nptiorl8 on th(~ structure of the turbulence. Compared to the RSM it has a more 
limited applicability, especially in flows with secondary strains. The connection with the 
RSM can be appreciated by considering a simple shear flow, ouhid~~ the immediate vicinity 
of walls, with f)UI/OX2 as only non-zero strain (Fig. (2.1)). According to Eq. (2.17), the 

Figure 2.1; A flow ~~hjed to a lIingle she&l' 

dominant stress in the 1-component of the Na.vier-Stok~;a ~:quation, "!fi1l2 can be expressed 
as, 

In the same manner also U? can be determined from Eq, (2.11). 

Substituting the last expression into the former results in: 
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In a simple shear flow) like the outer region of a turbulent boundary-layer flow, the total 
production, P and the rate of dissipation, ~, will be equal (local equilibrium). By assuming 
Jocal equilibrium and i~ohopy of the turbulent stresses everywhere this result is generalized 
and the Bou~5inesq-approximation for the turbulent stresses is obtained. 

- rr.:1l:' - lit - + - - -(). 'k (
8Ui aUi) 2 

• , - aXi {)XI 3 'J 
(2.19) 

with Vt given by III = Cl'le2/~ 
and CI' a. constant, for most Bows CI' = 0.09 

Together with the tr<Lnsport equations for Ie and f again a closed set of equations is 
obtained. Howe....-er, a gradient approxim;l.tion of the diffusion terms in the Ie and E transport 
equation is mOre consistent with an effedive viscosity model for the turbulent stresses. Thus 
these equations simplify into, 

ak + Ur {)k "" P _ E + !.... (:::.. {)k) 
at l):Ja aXr Uk 8$/ 

(2.20) 

and 

(2.21 ) 

Together, Eq. (2.19), (2.20) a.nd (2.21) form the k-~ turbulence model. The closure scheme 
now consists of two coupled non-linear partial differential equations and an explicit expres­
sion for UiU;' The k-~ model is atill a transport model, i.e. it ;i.llows transport ofturbulence. 
However, coefficie)J.ts like CI' are evaluated <L!>suming local equilibrium. Hence models like 
the Ie ~ f model must be considered iL!i first-order correction5 for ""local equilibrium~ modelil 
like the Prandtl mixing-length model. 

The k-€ model iB just one of the many possible two-equation eddy-viscosity models. 
In general any combination of quantities can be used tha.t yield the corred dimension for 
the eddy viscosity, Le. 

[III) 0= [U) [LJ, 
where [U) denotes a typical velodty scale and [L) a typical length scale of the flow. In the 
k- € model the velocity scale is provided by the BqUaJ"C root of the turbulent kinetic energy, 
le1/ 2, while the length scale is provided by a combination of k and" P/2/ f . Examples of 
alternative two-equation turbulence models are, the k - w model of Wilcox (1988), the 
k - w 1 model of Wilcox & Rubesin (1980), the q - f model of Smith (1984) and most 
recently the Ie ~ l' model of Speziale et al. (1992). 

2.3.3 One-equation and mixing-length models 

Instead of formula.ting an equation to fiji: the length scale one can alllO ~xplidtly specify a 
length scale. The turbljlence model then reduces to, 

VI::::; C;vkL 
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the Kolmogorov.Prandtl expression, a.ud 

where 
and 

8k U ak C k3/21 a (II~ ak) ~+ I-""P- D L+---
fJt 8~1 aXI (7~ aXI 

L denotes a typica.llength-scale for momentum exchange, 
CD a constant. 

The problem or (;ourse is to find an expression for L. In general it is only possible in 
very simple boundary-layer-like or jet-like flows. In these simple cases the length scale is 
determined by arguments based on a dimensional analysis. An important Msumption in 
this analysis is again that of "local equilibrium". 

The last simplification is to i;!SSurUc t.ha.t "local equilibrium" is obeyed everywhere. 
H()IJCe, all transport terms of turbulence disappear and the transport equa.tion for the 
turbulent kinetic energy reduces to: 

P PI C P au; (au; auj ) = f. Or 1 = t = I'~-a -a + -a 
i Xj Xj X; 

_ C a/'ll:! [Off; (iJU; iJU;)] 1/2 
/11- I' ' - -+­

ax; ax; OX; 

Thus the dosure scheme has been reduced to finding an expression for L. 

2.4 Modifications of turbulence models 

2.4.1 Wall effects and low-R@ynolds-numbe:t adaptation!;! 

(2.22) 

All models d(;Hc,ibed in the preceding sections are based on the "high-Reynolds. number 
hypothesis". Of COurSe this hypothesis is often Dot applicable. Examples are flows with 
strollg favourable pressure gradients, where rdarnina.riza.tioil can occur, or flows in the im­
mediate vicinity of a solid wall, where turbulent fluctuations in the direction normal to the 
wall are suppressed. In these situations the standa.rd turbulell~ closures fail. Either one 
has to abandon the hl,bulence closure schemes, for example by using empirical relations to 
characterize the turbulence, or one has to modify the turblllem;e rn[)dd. The first a.pproach 
is often used in wall-bollnded flows where the wall region is approximated using a logarith. 
mic law of the wall. Since it is an empirical rela.tion its appli(,:a.biJity is limited. In flows with 
strongly curved str(!a.IllliIJ(~s, flows dose to separation, or flows close to reattachment the 
vdo(:ity profile and the turbulence structure rna.y devia.te from the logarithmi(: la.w of the 
wall. For accurate prcdid.ioHs of, for example the wall shear stress, the second approach) 
of modifying the turbulence modds m;t.y be more a.ppropria.te. 

The basic Rt!ynold~ Stress Model, Eqa (2.16) is not fully satisfactory even before the 
immediate vicinity of a solid wall is reached. The model for the pn~sHllre-~tr.aill interaction 
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is derived assuming a non-bounded domain. In order to account for the wall effe<;ts in the 
region "not-too-near" to a solid wall, wall-reflection tenns are added to the pressure-strain 
model, e-g. L",uo.der d (II. (1975)- These extra. terms are rela.tively sma.Jl in magnitude, but 
have a long range (~ 1/x2, were :t:':l is the distance to the wall, see Fig. (2.2)). 

U+u' 

f\.9.-

TS~'77 ~77 J; 11 

Figure 2.2; The flow close to a 90lid wall 

In the immedi",te vicin.ity of the wall, a.parl from w"",l l:eftedion effects, also the 
effect of viscosity must be taken into account. The most important effects are: 

• In the viscous sublayer the molecular transport will be larger than the turbulent 
transport. 

• the scales of the energy-containing eddies and the dissipative motions overlap. The 
disaip",tive motion!)' do not obey local isotropy-

• the la.oge sc::a1e motio):l$ are likely to be i):llluenc::ed by vis~/lity. The coefficients will 
be functions of at least Rei (= k2

/ V€). 

An indication for the required form of the modifications ca.n be extracted from the limiting 
behaviour of the Reynolds stresses in the viscous sublayer. This beh",viour C.;LD be under­
stood by employing Taylor series expansions for the fluctuating velocity components, e.g. 
Ul = a.1X2 + blX22 + . _ ., with X2 taken normal to the wall a.nd the coefficients a.;, b;, ••• to 
be random functions of t, :t:'~ and X'l-, but not of X2. In a developed wall layer, the continuity 
cquatio):l imp~~, 

it? a? ;l;~+ ... , 
III b? x~ + ... , 
;;;t "'" ~x~+ ___ , 

"UilZ2 ~x~+ ... , 

and k "" ~(~+~) x~+ ... 
Thus as X2 approaches :retO j 

• U";""i tends to zero faster than U?" and Ill; 
• fI1fii / Ie tends to ?-Cto; and 
• 'U.l'U.2/~~ m;l.y be unifoIm across the sublayer. 

Using the same Taylor·series expansion it is also easy to verify that at the wall the rate of 
dissipation ca.n be written ~ 

ell 
k = €u/Ti;,'i = €33/t.i? = 2"€12/njU"i "" "4€22/Ul 
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and that the complete pressure-strain intera.dion, TIu;:/!- + tlj~) ,will vanish at the walL 
Thus the structure of the turbulence in the sublayer c!eariy differs from the strUcture in the 
high-Reynolds-number limit, illustrating the need for low-Reynolda-number modifications. 

The first efforts towarda low-Reynolds-number extensions for second-order closutes 
were made by Daky cd al. (El70), and HanjaJic & LauIldet (1976). Though nDt asymptoti­
cally correct the extended models performed quite well, e.g. Lai & So (1990). An overvi(~w 
of mOre recent efforts in this direction is giveII by Hanjalic (1990), I,a.under & Shima (1989) 
and Lai & So (1990). 

For the class of eddy-viscosity models much more work was done on low-Reynolds­
number extensious. A review is given by Patel et al.(1985}, who analysed eight different 
extt~tlsions. In general the modificatio]Js of the k - t: model consist of: 

• viscous diffusion is explicitly repreafmtL-ci in the momentum, the k and the t: transport 
equations; 

• a wa.ll dartlping function is introduced in the Boussinesq-approxirnation to account 
fot the suppression of fluctuations normal to the wall; 

• the G,,2 coefficient in the dillsipation rate equation is made dependent (1) Hc.t In 

order to accommodate to the final stage of decaying grid turbulence; 
• extra source terms are included in the equation for the rate of dissipation; and 
• for Ilumerical cOIlvenience often l = ! ~ t:w~lt is used l'I.lj dependent variable. 

According to Patel et (I.{. (1985) most of the proposed modifi!;a.tions lack a sound physi!;al 
basia a.nd ar~ tailored to one specific type of flow. 

~.4.2 Modifll:;stion" for curved flows 

The ~ta.nda.rd k ." ~ model, being an eff€ctiv(~ viscosity model, will have difficulties in 
accounting for the effects of multiple strains. An effective vis("-Qsity Inodel assumes the 
~tre~Sf~S and strains to be aligned, which is not. necessarily the case for flows 8ubject to 
more than one atrain. However, in the case of "mildly" complex !lows, where one stra.in 
dominates, the effect of a secondary strain on the structure of the turbul(!TJ(~t: may be 
predictable. 

A ajmpk (~xample of a "mildly" complex flow is a flow with a density gra.dient 
perpendicular to the direction of the wean flow. Depending on the sign of the density 
gradient the typicallength 8 cale on which momentum transfer occurs is either increased or 
decreased. Analogous to flows with a density gradient Bradsha.w (1973) proposed a similar 
behaviour for flows with streamline curvature. D(~pending on the sign of the gradient of 
the angular mmn(;ntllrll the flow is stabilized or desta.bilized, i.e. the typical length scale of 
turbulence is changed. 
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-I =;1 - {)U /;:\ = 1 + I-' t 
",(I 1 V X 2 

with j3 an empirical coefficient, often this constant is large, 0(10), 
e the extra stra.jn a.cting on the fluid, for example, U1! R, 

and Ri a Ri(.hard~on number fot curved flows, in this c~ Ri = '",&f: . 
a 1 X2 



For flows with longitudinal ~llrvature of the streamlines the extra strain E:, will be 
of the order -= ~ U11 R where R denotes the radius of the cUrVl;!.tufc (s= Fig. 2.3). For flows 

u, 

Figure 2.3: A flow with longitudinal CUl'nCure 

with swirl, e will be of the order e ~ 0, where 0 denotes the angular velocity. 

For the d~s of the two-equation eddy.viscosity models more general adapb.tiQ!:\ll 
are possible. Again the bMic assumption is that primarily the length scales are affected by 
streamline curva.ture. In the BouBsinesq-approximation an effective viS(:Ollity is proposed, 
ronshuded from the product of a typical velocity scale and a typical length Bcale, 

The curvature effects can be accounted for in two ways, directly through a modification of 
the coefficient CIS' or indirectly by a modification of the equa.tion determining the length 
scale (in this ca.se the (; equa.tion). 

Ex:amplca of the latter approach are given by La.under et al. (1977), Rodi (1979) 
and Shreenivasan & Padmanabhan (1980). In the approach of Launder et al. (1977) the 
aink term in the (-equation is modified according to 

2 

Sink "" C •. 2 (1 - C.Ri l ) ~ , 

where for longitudinal curva.ture 
Co denotes a coefficient in the range o ... 0.5 

and 

/lil = P U1 8U1R . 
t~ R 8X2 

l'br flows with swirl the same correction is used, however with a different value of Co. 
It is easily appreciated that for high rotation rates this modification is not well-behaved 
because the energy dissipation rate c;a.rt become negative. Rodi et 1,11. (1979) used a similar 
approach but partly to overcome the problems with Launder's modification they modified 
the sOurce term in the "'-equation instead. 



Les(:hziner & Rodi (1981), Pourahmadi & Humphrey (1985) and Pouga:r:€ & LakHh­
minirayana (1983) are eXlJ.mples of the first approach mentioned above. Instead of modify­
ing the f-equation, they adapted the coefficient C". io order to reflect effects of streamline 
curvature. For a 2·D channel flow, Pourahmll.di & Humphrey (1985) proposed a single 
expression for CI' as a function of the flow field. 

Q, R and S represent here complicated functions of P, ,and the velocity gradients. 

Leschziner & Rodi (1981) used a similar approach, also making the coefficient C iJ a function 
of Bow-field quantities, Pougare & Lak~hrniniraya.na (1983) used two different expreaaioflH 
for CI' for the 11l0trlellturn exchange in streamwise and spanwise direction to account for 
a nOD-alignment of stress and strain. An ovetview of several attempts to sensjti:?.e the 
eddy-viscosity models to additional strains is given by Lakshminira.yana (1986), 

The above menl,ioned modifications have one thing in common, they are all me3Jlt to 
repla.ce the RSM or ASM closure scheme. However, M already indicated in section (2.2.6) 
also the RSM Or ASM model contain deficiencies with respect to some iiLSPf;dH of rotating 
Bows. An expected effect of system rotation on the dissipation rate of turbulence is I1eith(~ 
correctly reflcdl.--d by jJ1(~ biUlit RSM and ASM nor by the modifications meJltjon(~J above. 

Intuitively, it is clear that an effect of rotation must be present. The transport 
of energy from the la(ge-Rcal(~ eddies towards the small· scale eddies is caused by vortex­
vortex interaction. Clearly, !\, IMge-scaJe background rotation will alter the dynamics of 
this interaction. In some situations the pr~scllce of strong rotational effects even reverses 
the direction of the energy cascade. Hence, at least one expects rota.tion to slow down the 
energy cascade. Indeed, this trend has been observed e;l(p(;rilnentally, e.g. Traugott (1958) 
and Wigeland & Nagib (1978), in decaying grid turbulence. To account for this effect 
Bardina et al. (1985) suggested an extra sink term in the €-equ<l.tion, 

Sink extra = -Co € n 
linear in the rotatioll ra.te, 11 and linear in the dissipation itself. To i'l,f;C".Ount for rotation 
effects in I1on-hornogenoo1Js Oow~ Bil.rdina et al. (1985) proposed, 

Sink elttrl), "" -Co f jfi,lJ.;jf2 

where 
{lij i!l given by, 

{lij "" ! ({JUi _ (JUi ) 
2 {J:r.i OXi 

However, this generalized modifi(:a.tion again leads to a model that becomes ill-behaved for 
situations in which a large rotation is combined with a. atrong deformation. 
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2.5 Calculations of swirling Hows 

2.5.1 Calculations based on eddy-viscosity models 

As indicated in section 2.4.2 one can expect eddy-viscosity based models to be inadequate 
for swirling flows. According to the literature the inability of the k - I:; model to reflect the 
salient features of switling flow is the assumed proportionality of the stress tensor and the 
str~n tenror. A cla.asical example of the performance of the Ie - I:; model is given by Boys<lo!:l 
& Swithenbank (1982) ) see Fig. 2.4. In contrast to this poor performance, the ASM 

10 

Figure 2.4; Predicted /IJld expuime.ntal cro68-8eCtiooal velocity profile jll a V(lIte.r tl.lbe, .8cp'~ k Swi&ll­
e.nbank (HIS2), - ASM model, - - - k - ~ model, 0 0 0 c:Kpcximent, Wo: inlet velocity, ro: radius of exit 
tube. 

predictions appear to be much better. Neveftheless) in other geometries the deficiencies 
of the k - (: model seem less pathological. Especially when some of the above mentioned 
modifications of the k - t: model are used, r¢nlts have been claimed to be quite satisfactory. 

For boundary-layer-like situations the modifications of the t-equ<LtioD due to Laun­
der (1977) and Rodi (1919) have proven to be workable. For example) the mciiL!J. veloc­
ity components in a flow over a spinning cylinder eQuId be predicted quite satisfactorily. 
However, application of such modification~ in a more complex geometry like two confined 
co-axial swirling jets were much leas aucce5Bful (Shreenivasan & Padmanabhan (1980)). 

C<L1culations of swirling pipe flows using ~me simple modifications for the k -
f model were performed by different authors. Examples can be found in Frith & Dug­
gins (1985) and in Kobayashi & Yoda (1987). By varying the coefficient 0" and by using 
different values of CI' for the different components of the Reynolds-stress ten.sor it was 
possible to find an acceptable agreement of predictions and measurements. 

2.5.2 Cal~ulationfl with Reynolds-stress and Algebraic-streBs models 

With the continuous growth of computer capacity and the advent of efficient l;Iumcri~al 
algorithms the acccnt on the <Lpplications have shifted from eddy-vis~ajty models towards 
Reynolds-stress and Algebraic-stress modds. While for flows with swirl in rela.tively sim-
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pIe g=metrics modified eddy-viscosity modelil seem fE~~iblej for more complex geomdrie~ 
second-order do~ums sccm indispensable. Relatively much work with second"order scheme~ 
Wail done in combustor-like geometries, where apart from swirl also strong n~circulation 
:;:onG~ arc prescnt. Indeed calculations by Hogg & Le~chziner (1989) for such geomdries 
indicate that the k - E model structurally overpredicts the level of the shear-stress compo­
nents. Hence a tra.nsitil)I( from a supercritical state to a sub!;riticai state of the How, akin 
to a hydraulic jump i'I.a can occur in free-surface flow, is not (;aptuted by the k - € model. 
In the results of a calculation employing a RSM this phenomenon was reprea(mted. 

A similar st.udy, performed by Visser et al. (l9S1), compared predictions employi~lg 
a k - € model, .a. RSM and an ASM. Much attention Wi'Ul paid to the effect of the r.a.te of 
confinement of the swirling jets. VisiI€r d al. concluded that for a low c(>Jlfinement rate 
the use of a second-order d()aure model was essential for ij.1J adequate prediction. For a 
high confinement rate the performance of the k ~ f model, the ASM and tk RSM was 
comparable. Although the prediction of the length of the recirc\)latio[) zone proved to 
be .a.ccurate and the prediction of the mea.n velocity components to be s.a.ti~fadory, the 
predictions were not perfect. In all cailes differences up to an order of 200% were observed 
between the predicted and mea.JHlred components of the Reynolds-stress tensor. 

Fin~lly, for a burner·like ~sembly, Nikooy & Mongia (1991) studied the effect. of the 
specific form of the model l)sed for the pressure-strain interadioo. Their results indicated 
that, wh(~~) uliing the standard values for the coefficients, the use of the QI or the IP model 
for the "rapid part" of the pressure-~t.ra.in interaction did not yield largf; differences in the 
predictions. However, varying th~~ values of the coefficients in t.be pressure-strain model 
did produce significant differences. It appeared that the coefficients defined by Gibson & 
Younis (1986) yielded superior results. 

Gibson & Younis (1986) performed an extensive analYliia of the physics behind the 
pressure-strain term (sec s()ction 2.4.2) in jet·like geometries. With their set of coefficients 
they managed to obtain a better condation of measurement and prediction for both the 
mean-/low qua.:ntities and the components of the Reynolds-stress tensor. However, a8 ShOWll 
ill Fig. (2.5), still large differences between measurement and predidion occurred in the 
far-field region of the jet. 

Fu et al. (1981) p(~rforllled ca.lculations for the same flow problem but found that it 
was necessary to modify the model for thc pressure-strain interaction (acctiotl 2.2.5). With 
this modification the agr(~!.mlellt of measurement and prediction also improved. In addition 
they concluded that models based on an algebraic approximation of the turbuhmt stresses 
are not appropriate for an adequate predidioll of the properties of .a. 1J()Il-confined swirling 
flow. 

2.5.3 Concluding I"emarks 

hI thi!! chapter we presented an overview of the well-known one-point turbulence models. 
For virtually all non-trivial flows likely to be encountered in an engineering environment 
only calculations eo:)ploying members of the class of one-point turbulence models may 
be expected to be feasible. However, depending on the characteristics of the flow not 
all members of this class are capa.ble of accurately predicting th(~ physics of the flow. 
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Figure 2.5; Predicted /llJd measured di$trihu(iOllS of Ih~ circl,lmf=ti.a1 velocity in II; single Bwirling jet, 
Gibson k Younis (l!I8B). - Gibson k Younis pI'C8BlIre-strain model, - - - L&under et 11./. p~t,ltMtr~n 
model, * * • exp/ll'iment. 

For "simple" flows like boundary-layer flows or pipe flows, models based on an effective 
viscosity perform very well. For ftows involving more than one length scale or subject to 
multiple strains the eddy-viscosity models cannot tepl'(!l)eot a number of features of the 
turbulence which may be vital for a. correct description of the flow. For these "complex" 
flows the second-order turbulence closure schemes, like the RSM and the ASM, a.ppear 
to be indispensable. However, experience with these models is stilllimiteci, and unlike the 
eddy-viscosity closures, where the k-t model became the "de facto" standard, no definitive 
vaxiant hail emerged. 

The flow to be studied in this thesis, a turbulent pipe flow with decaying swirl, is 
a,n example of a flow subject to more than one strain. According to Bradshaw's (1973) 
nomencla.ture it must be described as being of a "complex" nature. However, in contrast 
with the "complexity~ of the physics, the geometry of the problem a.t hand is very simple. 
It is this simplicity of the geometry tha.t distinguishes this study from the majority of 
~tudics n;po,ted io open litera,ture. Due to the simplicity of the geometry, the development 
of a turbulent swirling pipe flow is largely governed by the turbulent stresses. Most studies 
reporko.cl in the ljte~ature deal with ftows in more complex geometries. Examples found 
in the litera.ture include the prediction of the flow through bends, in industrial ov~s, 
and through turbines. Flows in these geomehies axe likely to be influenced by more than 
the turbulent stresses alone. Extra stresses, for example, pte.9.sure forres, ooriolis foreca 
or centrifugal forces, may be important as well. Hence, an inaccurate description of the 
turbulent stresses is expected to be not a.s critical ii.!l it will be for the description of the 
rda.xa.tion of swirl in turbulent pipe flow. 
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A second special fea.ture of 1he study of the development of a. t.urbulent swirling flow 
is the aspect ratio of the geometry. Experimental studies (see chapter 1) indica.te tha.t the 
distance reqllired for the decay of the swirl may be large, L/ D = 0(100). Especially when 
second-order closure schemes a.re uaed and when the elliptic cha.ri'l.(,:ler of the governing 
equa1ions ia retained the demands on compilter reaOurCeS may become la.rge a.!l welL 

Third and last specia.l fca.ture is that due to the simplici1y of the geometry the 
characteristics of the mean flow an~ almost fixed. Since the swirl OCC1]rring in large-scale 
gas transport systemH i!l rdatively low and the decay of the swirl is slow, for exa.mple 
regions with recirculation are not likely 10 occur. Hence, the streamlinll!'l will have a hellcal 
shape with a slowly varying pitch. 

The thn.'"C above mentioned features charadcriatj(; for a turbulent pipe flow with a 
decaying swirl: 

• the large influence of the turbulent stresses; 
• the extent of the dorna.in of interest; 

and 
• the almost "fixedn character of the mea.il flow, 

distinguish this flow from the flowa generally encountered in a.n engineering environment. 
'l'hel;lc features also affect choice of the numerical treatment as well as the ~lectioll of the 
turbulence lnodd. 

Since the swirl is known to decay slowly, the ellipticaJ. cha.racter of the flow may 
expeded to h!~ weak. When the elliptical character of the flow is neglected, the e<;O~lomy 
of the lJume6ca.l treatment may be enhanced dra.ma.tica.lly by using a "marching" proce­
dure. As a result a very fine discrdi~a.tion in radial direction become~ feasible which will 
enhance the a.ccma.cy of 1he prediction. However, second-order turbulence closure Bcbf:mca 
are sddom used in combination with paraboli~~d equations. Moreover, when tb{; full clo­
sure schemefl iLre retained) potentially the uwdl-poaedness" of the system of equations may 
be destroyed. To be COIJ6jgtent with the "parabolization:n of the system of equations, these 
turbulence dosures must be simplified a.!l welL In the present study thi8 parabolization will 
be follow!~d. 
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3. Numerical aspects of predicting 
turbulent pipe flows 

3.1 Introduction 
The ~tudy of turbulent pipe flow differs in several aspects from the study of turbulent flows 
normally encountered in the I;I.pplication of coInputational fluid dynamics for engineering 
purposes where the geometry considered is often of a. complex nature. As a result of the 
gL'Ornetrical complexity the flow is governed by different dynamical mechanisms. For ex­
a.tnple) pressure forces, centrifugal forces, effects due to denijity gradients and turbulent 
stresses mO!.y be equally important. 

In this study the geometry is of a simple nature, namely a straight section of a 
pipe. However, the flow in this pipe can be distinguished from the flows mentioned above 
because the aspect ratio of the geometry is large. Typically the length scale in longitudinal 
direction exceeds the diameter of the pipe by O!. factor of about 0(102). Owing to this large 
aspect ratio the physics of the problem is simplified considerably. 

A non-swiding devdopiI:lg pipe flow is largely governed by the equilibrium of pretlsure 
forces and turbulent stresses. The numerica.! treOttment of the turbulent pipe flows may 
benefit from the corresponding simplification of the physics. The Navier-Stoke~ equations 
reduce from elliptic to a form that is of a parabolic nO!.ture. For problems of a parabolic 
"",ture no boundary conditions have to be prescribed at the downstream boundary of the 
computa.tional domain. As a result a marching proced\lre can be used for the numerical 
integra.tion of the equations. The fully 3·D problem can be reduced to a sequence of 2-D 
problems in successive cross-flow planes while the iiLXiSYIDmctril; quasi-2-D problem can 
be reduced to a sequence of quasi·l·D problems. Thus the formulation of the numerical 
scheme may be less complex) the stability of the calculation may be enhanced and the 
computational effort is reduced considerably. 

Historically, simple viscous flows like pipe flows were amongst the first ones to be 
ta.ckled numerically. However, with the advent of large computers and sophisticated nu­
merical techniques the algorithms taking advantage of the parabolic nature of some flows 
fell into disuse. Extensive, commercially available, software packages have been developed, 
aiming at the numericalaolution of the Navier-Stokes equations for a wide range of appli­
cations. While these codes offer a large flexibility and efficiency for most complex flows) 
the flows that are of a parabolic nature are not treated efficiently by these codes. 

For the prediction of the full development of a. swirling pipe flow, algorithms tha.t 
do not take the parabolic character of the flow into account, are less suited. Due to the 
long distance it takes before the swirl decays the demands on computer resources will be 
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extreme. In cha.pter 4 it will be shown that the decay of swirl is la.rgely driven by the wall­
shear stress, Therefore, in this work special emphll.9is is put on the solution in the region 
close to the wall. This necessitates a detailed treatment of this region_ For turbulent flows 
it impliCii tha.t low-Reynolds-number models have to be used instead of the conventional 
"law of the waIF', Again the app\ica.tion of a marching procedure simplifies the use of the 
low-Reynolds-Dumber wodds. Finally! most commercially available codes arc available as 
a hinary only_ Ada.ptations of the turbulence models implemented in such codes is either 
difficult or impossible. 

One of the aims of the work presented here is to study the capabilities of different 
turbulence models in predicting swirling pipe flows_ For this purpose a code specially 
t~lored to the prediction of pipe flows has been developed_ For rea1lons of economy this 
code is baaed on a parl'lbolic description of the flow. However, more emphasis was put 
on the flexibility of the code than on its efficiency. The code waa designed to optimize 
the eMe of the development and test procesa of turbulence models rather than the pure 
c;ompu tational efficiency. 

The code developed for thi~ wIJrk is based on the finite-element aoftwa.re pack­
age SEPRAN. The SEPRAN package consists of a. "tool box" of subroutines. With these 
subroutines it is possible to construct fiv.ik'--element methods for solving a wide variety of 
problems. Flows that can be handled .a.nge from simple potential flows to vi~cous three­
dimensional and time-dependent flowil. The standard software package docs not contain 
the possibility of \,~ing two-equation or ASM and RSM tu{bulcnce models. However, the 
SEPRAN package is fully open and well-documented_ Hence, the SEPRAN pa.<:ka.ge (~a.n 

be adapted caaily-
, In the present approach only the preprocessing part, the procedures for ~olving 

the system of linear equation~, a.)')d the postprocessing part of SEPRAN were utilized. Of 
('-curse, for the caae of a.xisymmetric parabolic problems, the preprocessing and postpro<;e~s­
ing needs l'I..t'e only limited_ The most important part of the SEPRAN package used in this 
work is the set of subroutines for solving a system of algebraic equation!!_ Since SEPRAN 
is a finite-dement package the system of equations is solved directly. While a direct solver 
is inefficient for large systems of equations (number of equations (lI; 0(103 ___ 101 )), a direct 
S(llution procedure is feasible for smaller systenls of equations. Due to the paraholiza.tion! 
the problem reduces-for il.)(isymmetric flows-to a series of quasi-I-D problems and small 
systema of equa.tions. Hence, even though it is biitl:l<,-d on a direct solution procedure the 
resulting algorithm will be sufficiently faat. 

In this chapter a d()l)!;ription is given of the numerical trea.tment of the developing 
tutbulent pipe flow. First the question of the pata.bolization of the Navier-Stokea equation 
will be addressed, then aspects such aJJ stability and accuracy of simple pa.ra.bolic "model" 
equations will be treated ;I.IId finally a description is given of thE! implementation of the 
redl.l~:d Navier-Stokes equations in a finite-elemeot environment. 

