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1. Introduction

1.1 Flow measurement in large-scale transport systems for
natural gas

In the past decades the ute of ganeous fuels has grown sharply. Consequently, the impor.
tance of accurate measurement of large amounts of gas has been a major interest of all
gas transport companies. This has resulted in sophisticated calibration techniques and in
the development of aceepted flow standards. However, recent studies reveal that, the un-
certainty in the measurement of large volumes of gas must be estimated to be, at best,
0.7% of the actnal flow (van der Kam (1990)). According to this study the origin of the
uncertainty lies primarily in the metering device, and is caused by uncertainties in the flow
standards and by iostallation effects of the deviee in the metering station. The present
study is deveted to the characterization of the flow upstream of the flow metering device
and thus deals with the second cause of uncertainty described above.

For accurate flow measmrements mont flow metering devices, e.g. orifice plates and
turbine meters, need a certain length of straight pipe upstream of the device. This allows
the decay of the disturbances introduced by bends, valves and other components normally
encountered in transport systems for natural gas. If the length of the straight pipe is
sufficiently large the flow will obtain a sufficiently developed atate to allow accurate flow
measurements. The length required depends on the type of metering device and on several
parameters such as, the Reynolds number of the flow, the wall roughness and of course the
type of the disturbances.

Traditienally, the length of the straight piees of pipe upstream of the flow meter
needed for the flow to settle down, has been determined from previcus expenence. How-
ever, often this design requirement is obtained from results for flows at different Reynolds
numbers or with different disturbances, Recent research has shown that the straight pipe,
for example prescribed by the I80 standard on orifice plate metering and used in existing
installations, might have an inadequate length for certain types of upstream disturbances.
The result is that this uncertainty on installation requirements leads to an inereased un-
certainty in the results of the flow metering.

An obvious possibility to reduce the uncertainty in flow metering ia the in-situ cali-
bration of the metering devices. However, for economical and practical reasons this option
13 not feasible. A second possibility is to condition the flow by means of flow straighteners.
However, even though flow straighteners may remove certain types of disturbances very
efficiently, they do not deliver ideal flow conditions in all situations. Furthermore, the dis-
turbanees introduced by the straighteners themselves, again need a straight length of pipe
to settle down. Finally, straighteners will introduce undesirable extra pressure losses.



The present study iz devoted to a third alternative: Prediction of the influence of
specific pipe arrangements on the flow lo determine the correct installation of the flow
meter. Obviously, an imporiant part of the prediction of the installation effects is the
prediction of the decay of disturbances present in the flow. As mentioned above recent
research has shown that the upstream pipe length requirements as posed by the metering
standards (e.g. IS0-5167 or ANSI/API-2530) might be inadequale for certain types of
disturbances. A plausible cause for the inadequacy is an under-prediction of the relaxation
" lengths, ie. the length needed for a disturbance to decay fully. As illustrated by, for exarmple
Klein {(1981) the distance required for a full development of turbulent pipe flows may exceed
140 pipe diameters. In contrast, in most standards for flow metering and in most standard
textbooks (e.g. Schlichting (1967)) the flow is considered to be fully developed after 25 to
100 pipe diameters,

A diaturbance which is noloricus for ita slow decay, is the disturbance generated by
a combination of two out-of-plane bends of the pipe. When the gas passes through such a

Figure 1.1: A schematic view of swirling pipe flow

configuration the flow acquires an axial vorticity component, which results in the so-called
“swirling” flow. The Aow downstream of the bends is characterized by streamlines with a
helical shape (Fig. 1.1). In addition to the slow decay of the swirl, swirl also affects the
performance of the metering devices considerably. In a turbine meter, as Salami (1884)
concludes, even a swirl angle of 2° means a likely error of 2% in the measured mass flow.

Clearly, near a surface melering station, in underground transport syatems for natural
gas, a combination of two out-of-plane bends is very likely to be encountered, see Fig. (1.2).

Orifice Plates

[nilex

"
Chailet

Figure 1.2: A schematic view of the pipe manifold in the § » 12" orifice-plate meterrun “Cude Statenzijl
Nooard” of Duteh (Jasunje

Hence, for the prediction of installation effects in large-scale tranaport systems for natural
gas, the study of swirling pipe flows iz very relevant. The work described in this thesia is
devoted to the prediction of the decay of disturbances with swirl in turbulent pipe flows.
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1.1.1 Experiments on the decay of swirl

Although the effect of swirl on flow meter performance was already observed in the early
1900's, detailed experiments were only possible with the adveot of advanced experimental
techniques, such as hot-wire, hot-film probes and laser-doppler velocimetry. Consequently,
the amount of detailed experimental work available in the literature is limited, Work found
iz the literature aimed at the prediction of the decay of swirl in turbulent flows is equally
limited. The first atudy in this connection has been performed by Kreith & Sonju (1965).
Other studies have been performed by, Nystom & Padmanabhan (1985), McManus et al.
(1985), Mottram & Rawat (1986), Algifri et af. (1987), Halsey (1987), Mattingly & Yeh,
(1988) and Kitoh (1591). Perusal of these studies reveals that apparently the decay of
swirl 13 not fully understood, although all studies agree in the sense that they predict a
slow decay of the swirl. It is reported that typical “half distances” for swirl decay are in
the order of 50 pipe diameters. However, the reported decay rates exhibit a considerabie
scatter. For example, Mottram & Rawat (1986) predict that the swirl decays with a decay
coefficient A, operating through the factor ezp{—Az/D), equal to A = 0.5f, where f is the
friction factor for fully developed flow as defined by Blevins (1984). On the other hand
Nystom & Padmanabhap (1985) and Halsey (1987) suggest that a better eatimate would
bea A of 0.75f1.

Furthermore, most experiments mentioned here consider only one type of swirl, are
performed for only one Reynolds number and are performed in pipes with fixed degree
of roughness. As a consequence, the relevance of these studies to the metering problem is
lirnited. Mont experimental work is performed at a much lower Reynolds number (typical
values are Re = ((10%)) than the Reynolds number occurring in large-scale transport
systems for gaseous fuels (typical values are Re = O(107)... &(10%). For a successful
extrapolation of the experimental resulta to operational conditions, detailed knowledge on
the decay rate of the disturbance is needed of the effect of parameters such as the Reynolds
number, the wall roughness, and the swirl type. Az illustrated by the acatter in the reported
decay coefficients, apparently the knowledge for a reliable extrapolation is incomplete.

Though, for the purpose of obtaining more information on the effect of parameters
such as the Reynolds surnber, the wall roughness, and the swirl type, in this study some
exploratory measurements at a low Reynolds sumber will be reported, the emphasis is put
on the pumerical modelling of the decay of swirl in turbulent pipe flows, rather than on
performing extensive parameter studies through measurements

1.1.2 Numerical modelling of the decay of swirl in turbulent pips flows

Since the early eighties, numerical prediction of turbulent flows has become common prac-
tice for engineering purposes. Since then a massive amount of work concerning the pre-
diction of turbulent flows is reported in the open literature. However, very little work is
directly applicable to the problem of the relaxation of disturbances in pipe flows. Contrary
te the bulk of the work for engineering purposes, the geometry of the problem at hand
is very simple. However, the requirement on the acouracy of the prediction of the devel-
opment of the pipe flow is stronger than the commonly required accuracy for engineering
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purposes. Since the numerical prediction of turbulent flows involves modelling of certain
aspects of the flow, this modelling has to be considered very carefully for its effect on the
accuracy of the prediction of the decay of the swirl.

In the present study the turbulence modelling is based on the so-called one-point-
closure schemes for turbulence, At present and in the foreseeable future, in an engineering
environment, only these schemes seem to be among the fow feasible for the prediction of

turbulent fiows at high Reynolde numbers. Unfortunately the one-point closures are not,
" and will not be, the ultimate answer to the prediction of turbulent flows, Especially the
modelling of the class of *complex” flows, to which the swirling flows belong, provides
serious difficulties. Since the one-point-closure schemes heavily rely on empirical input, for
every new class of flow much work is required to tune the coefficients in the schermne.

Based on predictions of flows in complex geometries hike industrial burners and vor-
tex tubes, it appears that for flows with swirl most researchers agree that only second-order
closure achemes are capable of capturing the physics of the flow. However, for relatively
simple swirling flows, like ibe swirling flow in a straight pipe, not much information is
avallable in literature and it is felt that additional research is necessary.

1.2 'Thesis overview

In the second chapter of this thesis an overview is given of the most widely used medels
of turbulence. A description iz given of the assumptions on which the models are based,
starling from the most general closure scheme, the Reynolds Streas Model of turbulence.
To reveal some of the conceptual differences the lower-order schemes are derived from the
more general schemes, Focus is on the modelling of flows with awixl.

Chapter 3 deals with the numerical techniques used in this study, Most of these
techniques are existing techniques, though not often used for pipe flows with swirl.

In chapter 4 the prediction of axi-symmetric swirling pipe Sows will be discussed in
detail, Employing existing turbulence closure schemes we will derive simplified expressions
for the turbulent stresses. These simplified expressions allow us to assess the predicted
effects of swirl on the turbulence as predicted by the various methoda. A detailed description
is given of the consequences of the various assumptions on the prediction of Lthe decay of
swirl in turbulent pipe flows.

The question whether the assumption of axisymmetry in swirling pipe flows 1x valid
will be addressed in chapter 5. Numerical experiments are used to investigate the stability
of the flow against non-axisymmetric disturbances,

In chapter 6 experimental results are presented, The results presented in this chapter
are first results of an extensive aystematic study of turbulent pipe flows with swirl.

Finally, in chapter 7 the results of the preceding chapters are summarized and the
numerically obtained predictions are compared with the resultz of the experiment. The
thesis is concluded by a discussion on the feasibility of numerical predictions of installation
effects,

4



References

ALGIFRI, A. H., R. K. BEARDWAIJ, & Y. V. N. Rao. 1987. Prediction of the decay
process in turbulept swir) flow, Proc. Instn. Mech. Engrs. 201:279-283.

BLEvins, R. D. 1984. Applied fluid dynamics handbook. Reinhold Company.

Harsey, D. M. 1987. Flowrmetersin swirling fows. J, Phys, E: Sei Jnstrum, 20:1036-1040.

KaM vaN pER, P. M. A. 1990, Relaxation of disturbances in turbulent pipe flow. Con-
gortium proposal, N.V. Nederlandse Gasunie, Groningen, the Netherlands.

Kitor, O. 199]1. Experimental study of turbulent swirling flow in a straight pipe. J.
Fluid. Mech. 225:445-479.

KrLEN, A. 1981, REVIEW: Turbulent developing pipe flow. J. Fluids Eng. 103:243-249.

KrEITH, F_, & Q. K. Sonyy. 1965. The decay of a turbulent swirl in a pipe. J. Fluid
Mech, 22:257-271.

MATTINGLY, G. E., & T. T. YEH. 1988. NBS’ Industry-Government Consortium research
program on flowmeter installation effects. Summary Report, National Bureau of
Standards, Gaithersburg.

MCMANUS, 5. E., B. R. BATEMAN, J. A. BRENNAN, 1. Vazquez, & D. MaNN. 1985,
The decay of awirling gas flow in long pipes. 1985 Operating Section Proceedings,
American (Gas Association.

MoTTRAM, R. C., & M. 5. RAWAT. 1986. The awitl damping properties of pipc-roughness
and the implications for orifice meters installation. In Inf. Conf. on Flow Measure-
ment in the Mid-eighties.

NysTOM, J. B.AND PADMANABHAN, M. 1985, Swirl due to combined pipe bends. In Int
Conf, on the Hydraulies of Pumping Stations, 9-24, UMIST.

SAaLaMI, L. A. 1984. Effect of upstream velocity profile and integral fiow straighteners on
turbine flow metera. Int. J. Heat. Fluid Flow %:155-165.

SCHLICHTING, H. 1967. Boundary Layer Theory. MeGraw-Hill. éth edition.



2. Turbulence modelling and swirl

2.1 Imtroduction

Though it is generally accepted that the basic physics of turbuience is captured by the com-
bination of the continuity equation, the time-dependent Navier-Stokes equations and the
energy equation, ! ? limitations in computer capacity make it impossible to solve the equa-
tioma directly for most flows in practical situations of technological interest. Many of the
flows encountered in practice involve complex geometries and are of a three.dimensional
and non-homogeneous nature. The result is that virtually all acientific and engineering
caleulations of non-trivial turbulent flows at high Reynolds-number involve some kind of
mnodelling, The only class of models capable of handling the wide vaniety of flows encoun-
tered in an engineering envirenment is the class of one-point clesures. In this chapter an
overview of the most commonly used one-point-closure schemes is given.

A “difficult” class of flows from the modelling point of view is the class of the
“complex” flows. They distinguish themselves from “simple” flows in the sense that instead
of to one strain the flow is subjected to additional rates of strain. These additional strains
can be caused by velocity gradients in other directions than the main strain, curvature of
streamlines, buoyancy and coriclis forces. As discussed by Bradshaw (1973) these secondary
strains can have surprisingly strong effects on the turbulence structure.

A relatively simple “complex” flow is a swirling flow. A awirling flow is a flow with
a mean vorticity cornponent in the direction of the main fiow. The structure of this flow
indeed strongly differs from the structure of the simple shear flow. Hence not all turbulence
closures are capable to correctly describe this flow, To appreciate some of the causes of
the deficiencies of some turbulence closures we will start by describing the most general
one-point-closure schemes, the schemes based on transport equations for the second-order
motnents of the turbulent motions, Emanating from these closures we will derive the lower-
order closure schemes, in order to address the conceptual differences between the models.
At the end of this chapter a few typical examples of calculations of swirling flows using the
different turbulence closures are given,

1. Here we will often denote the combination of the continuity, Navier-Stokes and eéncrgy equations,
wimply by the term “Navier-Stokes equations”.
2. For the flows under consideration in this study, the energy equation is superfluous,



2.2 Second-order-closure schemes

2.2.1 The Reynolds-averaged Navier-Stokes equations

The motion of fluids is governed by the continuity equation and the Navier-Stokes equa-
tions. In an incompressible Newtonian flow these equations are written as,

V-T=0 (2.1)

and

—

%—lj-!-(ﬁ-V)ﬁ-i-%vauV?ﬁ:ﬁ (2.2)
where

denotea the velocity,

the pressure,

the kinematic viscosity,

the density of the flnid

s oy

and
F' the external forces acting on the fluid.
The Navier-Stokes equationsz are a set of non-linear equationa. A measure for the
nonlinearity is the Reynolds number,

Re = -U—L-
1
with
U/ denoting a typical velocity scale, in this work the mean velocity
Umean 18 used,
and

L denoting a typical length scale, in this work often the radins
R, or the diameter 1, of the pipe is used.

For small values of the Reynolds number the non-lincar character is not sigpificant. Distur-
bances in the flow will be damped by viscous effects (represented by »V2U), and the flow
will be stable. Hence the equation can be solved by numerical means, When the Reynolds
oumber hecomes higher, the relative importance of the viscous terms will diminish. The
possibility arises that above a eritical magnitude of Re disturbances in ihe fiow will grow,
Time-dependent vortex-like structures, in turbulence terminclogy often denoted as “ed-
dies”, appear in the flow. The largest eddies can remain in existence by extracting energy
from the mean flow. Owing to processes like vortex stretching the energy contained in these
eddies is transferred to smaller scale eddies. The Reynolds number based on this small scale
is of order unity and the energy contained in the small-scale eddies is eventually dissipated
by molecular effects. The cascade of eddies will have a strong effect on the large-seale struc-
ture of the flow. Apart from extracting energy from the mean flow, the eddies also serve
a8 & carrier of momenium. Hence, in turbulent flows, the exchange of momentum will be
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strongly enhanced as compared to the stable laminar flow. Thus if one wants to describe
such unstable flows, one has to take all these eddy-like structures into account. However,
in most flows relevant to engineering purposes the resolution of the small scale structures
i3 beyond the capabilities of the current generation of computers. An illustration is given
by Speziale (1991): “To gain appreciation of the task, consider the fact that eenomically
feasible direct simulations of a turbulent pipe flow ot & Reymolds number of 500,000—a
turbuleni flow that, although nentrivial, is far from the most difficult encountered—would
require a computer 1} million times faster than the CRAY YMP!” So in general obtaining
a solution by numerical means is not feasible.

Ta obtain a “solvable” problem the mathematical artefact of turbulent stresses is
introduced. These apparent stresses are obtained by splitting the flow-field quantities into
a mean (time averaged for “steady” flows and ensemble averaged for time-dependent fows)
part and a fAuctuating part, i.e.:

ﬁtuta.l:ﬁ""_‘.: Fintal = P+ p and ﬁtotal=ﬁ+f

Here the uppercase symbols denote the mean components,
the lower case symbols the fluctuating components.

These expressions are then substituted into the original Navier-Stokes equations. The next
step is to apply the averaging procedure again on the equations. The result resembles
the original Navier-Stokes equations but contains an extra term, the divergence of the
second-order correlations of the fluctuating parts.

v. =0 (2.9)
o0 .. Lo } TE ©T umw .
a+(U~V)U+—VP-uV2U+V- w ow vw |=F (2.4)
P W W O

The second-order velocity correlations are wsnally denoted as “Reynolds stresses™.
They serve, like the viacous terms, as a distribution mechanism for momentum. Hence the
unstable, essentially time-dependent, character of the original equations is weakened, Since
the effect of all smali-scale structures on the mean-flow quantities ia now contained io the
Reynolds-stress tensor, Eq. (2.4) is sclvable by conventional numerical methods, provided
that the Reynolds stresses can be expressed in terma of mean-flow quantities. In order to
obtain a closed set of equations at least six additiona) equations have to be provided. This
is known a8 the closure problem for turbulent flows.

2.2.2 The Reynolds-stress transport equations

To solve the closure problem of turbulence a relation has to be established between the
Reynolds stresses and the mean flow. It seems natural to investigate the interaction of
Reynolds stresses and the mean flow by formulation of transport equations for the Reynolds
stresses. The successive steps in the derivation of a transport equation for any component
of the Reynolds-strens tensor are: ‘



# Subtract the mean-momentum equations from the full momenturn equations, the
fluctuating momentum equations are abtained. In index notation this yields;

Dy Bu; oU;  Owny; —wm;)  1dp PPuy
—_ = —_ et — -— . 2.5
7t U’B:ﬂ,- % 0z; Oz dz; p Oz Y dx? (2.5)
# Multiply the equation for w; by w;, multiply the equation u; by u; and add the
results,
» Apply the average operation to the resulting expression, and rearrange the different
terms.
The result i the following set of transport equations for the Reynolds siresses,
Rate of change é;t 1 + U amk
Production: Fy; - W% + W%
T 1 kaIk F ka-'rk
Presanre-strain interaction: @y; +;—: % g;t;': (2.6)
Dissipation: o Whcdai R
EIpaLtIoN: —iif azk a:rk
Diffusive transport —i ;e + Eﬁﬁ, + E«S}k -y i j)
AT g dxi

The procedure outlined above does not automatically yield this representation of the trans-
port equations. They are obtained after seme rearranging of terma in the original equations.
The rearrangement presented above results in terms with & clear physical interpretation
(which is given at the side of each term).

2.2.3 Interpretation of terms in the Reynolds-stress transport equations

The terms in Bq. (2.6) can be interpreted as follows:
» Rate of change of the turbulent stresses
This term represents the usual transport term for a quantity, here g;, convected
by the flow.

¢ Production of the turbulent stresses £;
The: production lerm represents the transfer of energy from the mean components
of the flow to the fluctuating components.

o Pressure-strain intcraction, &,
The pressure-strain term represents the redistribution of energy between the com-

ponents of the Reynolds-stress tensor. In order to represent only redistribution of
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energy it is necessary that this term is traceless. Thia can be achieved by a special
decomposition of the oniginal pressure terms, that results from the last step in the
procedure outlined above

O _dwp O dmp. By
Y0 Om  (0m  Om ¢ Tm

The last term on the right-hand side is traceless, which can be shown using the
continuity equation. The traceless terms are combined in the pressure-strain term.
The non-traceless remainders are included in the diffusion term.

# Viecous dissipation of the turbulent siresses €;
This term arises from a decomposition of the viscous terms.

» Diffusive transport of the turbulent stresses
The diffusion consists of three contributions.
— A turbulent-diffusion term
This term mvolves the third-order correlations of the velocity.
— A pressure-diffusion termn
This is the non-traceless part of the pressure-velocity correlation.
— A viscous-diffusion term
Again this term is the result of a rearrangement of terma.

Apsart from terms depending on the mean-flow quantities only and the Reynolda
stresses themaselves, the Reynolds-stress transport equations alse contain triple-velocity
and velocity-pressure correlations. Thus the formulation of the transport equations for the
second-order correlations has led to new unknown correlations of still higher order. To
obtain a closed set of equations these higher-order correlations have to be expressed in
termes of known quantities, such as mean velocity, mean pressure and the Reynolds stresses
themselves,

2.2.4 The modelling of the Reynolds-stress transport equations

For a highly turbulent flow in parts of the flow field far away from walla or other in-
terfering objects it is possible to find approximations for the higher-order terms in the
Reynolds-stress transport equations in terms of known quantities. These appreximations
are individually fitted to a set of simple “test® flows in which the different effects they
represent can be considered in jsolation, i.e. flow problems dorninated by one of the effects.
To obtain some degree of generality for the case where several effects are simultaneously
to be accounted for, the minimum requirements the approximations should obey are:
 invariance: each of the approximations muat be independent of the coordinate system
used:
# realizability: the approximations must yield physically realistic results, e.g., the
total kinetic energy contained in the Reynolds-stress tensor must remain posi-
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tive and cerlain symmetry conditions have to be preserved (Schwarz inequality)
{Schumann 1976); and
® accuracy: for sach of the individual *test” flows the predictions have to be accurate.
Even the set minimum requirements leads to depressingly complicated approximate expreas-
siona for the terms that require modelling. In the past they were viewed too complicated
for practical use Lumiey (1978). However, recently some proposals have been put forward
for models satisfying complete realizability Shib et af. (1991) for a limited class of Hows.
Most approximations are derived under the assumption of the “high-Reynolds-
number hypothesis”™ which implies that:
w the large-scale motions are not affected by vistosity (the coefficients are independent
of fe); and
¢ the small-scale motions are isotropic (the viscous dissipation does not depend on
geometrical effects).
The terms in Eq. (2.6) which do contain higher-order correlations and thus need mod-
alling arc the difusion, pressure-strain and dissipation terms. Especially the accuracy of
the model for the pressurc-strain interaction term proves to be important for realistic
predictions of lows cmploying turbulence models based on the Reynolds-stress cquations.

2.2.5 The model for the pressure-strain interaction term, &,;

The basic form of the pressure-strain interaction model is due to Rotta {1951), Naot et al.
(1970) and Launder et al. (1975). It is based on the notion that:

» the pressure-strain interaction only redistributes energy;

# & turbujent flow not subjected to any strain tends to become isotropic; and

s in turbulent flow subject to a single mean strain the anisetropy of the turbulence

tends to grow.

Hence the pressure-sirain interaction term consists of two redistribution mechanismns:

s the *return to isotropy” term, &;,; and

e the “rapid part”, ;.
The return-to-isotropy term arises due to the mutual interaction of the fluctuating velocity
componculs only. The simplest model to mimic this effect is linear in the anisotropy tenseor
{Rotta 1951), ie.

Bija = —Cheayj (2.7)
with
¢ a dimensionless constant,
. the rate-of-dissipation of the total energy contained in the
Reynolds-stress tensor,
and

a;;  the anisotropy tensor given by,



with
k the contraction of T given by:

=

iUy

Ek=-—,
the turbulent lkinetic energy.

The value of € reported in lterature varies between 1.5 and 5.0.

Some extensions to this Inear approxirnation have been proposed by for example
Lurnley (1978) and Reynolds (1984). At this moment none of these extensions has obtained
a wide acceptance,

The “rapid part” is caused by the interaction of the mean flow with the fluctuating
velocity components, The corresponding model is based on the symmetry properties of an
exact expression for the pressure-strain interaction where the pressure term itself does not
appear (derived using a Poisson equation for the pressure). For the “rapid part” Launder,
Reece and Rodi (1975) suggested,

&3+ 8 2
Qja= ——7 (P-':' - -?:5,-,-13)
30e; — 2 (BU‘- 3U,-) '

5% \0z, | Px: (2.8)

8oy +2 (D‘_’_ ~ 35--1?)

11 3
with
¢z & dimensionless constant,
F;;  the production of #m;, see Eq. (2.8),
the contraction of £;,
and
D\U Q‘VEII. by,
atn ot
Dij=— (WB—% + ma—z'

In hiterature the model duc to Launder ef al. iz sometimes referred to as the “Quasi-
Tsotropic™ model (QI model). Launder et al found the first group of terms on the right-
hand side of Eq. (2.8) to be the dominant one, so a somewhat simpler model proposed by
Naot et al. (1970) should provide a good approximation:

iz =—-C .(P.-,- - §5-‘J'P ) (2.9)
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The constant C in Eq. (2.9) will differ somewhat in magnitude from the cocflicient of the
first. term invelving c» in Eq. (2.8), this in order to compensate for the cmitted terms in
Eq. (2.8). This model is sometimes refetred to as the “Isotropization of Production” madet
{IP model).

Experimentally isolating the effects of the redistribution of energy, or “pressure
scrambling”, between the components of the Reynolds-Stress tensor by the action of shear,
is not a realistic option. Instead the model is tuned to an analytical model of turbulence
for the case of isotropic turbulence subjected to a fast distortion. This theory (Rapid
Distortion Theoty, Batchelor & Proudman (1954)) is based on the observation that, en a
time scale which is small enough, the interaction of the turbulence with itself is negligible,
As a consequence the fluctuating momentum equations, Ey. (2.5) may be linearized and
solved for the fluctuating veloeity components. The “rapid-part” of the pressure-sirain is
required to conform to thiz RDDT limit. Expression (2.8) conforms automatically to this
limit, irrespective of the magnitude of ¢z. The second form, Eq. (2.9) satisfies ithe RDT
limnit only when (Y takes a value of 0.6.

According to Fu et el. (1987) the shorter form, Eq. (2.9), contains a deficiency. De-
pending on the rotation of the reference frame it predicts a different behaviour. The reasen
is that individually the production term and the convection Lerm in the Reynolds-stress
transport equalions, Eq. (2.6), depend on the kinematic state of the frame of reference.
However, it can be shown that the difference between the preduction term and the con.
vection term does not depend on the rotation of the frame of reference. As a remedy Fu et
al. (1987) propose the following form for the rapid patt

2 -
Bija = —Ch [( W= 5&5”) - (C’.-,— - 55-'3'0)] (2.10)
with
% the convection of Reynolds stresses, given by,
iR
Gy =1 Ba;
and
o the contraction of Oy,
Gy
= 5 -

In general, the flow configurations for which the models are used hardly ever resemble
the test flows that are used to tune the cocfficients of the model. Hence, the magnitude of
these coefficients canngt he considered rigidly fixed. On the contrary, when one wants to
conform to simple Hows, like a developed boundary-layer flow, extra conditions are posed
on the value of the coefficients of the pressure-strain interaction. If all transport terms
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of turbulence are neglected, which indeed is a valid assumption in the outer region of a
developed boundary layer, the model for the Reynolds-stress transport equations simplify
drastically. Comparison of these approximate transport equations with the measured stress
levels indicates that for the IP pressure-strain model,

1-Cy
ST 0.7, 2.11
T (2.11)

It is elear that in general it will be impossible to simultaneously satisfy all conditions
with a single set of coefficients. Especially when the IP model is used, the consequence
is that different sets of coefficients have to be used for different flows. The “standard”
coefficient set for the pressure-strain interaction is obtained by relaxing the constraint for
“Return to isotropy” and giving pricrity to the “Rapid distortion™ result, C; = 0.6. In
combination with the boundary-layer condition, Eq. (2.11), this results in,

=148 and Ci=106.

For flows with swirl or streamline eurvature Gibson & Younis {1986) argued that the
coefficients should obey 2 second relation, also based on a comparison of measured atreas
levels in a curved flow and the simplified transport equations for the Reynolds stresses in
a curved flow, o
2% s,
1
Combining the condition sct by the flat boundary layer, Eq. (2.11}, and one for the curved

boundary layer results in,
Cy=30 ad (C:=03
Finally, for buoyant flows the flat boundary-layer condition, Eq. (2.11), imposes
1-Cy
G
Hence, Gibson & Launder (1978) proposed
Ci=18 and =06

m .22

for lows with buoyancy effects. For clanity the different sets that are in use for the different
flows are summarized in Table (2.1).

2.2.6 The rate of dissipation of turbulence, ¢;

The basis for the dissipation madel is the concept of local isotropy. In the high Reynolds-
number limit it is assumed that the small-scale motions are isotropic. Since the viscous
dissipation takes place at the smallest length scales it is assumed that,

&y = -2-6,",:6 (2.12)

where € denotes the rate of dissipation of the turbulent kinetic energy, &
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Flow C Cq Reference

standard 1.5 0.6 | Launder ef al. {1975)
curvature | 3.0 0.3 | Gibson & Younia {1936)
buoyancy | 1.8 0.6 | Gibson & Launder (1978)

Tuble 2.1: A few examples of the coefficients used for the IF pressurc-sirain medel for different type of
flows

However, also the rate of dissipalion, ¢, of the turbulent kinetic energy is unknown,
Again a transport equation provides an expression for . In the high-Reynolda-number limit
two terms in the transport equation for £ are dominant:
» generation of small-scale vorticity due to “self stretching™ of turbulence; and
= viscous destruction of small-scale varticity.
Most commonly used is the following model, which is compatible with decaying grid tur-
bulence and alse provides a souree termn necessary for shear layers,

. N P e
Convection(e) + Diffusion(c) = (C'd? - ng) T
Since the diffusion of fluctuating vorticity is of minor importance it is approximated with
a relatively crude gradient diffusion model. The resulting tranaporl cquation reads as,

e e P e 3 (e de

3t + U!aTtg = (C:'l? - Cm) E + C‘H (‘E‘WEE}:) (2.13)
where

Cu Gmh -'ﬂ

denote dimenasionless constants.

Eq. {2.13) is subject to much criticism and numerous amendments bave been proposed, for
example by Pope (1978) to correct for the otherwise ancmalous predictions for the round-
jet flow, and by Bardina ef al (1985) to account for effects of system rotation. What
is considered to be a major weakness is that Eq. (2.13) neglects any rotational strain.
Hence for isotropic decaying grid turbulence it yields the same decay rate independent
of the rotation of the frame of reference. In strong contrast to this result, experiments
and numerical simulations indicate that the decay rate of turbulent kinetic energy can be
strongly reduced by a system rotation (Bardinaet al. (1985), Traugolt (1958) and Wigeland
& Nagib (1978)).

In fact the rate of dissipation, ¢, fixes a length scale, £, of the large-scale motions,

ke o L

Obviously, for conceptual reasons it is very easy to criticize the construction of a turbu-
lenee macro scale based on small-scale information. Moreover, this definition of length scale
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eemtains no directional information. Especially for flows with shear in multiple directions
this appears inadequate, Some researchers have attempted to develop an equation for the
length seale based on a two-point velocity correlation tensor (Wolfshtein (1980)). For ho-
mogeneous turbulence it can be shown that the resulting models are equivalent to the
standard form of the model for the dissipation-rate equation. It is also possible, without
too much loss of generality, to derive the dissipation equation from the two-point correla-
tion tensor, see Speziale (1989). Hence it is concluded that at least some of the eriticism
mentioned above 13 not justified.

None of the proposed medifications to the approximate dissipation-rate equation
did result in a generally well-behaved model applicable to wide class of flows, Therefore,
they did not find a wide acceptance in the CFD community. Eq. (2.13) is still the most
widely used and successful form for the dissipation equation, even though it contains a
number of serious deficiencies. In the light of this Speziale (1989) stated that “the kind
of ad hoc adjustments in the modelled dissipation rate equation thet have been considered
during the past decade eppear to be counter-produciive”.

2.2.7 The diffusive transport of Reynolds stresses

Qwing to the relative minor importance of the diffusion of the Reynolds stresses, the models
for the diffusion term received not as much attention as the pressure-strain and dissipation
terms. Mostly only one of the three diffusion terms is taken into account, namely the
turbulent diffusion of the turbulent stresses given by the third-order correlation. The model
for this term is again inspired by a transport equation for thia Lhird-order correlation. Upon
drastic simplification of this transport equation onc arrives at the following expression for

s = 0, F [l 4 e | gy O (2.14)
I3 o a1 ar

Even this cxpression generates a massive amount of terms in anything but a simple shear
flow in a cartestan coordinate system. For this reason expression (2.14) is often simplified

inta:

a1 )
which iz stmply expression (2.14) with the first two terms on the right-hand side discarded.
As a result of this simplification expression (2.15) does not satisfy the invariance condition,
Despite this fundamental shorteoming expression {2.15) haa been used with about equal
success as expression (2.14), indicating the minor role the diffusion of the stresses plays in
the transport equations for the Reynolds-stresses.

(2.18)

k
g = —C) " (‘ﬁkﬁ:

2.2.8 The basic Reynolds-stress turbulence model

If we collect all modelled terms, substitute them into the Reynolds-stresy transport equa-
tions, combine the equations for the Reynolds stresscs with the equation for the dissipation
rate and the equations for the mean flow vartables one ends up with a closed set of equa-
tions. The combination of Reynolds-stress transport equations and the equation for the
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dissipation rate is usually denoted as “the Reynolds-Stress Model” {RSM) of turbulence.
It 18 ernphagized that this basic version of the model is capable of handling flows at high
Reynolds number, far away from walls, without buoyancy effects and chemical reactions
and only in a stationary frame of reference. It has the following form:

T oum;
Rate of changs —_— =
ot dzi
Produection F;

2
Pressure-strain interaction —Cy % (u.-‘u,' - —6.‘,"6) — (P‘ _ 26..}3)

3 3 (2.16)
Dissipation _g g
p 55
Diffusive transport _i C:E mau.‘uj)
6:,, € 33_-,‘
and
de de P £ 8 [ k Je
T U;b-;:'; = (C’;r’; - Cs?) T o2 (Cugﬂ'imm) {2.13)

For most flow configurations, defining appropriate initial and boundary cenditions needed
for these equations may be far from trivial, Since the model is not suited for regions close
to solid walls, the “boundary” conditions have to be prescribed in a region far away from
solid walls. Often these “boundary”™ conditions are based on empirical relations. Defining,
a proper initial condition is especially difficult for the rate of dissipation e, For most flows
of practical interest, direct measurement of ¢ is not feasible. Hence, vet again the initial
condition for ¢ must be derived using empirical relations.