The work described in this !;hapter is inspired to a large extent by ma.terial in 
standard te;JC;tbooks- The most important sources of infonnation used here are Anderson 
et al. (1984), B3ker (1985), Fletcher (1988a), (1988b) and Ilir~ch (1990). 
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a.l.l The red ueed N avler-Stokes equation and boundary-layer equations 

A large class of flow problems is chara.deri'led by the a.ppearance of a dominant Bow 
direction. Non-swirling pipe flow belongs to this claBS of flows. Due to the large aspect 
r;!.tio (R/ L <: 1) of the geometry, the length scale relevant for changes in the axial flow 
component is large compared to the length scale connected with the variations of the cross­
ftow-plane velocity component. For axisymmet,ic flow 3JJ. order-of-rn<tgnitude an.,.}yais of 
the I;ontinuity equation, written in cylindrical coordinates, 

I) 8 
8x (rU) + 8r (rV) ;;;;;; 0 

allsuming tha.t the gradients in axial direction scale with l/x and the gradients in radial 
direction scale with 1/ R, gives the expected smaller order of magnitude of the radial 
velocity component 

V R 
U == O(x) <: 1. 

In principle the derivation of the boundary-layer equations or of the reduced Navier-Stokes 
equations must be performed for laminar and turbulent flows separa.tely. However, the 
method of obtaining the reduced Navier-Stokes I':quations or boundary-layer equations is 
similar. Moreover, often the effects of tutbulcnce are modelled with an effective viscosity. 
Arguments a.pplying to la.m.inar flows thus will also apply to turbulent flows modelled 
with an effective viscosity_ According to Rubin (1984), in straight pipes the flow can be 
categori:;:ed in four types. The type of flow depends on the distance from the entrance. The 
four categories are (Fig. 3-1): 

i.'Y'E..;'~""'-" i/~~ : ............. : .. ,,,. ,,, .. ,""""',.,;......... .... : ............... . 
~ -~--, I 

i :: 

: {'. {'. ../ 

Enlty Region 
Enhance Region 

FUlly Developed Region 
Fully Vi~ous Region 

Figur.;! 3-l: Flow regime6 ill ~ dellCloping pipe Bow &«ording to Rubin (1fI84) 

• Immedi<tte entrance flow, x is order O( R/ Re). 
• Entry region flow, x i!;l order O(R)-
• Fully viscous flow, x is order O( RRe). 
• Fully developed flow, x:> Rile. 

(Note that for turbulent flows R~ mllst be replaced by a. Reynolds Dumber based on an 
"eddy~ viscosity, Rc" "'- U R/lleddy) 

37 



In the fh:~t region the flow experiences ~evere gradients close to the wall of the 
pipe where the inflow velocity ill- ~uddellly reduced to zero ;l.t the wall. For an a.cCur;l.t.e 
description of the flow field in t.his region it is required to itpply the full Navier-Stokes 
equations. In the other thr(:(~ regions the Navier-Stokes eq1,l;l.tions can be simplified. 

In the second region, 0(1) < xl R < O(R~) a boundary layer sta.rt~ to develop at 
the wall. Its development can be described by a simplified !let of equa.tions. Moat salient 
features of these simplified equations aJ:e: 

• the a.6sumption that the diffusion ofaxia.lly directed momentum may be ncglected 
in strea.mwise direction; 

• the pressure is conata.nt i!.Ct08S the boundary la.yer; and 
• the velocity component norma.l t.o the wall may be approxim;l.tcd using the continuity 

equ;l.tion. 
For a boundary layer developing <tlong the wall of a pipe, up t.o order O((Rlx)2) and in 
non-dimensional. form, the axial momentum, radial momentum a.nd continuity equa.tion Me 
apprmcimated by, 

and 

(using:I: "" :I:'IR, T = r-'/R, U;;;; U'/Umorm , V -"" V'/Um-. 

and P = PllpUm.o .... ~) 
rutilll n)om~rltnm 

fi (2) 1 a dP 1 [1 fi ( au)] - u + -- (rUV) "'" -- + - -- T- , 
Ox T fir- dx Re r fir fir 

radial momentum 

continuity 

fJP _ 0 
&r-

a () ax (rU) + {)r (rV) '" 0 , 

{(~apedivdy. 

The flow in the core region is (;()lIsidered inviscid. Here the flow is dominated by the 
equilibrium of L~J(; a.xia.1 pressure gradient and the a.::cderation of the flow in axial direc­
tion. Acl.ua.lly, the elliptic character of the equat.ions is reflected in the pre~~llm gradient. 
However, a.lso in t.he core region the axial pressure gradient may be considered uniform to 
first. order. Thus, in a numerical scheme, the axial pressure gradient ma.y be determined 
by the enforcement of conservatioil of the total ma.ss flow, i.c. 
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As a result the above set of equations may also be used for the core region and a marching 
procedure is feasible. 

Sufficiently far downstream, tJ;/R ;;;;;; O{Re), the "boundary la.yer" fills the entire 
cross-sectionaJ an~a alld the flow must be considered viscous throughout the cross-section 
of the pipe. Eventually, :z/ R :» O(Re), the variation of the velocity distributions in the 
axial direction will have disappeared and the flow CILll be considered fully developed. In 
these last two regimes ODC may expect tha.t the a.pplication of a. marching sch~e bMed on 
the equations mentioned above is most appropriate. 

For an axisymmetric swirling flow the situation is slightly more complicated. The 
system of equa.tions is extended with the equation for the conser-/a-tion of angular mo­
mentum. Furthermore, the approxima.tion of the equation for the conservation of radial 
momentum changes. The simplest adapta.tion of this equation is to assume an equilibrium 
between th(~ radial pressure gradient and the centrifugal forces. However, even in this simple 
formulation the feasibility of a man;hiog scheme can be endangered. As, the magnitude of 
the swirl changes Or even as the distribution of angular momentum changes in downstream 
direction, also the radial distribution of the pressure will change. As a result, at a given 
axial position, the axial ptessure gradient may be nOll-uniform. Near the pipe ccutre-line 
adverse pressure gradients can oC::CUt, while in the near-wall region the p~sure gradient 
may still be favourable. For too strong adverse pressure gradients a para.bolic deac::ription 
is invalid. 

The radial redistribution of angular momentum and axial IDO);ncntum are closely 
coupled. Strong redistribution of angular momentum often implies stagnant or reversed 
flow near the pipe axis. This effect is closely related to the vortex-brcakdown phenomenon 
often encountered in vortex tubes, see Benjamin (1962). 

A flow in solid-body rotij.tion iII a pipe of constant diameter, , a.t sufficiently high 
rotation rates, can sustain inertial wave motions and allow upstream wave propagation. 
Consequently, in general a parabolic descriptiou of the flow is invalid. For low r ... tes of 
rotation inertial wave motions cannot be sustained any more. For a solid-body rotation the 
critical swirl intensity can be calculated. Expressed in term'!)' of a "swirl number", 

Ii 
fUWr~dr 

S"" ::..Q-R.,---'-­

RJ U2rdr 
o 

according to Benja.min (1962) fot a solid-body rotation, the c::ritic::al value appe1l.rS to be 
S = 0.96. For lower ~wirl inteD~ities information of a downstream disturbanc::e c::= nO longer 
propagate upstream and a paraboli!; description will be valid. The critical swirl number 
depends 011 the distribution of angular momentum and the shape of the axial velocity 
distribution. For a general case, a. universal critic::a1 swirl number cannot be defined. 

Generally, 5wid induc£d in piping systems is of a low intensity, S < 0.5. Moreover, 
to first a.pproximation, the distribution of angular momentum aa generated by for example 
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a combina.tion of out of plane bends, may be considered ij.$ the distribution of angular 
momentum due to solid-body rotation. Thus we do not expect that the vortex-breakdown 
phenomenon is of large relevance for the metering problem. 

Up to order O((R/a;))2, an aJlilJ.ymmetric pipe flow up to moderate swirl intensities 
can be approximated by, 

wal momentum 

{J (2) I {J f} P I (1 /j [ aU]) - U +--(rUV)=--+- -- r- , 
Oft; r Or art; Re r or ar (3.1) 

ra.dial momentum 

aF 
(3.2) 

angular momentum 

a 1 a 2 1 1 0 ( 2 [OW W]) -(UW) + --(r VW) = --- r ~ - -8x r2 8r He r2 {jr 8r r 
(3.3) 

and 
continuity 

a a ox (rU) + ar (rV) "" 0 . (3.4) 

In general the swirling flow as encountered in piping systems will not be axisymmet­
ric. For the description of non-axisymmetric pipe flows, even without swirl, th(~ boundary­
);;".yer equatioJllJ. are dearly ina.dequate. In this Ca$ both the cross-flow-plane momentum 
equations have to be taken into account. Similar to the boundary-layer approach in these 
additional equa.tions the axial diffusion terms ma.y be neglected. However, as demonat;rated, 
for ~xarnpk hy Fldckr (1988h), additional measutes have to be taken to obtain a well­
posed initial value problem. In the system of momentum equations and the continuity 
equation the elliptic character is not only reflected in the diffusion terms but also in the 
pressure terms. Due to this cha.racter in downstream diredion exponentially growing modes 
are possible. In order to prevent the occurrence of these modes additional simplifications 
of the systenl of equations have to be made. For a non-swirling flow a sufficient mea­
sure to obtain a well· posed system of equations is to neglect the pressure variation in the 
cross-flow-plane direction in the axial ~omentum equation. For example, the axial preasure 
gradient in the (:foss-flow plane m;;a.y be taken equal to the axial pressure gradient at the 
centre line. 
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Since in this study a finite-element-method ia employed, a curvi-linear mesh is not 
needed for an adequate representation of the cross-sectional area.. Hence, without I08S of 
accuracy the system of equations may be represented in a cartesian coordinate system. Up 
to order O«(R/l~y) the equ;!,tions ;!',e, 

axial momentum 

{j 2 {) fJ d I (() [aU] fl [OU]) 
Ox (u ) + oy (UV) + OZ (UW) = - dx p.,.." .... I1". + Re oy oy + oz 8z ,(3-5) 

er06&-flow-plane momentum, y eomponent 

o (j (2) fJ fJp 1 (fJ [bY] fJ [flV]) -(UV)+- V +-(VW):;:--+- - - +- - , 
Ox fJy fJz fJy Rt; fJy (jy f}z oz 

(3.6) 

cross-flow-plane momentum, z component 

-(UW)+-(VW)+- W ---+- - - +- -{) {) a (2) ap 1 (a raw] a [fiW]) 
ax ay 8z Bz He By By az az 

(3.7) 

and 
continuity 

(3.8) 

Similar to the axisyrtlmetric flow the (:eIltr~~linc pf{~s~ure gradient ca.n he obtained by 
imposing conservation of total mass Bow. 

For a strongly swirling flow, a uniform axial pressure gradient is clearly inaccurate. 
To balance the centrifugal force~, the swirl induces a o:;ross-flow-pl.a.ne pressure gradient. 
Similar to the situation of an axisymmetric flow with swirl, the decay of the swirl induces 
a non-uniform distribution of the axial pressure gradient. However, this situation is more 
complex_ Since non-a)(iaymmct,ic flows regimes are allowed, also the cross-flow-plane pres­
sure variation may be non· axisymmetric. Moreover, since the centre of swirl may vary in 
downstream direction even without an apprecia.ble decay, still a substantial variation of 
the axial pressure gradient within the pipe cross-section may Occur. Finding an accurate 
description for the axial pressure gradient without destroying the well-posedness of the 
scheme ia not trivial in this situation. 

3.2 Initial value problems 

3.2.1 A 6nite-eleITIlmt formulliltion for plilrlilbolic problems 

The system of equations for the prediction of developing pipe Bow can be viewed upon all 

a non-linea.r initial-value problem. Combined with, for example, a two-equation turbulence 
model it yields;!, ad of coupled partial differential equations (pde's). Apart from the conti­
nuity equation and the equation for the !:ro~s-fiow-plane pressure variation, the equations 
have a. structure compara.ble to the structure of a time-dependent diffusion problem_ In 
this analogy the axial coordinate serves as the time-like coordina.te. 
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For time-dependent dilfu~ion problems a wealth of integration schemes is ava.ilable, 
both explicit and implicit. However, the choice of a. "time· integration" method for a parab­
olized set of flow equations may be limited by the cha.raderiatic~ of the problem. Explicit 
schemea havc a maximum admissible integrl'l.tion step that is given by a Courant-Friedrichs­
Lewy -like condition for temporalllta.bility, e.g. 

where 

and 

Q~T 
~e < 0(1), 

a represents the diffusion ~flicient, 
fl.e the discreti7;a.tion step in space, 
~T tbe time integration step. 

For the parabolized Navier-Stokes equations, this CFL condition often leads to servere 
reatrictions on the integration atep sire in the time-like diredion_ In most situationa the 
flow will conform to a. nO-Blip condition at the pipe waJL As it re8ult the effedive "tilDe" 
step 

fl.T.,Ir = 6.1:/U (~) 

will eJCbihit a. large variation in the pipe crosa-section. Owing to the no-slip <;ondition at the 
pipe waH the magnitude of the axial velocity component U({), becomes small 88 the wall 
ill approached. Thus the effective Utime" ~tep is much larger in the neat"wall region tha.n 
in the region dose to the axis of the pipe. For a paJ:abolized convection-diffusion l;quatioll 
th(~ condition for the integration step must be rewritten as, 

(3-9) 

with U(~) a. typical measure for the velocity in the time-like dirediolJ within 
the interval 6.~ 

and 6.7" the integration step in the time-like direction 

Expression (3.9) shows that the maximum admissible integration step may be limited 
draatically. Closc to the pipe wall not only a fine cro~s-llow-plane grid must be used for 
turbulent flows, also the magnitude of the velocity will be small in the ncar-wall region. 
Especially for predictions employing a low-Reynolds-number turbulence model, condition 
(3-9) pOBes an unacceptably severe restriction on the integration step. In this paJ:ticula.r 
case the first grid poinl mullt lie at a distance from the wall of typically one viscous unit. 
For a turbulent pipe flow this results in a maximum integration step of typically, 

where 'U. represents the friction velocity baaed on the wall-friction. 
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For a pipe flow at Rt!.D = 10~ this yields, 

6.x/D < 0 (10-3)_ 

Tbu~ f(lr predictions of developing turbulent pipe flows, where the length of the domain is 
of O(lOOD), with a low-Fkynolds-number turbulence model expJicit integration schemes 
do not appear to be efficient. In the present w(l,k bnly implicit schemes are used_ As will 
be shown later on, implicit schemes do not pose such strong restrictiona on the integration 
atep_ 

The remainder of this section is devoted to the description of a second-order i'lA:;CU­

rate integration scheme for Mn-linear initial value problems. 

Consider a time· dependent quasi-linear diffusiofl problem, 

where 
and 

denotes an arbitrary quantity 
a diffusion coefficient that may depend on 4>. 

(3.10) 

Using any finite-element discretization scheme Eq. (3.10) C;l.!) be discreti2ed in space. The 
result is a. set of ordinary differential equa.tions, 

(3.11) 

Here 
J denotes the solution vector. (It is the approxima.tion of discrete 

1 in the solution Sp3.CC-) 
M denotes a lill~ar "mass" operator, 

and 
S denotes aUstiffness" ope,Oj.toJ:_ 

This equa.tion is integra.ted using the following integration scheme, 

(M. ~)t+1'1 - (M. J)! = 6.t [0 (S(Q) . .;t;)!H'1 + (1- e) (S(a). J)!] + 

6(8 - ~)O(6.t) + O(6.e) , 

(3-12) 

For 0 = 0 it is the first-order explicit Euler scheme, for e = 1 the first-order implicit 
Euler l!cheme and for e '" 1/2 it is the second-order Crank· Nicolson integration scheme. 
Rearrangement of terms gives 

( (M - 0b.tS) . J) =- ((M + (1 - e) AtS) .~) -
/+':'1 ! 

(3.13) 
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If M and S do not depend on 1, Eq, (3.l3) can be solved directly, However, ill general 
either M and/or S will he a. function of ~. In that case the Jacobian of the left-hand side 
of Eq, (3.13) has to be eva.luated a.nd thc solution at time t + 6.t \J::1l,lst b(: found by, for 
example, a Newton iteration. If Eq. (3.13) is rewritten into, 

and the Ja.t::obia.n of F(~~+d,I) is denoted by, 

J(~I+~!) "" fJF~Jf+1!.t) 
OfHd,t 

the Newton iteration scheme to get ~1+d,1 can be expressed as, 

J(F)·t , (f~~lf - f:~d,I) = -F(~);~.),j ,it = 0, 1, ... 

(3.14) 

(3.15) 

(3.16) 

The advantage of 'Ising a. para.bolic scheme will be c1ear- Instead of a solution vector 
containing the values of the unknowns in the complete solution dom<tin, now the solution 
vector ¢t+ll.t, cont.<tin~ only the values of the unknowIIs <tt one axial position in the cro~s­
flow plane. For an axisymmetric pipe flow the parabolization reduces a two-dimensional 
problem to a sequence of quasi one-dimensional problems, while a non-axisymmdric prob­
lern reduces from a three-dimensional problem to a sequence of quasi two-dimensional 
problems. 

3,2,2 Finite element discretization 

Thus far no attentioIl has hC(m given to the details of the discretization in space, As 
stated in the introductory section of this chapter, the finite-element type of diilcretization 
is eIl'lployed by the software package SEPRAN_ In essence, in a finite-elerm;nt. formulation 
a measure for the error of the discrcte solution is minimiz;ed- ThiH errOr measure is often 
denoted iI.!I the energy norm I, see Baker (1985). 

ASBuming that the differential equation may be written as, 

L (I))) "" 0 

with L (w) denoting a. differential operator L working on a function w, 

then for a Galerkin method of weighted residuals the energy norm is defined as, 

I"" iowL(w)dO-

Here 0 denotes the solution domain_ 
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In general the unknown function w is approxima.ted by a sum of K "basis functions" . 

K 
w ~ w;;;;;; Lailfi 

i~l 

The discrete approximation of w, w will not obey Eq. (3.17) exactly, so 

L(w) = R. 

The Galerkin method of weighted residuals minimizes the residual in the sense that it 
makes the residual orthogona.l to the ~pacc spanned by the "basis function6~. 

k'PiL(W)dfl;;;;O, for j=l,,,.,K. 

Introducing the approxirnation for w yields the desired algebraic set of equations, 

r 'fjL (tai'-Pi) dO = 0, for j = 1, ... , K. if) ,,,,1 

Fo. a linear operator the order of summa.tion and the integration CliLn be exchanged, yielding 
a set of linear equations for the amplitudes of the basis functions ai, i = l(l)K 

K 

O=Lai r 'P;L('Pi)dH., for j""l, ... ,K. 
i=l, JOa 

(3.18) 

If the coefficients Il.i are ordered in a column vector a, and the integrals 10 • ({lj L «(jJi) dn. in 
a. ma.trix L, Eq. (3.18) may be rewritten as, 

L·a::::;: O. 

The structure of the matrix L depends on the form of the operator L. For the d-Mses of 
problems described in this study, three basic structures can be distinguished: 

• a. "malls" type operator, L(IL) = f(ft,y,z)lL; 
• a "convection" type operator, L (u) = (0 (x, y, z) . V) u; and 
• a "diffusion" type operator, L(u);;;;;; V· (h(x,y,z)"1u). 

Here f (x, y, z), 9 (x, y, z) and h (x, y, z) denote arbitrary functions 
of the spatial coordinate or the solution at a previous iteration or 
at a previous axial1:ltation. 

Discretization of these operators yields "mass" j "convection" and "diffusion" matrices, 
respectively. Partial differentia.l equa.tions like the Navier·Stokes equa.tions or the time­
dependent diffu.sion equ.ation mentioned at the beginning of this section (;aJJ. be diacreti:wd 
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i'ttlJ:W by term" using thcBe matrices. For non-linear terms an iteration schewe Ci'I.Il bc built 
using combinations of theae oper;l.tor~_ 

Apart from the nature of the operator to be dlscreti:red, the resulting matrices 
also depend on thc choice of the "basis function". In the finite-element method the baais 
functions are chosen such tha.t they aJ"€ only non-zero in a small part-i.e. element---of the 
total solution domain. As a result the matrices will have a banded structure. The matrices 
CI!LIl be assembled from simple "element matrices", 

L = [L.l. 

Here [ __ ole represents the finite-dement assembly algorithm, see Baker (1985). 

For the construdion of the dement matrices L. integrations over the element l:Iubdornains 
have to be performed. Thus; 

with i;j now ranging from 1; ... , N where N is the number of nodes in the element. 

Hence the pro(",c~s of discretization is reduced to the integration of the differential 
equations over the element dom<Lins 1.Ising the appropriate weight and basis function!;!. The 
algorithm for the assembly of the large matrix from the element matrices is a standard 
component of finite-element codes. However, especially in two and three dimensions this 
assembly process is not a trivial task. In ord~"r to reduce the bandwidth of the large ma.trix 
thc ordering of the elements is critical. The SEPRAN package offers Ilcveral strategies for 
optimising the bandwidth and/or the profile of the matrix; see Segal (1984). In the present 
study the assembly algorithm of the SEPRAN pa.ckage is used. However, for the dement· 
wise integration a dedica.ted "tool box" was written to obtain a flexible yet simple means 
of diacretizing arbitrary second-order pa.rtiaJ differential equationl:l. In the next section a 
description is given of the structure of thiH "tool bQx". 

3.2.3 Implementation of a flnibH!lement discretization using lineal;' basis 
functions 

The construction of discretization schemes for arbitrary partial differeDtial equations can 
be reduced to the formuliilotion of integration schemes for the separate element domain~. 
Often the subroutines in which these integra.tion rulcH are implemented are denoted as 
"the element"- for eat;h ~WW differential equation a new ~element" must be implemented. 
However, by r(:garding pde's as combinations of the basic terms deauib(:d in the previous 
section; new "elements" can be assembled from cowbinations of a small number of basic 
"elements". Provided that the basic terms are discretized in their most genera.! appearance, 
elements for complex seta of pde'a, like combinations of turbulence models and the Navier­
Stokes equations, can be assembled frow thcllC b~ic tertrl~ with rela.tive ease. 

The building blocks for the discretization of the equations considered in the present 
study are, 
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• "ma8s~ terms; 
• "convection~ term~; and 
• "diffusion" terms. 

The simplest term to discretize is the ~maas~ term. The nomenclature of this term is due to 
its occurrence in the time-dependent part of arbitrary momentum equations. In structural 
mechauic~ this term is often proportional to the mass of the $Y$tcm. The characteristic 
feature of mass terms is that they are proportional to the magnitude of the unknown 
function rather than to its derivatives. In general a term of thia type ca.n be written as 

with f (t, x, y, Z, 1,'1) representing an a,rbihary function. 

Clearly, the discretized form of this term depends stroc.gly on the I;hoice of the weight 
functions and tha.t of the basis function~. ]n fluid dynamics a frequent choice for theae 
functions is to use Lagrangian interpolation polynomials. In one dimension, using linear 
polynomials, the "mass" element matrix consist of a 2 X 2 mattix. For an element spanning 
the interval Xi :s: x ::5 X,+l the "mMs" element matrix yidds, 

M", ... ""- 71 
I(l, x, l/Jil)Jo . ."Andx. (3.19) 

"'. 
The Lagra.ngian polynomials, Am and An, for this interval are given by, 

for k = 1 

for k == 2 

Since the unknown function I/J is apptoximated with combinations of linear interpolation 
polynomials, an obvious a.pproximation for I(tjxj<!i') i~ also a combination of Lagrangian 
polynomials. For the interval Xi :5 X :5 X,+l 

Using this approximation and the integration rule for Lagrangian polynomials j 

1 \~\q d A p!q! 
Al A2 X = .i..I.X ( )' ' ,:,." p+q+l. 
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the element integral (3.19) can be expressed in terms of product of a vector :and it. ""hyper_ 
matrix" , 

~ } J ' 
! } 

(3.20) 

where the "product" referll to the terms within the curly brackets. The only tcrrtlS that 
need evaluation a.t the moment of discretization a.re !(t, el, tP~/) and f(t,6, 1;1). When the 
values of these tenm are known, the discretization of an arbitrary term with the structure 
of a. "maall" term merely reduces to a. ma.trix-vector multiplication. 

After some mMlipula.tion also arbitrary conve.::;tiol) and diffusion terms can be dis­
creti~(~d using a matrix-vector multiplica.tion concept. Since the different "hypermatrices" 
for the different families of terms are geometrically detennined, they can be calculated in 
advancc. With these pre-calculated "hypcrmatrices" the development of a discretization 
scheme for more complex pde's becomes simple. A differential equation like, 

{J a ( at/» 
/(x)ifJ + aft; (g(x)t/» + ax h(x) /}x = 0 

CMl be discretizcd so that, 

with the use of the element matrices, 

{ 
M •. 1 } + 
M.,2 

{ C •• J } + 
C •• ~ 

{ 
D.,l }. 
D.,~ 

Here Ii, h, ... represent the values of t(x), g(x) a.nd heft;) at the first and !lCcond 
node of the element under consideration. 

Thus, with few subroutines whl..--.:e the matrix-vector multiplication is carried out, the def­
inition of the discretiza.~i{)J1 scheme can be reduced to a series of subroutine calls. 

Instead of l~/jing the integration rule for Lagrangian polYIlorni.ais, other integration 
schemes can be used. In gentt.ai most turbulence closures are characterized by the strongly 
non-linear chara.det of the equations. ConB~-quently, integrating terms with strongly non­
linear fa.dora f( x) , g( x) and h( x) ID<J.Y not be very accurate. In these situations it is often 
more a.ccurate to use a Ga.uss quadra.ture. For linear dements in one dimension, a two· 
point rule will generally be sufficient. When <J. Gauss quadrature is used, the discretization 
can still be described in terms of a. matrix vector product. However, the entries in the 
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"hypermatricesn will h,l.VI;! a different value and instead of the values of 1(x,;$) ,g(x, t/J) 
and h( x, 1» at the nodes of the element now the valUe9 of these functions at the "G ... 1,18,," 
points have to be evaluated. 

For two-dimensional problems) a similar procedure as demonstrated above for the 
one-dimensional case can be used for the discretiz<ttio/l ~cllezne. Inetead of one-dimensional 
line dements, now triangles are used for the discretization in space. Again linear baeis func­
tions are used together with a four· point Gauss quadrature. Also in the two-dimensional 
case the use of the Gauss-quadra.tu'l) improves the accuracy in some situations. An example 
of the effect of the integration method on the accuracy of the BOlution is given in Fig. (3.2). 

8 c 

Figure 3.2; Convection of a concentration packet in a 8Olid-body rnociey field l:Ifler Ollt! full revolution for 
C = i).t!wRa. :;:: 0.1 Jilnd Pew'" 109. (a) Initial I;l)ndi!ion; (b) I_agrangian jntegration rule; (c) Gauss 
quadrature 

It presents the result after one revolution of a concentra.tion distribution in velocity field 
due to solid-body rotation. The concentration distribution is not centered at the axis of 
rotation. Since the problem is described in a cartesian formulation the velocity components 
in the convection terms are non·linear functions of the coordinates. Due to diffusion the 
concentration distribution will decay. However, since the diffusion coefficient is chO$En ex­
tremely small, after one revolution the concentration profile .should ha.ve unde.gone little 
change compared to the initial distribution given in Fig. (3.2a). Comparison of Figs (3.2b) 
and (3.2c) shows that the result of the method based on the four· point Gauss quadrature 
is in much doser agreement with the initial distribution tha.n the result of the method 
based on the Lagrangian integration rule. Apparently) the approximation of the velocity 
components with linear polynomials causes appreciably larger dispersion errora than the 
approximation of the element integrals by the four-point Gauss quadrature. 

49 



3.2.4 Some propertieB of the parabolic finite-element scheme 

In the preceding sections the integration method and discretization scheme ha.ve been 
defined, In this sediol) somc of the basic properties of the algorithm are studied. First an 
assessment of the stability of the scheme will be made, then the accura.cy of the scheme 
will be di",c1.Iased briclly_ 

All turbulence closure schemes used in the present study consist of additional pde's 
solved simulta.nooualy with the flow equa.tions, Like the flow equations) these additional 
pde'a ha.vc the structure of non-linear transport equations- However) not only the turbu­
lence model pde's are non-linear themaelvCl:!, also the coupling with the flow equations is 
generally non-linear. In order to obta.io a robust scheme, an "as sta.ble a..a poasible" integra­
tion method haa to be chOl:leo- For parabolized transport equations this leads to an implicit 
integration scheme. 

For systeIIls of strongly non·linear equations it is difficult to derive general rules for 
the stability of a nUIncrical scheme. However, when the scheme is stable for equa.tions which 
are locally linearized by 4f{eezing~ the coefficients, and when the atability is independent 
of the magnitudt) of the coefficients) it is most likely th",t thc scheme is also stable whmJ 
applied to the non-linear equations_ Hem we will study the stability properties of the 
finite-element/Crank-Nicolson scheme by considering the linear test problem as desuibcd 
by 

fJtjJ a ( at/!) u 8:x -- ay 01 ay + M, (3_21) 

with boundary conditions 

.p(x, -1) ;; 0 and 1>(x, 1) "" 0, 

and initial condition 
tjJ(O, y) = tfoo(y) • 

In thia eql~atioIl 
01 represents the dilfuijion coefficient, (01 > 0), 
(3 represents a "source" coefficient with i!I.iI arbitrary magnitude-

For constant U the solution to thia equation is given by 

with 

and 

1>(x,Y) "" f.tjJrcX(P-A~OI)IU cos(\rY) 
r",o 

Ar = (21 + 1)1r 

1 
.pr -- J .po(y)cos(Ary)dy. 

-I 

(3.22) 

For /3 ;;.. 'll'~a Ott 1(~a.!It one eigenfunction will be growing_ In this situation the solution will 
grow indefinitely at least if the initial (',ondition contains the appropriate mode. For j3 < 1r~Q 
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all eigenfundion1:l and thus the total solution will de<::ay to wrO for large values of :/;. Using 
the methods described in the preceding sections Eq. (3.22) can be discreti~d which results 
in a system of aJgebraic equations. The stability of the integration scheme can be studied 
using a Neumann-like stability analysis, see Ander~on et al.(1984) or Hirsch (1990). In this 
analysis an i:trbitrary ertor in terms of a discrete Fourier series is introduced in the solution. 
The condition for stability is that: for /3 < '/l"20i, the amplitude of the separate modea will 
not grow; or for {3 > 7r~Q, the amplitude of the modes will not grow faster tha.D that of the 
solution itself. For an integration scheme obtained by discretization with linear elements 
of width h in y direction and by using the a-integration ~cheme (Eq. 3.12) the condition 
for stability is 

I ~ [4=(~"h) + 8] + (1- e) [~(4coS(/'i"h) ~~) + ~ (2C08(~"h) - 2)]1 < 1 

~; [4 cos(/'i" h) + 8] - a [p'~~'" (4co~( ... "h) + 8) + <>!!l' (2 cos(~"h) - 2)1 ' 
(3.23) 

for all permitted values of /'i .. , 
where ..... represents the wave number in discrete Fourier aPace. 