Though the model was developed during the seventies and the potential of it was
appreciated from the beginning, it took almost two decades until the practical use of the
model reached some degree of acceptance. In 1981 at the land-mark Stanford Conference,
Kline ¢t al. {1982), the Evaluation Commitiee declined to acknowledge a demonstrated
superiority of the second-order closures over traditional closures. According to Launder
(1989) one of the reasons was the imited computational capability, resulting in, for exam-
ple, solutions with unacceptably high levels of numerically induced diffusion. However, since
computer power has undergone a continual growth, it is only now that the real capabilities
of the second-order closure schemes are gaining full appreciation.
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2.3 Derivation of lower-order models
2.3.1 The Algebraic Stress Model

Now that a model for the second-order turbulence elosure scheme is established, it is possi-
ble to derive lower-order achemes from it. The fitst “closure schemes” were developed much
carlier than the RSM, the first one being the mixing-length model of Prandt] (1925). Hence,
by deriving the low-order schemes from the second-order elosures we reverse the chrono-
logical order of events. However, by using this ordering of the presentation of the various
turbulence models the connections between the closure schemes and more impertantly the
differences in approxirnations used, can be elucidated more clearly.

As indicated above, at the time the Reoynolds-stress model was developed the com-
putational capabilities were inadequate to make use of an “expensive” closure scheme like
the RSM for a wide class of flows. In an attempt to redice the costa of 7 additional partial
differential equations the Algebraic Stress Model was developed. The ASM is based upen
the observation that the only terms containing derivatives in the equations of the RSM of
the Reynolds stresses are the convection and diffusion terms. Remove these terms and the
equations become algebraic in the stresses. Instead of completely removing the differential
forms of the Reynolds stresses, Rodi (1976) proposed fo approximate the convection and
diffusion terms by terms which are algebraic in the Reynolds stresses, i.e.

Uy

Convection(T%;) o Conveetion(k)

and
W;

Diffusion (o) = T Diffusion(k) .

In a stationary flow the total tranaport, i.e. the convection minus the diffusion, of the
turbulent kinetic encrgy equals the difference of production and dissipation of turbulence

Convection(k) — Diffusion(k) = P —e.

Hence, _
Convection(g@z;) — Diffusion(t7;) = u'ki (P—¢).
Substituting this expression into the basic RSM equations (2.16) yields the ASM equations,

w1 —C) (Byfe— 3P/ 2

& Ci +Ple—1 3

(2.17)

One unknewn remains in these expressions, the turbulent kinetic energy &. An equation for
k may be found by contracting the approximate Reynolds-stress transport, equations (2.16).
This yields a transport equation for k.

ok ak a k Fil3
) + U'&_z, =F—c¢+ a—m (Gkgmm) (2.18)
with ' a constant of order unity.
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Instead of seven nen-linear partial differential equations the closure now consists
of two non-hnear partial differential equations, one for & and one for k, and a system
of six algebraic equations. One of the consequences of the algebraic approximation of the
trangport terms is thal memory effects in the turbulence are neglected. The Reynolds-stress
tensor becomes an instantaneous function of the veloeity field.

2.8.2 Two-equation eddy-viscosity models

In most calculations for engineering purposes the & — ¢ turbulence model is still nsed.
Itz merits are simplicity, robustness and economy. However, it is based on further drastic
assumnptions on the structure of the turbulence. Compared to the RSM it has a more
limited applicability, especially in flows with secondary strains. The connection with Lthe
RSM can be appreciated by considering a simple shear flow, outwide the immediate vicinity
of walls, with 8U/;/z; as only non-zero strain (Fig. (2.1)). According to Eq. (2.17), the
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Figure 2.1; A flow gubiject to a single shear

dominant stress in the 1-component of the Navier-Stokes equation, Uiz can be expressed
a8,

W = —
In the same manner also 437 can be determined from Eq. (2.17).

2 - P_\,
PTG+ P17

3

Substituting the last expression into the former results in:

1-Cy *1+C'3P/¢-«1k_3%
h (Cl + Ple — 1)2 e drz

=
1 ‘2“""3
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In a simple shear flow, like the outer region of a turbulent boundary-layer flow, the total
production, P and the rate of dissipation, ¢, will be equal {local equilibrium). By assuming
local equilibrium and isotropy of the turbulent stresses everywhere this result is generalized
and the Boussinesq-approximation for the turbulent stresses is obtained.

a;  8u;y 2
-TT = - 25 1
Wy = (32:_1 + = Pz ) 36‘Jk (2 9)
with v given by 1, = C ke
and C.  a constant, for most flows £, = (.09

Together with the transport equations for & and ¢ again a closed set of equations 1s
obtained. However, a gradient approximation of the diffusion texms in the k and ¢ transport
equation is more consistent with an effective viscosity model for the turbulent stresses. Thus
these equations simplify into,

ok Ok 9 (v ok
—3“{ + Ufé’; =P—-¢+ E (Uk afﬂ) (2.20)
wnd 5 P ¢ 9 (uo
€ v Be
a + Ulan: (C;l"" C¢:) + 5= 2 (;3“3:;) (2.21)

Together, Eq. (2.19), (2.20) and (2.21) form the k—¢ turbulence model. The closure scheme
now consists of two coupled non-linear partial differential equations and an explicit expres-
sion for Tu;. The k—¢ model is atill a transport model, i.¢, it allows transport of turbulence.
However, cosfficients like €, are evaluated assuming local equilibrium, Hence models like
the &k — ¢ model must be considered as first-order corrections for “local equilibrium” models
Like the Prandt] mixing length model.

The k—e model is just ote of the many possible two-equation eddy-viscosity models,
In general any combination of quantities can be used that yield the correct dimension for
the eddy viscosity, i.e.

[v] = W1[L],

where [I/] denotes a typical velocity scale and [L] a typical length scale of the flow. In the
k— ¢ model the velocity scale is provided by the square root of the turbulent kinetic energy,
kY2, while the length scale is provided by a combination of k and ¢, &*2/e. Examples of
alternative two-equation turbulence models are, the ¥k = w model of Wilcox (1988), the
k — w? model of Wilcox & Rubesin (1980), the ¢ — f model of Smith (1984) and most
recently the k —  model of Speziale ef al. (1992).

2.3.3 One-equation and mixing-length models

Instead of formulating an equation to fix the length scale one can alsw explicitly specify a
length scale. The turbulence model then reduces to,

= kL

21



the Kolmogorov-Prandt] expression, and

ak ok a (v 3k

— = P Opk? - | 22

& + U‘az, Cok™/L + Az (cr;, 3.1:1)
where L denotes a typical length-scale for momentum exchange,
and Cp & constant.

The problemn of course is to find an expression for L. In general it is only possible in
very simple boundary-layer-like or jetulike flows. In these simple cases the length scale is
determined by arguments based on a dimensional analysis. An important assumption in
this analysis is again ihat of “local equilibrium®.

The last simplification is to assume that “lecal cquilibrium” is obeyed everywhere.
Hence, all transport terms of turbulence disappear and the transport equation for the

turbulent kinetic energy reduces to:
kKol (8U; 8,
P=c¢ = =0, — (=L 4+ 2
cor L =Pfe=C, Y (B;rj Ba:.-)

Substituting ¢ = k3/2/L and using 1 = G’#klﬁl, for the eddy viscosity yields,

a; (aU.- au,-)] 1

3z \ Bz; + 3 (@22)

w = C#E./QLQ [

Thus the closure scheme has been reduced to finding an expression for L.

2.4 Modifications of turbulence models

2.4.1 Whall effects and low-Reynolds-number adaptations

All models described in the preceding sections are based on the “high-Reynolds-number
bypothesis™. Of course this hypothesis 1s often not applicable. Examples are flows with
strong favourable pressure gradients, where relaminarization can oceur, or flows in the im-
mediate vicinity of a solid wall, where turbulent fluctuations in the direction normal to the
wall are suppressed. In these situations the standard turbulence closures fail. Either one
has to abandon the turbulence closure schemes, for example by using empirical relations to
characterize the turbulence, ot one has to modify the turbulence model. The first approach
is often used in wall-bounded flows where the wall region is approximated using a logarith-
mic law of the wall. Since it ia an empirical relation its applicability is limited, (o flows with
strongly curved streamlines, flows close to separation, or flows close to reattachment the
velocity profile and the turbulence structure may deviate from Lhe logarithmic law of the
wall. For accurate predictions of, for example the wall shear stress, the second approach,
of medifying the turbulence models may be more appropriate.

The basic Reynolds Stress Model, Eqs (2.16) is not fully satisfactory even before the
immediate vicinity of a solid wall ia reached. The model for the pressure-strain interaction
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is derived assuming a non-bounded domain. In order to account for the wall effects in the
region “not-too-near” to a solid wall, wall-reflection terms are added to the pressure-strain
medel, e.g. Lanoder e al. (1975). These extra terms are relatively small in magnitude, but
have a long range (~ 1/z2, were 71 is the distance to the wall, see Fig. (2.2)).

Uz
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Figure 2.2 The flow close to a solid wall

In the immediate vicinity of the wall, apart from wall reflection effects, also the
effect of viscosity must be taken into account. The most important effecta are:
o In the viscous sublayer the molecular transport will be larger than the turbulent
transport.
# the scales of the energy-containing eddies and the dissipative motions overlap. The
dissipative maotions do not obey local motropy.
# the large scale motions are likely to be infuenced by viseosity. The eoefficients will
be functions of at least Re, (= k%/ve).
An indication for the required form of the modifications can be extracted from the limiting
behaviour of the Reynolds stresses in the viscous sublayer. This behaviour can be under-
stood by employing Taylor series expansions for the fluctuating velocity components, e.g.
ty = dy;my + byzg® 4., with zy taken normal to the wall and the coefficients a;, &, ... to
be random functions of ¢, T, and T3, but not of T2. In a developed wall layer, the continuity
equation Imposecs,

u? = afal+...,
u? = EI;-}-. 1
[ S
e = abz+...,
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Thus as 25 approaches zero,

® uz’ tends to zero faster than u;? and ug?;

« Tag/k tends to zeco; and

» wyng/ \/:E\/ﬁ may be uniform across the sublayer.
Using the same Taylor-zeries expansion it is also easy to verify that at the wall the rate of
dissipation can be written as

¢ 1 1
P 11/ ? = expfust = i—,ﬁuﬁﬁ'ﬂ? = Zﬁzzlw
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and that the complete pressure-strain interaction, % iu,-a—af + u,'% | , will vanish at the wall.
Thus the structure of the turbulence in the sublayer cleariy differs from the structure in the
high-Reynolds-number limit, illustrating the need for low-Reynolds-number modifications.

The firat efforts towards low-Heynolds-number extensions for second-order closures
were made by Daley b el (1970), and Hanjalic & Launder (1976). Though not asymptoti-
cally correct the extended models performed quite well, e.g. Lai & So (1990). An overview
of more recent efforts in this direction is given by Hanjalic {1990), Launder & Shima (1989)
and Lai & So (1990).

For the class of eddy-viscosity models much more work was done on low-Reynolds-
number extensions. A review i given by Patel ef al(1985), who analysed cight different
extensions. In general the modifications of the k — ¢ model consist of:

e viscous diffusion is explicitly represented in the momentum, the k and the € transport
equations;
» a wall damping function is introduced in the Boussinesq-appreximation to account
for the suppression of fluctuations normal to the wall;
s the C, . coeficient in the dissipation rate equation is made dependent on Hey in
order to accommodate to the final stage of decaying grid turbulence;
# extra source terms are included in the equation for the rate of dissipation; and
¢ for numerical convenience often ¢ = ¢ ~ ¢,y 18 used as dependent variable,
According to Patel ef al (1985) mest of the proposed modifications lack a sound physical
bagia and are tailored Lo vne specific type of fow.

2.4.2 Modifications for curved flows

The standard k -~ ¢ model, being an effective viscosity model, will have difficulties in
accounting for the effects of multiple strains, An effective viecosity model assumes the
stresses and strains to be aligned, which i3 nol necessarily the case for flows subject to
more than one atrain. However, in the case of “mildly® complex flows, where one strain
dominates, the effect of a secondary strain on the structure of the turbulence may be
predictable.

A simple example of a “mildly” complex flow is a flow with a density gradient
perpendicular to the direction of the mean flow. Depending on the sign of the density
gradient the typical length scale on which momentum trapsfer otcurs is either increased or
decreased. Analogous to flows with a density gradient Bradshaw (1973) proposed a similar
behaviour for flows with streamline curvature. Depending on the sign of the gradient of
the angular momentum the flow is stabilized or destabilized, i.e. the typical length scale of
turbulence is changed.

1 ¢
=1l e =14 K
T = '~ Potijes, 1R
with A an empirical coefficient, often this constant is large, C(10),
e the extra straip acting on the fluid, for example, {1/ R,
and Ri a Richardson number for curved Hows, in this case Ri = BU: R:z:z'
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For flows with longitudinal curvature of the streamlines the extra strain e, will be
of the order ¢ ~ I7; /R where R denotes the radius of the curvature (see Fig. 2.3). For flows

Figure 2.3: A fow with longitudinal curvature
with swirl, e will be of the order e ~ £}, where {1 denotes the angular velocity.

For the class of the two-equation eddy-viscosity models more general adaptations
are poagible. Again the basic assumption is that primarily the length acales are affected by
streamline curvature. In the Boussinesg-approximation an effective viscosity is proposed,
constructed from the produet of a typical velocity scale and a typical length scale,

v, = C, (K1%) (K¥/e) .

The curvature effects can be accounted for in two ways, directly through a medification of
the coefficient (', or indirectly by a modification of the equation determining the length
scale (in this case the ¢ equation).

Examples of the latter approach are given by Launder et el (1977), Rodi {1979)
and Shreenivasan & Padmanabhan (1980). In the approach of Launder et al. {1977) the
sink term in the ¢-equation i3 modified accordmg to

2
Sink = C\p (1 ~ C.Riy) ‘% ,

where for longitudinal curvature
€. denotes a coefficient in the range 0...0.5
and
Ri; denotes a turbulent Richardson-number defined by,

k? Uy 8ULR

k=2 Bz,

For flows with swirl the same correction is used, however with a different value of ..
It is easily appreciated that for high rotation rates this modification is not well-behaved
because the energy dissipation rate can become negative. Rodi ef al. (1979) used a similar
approach but partly to overcome the problems with Launder’s modification they modified
the source term in the e-equation instead,
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Leachziner § Rodi (1981), Pourahmadi & Humphrey (1985) and Pougare & Laksh-
minirayena (1983) are examples of the first approach mentioned above. Instead of modify-
ing the e-equation, they adapted the coefficient €, in order o reflect effects of streamline
curvature, For a 2-D channel flow, Pourahmadi & Uumphrey (1985) proposed a single
expression for €, as 2 function of the flow field.

CVE = '2\/_cas [_m—l (RQ :/3)] _g

@}, R and 5 represent here complicated functions of £, ¢ and the velocity gradients.

Leachziner & Rodi (1581 ) used & similar approach, also making the coefficient (7, a function
of flow-field quantities. Pougare & Lakshminirayana (1983) used two different expressions
for (', for the mormentum exchange in streamwise and spanwise direction Lo account for
a pon-rlignment of stress and strain. An overview of several attempta to sensitize the
eddy-viscosity models to additional strains is given by Lakshminirayana (1986},

The above mentioned modifications have one thing in common, they are all meant to
teplace the RSM or ASM closure scheme. However, as already indicated in section (2.2.6)
also the RSM or ASM model contain deficiencies with respect to some aspects of rotating
flows. An expected effect of system rotation on the dissipation rate of turbulence is neither
correctly reflecied by the basic RSM and ASM nor by the modifications mentioned above.

Intuitively, it is clear that an effect of rotation musl be present. The transport
of energy from the large-scale eddies towards the small-scale eddies is caused by vortex-
vortex interaction. Clearly, a large-scale background rotation will alter the dynamics of
this interaction. In some situations the presence of strong rotational effects even reverses
the direction of the energy cascade. Hence, at least one expects rotation to slow down the
energy cascade. Indeed, this trend has been observed experimentally, e.g. Traugott (1958)
and Wigeland & Nagib (1978), in decaying grid turbulence. To account for this effoct
Bardina et el (1985) suggested an extra sink term in the s-equation,

Sink gytrs = —Cp € §2

linear in the rolation rate, {3 and linear in the dissipation itself. To account for rotation
effects in non-homogencous flows Bardina et ol (1985) proposed,

Sink exrs = —Clp € /04;00;/2

£2;; is given by,

where

au; 8l
B = (a_z,_a_a.—.)