The strongest growing mode will be the mode with Ie .. h <. 1. For srnall K, .. h Eq. (3.23) may 
be simplified using the it.ppro)(imatjon, 

cos(lI: .. h) ~ 1 - /(~h2 • 

For a Crank· Nicolson integration scheme (8 = 1/2) the stability condition (3.23) will be 
satisfied for all ~x if 

The permitted values of Ie .. are, 

Itmax ;;;;;; [2(N - 1) + 1] 11" and /'imin == 11" 

where N represents the number of nodes. 

Substituting the smallest value for /'i .. in Eq. (3.24) yidds, 

1I'~(r - j3 > 0, 

(3.24) 

which exactly coincides with the condition for i'I. decaying solution of the exact problem. 
Thus the finite-element/Crank. Nicolson scheme is unconditionally stable for equations with 
"not too strongn source terms. 

For equations with stronger source terms the situation is more complex. Aa stated 
above the scheme can be considered "stit.ble" when the growth rate of the errors is smaller 
th<t.n the growth rit.tc of the solution itself. However) the exact solution will only contain 
these growing modes in Ci!Se the initial solution contains the corresponding eigenfunctions. 
Due to the finite accuracy, the numerical approximation of the solution will contain all 
possible eigenfunctions, including the growing eigenfunctions. In this sense the scheme is 
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unstable. However, in general a uniform initial condition will be chosen, 1(0, y) "" 4>0. Thus, 
all eigenfuntion8 are present in the initial condition~. The 9ta.bility of the scheme is deter­
mined by the growth rate of corresponding modes. Following Eq. 3.23, for Srrlall integration 
steps, /ltl.x/h « 1 and o.tl:JJ/Uh2 <t: 1, the error growth rate c<tn be approximated by 

1 + ¥(f3 - aK~) 
1 - ~'" (P - aJo:a) , 

if a.gOtin only the long wavelength errors are considered, (K;nh 4: 1). The growth rate of the 
n-th eigenfunction can be approxima.ted by, 

It ca.n he verified that for corresponding .\ and Jo: and integration steps with 

the growth rate of the error is smaller than the growth rate of the solution itadf iI.iId the 
scheme is stable. Clearly, the intE:gration process becomes unst",ble when the integration 
step becomes too large, 

A8 the source term becomes stronger the mij.Ximum admissible integration I'!h~p becomes 
smaller, the equation exhihits a. "stiff" character. 

Even though thi~ test equation is linear, <l.nd much simpler than the equ<l.t.ioll!l of 
for exa.mple a k ~ t turbulence model, the study of the stability of the linea.:r teat problem 
clarifies some of the properties of the finit!: element/Crank-Nicolson s(:hcme when it is 
applied to the (~qllations of the k - ~ model. A salient feature of turbulence models like 
the k - t model is that in large parts of the physical domain the 80urce and dissipation 
terms arC much larger than diffusion or !;Ol)vection terms. Recall that the U]ogarithlllic law 
of the w<l.ll" i~ (~veTl based on the assumption that the tra.nsport terms of turbulenc(~ arc 
negligible compared to the som(;c a.nd dissipation terms. However, rather than considering 
the equ<l.tions sepa.rately, dearly the system of equ<l.tioo8 must be analyzed. For a flow 
close to "local equilibrium" the eigenvalues of the «frozen" system of equatioIls are small. 
Therefore thc SOu((;!~ terms ate effectively small in this sihl;Ltioll. However, during the !k­
veloprnent of a wall layer, a. strong imbalaoce of production and dissipation JJ:lay occur. 
H(:(e the eigenvalues of the "frozen" system of equations are large and the syatem. will 
show a "stiff') beb<l.viollT. H(:J)ce, the integration step must he chosen small, even though 
an implicit illtegration in marching direction is used. 

The second import<l.nt property of the scheme that must be investigated is the 
$.Ccur<l.CY of the numerical approximation. Potentially, the numerical error of the finite­
element/Crank-Nicolson scheme will origina.te from two sources: 

• the truncation error dl1e to the Crank/Nicolson integration; and 
• the truncation error due to the finit.e-d!:ment discretization. 
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The convedion/diffusion equation with a. source term, Eq. (3.21) will i!.lso be used to study 
the accuracy of the scheme. If one assumes the spa.tial dist::retiza.tion to introduce nO errors 
the accurowy of the scheme is simply given by the familiar expression for the accuracy of 
the second-order Crank/Nicolson integration method, 

where G represents a dimensionless coefficient. 

By using an ada.ptive procedure to determine the step size Ax, the error caused by the 
integra.tion scheme can be kept sma.ll without seriously reducing the efficiency of the pro­
cedure. 

The error in the solution of Eq. (3.21) caused by the finite a..ccura.;y of the fi.n.ite 
element sc;henle can be investigated by assuming that the integration in x·d.irection is ex~t. 
In this case the accuracy of the scheme C;Lrl be studied by analyzing an eigenvalue problem. 
Solutions of Eq. (3.21) of the form .p(x, y) - ,p,(y) exp(ifx) will obey, 

Of, 

(3.25) 

The solutions of Eq. (3.25) can be looked upon as the result of the minimi~ation of the 
functional 

f (dq, d¢) d 
Jo dy dy y, 

under the c;on~tra.int 

10 ¢i dy -1, 

with ~ acting as an appropria.te Lagra.ngian multiplier. Owing to the finite accuracy of the 
finite-element discretitation, Eq. (3.25) will not be satisfied identically by the numerical 
approxima.tion of ¢;. Instead the finite-element solution procedure minimizes the residual 
in the sense tha.t it attempts to obtain a residual that is orthogonal to the space spanned 
by the eigenfunctions, 1>;: 

with 

and 

( ~;, L~;) = min( f. j L~.) 

LJ. "" iP,p ~ )/.1. 
'f' 8y2 'f', 

(tP,tJ!) = 1 ¢,pdf! 
w 0 

,po a. function that ranges over the total finite-element solution spou::e. 
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The eigenvalues N produced by the finite-element OIlgorithm can be examined using 
the Wronskian of Eq. (3.25), 

W(,p) = (,p,L,p) 
(f,f) 

(3.26) 

If the first N eigenvaluea of Eq. (3.25) are ordered like, A1 < A1 < ... < AN then the 
approximation of the first eigenvalue will be equal to the minimum of W(f.) provided f. 
ranges over all possible functions in the finite-element subspace. However, since solving 
&t. (3.25) is equivalent with solving the Laplace equation under the constra.int 

finding the lowest eigenvalue is completely equivalent with finding the finih;-dement so­
lution. This inaight givea the opportunity to study the accuracy of the eigenvalues as 
calculated by the finite-element algorithm. 

Suppose the solution of the finite-element algorithm can be expressed as 

and 

tPi=.pi+€j 

.pi denotes the exact solution of Eq. (3.25) 

{; the difference bclween the exact !;I()iutioo and 
its numerical approxima.tion, tP. 

then the lowest eigenva.lue can he expressed ail 

(3.27) 

since for all i, (.pi, .pi) = 1 and (f;, J;) ;::: O. However, the exact eigenvalue of Eq. (3.25) 
equaJs (11,L11) and hence 

(3.28) 

The second term on the right-hand side of Eq. (3.28) i~ '" quadratic form. This implies that 
the finite-dement approxima.tion of the first (!igenvalue overpredicts the exact value by an 
amount of (t1,Lf1)' An expression for (fl,Lfl) is given by Baker (1985) on the basis of the 
energy norm of the finite-element solution for a Lapl;!.(;€ equa.tion. For linear basis and test 
functions this norm satisfies, 

with 

amI 
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fl.. representing a typical measure for the mesh ai«:, 
11~1I11 the llorm of the second derivative of the 
exa.ct solution with respect to y 

C a. coDatant depel)ding on the mesh distribution. 

(3.29) 



N In(A(x)jA(O)) ~ J [tfo(O,y) - (A(O)/A(x)) * ¢(x,y)]dy 
-1 

2 5.172 2.30", 10-11 

4 1.275 1.77 * 10-16 

8 0.3177 3.61 * 10-16 

16 0.0793 1.55 ti< 10-15 

32 0.0198 2.59 * 10-15 

Thhle 3.l: Th<:c amplitude at ;l; = 100 of the n1'8t clgcnfunction M a ft!Il~!iQ1;I of the number of dements, 
calculated wieh ell'!' finiCl:-t;/t;m(mt!Ctliilk-Nioolso.rJ integration scheme. (a ::::: 1/10, IJ __ :tt'~c< and U = 1) 

The consequence of this result is that the evolution of the modes in the solution are 
structurally overprcdicted even for the case of an exact integration procedure in axial 
direction. All illustration of the finite-element solution of Eq. (3.21) is given in Table (3.1). 
In this calculation the parameters are chosen such that the first eigenvalue equals zero, i. e. 

As initial condition the first eigenfunction is ch~n. Hence, the initial distribution, ¢(O, y), 
should temain undisturbed in axial direction. An error in the ~decayiI'lg" constant will sur· 
face immediately in the amplitude of the profile, ~(;T;, y). However) according to the analysis 
above the shape of the profile must not be affected by the integration process. E)Camining 
the second column of Table (3.1) indeed shows that the a.mplitude of the eigenfunction 
grows, though slower with incre<!.!iing numbet of elements. Furthermore it shows that the 
growth rate---or the error in the predicted eigenvalue-scales with the reciprocal of the 
number of elements squared. Finally, the third column shows that, except for the two­
element result, the shape of the profile remains virtually unchanged. Hence, the calc;:ulated 
profilCH are indeed eigenfunctions of the discretized system. 

3.3 A parabolic algorithm for predicting turbulent pipe How 

3.3.1 Axisymmetric pipe flow 

Tn this sectjo~l the algorithm for axisymmetric turbulent pipe flow is presented. The algo­
rithm is based on the finite-elementjCrank-Nicolson scheme presented above. This results 
in 2-D problem with the axial coordinate forming the marching direction and the radial 
coordinate the spal.ial din;dion for which the finite-element discretization is used. To take 
the effect of turbulence into account a low-Reynolds-number version of the k - € model 
(see sections 2.3.2 & 2.4) is used. Since the flow is OI-$~um.(.'(\ to exhibit a parabolic c:hara.:ter 
not all terms of the turbulence model are retained. Terms of order O«x/ D)2), for example 
-:'(\.I.w) io the equation for the conservation of angular momentum, are neglected. The 
resulting equations for U, V, W, P, k and € are respectively: 
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a.nd 

Continuity; V 

Angular momentum: W 

EJ 1 a 2 1 a (r2 [8W W]) 1 i} 2 -(UW) + --(r VW) = -- - - - - - --(r 'il'W) 
8x r1 8r r2 or Re 8r r r1 Or 

Radial momentum; P 

'IUrbulent kinetic cnergy; k 

oP W~ 

fJr =r 

a 18 18 (1/Rf!.+vl )8Jc) 
~(Uk) + --8 (,.VA:) = Pir - t + - ~_ r a + FJow,.Royn<>l<hl 
v:l:: r r r Uf' (II; r 

Pl'Odudion of turbulent kinctic energy 

Pk = _u:,/JU -{!W (OW _ W) or 8r r 

Reynolds-shcM s~r~ 

Reynolds-shcar stI"CS8 

Eddy viscoaity 

(Noh: tha.t in this formulation VI is a.utomatically non dimensional) 

(3.30) 

(3.31 ) 

(3.32) 

(3-33) 

(3,34) 

(3.36) 

(3.37) 

(3-38) 

(3.39) 

In these equa.tions CI" C,,, C •• , (fir and (1, represent dimensionless coefficients. The low­
Reynolds extension used in this work is the extension due to Chien (1982), which consists 
of extra. terms in the k and € transport equation. Furthermore some or the coefficients are 
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made dependent on a local Reynolds number and the distance to the pipe wall, y (= 1-r): 

1 2k 
l1Q .. -fI.o)'l:>QI<Io Rey2 

G1o ..... &yuol& "" 
1 2~ _~+ 

---e 
Rey~ 

Cp -- C (1- e-()·01l5~+) 
1',00 

C,. "" C, •. OO (1 - o.22e(&,/6)') 

Ret ;;;;;; 

p 
Re-

( 

y+ == Rey UtaLaI 

The system of equations, Eqs (3.30) to (3.35) consists of four parOlobQli:.:ed convection/dlf. 
fusion equations and two first-order differential equa.tions. The four convection/diffusion 
equations, Eqs (3.30), (3.32), E(3.34) and (3.35) are solved simultaneously using the al­
gorithm described above. Thus at every integration step in x-dire<::tion Olo Hystem of four 
one-dimensional elliptical boundary. value problems has to be solved, and consequently 
eight boundary conditions have to be provided. These a.J:e 

{JU 
and U == 0 at r "" R - = 0 at r = 0 Or 

W -- 0 at r -- 0 and W-Oatr=R 
ak 

and k = 0 at r = R - = 0 a.t r = 0 
ar 
8€ 

and ~ -- 0 at,. -- R. ~ "'" 0 at r "" 0 
fjr 

The two other equations are first-order differential equation" ;t.Ild can be solved by integra.­
tion in the radial direction. The boundary conditions for these equations are, 

v = 0 at r = R 
p = p .. ..!1 at r= R 

However, all ~tated in the preceding sections, a strong inter;LC;tion may exiHt between the 
distribution of angular momentum and the axial velocity field. This interaction is main­
tained through the pressure grwient. The stability of the solutioo procedure may benefit 
from a strongly implicit coupling. Hence, the pressure is calculated simultaneously with 
theac four convection/diffusion equations. To simplify the coding of the algorithm, the 
equation for the radial momentum equation Eq. (3.33) is differentiated with respect to r. 
As a result an elliptic botlndary-valuc problem is crEated. 

~~ (r-aF) = ~.! (W~) 
rar 8r. rar (3.40) 
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Eq. (3.40) is solved llBing the ~ame algorithm as used for the four transport equations, but 
with the convection velocity U set equal to 9:.(;rO. Since the order of the equation hM been 
raised by one, one extra boundary condition must be supplied, 

fJP 
- = 0 at r "" 0 Qr 

The continuity equation, Eq. (3.31), is solved sep(l.ratdy. It Ca.n be solved by straightfQrward 
integration in radial direction. However for reasons of simplicity, aho this equation is dif­
ferentiated with respect to r a.nd thus transformed to an elliptic boundary-value problem. 
As an extra boundary condition 

v = 0 at r = 0 

is supplied. In the parabolic formulation, the radial velocity, V, is iUlsumed to be small. 
Thus, an explicit coupling with the other equa.tions is not expected to seriously affect the 
stability of the scheme. 

To close the system of equOttions the pressure boundary condition at the wall has to 
be prescribed. The wa.ll pn:ssute can be calculated by enforcing global mass conservation. 
At each iteration a ~maBs-defectn is used to update the magnitude of the wall pressure, by 

with, 

and 

p:'!.il(x) = P:..Jl(x) + Ame",,(~)(4>"(x) ~ ~o)/~o, 
R 

Il>"(x) = J U"(x,r)rdr, 
o 

cl-o representing a meMure for the inlet mass flow, 
A a.n appropriate Lagrangian multiplier. 

With the speciika.tion of the pressure at the wall the system of equa.tions i~ complete. 
When the sptem of equations is discretized using linear one-dimensional basis functions it 
turns out that for approximately 60 elements the scheme yields grid-independent results for 
a fully developed turbulent pipe flow a.t lieD"" 105. As illustrated in Figa (3.3) & (3.4), the 
experimentally determined axial velocity distribution and the preSSllw. drop ate reproduced 
~atillfa.ctotily by the algorithm. As described in the preceding sections the scheme is not 
unconditionally atOtbl(; for source-dominated equations. Hen<::(;, for a. turbulent flow one may 
C)(pcct tha.t in regions far from "local equilibrium" the size of the integration skp in axial 
ditection must be limited. For example, when it Iloiform flow is used a8 inlet condition, 

U(O,r) UiDlot "" constant 

V(O,r) 0 

W(O,r) "" 0 

P(Ot r ) "" 0 

k(O, r) klnlet "" consta.nt 

£(O,r) finloi ;;;;; constant , 

locally strong source terms will be present in the equa.tions. It appears that to maix)tain 
stability, the step size must be limitl;d to 10-5 times the diameter of I.h4;: pipe. However, 
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figure 3.3: The axial velocity distribution near tilt: wll.ll in ~ developed pipe flow at ~D -'" 105 (60 
elements). 

downstream of the immediate vicinity of the inlet the step si.ze may be incrc~dr e.g. 1 
diameter behind the inlet the allowa.ble step size is already of the order 0.1 * D. In the final 
stages of the devdopment of the flow, no limi tatioD of the step size is necessary. Owing 
to the initially "stiff" character of the equations a large part of th(: computational effort 
must be spent in finding the solution in the regioo of the first few diameters, even though 
for the present example the result~ arc physically meaningless. 

3.3.2 Non-axisymmetric pipe flow 

The description of noo-axisymmetric pipe flows is more complex than the description 
of symmetric pipe flows. Instead of a qua.si two-dimensional problem, for the non· 
axisymmetric flow a. qUa8i three-dimensional problem must be solved. In general the 
boundary-layer approximation of the Navier·Stokes equations is not ;Lpptopria.te for this 
elMS of flows. Instead another reduced form of the Navier-Stokcs equa.tion must be used 
to describe the development of the flow. The evolution of the cross-flow-plane velocity 
components is described by momentum equations rather tha.n by the continuity equation. 
Thus in the numerical representation, continuity is not automatically enforced and special 
measures have to be ta.k~n. 

In thia acction an algorithm for the solution of the reduced Navier·Stokes equations 
is presented. The algorithm follows the work of Baker (1985). Continuity is enforced by 
using the /;oI\cept of a penalty differential constraint within the finite-element solution 
algorithm. The variation of the pressure in circumferential direction is evaluated using a 
"presaure-Poisson" equation. 

Since a finite-element method is used, there is no strong need to make use of a 
curvilinear coordinate system. As illustrated in Fig. (3.5), the cross-section of the pipe is 
discretized using triangula.r elements. For such elements it is most convenient to write the 
cql.l;Ltions in a cartesian coordinate system. In this coordin;Lte sptem the conservative form 
of the parabolized equations dCl;cr;bi~lg Ia.minat flow is, 
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Figu~ 3.-1: (Jomp&rison of tbe predicted pressure ~m~i~'Jt fflr a smooth wall in & developed pipe flow 
a.nd the exverjm",ot~l1y det~rmilled pressure coefficient 

and 

x-momentum 

a (2) fJ fJ d· 1 (fJ [fJU] EJ [fJU]) - u +-(UV)+-(UW)",,--p+- - - +- - , fJx fJy az dx Re fJy {}y at: at: 

with P representing the prCllllure ",I. all a~bit.~ary but fixed point in the 

uOJ!I.. ... ...ecti(mal pla."~, 

{J fJ 2 a {IF 1 (a [av] a [av]) -(UV)+-(v)+-{VW)=--+- - - +- _. , fJx fJy at: ay Re {jy oy at: az 

2-momentum 

a D a 2 l}P 1 (() [aw] fJ [aw]) - (UW) + - (VW) + - (w ) == -- + - - - + - - , ax ay f)z at: Re ay fJy l}z oz 

continuity 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

In general gqs (3.5)· (:i.B) does not accurately describe ~witling flows (see aedion 5.3). 
The approximation in Bq. (3.5) of a. uniform axiaJ pressure gra.ditmt, needed to obtain 
a ~wel\ poacd" system of equations, may not be i!.{;curate for appreciable Jevels of swirl. 
However, the cross·flow-plane variation of the axiaJ pressure gradient scales with the square 
of the swirl intensity. Thus for low swirl intensities thE; assumption that the axial prca~ure­
gradient is uniform, is not grossly iII enol. Similar to the algorithm for a)(isymmetric 
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Figure 3.5: An example of the di3(;ldi~l,l.tjon of the pipe CI"OI/(Io~tion using triangulM ~kments (laminl:lC 
flow) 

How the v;;u:iation of the pressure in axial direction is obtained by enforcing "global mass 
conservation'" . 

Contrary to the axial momentum equation, for the two cross-flow-plane momen­
tum equations the variation of the pressure in the cross-flow pl;!J)c cannot be negleded. 
An equa.tion for the cross-flow-plane pressure distribution is constructed by taking the 
"divergence" of the y-momentum and z-mornentUIn equations. This le~!I to, 

(3.41) 

i} (8 {) a 2 1 [{)2W {)2W]) 
i}z ox UW + {)y VW + i}z W - He {)y2 + {)Z2 . 

For a. given velocity distribution Eq. (3.41) yields an elliptic boundary value problem for 
the pressure distribution in the cross-flow plane. The pressure distribution that satisfies 
this quasi-line;;u: boundary. value problem <::a.n be expressed as the BUm of the solution of 
the homogeneous equation ph., and the particular solution pP, i.e. 

p=ph.+Pll , 

where ph, sa.tisfies 

(3.42) 
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When viscous effects are neglected, the no-slip condition at the pipe wall implies that 

~ ;::: 0 at the wall of the pipe _ (3.43) 

By assuming that both Pl' and ph sa.tisfy this boundary condition, the pressure distribution 
can be obtained. Equa.tion (3.42) together with boundary condition (3.43) leads to the 
solution of the homogcncom problem, i-e. 

ph. = constant . 

ph iH (:ompidely determined by imposing ph = P at, for example, the axis of the pipe as 
an additional boundary condition_ The pa.rtj~ula.r preaaure fieJd belonging to thi~ choice for 
ph., must sa.tisfy pP ;= 0 a.t the axis of the pipe. However, as a. result of the simplicity of 
th<:: aolution of the homogeneous problem, the "total" pressure may be calculated directly 
by impMing P = P at the ij.Xis of the pipe. 

Having esta.blished an expression for the pnjHSUrc distrihution, now only the tmforce­
mcnt of the continuity equation remains. To enforce continuity, instead of the continuity 
equation (a-8), a~l extra va.J:iable IP is introduced. At the p-th iteration level\{! sa-tisfies, 

a~l}p [J21}p _ aup avP awp (02~P-1 02~P-I) 

ay~ + iJz2 - ijx + ay + Tz + j3 ~ + ~ 
for p = 1 (1) N 

The boundary conditions for Eq. (3.44) are, 

and 

vip ;;;= 0 at the wall of the pipe 
On 

I} "" 0 at, at least, one point on the wall of the pipe 

(3.44) 

(3.45) 

(3.46) 

The cross-flow-plane n1orJ)(mtum equations, Eqs (3.6) & (3.7), arc "emiched~ with a term 
proportional to the gradient of 4> in y-dircdioIl arid z-dircdioIl, rcspectively_ The: purpose 
or thia extra- term is to penalize deviations from continuity. Including this ~penaJty" term, 
the y-momelltum and z-lnoffientuIll equa.tion become; 

!. .. (UV) +.!!... (V2) + ,8 (VW) = _ ~p + ~ (.!!... fay] + ~ [~V]) _, a~ (3.47) 
ax fJy l:h ijy Re oy oy ot: ijt: oy 

and 

~ (UW) +.i. (VW) + ~ (W2) = _ 8P + J... (.i. [8W] + .i. [aW]) _ 'Y at . (3.48) ax ay /}z {Jz He /)y {}y /)z /)z /)z 

The value for the coefficieIlts (3 and 'Y must be c;hoacn in ~ll(~h a. manner that a.1. cvmy 
~tation in x-djrection the magnitude of I}p decreases to zero during the iteration process. 
An appropriate value for, is found to be, 

,"" U(y,z;x)/tlx-
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Instead of the obvious choice for {J, (J = 1) in the present calculations choosing a value of 

(J = 0.5 

yielded a slightly faster convergence. 
With the description of the method to enforce .:;ontinuity the algorithm for the 

calculation of the 3-dimensional paraboliloed method is complete. The equations used. by 
the algorithm are the momentum equations (3.5), (3.47) and (3.48), the pressure-Poisaon 
equation (3.41) and the penalty constraint equ.a.tion (3.44). The equations are solved si­
mult.a.neously using the non-linear Crank-Nicolson integJ:i'l.tion scheme used for the case of 
axisymmetric flow. 

The above algorithm is based on the 3DPNS algorithm developed by Baker (1985). 
To improve convergence for the swirling flow case some minor changes were made . For 
example, for swirling flow the /Jon-axisymmetric cha.rader of the boundary conditions for ell, 
Eqa (3.45) and (3.46) cauSCS a. strong sensitivity of the algorithm to 06cillations) resulting 
ill a small allowable step ill marching diw:tion. Employing an axisymmetric boundiilIY 
condition instc.w, 

III = 0 everywhere on r = R 

improves the damping of scheme dra.rnatically and results in a. much larger allowable step 
in marching direction. Also the value of the coefficients tJ and "I given above is different 
from the original value in the 3DPNS of Baker (1985) algorithm. 

To check the algorithm two test cases are considered: 
• the case of an axisymmetric pipe flow developing from a uniform inlet condition; 

and 
• the case of the decay of a axisymmetric swirl ill a flow field with a uniform axial 

velot;;ity. 
For the firat test case) Fig. (3.6) shows the wmpa.rlson between the predicted axial veloc­
ity distribution obtained with the present algorithm aI).d the distribution obtained with 
an axisymmetric two-dimensional elliptic pena.lty.finite-element ~gorithm. It follows from 
Fig. (3.6) that the agreement of both results is excellent. 

The second test ca.se concerns the decay of an axisymmetric swirl in a uniform axial 
velocity field. In a cylindrical coordina.te system the equation describing the decay of the 
awid reduces to a linear equation when the axial velocity distribution is uniform. Hence 
the decay of the swirl may be expressed in terms of a series of decaying ei~nfunctions. 
Fig. (3.7) compares the computed deca.y of some initial swirl dilOtribution with the analyti.:;a.l 
deca.y of the lowest eigenfunction. SiIl.:;e the initial swirl distribution doei> not coincide with 
the lowest eigenfunction) initia.lly the decay of the swirl must be stronger tha.n the decay 
of this single eigenfunction. However) further downstream all but the eigenfunction with 
the lowest eigenvalue will have decayed fully and the .:;aJculated decay rate must coincide 
with the analytical decay rate of the lo~t eigenfunction. Fig. (3.7) demonstrates that the 
analytical decay rate is indeed reproduced accurately by the present algorithm. 
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figl.\re 3.6; ComparisoD of &. developing pipe flow &.t &D = 103 predjeted wHh the (a.) 3-dimetl8ioJ:lai 
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&.lJl:orithm (ql,l~.ah<= triMgul1JJ" deme.nta) 

3.4 Concluding remarks 

In this cha.pter the algotithms were presented tha.t will be used fur the !;Itudy of the dec!l.Y of 
swirl in a turbulent pipe flow. The algorithms are based on a paraboliza.tion of the Navier· 
Stokes equations, allowing fot a maJ"ching solution proc;edure. For axi9ymmetric swirling 
pipe Hows the parabolization results in a system of equations akin to the boundary. layer 
equations. For nOD-~isymmdric 6wirling pipe flow the parabolization of the equations 
leads to the "reduced N a.vier-Stokes equations". 

In the p&:l"abolized formula.tion of the Navier-Stolres equations the coordinate in the 
direction of the pipe axis serves as a "time-li~" CO(IJ"dina.te. In thill direction the equations 
are integrated using a Crank-Nicolson integration scheme. In the successive Cf08Ii-IlOW­
plane9 a finite-element discretization method is used. 

For turbulent flows, the equations of the tutbulence model w:e solved simultaneously 
with the momentum equations. Both the momentum equa.tions and the equations of the 
turbulence model have the structure of lI. tra.nl'lpott equation. H~(;e, they OIJ"e solved with 
the slI.ffie Ctank-Nicol!;lOn/finite element algorithm. A salient feature of the equations of 
the turbulence model is tha.t they contain strong soutce tenns. In l<U"ge regions of the 
physica.l domain the source tenna rna.y be much larger than the convection and the diffusion 
terms. This may lead to "stiffness" of the equations. Even though the Crank-Nicolson/finite 
elemr:mt algorithm does not suffer from restrictions on the permissable magnitude of the 
step in axial diredioJl due to a Courant-Friedrichs.Lewy condition, the "stiffness" limits 
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Figure 3.7: The predicted decay ofswirl inlJ uniform 1I)(i~ flDW 

the maximum allowable integration step in axial direction. If uniform inlet c;:onditions for 
all flow qU;Lntities are set and low· Reynolds-number tUIbulenc;:e models are used, the axial 
integra.tion step is restricted ~trongly_ It turns out tha.t the initial integra.tion step in axial 
diredioIl must be limited to 0(10-5 D). However, the allowable integration step may rapidly 
be increased. One diameter downstream of the inlet plane the allowable stepsize is already 
of 0(10-1 D}. Further downstream, no limit.a.tion is necessary anymore. 

In this study much emphasis is put on an accurate prediction of dec;:;l.y coefficients. 
In the present algorithm the accuracy of the decay coeflkient is determined by two sourees 
of error: 

• the truncation error of the CrOlJlk-Nicolson procedure; and 
• the trUDcdion error of the finite-element discretization. 

ThE first error may be reduced by limiting the stepsi:/;I'! ill regions of large axial variations. 
The second error is independent of the axial varia.tion of the solution and can be limited 
by an accurate di~crctization of the cross· flow-plane only. For a linea.r p<Lraboliud convec· 
tion/diffusion problem, the error in the decay coefficient due to the finite accuracy of the 
cross-flow-plane discIcti~a.tion sc.a.les with the energy norm (€, L€), see Eq. (3-29), of the 
discreti2:ation error. 

For ;I. non-axisymmetric flow, to obtain a "well-posed~ problem it is necessary to 
approximate the prCSSUIC gradient iJI axial direction by a uniform value. Consequently, for 
high levels of swirl the present method may not be a.cCUIii!.te. 