However, this generalized modification again leads to a model that becomes ill-bebaved for
situations in which a large rotation is combined with a strong deformation,
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2.5 Calculations of swirling flows

2.5.1 Calculations based on eddy-viscosity models

As indicated in section 2.4.2 one can expect eddy-viscosity based models to be inadequate
for swirling flows. According to the literature the inability of the k — ¢ model to reflect the
salient features of swirling flaw 15 the assumed proportionality of the stress tensor and the
strain temsor. A classical example of the performance of the & — ¢ model 15 given by Boysan
& Swithenbank (1952) , see Fig. 2.4. In contrast to this poor performance, the ASM

-0},

Figure 2.4: Predicted and experimental cross-sectional welocity profile jn & vortex tube, Boveap & Swith-
enbank (1982), — ASM model, — - — k — ¢ model, o o o experiment, Wo: inlet velocity, ry: radius of exit
tube,

predictions appear to be much better. Nevertheless, it other geomeiries the deficiencies
of the k — ¢ model seem less pathological. Especially when some of the above mentioned
meodifications of the k — ¢ model are used, results have been claimed to be quite satisfactory.

For boundary-layer-like situations the modifications of the ¢-equation due to Laun-
der {1977} and Redi (197%) have proven to be workable. For example, the mean veloc-
ity components in a flow over a spinning cylinder could be predicted quite satisfactorily.
However, application of such modifications in a more complex geometry like two confined
co-axial awirling jets were much less successful (Shreenivasan & Padmanabhan (1980)).

Calculations of swirling pipe flows using some simple modifications for the k —
¢ model were performed by different authors. Examples can be found in Frith §& Dug-
gins (1985) and in Kobayashi & Yoda (1987). By varying the coefficient ', and by using
different values of (', for the different components of the Reynolds-stress tensor it was
possible to find an acceptable agresment of predictions and measurements,

2.5.2 Caleulations with Reynolds-stress and Algebraic-stress models

With the continuous growth of computer capacity and the advent of efficient numerical
algorithms the accent on the applications have shifted from eddy-viscosity medels towards
Reynolds-stress and Algebraic-stress models. While for flows with swirl in relatively sim-
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ple grometries modified eddy.viscosity maodels seem feasible, for more complex geometries
second-order closures scemn indispensable, Relatively much work with second-order schemes
was done in combustor-like geometries, where apart from swirl also strong recirculation
zones arc present. Indeed caleulations by Hogg & Leachziner (1989) for such geometries
indicate that the & — ¢ model structurally overpredicts the level of the shear-stress compo-
nents, Hence a trapsition frem a supercritical state to a subcritical state of the flow, akin
to 2 hydraulic jump as can eccur in free-surface flow, is not captured by the k — ¢ model.
In the results of a calculation employing a RSM this phenomenon was represented.

A similar study, performed by Viaser et al, (1987), compared predictions employing
a k — ¢ model, 2 R3M and an ASM. Much attention was paid to the effect of the rate of
confinement of the swirling jets. Visser ef ol concluded that for a low confinement rate
the use of a second-order closure model was essential for an adequate prediction. For a
high confinement rate the performance of the k - ¢ model, the ASM and the RSM was
comparable. Although the prediciion of the length of the recirculation zone proved to
be accurate and the prediction of the mean velocily components to be satisfactory, the
predictions were not perfect. In all cases differences up to an order of 200% were observed
between the predicted and measured components of the Reynolds-stress tensor.

Finally, for a burner-like assembly, Nikoay & Mongia (1991) studied the effect of the
specific form of the model nsed for the pressure-strain interaction. Theit results indicated
that, when using the standard values for the coefficients, the use of the QI or the [P model
for the “rapid part” of the pressure-strain interaction did not yield large differences in the
predictions, However, varying the values of the coefficients in the pressure-strain model
did produce significant differences. It appeared that the coefficients defined by Gibsen &
Younis (1986) yielded superior resulis.

Gibson & Younis (1986) performed an extensive analysis of the physics behind the
pressure-strain term (sec section 2.4.2) in jet-like geometries, With their set of coefficients
they managed to obtain a better correlation of measurement and prediction for both the
mean-flow quantities and the components of the Reynolds-stress tensor. However, as shown
in Fig. (2.5), still large differences beiween measurement and prediclion occurred in the
far-field region of the jet.

Fu ef al. (1987) performed caleulations for the same flow problem but found that it
was necessary to modify the model for the pressure-strain interaction (section 2.2.5). With
this modification the agreement of measurement and prediction also improved. In addition
they concluded that models based on an algebraie approximation of the furbulent stresses
are not appropriate for an adequate prediction of the properties of a pon-confined swirling
flow.

2.5.3 Concluding remarks

In this chapter we presented an overview of the well-known one-point turbulence models.
For virtually all noo-trivial flows likely to be encountered in an engineering environment,
only calculations employing members of the class of one-point turbulence models may
be expecicd to be feasible. However, depending on the characteristics of the flow not
all members of this class are capable of accurately predicting the physica of the flow.
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Figure 2.5: Predicted and mensured distributions of the circumferential valocity in & single swirling jet,
Gibson & Younis (1986). — Gibson & Younis pressure-strain model, — — — Launder ¢t al. prewure-strain
model, = x * expariment.

For “simple” flows like boundary-layer flows or pipe flows, models based on an effective
viscosity perform very well. For flows involving more than one length scale or subject to
multiple strains the eddy-viscosity models cannot represent a pumber of featnres of the
turbulence which may be vital for a correct description of the flow. For these “complex”
flows the second-order turbulence closure schemes, like the RSM and the ASM, appear
to be indispensable. However, experience with these models is still limited, and unlike the
eddy-viscosity closures, where the k—¢ model became the “de facto” standard, no definitive
variant has emerged.

The flow to be studied in this thesis, a turbulent pipe flow with decaying swirl, is
an example of a flow subject to more than one strain. According to Bradshaw’s (1973)
nomenclature it must be described as being of a “complex™ nature. However, in contrast
with the “complexity” of the physics, the geometry of the problem at hand is very simple.
It is this simplicity of the geometry that distinguishes this study from the majority of
studies reported in open literature. Due to the simplicity of the geometry, the development
of a turbulent swirling pipe flow is largely governed by the turbulent stresses. Moat studiea
reported in the literature deal with flows in more complex geometries. Examples found
in the literature include the prediction of the flow through bends, in industzal ovens,
and through turbines. Flows in these geometries are likely to be influenced by more than
the turbulent stresses alone. Extra stresses, for example, pressure forees, corioks forees
or centrifugal forces, may be important as well. Hence, an inaccurate description of the
turbulent stresses is expected to be net as critical as it will be for the description of the
relaxation of swirl in turbulent pipe fow.
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A second special feature of the study of the development of a turbulent swirling flow
is the aspect ratio of the geometry, Experimental studies {see chapter 1) indicate that the
distance required for the decay of the swirl may be large, L/ D = ¢¥(100). Especially when
second-order closure schemes are used and when the elliptic character of the governing
equations is retained the demands on computer resources may become large as well.

Third and last special feature is that due to the simplicity of the geometry the
characteristics of the mean flow are almost fixed. Since the awirl occurring in large-scale
gas transport systems is relatively low and the decay of the awirl is slow, for example
regions with recitculation are not likely to accur. Hence, the strearnlines will have a helical
shape with a slowly varying pitch.

The three above mentioned features characteristic for a turbulent pipe flow with a
decaymng awirl:

» the large influence of the turbulent stresses;

» the extent of the domain of interest;
and

e the almost “fixed” character of the mean flow,
distinguish this flow from the flows generally encountered in an engineering environment.
"Theae fealures also affect choice of the numerical treatment as well as the selection of the
turbulence model.

Since the swirl is known to decay slowly, the elliptical character of the flow may
expected Lo be weak, When the elliptical character of the flow is neglected, the econoemy
of the pumerical treatment may be enhanced dramatically by using a “marching” proce-
dure. As a result a very fine discretization in radial direction becomnes feasible which will
enhance the accuracy of the prediction. However, second-order turbulence closure schemas
are seldom used in combination with parabolized equations. Moreover, when the full clo-
sure schermes ate retained, potentially the “well-posedness” of the system of equations may
be destroyed. To be consistent with the “parabolization™ of the sysiem of equations, these
turbulence closures must be simplified as well. In the present study this parabolization will

be followed.

References

BARDINA, .. J. FERZIGER, & W. C. REYNOLDS. 1985, Effect of rotation on isotropic
turbulence, computation and modelling. J. Fluid Mech. 154:321-336.

BATCHELOR, G. K., & [. PROUDMAN. 1954, The effecl of rapid distortion of a fluid in
turbulent motion. Quart. J. Mech. Appl. Math. 7:83-103.

BovsaN, F., & J. SWITHENBANK. 1982, Discussion on the paper of Rhode «f al
(Rhode et al 1982). J. Fluids Eng. 104:391-392.

BrapsaAw, I*. 1973. Effects of streamline curvature on turbulent flows. AG'ARDograph
189,

DaLEY, B, J., & F. H. Hanrow. 1970, Transport equations in turbulence. Phys, Fluids
13:2634-2649.

30



Frite, P. €. W., & R. K. DugGIns. 1985. Turbulence modelling of swirling flows. In
Numerical methods in laminar and turbulent flows: Proc. of the 4-th int, conf.

Fu, 5., B. E. LAUNDER, & M. A. LESCEZINER. 1987, Modelling strongly swirling
recirculating jet flow with Reynolds-stress transport closures. in Proc. §th Symp.
on Turbulent Shear Flows.

GIBsoN, M. M., & B. E. LAUNDER. 1978, Ground effects on pressure fluctuations in
the atmospheric boundary layer. J. Fluid Mech. 86:491-511.

Gieson, M. M., & A. B. Younis. 1986. Calculation of awirling jets with a Reynolds-
atress closure. Phys, Fhuids 29:38-48.

HaniaLlo, K. 1990. Practical predictions by single-point closure methods: T'wenty yeara
of experience. In §. J. KLINE & N. H. AFGax (Ens.), Near-wall turbulence.
Hemisphere publishing corporation.

Hanialle, K., & B. E. LAUNDER. 1976, Contribution towards a Reynolds-stress closure
for low Reynolds-number turbulence. J. Fluid Mech. 74:593-610.

Hoca, 5., & M. A. LEscHZINER. 1989, Computation of highly swirling confined flow
with a Reynolds -stress closure. AIAA J. 56:57-63.

KLINE, 8. 1., B. J. CANTWELL, & G. M. LIBREY (EDs.). 1982. Proc. AFORS-HTTM.
Stanford Conference on Complex Turbulent Flows. Report no. AFQORS-TR-83-1003,

Kosayvasi, T., & M. YobDa. 1987. A modified ¥ — ¢ model for turbulent swirling flow.
JSME 30:66-71.

Lar, Y. G., & R. M. C. 80. 1990. On near-wall turbulent flow modelling. J. Fluid
Mech. 221-641-873.

LAKSKMINIRAYANA, B. 1986, Turbulence meodelling for complex thear flows. AIAA J.
24:1900-1917.

LAUNDER, B. E. 1985. Phenomenoclogicel modelling: Present, ... and future? In Lumley
(Lumley 1989), 439485,

LAUNDER, B. E., C. H. PRIDDIN, & B. 1. SHARMA. 1977. The calculation of turbulent
boundary layers on curved and spinning surfaces. J. of Fl. Eng. 98:231-239.
Launper, B. B, G. J. REECE, & W. RoDIL. 1975, Progress in the development of a

Reynolds -stress turbulence closure. J. Fluid Mech. 68:537-577.

LAUNDER, B. E., & N. SaiMA. 1989, Second-order closure for the mear-wall sublayer:
Development and application. ATAA J. 27:1319-1323.

LESCHZINER, M. A., & W. Rop1. 1981. Calculation of twin parallell jets using various
dizcretization schemes and turbulence model variations. J, Fluids. Eog. 103:352.

Lumiey, J. L. 1978. Computational modelling of turbulent flows. In C. 5. Y (Ep.),
Advances in applied mechanics, Vol 18. Academic prees.

LuMLEY, ]. L. (ED.). 1089. Whither furbulence? Turbulence at the crossroads. Springer-
Verlag.

Naor, D., A. SHAVIT, & M. WoOLFSTEIN. 1970. Interactions between components of
the turbuient velocity correlation tensor. Israel J. Tech. 8:259-269.

Nik1ooy, M., & H. C. MoNG1a. 1991. A second order modeling study of confined
switling flow. Int. J. Heat and Fiuid Flow 12:12-18,

3



PATEL, V. C., W. Ropi, & G. SCHEUERER. 1985, A review and evaluation of turbulence
models for near wall and low -Reyrolds-number flows. AJTAA J. 23:1308-1319.

Pore, 5. B. 1978. An explanation of the turbulent round jet anomaly. ATAA J. 18:279-
281.

POUGARE, M., & B. LAKSHMINIRAYANA. 1983, Computation and turbulence closures
for shear flows on rotating curved bodies. Tn L. J. 5. BRADBURY ET AL (ED.),
Proceedings of the 4th Turbuleut Shear Flow symposium.

PoURAHMADL, F., k2 J. A. C. HUMPHREY. 1985. Prediction of curved channel flow with
an extended & — ¢ model of turbulence. AIAA J. 21:1365.

REvNoLDS, W. C. 1984. Physical and analytical foundations, concepts and new directions
in turbulence modelling and simulation. In LAUNDER et al. (ED.), Twrbulence
models and their applications, Vol II.

Ruope, D. L., D. G, LILLEY, & McLAUGHLIN. 1982, On the prediction of swirling flow
fields found in axisymmetric combustor geometries. J. Fluids Eng. 104:378-302,

Rop1, W. 1976, A new algebraic relation for calculation of the Reynolds stresses. ZAMM
56:219-221.

Rob1, W. 1979, Influence of bucancy and rotation on equations for the turbulent length-
scale. In Proc. 2nd Symposium on Turbulent Shear Flows.

RoTTaA, J. C. 1951. Statistische Theorie nichthomogener Turbulenz. Zeitschrift fiir Physik
L29:347-572.

SCHUMANN, U. 1976. Realizability of Reynolds stress madels. Phys. Floids 20:721-725.

Sum, T. H.,J. Y. Cwen, & J. H. LUMLEY. 1991. Second order modelling of boundary-

’ free turbulent shear Aows. Technical Memorandum TM-104369, NASA.

SHREENIVASAN, J. B., & M. PADMANARHAN. 1980. Numerical computations of awirling
recirculating flow: final report. Contractor report CR-165196, NASA.

SMITH, R. M. 1984, A practical method of two-equation turbulence modelling using finite
clements. Int. J. for Num. Meth. in Fluids 321-336.

SPEZIALE, C. G. 1989. Turbulenee modelling: Present and future, comment 2. In Lutnley
{Lumley 1989), 490--512.

SPEZIALE, C. G. 1991, Anpalytical methods for the development of Reynolds-stress closures
in turbulence. Ann. Rev. of Fluid Mech. 23:167-157.

SPEZIALE, C. G., R. ABIp, & E. C. ANDERSON. 1992, A critical evaluation of two-
equation turbulence models for near wall flows, AIAA J. 30:324-331.

TRAUGOTT, 5. J. 1958, Influence of solid-body rotation on screen-produced turbulence.
Technical Note 4135, NACA.

Visser, M., F. BoysaN, & R. WEBER. 1987. Computations of isothermal swirling
vortices in the near burner zone. Research Report F 336/a/9, International Flame
Research Foundation.

WIGELAND, R. A, & H. M. NAGIB. 1978, Grid-generaied turbulence with and without
rotation about the streamwise axis. R 78-1, Inat. Technol. Chicago.

WiLcox, W. C. 1988. Reassessment of the scale-determining equation for advanced
turbulence models. AIAA J. 26:1299-1310.

32



WiLcox, W. C., & W. M. RUBESIN. 1950, Progress in turbulence modelling for complex
flow fields, including effects of compressibily. Technical Paper 1517, NASA.
WOLFSETEIN, M. 1980. On length-scale of turbulence equation. Israel J. Tech. 8:87.

33



3. Numerical aspects of predicting
turbulent pipe flows

3.1 Introduction

The study of turbulent pipe flow differs in several aspects from the study of turbulent flows
normally encountered in the application of commputational fluid dynamics for engineering
purpoucs where the geometry considered is often of a complex nature. As a result of the
geometrical complexity the flow is governed by different dynamical mechanisms. For ex-
ample, pressure forces, centrifugal forces, effects due to density gradients and turbulent
stresses may be equally important.

In this study the geometry is of a simple nature, namely a straight section of a
pipe. However, the flow in this pipe can be distinguished from the flows mentioned above
because the aspect ratio of the geometry is large. Typically the length scale in longitudinal
direction exceeds the diameter of the pipe by a factor of about @(107). Qwing to this large
aspect ratio the physics of the problem is simplified considerably.

A nop-swirling developing pipe flow s largely governed by the equilibrium of pressure
forces and turbulent stresses. The numerical treatment of the turbulent pipe flows may
benefit from the corresponding simplification of the physica. The Navier-Stokes equations
reduce from elliptic to a form that is of a parabolic nature. For problems of a parabolic
nature no boundary conditions have to be prescribed at the downstream boundary of the
computational domain. As a result a merching procedure can be used for the numerical
integration of the equations. The fully 3-D problem can be reduced to a sequence of 2-D
problems in successive cross-flow plames while the axisymmetric quasi-2-D problem can
be reduced to a sequence of quasi-1-D problems. Thus the formulation of the numerical
scheme may be less complex, the stability of the caleulation may be enhanced and the
computational effort is reduced considerably.