The primary lnotivation for the parabolic approach is tha.t in many Ca.5Cll- considered 
in the study of installa.tion effects of metering devices the elliptic character of the system 
of equations that describe the flow is weak. Furthermore, in general the swirl gener<tted in 
pipings systems is weak as well. The secondary, though import<tnt, motivation is that the 
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memory and CPU r~!quir(!mcfJt9 remain modest even though U1(~ domain of interest may be 
Iiu'ge. For the cla.ss of problems considered in this study, computing times for the pa.ra.bolic 
algorithm are at least an order of magnitude less than the computing tirrle9 needed for 
algorithmR for the fully three· dimensional formula.tion of the problem. 
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4. Turbulent swirling pipe flow 

4.1 Introduction 

Swirling ftows ofteu occur in complex geometries. Examples are flows in cydoJ;le8 or in 
I;ombustor·like geometries. Swirl is used for the separation of compounds or for the sta­
bilization of flames. Important aspect that i!.re considered in numerical studies of these 
flows are for example, the question whether or not recirculation occurs, the length of such 
a recirculi!.tiop region and the intensity of turbulence within the recirculation region. In 
order to provoke recirculation; the swirl in these devices is relatively high. The i!.$pect ratios 
of the devi~s considered are generally low, the length of the device seldomly exceed,. the 
width by more than a fidor of 10. As a result of these geometrical properties, the elliptic 
character of the equations that describe the flows in these devices is eS~lltia.l. 

The flows considered in this study are of a different Dature. The intensity of the 
swirl is quite low compared to that in cyclones or combustors, recircu.ii!.tjoll regions will 
not be present and the length of the domain of interellt is generally long. Hence, at least 
in parts of the domain, the equationa that del!cxihe the flow have a weak elliptic character 
only. 

As far as the metering practice concerns, details of the turbulence structure are 
also of secondary importance. One may expect that the performi!.nce of a metering device 
depends on the global chara.cteristics of the flow field, rather than on local det.u1e. 

Therefore, our first goal is to study the beha.viour of one or two global measures 
thi!.t characterize the flow. Suitable integral measures to characterize the swirl may be, for 
example, the integral amount of angular momentum or a. swirl angle averaged over the pipe 
cross-section. One of the objectives of this study is to find accurate predictions of the axial 
development of such ,neaaures. Accurate predictions of detailed velocity distribution!) or of 
all second-order moments of the fluctuations are only secondary goals. 

In a pipe flow the decay of the swirl is solely ca.used by viscous forces, i.e. angular 
momentum is disaipated by the a.ction of the wall-ahear Ijt;r:css. Most of the radial trltJ)sport 
of angular momentum, from the core of the flow to the wall, is achieved by the turbulent 
stresses. Hence, the exact structure of the turbulence will govern the decay of the swirl, so 
that the choke of the turbulence model is of 8- vital importance. 

According to the literi!.ture (sec for example Kline et IJ.l. (1982), Or cha.pter 2) the 
calculation of swirling flows with the classical k-~ model h~ its shortcomings. It is believed 
that a number of aspects essential for swirling flow cannot be captured by this model. One 
of these aspects is that in swirling flows the stress and the strain ten~or ate not aligned. 
The k - € model, being an effective viscosity model, will not reflect this. As hu been 
demonstrated before (Fig. 2.4, Boysi!.u & Swithenbank (1982)) especially the prediction of 
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the distribution of the circumferential velocity depends stongly on the correct description 
of the Ht:rC66 ten60r. As a. consequence, for swirling flows it ha.s becom.e common practice 
to uSC cithm th(~ ITlon; complete Algebra.ic Stress Model or I~vlm the fllll R..cynolds Stress 
Model. (Gibson & Younis (1986), Hogg & Leschziner (1989». Only these models have the 
potential to capture the relevant parts of the physic~ of the flow. However, for a pipe flow, 
application of the full RSM is con~idered beyond the scope of the present investigation. 

For simple gC;OITletrics, like flows ovc;r curved Or spim.ing ~urfa.ccs, attcmpts have 
b{.'(~n ma.df;: to extend the standard k - E model to flows with curved st.re<UTllines (8(~e 

section 2.4.2). For the class of flows considered in these studies thb approach proved to be 

successful (section 2.5.1). However, Shreenivasan's (1980) results using these adaptations 
for the case of two counter-rotating confined swirling jets proved to be unsatisfactory. 

Without doubt the swirling pipe flow is closer related to the confined swirling jet 
than to a curved or swirling boundary layer. Hence, simple modifications of a k - E model 
may not be sufficient to describe the flow correctly. On the other hand since the swirl 
deca.ys slowly, one ITlay expect tha.t the turhulent stresses can follow the changes ill the 
distributions of the mean velocity components. This implies that memory effects in the 
R.eynolds-stress tensOr might be: of mirlor importauce, arid that an algebraic approximation 
of the transport of turbulence may assumed to be valid. 

III this chapter we will a!lSellS some results of calculations of turbulent pipe flows 
with a. decying swirl, employing a number of turbulence models. Our goal is to identify the 
most important mechanisms, rather than obtaining a complete description, Hence, only t.h~ 
simpler variants of tbe models described in cha.pter 2 will he considered. Furthermore, ill 
the present chapter the flow is considered to be axisymmetric. As a starting point we will 
use an algebraic T!:pn:serltatiorl of the transport tt:rmS irl the Reynolds-stress equations. 

4.2 Modelling turbulent swirling pipe How 

4.2.1 On the appliClil.bility of an ASM model in a swirling pipe flow 

Although in general the stresses and strains will not be aligned, any algebraic stress model 
assumes that their orientation is an instantaneous function of the flow field. This assump­
tion is valid provided that the transport terms in the Reynolds-stress transport equations 
can be neglected or can be approximated by terms algebraic in the stresses themselves. 
The classical ASM approximation is due to ftodi (1976). Noting that, 

I~_ I~ +k IJ {Ju,·u· u·\.I.· Ok a (u.~~ .) 
----ax - T ax ax -k-

Rodi proposed, 
rom 

lh.rlBpDrt( Hi'lL j) Ri T 1J-arJBport (k ) ( 4.1 ) 

A minimum rcqujrement for this a.pproxima.tion to hold is that all gradjents of the quantity 
lli"ll:" 
~ j a.re SIrI a.1I, 

k ~ ("fl';11j) <t: YT;'fl'J a k 
[hr k k oxr' 

for 1=1,2,3. (4.2) 
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Since the transport of the turbulent kinetic energy equi!.l$ the difference between the its 
production P, and its dissipation ~, the transport of the Reynolds stresses can be approx· 
imated by 

ffill:' 
Tr.Y.ISPott (1T;lI7) ;;;;;; T (P -~) , (4.3) 

provided that condition (4.2) is met. However, for flows with curved streamlines this ap­
proxim;l.tion is not necessarily very ;l.l;l;urate. The reason can be ;l.ppredated best by con­
sidering the convc;<:tion of the turbulent stresses in .a. curvilinear coordinate system. 

For £iowa with curved streamlines it is often advantageous to use a. l;urvilineM COr 

ordinate system. Instead of condition (4.2), now a covariant equivalent of Eq. (4.2) is a. 

necessary cO(ldition for the ASM approximation to be valid. In an arbitrary curvi·linear 
coordinate system the left-hand side of Eq. (4.2) will transform ;l.l;cording to, 

(4-4) 

In general the Christoffel symbols, r:." will not be small and the covariant equivalent of 
condition (4.2) willllot be valid. Instead of the transport approximation Eq. (4.3), now an 
equivalent fot curvilinear coordina.te sy~tems has to be used tha.t explicitly contains the 
curvature-induced transport terms: 

where 

'!T.1l7 
Jra.nsport ('U;'U.i) "" 'k ] (P - f) + Cij 

C'l represents all the cLlrvature-induced terms 
and consists of a convection contribution, C¢,ii 
and a diffusion contribution, C~.ij. 

(4.5) 

In a cylindrical (x, r, ~)-cootdinate system, with corresponding velocity compo­
nents, U, V and W, the curvature-induced convection teMs can be shown to have the 
following form. 

Co,,,,, 0 

Cr:;,rr 
W 

+2-vw ,.. 

CG, ...... 

W 
-2~mu 

r 

C~~. 
W 

--Ute 
r 

C~,;<", 
W +-w 
r 

C¢,,.,,, "" - ~ P-Wl) 
Upon transformation of these expressions back into a cartesian representation it 

appear!! that the ~wirl continuously exchanges energy between the VOl.l:ious components of 
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the R.eynolds-stress tensor. The energy exchange, or ~convection scrambling" i~ caused 
by the curvature of the streamlines. Of course, whcn analysiIlg the same flow in a carte­
sia.n coordinate system, without the detour in the cylindrical coordinate systf~rn, the ASM 
a.pproximation yidd~ no fmergy-exchaIlge terms! 

The cause of this paradox is that by combiniog the ASM approximation with some 
choice for the coordinate system, one assumes that along the streaJIlline~ of the flow the 
"convedion scra.mbling" of thc Reynolds-stresses is fully represented by the terrn~ induced 
by the curvaturc of the coordinaJe systcm. Necessary conditions for the validity of this 
assumption are: 

• the symmetry of t.he 11lTbulencE~ fidd tnusl coincide with the symmetry of the coor­
dinate system; and 

• the curvalun: of thc streamlines must be reflected by the coordinate syskm. 
As such the validity or invalidity of the ASM approxima.tion i~ determin.ed by whether 
or not the chosen coordinate system "matches" the flow. Expression (4.4) shows that 
the "convection scrambling" terms are algebraic in the stresses. Thus, the "convection 
scramblingn effect is potentially large and accurate predictioJls with an ASM are only 
possible when this effed is propl~rly a.t;cotl0tcd for. 

For a swirling pipe flow the natural choice for a coordinate systeo:t is a. cylindrical 
coordinate system. In such a flow it is likely tha.t to fir~t approximatioll the turbulence 
field will have a cylindrical symmetry as well. Thus the first condition is Si'l.lislled_ The 
second condition p()se~ problcn'ls in SWirling flows. Firstly, in the case of a recircllli'l.tion 
region the curvi'l.ture of the atrea.rnlincs will be quite different from the curvature of the 
coordinate curves. Secondly, the streamlines in a swirling Ilnw will have a helical shape, 
which dOl:s not coincide with the shape of one of the coordinate curves. However, it GiLll 

eMily be appreciated that compared to the CMe of circular strei'l.mlinca, lhe helical shape 
of the streamlines causes no additional redistribution of energy, provided that the pitch of 
the streamlines is constant. Hence a TJec~~aaary condition for an accurate representation of 
the convection of the Reynolds stresses by the ASM approximation is that, at kaRt locally, 
the pitch of the streamlines may be considered con~lanL Hence, accurate predictions of 
swirling pipe flow with an ASM are restricted to flows, 

• without recirculation 
and 

• with a slnwly (kca.ying ~wirl. 

4.2.2 The ASM in a cylindrical coordinate system 

In thl~ preceding section we showed that in a swirling pipe flow the ASM-approxi)Tlation of 
the convection of Reynolds.stresses is possibly inaccura.te. HQwcvl;r, the simplification of 
the transport terms by the ASM not only applics to the convection of turbulent stresses but 
also to the diffusion of these stresses. The curvilinear character of the coordina!.e ~ystcm 
again induces curvature contributions in the diffusion term. Ljk~ the curvature-induced 
convection Lerms, the curva.ture-induced diffu~ion terms may be large in magnitude, and 
thus have to be accounted fot in an ASM representation. 
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Appropriate curvature-induced diffusion terms are not as easily obtained ail the 
curvature-induced convection terms. Using the curva.ture tetms of the full Reynolds-stress 
cqua.tions is not an option, since they are eSlJentially non-linear in the stresses and still 
contain derivatives of the Reynold~ stresses. Moreover, there is no need to approllimate the 
curvature-indul;Cd terms more a.ccura.tly than the convention.u ASM approxim.atioll of the 
diffusion terms. Hencc, for example in codes like FLUENT they are neglected altogether. 
Howevcr, ~ince the geometry of intl-"rest is so simple, an intermediate a.pproach may be 
possible. fut,ther than simply ignoring these terms we search for a. formulation tha.t is at 
least consistent with Eq. (4.1) but preservca the typical "tensor-like" diffusion properties. 
A formulation that meets this condition can be found by defining, 

and rewriting the diffusion term in covariant form, 

Dif{(rrw:;) == 'VI (l"'II.I •••• V'" (kci i )) , (4.6) 

with 
11.( •••• denoting a turbulent diifusivity 

and 
glm denoting the metrit:: tell sOt . 

Using this expression for the diffusion term one arrives a.t the following; approxima.tion for 
the curvature-induced diifusioll terms) 

. Diff(k) 
Dlff(~) ....,..,..,...,..., if< -- + CJ .. "'"j - ...... J k G,o] (4.7) 

where for a cylindrical coordinate system C~,ii is given by) 

Cd,ii 0, 

Cd,22 
1 (;)l - WI) - r2: V.t,.eu 

C~,..., 1 P 2") r':l I1.~'f'~" 'V - W 

Cd,12 
1 

"" - r2 V.r. ••• IW , 

Cd,I" 
1 

- r2 V,jr~ •• 'ii'W , 

Cd,23 
4 

"" - r2 v.I •••• lJUI • 

By inttoducing these expressions in the ASM equations (4.5), 0Il1 curvature induced trans­
port processes are <l.Cc::ounted for. However, the introduction of these terms is only mea.n­
ingful if the magnitude of these terms is c::omparable to the curvature-indut;;Cd convection 
terms. 
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Compari~lg HI!: !=xpreB8ions for Co,;j with those for C~,>j indeed shows that neglecting 
all curvature· induced diffusion terms will probably not be justified in aU cases. Near the 
axis of the pipe the difTuBion terms ma.y become large and of the same order of magnitude 
as the convection terms. However, it h<l1l to be kept in mind that the curva.ture-induced 
diffusion terms are the result of an a.pproxima,tion. This approximation is similar t.o the 
approximation of the diffusion term in the k-t turbulence model. J1Ist, {me of the identified 
weaknesses of the k - € model is the desc6ption of the diffusion in the neighb01~rhood of a 
symmetry plane or an axis of symmetry. 

Now that the tra.nsport. terms of the Reynolds stresses have been sjmplifi~d, the ASM 
can be completed by dl{)oaing a model for the pressure-strain interaction. In dli1pter 2 three 
basically different models for the "rapid part" of the pressurc-stra.in term were give:n, the 
QI model, the lP modd and the rotation· rate independent FIP model of Fu ct al. (1987). Of 
these three, the QI pressure-strain model is the most cow pIe:.;: modeL Considering the {orm 

of the QI model (Eq. (2.8)), it is seen that the structure of the expressions for the ~tresses 
becomes rather complex and too bl~lky to analyse conveniently. Moreover, for swirlillg flows 
:no dl;!cisive advantages of the QI-model over the IF-model were found (section 2.5.2). 

Generally, also the pressure-strain model due to Fu et al. (1987) (PIP model) pro­
vides problems in an algebraic rcpre~elltation. Apart from production terms it i!lso contains 
a cOllvection term. Since we are using an algebraic representation only an approximij.tion 
for t.he conv(~dion term is available. However, in the foregoing section we showed that the 
ASM yields aCCurate results for a limited class of flows only. Naturally, if one only considers 
this class of flows, the ASM approximation can bl-: used in the pressure.strain model a.!i 

well. According to Fu et al. (1987) the rapid part of the pressure strain has to be corrected 
with a. term equal to, 

Substitution of the ge~\erQ.liZNI ASM approximation for the convectioT.l t~tms yields, 

(1.8) 

where C(k) denote!l the convection of k. 

tlowever, a pren~quisite for an accurate description of t.he convection by terms algebraic 
in the stresses, is tha.t the swirl should deca.y slowly. This implies that both the gradients 
in axial directiun 1LI.ld the radial velocity component are small. In thi8 case the convection 
of the turbulent kinetic energy k, will be sm<tll a..~ well. To first order we can negkd the 
convection of k, C(k), in Eq. (1.8). 

Summari7,ing, for a swirling pipe flow, the ASM system of e-ql~ations can be written 
as, 

(4.9) 
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for the IP pressure-strain model <md 

urn; T ;;;;;; ipl (Pii + C~,ij)!f +!P2 6;j + '/J3Cd,ij!f, 

for the FIP pressure-strain model, 
with, 

and Cl and C2 the "return.to-i80tropy!> coefficient and 
the "rapid-part" coeffic;ient, (eSpectively. 

4.2.3 Solving the Algebraic-Stress equations 

(4.10) 

For a given mean flow field, a given magnitude of k and a given magnitude of f; both systemJl 
of equations, Eqs (4.9) and 14$ (4.10) are quasi.linear in the unknown components of the 
Reynolds-stress tensor. The non·linear cha.racter of these equations is weak and stems from 
the quantity P/f in the rodficient!l 'Pi, /{Jl and 'P3. In most :flows, the quotient of production 
and diasipation varies slowly. Therefore the magnitude of PIc: may be assumed to be known 
also. With all these assumptions the aY$tem of ASM equations reduces to a system of 6 
linear equ.a.tions for 6 unknowns and a. closed-form aohl.tion can be obtained. In general 
this solution will be ra.ther bulky and unattractive for further ;I.l)alysis. 

However, consistent with the ASM-approximation for the convection of the 
Reynolds-stresses, it can be a88umed that locally the flow is "frozen". Instead of allow­
ing for a. veJ;y l;IIQW development, locally the development in axial di~tion is neglected 
altogether. For the "frozen!> flow, thE subsystem consisting of the equations for 'i;J, ~ and 
UW is independent from the subsystem consisting of the equation for UI, 1ID and m11. In 
the assumption of i!L "fJ"OZen" pipe-flow simple closed-form solutions of the ASM equtLtions 
emerge. 

In the next sections we will c::onsider the eolution of the ASM-equations. Since the 
mIl component of the Reynolds-stress tensor is the dominant term in the equation for the 
circwnferential momentum we will first concentrate on this component . 

.01.2 . .01 The radial transport of eircumfe)."entWly dil't!ded momentum 

The solution of the ASM.subsystem for ~, WI' aDd 'tIW depeu.th strongly on the specific 
form of the curvature-induced convection and diffusion terms in the ASM equa,tiol;l.ll. Here 
we will consider just three possibilities: 

• omi!llJiQn of a.ll curvature-induced terms, 
• omission of the curvature-indl,lc;ed diffU$ion terms only; 

and 
• including all curvature-induced terms. 

Apart from the form of the curvature terms the solution also depends on the choice of the 
pressure-strain model. Here we will start with the IP model. In the second part of this 
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section we will also analyse the results obtained with the FIP model for the "rapid part". 
For th(; Um:(: !jituation~ mentioned above the expression for vw hecomes: 

VWo = _~ 'f!1'f!2 P (aw _~) (4.11) 
3 ~ ar r 

""""T. _ UWO 
VW\ - • 

1 + Rtvw 
(4.12) 

with 

and 

UIDO (1 + 4if3~II,jT ... /r2) 
UW2= ~------------~,-~----~----~~----~---------

[1 + 4ip3~10"/T .... /r2] 2 _ 4'f!1'f!3 :: lJ.~ •••• [aa~ _ ~] 2 /r2 
( 4.13) 

+Himzr 

When all curvature-induced terms are neglected, i.e. Eq. (4.11), the solution of the ASM­
Bysteril reduces to the d~sical Boussinesq-approxirnation for the Reynolds stresses. The 
expression for UID C;:OIl8iBtB of <l. dimensionless group of const"nts, a group of turbulent 
quantities with a dimension of a viscosity and a group representing the deformation of the 
mca.n flow field. Expressions (4.12) and (1.13) reve"l that introduction of curvature terms 
results in a correction factor Oil the original Bot1ssinesq"approximation. For mote complex 
curvature terms the c;mredion factor also becomes more complex. 

It should be noted here tha.t in the layer dose to the wall the structure of the ex­
pression for T)W with 1.l1f.~ (:urvatute induced convection terms included (Eq. (4.12», is com­
pa.rable to the expression for UtlI for curved strei'IJolincs ~ proposed by Bradshaw (1973). 
His expression for IJ'W is balled on a Ric;ha.rd90n number for curved flows (l;it:!;tion 2.4.2). 
For the circular pipe the equivalent of Bradshaw's expression is of the form, 

T1W = mIio (1 - ~Ri) 

where Ri denotes the Richardson number and 
(J a caRe-dependent constant. 

For small Ri Eq. (4.14) is approxima.te1y flqual to, 

1 
vw = V'Wo I + fJRi . 

( 4.14) 

Ac;cordiug to Bradshaw (1973) the Richardson number Cqll<tll;l the ratio of the extra strain 
acting on the fluid due to the curv"tu[e of the streamlines and the original Rtrain, i.e. 

au 
Ri IX OJ or 

with n representing the angular velocity. 
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It follows from Eq. (4.12) that apparently the Richardson number for swirling fl0W8 
is of the form, 

P W (OW W) Rioc2(<Pl+<P~)- <Pl-a +~~ (4.15) 
€ r r r 

which differs from the Ri·number used by Bradshaw. Expression (4.15) suggests that the 
Richardson number is formed by the quotient of a producUQn-like term and the di$$ipation 
of turbulence. 

Due to the u.o-~lip condition at a solid wall, this Rkhardson number will be sma.ll 
dose to the wall. However, further away from the wa11 the circumfeJ:ential vdocity will 
be much larger and we may expect a larger Richardson number. When the Richardson 
number is large and positive the resulting shear stress will be very small and consequently 
the radial transport of circumferentially directed momentum will be teduced. 

In turbulence folklore (Bradshaw (1973), Rodi (1979), La.under ct 41. (1977)) often a 
similarity is pointed out between rotating flows and flows with a vertical density gradient. 
The presence of a density gradient has a stabilizing or destabilizing influence On the Bow, 
depending on the direction of the gradient; In a gra.vity field a flow with a density gradient 
opposite to the direction of the gravity field will be stabilized, while in the c~ that the 
gravity field and the density gradient are in the same direction the flow will be destabilized. 
As a consequence the momentum exchange can either increase or decrease. Equivalently, 
in a rota.ting flow the curvature can be either stabilizing or de-.!ItabiHzing. By analogy with 
the Rayleigh circulation theorem for axisymmetric three-dimensional disturbances, which 
states that the flow will he stable fur flow with a positive gradient of angular momentum 
and unstable in the opposite case, one may expect that in a turbulent swirling pipe flow 
the intensity of the radial velocity fluctuations incre1l.Ses when the gradient of angular 
momentum is positive and decreases in the opposite case. Consequently, one may expect 
tha.t the r;u:l.i<Li hmspOl:t of momentum may increase or decreases. Thus, the "neutr<Li~ 
distribution of cicumferential velocity which is neither stabilized nor destabilized is the 
di~tributio:n which aatiafie!J., 

or 

According to Eq. (4.12) the :neutral profile is given by 

or, 
(4.16) 

Expresaion (4.16) shows tha.t the :neutr<Li profile for momentum exchange is directly coupled 
to the coefficient of the "ra.pid part" of tbe prell5ure--atrain model (see section 2.2.5). 

A similar analysis can be performed when the FIP model is used for the "ra.pid 
part". Of course, changing the pressure-strain model does not affect the ~curvatureless" 
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result. However, the reault. obtained with the curvatur(~-induced convection terms included 
is ;Jf~(:t!;rl: 

(1.17) 

with 

.• P 2W (8W W) 
R~-"'-8-'Pl - -+- . 

vw ~~ r 8T l' 

Contrary to the result obtained with the IP model, Eq. (4.12), this result predicts a ~neuLri!.1 
sta.bility profile" which is independent of the values of the cod1icients of the prCHHUre"strain 
model, i.e. 

W -I 
~ T . ( 4.18) 

By comparing expression (4.12) and expression (4.17) it appears tha.t the reductioD of the 
radial e;)Ccha.nge of circumferential IDomentum in a stabilizing velocity profile IDay be quite 
different for the two models. For a flow subjected to a solid-body rota.tion j W = Or, tht~ 
denomina.t()r of both expressions (4.12) and (4.17) can be expressed as, 

p 
1+ il!"2nl, 

l> 

where n denotes the angular velocity. 

If local eq\liHbrium is assumed (PIt. = 1), il! is given by, 

1 
(2 - C~)~ _ 4 ----z.;- for the IP model, 

CI: - C 2 

16 (
1 ;1 2) for the FIP modeL 

Using the standa.rd coefficients for the pr(;asure-strain model (s(~ section 2.2.5), 

the value of Q for these models is 

and Cl or 0.6 

3.5 for the IP model, 
1.1 for the FIP model. 

However, when a.pplying the Gibson & Younis (1986) coefficients for the IP model, 

and 

the magnitude of a equa.ls: 
a Rj 1.3. 
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Clearly, the predicted st.a.bilization effect using the FIP model with the !;Itandatd roefficients 
is in much better agreement with the magnitude predicted by the conventional IP model 
with the Gib80n/Younis coefficients. This also expla.ins tha.t the performance of both models 
in a 8wirling.jet geometry is equally suc;:c;:css(1,I1 (section 2.5.2). 

Thus fax we analysed the consequences of including the cUIV3turc-induced convection 
te~rns. Now we will consider the effects on mll" of the curvature-induced diffusion terms 
(Eq. (4.13». Although it appears to be much more c;:omplicated, exp~ession (4.13) haa a. 
stnu;ture that is similar to the result according to Eq. (4.12). However, in the limit for 
r ---+ 0 both results differ considerOtbly. While expression (4.12) predicts that the effective 
viscosity ()( vw/ (98': - ~), stays finite in this limit, expression (4.13) predicts a zero 
effective viscosity irrespective of the magnitude of the swirl. 

4.2.5 The radial transport of axially directed momenhlm 

Since the 'flU-component of the R£ynoldll-lltres!l tensor is one of the dominant terms in the 
x·momentum equation, in this section this component will be analysed in some detail. To 
find an e)l;pression For 'Uv for the case of a pipe flow with swirl the second sub-system of 
the set of ASM-equations will be solved. This sub-sYiltem consists of the equations for UI, 
'!ID and '!flU. 

Fir~t the analysis will be restricted to two possible treatments of the curvature­
induced terms: to neglect them totally; or to include the cUfvOttl,lre--induc.ed convection 
terms only. Fot the IP model the expressions for ffU are 

(4-19) 

and 
_ _ l+ Riw 
U;Vi "" 'UVo (1 + Rivw/4)(1 + RiVlJj) (4.20) 

with 

The corresponding expressions obtained with the FIP model can be found by simply re­
placing ¥J3 by 'Pi. 

As expected, the result of the first approximation is again the classical Bouss.inesq 
exprCllsioll for ml. The result of the second a.ppro)(irnation is slightly more complex than the 
corresponding result for mll". However, when the swirl· induced curva.ture of the streamlines 
is small enough, both correction factors will be similar. 

When the pipe wall is approached, the curv;!.ture c;:an indeed be regarded as being 
small, in the sense that the regular deformation terms are much larger than the curvature 
terms, *" «:; 88~' In this situation the vw.component can be approximated by, 

mIlo 
mll"i ~ -------;k;.,.-::l-----'-------:-:w,,-----;a""w":7 

1 + 42' (\PI + \P3) -'Pi-a err 

(4.21 ) 
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while the 'aU-component can be approximated by 

WO 
UV1 ~ -- k2 W aw' (4.22) 

1 + 1"""3" (~l + ~3) ~~I-{) 
f r r 

It appears that for a relatively small, swirl-i)Jd,](;!~d, curvature of the strea.rnlin(~B, at least 
i;Uj fiLl" a.B the '!lU a.nd UID are concerned, the commonly quot.ed ~non-alignment" of the st,CS8 
h~~l!KJr and the strain is not present. Instead the momcnt urn exchange in the wa.\1 la.yer 
ia increased compared to the momentum exchange in a. non-swirling wall layer. Thus the 
effect can be described as a change of the characteristic length scale of the turbulence. In 
a qualitative sense l.hiB rt~H\l1t agrees with the arguments put forward by Bradshaw (1973), 
Rodi (1979) and by Launder et 1,1.1. (1977). They hypothesised that the change in length 
acalc is the most important effect in a swirling bounda.ry layer and their adaptationH of the 
k - ~ model also predict a.n increase of this length scale. 

At a. Ia.rger distance from the wall a misalignment of the stresses (uv a.nd vw) and 
the strains (!~ and (l1;l~ - ~) occurs. In a solid-body rotation the misalignment effect 
is relatively small compared to the st<Lbi\ization effect. However, when tllt~ circumferential 
velocity profile (;ouforlna to the "neutral" profile (section 4.2.4) both effects are of the same 
magnitude. Expressiorl (4.20) shows that, contrary to the exchange of circumfenmtia.lly 
dirf:dcd momentum, the exchange of axially directed momentum is iu(;n'~ased. At this 
point the predictions from the modifications due to I:ha.dah"w, Rodi and Launder may be 
expected to differ considerably from the second-order closure-scheme predidionH. 

When the curvature induced diff'l~lji()n terms are added to the equations, near the 
axis of the pipe, UV2 exhibitlJ the same anomalous behaviour as VW2; 

or, 

00= ~ (~1V2~~ -m1~: Vot.",,) 

tplV2 au 
't.LtJ"'-klPt

r 

1 + - -rV.(r ... 
E r 

For the limiting situation of (r --> 0) again the quotient of the stress m1 and the strain Wf, 
decreases to 'l~~ro. 

Although it is a. straightforwMd consequence of Rodi's ASM approximatiou 
(Eq. (4.1)) these results show tha.t the gradient diffusion model (Eq. (4.6)) tha.t under­
lies these results is dearly inadequa.te. Close to the axis of the pipe the application of 
the grOtdi(mt-difftlsion model leads to u1.mphysicaJ" results. lIence wc are forced to relin­
quish the inclusion of curvaturc-iudu("~d diffusion terms, eVCD thOl1gh they are potcutially 
important. 

4_2.6 Closure 

In the foregoing scdi(m~ we have presented ",n <Lu;l.lysis of the behaviour of an Algebraic 
Stn:ss Model in an axisymmetric "(roMn~ swirling pipe flow. It was shown that for a flow 
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with strongly curved streamlille~ the ASM is pos~ibly in;I.CcurOlote- Ollly when the COOt­
di;o.ate system closely m .. tches the flow ooDsidered, a.ccurate results m ... y be expected. In 
general the character of the flow is not known beforehand and the choice of the coordinate 
system COloDnot be b~d on the flow at hand. ThUll the applicability of a. model based On an 
algebraic representation of the transport of tutbulence is limited. However, fOf a. "frozen" 
swirling pipe flow r the aimplicity of the gwmetry OloDd the simplicity of the flow allows the 
use of an ASM. As a consequence, the results of an ASM will only be accurate to first order 
in the C;I.\l6 of a decaying swirling pipe flow. In addition to an analysis of the a.pplicability 
of ASM-type models, an assessment was made of the results predicted by the ASM. The 
main results are: 

• The ttansfotmation of an Algebraic Stn.'SB Model i;o.to a cyli;o.drical coordina.te sys­
tem is not trivial. The approximation of the diffusion of the Reynolds stresses 
poses problems. The straightforward application of the gt"adient-diffusion model, 
needed to obta.in algebra.ic expressions, produces una<:ceptable results. Therefore 
the curvature-induced diffusion terms are neglected, though close to the axis of the 
pipe the neglected terms are potentiaJ..\y important. 

• If One ;;I.l;Isumes that the ra.tio P/~ is known, it is possible to formulate closed-form 
exptessions fot the Reynolds stresses. If o:o.e furthermore M6um~ that the ve.nlilotions 
in a.xial direction may be neglected and if one uses a simple model for the pressure­
strain correla.tion, these expressions are relatively simple a.nd auitable rot" further 
analysis_ 

• Different models for the pressure-strain interaction yield different expressions for 
the Reynolds str¢$$(!$. However, by choosing appropriate coefficients the results of 
the models ma.y be similar. 

• The dosed-form ex:pressio:o.~ show that the swirl may have large effects on the struc­
ture of the tutbulence. Momentllm exchange all caused by the turbulent motions 
can either be increased or decreased by swirl. Near the pipe axis th~ model predicts 
a strong decrease of the exchange of mOmentum_ 

• In oontrallt to the flow near the axis the pipe, the momentum e:x:change in the wall 
region is increased by the swirl. In the wall region the predicted amplification of the 
exchange of axially directed momentum and circwnferentially directed momentum 
appear to be same. As such the ASM predidiQl;ls CliLn be viewed upon all correction 
factors on the mixing length OloDd are in agreement with the intuitive models of 
Bradshaw (1973), Launder (1977) and Rodi (1979)_ 

• In a. flow without a ra.dia.l gra.dient of angular momentum, intuitively one expe!::t/I the 
turbulent exchange in radial directiolJ. to be neither increased nor decreased. Only 
the pWlsure-strain model due to Fu et aI. (1987), Eq. (2_10), yields a. "neutral" 
profile for the exchange of circumfercntially directed momentum tha.t coincides with 
thi~ profile. The conventional IP model for the "rapid pa.rt" produces a. different 
"neutral" profile. For axially directed momentum no "neutral" profile exists_ 
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An ana.lysis as perlormed here contains the risk that some of the conclusions on the struc­
ture of the turbulence ,m: based on mere artefads of the model. }-/owcvet·, although t.hey 
are far from pc:r:fed, the building blocks of the model can be regarded as being ~50und". 
Effects like the individual produc;tioll of each component of the turbulent 5tr~::Hse8 and the 
"pressure scrambling" uf these components arc accounted for, 

Having a deta.iled under~tanding of the beh;a.viour uf the model in a simple flow will 
certa.inly be of use for the interpretation of predictions in morc complex flow situations, 
Moreover, also the interpretation of experimental results may b(;ndl.t from the insight 
gained by this analysis. Hence, in the next sections we will proceed with a Hl0re detailed 
de~nipti()n of the structure of the axisymmetric swirling pipe flow, as predided by an 
ASM,type model. 

4.3 The structure of a turbulent pipe How with a decaying 
swirl 

4.3.1 An adapted BouBsineBq appr-oximation for 6wir-ling pipe How 

In this scc1.ioll we will describe the g(:u(:ral features of a decaying swirl in a turbulent pipe 
flow a.!:l predicted by ASM-typc u:lDdels. As indicated in ~()(;tion 4.2.1 the ASM approxima· 
tion is valid only for a limited class of flows. As long as recirculation docs not occur <tnd as 
long aa tht: swirl decays slowly, tl)(~ ~witling pipe flow belongs to the clMS of flows where an 
ASM is applicable. The strong constraints owing to these c()nditions, causea the application 
of a full ASM closure to be sOTllewhat controversial. Since the approxim<ttion of the convcc­
tion terms neglects the extra Ucurvature scr<IIDbling" caused by the a.xial gradients, ta.king 
these gradients into account in the ASM equations appean to be inconsistent. Therefore, 
without loss of accm<tcy the axial gradients miLy be neglected wht:n the ASM sy8tt~m of 
equations is solved, The ASM model then yield~ dosed form expresijion~ for the stn:ij~(!S 
(section 4.2.:i). According to section 2.3.2 the expression for mY in a "single-strain" flow can 
be conne('.ted 1.0 the k .~ ~ model by replacing the group of dimensionless quantities ~'Pt'h 
by the coefficient G1,. The exprcssions for tW and ~JW obtained by negleding all curvature 
terms, i,c. Eq. (4.19) and Eq. (1.11) respectively, have the same structure a.s the expression 
for uu in a "single stra.i)J~ flow. In this sense, when the curvature effects are neglected, the 
ASM is equivalent 1.0 the conventional k - , model. 

When the curvature terms are add(~rl, according to Eq. (4.20) and Eq,( 1,12) the cur­
vature effect Ca.ll be accounted for by a. set of simple correction terms on the "curvatureles!I" 
expressions fot the stresses, Le. 

~v = ITUk-. X correction factor;.,;-

and 
VW = U"Wk-. X corredion factor~",. 

These expressions open HI(: possibility to modify a Ie - ~ type of mdhod for developing 
pipe flow, into a mdhod for swirling pipe flow. Hence, it is po~sible to use the algorithm 
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Figure 4.1: Radial distribution of th(: Qr(;tlmfece.tlti~ vdo.;ity rompone.nt obtainoo with e~ ful1 ASM 
(FLUENT) IUld the modified Bol188inesq approximation (pr=t a./gori'hm) ft:>r the turbulent 8~. 
(UinC., '" 1.0, w,,,r.t = ,.!R, &f} __ lOG, ~!D 0= 35, N=IOQ) 

a$ described in chapter 3 for the prediction of the development of pipe flow with swirl. 
Indeed, the modified Boussineaq approximation and the full ASM yield very similar velocity 
distributions. The la.rgest diffe.ence between the results of these two methods occur in the 
di8trlbutio[l of the circumferential velocity component, see Fig. (4.1). The difference in the 
magnitude of both diatributio[ls stems from a difference in the treatment of the boundary 
condition at the wall. In the calcula.tion employing the full ASM, a logarithmic law of the 
wall is u~cd, while in the calculation employing the modified k - E model a. "low-Reynolds­
number" model approach is followed. MQreover, .aJso application of a full Reynolds-stress 
closure scheme results in very similar distributions (Chen (1992)), indi(::;Ltiog tha.t neglecting 
thE memory effects in the Reynolds-stress tensor is justified for the class of flows conaidered. 
Hence, in this study the modified k - ( model is employed only. 

4.8.2 Regimes of swirl decay 

As it turns out, the decay of swirl in a developing pipe flow is a complex process io which 
several mecha.nisms piilJ"ti4;:ip:;Ltc and interact mutually. However, the process can be divided 
into aeveral regimes in which different mecha.nisms dominate. The three main parts of the 
decaying process are: 

• a redistribution part; 
• :;L st:;Lble "mode" part; and 

• an eddy-viscosity pa.rt. 
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Figure 4.2: The circumferelltial velocity distributioll ill Ibe eddy-visW'li'y pig!. W'nloj = 1.0, W;nl.j = 1"/ R, 
~/ D = 100, ~D = 10$, N=lOO) 

T~w n~a.aqn ror this Hpccific divillioll iH b~ed on the form of the ASM corrections for thE; 
shear strcsscs. Thl~ilc mrredions show that the momentum exchange is influenced by tbj) 
circumferential velocity distribution. Hence the last part of the three il'l dC<Lr: at the end 
of the decay the swirl will have become so sm<tI1 that itH influence on the exchange of 
momentum has become negligible. As Fig. (4.2) shows, the ~hara.dcr of the circumferential 
velocity distribution i~ comparable to the one of the axial velocity distribution in an alIIlo~t 
developed pipe flow, showing the 130rgeat deformation close to the wall of the pipe and the 
srnaJlcHt deforma.tion near the axis of the pipe. Furthermore, comparison of Figs (4.2) a.nd 
(4.3) shows that in this region the 3hapc oC the radial distribution of the clr<:lIrnf()rcntial 
velocity component is almost identical to the sh.pe of the di~tribution as. predicted by the 
conventional k - € model, indicating that <tIl effects of iltreamline curvature on the structure 
or the tUrl)1lkI\Cj~ hilv!~ disilppeared indeed. 

Upstream of the eddy-viscosity part the phenomena are ra.dically different. Here the 
swirl is strong enough ~o have a profound effect. Expressions (4.12) and (4.20) show tha.t 
momeiltuHl ()x/;h<LItgt: is strongly affected by the swirl. The consequences are d«Lrnatic. It 
appears that the effect is so strong that the flow behaves a.s jf jt were non-viscous. In the 
core region of the pipe the flow virtually "frcctcs", at least as far as the distribution of the 
circumferential velocity component concerns. It preserves ita shape aJoug a large pa.tt of the 
totallellgth considered. Moreover, it appears that there are fixed types of distributions, or 
~modes~. The shape of the distributiolls s~'Cms to lock into a shape that strongly depends 
on the iIlitial profile. At least three types of ~modeB" can be distinguish!)d; 
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Figure 4.3; The cicttlmfemHiaJ ve.loaty dilitributiDll computed using the OOlIvcoCio1l1J.l k - t model at 
different axialstatiD.llB. (Uonl •• = 1.0, W'HlO.;::; r/R, ReD - 1O~, lV-laO) 

• Solid-body rotation 
• Centered-vortex rotation 

• Wall.jet 
Examples of tbeae three umodes" are shown in Figs (4.4) to (4.6). The first "mode" is 
c:hara.derized by a large region with solid· body rotation near the axis of the pipe, the serond 
"mode)) by a (:oncentrated c:entr.,J region of high axia.! vorticity and the third "mode)) by 
a region of low vorticity near the pipe axis. 

Ha.ving established that the flow apparently ulocks» into certain states, the distinc­
tion between the first and the second p:Mt is .,J~o obviouS. The upstream condition will in 
general not coincide exactly to one of the "modes" the flow tends to "lock)) in. Henl;-l;l th~e 
must be a region of large changes in the distribution of angular momentum. This redistri­
bution can have a large effect on the axial velocity profile. In a parabolized formulation of 
the flow problem the pressure distribution i~ dominated by an equilibrium of the pressure 
gradient and centrifugal forces. Provided the swirl is strong enough and the rediatributiou 
is fast enough, one may exped that locally the axial pressure gradient becomes positive. 
At the aame time the radial momentum traJ;lsport by the turbulent stresseS iii stmngly re­
duced. As a result of both effects the axial velocity distribution ma.y show the well-known 
"dip" near the pipe axis which is so characteristic for swirling flows. The development of 
this udip" in the axial vdoc:ity profilr:: and thr:: ~trong redistribution of angular momen· 
tum ill- closely related to the "vortex breakdown" phenomenon (see also section 3.1.1). 
Indeed vortex breakdown is only observed at high enough swirl intensities (see for example 
(Visser t:t al. 1987)). Clearly! a parabolized formulation of the flow problem will not be 
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figure 1.5: All example of the centered-vortex-rotation ~IIlode" I using the Gibson & Younis pressurc-stra1n 
coefficients, (Ref) '" 1O~ I N=100) 
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valid when the flow approaches the regime where "vortex breakdown" occurs. Moreover, 
a.pproaching the Uvortex·breakdownn regime will also be detrimental for the a.ccura.cy of 
any algebraic approximation of the transport of the turbulent streaseS. As discussed in sec· 
tion 4.2.1 the ASM approximation is only accurate when the streamlines ~match" with the 
coordinate curves. Close to ~vorte)C; breakdown" this condition is not fulfilled. Furthermore 
the "v'ort!;x-brl~akdown" phenomenon is connected with rapid changes in the flow. Memory 
effects, that are not accounted for in the ASM, may then become important. Thus the 
applicability of the present approach is not warranted in the rediatribution region. As it. 

consequence, for strong ~wirl the predictions obtained with the modified k - ~ model, may 
not be reliable for the initial atages of the development of the swirL However, fOf tht:: initial 
velocity diatribl~tions a.nd swirl intensities considered here, the dip in the distribution of 
the axial velocity will not appear. The remainder of this cha.pter will be devoted to the 
second and third decay region, starting with a detailed description of the stable "mode" 
region. 

4.3.3 A detailed description of the stable cCmode" region 

The most characteristic part in the decaying process is the part we denoted with the term 
~atable mode deca.y". Owing to the adion of the curvature terms in a.la.rge pa.rt of the pipe 
cross-section the flow will behave as if it were inviscid. It is obvious tha.t changes of the 
time-averaged quantities can only take place over a long distance in axial direction. Hence 
it seems that in the centra.! region eapecia.lly the circumferential velocity profile appea.ra to 
be "frozen". As fax as the axial velocity profile is concerned it can be noted tha.t) similar to 
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Figure 4.7; Till!' .".;c~l"rlltj(JiI of the flow III axial dire<:tiQlJ. (Wi,,'.j = 1"/ fl, U;nlcl = 1, f(,.,j) = 1O~, N",,100) 

the flow in the redistribution part, the axial momentum flux will be domin<tt~d by the axial 
pressure gradient. How(;v(~r, since in this region the distribution of angular lnomentum is 
almost consta.nt--- apa.rt from a slow decay of the integral amount of angular momentum--­
it is unlikely tha.t close to the core of the swirl the axial pressure gradient remains positive. 
Hence, eventually l't platea.u of bigb axial velocity may develop. This is dmllOnstrated in 
l"ig. (4.7) for the case of solid-body-rotation inlet condition. 

Clea.rly the above mentioned accelerl'ttion dfect must be reflected ill the circumfer­
ential velocity profile. Owing to the acceleration in 3,Xil'tl direction the axial directed vortex 
tubes will be strc!.ched. Indeed Figs (1.7) & (4.8) show that in downstream direction the 
circumferential velocity profiles a.re steepened near the l'txis of the pipe and tn<tt. the change 
of the slope is proportional to the magnihlde of the axial velocit.y. 

Since the flow in the (;()re region is apparently dominated by inviscid-flow mecha­
nisms, it appears that the different "modes" mention~;d ill the preceding section are nothing 
more than the remna.nts of the upstream profiles. In other words whc;1\ a solid-body-rotati()fi 
velocity distdbution is offered as initial condition, the flow will lock into the "solid-body 
mode", when l!. swirling wall jet is offered as initial condition t.he flow will lock into the 
~wa.ll jet mode». 

A more interesting ,(;giol\ is the region in betwccJI the immediate vicinit.y of the wall, 
where viscous for(:es are dearly domiol'tnt, a.nd the region near the axis of the pipe where 
the flow is governed JTIl'tinly by inviscid mechl'tl]isTll!l. Because in the la.rg(;Ht part of this 
region the magnitude of the circumferentia.l velocity is still high, according to Eqs (1.12) 
ij.nd (4.20) viscous effects will be weak. The shape of the distribution tha.t develops in 
this region ca.n be appreciated by assuming tha.t the flow may be cOTlHidered inviscid. In 
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inviscid flow with distributed vorticity, the vorticity tends to concentra.te in regions with 
a high level of vorticity, the so-called vortex cores. For the COU'le of a swirling pipe flow this 
would result in a concentration of a.xially directed vorticity near the axis of the pipe and 
an acceleratioJJ of the flow in axial direction. Clea.riy, the remaining velocity distribution in 
the region between the, more and more- in itself concentra.ting, core and the wall c;;onta.ins 
little or no vorticity anymore. Of course, the distribution that belongs to a rotating flow 
without vorticity is the potential-flow distribution (free-vortex distribution), i.e. W 0( 1/'(". 

Si;oce the flow is only inviscid to first approxim<Ltion one may expect that the shape 
of the radial distributio);! of the circumferential velocity resembles the fr~vortex distribu· 
tion. Indeed, the computations do not show a. prefect Ufree-vortex" shape of the velocity 
distribution. Instead it appears that the shape is determined by the specifil; form of the 
preSsure-strain approximation. Compa.rison of results of computations employing different 
coefficients and different models suggests that the profile in this region is determined by 
the pressure-strain model {Fig. (4.9)). The expre6sioIl for VW predktB a. "neutral" velocity 
distribution for momentum exchange W 0( l/iP, that depends on the specific fonn and 
the coefn(:ienis of the pressure-strain approximation (see section 4.2.4»). Fig. (4.9) ~uggests 
tbat a correlation exists between the actual profile a.nd this Uncutral" profile. 

In any case, close to the wall the "free-vortex"like" behaviour must break. down. 
Since the integral amount of axial vorticity contained in the pipe CrOOO section must be zero, 
the large "core vorticity" must be balanl;ed by an equal but opposite directed amount of 
vorticity. As argued in the foregoing paragraphs, due to the strong reduction of momentum 
exchange in the intermediate region the vorticity contents of the region between wall and 
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Figure 4.9: Tho! o!ifo!r,t of t11'-' d)oic~ o[ th~ p~Uce-stClYn model OIl the djstcjhutjon of the ciccum[t:re!Jti~ 
vclodty oompollCllt in the "free-vortex· region. ("Celltered-vortex-rotation mode», H.eD = 10\ N=100) 

centre is low. Hence, the utore vorticity" is largdy balanc(~d by the uwall vorticity". As a 
result the circumferential velocity di~tribution dose to the wall will show a boundary-layer 
like l:Mudure, see Fig. (4.10). 

4.3.4 A description of a turbulent swirling boundary layer 

For understanding the structure of the wall layer in it swirling pipe flow it is necessary to 
r~~ali:z;e tha.t the swirling wall layer may distinguish itself in two ways from a conventiona.l 
parallel wall layer. Firstly, the length scale of the turbulence can be affected by the swirl 
as a result of "curvature-scrambling" effects. Secondly, contrary to the ordinary wall layer 
which is governed by one length scale only, in the swirling wall layer ODe can think of a 
second length scale, the radius of the curved fluid motion. We will analyse both possibilities-

A problem in analysing the first possibility is whether expressioIls like Bqs (4.12) 
and (4_20) for TJUJ and Uti im: valid dose to iI. wall. Th(:se expressions ate based on simple 
models for the pressure-strain interaction. A deficiency of these simple models is tha.t 
they predict equal t£?' and U? in a simple shear flow with OUt/OX2 as the only strain 
rate, see Fig. (4.11). In experiments the two quantities ate different, in a single shear 
flow ;;;r will be smaller than ~ and U? Owing to wall-reflection effeda in t.he pr~~ggur~~­
strain interaction the imbalance of the notmal stresses will become even stronger when 
approaching a wiJ,lL Very dose to a wall Jow-H.eynolda-lJumbcr cifect.s become important ~ 
well. These effects ate neithet accounted for in expres~ion (4.20) and exptession (4.12) nor 
in any other prediction method based on simple pressure-strain models like the IP model. In 
contrast, the QX model (sed.ion 2_2.5) for t.he rapid part d()e~ predict a different magnitude 
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for the stress components and, when extended with the proper wall-reflection terms and 
low-Reynolds-number terms, satisfactory predictions of the wall region of turbulent piPE 
flows CaD. be obtained, see Lai & So (1990). However, th~ QI model is not as successful in 
predicting swirling flows as the IP model, see Nikooy & Mongia (1991). Taking into a.cc.ount 
theae shortcomings it is unlikely that expressiona (4.20) and (4.12) will be successful in 
predicting the swirling wa.lllayer. 

As stated in section 4.3.1, expressions (4,20) and (4,12) are merely used to incot­
porate. effects of swirl in the Boussinesq a.pproxima.tion. Turbulence models based on the 
BouBsinesq-approximation, like the k - e model, are tailored to ~single-straintl flows. Espe­
cia.lly when low-RcYIlold~-nl.lmber modifi4;atio:Q$ i!o1:e indl.lded; flows like tl.lrhulent pipe flows 
can be predicted quite well. Apparently the anisotropic character of "single-strain" flows or 
flows near walls is ;lA;l;.Ountcd for by a. proper choice of the coefficients in the model. Martin-
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uzzi et ai. (1989) concluded that for turbulent pipe flows low-Reynolds-olm)bl;r k- ( models 
are to be preferred abov{~ ;LIg!~hraic-stn:ss models_ 

If one assumes that the effect of swirl OIl the structure of the wall layer is considerably 
smaller than the wall effects, clearly the approach of incorporating effects of swirl iIlto the 
Doussinesq-approximation can be used close to the wall also- Therdor(~ in om calculations 
the k - ( model with the low-Reynolds-number modification due to Chien (1982) WIUl 1l8~d_ 

Eqs (4_21) and (4_22) in aect.ion 4_2_5 ahow that the dominant stress a.nd dominant 
atrain components are a.iigned provided that .!:l::: <:: 91lW. Close to the pipe wall this condition 
will be satisfied. Equations (4.22) and (4.21) also ;how that for small swirl angles these 
expmssions can be conside~ed as a awirl-coITected version of the classical mixing.length 
expression and that the correction factor will have a ~Dradshaw-like" 5trudun~, i_t~_ 

with, 

fot the IP pressure-strain model 

PWilW 
--- <t: 1 
f~ r or 

( 4.23) 

In contrast to the cote region of the :How, according to Eq. (1.23), momentum tra.nsfer 
ia enlarged in the wall region (~ < 0)- Since th~: irlcrca!IC of the momentum transfer is 
small, a ~law of the walln-like behaviour for the total velocity v'U~ + W:l ma.y be expected. 
When the swirl is strong !.:nough we may expect a deviation from the "law of the walP-like 
behaviour. 

The second possibility for the swirling wall layer to distinguish itself from i:!. convell­
tional wall layer, is the possibility that more than ODe lcogth SC;Lle playa role_ An obvious 
candidate for a second scale is the curvature of the streamlines. However, since thia l'!ccond 
length sca..le is always larger than the pipe radius, this !'-ffm:t will be notable only when the 
Reynolds number is small enough. Only then will the ratio of HI(: internal length scale of 
the wall layer and the curvature of the streamlines be close enough to uoity to bave alt 
effect. 

How strong hoth dr!~ds arC is difficult to judge in advance. Hence we will use the 
computed results to invstigate this matter. First we consider the rCR1.Ilts of a calculation 
of 1:lWirliug pip!; l10w with i:!. cor1V{;/ltionat low-Reynolds-number k - f turbulence model 
(Fig_ (4.12))_ In this fig\lT(: the ~witl a.ngle (tan- 1(11))) normalized with the limiting swirl 
angle at the wall, is plotted as a function of wall units. Since a conventional k - (. model 
is used, the Recond effcd .. -- .. thl: UBradahaw" effed .. · .. is c)(cluded. When the curvature of the 
streamlines is important one may expect, for example, a dependence of the switl angle on 
the dist.ance to t.he wall. Such a dependence would clearly show that the :How in the wall 
region is governed by more than one length scale. The results in Fig. (4.12) show lhaL for 
low Reynolds number (/len = 104 ) an effect is dearly visible_ Statting at the inner edge of 
the logarithmic region the effect grows as the distance to the wall grows_ As expeded, at 
higher Reynolds numbers (ReD = 1O~) the effect is much weaker. Though the variation of 
the swirl-angle is qualitatively the same, the y+ at which the effect is noticable ha.s now 
moved to the outer edge of the logarithmic region. However, the fad that. at this Reynolds 
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Figure 4_12: Tbe swirl angle in the wall region a' different Reynolds numbus calculated wiUi "Ie Cllien 
low-&ynoldl<-Iltlmb~, Ii: - ~ turbulence model. 

number there is still a. notable effect is somewhat surprising_ If the behaviour of the flow at 
the edge of the logarithmic region is iofiuellced by a process with an intrinsic length Sl;ii!le 

considera.bly larger than the pipe radius, why do we observe a. logarithmic region at all? 
The next step iH to include also the curvature--correction terms, Re$uits of calcula­

tions with these terms included a.re shown in Fig_ (4_13). The main extra effect of the swirl, 
the change in length scale, should be reflected in the distribution of the velocity magnitude. 
Fig. (4.13) shows that a.t the moderate swirl intensities we are concerned with, almost no 
dependence is present. 

In conclusion, the predictions of the models suggest th.a.t .a.t moderate swirl inten­
sities, the structure of the 8wirling wall layer is comparable to the structure of the non­
swirling wa.l1layer provided the Reynolds-number is high enough, Up to-and beyond-the 
outer edge of the conventional logarithmic region the swirl does not ha.ve a notable effect 
on the mean flow_ As a consequence the use of conventional wall-la.ws for numerical pre­
dictions is a realistic optioll- When the R£ynolds-numbt:r is too low (Re ~ 10~), curvature 
effects are present in the logarithmic la.yer and conventional waHiawa cannot be uaed a.ny 
more. 

4.3.5 The rate of decay of the !;Iwid 

As announced in section 4.1 a. subject of even greater concern in a. swirling pipe flow than 
a detailed prediction of the velocity field is the prediction of the full development in axial 
direction of a swirling flow_ To study this development it is advantageous to define an 
integral measure to characterize the .swirl. An appropri ... te me~ure is the "swirl number" 
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figlHe 1,13; Th~ veloci!y magni!ude in the wall region in a swirling pipe Bow lI! a ReD = 1O~ (:~(:~J~tr:4 
with an A8M-corrected k - ~ tu~bulence model. 

8. In the literature the swirl number S is oftet! used to chata.cterize the flow. However, the 
definition of S varies. Here we will use a definition directly inspired by the moment of the 
W·transport equatioIl, 

( 4-24) 

As defined here, S denotes the total axial flux of angular moment, The reason for this 
choice becomes apparent as follows. Multipying the 'P.component of the Reynolds-averaged 
momentum equation by r and integrating the resulting expression over the pip() cmHH 

section defines, 

Introducing I:~q. (4-21) and evaluat.ing the int.cgral~ yidda, 

fJS 
ax' '"' -2 T",,'J!Gfh ( 4,25) 

with 
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ElCpreslIio[) (4_25) shows tha.t the development of S is determined by the wall shear stress 
only. 

In the literature (see chapter 1) the decay of swirl in turbulent pipe flow is often de-­
scribed as being exponential with the downstream distance. As was shown in section 4.3.2, 
for small swirl intensities the flow regime can be referred to as the "eddy-viscosity regime". 
In this decay region the swirl does not have a notable influence on the turbulence structure 
any rIlOI"e_ Here an elCponential deca.y ma.y tllh: pl;l.Ce- The wall !)heou: IIt~!) i1;1 a. swirling 
pipe £low can he rela.ted to the wall shear stress in a non-swirling pipe flow as follows, 

T wall,non-swirl 

The circumferential component of the wall shear stress can be expressed as, 

lim (~~ (7'W1) 
T-l r {)r 

lim 

and combining both elCpressions gives, 

lim (~~ [rWl) 
1''I'Lwail .... 1 r Or 

_.....!:.l,;_c..=~ "" ---,-,--""77---=-------!.-r 
lim 1 i} 

-;:: Or [rUnon-swirl) 
T wall,non-swirl .... ~ 

Since it is assumed that the structU((: of the turbulence is not affected by the swirl 
Uv.n~n_.",;.l may be approximated by U*, and, 

lim 
't.,.,wall .-1 

----:-:----7-:-----=--_...f;__ 
T w~l,non"8wirl lim .-1 

Furthermore, according to section 4.3.4, the ratio WjU is /;onstant a<;ross the viscous sub­
layer. Hence, 

lim (~) 
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which in turn represenh Hl(~ pitch of the limiting streamline at the pipe wall. Since the 
shape ()f the ra.dial di~ttibution of W is assumed to be (;onstant i.ux', one may allSllTne that 
this pitch is proportional to S I 

lim (W) = f3S . 
• -1 U 

/3 denotes a dimen8ionlc~H coefficient or "shape f<lod()r" 

Fina.lly, Tnon-.",irl can be approximated using the friction factor for fully d(:veloped 
flow, 

where f denotes the iri!;tion fador, Blevin~ (1984). 

Combining the above expressiollll and Bubstituting in Eq. (1.25) gives 

as _ _ {3f s 
ax' - 4 ' 

yidding the expected exponential deca.y. 

( 1..26) 

At higher inknHiticH, the ~witl does not exhibit an (:xponential decay any more. The 
wall shea.r stress will become a function of the swirl Ilumber, and a function of the "swirl 
mode" (Fig. (4.11.»_ The wa.y the walt shear stress depe:nciH on the mode is predictable, 
the mow the ~wirl is concentrated near th(~ pipe wall, the higher the wa.ll shear stress will 
be. For low swirl int.enaili(·~s the different curves representing the different "modcs" col­
lapse onto one CUrv(;. In this region the coefficient f3 in equation (4.26) can be evaluated. 
Siy)cc the exponential decay law is bi'l.!:lcd OIl the assumption that the Hwirl has no effect 
on the turbulence Btructun:, its magnitude may depend or)ly on the Reynolds rmmbet. In 
conl.railt to the assumption of Mottram & Rawat (1986), according to the present compu­
tational tesults, both the friction fa.dor j, and the shape faclor f3 in Eq. (4.26) depend 
on the Reynolds numb(~r. The magnitude of fJ for a rang~~ of Reynolds numbera is given in 
Tabk (4_1). 

'Table 4.1-: Th~ ~hap. I~dor (j <18 a function Q/ RelJ"-Qlds nllmber 

In contrast to the strong HCtlsitivity of the circumferential component of the wall 
shear stress to the. ud(.~cay moden, the sensitivity to the pressure.-strain model that is em­
ployed ia small, Fig. (4_15). This in spite of the fad that the shape of the circumferential 
velocity distribution in thc "free-vottex" region is determined by the model for the pT(~!I~ure­
strain inkradion, see Fig. (4.9). However, th!~ effect of the choice of lhe pressure-strain 
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Figure 4.14; The circum(e~tial compone.nl of the Wall8bear stl'&!18 as & funelia.!! of 8wirl number ealcul&tcd 
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mudd ia most. notable far from the pipe wall. The velocities close to the wall layer do not 
seem too different. Hencc, the resulting shear stress and conac<lucntly the d(~cay of the swirl 
will be compn.:r<Lble for different models. 