Historically, simple viscous flows like pipe flows were amongst the first ones to be
tackled numerically. However, with the advent of large computers and sophisticated nu-
merical techniques the algorithms taking advantage of the parabolic nature of some flows
fell into disuse. Extensive, commercially available, software packages have been developed,
aiming at the numerical solution of the Navier-Stokes equations for a wide range of appli-
cations. While these codes offer a large flexibility and efficiency for most complex flows,
the flows that are of a parabolic nature are not treated efficiently by these codes.

For the prediction of the full development of a awirling pipe flow, algorithms that
do not take the parabolic character of the flow inte account, are less suited. Due to the
long distance it takes before the swirl decays the demands on computer resources will be
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extreme. In chapter 4 it will be shown that the decay of swirl is largely driven by the wall-
ghear stress, Therefore, in this work special emphasis is put on the solution in the region
close to the wall. This necessitates a detailed treatment of this region. For turbulent flows
it implicas that low-Reynolds-number models have to be used instead of the conventional
“law of the wall”. Again the application of a marching procedure simplifies the use of the
low-Reynolds-number models. Finally, most commercially available codes are available as
a binary only. Adaptations of the turbulence models implemented in such codes ia either
difficult or impossible.

Ore of the aims of the work presented here is to study the capabilities of different
turbulence models in predicting swirling pipe flows. For this purpose a code specially
tailored to the prediction of pipe flows has been developed. For reasons of economy this
code is based on a parabolic description of the flow. However, more emphasis was put
on the flexibility of the code than on its efficiency. The code was designed to optimize
the ease of the development and test process of turbulence models rather than the pure
computational efficiency.

The code developed for this work is based on the finite-element software pack-
age SEPRAN. The SEPRAN package consists of a “teol box™ of subroutines, With these
subroutines it is possible to construct fivite-element methods for solving a wide variety of
problems. Flows that can be handled range from simple potential flows to viscous three-
dimenejonal and time-dependent flows. The standard software package does not contain
the posgibility of using twe-equation or ASM and RSM turhulenee models. However, the
SEPRAN package i3 fully open and well-documented. Hence, the SEPRAN package can
be adapted casily.

In the present approach only the preprocessing part, the procedures for solving
the system of linear equations, and the postprocessing part of SEFRAN were utilized. Of
course, for the case of axisymmetric parabolic problems, the preprocessing and postprocess-
ing needs are enly limited. The most important part of the SEPRAN package used in this
work is the set of subroutines for solving a system of algebraic equations. Sinee SEPRAN
is a finite-element packape the system of equations is solved directly. While a direct solver
is inefficient for large systems of equalions (number of equations oc (107 .. 104)), a direct
solution procedure is feasible for smaller systems of equations. Due to the parabolization,
the problem reduces—for axisymmetric flows—to a serigs of quasi-1-D problems and small
systems of equations. Hence, even though it is based on a direct solution procedure the
resulting algorithm will be aufficient]y fast.

In this chapter a description is given of the numerical treatment of the developing
turbulent pipe flow. First the question of the parabolization of the Navier-Stokes equation
will be addressed, then aspects such as stability and accuracy of simple parabolic “model”
equations will be treated and finally a description is given of the implementation of the
reduced Navier-Stokes equations in a finite-element environment,

The work described in this chapter is inspired to a large exteot by material in
standard textbooks. The most important scurces of information used here are Anderson
et al. (1984), Baker (1985), Fletcher (1988a), (1988b) and Hirach (1990).
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3.1.1 The reduced Navier-Stokes equation and boundary-layer equations

A large class of flow problems is characterized hy the appearance of a dominant flow
direction. Non-swirling pipe flow belongs to this class of flows. Due to the large aspect
ratio (R/L « 1) of the geometry, the length scale relevant for changes in the axial flow
component ia large compared to the length scale connected with the variations of the cross-
flow-plane velocity component. For axisymmetric flow ap order-of-magnitude apalysis of
the continuity equation, written in cylindrical coordinates,

d g
assuming that the gradients in axial direction scale with 1/ and the gradients in radial
direction scale with 1/H, givea the expected smaller order of magnitude of the radial
velocity component

r¥)=10

v R

In principle the derivation of the boundary-layer equations or of the reduced Navier-Stokes
equations must be performed for laminar and turbulent flows separately. However, the
method of obtaining the reduced Navier-Stokes equations or boundary-layer equations is
similar. Moreover, often the effects of turbulence are modelled with an effective viscosity,
Arguments applying to laminar flows thus will also apply to turbulent flows modelled
with an effective viscosity. According to Rubin (1984), in straight pipes the flow can be
categorized in four types. The type of flow depends on the distance from the entrance. The
four categories are (Fig. 3.1):

Entry Region Fully Develo Region
Entrance Regim){ £ Fully Viscous Region Y pod Reg

Figure 3.1: Flow regimes in o developing pipe flow sccording to Rubin (1984)
# Immediate entrance flow, = is order O( R/ Re).
# Entry region flow, © is order O(R).
# Fully viscous flow, 2 is order @(RRe).
¢ Fully developed flow, x5 Hite.
{Note that for turbulent flows He must be replaced by a Reynolds number based on an

“eddy” viscosity, Re" = U/ Rfv.aay)
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In the first region the flow experiences scvere gradients close to the wall of the
pipe where the inflow velocity is suddenly reduced to zero at the wall. For an accurate
description of the flow field in this region it is required to apply the full Navier-Stokes
equations. In the other threc regions the Navier-Stokes equations can be simplified.

In the second region, @(1) < z/R < ¢ Re) a boundary layer starts to develop at
the wall. Itg development ¢an be described by a simplified set of equations. Most salient
features of these simplified equations are:

¢ the assumption that the diffusion of axially directed momentum may be neglected
in streamwise direction;
# the pressure is constant acroas the boundary layer; and
# the velocity compopent normal to the wall may be approximated using the continuity
equation.
For a boundary layer developing along the wall of a pipe, up to order Q((R/z)?) and in
non-dimensional form, the axial mormentum, radial moementum and continuity equation arc
approximated by,

(weing z = z'/R, r=t'{R, U=U'"fUnean. V=V Upen
and PP = P'/pUppna’)
axial mormenturm

Y 4P 1 N1afeu
a("’f)+;a(’"”")—“‘3;+h:{;a—r(’$)] :

radial momentum

and
continuity

a i}
E(rU)-f-B:(rV):O,

tespectively.

The flow in the core region is considered inviscid. Here the flow is dominated by the
equilibrium of the axial pressure gradient and the acceleration of the fow in exial diree-
tion. Actually, the elliptic character of the equations is reflected in the pressure gradient.
However, alse in the core region the axial pressure gradient may be considered uniform to
first order. Thus, in a npumerical scheme, the axial pressure gradient may be determined
by the enforcement of conservation of the total mass flow, 1.c.

O pnrtl f
'd'ﬁ = E + A€o o

z dz
with A representing an appropriate Lagrangian multiplier,
and  Epuu gow @ “mnase defect” caused by truncation errora.
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Az a result the above set of equations may also be used for the core region and a marching
procedure is feasible.

Sufficiently far downstream, z/R = O{Re), the “boundary layer” fills the entire
croas-sectional area and the flow must be considered viscous throughout the cross-section
of the pipe. Eventuelly, z/R % ((Re), the variation of the velocity distributions in the
axial direction will have disappeared and the flow can be considered fully developed. In
these last two regimes one may expect that the application of a marching scheme based on
the equations mentioned abave is most appropriate,

For an axisymmetric swirling flow the situation is slightly more complicated. The
system of equationa is extended with the equation for the conservation of angular mo-
mentum. Furthermore, the approximation of the equation for the conservation of radial
momentum changes. The simplest adaptation of this equation i3 to assume an equilibriom
between the radial pressure gradient and the centrifugal forces. However, ¢ven in this simple
formulation the feasibility of a marching scheme can be endangered. Ag, the magnitude of
the swirl changes or cven as the distribution of angular momentum changes in downstream
direction, also the radial distribution of the pressure will change. As a result, at a given
axial position, the axzal pressure gradient may be nop-upiferm. Near the pipe centre-line
adverse pressure gradients can occur, while in the near-wall region the pressure gradient
may &till be favourable. For too strong adverse pressure gradients a parabolic description
15 1nvalid.

The radial redistribution of angular momentum and axial momentum are closely
coupled. Strong redistribution of angular momentum often implies stagnant or reversed
flow near the pipe axis. This effect it closely related to the vortex-breakdewn phenomenon
often encountered 1 vortex tubes, see Benjamin (1962).

A flow in solid-body rotation in a pipe of constant diameter, , at sufficiently high
rotation rates, can sustain inertial wave motions and allow upstteam wave propagation.
Conzequently, in general & parabolic description of the flow is invalid. For low rates of
rotation inertial wave motions cannot be sustained any more. For a solid-bedy rotation the
critical swirl intensity ean be calculated. Expressed in terms of a “swirl number™,

R
JUWrdr
]
R{U’rdr

according to Benjamin (1962) for a solid-body rotation, the critical value appears to be
& = 0.96. For lower swirl intensities information of a downstream disturbance can no longer
propagate upstream and a parabolic description will be valid. The critical swirl pumber
depgnds on the distribution of angular momentum and the shape of the axial velocity
distribution. For a general case, & universal critical swirl number cannot be defined.
Generally, switl induced in piping systems is of a low intensity, 5 < 0.5. Moreover,
to firet approximation, the distribution of angular momentum as generated by for example
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a combination of out of plane bends, may be considered as the distribution of angular
momentum due to solid-body rotation. Thus we do not expect that the vortex-breakdown
phenomenon is of large relevance for the metering problem.

Up to order O((R/=z))%, an axisymmetric pipe flow up to moderate swirl intensities
can be approximated by,

axial momentum

w)siiem- L (A[Y). ey

radial momentum

- F (3‘2)
angular momentum
a 2 11 8 f,]0W W
LUW) + 5ot VW) = 52 (r [-5;—7) (3.3)
and
continuity
a a
= () + 2 (V) =0. (3.4)

In peneral the swirling flow as encountered in piping systems will not be axisymmet-
ric. For the description of non-axisymmetric pipe flows, even without swirl, the boundary-
layer equations are clearly inadequate. In this case both the cross-flow-plane momentum
equations have to be taken into account. Similar to the boundary-layer approach in these
additional equations the axial diffusion terms may be neglected. However, as demonatrated,
for example by Flotcher (1988b), additional measures have to be taken to obtain a well-
posed initial value problem. In the system of momentum equaticns and the continuity
equation the elliptic character is not only reflected in the diffusion terms but also in the
pressure terms. Due to this character in downstream direction exponentially growing modes
are possible. In order to prevent the occurrence of these modes additional simplifications
of the syslem of equations have to be made. For a non-switling flow a sufficient mea-
sure to obtain a well-posed system of equations is to neglect the pressure variation in the
croes-flow-plane direction in the axial momentum equation. For example, the axtal pressure
gradient in the cross-flow plane may be taken equal to the axial pressure gradient at the
centre line.
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Since 1o this study a finite-element-methed is employed, a curvi-linear mesh is not
needed for an adequate representation of the cross-sectional area. Hence, without loss of
accuracy the system of equations may be represented in a cartesian coordinate system, Up
to order O((R/z)?) the equations ate,

axial momentum

L (U’) + 9 (Uv) + %(Uw) = —%Pmmunﬁ é (i [BU] + ? [%D , (3.5)

Az By dy |8y " 82 |8
eroea-flow-plane momentum, y component
2 vy D (v 2 Dy o O, L (D [9V], @ [0V
E(UVH%(VHE(VW)* o e (ay [ay] + 5, [az]) . (38)
crose-flow-plane momentum, z component
a a a o OF 1 (8 [éw a [8w
5;(UW)+5§(VW)+E(W)— E+E(a_y[a_y]+5['§?]) (a.7)

and
continuity

ﬂ+ﬁ+ﬂ=ﬂ. (3.8)
8z By Oz
Similar to the axisymmetric flow the centre-line pressure gradient can be obtained by
impesing conservation of total mass flow,
For a strongly swirling flow, a uniform axial pressure gradient is clearly inaccurate.
To balance the centrifugal forces, the swirl induces a cross-flow-plane pressure gradient.
Similar to the situation of an axisymmetric flow with swirl, the decay of the swirl induces
a non-uniform distribution of the axial pressure gradient. However, this situation is more
complex. Since nop-axisymmetric flows regimes are allowed, also the cross-flow-plane pres-
sure variation may be non.axisymmetric, Moreover, since the centre of swirl may vary in
downstream direction even without an appreciable decay, still a substantial variation of
the axial pressure gradient within the pipe cross-section may oecur. Finding an accurate
deacription for the axial pressure gradient without destroying the well-posedness of the
scheme is not trivial in this situation.

3.2 Initial value problems

3.2.1 A finite-element formulation for parabolic problems

The system of equations for the prediction of developing pipe flow can be viewed upon as
a non-linear initial-value problem. Combined with, for example, a two-equation tutbulence
model it yields a set of conpled partial differential equations (pde's). Apart from the conti-
nuity equation and the equation for the cross-flow-plane pressure variation, the equations
have a structure comparable to the structure of a time-dependent diffusion problem. Ia
this analogy the axial coordinate serves as the time-like coordinate.
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For time-dependent diffusion problems a wealth of integration schemes is available,
both explicit and implicit. However, the choice of a “time-integration” method for a parab-
olized set of low equations may be limited by the characteristics of the problem. Explicit
schemes bave a maximum admissible integration step that is given by a Courant-Friedrichs-
Lewy -like condition for temporal stability, e.g.

alsT

< (1
ag <90
where e represents the diffusion coeflicient,
Af  the discretization step in space,
and A7 the time integration step.

For the parabolized Navier-Stokes equations, this CFL condition often leads to servere
restrictions on the integration step size in the time-like direction. In most situations the
flow will conform o a no-slip condition at the pipe wall. As a result the effective “time”
step

Ara = AzfU (£)

will exbibit a large variation in the pipe cross-section. Owing to the no-slip condition at the
pipe wall the magnitude of the axial velocity component U(£), becomes small as the wall
1 approached, Thus the effective “time™ step is much larger in the near-wall region than
in the region close to the axis of the pipe. For a parabolized convection-diffusion cquation
the condition for the integration step must be rewritten as,

alT

T < O(1), 3.9)
with U{£) a typical measure for the veloaty in the time-like direction within
the interval A
and At the integration step in the time-like direction

FExpression (3.9) shows that the maximum admissible intepration step may be limited
drastically. Clesc to the pipe wall not only a fine cross-flow-plane grid must be used for
turbulent flows, also the magpitude of the velocity will be small in the near-wall region.
Especially for predictions employing a low-Reynolds-number turbulence model, condition
(3.9) poses an unacceptably severe restriction on the integration step. In this particular
cage the first grid point must lie at a distance from the wall of typically one viscous unit.
For a turbulent pipe flow this results in a maximurm integration step of typically,

AzfD < O(Repu*{Umpen) ™.

where u"  reptesents the friction velocity based on the wall-friction.
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For & pipe flow at Rep = 10* this yields,
Az/D < 0 (107%).

Thus for predictions of developing turbulent pipe flows, where the length of the dormain is
of O(160D), with a low-Reynolds-number turbulence model explicit integration schemes
do not appeat to be efficient. In the present work only implicit schemes are used. As will
be shown later on, implicit schemes do not pose such strong restrictions on the integration
step.

The remainder of this section is devoted to the description of a second-order accu-
rate integration scheme for non-linear initial value problems.

Consider a time-dependent quasi-linear diffusion problem,

d

5¢=V (@ Vel (3.10)
where ¢ denotes an arbitrary quantity
and o a diffusion coefficient that may depend on ¢.

Using any finite-element discretization scheme Eq. (3.10) can be diseretized in space, The
result iz a set of ordinary differential equations,

]

fﬂ(M-q&) =8(c) ¢. (3.11)
Here
¢  denotes the solution vector. (It is the approximation of discrete
¢ in the solution spate.)
M  depotes a linear “mass™ operator,
and

§  denotes a“stiffness” operator.

This equation is integrated using the following integration scheme,

(M-3),,,, - (M-5),= [0 (S(2) ), + (1-0) (S(a)- Js)!] v (31

§(e - %) O(A) + QAP
{where § denoten the Dirac-delta function).
For ©® = 0 it is the first-order exphicit Euler scheme, for © = 1 the first-order implicit

Euler scheme and for @ = 1/2 it iz the second-order Crank-Nicolson integration scheme.
Rearrangement of terms gives

(M - oats)- &)HM = (M +(1-0)418)-d) - (3.13)
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If M and § do not depend on 4, Eqg. {(3.13) can be solved directly. However, in general
either M and/or § will be a function of ¢. In that case the Jacobian of the left-hand side
of Eq. (3.13) has o be evaluated and the solution at time £ + Af must be found by, for
example, a Newton iteration, If Eq. (3.13) is rewrilten inte,

F(¢) =
((M(&"wm) — DAL S($1+m)) - J-"H-At) - {3.14)

(M(3) + (1 - @) AtS(4)) - 4) =0,
and the Jacobian of F(éa.) is denoted by,

. OF (4
I(driae) = —"""—""—( i) (3.15)
Odhsr o
the Newton iteration scheme to gel dya: can be expressed as,
J(F)*- (Gﬁ':ﬂ: H-Al a)H-.M yit=0,1,.... (3.16)

The advantage of using a parabolic scheme will be clear. Inatead of a solution vector
containing the values of the unknowns in the complete soluticn demain, now the solution
vector ¢y A, containa only the values of the unknowns at ene axial pesition in the cross-
flow plane. For an axisymmetric pipe flow the parabolization reduces a two-dimensional
problem to a sequence of quasi one-dimensional problems, while a non-axisymmetric prob-
lem reduces from a three-dimensional problem to a sequence of quasi two-dimensional
problermns,

3.2.2 Finite element discretization

Thus far no attention has been given to the details of the discretization in space. As
stated in the introductory section of this chapler, the finite-element type of discretization
is employed by the software package SEPRAN. In essence, in a finite-element formmulation
a measure for the error of the discrete solution is minimized. This error measure is often
denoted as the energy norm I, see Baker (1985).