4.3.6 CI05Ul'e 

In the second part of this chapter a detailed study Wi18 ca.rried out into the structure of a 
decaying swirl in a turbulent a.xiaymrnetri(: pipe £low J'!.J'I predict.ed by a. modified k-c. model. 
The most important aspect of the flow is that according to this model the momentum 
CX(:hallge in radial direction is strongly reduced in large parts of the pipe cross-section. As 
a direct consl~quencc, the ra,te of development of a swirling pipe flow is much smaller tha.I) 
the rate of development of a. lion-swirling pipe flow. 

For the description of the deca.y of swirl, the integral illTlount of a.ngular momentum 
flux olTer~ ,1 suita,bk measure. The decrease of the integral amount of angular moment.um 
flux is governed by the wall shear stress only. When the ASM is used as a first·order correc­
tion to account for ttJ(~ (:IT(:dH of swirl in a conventionallow-Reynolda-number l.11Thul(:Ilce 
model, there are no curvature effects in the region adjacent to the pipe wall. If the Reynolds 
number is high <mongh the region that is not affected by the streamline curV<Lture extends 
throughout the logarithmic layer. Thus the choice for the pressure'strain model does not 
influence the prediction of the wall 8hen.:r stre~s much. As a reslllt. the decay of ~wirl is not 
critiC<Llly dependent on the paricular choice for the pressure'strain model. 

In contrast, the de(:ay of the swirl depends strongly on the initial distribut.ion of 
swirl. Owing to the suppression of momentum exchange the initial character of the core 
region of t.he flow is preserved. The ma.gnitude of the wall ahea.r stress is determined by 
the velocity distribution in the region between the wall region and the core region. If the 
vorl.icity is concentrated mainly in the core region the magnitude of the wall shear stress is 
low eV!~n t.hough the swirl nllInher rna,y bf; high. Vice versa, if the vorti(:it.y iH (:ollcent.ra.ted 
close to the wall t.he ma.gnitllde of the shear strc~8 will be high. 

In experimental studies, the decay of swirl is often fitted to an exponential decay 
curve, see chapter L However, the reported coefficiellts for the decay of swirl exhibit a large 
~catt.er. The results presented in this chapter indicate that part of the explanation for this 
~cattcr may be found in the strong effect on the wall shear stress of the ~swirl moden and 
the region of decay. 

On either side of the "stable lnode~ rcgi!)n the flow phenomena observed are diffetent. 
Downstream of this region the swirl is too weak to affect the turbulence structure, and the 
decay of the swirl Ca.Il bc described by illl exponcntial deca.y law. Upstream of the "stable 
rnode~ region the flow is ch<Lra.cteri~ed by rapid changes in the distribut.ion of momentum as 
well as the structure of the turbulence. An approach based on an algebraic approximation 
of the turbulent stresses may not be accura.te here. 
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5. Aspects of non-axisymmetry in a 
decaying swirling flow 

5.1 Introduction 
Disturbances commonly eJ;lcountered in :O.ows through pipes may exhibit a. non­
axisymmetric character. The reason is that most disturbances a.re caused by compoueDte 
like elbows and valves that do not possess any symmetry with respect to the pipe axis. 
Thus the velocity distribution downstream of theee components will la.ck symmetry with 
respect to the axis. 

For non-swirling pipe flows the development of non.ZLK.isymmetric disturbances does 
not seem to yield new j essentially diffe~fl:j;J.t, regimes of :O.OW development. In contrast, for 
swirling :O.ows the development of a slightly non-axiaymmetric flow may be quite different 
from the development of an axisymmetric flow. In this chapter a preliminary survey of the 
subject will be ma.ch 

For non-axisymmlltric swirling flows severa.! scenarios are possible for the Bow to 
develop. For example, the nOll-axisymmetric character of the flow may decay faster th<U:l 
the swirl itself, lca.ving non-axisymmetric aspects of the decay process limited to the initial 
parts of the pipe. A second possibility is tha.t the the non-a.xisymmetril; cha.racter of the 
flow is amplified by the swirl. In the latter scenario the non-axisymmetric character is an 
important feature of the decaying swirling flow. Also it i~ likely that the non-axisymmetric 
chM:;LI;ter of the swirl distribution will be reflected in the axial velocity profile. Since the 
swirl decays, one may expect that eventually the axial velocity profile becomes symmetric 
again. If this scenario is followed still different possibilities exist for the development of the 
swirl distribution. Either the swirl hl!:comes symmetric as well, or the non-axisymmetric 
I;ha.ra.cter of the swirl distribution is retained throughout the decay process. For this latter 
possibility, in the limiting situation where the strength of the swirl approaches zero the 
centre of the swirl wlll maintain its off-axis position. 

It is difficult to predict which of these del;a.y scenarios is actually followed. Cle:arly, 
the different phenomena will be governed by a competition between viscous effects, tha.t 
ma.y restore symmetry of the flow, and the eSljeIltially inviscid interaction of axially direded 
vorticity and the cross-flow-plane components of the vorticity, that roay enhance non­
axisymmetric modes in the flow. The non-viscous intera.dioll of the axial and azimuthal 
vortil;ity components is ra.ther complex. Even i:o. a non-viscous axisymmetric pipe flow the 
interaction between the axial Mid a.zimuthal motions is described as being "ra.ther puzzling" 
Batchelor (1957)- Analytical solutions that describe this intera.ction are only possible for a 
limited dass of initial conditions- Het\/;Cj even for the non-viscous flows the predictio:ll of 
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non-axisymmetric 8wirling flows seems only possible using numerical techniques. 
Howcver, iIJI already indicated in chaptet 3, the accumte nUlIlcrical treatment of non­

iLXiaymmetric swirling flows is not trivial. Since the cross-flow-plane velocity components 
may be quite strong for this daM of flow, a fine mesh in the cross-flow plane is necessary. 
Combined with the large decay length of the swirl, the accurate simulation of the flow poses 
very large demaIld~ (m computer resources. Thus a fully three-dimensio,nal solution prot.e­
dm'e does not seem feasible. An option to reduce the excessive needs for computer power is 
agaill to parabolize the flow equations. As was mtmtiolled ir) chOtpler 3, the pi'!J:aholi~ation 
of the flow eql~<LtioIlS in a situation with strong cross.f:low-plane velocity co,mponellt~ is 1I0t 
a straightforward extension of the parabolization of the flow equations for the symmetric 
case. In order to obtain a "well-po8ed~ initial-value problem special measures have to be 
taken for the calculation of the pressure. 

An extra step in complexity i~ the pn;didion of a decaying turbulent flow. As demon­
strated in the preceding chapters, turbulence model" ba.<>ed on an eddy-viscosity concept 
are not always suited for predicting swirling flows. In some situations, for example for flows 
with ~trong swirls, second-order closure schemes appei1r to he ll(~c{;a~a.ry. Howev(;r, for th(; 
metering problem the swirl levels a.rc only moderate. For the swirl intensities relevant to 
thl'; metering problem, the differences between the prcdidion~ of H{~(:{md-{)rder turb,dence 
models and tho8e of cddy-vi~(.oaity models are only small. Hence, application of higher­
order closure schemea for this class of flows does not seem appropriate. Furthermore, the 
applicatiOD of second-order closure schemes also poses extra dema.nd8. As wa.s argued in the 
preceding chapters, second-order closure schemes based on algebraic approximations of the 
tl~rbulent stresses are not suitable. Fot accurate algebrail; <l<pproxim<l<tions of the tr<tDsport 
of the turbulent stresses it is necessary that the curvature of the streamlines is properly 
accounted for by the toordil)Ottc system used. In general this condition will not be met for 
a flow that appteciably devia.te8 from axi~ymmetry. Only full Reynolds-Stress models may 
be expected to handle these flows accurately. ReynoldH-Stm~a modda <l<gain Po~(; large de­
mands on compl~t.er resources. Due to the limited relevance for the metering problem, the 
difficulties in the num(~rical trea.trrllmt <tnd the necessity of elaborate and computationally 
expensive turbulE;nce dORure~, 1). simulation of non-axisymmetric swirling flow at moderate 
o,r high 8wirl intensity does not appear to be opportune within the framework of this study. 

Nevertheless, some information about the c)(tcnt to which deca.ying awirling pipe 
flows tetld to b(;{:ome non-axisymmetric is important. In this chapter we will attempt to gain 
~ornc insight into the problem of a non.axisymmettic sWirling flow. Firat some at.tentiorl 
will be given to the litetature, ca.lculations omd experiments concerning non-axisymmetric 
swirling pipe flows and finally some computed results for steady non-axisymmetric flows 
at iL low awid intensity are presented. 
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5.2 Experimental, theoretical and numerical work on 
non-axisymmetric swirling pipe flows 

Much th~tetkal work on non-axisymmetric aspe4;b of swirling :O.ows is devoted to the 
stability of Poiseuille flow in axially rotating pipes (see for example Landman (1990), 
Pedley (1969) and Topolosky & Akylas (1988». Pedley (1969) showed that in the "rapid­
rotation" limit (U/wR '< 1) the solid-body rotation may have a stJ:WJ.g destabilizing cltect 
on the otherwise stable Poiseuille flow, causing a line;!.{ insta.bility at Reynolds numbers 
as low a.s 83. The linear spiral instability waves found by Pedley (1969) are essentially 
time dependent and rotate in the direction opposite to the direction of the basic swirl. 
Topolosky & Akylas (1988) performed numerical simulations of a rotating Poiseuille :O.ow. 
Fot the "slow-rotation" limit they found periodic perturbations with a helical symmetry. 
As the axial pn:ssute gradient wa.s kept fixed in these aimulations, the axial mean flow 
induwd by the helical waVCll caused a flux defect. In certain cases the defect appeared to 
be as large as 40-50% of the undisturbed ma.9S flux. Landman (1990) solved the Navier­
Stokes equ",tions subject to imp~d helical symmetry with a fixed pitch. A limited study 
w.;l.$ carried out in the p;!.{ameter space of the the axial and azimuthal Reynolds numbera 
and the pitch of the imposed helical symmetry. The steadily rotating waVe6 found by 
Topolosky & Akylas (1988) were observed to undergo '" Beries of bifurcations, from periodic 
to a.-periodic variations with time. 

Clearly, these studies show that rotation is capable of dest",bilizing pipe flows and 
that the insta.bilities may have a non-axisymmetric structure. However, a. complex time 
dependence as outlined in these studies may prevent practically feasible tutbulent flow 
calculations based ou one-point closure schemes. On the other hand, the flows considered 
in the studies mentioned above, are quite different from the flo ..... s we are concerned with. 
For the present study they ate only relevant in the sense that they indicate that symmetry 
of swirling pipe flows is not always posaible. To our knowledge, for turbulent swirling pipe 
:o'ows, no extensive theoretical or numerical studies have been perfonned. For this class of 
flows the only sources of information are experimental results. 

Indeed, in some experimental studies including the experiments described in chap­
ter 6, aaymmetry of the velocity disttibution has been reported. Even though the initial 
velocity profiles were carefully kept symmetric, in the experiments performed in our lab­
oratory (see chapter 6) at some distance downstrea.m of the "swirl genera.tor" the flow 
exhibited a non"axisymmdric character. Further downstream, as the intensity of the $ ..... itl 
became much weaker, not only the a.xial velocity distribution but also the circumferential 
velocity distribution became more symmetric again. 

In a study of swirl produced by two out"of-plane bends performed a.t the NBS by 
Mattingly & Yeh (1988) the experimental results suggest that the centre of the swirl follows 
a helica..l path. The same tesult was found by Kito (1984). Also in this experiment, which 
WM specifically devoted to the study of the asymmetry, the initially symmetric swirling pipe 
flow became non-axisymmetric at some distance downstream of the entrance region. Similar 
to the experiments of Mattingly & Yeh (1988) the centre of the swirl followed a helical 
triiLjectory and the centre of the swirl was observed to "rotate" in the same direction as the 
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swirl itself. Contrary to the theoretical results of laminar flow in rotating pipes, no periodic 
variation with time Willi observed in these experiments. However, since these experimental 
studiee were performed in turbulent flows, a periodicity may be difficult to deted. Any 
periodicity in the measured .!lignals is likdy to be sWomlped by the fluctuations induced by 
the turbulence. Moreover, the energy contained in the non-axisymmetric modes is likely to 
enter the turbu\enc() ca.sca,de immediately. In this respect periodic or quasi-periodic modes 
can be considered lIS the la.rge-~cale eddies of the turbulence. 

Indeed in none of the experiments mentioned above, nOr in the experiment described 
in chapter 6, a d(;ar periodicity was found. In this experiment, for the purpose of investi­
gating a poseibh; periodicity, also an exploratory visualization study was performed. Small 
<tir bubbles were injected dose to the symmetry axis of the swirl generator. The cenhifugal 
acceleration canH(;d by the swirling motion causes the bubbles to remain in the centre of the 
swirl. Thus, IlOll"axisymmdry ;l.nd pcriodicity are easily detected. However, while a slight 
non-axisymmetry was visibl(; in t1w hnhble path, periodicity WaJ'j not fo\md. Therefore it 
appearB tha.t the decaying turbulent swirling pipe flow can be considered as a "steadyn 
flow. As a consequence the computation of turbulent swirling flow employing ,1 Hlea.dy-flow 
method is cOllsidered to be ka.sibk. 

5.3 Numerical simulation 

In this section we will computationally study the effects of non-axisymmetry on the decay 
of the swirl and the clfed!! of ijwid On the non-axisymmetry of the flow. 

A problem encountered in the study of non-a.xisymmdric flow~ is how to qua.ntify 
the deviat.ions from axisymmetry. In experiments this deviation is oftell quantified by mea­
suring the p(}sitiof\ ()f t.he centre of the swirl. Disadvantage of a measure like this is its 
local nature. For example, a growth io th(; displa.cement of the centre of the swirl not. T)C(:­

cS8arily implicates a growth in the llon.axisymmetryof the velocity distribution. The non­
axisymITl()try <La indicated by the swirl centre may be different from the non-axisymmetry of 
the axial flow field, while also the a.ngular distribution of l'I.ngular momentum ia not :neces­
sarily correctly charad.eri<>:ed by the position of the centre of the swirl. A more appropriate 
met}1()(1 to qua,ntify Ilon-axisymmetry is to use a combination of integral quantities. For 
the axial velocity distribution all appropriate measure is a Ucentre of ma.ss flow" defined 
as, 

rm '=' in iV.,dO/ fo U.,dn , (5.1 ) 

with n representing the cross-sectional area of the pipe. 

An equivalent measul"e for the a.9ymmdry of the swirl i8 for eXaJllple a "centre of angular 
momentum flow", 

(5.2) 

Using the measures defined above, the evolution of the non-a,xisymmdry Ca.n be followed 
ellSily. 
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Aa was shown already in sedion 3_3_2) for following the evolution of th~ l18ymmetry 
in a swirling pipe flow the application of the redu<:ed Na.'Iiet·Stokes equations is a. neces­
sity_ In contrast to symmetric swirling flow, in a. non· axisymmetric swirling flow potentially 
strong convection effects may occur in the croslj-f!ow plane. Furthermore, the circumferen­
tial velocity componentB cannot be considered small iilJJ.y mOre. Contrary to a non-swirling 
pipe flow) or a symmetric swirling flow) in which the radial velocity components scale with, 

U cross--Ilo,...ph~ne "" 0 (IU axis.!) j 

In a. non-axisymmetric swirling pipe How the cross-flow-plane velocity components are 
partly independent of the axial velocity field. Instead, they must be considered as the sum 
of three contributions: 

• a. {<scalar-potential" part (V., Wot ) given by 

a~ 
Vot=-

8y' 

• a "vector-potential" part (V.,) Wi) given by 

8'11 
and Wilt;;;; - ay ; and 

• an inviscid part (Vi, Wi) c;l.usl;!d by the interaction of the ;L;X;ja.l and the cross-flow­
plane vorticity components. (For example the flow induced by the extr" axial vor· 
ticity produced by "vortex st~hing" in an axially accelera.ting flow.) 

The magnitude of the "scalar· potential" part and the inviscid part of the velocity may be as­
sumed to be sma.ll, see Briley & McDonald (1984)_ The magnitude of the "vector-potential" 
part of the cross-How· plane velocity field is determined by the initia.l swirl intensity and 
is independent from the development of the axial velocity distribution. Thus the reduced 
Navier-Stokes equa.tions are needed for an accura.te dellcription of the ftow development. 

However, a.s shown in chapter 3, the approxim;l.tion of the pressure field might pose 
problems. Due to the preasure-continuity coupling the "well p06f:dcess" of the system of 
equations m;t.y be destroyed. To guarantee tha.t the system of equations remainB "-well 
posed" it is necessary that the coupling between the axial pressure gl.'adient and the conti­
nuity equation is removed. In a ~yrnmetric swirling How this ma.y be a.;hieved by restricting 
the radia.! variation of the axial pressure gradient such that it is a function of the !p­

component of the cross-ftow-pla.ne velocity only. In a non.a.xisymrnetric flow an equivalent 
procedure to obtain the cross-flow-plane variation of the axial pressure gradient is to use a 
Poisson equation for the pressure (section 3.3.2). To obtain an "uncoupled" pressure field 
all "scalar-potentia.!" contributions in the cross-How-plane velocity field must be removed 
from the pres~l,lre-Poisson equation. Since in this algorithm the separate components of the 
croos-How.plane velocity distribution are not known) this procedure is not feasible. Thus 
we are forced to neglect the radial variation of the axial pressure gadient. 
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Clearly, for non-swirling flows the a.pproximation of a uniform axial pres~urc gradient 
is consietent with the parabolizatioll concept. For swirling flow the approximation of a 
uniform axial pressure gradient may be invalid. To assess the validity of thiR a.pproximation 
we will perform an order-of-magnitude analysis of the prcsaure term in the axial momentum 
equation_ 

Assume that the llow can be categorized as a "fully viscous flow" Rubin (1984). In 
this situation the axial pressure graJicr)t can be approximated with, 

Owing to the evolution of the azimuthal velocity distribution the axial preaaurc gra.die))t 
is "modulated" with a term proportional to the square of the circumferential velocity and 
proportional to the reciprocal of a typical length scale £, for the downstream evolution of 
the swirl, 

8:
x
P = O(U;,tl). 

The evolution length scale is proportional to aRe R, wen; 0 is of order 10-1 a.nd hence, 

{)I:!.P = O( U;wirl ) • 
ax oReR 

A necessa.ry condition for the validity of the uniform a.xi",l prcssure gradient in the cross­
flow plane is 

or 

uU;wirl «: U~el\1l . 

The result is that the calculations based on a. uniform axial pressure gradient in the cross­
flow pla.nt~ must be restricted to low swirl intensities. In th(; calculations presented here 
U~wirlIUme".n = O(lO-~) to 0(10- 1

). 

For turbulent. flows, as a consequence of the low admissible switl itltensity, the tur­
bulent ~tre!i8Ca may be modelled with relatively simple turbulence cloRI.m;s. H: follows from 
the computational results reported in chapter 4 that the predictions using eddy"viscosity 
turbulencc modelR and second-order closures coincide for low swirl intensities_ Hence, for 
the present turbulent· flow caltulati(lr)s '" simple mixing-length model will be used. 

In the next s(~diona we will present results for non-axisymmetric swirling flow. Firat 
reaults of a simulation of a larninar flow will be presented, next results for a turbulent flow 
are preseuted. The calculations are based on the paraholi(: pcnalty type of algorithm that 
has been presented in aection 3.3.2. 

6.3.1 Laminar non-axisymmetric swirling pipe flow 

The firet results presented here concern the evolution of an a.rbitra.ry but symmetric inlet 
condition. In this calculation tbe distribution of the axial velocity component is that of 
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'figure Q_l: 'the path of the COM ( __ ) to.nd COAM (b) in a swilling pipe 8ow, (Symme-tric inlet condition, 
initilllswirl number, Si"ili~r '" 0.08, la.min&l: flow, ReD '" 2 * lOS) 

a fully developed flow, the inlet condition Cor the circumferential velocity distribution is 
given by 

Fig. (5.1) shows the evolution of the poa.ition of the "centre of mi;l.lj8 flow" (COM). see 

Eq. (5.1), and the ~centrc of i:LIlgular momentum flow" (COAM), see Eq. (5.2). Though, 
even for the initial profile, the finite ~lution of the discretiza.tion causes the COM and 
the COAM to be located off the centre of the pipe, )),0 a.ppreciable asymmetry develops_ 
However, the evolution of the position of the COM and the eOAM does not seem to be 
completely arbitrary. Possibly, the kinematics of the flow affects the development of this 
discreti~ation-error-induced asymmetry. Since the enor in the position of the COM and 
eOAM induced by the discretization error, is not negligible, conchlsions concerning the 
stability of the flow against non-a.l(isymmetric perturbations cannot be dra.wn from this 
result. 

Next a. non-axisymmetric perturba.tion in the initial profile is introduced. The am­
plitude of this perturbation is small compared to the "ba.sic" flow, but large compared to 
the discretization-induced errorS_ Na.turally there is a large freedom in the choice the type 
of perturbation that call be chosen. Here two extreme type!! a.{e chosen. The first type (1) 
I;Onsists of a strictly two-dimensional dipole-like structure in the cross·fiow plane. It can 
be viewed upon as induced by a vector potential, 
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and w: "'" _ cN!p 
P ay' 

with 
Wp ~ y(1 -. 1/ '". Z2)2 as x-component of <L vector potential 

The second typl~ (I J) perturbation consists of a disturbance of the axial velocity distribu­
tion only, 

Up ~ y(1 - y~ - z~) . 

The type 1 disturbance shifts the centre of the awirl to <Lll o!T-;Lxia po~ition, t.he t.ype 
T T diaturbance shifts the position where the axial velocity is maximum to an oif"axis 
position (Fig. (5,2)). In pipe flows with swirl genera.ted by out-of-pla.tl(~ b!md~, ih(~ non­
axisynlIm:iric (:h<Lr<Lcter of the flow appears to be very similar to the character of the type 
II disturbance, see Mattingly (1988). The evolution in downstream direction of the type 

A B 

...••..• I ••... J,. __ •••••••• ___ .... _'--- __ ._ .• ,. ........ 

-
yilt yIlt 

Figure 5.2: An eXIill"lple "~f tile initi~ ~Iodty distribution for (a.), the type I disturb&llee, contours of the 
Il-XiIM componenl of the axi&! vorticity, &lld (b) the typo! Tl di.ml,hlUl(:,c" C<)r)tovm of til", axiJd Velocity 
component 

II disturbance is shown ill Fig. (5.3) for 0 ::; x/ D :;;; 50 and for a different magnitude of 
the initial disturbance. According to Fig. (5.3) the initial asymmetry of the profile indeed 
grows. Furthermore j Fig. (6.3) shows that th() m<LgIlitude of the asymmetry scales with the 
magnitude of the initial disturbance. 

Apart from the development of an increasingly more asymmetric velocity distribu­
tion j the swirl cont;Lined i~) the flow also decays. Since the driving force of the asymmetry 
decays, one may expect that eventually the axial velocity profile should become symmetric 
agam. Figs (5.4) and (5.5) show the evolution of the position of the COM and COAM 

106 



COM 

0.05 

0.00 I--...,."..H-+--+--I 

XiO=M 
.0,05 L-__ ...L.._~--I 

-0,05 0.00 

yiR 

(ft.) 

0,05 

COAM 

xJD=o,o 
.0,10 I...-__ ...L.. __ .....J 

·0,10 0.00 

yiR 

(b) 

0,10 

Figure 5.3: The evolution of tile position of the COM ljJId COAM B8 a functiol). of the initial diIlhl.rbljJl.CIL 

Th<= rel~tive mapitude of the diaturbanCl! (Amplitude pert~tbation!Amplitude b_ tIow) is &) 1%, b) 
2% and c) 5%, Type II disturbance, lrunill~ flow" initial swirl number, S'nilio! '" 0,08, l~inar flow, 
ReD_2*I08 

GaM 

z/R 0.10 ;:.:...:.....-...... -~-..., 

0.00 1---1-~"":::"--~ 

x11):200 
-0,10 L-__ ...J... __ ........J 

-0.10 0,00 

y/R 

(a) 

0.10 

COAM 

.200 
.0.25 L-_~_L-__ --' 

-0,25 0.00 0,25 

ylR 

(b) 

figure 0.4: The path oUhe (a.) COM and th<= (b) COAM for 0 '$ z/D $ 200, type I dieturbanu, l!l.lIl.inar 
flow, initia.lswirl number, Sini#o! '" 0,08, llUninar dow, &.D '" 2 ~ lOa 

107 



ziP. o.os 

0,00 

-0.05 

-0.05 

COM 

0.00 

ylR 

( ... ) 

xJD=200 

0.05 

z,lR 
0.10 

0.00 

-0,10 
-0.10 

eOAM 

0.00 

y{R 

(b) 

xjD=200 

0.10 
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flow, it))t,ittl ~wirl number, S;n;,;ml '" 0,08, laminar flow, Ref) = 2 .108 

with increasing distance along the pipe. They show that when the swirl intensity is low, the 
COM a.s well as the COAM returns to the axis of the pipe, Apparently non-axisymmetric 
modes are triggeted only if tht; swirl is at.oog enough, a.s is illustril.ted by fig, (5,6)- This 
figure shows the evolution of the asymmetry for a.n identical initia.l condition bl1t for differ­
ent values of the Reynolds number, According to Fig, (5.6), for ReD = 2 * 103 asymmetry 
is growing, for ReD = 4 * 10~ the asymmetry initially neithet grows or decays, while for 
ReD = 2 >I< lOl the iI.l!ymmct.ry dl;cil.Ys. 

The resl~Jt.s described above show that for swirlB that are strong enough, the sym­
metric swirling mode is a meta-stable state, Any initially non-axisymmetric disturbance 
tends to grow in the downatn:arn direction. The exl(;nt, to whidl the flow b(·:cornca non­
axiBymmetric scales with the magnitude of the initial di~turba..uce, Thus the flow exhibits 
a linea.r apa.tial instability. The growth rate of the instability is determined by the ratio of 
the swirl itltensity and the vistous forces, i.e. a circllInferellti;~1 RcYIloldH number ba.~ed on 
the swirl velocit.y. When this ra.tio is smaller than a critical value the non-axisymmetric 
modes deca.y; wlu;u it exceeds the critical va.lue, the non-axisymmetric modes grow, Owing 
to the decay of the swirl, the driving fort.c, eventua.lly a.ll iliJymmdry must. disa.ppea.r. 

It must be kept in mind that for laminar flows there is no guarantee that the flow 
rmna.ina stat,i(mary. As indicated in section 5,2 instationary modes are possible, When non­
atatiouary modes do occur, the possibility exists that within a Bhort distance downstream 
of the initial disturballct: tht: instati(}ll;~ry rn{)d{:~ will dOlniJlat(~ the (low. CI(~;Lrly, in thi~ 
situation none of the steady-state results shown above will occur in practice, 
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5.3.2 Turbulent Don-axisymmetric swirling pipe How 

For the turbulent pipe flow a. mixing-length turbulence model ha.s been a.pplied. In this 
model the turbulent stresses a.re given by, 

The eddy viscosity is prescribed by <L mix:ing length formula., 

_ ( )2 I)U, [aU, au;] 
VI - ICY.. -I) -I) + ~ , 

Xj Xj !,IX, 

with Y .. representing the "normal~ distance from the wall 
and If. the von Karman coefficient. 

For regions dose to the pipe wall, the van Driest damping of the mixing length 1m, is used, 

1m;;;;;; n:y ... (1- eRe~/A+) 

with ReT = ..;;:TP Yn/ v 
and A+ = 26. 

Since the largest velocity gradients occur close to the wall, in the discretization the ele­
ments become rapidly smaller close to the wall, see Fig. (5.7). Simil;ll" to the calculations 
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Figure 5.7: Tbe dem9.llt distribution fOr !lle turb"le,,! now ':I.klll~!;'m~. 

for laminat flow, th!~ init.ial velocity distribution is taken as a fully developed axial velocity 
distribution. Added to this developed axial velocity distribution is a symmetric swirl com­
ponent, Contrary to the laminar Ca.9C, the position of the COM and the COAM remain 
stable throllghout the length of the pipe considered. Even when a type I disturbance is 
used as perturba.tion to tbe initial velocity distribution, both the position of the COM 
and of the COAM rdurn quickly to the axis of the pipe, see Fig. (5.8). When a type 
11 disturbance is used all perturbation, the ~ymmd~y is more pronounced, but still the 
non-a)(i~yIJlrndry is much weaker than is observed in laminar flow, see Fig. (.'tS). 

There are two possible explatl<Lti()ll~ for the appar!;nt higher stability of turbulent 
Bows against llon'axisymmdric perturbations. The nrst. ~el'l.8on is tha.t in the turbulent 
flow at Rev = 2 '" uri the momentUm exchaoge is stronger than in a laminar flow at 
ReD = 2 <I< ]03, Thus the effective circumferential Reynolds number is lower and the flow 
will be mOre stable. Mor~ver, even though the Reynolds number in the laminar flow case 
is a. factor ten lower, the decay of switl in the turlH\1cut flow catle is fatltcr I,han in the 
lamina.r flow Case. Thus the driving force of the asymmetry disappears more quickly than 
in the laminar case. 

A second !~xpli;!.Jl<ttio!l for the enhanced stability for the turbulent flow is found in the 
shape of the axial velocity distribution. Away from the wal] HI!: axial vdo<::i~y dis~ributio!J 
is much flatter than llH~ developed axia.! velocity distribution in a laminar flow. Therefore, 
convec~ion effects in the axial momentUltl equation, caused by a. non-axisymmet.ric:: c::ross­
flow-pl<tne velocity distribution, are much smaller than in a laminar flow. On Uw other 
hand, in the regiorl d()s(~ to the wall, where large velocity gradients do occur, the wall 
forces the flow to be symmetric. Thus a part of the interaction between the a.xially dirl~cl!~d 
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vorticity and the Cr()~a-Oow-plane vorticity components is suppressed and again stability is 
enhanced. Indeed, it. turns out that also laminar swirling flows are much more stable when 
the initial axial velocity distribution iB more uniform. 