Assuming that the differential equation may he written as,

L(w) =0 (3.17)

with L (w) denoting a differential operator L working en a function w,
then for & Galerkin method of weighled residuals the energy norm is defined as,
I= fn wh (w) d9.
Here {1 denotes the solution domain.
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In general the unknown function w is approximated by a sum of K “basis functions”.
K
woe = Z Py
[ |
The discrete approximation of tw, @ will not obey Kq. (3.17) exactly, so
L{w)=R

The Galerkin method of weighted residuala minimizes the residual in the sense that it
makes the residual orthogonal to the space spanned by the “basis functions”.

f¢,L(@)dn=o, for j=1,...,K.
1

Introducing the approximalion for ) yields the desired algebraic set of equations,

K
fngajL(Ea.-qp.-)dﬂ=0, for j=1,..., K.

fu=l

For a lincar operator the order of summation and the integration can be exchanged, yielding
& set of linear equations for the amplitudes of the basis functions e, i = 1(1)K

K
0 =Ea.-fn 0L (@) d%, for j=1,..,K. (3.18)
= .

If the coefficients a; are ordered in & column vector &, and the integrals f_ ;L (i) df2e in
a matrix L, Eq. (3.18) may be rewritten as,

L-a=0.

The structure of the matrix L depends on the form of the operator L. For the classes of
problems described in this study, three basic structures can be distinguished:

* a “mass” type operator, L(u) = f(z,y,5)uw;
s a “convection” type operator, L(u) = (§(z,y,2) - V)u; and
s a “diffusion” type operator, L (u) = V- (k{z,y,2) Vu).

Here f{z,y,2), g (z,y,2) and k(z,y,z) denote arbitrary functiona
of the spatial coordinate or the sclution at a previous iteration or
al a previous axial station.

Discretization of these operators yields “mass”, “convection” and “diffusion” matrices,
respectively. Partial differential equations like the Navier-Stokes equations or the time-
dependent diffusion equation mentioned at the beginning of this section can he discretized
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“term by term” using these matrices, For non-linear terms an iteration scheme can be built
using combinations of these operators.

Apart from the nature of the operator to be discretized, the resnlting matrices
also depend on the choice of the “basis function™. In the finite-element method the basis
functions are chosen such that they are only non-zere in a small part—i.e. element—of the
total solution domain. As a result the matrices will have a banded structure. The matrices
can be assernbled from simple “element matrices”,

L= (L),
Here [ _ |, represents the finite-clement assembly algorithm, see Baker (1985).

For the construction of the element matrices L, integrations over the element subdomains
have to be performed. Thus,

o[ ]

with 7, 7 now ranging from 1,..., N where ¥ iz the number of nodes in the element,

Hence the process of diseretization is reduced to the integration of the differential
equations over the element domains using the appropriate weight and basis functiena. The
algorithm for the assembly of the large matrix from the element matrices ia a standard
component of finite-element codes. However, especially in two and three dimensions this
assembly process is not a trivial task. In order to reduce the bandwidth of the large matrix
the ordering of the elements ia critical. The SEPRAN package offers several strategies for
optimising the bandwidth and/or the profile of the matrix, see Segal (1984). In the present
stndy the assembly algorithm of the SEPRAN package is used. However, for the element.
wise integration a dedicated “too] box” was written to obtain a flexible yet simple means
of discretizing arbitrary second-order partial differential equations. In the next section a
description is given of the atructure of this “toal box”.

3.2.3 Implementation of a finite-element discretization using Jinear basis
functions

The construction of discrelizalion schemes for arbitrary partial differeniial equations can
be reduced to the formulation of integration schemes for the separate element domains,
Often the subroutines in which these integration rules are implemented are denoted as
“the element”. For each pew differential equation a new “element” must be implemented.
However, by regarding pde’s as combinations of the basic terms described in the previous
section, new “elements” can be assembled from combinations of a small number of basic
“glements”, Provided that the basic terms are discretized in their most general appearance,
elements for complex seta of pde’s, like combinations of turbulence models and the Navier-
Stokes equations, can be assembled from these basic terms with relative ease.

The building blocks for the discretization of the equations considered in the present
study are,
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® “mass” terms;

» “convection” terms; and

+ “diffusion” terma.
The simplest term to discretize iz the “mass” term. The nomenclature of this term is due to
its occurrence in the time-dependent part of arbitrary momentum equaticns. In structural
mechanics this term is often proportional to the mass of the system. The characteristic
feature of mass terms is that they are proportional to the magnitude of the unknown
function rather than to its derivatives. In general a term of this type can be written as

f(t, Z, ¥, 2, ‘#’“)‘ﬁ?
with f(t,z,y,#, ¢") representing an arbitrary function.

Clearly, the discretized form of this term depends stropgly on the choice of the weight
functions and that of the basis functions. In fluid dynamics a frequent choice for these
functions is to use Lagrangian interpolation polynomials. In one dimension, using linear
polynomials, the “mass” element matrix consist of a 2 x 2 matrix. For an element spanning
the interval x; < x < 2y, the “mass” element matrix yields,

Mo = ] flt, =, 4" AmAnde. (3.19)

The Lagrangian polynomials, A, and A,, for this interval are given by,

L-¢ _ )
&=a for k=1
Ak(é)_ E_El

L=t

For the interval 2 € [0, #044] ,& = 2, {1 = 2; and £ = 2444,

for k=2

Since the vnknown function ¢ is approximated with combinations of linear interpolation
polynomials, an obvious approximation for f(t,z,¢%) is also a combination of Lagrangian
polynomials, For the interval 2 = 2 = Tip1

Sz, ¢%) /e f{t, 4, 88 M) + S 62, 63) Ma(6),
with £ =, £ = gy, £y = 1y, ¢ = d(z:) and do = $(zis1).

Using this approximation and the integration role for Lagrangian polynomials,

f,\")v*atac=.<ssaA
Azlz . (P+q+1)!l
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the element integral (3.19) can be expressed in terms of product of a vector and a “hyper-

mat.rix",
{ 3 } { 1 }
Ax 1 1

== {fm! fﬁ} * v (3'20)
1 1

{1} {3}
where the *product” refers to the terms within the curly brackets. The only terms that
need evaluation at the moment of discretization are f(#, &, ¢3%) and f(2, &z, ). When the
values of these terms are known, the discretization of an arbitrary term with the structure
of a “masm” term merely reduces to a matrix-vector multiplication.

After some manipulation also arbitrary convection and diffusion terms can be dis-
cretized using a matrix-vector multiplication concept. Since the different “hypermatrices”
for the different families of terms are geometrically determined, they can be calculated in

advance. With these pre-calculated “bypcrmatrices” the development of a discretization
scheme for more complex pde’s becomes simple. A differential equation like,

F@b+ 2 (o2)0) + 5 (1 3E) =0

can be discretized so that,

L-¢=0,
with the use of the element matrices,
Ly={f,fa} - { LJ:; }+
{o, g2} - { g: }+
{hiha) - { o }

Bere fy, fa.... represent the values of f(x
node of the element under consideration.

—

» g{z) and h(z) at the first and second

Thus, with few subroutines where the matrix-vector multiplication is carried out, the def-
inition of the discretization scheme can be reduced to a series of subroutine calla,

Inetead of using the integration rule for Lagrangian polynomials, other integration
schemes can be used. In general moat turbulence closures are characterized by the atrongly
non-linear character of the equations, Consequently, integrating lerms with strongly non-
linear factors f(x),9(z) and A{x) may not be very accurate. In these situations it is often
more accurate to use & Gauss quadrature. For linear clements in one dimension, a two-
point rule will generally be sufficient. When a (Gauss quadrature is used, the discretization
can still be described in terms of a matrix vector product. However, the entrics in the
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“hypermatrices” will have a different value and instead of the values of fiz, ) ,g(z,¢)
and h(z,#) at the nodes of the element now the values of these functions at the “(rauss”
peints have to be evaluated.

For two-dimensional problems, a similar procedure as demonstrated above for the
one-dimensional case can be used for the discretization scheme. Instead of one-dimensional
line elements, new triangles are wsed for the discretization in space. Again linear bagis fune-
tions are used together with a four-point Gauss quadrature. Also in the two-dimensional
case the use of the Gauss-quadrature improves the aceuracy in some situations. An example
of the effect of the integration method on the accuracy of the solution iy given in Fig, (3.2).

B [

Figure 3.2: Convection of & conceatration packet in o solid-body velocity field after cug full revolution for
O = AywRA, = 0.1 and Pe, = 10%. (a) Initial condition; (b) Lagrangian integration role; (z) Gauss
quadrature

It presents the result after one revelution of a concentration distribution in velecity field
due to solid-body rotation. The concentration distribution 15 not centered at the axis of
rotation. Since the problem is described in & cartesian formulation the velocity components
in the convection terms are non-linear functions of the coordinates. Due to diffusion the
concentration distribution will decay. However, since the diffusion coefficient 15 chosen ex-
tremely amall, after one revolution the concentration profile should have undergone little
change compared to the initial distribution given in Fig. (3.2a). Comparison of Figs (3.2b)
and (3.2c) shows that the result of the method based on the four-point Gauss guadrature
is in much closer agreement with the initial distribution than the result of the method
based on the Lagrangian integration rule. Apparently, the approximation of the velocity
components with linear polynomials causes appreciably larger dispersion errora than the
approximation of the element integrals by the four-point (Ganss quadrature.
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3.2.4 Some properties of the parabolic finite-element scheme

In the preceding sections the integration method and discretization scheme have been
defined. In this section some of the basic properties of the algorithm are studied. First an
assessment of the stability of the scheme will be made, then the accuracy of the scheme
will be discussed briefly.

All turbulence closure schemes used in the present study consist of additional pde’s
solved gimultaneously with the flow equations. Like the flow equations, these additional
pde’s have the structure of non-linear transport equations. However, not only the turbu-
lence model pde’s are non-linear themselves, also the coupling with the flow equations is
generally non-linear. In order to obtain a robust scheme, an “as stable as possible” integra-
tion method has to be chosen. For parabolized transport equations this leads to an implicit
integration scheme,

For systems of strongly non-linear equations it is difficult to detive general rulea for
the stability of a numerical scheme. However, when the scheme is stable for equations which
are locally linearized by “freezing” the coefficients, and when the stability is independent
of the magnitude of the coefficients, it is most likely that the scheme is also stable when
applied to the non-linear equations. Here we will atudy the stability properties of the
finite-element /Crank-Nicolson scheme by considering the linear test problem as described

by
aé a
05t =2 (o22) 450, ()

with boundary conditions
#z,—1) =0 and ¢(z,1) =0,
and initial condition

#(0,y) = doly) -

In this equation
o  represents the diffusion coefficient, (a > 0),
B represents a *source” coefficient wilh an arbitrary magpitude.

Fot constant I/ the solution to this equation iz given by

#(z,9) = 5" e~ MU coq ) (2.22)
=0
with
M= (U+1)r
and

& =—}1 doly) cos(My)dy .

For # > = at least one eigenfunction will be growing. In this situation the solution will
grow indefinitely at least if the initial condition contains the appropriate mede. For f < 7?a
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oll eigenfunctions and thus the total solution will decay to zera for large values of z. Using
the methods described in the preceding sections Eq. (3.22) can be discretized which results
in a systemn of algebraic equations. The stability of the integration scheme can be studied
using a Neumann-like stability analysis, scc Anderson et al.(1984) or Hirsch (1990). In this
analysis an arbitrary error in terms of a discrete Fourier series is introduced in the solution.
The condition for stability is that: for 3 < #’a, the amplitude of the separate modes will
not grow; or for A = 2, the amplitude of the modes will not grow faster than that of the
solution itself. For an integration scheme obtained by discretization with linear elements
of width A in y direction and by using the ©-integration scheme (Eq. 3.12) the condition
for stability is

L2 {4 cos(rph) + 8] + (1 — [ 2 (4 cos(kah) + 8) + 202 (2 cos(knh) — 2)]

Yk 4 cos(mah )+8]—@[%5(4cu5(5“ )+s)+°T';r(2ms(~,. )—2)] <

(3.23)
for all permitted values of %,
where x,, represents the wave number in discrete Fourier space.

The strongest growing mode will be the mode with «.k < 1. For small &nh Eq. (3.23) may
be simplified using the approximation,

cos(knh) 2 1 — kZAT,

For a Crank-Nicolzon integration scheme (& = 1/2) the stability condition (3.23) will be
satisfied for all Az if
wla—f=0. (3.24)

The permitted values of &, are,
#max = [2(N —1)+1]7 and wgp=w

where N represents the number of nodes.

Substituting the smallest value for %, in Eq. (3.24) yields,
i —- =0,

which exactly coincides with the condition for a decaying solution of the exact problem.
Thus the finite-element /Crank-Nicolson scheme iz unconditionaily stable for equations with
“net too strong” scurce terms.

For equations with stronger source terms the situation is more complex. As stated
above the scheme can be considered “stable” when the growth rate of the errors is smaller
than the growth rate of the solution itself. However, the exact solution will only contain
these growing modes In ease the initial solution containg the corresponding eigenfunctions.
Due to the finite accuracy, the numerical approximation of the solution will contain all
possible eigenfunctions, including the growing eigenfunctions. In this sense the scheme is
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unstable. However, in general a uniform initial eondition will be chosen, ¢(0,y) = #o. Thus,
all eigenfuntions are present in the initial conditions. The stability of the scheme is deter.
mined by the growth rate of corresponding modes. Following Eq. 3.23, for small integration
steps, #Az/h <« | and adz/Uh? 4 1, the error growth rate can be approximated by

1+ 42(3 — ar?)
Az 1
1- T(ﬁ — akl)

if again only the long wavelength errors are considered, (kb < 1). The growth ratc of the
n-th eigenfunction can be approximated by,

T Ax(f—adl),
Tt can he verified that for corresponding A and & and integration steps with
Ax(f — arl) 1

the growth rate of the error is smaller than the growth rate of the solution itzelf and the
scheme is stable. Clearly, the integration process becomes unstable when the integration
step becomes too large,

Az(f — o) = O(1) .

As the source term becomes stronger the maximum admissible integration step becomes
smaller, the equation exhibils a “stiff” character.

Fven though this test equation is linear, and much simpler than the equations of
for example a k — ¢ turbulence model, the study of the stability of the linear test problem
clarifies some of the properties of the finite element/Crank-Nicolson scheme when it is
applied to the cquations of the & — ¢ model. A salient feature of turbulence modely like
the k& — ¢ model i3 that in large parts of the physical domain the source and dissipation
Lermns are mach larger than diffusion or convection terms. Recall that the “logarithinic law
of the wall” iz even based on the assumption that the transport terms of turbulence are
negligible compared to the source and dissipation terma, However, rather than considering
the equations scparately, clearly the system of equations must be analyzed. For a flow
cloge to “local equilibrium™ the eigenvalucs of the “frozen”™ system of equations are small.
Therefore the source terms are effectively small in this situation. However, during the de-
velopment of a wall layer, a strong imbalance of production and dissipation may cceur,
Here the eigenvalues of the “frozen” system of equations are large and the system will
show a “stiff” behaviour. Hence, the integration step must be chosen small, even though
an implieit integration in marching direction is used.

The second important property of the scheme that must be investigated iz the
accuracy of the numerical approximation, Potentially, the numerical error of the finite-
element /Crank-Nicolson scheme will originate from two sources:

# the truncation error due to the Crank/Nicolson integration; and
¢ the truncation error due to the finite-clement discretization.
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The convection/diffusion equation with a source term, Eq. (3.21) will also be used to study
the accuracy of the acheme. If one assumes the spatial discretization to introduce no errors
the accuracy of the scheme is simply given by the familiar expression for the accuracy of
the second-order Crank/Nicolson integration method,

i)
[ 3= C"a'-'z—z(Aﬂu')z,

where  represents a dimenstonless coefficient.

By using an adaptive procedure to determine the step size Az, the error caused by the
integration scheme can be kept small without seriously reducing the efficiency of the pro-
cedure.