Finally, ill Fig. (5.10) the effect of the asymmetry of the swirl distribution on the 
decay rate is shown. WIJ(;r) the non-axisymmetric circumferential velocity distribution is 
<;ol)aidered to be a superposition of a symmetric swirl and iL dipoIE~-lik(~ pf~rtllTba.tion, one 
would expect tha.t, to firs', order, asymmetry is not relevant for the rate of decay of the 
Bwirl. Due to the mirror-symmetric charactet of the perturbatioll) the contribution of the 
perturbation to the wall· shear ~tress CiLIlCelS. However, for iii- turbulent flow, the turbulent 
momentum exchange ill affe(:kd by 31>yrnmetry. Even a simple mixing-length approxima­
tion for the eddy viscosity is capable of accounting for this effect. Such a mixing.length 
model predicts that th(~ lJ(lrl-axiByrnmetric P3J't of the velocity distribution causes a non­
axisymmetric eddy. viscosity distribution. As a rCB1Jit the symm.etry of the walJ-shear stress 
diatribl~tion is destroyed. Consequently, a non-axisymmetric velocity distribution rtJay be 
reflected in tht~ rI~Cily ra'.e of the swirl. The results presented in Fig. (5.10) show that the 
effect is very smalL For the flows con~idcIcd in this chapter the decay rate is not affected 
by the asymmetry. 

5.4 CloSllre 

III thi~ chapter an exploratory study was carried out into nOil·axisYlllmetric ~peds of 
lam.ilJ3J' and turbulent swirling pipe flows. Our own experiments, experimentR deRcribed 
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in the literature and theQretical studies have indicated that symmetry with respect to the 
pipe axis is not self-evident. Even a simple flow like a Poiseuille flow in an axially rotating 
pipe, may e,.;hibit strong and still not {I)lly understood instabilities_ 

In this study BOrne simulations were performed to investigate the spatial stability 
of swirling flow in a stationary pipe. For laminar flows, iiIobove a. critical swirl intensity, the 
flow appears to be linearly unstable for non-i;l.Xisymmetric wsturbw.c$;!- The driving force 
that triggers these disturbances is the $wirl itself. Since the swirl decays with dist;l.Ilcc 
along the pipe, the driving force for the non-axisymmetric modes disappe:;U:1j gradually. 
Eventually, the swirl intensity will beoomc too small to sustain the non-axisymmetric 
modes and the flow becomc~ i;l.Xisymmetric again. This implies that the asymmetry of the 
flow is of importance during the firnt stagC$ of the decay only. 

A turbulent flow with a mild swirl appears to be more stable against non-axisym­
metric disturbances than a la.min:;u: How_ Two effects may be responsible for the stronger 
resistance to asymmetry_ Compa.ted to a laminar flow, the exchange of momentum is tela· 
tively stronge, in a turbulent flow. Thus the dfective Reynolds number based on swirl may 
be lower for a turbulent flow_ The second reason is that distribution of the axial. velocity 
is much more uniform than the distribution for a. Poiseuille flow. This prevents a strong 
interaction of the axial and the cross-flow-plane components of the vorticity vector. 

On the basis of a. mixing-length hypothesis for the turbulent stresses one ma.y expect 
that the decay of the swirl is influenced by asymmetry. However, the computational results 
indicate that this effect is negligible. Hence, for low swirl intensities, asymmetry needs not 
to be considered for an accurate description of the decay of the swirl. 
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6. Experiments 

6.1 Introduction 

In this chapter experimental re!l-ults concerning swirl in a turbulent pipe flow are pre3eIlted_ 
The results presented here are first results of ii" large and exploratory experimental study of 
pipe flows with swirl, see Steetlbergen (1992). The objective or the measurements pr~nted 
here has been to study the decay of swirl ;1) flows relevant to the problem or flow metering. 
As noted in chapter I, swirl in transport systems for na.tural gas may be produced by 
a combina.tion of two out-of-plane bends. Swirl produced by this mechanism, is seldomly 
very inten~) is concentrated near the pipe wall and is never axisymmetric. 

In the present work swirl is introduced into the flow by means of an assembly of 
guide Vii"nes, rather than by a combina.tion of out-of.plane bends. By using adjustable guide 
vanes for generii"ting swirl, a. large number of different velocity distributions can be gener­
a.ted. Moreover, contrary to the swirling flow produced by out-of-plane benda, the velocity 
distribution produced by guide vanes c;;a.n ea.sily be made axisymmetric. Clearly, axisym. 
metric velocity distribution!) will ea8e the interpretation of the measurements considera.bly_ 
However, .uthough the swirl is introduced differently, in this study care is taken to produce 
velocity distributions not too different from the profiles typical for the flow produced by a 
combina.tion of bends_ 

In earlier experimental atudiea. of swirling pipe flows (for example Kitoh (1991)) the 
initial·swirl intensity was high (5 > 1.0), the initial velocity distribution exhibited reversal 
of the axial c;;omponeIlt and a. strong concentration of axial vorticity !lear the axis of tbe 
pipe. In contrast, in the present expetiment the intensity of the initial swirl is moderate 
(S :s; 0.5), no flow reversal occurs and tbe conc;;entratiOll of the axial vorticity near the axill 
of the pipe is not very pronounced. 

6.2 Experimental method and How configuration 

6.2.1 Flow configuration 

A schematic representation of the experiment;J setup using water as the :How medium is 
given in Fig_ (6_1). Its main parts are the "swirl generator~, the test section with a circular 
cross-section and an inner diameter of 0.07 m and a total length of 20 m and tbe meaauring 
Bec;;tion- A constant flow of water is maintained by controlling tbe water level in a supply 
vessel. The level is regulated using a combination of pumps, each equipp~d with a simple 
on-off water-level senaor _ The maximum realizable volume :How in the water circuit is about 
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80 m3 /hr. The maximum variation in ... specified flow rate is leas than 2%. The maximum 
a.ttainable Reynolds number based on the mean velocity and the pipe diameter ie 300,000. 

Swirl is introduced in the flow by means of a "swirl genera.tor", ~ee Fig. (6_2)_ The 
generator consists of a.n a.!I~t;mbly of guide vanes mounted onto a central body within a 
wider Mcctiou of the tube. Flow reversal near the axis of the pipe is prevented by allowing a 
part of the water to flow through ... ch3JJnel passing centrally through the central body. By 
c.harlging the diameter of the central channel and adjusting the angle of the guide va.nes, a 
large variety of initial vdoc;ity dj~~ributioD.s may be realized. In the series of me~urementB 
described here, one setting of the vane angle) centra.! cha.nnel dia.IIleh~r (20 mm) a.nd flow 
rate was chosen. 

Front View Si(le View 

The test section consists of a set of straight bralls pip~:!1 or dilf~~nmt 1(';ngthM, all with 
an inner diamd(~r of 0-07 m. The pipes were manufactured according to DIN 17660 and 
DIN 1755 standards. However) the pipes used in the test section were specially seleded 
to meet a.dditiona.1 (.,iteria- These extra criteria were defined to guarantee that the pipe 
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system itself does not introduce disturbances to the flow, These criteria were on: 
• stra.ightness, only pipes witho\\t a visible curvature were used; 
• internal roundness, the maJt:imum variation <!llowcd was 2 X 10-4 m; and 
• wall thickness, the maximum allowed el;~ntricity of the inner and outer diameter 

W;LS 5 x 10-4 m. 
Special pipe-to-pipe connections were designed to give a minimum discontinuity between 
t ..... o consecutive pipes, Measurements of the sta.til; pressure drop have indicated that the 
pipes ma.y he considered as almost "hydra.ulically" smooth. The mean roughness parameter 
obtained from the Moody diagram was f/ D = 1O-~. 

The LDV measurements, (section 6.2.2) have been carried out in the specially built 
measuring sel;tion, see Fig. (6.3), The mCai;luring section consists of an ordinary pipe sec­
tion. To allow optical accesS to the pipe, in three Bub-sections of approxima.tely 1 inner 
diameter long, the brass pipe wall W3l> replaced by a thin (100 11m) polyester film, To 
minimize undesired optical effects and to stabilize the polyester film, the polyeater sections 
are contained in w;!.ter-filled boxes with fla.t windows. The pressure in the boxes is kept a.t ;!. 
slightly lower level than the pressure in the pipe. This is achieved by externally oollDecting 
the bo){es to a point downstream. Thus, effectively the polyester sections are ve:ry rigid 
and it ma.y he ~sumed tha.t they preserve their cylindrical shape. The complete measuring 
section can be rota.ted around the axis of the pipe to a.llow for measurements at different 
inclination .;u).gles. It may be placed anywhere in the test section. Apart from the first eight 
diameters, measurements a.n; possible a.t every downstream position. 

(iront View 

,--tt---, l'olytt!<r 

i 
I 
I 
i 
i 

~.:~:::~::~~::~:~.J ,. 
Side View 

Film 

Plow 
~dire:C:(ion 

Figure 6,3: One 81.1D-8edioD of tbe measuring B«t.iOD 

6.2.2 Laser doppler velocimeter 

The velocities ~~ measured using. a two-component Laser Doppler Vclocimeter (LDV) 
(DANTEC). The system is QPcf;!.k<d in the reference beam mode. For each measurement 
within the pipe, a. combination of three independent measurements using three differel;lt 
inclination aogh (-45\ O· and 45°), yields the three velocity c;;ornponents .and all compo­
nents of the Reynolds-stress tensor, 

The measurement volume has a length of 1000 11m a.nd a. diameter of 100 pm. As 
a. reference point for the Orientation of the measurement volume, the a.x:is of the pipe is 
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used. The pOilition of the axis is determined using a signal produced by th!: poly(~ster pipe 
wall. When the measurement volume is pla.<',ed on the polyester section of the pipe wall, 
a strong continuouB signal with a frequency equal to the shift frequt:rl<;y i8 produced. A 
traverse of the measureInent volume through the pipe wall in the direction normal to the 
wall) yields an a.pproximately symmetric intensity profile as a function of the distance along 
the traverse. By definition, the POSiti()1l of tbe pipe wall Wall chosen to be at the symmetry 
plane of the intensity profile. By combining thr!;~~ measurements of the wall position at 
three inclina.tion angles the position of the axis of the pipe is determined. 

The measurement volume is positioned by positioning t.he I,DV system 3J'! a whole. 
For this purpose the LOV system is mounted onto a rotatable two.degree"of"freedom 
tra.v!~,siug system operated by stepping motors. A more cl1t()nsiw rlcHt.ription of tl\(~ exper­
imental set-up and m(;i;L!:luriug system can be found in Steenbergen (1992). 

6.3 Results 

Me~llT!;d results for the turbulent pipe flow with swirl are shown in Figs (6.4) to (6.11). 
In total, three "tra.V!:rHeH~ 1 a.t, three different inclination angles were made. However, the 
non-aJ(isymmetric character of the measured velocity distributions a.ppeared to be weak 
(see also cha.pter 5). Since the measured distributions appeared to be almost axisymmetric, 
here only the results of the traver~e in the y '" O-plane are presented. The complete results 
of the !!xp(~riments can be found in Steenbergen (1992). The R.eynolds number ba.sed on 
the mean axial vdot;it.y aDd the pipe diameter was 50, 000. The initial swirl number 8 
(gq. (1.21)) is estimated to be 8.01l;oJ ;:::: 0.42. Figs (6.4) and (lUi) Bhow the mean axial 
velocity component. At the first ataJiOD, (:1;/ D = 8.7), an elevated plateau of higher axial 
velocity is visible. Possibly, this plateau is related to the plat!:all that ill predided by tht~ 
GLkulations obtained with the modified"k - ~ model, see section 4.3.3. However it may 
also be a remnant of a Ujet-likc" axial flow generated by the hole in the central body of 
the uswirl generator". Further downstream, this plateau disappears and the axial velocity 
distrihutiQn develops rapidly towards a remarkably flat distribution (x/ D = 31l, 50, 70). 
At x I D = 96 the chara.df:T of the distribution of U starts to resemble the character of a 
fully developed pipe flow. However, the difference hdw(:(~n t.hiH di8trihut.ion and Hl~~ fully 
d!;vdopcd distribution is still appreciable, illustrating the long distance needed for the 
decay of swirling pipe flow. 

The diat,ibution of the mean circumferential velocity components is shown in Figs 
(6.6) and (6.7), Even though the flow p~8ing through the (:cnt,al channel or th!; UHwiri 
generator" is not, subjected to any circumferential excitation, and a low level of vorticity 
near the axis of the pipe might be expected, already at x/ D "" 8.7 the circumferential 
velocity diHtrihution exhibits a concentrated central region with a high level of vorticity. 
The character of the circumferential velocity profile at the first station re~emLle~ the char­
acteristic distribution of the circumferential vd[)(:ity found in ot.hcr cJ(perirT)cnta, sl~ch as 

L Note that in fad one "trav~rAe" eOnAiAt~ CJf th~~ dlffe~Mt tr~ver~ perrormed with three dilf~re!1t 
orientationa of the mel.1.ljurernen~ volume with respect to the traversing direction. 
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Kitoh (1991) and Algifri d al. (1987). 
According to Kitoh (1991) and Algifd e.t al. (1981) the circumferential velocity 

distribution can be divided into three regions, a core region whid. rotates as a solid body, 
an iDtermediate region or ~free vortex" region containing only a small amount of vorticity 
and a wall region where the circumferential velocity sharply d~"Creases to zero as ;!. (unction 
of the distance to the wall. At x/D == 8.7 the present circumferential velocity distribution 
clearly exhibits a. "solid-body-rotatioo" core region. However, the concentration ofthe axial 
vorticity component ncar the axis of the pipe iii not as pronounced as in the experimeot 
of Kitoh (1991), see Fig. (6.12). Furthermore, the ~free-vortex" chara.cter of the outer 
region is only weak. The sharp decrease of circumferential velocity as a. function of the 
distance from the axis of the pipe in the wall region iii a.gain clearly reproduced by the 
present me3-\lurements. At the second ~tation 11;/ D = 22, the three-region character has 
disa.ppeared. In the region dose to the axis, the magnitude of the axial vorticity component 
has decreased considf:!rably and no "free-vortex" region can be distinguished any more. At 
this station the deviations from axisymmctry a.ppear to be the most pronounced. Further 
dowD.atr~am, see Fig. (6.7), the "solid-body.rotation" region expands until it fills the cross· 
sectional area of the pipe almost completely and the flow returns to an axisymmetric state. 
At larger dist<LnccS from the "swirl genera.tor" , where the intensity of the swirl has become 
low, the shape of the velocity distribution remains -lIlroost constant. 

Regrettably, due to an unforeseen technical problem, reliable measurements of the 
turbulent shear stresses could not be obtained. A strong external signal with a. frequency 
close to the shift frequency jammed the diode signals and effectively prevented the reli­
a.ble evaluation of the tl.lrbulent shear stresses. The me;t.l;luruments of the normal 6treases 
however, did not suffer from this problem. 

The development of these components of the Reynolds-stress tensor is shown in 
Figs (6.8) to (6.11). Near the axis of the pipe, the distributions of the normal·stresses 
exhibit a strong peak at the first ~tation downstream of the ~swirl generator", see Fig. (6.8). 
Furthermore, a.t this axial sta.tion, the turbulence appe;!.1:ij to be a.pproximately iflOtropic. 
Apart from th~ region close to the pipe wa.ll the three normal components are of the same 
order of magnitude. At the next station, as Fig. (6.9) shows, the level of the ~-componcnt 
has decreased considerably ncar the axis. Here the radial distribution of the tI~-component 
of the Reynolds-stress tensor is almost uniform. In strong contrast with this is the behaviour 
of the l)2-component and the W!-component of the Reynolds-stress tensor. The value of 
these stress componm'lts remains approximately of the same order of magnitude and the 
radial distributions of the two components remain peaky. In downstream direction the 
magnitude of V2 and ~ decreases gradually. However the peaky radial diatributions may 
be distinguished until z/ D "" 50. At larger distances downstream of the "swirl generator" 
this striking difference in the dist.ibution of energy between the three normal components 
of the Reynolds.stress tensor gradually develops towards a more isotropic distribution, 
see Fig. (6.11). Here the distributions of the norma.! 6tr~ilC$ start to resemble the radial 
distrihutions of a. fully developed non-swirling pipe flow, showing that the ~ component 
has the la.x-gElst magnitude and that the normal stresses Me smallest at the axis of the pipe. 
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6.4 Comparison with results of other experiments 

In this t:hapLer results have been presented of a.n experimental invcstigation concerning a 
turbulent pipe flow with swirl. In this experiment emphasis was put on a. type of swirl 
comparable to the gwiri that is likely to be encountered in large-gcale transport systems for 
na.tural gas. However, unlike the velocity distributions encountered in transport Hystmlls for 
natural gas, the velocity distributions in the present experitncnt are almost axisymmetric. 
In this scnse the present experiment can be diatinguished from earlier experiments described 
in Iitera.ture. In the experiments described in recent literat\Jre (e.g. Kitoh (1991), Algifri 
et al. (1987) and Mattingly & Yeh (1988)), either the swirl is introduced by means of 
a. device similar to the device used in the present experiment, or the swirl is gcncratf;d 
by a combination of out-of-plane bends. The flow in the former type of e){periments is 
characterized by a very concentra.ted core with wlid-body rotation, by a swirl intensity 
that is high and by a central zone of recirculation attached to the swirl gcnf~ra.tor, gee 
Fig. (6.12). The flow produced by a combination of out-of-plane bends is chaJ:<j.(::t~;ri:;;ed 
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.'igure 6.12: Some typical radial distributiDIlB Df the circumfcre.n!ial lIJld Il-Xial V/:loci~,l' components Il8 

m~Murt<J h,l' Ki~oh (J99J) ill II tdrhulent pipe flDw at ReD = 10~ 

by a much smoother distribution of swirl and by a low swirl intensity, 3e!~ Fig8 (Ina) 
& (6.14). In the distribution of the axial flow no recirculation zones or even ~dip5" arc 
present, However, immediately downstream of the bends the axial a.nd tht: circumferential 
velocity profiles are strongly noo-a)(iaymmdric. 

The resultH preycntcd here reflect features characteristic for both types of experi­
ments. Close to the swirl genera.tor, the flow exhibita the three-region character-a "solid­
body-rota.tion" core, a "free-vortex~ a.nnl~laT region and a "walln region-typical for the 
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first group of experiments. However, contrary to the radial distributions of the circumfer­
entia.l vcioc;:ity component measured by Kitoh (1991), which lwcp a. high radial gradient 
along a large part of the pipe, in the prt:Mnt experiment the "solid-body-rotation" COre 

ata.rt.s to expand immediately in the cross-sectional plane. From a. relatively short distance 
behind the swirl generator on, the circumferential velocity profile is in closer resemblance 
with the reaults obtajned by Mattingly & Yeh (1988) than that measured by Kitoh (1991). 

The radial distributions of the axial velocity component measured in the present 
experiment differ from the result~ in both types of experiments described above. Apart 
frOID the region cloBt: to the "swirl generator" the radial distributions of the axial ve!o<;­
ity component at the different ;ucial poaitioll$ are rather uniform. Neither the results of 
Kitoh (1991) and Algifri et «1. (1987) Dor the reaulta of Ma.ttingly & Yeh {1988} exhibit 
wmparable distributions. Clearly, the central recircula.tion region distinguishea the axial 
velocity distributions of Kitoh (1991) and Algifri et at. (1987) from the present results. In 
the results obtained by Mattingly & Yeh (1988) the radial distribution of the axial velocity 
component iB Btrongly a.ffected by the non-axisymmetric character of the flow. 
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Finally, one of the most striking features of the present rcsultB i~ UII': behaviour of 
the normal fU;ynolds-sircsscs ill the "solid-bady-rotation" core of the flow. In the litera­
ture, no comparable effect hi!l..'i been reported_ Since the flow is not subjected to a strong 
defOTma.tion in this region, it a.ppears that the developmfmt in dowlIStream direction of the 
normal components is not caused by extra swirl-induced productiolJ of turbulence_ It may 
be <U!surncd that the mutual interaction of the small-scale turbulent eddies is affected by 
the large-scale background vorticity caused by the swirl, or even that a strong direct inter­
actioa exillts bdw(~:r\ th(~ large-Ilcak ba.t.kground vorticity distribution and the small-scale 
turbulent eddies, 

TlH: cornpa.:rison of the reS\lltH prcHcnted in this chapter and some typical results 
reported in the literature clearly indicates the diversity of the problem of iL det.aying swirl 
in It turbulent pipe flow, Although in some iUlpectH the different results show a degree of 
resemblance, in general each of the results also appear to have strongly different ch;Lracter­
istics. The differences may be partly caused by differences in the method of swirl generation 
or in the intensity of the swirl. However, the compa.:rimm of the results of the experiments 
indica.tf;B Ulat the difff~rencea in the initial velocity distribution for these experiments alao 
cause the swirl to develop differently in downstream direction, 
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7. Comparison and discussion 

7.1 Comparison 

In this section we will compare the measurements presented in chapter 6 with predictions for 
axisymmetric flow baaed on the turbulence models presented in ch<Lpter 4. The comparison 
ig carried out for a Reynolds number of 50,000 and a modera.te value of initial swirl. The 
profiles of the mean ftow quanti tiea measured at the first axial station (;J; / D = S.7) are 
used as an initiaJ condition for the computa.tion. For the region between the pipe wall 
and the measuring point closest to the waJ..\, the initial velocity distribution is obtained by 
interpolation according to the logarithmic law of the wall. 

The k and E inlet conditions are obtained by a relaxation method: to the axial and 
angular momentum equations an additional "forcen term F is added. For ex;;u;nple for the 
axial momentum equation this term i~ 

with 

and 

Cforce 

Ui))i~i!LJ 
representing a constant of magnitude 0(101

), 

the velocity distribution obtained from experiment 

U the present velocity distribution. 

is added. With these force terms a.dded t the solution of the continuity equation, the three 
IDomentum equatioilll and the k and t. equa.tions, is allowed to evolve until it reaches a 
fully developed state. In this sta.te the radial distribution of, for example, U(r-jx) will be 
very simil<Lr to the dislribution of Uinitial(r-j 0) provided that Gforce is large enough. The /1:, 
I:; and velocity distributions belongiJlg to this solution <Lre used as lhe initial condition for 
the a.ctuaJ calcula.tiont without F added. 

In this comparison we consider the standard k - ~ model and the swirl-corrected 
k - ~ model, using the GibSQn/YouJJ.i~ pres~ure-stra.in wefficienb, d¢!;lcrih¢d in chapter 4. 
Neither the full ASM nor the RSM model are considered in this comparison. As indicated 
in ch<Lpter 4 the results of the ASM .;u-e <Llmost identical to the results of the ~wirl-correctEd 
k - € model. According to Chen (1992) the results of calculations employing an SSM baaed 
on the Gibson & Younis (1986) pressure-strain a.pproximation are, at least in a. qualita.tive 
sense, in agreement with the ~ult~ of the wmput<Ltiotls uaing the Il-wirl-corre.:;:ted k -
,model 

Fig. (7.1) shows a comparison of the predicted and measured radial distributions 
of the circumferential velocity W at four axial positions. Neither the swirl-corrected /r; -
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l model (M-k-eps) nor the: ~ta.ndard k - € model (k-eps) appears to be capable of represent­
ing the true behaviour of the flow with swirl. The swirl·correded k - ~ model predicts an 
efficient redudiou. of the ra.dial exchange of angular momentum by the swirl) tha.t results 
in a "three.region" chara.ct!:r of lh!~ radia.l dil:ltrihution of W with a. distinct "free-vorlex" 
region along a large part of lh~: pipe. In a.ll experiments reported hy other aulhors, p(:r­
formed at a higher swirl intensity (Algifri (1987) and Kitoh (1991)), a similar "three-region" 
behaviour is found. 

The standard k - ~ model ptedicts a radial e)(change of a.ngular momentum that is 
not a.ffed,ed by the swirl. It results in a rapid development of the radial distribution of the 
circumferential velocity component towards a "self-similar" distribution that is preserved 
up to the last sta.tion considered. This behaviour is in better agreement with the results of 
experiments using out-of-pl;l.n~: benda a.s swirl gener;l.ting m~ha.ni~m. 

The measured distributions of W show that neither of these two scenarios is followed, 
While: in th!~ firHt part of the pipe (~/ D < 50) the radi<!.l dil:ltrib"tiol)l:I cx.hihit a "three. 
region» character, in the second part of the pipe (x I D > 50) the measured distribution of 
W develops towards an almo~t perfect "solid-body-rntation" velocity distribution, Though 
not a.9 pronounced a.s predicted by the swirl-corrected k - ~ model, the mCaJjumd radial 
distributions of W suggest that in the initial stages of the decay the radial exchange of 
momenturII i~ n,:d\ICed. In contra.st, the experiment.a1 results suggest that during the final 
stages of the decay all effedive radial exchange of momentum o<;curs. The aJrooat petfect 
"solid-body-rotation" velocity distribution even suggests that in the second part of the 
pipe (xl D > 50) the radial exchange of momentum in the experiment is more effective 
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tllan the r.a4i.u exchange predicted by the standard k - ~ model. 
The measured and predicted ~ial veloc;ity di~tfibuti()nsj Fig. (7.2), partly confirm 

this S\lggestion. While the results of the calculation based on the standard k - t model 
resemble the "developed pipe-flow di!l.tribution~ ahea.dy a.t x / D = 36, the measured dis" 
tribution develops to an almost tlfiiform distribution. Only beyond xl D = 100 the experi­
mentally determined distributions of U reaches a state comparable to the fully developed 
stJ;i.te, see St~nbergen (1992). 

The predictions of the swir!.corrected k - l model exhibit a central jet-like plateau 
in the distribution of U that is not present in the measurements, see Fig. (7.2). ThuEI, also 
the strong reduction of the radial exchange of axially directed momentum, tha.t is predicted 
by the corrected k - l model, is not reflected by tile measurements. 

Keeping in mind the large discrepancies between the calcul;!,tcd velQcity distribu· 
tioM and the measured distributions j it is no surprise that the experimentally determined 
rate of decay of the swirl differs from the calculated rate of decay. A compa.J:'iaon of th~ 
meMured and the calculated decay rates is shown in Fig. (7.3). However, it a.ppears that 
the differences between the mea.sured and calcula.ted decay rate are far less dra.ma.tic than 
tile differences occurring in the distributions of tile mean velocity profiles. Partly this CiMl 

be explained by the observation tha.t the decrease of the total amount of swirl is deter­
rnined by the wall-shear l>trCSS only, See Eq. (4.25). The m;!,gnitude of the w.uJ-ahear Bt~s 
is dete£mined by the magnitude of the mean velocity close to the wall. Differences in the 
velocity distribution dose to the axis of tile pipe will not affect the deca.y rate as long as 
the m;l.gnitud() of the pfcdidcd mCi;L/J vdoc;ity dose to the wall is the same a.s the measured 
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Figure '7.3; A comparison of the measured rate of decay of swirl and Ihe calculated ral(:O of 
decay.(R.e)) "'- 0 x 1O~) 

veloc;ity. 
[t must be noted here tha.t sillC(~ the expn;ssioll for the integral amount of axial 

angular momentum flux, Eq. (4.24) contains a weight factor r\ the determination of S 
from experiment is very sensitive to the method of interpolation in the region betw~-;n th(; 
poiot dOl)e~t to the wall where da.ta is taken and the pipe wall. For the determination of 
S from the experimental results we assume that the wall-layer behaves according to the 
"law of the wall", i.e. the flow is in perfect "local equilibrium" and the velocity vl~dor is 
not skewed. Assuming that the friction velocity varies between 0.1 ~ u· /Umea[l ;::: 0.05 
along the pipe, the point closest to the wall where data is measured lies at the outermost 
edge of the logarithmic region (r/ R Rj 0.9, 250 ?:: y+ ?:: 125). Sine-£. the Reynolds number 
used in the present experiment is not very high (ReD'"' 5 X 104

) the assumption of a 
"law of the wall" behaviour may be inappropriate, especially in HI(; first piLrt of the pipe. 
C{mRf)ql~e!)tly, il.1I lmcer1.ai~)1.y iu th~~ l!Iag[)itl)df~ of S ma.y b(~ expected. A first estimate 
for the maximum magnitude of the uncertainty in the value of 5, is found by comparing 
the value of S obtained using a. logarithmic interpolation and the value of S obtained 
using a. linea.r interpola.tion between rj R "= 0.9 a.nd rj R "" 1.0. It turns out that the 
difference in the magnitude of S resulting from the different treatment of the wall rcgion 
ia ASjS "" 10 - 15%. 

Keeping in mind the uncertainty in the magnitude of S obtained from the experi­
mental dll.ta, we conclude that the main observation ma.de in the comparison of the radial 
diatribution~ of c;j,<;\unfcrcntial and axial vdocity component is confirmed by Fig. (7.3). 
Since the experimentally found decay of S i~ fMter than the decay according to the ~swirl­
corrected" k - f model, it seems that the radial exchange of momentum is underpredjded 
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by this model. 
The decay of the integral amount of angui;!.t momentum predicted by the .standard 

k - ~ model seems in much better ;a.grcernent with the measurements. Howevet, a.t the end 
of the decay region the measured decay seems even faster th;Ln the d=y predicted by the 
.standard k - ~ model, indicating alargcr roilodial exchange of momentum than P);edicted by 
a.ny of the modclB considered in this study. 