The error in the solution of Bq. (3.21) caused by the finite accuracy of the finite
elermnent scheme can be Investigated by assuming that the integration in x-direction is exact.
In this case the accuracy of the scheme can be studied by analyzing an eigenvalue problem.
Solutions of Eq. (3.21) of the form (2, y) = ¢(y) ezp(2iz) will obey,

(=X + A + ‘% (a%f’i) =1

ar, )
&
- Ngi+ 55 =0 (3.25)

with M=3-p

The solutions of Eq. (3.25) can be looked upon as the result of the minimization of the
functional
d¢ df
——]d
-L (dy dy) ¥

[#a =1,

with A} acting as an appropriate Lagrangian multiplier. Qwing to the finite accuracy of the
finite-element discretization, Eq. (3.25) will not be satisfied identically by the numerical
approximation of ¢;. Instead the finite-element solution procedure minimizes the residual
in the sense that it atterpta to obtain a residual that is orthogonal to the space spanned
by the eigenfunctions, ¢i:

under the constraint

(‘51': L‘;!) = rnin(qge,Lt;,)
with Lp = g—}f — Xy,
(6:9) = [ 4wd0

and é', a function that ranges over the total finite-element solution space.
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The eigenvalues X' produced by the finite-element algorithm can be examined using
the Wronskian of Eq. (3.25),

W() = (f;f;ﬁ) (3.26)

If the first N eigenvalues of Eq. (3.25) are ordered like, Ay < Ay < ... < Ay then the
approximation of the first eigenvalue will be equal to the minimum of W{4.) provided 4,
ranges over all possible functions in the finite-element subspace. However, since solving
Eq. (3.25) is equivalent with solving the Laplace equation under the constraint

($d)=1,

finding the lowest eigenvalue is completely equivalent with finding the finitc-elernent so-
lution. This insight gives the opportunity to study the accuracy of the eigenvalues as
calculated by the finite-element algorithm.

Suppose the aolution of the finite-element algorithm can be expressed as

$i=dit+g
where
¢; denotes the exact solution of Eq. (3.25)
and

¢; the difference between the exact solution and
its numerical approximation, ¢

then the lowest eigenvalue can be expressed as
A = (¢, L) + (&1, Len) (3.27)

since for all 1, (i, ¢i) = 1 and (&, d;) = 0. However, the exact eigenvalue of Eq. (3.25)
equala (¢, L¢y) and hence ;

A] = A]_ + (E], LE]) . (3.28)
The second term on the right-hand side of Eq. (3.28) is a quadratic form. This implies that
the finite-element approximation of the firit cigenvalue overpredicts the exact value by an
amount of (¢, Le;). An expression for (e, Ley) is given by Baker (1985) on the basis of the
energy norm of the finite-element solution for a Laplace equation. For linear basis and test
functions this norm satisfies,

(en, Ler) £ CAN"IE, (3.29)
with
A, representing a typical measure for the mesh size,
||| the notm of the second derivative of the
exact solution with respect to y
and

C a constant depending on the mesh distribution.



1
N | n(A(=)/A(0) | ]16(0,¥) = (A(0)/A(2)) = ¢(z, y)]dy
2 5.172 230 %107
4 1,275 1.77 = 1071€
8 0.3177 3.61 « 10718
16 0.0793 1.55 » 1071%
32 0.0198 2,59 + 10™15

Table 8.1: The amplituds at & = 100 of the first eigenfunction as a fupstion of the number of elemcnts,
calculated with the finite-element/Crank-Nicolson integration scheme, (o0 = 1/10, # = #*x and U/ = 1)

The consequence of this result is that the evolution of the modes in the solution are
gtructurally overpredicted even for the case of an exact integration procedure in axial
direetion. An illustration of the finite-elemnent solution of Eq. (3.21) is given in Table (3.1).
In this calculation the parameters are chosen such that the first eigenvalue equals zero, 1. e.

M={B—-ox)U=0.

As initial condition the first eigenfunction ig chosen. Henee, the initial distribution, ¢(0,y),
should remain undisturbed in axial direction. An error in the “decaying” constant will sur-
face iImmediately in the amplitude of the profile, (=, ¥). However, according to the analysis
above the shape of the profile must not be affected by the integration process. Examining
the second celumn of Table (3.1) indeed shows that the amplitude of the eigenfunction
grows, though slower with increasing number of elements. Furthermore it shows that the
growth rate—or the error in the predicted eigenvalue—scales with the reciprocal of the
number of elements squared. Finally, the third column shows that, except for the two-
element result, the shape of the profile remaina virtually unchanged. Hence, the calculated
profiles are indeed eigenfunctions of the discretized syster.

3.3 A parabolic algorithm for predicting turbulent pipe flow

2.2.1 Axisymmetric pipe flow

In thiz section the algonthm for axisymmetnc turbulent pipe flow 15 presented. The algo-
rithm is based on the finite-element /Crank-Nicolson scheme presented above. This results
in 2-D problem with the axial coordinate forming the marching direction and the radial
toordinate the spatial direction for which the finite-element discretization is used. To take
the cffect of turbulence inte account a low-Reynolds-number version of the k — ¢ model
(see sections 2.3.2 & 2.4) is used. Since the flow is assumed to cxhibit a parabolic character
not all terms of the turbulence model are retained. Terms of arder O((z/D)?), for example
%(W) in the equation for the conservation of angular momentum, are neglected. The
resulting equations for U/, V, W, P, k and ¢ are respectively:
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Axial momentum: IV

&, 18 _ 8P 14 {r dU 12,
E(U T+ ;E(TUV) = "% + - (EE) - ;E(THU) (3.30)
Continuity: V
20+ 2V =0 (3.31)
Bz or
Angular momentum: W
9 s LA (r[OW W]\ 10
. (U-W) + ——(i" VW) —25 (—R"E [F‘l‘" - ]) - aT( W) (3 '32)
Radial mementum; P
ar Wk .
= (3.33)

Turbulent kinetic energy: &

ok
D UR 422 Vh) = B et ) &(W%)-{-anum (3.34)

Rate of dissipation: ¢

d 14

3 U+ -5 (rVe) = (Co Pe= Cad) T+ "T( (1/Re + w1) B

) + Gl feyactde (3.35)

8z o, ar
Production of turbulent kinetic energy
v aw W
= gyt _ - .36
P = —wv w(ar r) (3.36)
Reynolds-shear stresw
ol
"y = WIJ*E (3.37)
Heynolde-shear stress
aw W
=_p | = _ 3.35
v Y ( ar r ) ( )
and
Eddy viscosity
v = Cuk* fe {3.39)

(Note that in this formulation iy is automatically non dimensiconal)
In these equations C,, Oy, Oy, ok and o, represent dimensionless coefficients, The low-
Reynolds extension used in this work is the extension due to Chien {1982), which consiats

of extra termas in the k and ¢ transport equation. Furthermore some of the coefficients are
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made dependent on a local Reynolds number and the distance to the pipe wall, y (= 1—-r):

1 2k
Fio-r-Bnmoldn = _EF

1 2¢
Gluwl:k:ynoldu = _EF *-'_v+

Co = Cuo (1 _ e—o.nnsy*')
C:n = Ce':.m (1 - u_zge(ﬂﬂ/s’!)
k3

Rﬂ-; = RGT

y* = ReyUiom
The system of equations, Eqs (3.30) to (3.35) consiste of four parabolized convection/dif-
fusion equations and two first-order differential equations. The four convection/diffusion
equations, Bqs (3.30), {3.32), E(3.34) and (3.35) ate solved simultaneously using the al-
gorithm described above. Thus at every integration step in x-direction a system of four
one-dimensional elliptical boundary.value problems has to be solved, and consequently
eight boundary conditions have to be provided. These are

g—U=0atr=0 and U=0ar=R
=
W=0atr=20 and W=0atr=~R
ﬁ:(}a.t'r':l] and k=Qatr=~H
ar
é)szl.en;r:l:l and ce=0atr=0R.
or

The two other equations are firsi-order differential equations and can be solved by integra-
tion in the radial direction. The boundary conditions for these equations are,

V=0 at r=R
F=F, at r=AR

However, as stated in the preceding sections, a strong interaction may exist between the
distribution of angular momentum and the axial velocity field, This interaction is main-
tained through the pressure gradient. The stability of the solution procedure may benefit
from a strongly implicit eoupling, Hence, the pressure 1s calculated simultanecusly with
these four convection/diffusion equations. To simplify the coding of the algorithm, the
equation for the radial momentum equation Eq. (3.33) is differentiated with respect to r.
As a result an elliptic boundary-value problem is ereated.

10 (8P\ 18 ;.
tx () =t ) (3:40)
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Eq. (3.40) is solved using the same algorithm as used for the four transport equations, but
with the convection velocity [/ set equal Lo %ero. Sinee the order of the equation has been
raised by one, one extra boundary condition must be supplied,

?;—f =0atr=10
The continuity equation, Eq. (3.31), is solved separately. It can be solved by straightforward
integration in radial direction. However for reasons of simplicity, also this equation is dif-
ferentiated with respect to r and thus transformed to an elliptic boundary-value problem,
As an extra boundary cendition

V=0atr=20
is supplied. In the parabolic formulation, the radial velocity, V', is assumed to be small.
Thus, an explicit coupling with the other cquations is not expected to seriously affect the
stability of the scheme.
To close the systemn of equations the pressure boundary condition at the wall has to
be prescribed. The wall pressure can be calculated by enforcing glebal mass conservation.
At each iteration a “mass-defect” is used to update the magnitude of the wall pressure, by

Prll(e) = FLa(2) + Amean(2)(8"(2) —~ B0}/ %0,
R
with, ¥(z) = [ U"(z,r)rdr,

$, representing a measure for the inlet mass fow,
and A an appropriate Lagrangian multiplier.

With the spacification of the pressure at the wall the system of equations is complete,
When the system of equations is discretized using linear one-dimensional basis functions it
turns out that for approximately 60 elements the scheme yields grid-independent results for
a fully developed turbulent pipe flow at Aep = 10% As illustrated in Figs (3.3) & (3.4), the
experimentally determined axial velocity distribution and the pressure drop are reproduced
satisfactorily by the algorithm. As described in the preceding sections the scheme is not
unconditionally stable for source-dominated equations. Hence, [or a turbulent flow one may
expect that in regions far from “local equilibrium” the size of the integration step in axial
direction must be limited. For example, when a uniform flow is used as inlet condition,

U(0,r) = Ui = constant

vio,ry =0

Witr) =0

PlO,r) = 0

k(0,r) = ke = constant
e(0,r) = €nq = constant ,

locally strong source terms will be present in the cquations. It appears that to maintain
stability, the step size must be limited to 10-% times the diameter of the pipe. However,
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Figure 3.3: The axial velocity distribution near the wall in a developed pipe flow at Rep = 10% (60
elementa).

downstream of the immediate vicinity of the inlet the step size may be increased, e.g. 1
diameter behind the inlet the allowable step size is already of the order 0.1 = D, In the final
stages of the development of the flow, no limitation of the step size is necessary. Owing
to the initially “stiff” character of the equations a large part of the computational effort
must be spent in finding the solution in the region of the first few diameters, even though
for the present example the results are physically meaningless.

3.3.2 Non-axisymmetric pipe flow

The description of non-axisymmetric pipe flows is more complex than the descrption
of symmetric pipe flows. Instead of a quasi two-dimensional problem, for the non.
axisymmetric low a quasi three-dimensional problem must be solved. In general the
boundary-layer approximation of the Navier-Stokes equations is mot appropriate for this
class of flows. [natead another reduced form of the Navier-Stokes equation must be used
to describe the development of the flow. The evolution of the cross-flow-plane velocity
components is described by momentum equations rather than by the continnity eguation.
Thus in the numerical representation, continuity is not automatically enforced and special
measures have to be taken.

In this seetion an algorithm for the solution of the reduced Navier-Stokes equations
is presented. The algorithm follows the werk of Baker (1985). Continuity iz enforced by
using the concept of a penalty differential constraint within the finite-element solution
algorithm. The variation of the pressure in circumferential direction is evaluated using a
“pressure-Poisson™ equation.

Since a finite-element method is used, there is no strong need to make use of a
curvilinear coordinate system. As illustrated in Fig. (3.5), the eross-section of the pipe is
discretized using trisngular elements. For such elements it is most convenient to write the
cquations in a cartesian coordinate system. In this coordinate system the conservative form
of the parabolized equations describing laminar fiow s,
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x-moementum

O ) + 2 wvrs D owre _Gpy L (L[], QT
E(U ) +%(UV)+6_Z(UW) __EP +Re (ﬂy [5‘31] +Bz [az]) ! (3.5)

with F representing the pressure at an arbitrary but fixed point in the
cromssectional plane,

y-momentum

O e Dy o 2y 0P 1 (8 [0V] 0 oV
E(UV)-}-a—y(v)-{-E(VW)— 3y+Re (8y[6y]+32{3z])’ (3.6)

Z-momentum

2 wwys Loy 4 5% (we) =224 1 (3 [BW + 2 [aWD RS

dx dy "Bz  Re\By| Oyl 9z]0:z
and
cantinuity
atr av aw
E“‘-W'f'*é-;—ﬂ. (3-3)

In geperal Eqs (3.3) - (3.8) does not accurately describe swirling flows (see section 5.3).
The approximation in Eq. (3.5) of a uniform axial pressure gradient, needed to obtain
a “well posed” system of equations, may not be accurate for appreciable levels of awirl.
However, the cross-flow-plane variation of the axial pressure gradient scales with the aquare
of the swirl intensity. Thus for low swirl intensities the assumption that the axial pressure-
gradicnt is uniform, is not grossly in error. Similar to the algorithm for axisymmetric
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Figure 3.5: An example of the discretization of the pipe cross-section using triangular elements (laminsr
flow)

flow the variation of the pressurc in axial direction is obtained by enforcing “global mass
conservation”.

Contrary to the axial momentum equation, for the two cross-flow-plane momen-
tum equations the variation of the pressure in the cross-flow plane cannot be neglected.
An equation for the cross-flow-plane pressure distribution is constructed by taking the
“divergence” of the y-momentum and z-momenturn equations. This leads to,

#p P 8 ( a ¢} i} 1 [BZV BEVD B

— il Py il il i
UV + oVt VW a7 T 3

Wil m\Em e taY R (341

a{a i} a 1 [8*W W
Yl %ws 2 Gy _ L (W W
2 (3;1:U +Bva+azw Re[ay* + @3

For a given velocity distribution Eq. (3.41) yields an elliptic boundary valus problem for
the pressure distribution in the cross-flow plane. The pressure distribution that satisfies
this gquagi-linear boundary-value problem can be expressed as the sum of the solution of
the homogeneous equation P*, and the particular solution PP, i.e.

P=Pypr,
where Ph, saticfies
aﬂph a‘zPh
o+ g =0 (3.42)
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When viscous effects are neglected, the no-slip condition at the pipe wall implies that

g—i =0 at the wall of the pipe (3.43)

By assuming that both F? and £ satisfy this boundary condition, the pressure distribution
can be obtained. Equation (3.42) together with boundary condition (3.43) leads to the
golution of the homogeneous problem, i.e.

P* = constant .

P* ix completely determined by imposing P* = P at, for example, the axis of the pipe as
an additional boundary condition. The particular pressure field belonging to this choice for
P? must satisfy PP = 0 at the axis of the pipe. However, as a result of the simplicity of
the solution of the homogeneous problem, the “total” pressure may be calculated directly
by imposing P = P at the axis of the pipe.

Having established an expression for the pressure distribution, now only the enforce-
ment of the continuity equation remains. To enforce continuity, instead of the continuity
equation (3.8), an extra variable ¢ is introduced. At the p-th iteration level ¢ satisfies,

g*er  GREr Blr gvr AW et Frgr-l
a7 T2 "o T ey | o: ( W T oz ) (3.44)
forp=1(1 N
The boundary conditions for Eq. (3.44) are,
a0 :
o 0 at the wall of the pipe (3.45)
T
and
$ =0 at, at least, one point on the wall of the pipe (3.46)

The cross-flow-plane momenturmn equations, Eqs (3.6) & (3.7), are “enriched” with a term
proportional to the gradient of & in y-direction and z-direction, respectively. The purpose
of this extra term is to penalize deviations from continuity. Including this “penalty”™ term,
the y-momentum and z-momentum equation become:

8 a ;] ap 1

UV + — (VR + (VW) = —— — =+ = — (34
r?m(( )+3y( )+62( ) 6y+ (3y[6y] [ ]) (341)
and

? 2 D yay_ 2P 1 (BaW] 2 oW]\_ 3%
E(UW)+8—y(wv)+a—z(W)— az+.Re(ay[ay +az[az) 15, - (348)

The value for the coefficients B and + must be chosen in such a manner that al every
station in x-direction the magnitude of &, decreases to zero during the iteration process,
An appropriate value for v 1s found to be,

7= Uy, z;2)/ Dz .
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Instead of the obvious choice for @, # =1, in the present calculations choosing a value of
B=105

yielded a slightly faster convergence.

With the description of the method to enforce contiouity the algonthm for the
calculation of the 3-dirnensional parabolized method is complete. The equations used by
the algorithm are the momentum equations (3.5), (3.47) and (3.48), the pressure-Poisson
equation (3.41) and the penalty constraint equation (3.44). The equations are solved si-
multaneously using the non-linear Crank-Nicolson integration scheme used for the case of
axisymmetric flow.

The above algorithm is based on the 3DPNG algorithm developed by Baker (1985).
To improve convergence for the swirling flow case some minor changes were made . For
example, for swirling flow the non-axisymmetric cheracter of the boundary conditions for &,
Eqs (3.45) and (3.46) causes a strong sensitivity of the algorithm to oscillations, resulting
in a small allowable step in marching direction. Employing an axisymmetric boundary
condition instead,

& =0 everywhereonr=R

improves the damping of scheme dramatically and results in a much larger allowable atep
in marching direction. Also the value of the coefficients # and 7 given above ig different
from the criginal value in the 3DPNS of Baker (1985) algorithm.