7.2 Dis(:ussion 

An important aspect of the flows considered in this study is the assumption of a. cylin­
drical symmetry in the distribution of the flow quantities_ The circumferential velQdty 
component drives a continuous redistribution of energy between the various components of 
the Reynolds-stress tensor only when this symmetry is present. Without this "convection­
scrambling" effect the predicted radial exchange of momentum is much stronger (see sec­
tion 4_2.4)_ The measured distributions of the normal components of the Reynolds-~tress 
tensor show tha.t, apart from the region dose to the pipe wall, the levels of ;;I and ~ 
are appw:x:imately the same, while the magnitude of u~ level is much lower (Fig. (6.8) 
to Fig. (6.10)). Furthermore, the radial distribution of U2 is almost uniforol- Hence the 
"curvature-scra.mblingn effect is not :iiU:I pronounced as it is assumed to be within the ASM. 
It may be expected that the typical distribution of energy betw(''CJI the llormal components 
of the Reynolds-stress tensor will have its effect all the magnitude of the shear StresSC8. 
Illd~d, when the ASM equations (e.g. Eq. (4.9)) are solved, u~ing a given distribution of 
the normal-stress components similar to the measured distribution, i.e. 

with 

ti2 ;;;;;; 2a(r)k and 1? = "WI "'" (1 - a(r)) Ie 

1 
0< Ct(r) < 3' 

the resulting expression for vw predicts a radial exchange of momentum compara.ble to the 
corresponding standard k - f expressions, namely 

vw = -(1- 0) 'PI P (8W _ W) 
t 81' I' 

(7.1) 

Thus, apart ftom the comparison of the computed and measured distributions of the mean 
(:ir(:umfe~ential and axial velocity componcnts, also thc meil8urcd radial distributions of 
the normal·stresses suggest that the reduction of radial momentum tra.nsport prcciil;ted by 
the 8wirl-c;;orrec;~ed Ie - t model is too strong. 

A final indica.tion that the swirl-corrected Ie - c model e)l;agger;l.t~ the reduction 
of the shear stresses is obtained when the predicted reduction of the radial momentum 
transport is a.r~ificjally weakened_ This can be effectuated by replacing, the correction 
{ao:;tors Rz;w and Rz'fiiii, in Eqs (4.20) and (4.12), by ,RiiTtJ and ,Ri-;ru;, with, a. reduction 
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Flgure 7.1: A ~.<JmpMillOn of ~hc computed radial distributions of the &rial velocity alld the mellSured 
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Figure 7,1i: A compariBO./l of the computed radial distributiDlls of the circumferential velocity alld the 
meMurcd dilltributioDS at different uialstatioDs. &D ::::: 5 X 104, modified I.: - ( model, 'Y ::::: 0,5 &. 1 = 1.0 
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factor, i.e. 

and 

Figs (7.4) and (7.5) show th<tt even for "( "" 0.5 the dramatic differences between the 
mea.surements a.nd the computations are reduced considera.bly. 

Clearly, the above observa.tions merely suggest that some of the discrepancies be­
tween measurement and computation may partiy be explained by the cha.riil.deristic distri· 
bution of energy between the normal components of the R.eynold~-stress tensor. Of course, 
the question that remains is, where this specific distribution of energy origina.tes from. 
The conventional pressure-strain models do not offer an explana.tion. Near the axis of the 
pipe where the anisotropy between the cross-flow-plane velocity fluctua.tions and the axial 
velocity fluctuations is the most explicit, the deformation of the mean velocity distribu­
tions is minimaL Hence, the production terms of turbulence are small in this region Md a. 
:!Itrong ani:!lOiropy can only be maintained by the pressure-strain interaction terms. How­
ever, it appears that the popula.r models for the pressure-strain intcr;a.ction .u:e not capahle 
of reflecting the e:x:perimentally observed anisotropy. Since the production terms are small, 
the "rapid-partn of the Gibson-Younis (1986) pressure-strain model is small as welL The 
"rapid-part" of the pressure-strain model due to Fu et al. (1987) only contains the contri­
bution due to convection. Also this contribution does not redistribute energy between tbe 
cross-flow-plane components of the velocity fluctuations and the a.xial component of the 
velocity fluctuations. Thus, also the pres~ute-stra.in model due to Fu et al. (1987) cannot 
explain the distribution observed in the experiment. 

For a perfect solid-body rotation without a deformation of the axial velocity distribu­
tion, even the Launder) Reece and Rodi model (1975) (LRR-model) for the prellsute-$train 
interaction, which for a. simple shear flow allows the strongest anisotropy between the nor­
mal components, does not predict a redistribution between the <;ro~$-fl.ow-plane and the 
axial components of the normal stresses. For the idealized swirl flow the LRR-pressure­
strain term predicts that the sum of ~ and ti)i remains independent of the ra.te of rota.tion: 
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Figur~ 7,6; A local Rossby number determined from experiment as 8. function of the distance to the axis 
of the pipe for 8. number of axial stlltioni/. 

so that, 

with 
11 (C1 + P/€ -1) + (9C2 -1) P/€ 

11 (C1 + P/€ - 1) 
3-~ 

11 (Gl + P/~ - 1) , 
-8C:l-2 

11 (C) +P/€-l)' 
1 

where C, and C2 represent the pressure-strain coefficients belonging to 
the pressure-strain interaction model (Eqs, (2.8) and (2.7)), 
and n rEpresents the rotation ri).te_ 

Without a continuous supply of energy to the cross-flow-plane components of the 
velocity fluctuations OtIe may I~){pcd tha.t the Hji).guitude of thesl; wUJp()Ucnta will d(~crcaile 
rapidly. For this particular distribution of energy between the normal components of the 
Reynolds-stress tensor, both the conventional "return-to-isotropy" term and the conven­
tional dissipation term in the transport equations for the Reynolds-stresses will act to 
diminish the ma.gnitude of both "ij"I and UiI. 
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One of the identified weaknesses of all preaent one-point closure schemes is their 
inability to take effects of sY!:ltern rotation into account. For example studielil by Bardina et 
al. (1985) and Tr.;l.ugott (1958) dearly show that the dissipa.tion of tUl:bulenre is reduced 
by system rotation. Furthermore, the simul",tions of Bardina et al. (1985) show th.;l.t the 
primliU'Y effect of rotatioll is a redistribution of energy in w~ve-number space, leading to an 
increase of the length scales in the flow, especially those along the axis of rotation. 

For the present experiment,;I.JJ, OLppropria.te indication for the importance of l:ota.tion 
effeds iI.1 described by Bardina. et ai, (1985) .;l.I;Id Tra.ugott (1958), is given by a.locaJ Ro~by 
number, for ~xa.mple defined as, 

(7.2) 

with 
D-- _ au; oUj 

'1 - Q + Q ' 
VXj 1,I:t; 

For Ro 4: 1 rota.tion effects are expected to be important, while fOl: & > 1 rotation 
effects will be small. Fig. (7.6) shows that in the region dose to the axis of the pipe, the 
total rotation is l",rge wmpared to the total deformation of the mean velocity di~tribution. 
Hence one may expect that in the pl:e!lent flow, close to the axis of the pipe, rotation effect6 
are important. 

Weinstock (1981), (1982) and Weinstock and Burk (1985) showed tha.t for a sim­
ple shear flow the LRR model provides a good approxima.tion for the "rapid-part" of the 
presBure-stra.io iotera.dion and that discrepancies between predicted stress levels JiIl)d mea.­
sured stress levels must be attributed to Rotta.'s (1951) "rdurn-to-isotropy" approximation. 
Rather than provoking l;f. "~eturn-to-isotropy~ the pressure-strain term should resist to a 
large anisotropy. The formal difference between the Rotta (1951) "return-to-isotropy" term 
and the term derived by Weinstock (1981), (1982) .a.nd Weinstock and Burk (1985) is that 
the "return-to-isotropy" coefficient Ct , is different for all components of the Reynolds-stress 
tensor and varies with the anisotropy of the flow. Furthermore, Weinstock (1981), (1982) 
shows that the ~return-to-isotropy" coefficients a.J:¢ sensitive to the sha.pe of the spectrum 
of the turbulence. 

Taking into consideration the relative magnitude of the rate of rotation comp;u:ed 
to tha.t of the rate of deforma.tion of the flow, clearly at least part of the explanation 
for the inco{{cdly predicted distribution of energy among the normal-components of the 
Reynolds-stress tensor may be found in the dIed of rota.tion on the distributioll of energy 
in wa.venumber space, demonstrated by Bardina et aI. (1985), combined with sensitivity 
of "return-to-isotropy~ term to the spectrum of the turbulence predicted by Weinstock 
(1981), (1982) and Weinstock and Burk (1985). 

Alas, the studies of Bardina. et al. (1985), and Weinstock (1981), (1982) and We­
instock and Burk (1985) a.pply only to flows very different from the swirling pipe flow. In 
literature, no expressions are given for the "return.to-isotropy" coefficients Cl ,;], for rotat­
ing flows. Furthermore studies on the effect of rotation on for example the spectra or the 
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dissipation in non-homogeneou~ and non-isotropi(: turbulence have not yet been carried out. 
In the flow subjed of the present study the distribution of turbuleJl~e is nOJJ-ho/T1ogcnoouil 
and non-isotropic. Hence, if the flow ncil.!;" the axis of the pipe iii indeed dominated by 
rotation, it seems that none of the presently used one-point-closure schemes is (:~pablc of 
capturing the experimenta.!ly observed distribution of energy between the normal compo­
nents of the Reynolds"stress tensor. Even the simplest expressions for the pressure-strain 
interaction show th~t the poor prediction of the norm~l-sheaaea may lcad to a.n underpre­
diction of the turbulent shear stresses and consequently to an underprediction of the d~ay 
of swirL 
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8. Concluding remarks 

Since the occurrence of swirl is a principle ~ource of error in flow metering, knowledge of the 
ra.te of decay of swirl is of utmost importance for the prediction of the installa.tion effects of 
flow meters. In piping systems, swirl is u$ually generated by two C(lnsecutive out-of-plane 
bends. Current standards (e.g. ISO-5167 or ANSI! API-2530) for flow metering do not fully 
recognize swirl as a source of error and hence do not seem fully a.dequa.te for defining the 
installation requirements in the presence of swirl. As a. result, flow-measuring devices are 
often employed in non-ideal installations, leading to an enhanced uncertainty in the Bow 
metering results. 

Experimental. work aimed a.t the decay of swirl has been performed in the paet but 
does not seem to be conclusive. Furthermore, ;most experimental work haa b~ performed 
under conditions very different from the conditions relevant to the practice of large-scale 
transport systems for na.tural gas. 

III this thesis we in~tiga.ted the possibility of numerically predicting the decay of 
swirl in a turbulent pipe flow. The prime motivation of this study is the desire to obtain a 
fUlldamental understanding of the decay process and the de!lirc to obtain a tool to tri;L1;!.slate 
experimental results for the decay of swirl obtained in the laboratory at sub-scale conditions 
to conditions relevant to full-ilcale transport systems for n;Ltural gall. Accurate predictions 
of the deca.y length of swirl would open the possibility to assess inlOt.ulatioll effects on flow 
metering devices, thereby reducing the uncertainty in the flow-metering results. 

It appears that numerical predictions of turbulent swirling pipe flow depend crit· 
ically on the quality of the model for the Reynolds stresses. This suggests that accurate 
predictions are only possible if "second-order)! turbulence dosure schemes are used. Only 
theae models have the potential to capture the moot important mechanisms governing the 
decay of swirl in a turbulent pipe flow. For the case of a straight section of a pipe) and 
for slowly decaying swirls, the simpler versions of the uoocond-order" turbulence closure 
schemea can be shown to reduce to a simple correction to the well-known k - € model of 
turbulence. 

The rn;Lin effect of the correction consists of a. change of the length-scale on which 
the momentum exchange occurs. For the case of a swirling pipe flow, the "sewnd-order" 
IDodels predict that, apart form the region dose to the wall of the pipe, the length scales 
are reduced, leO!.ding to a. reduction of the radial exchange of momentuID. The reduction of 
the radial mixing of momentum results in strong memory effect!! and a strong dependence 
of the rate of decay of the swirl 00 the initial velocity distributions. 

In the region close to the wall of the pipe the momentum exchange may be enhanced. 
However, this effed appears to be weak. For flows at a. high Reynolds number (Rt.() > 
0(106

)), the computational results suggest that in thil'l region the velocity distribution 
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obeys the ~loga.rithmic law of the wall". Also the angle between the velocity vector and 
the axis of the pipe remains constant in this region. 

In genera.l the flows f;ncollntered in pipe systems will be non-axisymmdric. From a 
computational point of view non-axisymmetric swirling Bows are difficult to handle. A fully 
three-dimensiona.! representation of the governing equations easily leads to unacceptable 
demands on computer reSOurces. On the other hand, a parabolizatioil of the system of equa­
tions, without destroying the "well-poaedness" of the system requires careful iUJalysis. For 
high Reynolds number, a. preliminary study of non-axisymmetric swirling pipe flows a.t low 
swirl intensities shows tha.t the non-axisymmetric character of the flow is pathologica.l. In 
this situation even an initially axisymmetric swirling flow develops to iii. non-a.xisymmetric 
flow. The flow becomes axisymmetric again, only upon almost complete decay of the swirl. 
For low levels of swirl, the effect of non-axisymmetric velocity distributions on the rate of 
decay of the swirl can be shown to be negligible. 

The results of the computations are only partly in agreement with the experimental 
results. As predicted by the computations, initia.!ly the velocity distribution develops t()­
wards a. non-axisymlnetric distribution, while further downstream the distribution returns 
to an axisymmetric distribution again. The predicted pronounced reductioJJ of the ra.dial 
e)(cha.ngt; of momentum is not observed in the measurements. The three-region character 
of the radia.! distribution of the circumferentia.1 velocity is recognizable very close 1.0 the 
"swirl generator" only. This suggests that the reduction of the radial exchange of momen­
tum excha.nge iii ov(:rpr(:didcd by the models. The dowlIstream development of the swirl 
number S, determined from the experiment, supports this observation. The experim~nta.lly 
found decay is faster than the computed one. 

An explanation for the discrepancies between computation and mea.sUI"(;rnent may 
be found in possible effects of rota.tion on the dissipa.tion of turbulence and on the "return· 
to-isotropy" interaction. In the models used in the present. calwla.tions these effects are not 
present. Theoretical studies and direct simulations of, and experiments in, much simpler 
Bows, i.e. homogeneous, isotropic turbulence, suggest that an effect of rotation on thl~ 

rate of dissipation of the turbulence and on the "return-to-iBotropy" interactim\ maybe 
illlPortant. 

As a. tina.! note we condude that, even tho\lgh the decay of the swirl is not repro· 
duced to great accuracy by any of the models used, the models used i:n the calculations 
do ca.ptum sOme of thl: important mechanisms present in swirling pipe flows. Hence, the 
computationa.! methods may serve a.s a tool to obtain a first order assessment of the ef­
fects of for example Reynolds number, inlet conditions or wa.!l roughness 0)) the d~cay of 
swirl. In this fa.!lhion the computational study of swirling pipe flows does contribute to the 
interpretation of experimental results j and the extrapolation of experimental results from 
sub·sca.!e conditions to full·sca.!e operationa.! conditions. 
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Summary 

For the interna.tional tranaport of large amounts of gaseous fuels through piping .systems, 
accurate measurement of the total vohmle Bow is of utmost economic importance. &«:nt 
research has shown tha.t the accuracy of the two standard measuring devices, i.e. orifice 
meters and turbine meters, for large-scale flow measurement in pipes, is not adequa.te in 
all situations. The inaccuracy is assumed to be caused by "installation dfe(;ts", i.e. caused 
by non-ideal flow conditions at the metering device. A notorious cause of error is the 
appearance of an axially directed vorticity component in the flow. A flow with an axially 
directed vorticity componcot, Or "swirling" flow, is known to develop very ~lowly and to 
have a large effect on flow meters performlLllce. 

This thesis de~cribe8 a study initiated by Dutch Gasunie. The study is aimed at the 
description of the development of a turbulent flow with swirl in a straight pipe. Since exten­
sive experimental studiL'iI are not feasible under conditions relevant to la.rge-scale transport 
systems for natural gas, in thia study emphasis was put on the numerical modelling of 
turbulent pipe flows with swirl. 

For the class of flows with "a(':.,ondary strains", to which swirling flows belong, most 
reaearchers agree that only "second-order" turbulence models, like the Reynolds Stress 
and Algebraic Stress Model, are capable of capturing the important physical phenomena. 
However, for the simple geometry of a. straight pipe, for low swirl intensities and for axisym­
metric flows, the some variants of these "second-order" turbulence models can be shown to 
reduce to a milch simpler form. This simpler form may considered as a modification to the 
well-known k - ~ model of turbulence. III this the~is this modifit.-d version of the k - ~ model 
is used to study the development of a turbulent pipe flow with swirl. 

The most important effect that is predicted by the modified k -! model is, compared 
to the exchange that is predicted by the conventional k ~ ~ model, a. strong reduction of 
the ra.dial e;o;;changc of momentum. This reduction results in appreciable memory effects 
in the flow. Decaying lengths for swirl depend strongly on the initial velocity distribution. 
For very low swirl intensities the modifications to the k - ~ model can be shown to have 
no effect. 

In general, flows cncounte(ed in pipe system will be non.a.xisymmetric. Preliminary 
computations show that even for axisymmetric initial conditions, swirling pipe Bows tend 
to bewme non-axisymmetric. The velocity dilltribution becomes axisymmetric again, only 
upon the swirl has decayed almost completely. However, the effect of the non-axisymmetric 
velocity distribution on the deca.y rate of the swirl appears to be minimal. 

The numerical results are only partly confirmed by the first results of an experi­
mental study. The experimental results indicate that the sup presion of radiaJ momentum 
c)(change is not as strong as predicted by the modified k - ~ model. It appears that, apart 
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from the first stages of the decay, the prediction~ of th~ conventional k - f. model are even 
better than the predictiona of the modified Ie - ~ model and the ~second-ordern turbulence 
models. 

The experimental reliult~ ~lIgg(:Rt that, contrary to the assumptions of the oue-point 
turbulen("..e closures, the non-linear interactions between the small-scale turbulent eddies 
are affected by the larg!;-sc.uc ba.ckground rotation caused by the swirl. Furthermore, the 
experimental results show, instead of an el1pected strong anisotropy bclween the circum­
ferential and radial velocity fluctuations, a stmng anisohopy betw~JJ. the a.xial and the 
cross-flow-plane velocity fluctuations. This effect is completely missed by the modified 
k - E model and the popular varia.nts of the RSM and ASM! Yet, the mea/lUred anisotropy 
of the turbulent fluctuations can be shown to have a "restoring" effect on the radial ex­
change of momentum. 

The predictions obtained with the corrected k - ~ model, the RSM and the ASM 
provide a. conservative estimate of the swirl decay rate and consequently also for the length 
required for the swirl to decay. Compared to the measured rate of decay the conventional 
k - E model predicts a higher rate of deca.y in the initial stages of the decay, while in the 
final stages of the deca.y a. alightly lower rate of decay is predicted. 
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Samenvatting 

Voor het grootschalige intern<ltionale transport van gassen en vloeistoffelJ. door pijplei­
dingen i~ ee.n nauwkeurige debietmeting van hEt allergrootste economische hel:a.ng- Re­
cent onderzoek heeft aangetoond dat de nauwkeurigheid van de twee sta.nda..udtechnieken 
gebruikt voor pijpattomingenj de meetflens en de turbinemeter, in een a.a.ntal situaties 
o.ict voldoende is. Aangenomen wordt dat de onn<luwkcl,lrigheid veroorzaakt wordt door 
installatie-effecten, d<lt wil zcggen door niet ideale aanstroomconditielil van de meter. Een 
berl,lchte oorzaa.k van meetfouten is de aanwezigheid VOLn or;:n .u:iaal gerichte rotatie in de 
stroming. Bekend van ecn pjjp~troming met een axiale rotatiecomponent, of wei een pijp. 
stroming met "swirl" j is dat deze bijzonder langzaam ontwikkelt en dat de debietmeting 
sterk wordt beinvloed. 

Ret onderzoek beschreven in dit proefschrift is gestalt op initiatief van de N.V. 
Nederlandse Gll-I'lunie_ In dit oncierzoek wordt gepoogd een beschrijving te geven van de 
ontwikkeling van pijpstromingen met swirl. Omdal turbllientiemetingen moeilijk uitvoer­
baar zijn bij de boge R.cynoldsgetallen waarvan in praktijk sprake is, wordt in de hier 
beschrevcn studie de nadruk gelegd op de numerieke modellering van pijpstromingen met 
swirl. 

Voor de kla.sse van atromingen met "secondary strains", waartoe de pijpstroming 
met swirl behoort, wordt in het algemeen aangenomen dat oalleco de "second-order" tur­
bulentie modellen, zoa.ls het Reynolds Stress Model (RSM) en het Algebraic Stress Model 
(ASM), in ataat zijn de essentiete versch.ijnselen van deze klaase van atromingen tc be­
schrijven. Voor een eenvoudige stroming alB de a.xi-symmctria~hc pijpstroming met swirl, 
kunnen een a.a.ntal versies van de "second-order" sterk vereenvoudigd worden. Ze kunnen 
in deze vereenvoudigdc vorm beschouwd worden als een correctie op het bekende k - E: tur­
bulcntie model. In het hier beschreven onderzoek wordt een gecorrigeerde vcrsic van het 
k - t turbulentie model gehrl,likt. 

Ret bdangtijkste effect van de correctie is dat, vergeleken met de impuls-uitwissding 
voorspeld door hel standa.ard k - t model, de impuls-uitwisseling sterk onderdrukt wordt_ 
Deze ooderdrl,lkking van de irnpuls-uitwi!lsding heeft tot gevolg dat de stroming een sterk 
"geheugen" heeft. De lengte Dodig voor het verdwijneo. Vi'llJ. d~ l'Iwid hangt hierdoor sterk 
;d van de intrreconditie van de stroming. Voor hele lage swirlintensiteiten kan worden 
aangetoond dat de correcties ~n effect hebben_ 

Pijpstromingen zoals ze in praktijk voorkomen zullen in het a.igemeen niet axi­
symmetrisch zijn. Verkennende berekeningen tonen aan, dat zelfs voor symmetrisroe be-­
gincondities ee.n pijpstroming met swirl de neiging heeft aaymmetrisch te worden. Pa.!:! 
Wa.Dneer de swirl bijllO!. hdemaal ia uitgedempt wordt de atroming weer axi·symmetrisch. 
Ret effect van de asymmetrie op demping van swirl blijkt minimaal te zijn. 
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De numerieke resultat.eJJ wordell sb::bla in bepe,kte ma.te bevestigd door de expe­
rimenten. De experimentele resuitate.n geven aan dat de onderdrukking van de impulH­
uitwisseling veel minder sterk is dan wordt voorspeld door bet geo)Tl:igeerde k - f model. 
Beha.lve gedurende de eerste paar diameters, levert het standaard Ie - E model beterc rc­
sultaten op dan het gecorrigeerde k - f model en de meer a.Igemene "aecond-order~ t\lrbu­
lentiemodellen. De el{perimentele resultaten suggeren dat, in tegenstelling tot de basisver­
onderatellingen van de genoemde turbulentiemodellen, de niet-lineaire interacties tussen 
de turbulente eddies op de kl(~inste schaal worden bcirlvloed door de grootschalige ach­
tergrondrob.tie. Verder geven de experimentele resultaten, io pJa.a.ts va.n cetl algemeen 
vcrwa.chtc sterkc anisotropjc hlssen de radia.a.l en aziulIl.ta.a.l gcrichtc turbulente snelheids­
:Huctuaties j juist eell sterke anistropie tussen de axiale fluctuaties enerzijds en de radiale 
en azimutale fluctuaties anderzijda. Dit effect wordt volledig gemist door zowd h!;t gt;wr­
rigeerde k - E model ala door de ASM en RSM modellen. Van dc~c gcroeten anisotropie 
Va.n de nOrrtla.a.l~piLIlningcn kan worden a.a.ngetoond dat deze de impuls.uitwisseling weer 
kan bevorderen. 

De voorspellingen van bovenstaande modellen geven een behoudende achatting roO): 
de sndheid Waa.rrnce cen swirl in cen pijpslrorning uitdeuipt. Het standaard k - ;;: model 
geeft, verge1eken met de gemeten demping, aanvanke1ijk een te sterke demping, t&wijl het 
voor lage swirlintensiteiten een te zwakke demping geeft. 
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Stellingen behot-ende bij het proefschrift 
«Decay of swirl in turbulent pipe flows" 

door R.R. Patchen 

1. De veronderstelling dat er loslating optreedt bij de instroming van de glottis zoals 
voorgesteld door bhi~aka (1972) en Miller (1988) is het gevolg van het toepasseIl 
van een onaanvaardbare vereenvolldiging van de geomctrie van de glottis, waarhij de 
gloHia wordt voorgesteld als een contractie met s('.herpe randen. De veronderstelling 
dat het drukverlies gekoppeld is aan een vena·conttada factor is daal'om onrcali~tisch 
en client a.chterwege gelakn te worden. 

Ishizaka, K. & Matsudara, M., (1972), Speech Communication Research Laboratory, 
Monograph no. 8 
Miller, J.A_, et al., (1988), J. Sound and VibT'tltion, 121, 277 

2. De ~toring in het gasdistributiesysteem in Goirle (1988), waatbij de eindverbruikers 
een druk van ongeveer 3 bar aangeboden kregen in plaats va.n de gewenste 30 mbar 
wa.~ het gevolg van de incompressibele henaderlng van de wet van Bernoulli bij het 
ontwerp van het regelsysteem. Het over het hoofd zicn VOLn de beperkte gcldigheid 
van dcze wet benadtukt het belang van het opnemen van het vak gasdynamica in 
het verplichte curriculum v~~r de studie van werktuigbouwk\1ndig ingenieur. 

Kolkman, M-, (1992), Afstudeerverslag, Hogc~(:hool Enschede 

3. Bij de beschrijving van demping van akoestische golven in turbulente pijpstroming 
is het esscntieel dat de eindigc relaxa.tietijd van de turbulentie in rektming gebracht 
wordt. 

Ronnebcrger, D., & Ahrens, C.D., (1977), J. Fluid Mee.h., 83, 433 
Peters, M.C.A.M, ct (1;/., (1992), Submitted to J. Fluid M~ch. 

4. Bet verdient a.a.nbcvding om wandschuifspanningen in pulserende turbulentc pijp­
stromingcn, in plaats van techtstr~ks met behulp Van hete draad· of hetc filmopne­
merS, indirect met cen multi-microfoon methode te bepalen. 

Reijnen, A.J., (1992), Afstudeerverslag R-1l83-A, vakgroep Transportfysica., Techni­
sche Universiteit Eindhoven 
Mankbadi, R-R., Liu, J.T.C., (1992), J. Fluid Me.ch., 238, 55 



,). De vcwndefstelling van Fletcher & Rossing cia.!. de amplitwl~ van het ako",~ti~che. 
veld in ccn tluit aUeen hf:grcn~d wotdt door .-!~, door de eindigp hrcedte Viti! Jt: jet bij 
het labium, V(~r»:adig!:nde fluctuerendc volumestl'oom kid!. tot cen Vool'spclling V,lll 
de ako(~stische amplit,ud(~ wdke tenminste. i/n orde groter i~ dan d(~ expe1'im0I1k(~1 

waargf!norrwn aIllplitudes, !.k kw,tlificatie van de~f~ ovm-ccnkomst door fletcher & 
Rossing ah z.ijrl(h~ "redeli.ik goed" is misplaatst, Een model waat'bij hpj <1.1 in I!)()f) 

door Coltrna.n gesuggcrc(~rde nid-lineaire efkct van wervelaJs(:hudding in l'eke1.1ing 
gebracht wordt, I(:v(:rl namelijk w;~l de cotrec.te ordc V<l,n grootte van (k ~.rnplitude 

op (1"ahre, 1092), 

Flelchef, N,H. & H.oH~ing, T,D" (1991), The Physics of Musical InstrumentA, S,n·in­
gct' V(:T"iag 

Coltman, J.W., (H)()9), j, AC01181. Soc. Am., 16, 477 
Fabre, R., (lfJ92), Proefs<:hrift, Le Mans 

(l. Kitoh (1991) typccrt hd buitengehi!~d vall een pijp~trorning met swirl ah »:ijnde van 
he!. "vrije wetvel" typc. Berekeningen met Reynolds Stress (:n AlgcbtaYsche St,n~sH 
IlloJdlen gev~n <l.an dat de distribllt,i(~ V,1n azimutak ~nelheiJ sterk afh,mgL vall de 
dd.ails vall het gebruikt,(~ model. De t~rm "vrije wervel" ~l1ggcreel't echter rial. vis­
ceuze ~ff~ckI! vel'waarloosoaar ~ouden zijn ell. is (barom mislcid(~l!d. 

Kitoh, 0., (UhJl), j, Fluid M(~ch., 225, 415 

7. De vel'ond~~rsL<:lliI!g dat een t,llrbulcnte stroroing ondetworpeo <l.il.n t~en solid-body 
rol,al,ie gestabiliseerd ~01l worde)1, gaa.t vourbij aan d£ mogdijk destabjljs<.~rcl!de in· 
teractie tU8SCI! ue axiaal en a~imlltaal gerichte vorticiteit, De door Bradshaw (1969) 
!1/~IH)neel'de analogi(~ met een stroming onderworpen ,L,Ln een tcmpeml,uurgl'adient 
wordt daar()rn iI! het algemcerl I.(~ll onl'ec.hte !lP;i!.cerd, 

Rmdshaw, p" (19fN), .I. Fluid M(:ch., 36, 177 

~. Om hc-!t e/~dri1g vall ,~",n oscillercnde st,roming bij hoge fr~qllelltie in epn poreu~ ma­
lel'hal to ondcr~ocken, k~.n rrl(~I! voistaa)) rnd bd bel'ekcncn ViU\ eell st;l.!.iOll'tire 
sl.rOluiI!g, 

Sme\llrl~~rs, I). M.,J,,(l992), I'r()d~chrift, 'Ih:hnische l..Iniw~rsileit EindhoV(~n 



9. De door Girschick en Chiu (1990) voorgedelde uitdrukking voor de homogcne nude­
atiesndheid in een oververzadigde damp berust. op cell niet gerechtvaardigde toeken­
ning van macroscopische (.~igcnochapp~n <tan "dusters" besta.a.nde nit ecn molccuul. 
De vcrbetel'de ovel'eenkomst tussen de niCllwe theOl"ie en sommige experimente1e reo­
sult.a.tcn heruot dan ook op toeval. 

Glr~chlk, 3.1., Chiu, ex, (1990), J. Chw~. Phys., 93, 1273 

10. Een verbod va.n vOOHuikn en andere vormen van rijwindbescherrning in hd gClno­
toriRf!erdc vcrk'<;![" ~al de verkeersveiligheid in be!a.ngrijkc ma.te vcrhogen. 
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