Te check the algorithm two test cases are considered:
# the case of an axisymmetric pipe flow developing from a uniform inlet condition;
and
# the case of the decay of a axisymmetric swirl in a flow field with a uniferm axial
velecity.
For the first test case, Fig. (3.6) shows the comparison between the predicted axial veloc-
ity distribution obtained with the present algorithm and the distribution obtained with
an axisymmetric two-dimensional elliptic penalty-finite-element algorithm. It follows from
Fig. (3.6) that the agreement of both results is excellent.

The second test case concerns the decay of an axisymmetric swirl in a uniform axial
velocity field. In a cylindrical coordinate system the equation describing the decay of the
swirl reduces to a linear equation when the axial velocity distribution is uniform. Hence
the decay of the swirl may be expressed in terms of a series of decaying eigenfunctions,
Fig. (3.7) compares the computed decay of some initial swirl distribution with the analytical
decay of the lowest eigenfunction. Since the initial swirl distribution does not coincide with
the lowest eigenfunction, initially the decay of the swirl muat be stronger than the decay
of this single eigenfunction, However, further downstream all but the eigenfunction with
the lowest eigenvalue will have decayed fully and the calculated decay rate must coincide
with the analytical decay rate of the lowest eigenfunciion. Fig. (3.7) demonstrates that the
analytical decay rate is indeed reproduced accurately by the present algorithm.
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3.4 Conclhuding remarks

In this chapter the algorithma were presented that will be used for the study of the decay of
awirl in a turbulent pipe flow. The algorithms are based on a parabolization of the Navier-
Stokes equations, allowing for a marching solution procedure. For axisymmetric swirling
pipe flows the parabolization results in a system of equations akin to the boundary.layer
equations. For non-axisymmetric swirling pipe flow the parabolization of the equations
leads to the “reduced Navier-Stokes equations”,

In the parabolized formulation of the Navier-Btokes equations the coordinate in the
direction of the pipe axis serves as a “time-like” coordinate. In this direction the equations
are integrated using a Crank-Nicolson integration scheme. In the successive cross-flow-
planes a finite-element discretization method is used.

For turbulent flows, the equations of the turbulence meodel are solved simultaneously
with the momentum equations. Both the momentum equations and the equations of the
turbulence model have the structure of a transport equation. Henee, they are solved with
the same Crank-Nicolson/finite element algorithm. A salient feature of the equations of
the turbulence model is that they contain strong souree terms. In large regions of the
physical domain the source terms may be much larger than the convection and the diffusion
terms, This may lead to “stiffness” of the equations. Even though the Crank-Nicolson/finite
element algorithm does not suffer from restrictions on the permissable magnitude of the
atep in axial direction due to a Courant-Friedrichs-Lewy condition, the “stiffness” Limits
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the maximum aflowable integration step in axial direction. If uniform inlet conditions for
all flow quantilies are set and low-Reynolds-number turbulence models are used, the axial
integration step is restricted strongly. It turns out that the initial integration step in axial
direction must be limited to @(10~* ). However, the allowable integration step may rapidly
be increased. Qne diameter downstream of the inlet plane the allowable stepsize i3 already
of O(107} D). Further downstream, no limitation is necessary anymore,

In this study much emphasis iz put en an accurate prediction of decay coefficients,
In the present algorithm the aceuracy of the decay coefficient is determined by two sources
of error:

# the truncation error of the Crank-Nicolson procedure; and

& the truncation error of the finite-element discretization.
The first error may be reduced by limiting the stepsize in reglons of large axial variations,
The second error is independent of the axial variation of the solution and can be limited
by an aceurate discretization of the cross-flow-plane only. For a linear parabolized convee-
tion/diffusion problem, the errar in the decay cocfficient due to the finite accuracy of the
crose-flow-plane discretization scales with the energy norm (e, Le), see Eq. {3.29), of the
diseretization error.

For a non-axisymmetric flow, to obtain & “well-posed™ problem it is neccssary to
approximate the pressurc gradient in axial direction by a uniform value, Consequently, for
high levels of swirl the present method may not be accurate.

The primary motivation for the parabolic approach is that in many cases considered
in the study of installation effects of metering devices the elliptic character of the system
of equations that describe the flow is weak. Furthermore, in general the swirl generated in
pipings systems is weak as well. The secondary, though important, motivation is that the

65



memory and CPU requirements remain modest even though the domain of interest may be
large. For the class of problems considered in this study, computing times for the parabolic
algorithm are at least an order of magnitude less than the computing times needed for
algorithms for the [ully three dimensional formulation of the problem,
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4. Turbulent swirling pipe flow

4.1 Introduction

Swirling flows often occur in complex geometries. Examples are flows in cyclones or in
combustor-like geometries. Swirl is used for the separation of compounds or for the sta-
bilization of flames. lmportant aspect that are considered in numerical studies of these
flows are for example, the question whether or not recirculation oceurs, the length of such
a tecircujation region and the intensity of turbulence within the recirculation region. In
order to provoke recirculation, the swirl in these devices is relatively high, The aspect ratics
of the devices considered are generally low, the length of the device seldomly exceeds the
width by more than a factor of 10. As a result of these geometrical properties, the elliptic
character of the equations that describe the flows in these devices is essential.

The flows considered in thie study are of a different pature. The intensity of the
swirl is quite low compared to that in cyclones or combustors, recireulation regions will
not be present and the length of the domain of interest is generally long. Hence, at least
in parts of the domain, the equations that deseribe the flow have & weak elliptic character
only.

As far as the metering practice concerns, details of the turbulence structure are
alao of secondary importance, One may expect that the performance of a metering device
depends on the global characteristics of the flow field, rather than on local details.

Therefors, our first goal is to study the bebaviour of one or two global measures
that characterize the flow. Suitable integral measures to characterize the swirl may be, for
example, the integral amount of angular momentum or a swirl angle averaged over the pipe
cross-section. One of the objectives of this study is to find accurate predictions of the axial
development of such measures. Accurate predictions of detailed velocity distributions or of
all second-order moments of the fluctuations are only secondary goals.

In a pipe flow the decay of the swirl is solely caused by viscous forces, i.e. angular
momentum iz dissipated by the action of the wall-shear stress. Most of the radial transport
of angular momentum, frem the core of the flow to the wall, ia achieved by the turbulent
stresses. Hence, the exact structure of the turbulence will govern the decay of the swirl, so
that the choice of the turbulence model is of & vital importance.

According to the literature (see for example Kline ef al, (1982), or chapter 2) the
calculation of awirling flows with the classical k—e model has its shortcomings. It is believed
that a number of aspects essential for swirling flow cannot be captured by this model. One
of these aspects is that in swirling flows the stress and the strain tensor are not aligned,
The & — ¢ model, being an effective viscosity model, will not reflect this. As has been
demenstrated before (Fig. 2.4, Boysan & Swithenbank (1982)) especially the prediction of
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the distribution of the circumferential velocity depends stongly on the correct description
of the atress tensor. As a consequence, for swirling flows it has become common practice
to use either the more complete Algebraic Stress Model or even the full Reynolds Stress
Model. (Gibsor & Younis {1986), Hogg & Leschziner (1989)). Only these models have the
potential to capture the relevant parts of the physics of the flow. However, for a pipe flow,
application of Lhe full RSM is considered beyond the scope of the present investigation,

For simple goometrics, like fows over curved or spinning surfaces, atlempts have
been made to extend the standard k¥ — € model to flows with curved streamlines (sce
section 2.4.2). For the class of flows considered in these studies this approach proved to be
successful (section 2.5.1). However, Shreenivasan’s (1980) resulta using these adaptations
for the case of two counter-rotating confined swirling jets proved to be unsatisfactory.

Without doubt the swirling pipe flow is closer related to the confined swirling jet
than to a curved or swirling boundary layer. Hence, simple modifications of a k — ¢ model
may not be sufficient to describe the flow correctly. On the other hand since the swirl
decays slowly, one may expect that the turbulent stresaes can follow Lhe changes in the
distributions of the mean velocity components. This implies that memeory effects in the
Reynolds-stress tensor might be of minor importance, and that an algebraic approximation
of the iransport of turbulence may assumed to be valid.

In this chapter we will assess some results of caleulations of turbulent pipe flows
with a decying swirl, employing a number of turbulence models. Qur goal is lo identify the
maost important mechanisms, rather than obtaining a complete description. Hence, only the
simpler variants of the models described in chapter 2 will be considered. Furthermore, in
the present chapter the flow is considered to be axisymmetric. As a starting point we will
use an algebrale representation of the transport terms in the Reynolds-stress equations.

4.2 Modelling turbulent swirling pipe How
4.2.1 On the applicability of an ASM model in a sawirling pipe flow

Although in general the stresses and strains will oot be aligned, any algebraic stress model
assumes that their orientation is an instantaneous function of the flow fieid. This assump-
tion s valid provided that the transport terms in the Heynolds-stress transpeort equations
can be peglected or can be approximated by terms alpebraic in the stresses themselves,
The classical ASM approximation is due to Rodi (1876). Noting that,
ooy _ Sk, 0 ()
Bz k ox 8z \ k

Rodi proposed,
., W
Transport (ww;) m Tﬂansport (k) . (4.1)
A minimum requirement for this approximation to hold is that all gradients of the quantity
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Bx \ k& k 8z’ o 2,3 (4.2)
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Since the transport of the turbulent kinetic energy equals the difference between the its
production P, and its dissipation e, the transport of the Reynolds stresses can be approx-
imated by

Zp-q, (4.3)
provided that condition (4.2) is met. However, for flaws with curved streamlines this ap-
proximation is not necessarily very accurate. The reason can be appreciated best by con-
sidering the conveetion of the turbulent stresses in & eurvilinear coordinate system,

For fiows with curved streamlines it is often advantagecus to use a curvilinear co-
ordinate system. Instead of condition (4.2), now a covariant equivalent of Eq. (4.2} 1z a
necessary condition for the ASM approximation te be valid. In an arbitrary curvi-linear
coordinate system the left-hand side of Eq. (4.2) will transform according to,

Transport (G70;) =

uiud a2 fuw? s — .
e | = R | —— Y plym I " 4.4
KV, ( A ) p ( p ) T wu™ 4 [, vty (4.4)

In general the Christoffe] symbols, I'f), will not be small and the covariant equivalent of

condition (4.2) will not be valid. Instead of the transport approximation Eq. (4.3), now an

cquivalent for curvilinear coordinate systems has to be used thai explicitly contains the

curvature-induced transport terms:

LH;

k

where C;; represents all the curvature-induced terms
and consists of a convection contribution, C.
and a diffusion contribution, Cuy;.

Transpart (w05 ) = (P = &)+ Cyy (4.5)

In a cylindrical {(z, r, ¢)-¢oordinate system, with corresponding velocity compo-
nenis, I/, V and W, the curvature-induced convection terma can be shown to have the
following form.

Ca.r.a: =0
w
Cc.rr = +2 —ww
r
w

Cowr = =2vw
r
w
Cope = —— T
w
Cowp = +TW

Cors = — = (7 =)

Upon transformation of these expressions back into a cartesian representation it
appesrs that the swirl continuously exchanges energy between the various components of

69



the Reynolds-stress tensor. The energy exchange, or “convection scrambling” is caused
by the curvature of the streamlines. Of course, when analysing the same flow in a carte-
sian coordinate systern, without the detour in the cylindrical coordinate aystern, the ASM
approximation yields no encrgy-cxchange terms!

The cause of this paradox is that by combining the ASM approximation with some
choice for the coordinate system, one assumes that along the streamlines of the flow the
“convection scramnbling” of the Reynolds-stresses i fully represented by the terms induced
by the curvature of the coordinate system. Necessary conditions for the validity of this
assumption are:

» the symmetry of the turbulence field must coincide with the symmetry of the coor-

dinate system; and

¢ the curvature of the streamlines must be reflected by the coordinate syatem.
As such the validity or invalidity of the ASM approximation is determined by whether
or not the chosen coordinate system “matches” the flow. Expression (4.4) shows thal
the “convection scrambling” terms are algebraic in the stresses. Thus, the “convection
scrambling” effect ia potentially large and accurate predictions with an ASM are only
possible when this effect is properly accounted for.

For a swirling pipe flow the natural choice for & coordinate system is a eylindrical
coordinate system. In such a flow it is likely that to firsl approximation the turbulence
field will have a cylindrical symmetry as well. Thus the first condition is satisfied. The
sccond condition poses problems in swirling flows. Firstly, in the case of a recirculation
region the curvature of the streamlines will be gquite different from the curvature of the
coordinate curves. Secondly, the streamlines in a swirling flow will have a helical shape,
which docs not coincide with the shape of one of the coordinate curves. llowever, it can
easily be appreciated that compared to the case of circular streamlines, the helical shape
of the streamlines causes ne additional redistribution of energy, provided that the pitch of
the streamlines s constant. Hence a necessary condition for an accurate representation of
the convection of the Reynolds stresses by the ASM approximation is that, at least locally,
the pitch of the streamlines may be considered constani. Henee, accurate predictions of
swirling pipe flow with an ASM are restricted to flows,

& without recirculation
and

» with a slowly decaying swirl.

4.2.2 The ASM in a cylindrical coordinate system

In the preceding section we showed that in a swirling pipe flow the ASM-approximation of
the convection of Reynolds-stresses is possibly inaccurate, However, the simplification of
the transport terms by the ASM not only applies to the convection of turbulent stresses but
also Lo the diffusion of these stresses. The curvilinear character of the coordinate aystem
again mnduces curvature contributions in the diffusion term. Like the curvature-induced
convection terms, the curvature-induced diffusion terma may be large in magpitude, and
thus have to be accounted for in an ASM representation,
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Appropriate curvature-induced diffusion terms are not as easily obtained as the
curvature-induced convection terms. Using the curvature terms of the full Reynolds-stress
cquations i3 not an option, since they are essentially non-linear in the stresses and still
contain derivatives of the Reynolds stresses. Moreover, there is no need to approximate the
curvature-induced terms more accuratly than the conventional ASM approximation of the
diffusion terms. Hence, for example in codes like FLUENT they are neglected altogether.
However, sinee the geometry of ipterest iz so simple, an intermediste approach may be
possible, Rather than simply ignoring these terms we search for a formulation that is af
least consistent with Eq. (4.1) but preserves the typical “tensor-like” diffusion properties.
A formulation that meets this condition can be found by defining,

o = ﬁ?:‘; with %% =
!
and rewriting the diffusion term in covariant form,
Dlﬁ(m;) = vl (glmyﬂrsuvm (kc'jj)) T (46)
with
Vyirean denoting a turbufent diffusivity
and

g™ dencting the metric tensor.

Using this expression for the diffusion term one arrives at the fellowing approximation for
the curvature-induced diffusion terma,

Diff (1505) ~ ww; D"ﬁk(") + (47)
where for a cylindrical coordinate system Cy;; 1s given by,

Caa1 = 0,

Cim = —:—2 Vareas (V2= 07)

Cis = % Vatrans (v_2 - F) ,

Ciiz = —% Vatress BT ,

Ciiz = —:—2 Vytrass U

cd,.'l:! = _;i Vairoes D +

By introducing these expressions ia the ASM equations (4.5), all eurvature induced trans-
port processes are accounted for. However, the introduction of these terms is only mean-
ingful if the magnitude of these terms is comparable to the curvature-induced convection
terms,
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Comparing the expressions for €, ;; with those for Cyy; indeed shows that neglecting
all curvature-induced diffusion terms will probably not be justified in all cases. Near the
axis of the pipe the diffusion terms may become large and of the same order of magnitude
as the convection termms. However, it has to be kept in mind that the curvature-induced
diffusion terms are the result of ap approximation. This appreximation is similar to the
appraximation of the diffusion term in the k— ¢ turbulence model. Just, one of the identified
weaknesses of the k — € model is the description of the diffusion in the neighbourhood of a
symmetry plane or an axis of saymmetry.

Now that the trangport terms of the Reynolds stresses have been simplified, the ASM
can be completed by choosing a model for the pressure-strain interaction. In chapter 2 three
basically different models for the “rapid part” of the pressure-strain term were given, the
QI model, the IP medel and Lhe rotation-rate independent FIF model of Fu et ol (1987). Of
these three, the QI pressure-strain model is the most complex model. Considering the form
of the QI model (Eq. (2.8)), it is seen that the structure of the expressions for the stresses
becomes rather complex and too bulky Lo analyse conveniently. Moreover, for awirling flows
no decisive advaniages of the QI-model over the IP-mode] were found (section 2.5.2),

Generally, also the pressure-strain model due to Fu et al. (1987) {FIP model) pro-
vides problems in an algebraic representation. Apart from production terms it also contains
a convection term. Since we are using an algebrajc representation only an approximation
for the convection term is available. However, in the foregoing section we showed that the
ASM yields acenrate results for a limited class of flows only, Naturally, if one only considers
this class of flows, the ASM approximation can be used in the pressure-strain model as
well. According to Fu ef al. (1987) the rapid part of the pressurc strain has to be corrected
with a term equal to,

1

C (c.-,- -3

.sijc,;,;) .

Subatitution of the generalized ASM approximation for the convection terms yields,

o (52 - %a.-j) cy+e, (4.8)

where ¢'(k) denotes the convection of k.

However, a prerequisite for an accurate description of the conveclion by terms algebraic
in the streases, is that the swirl should decay slowly. This implies that both the gradients
in axial direction and the radial velocity component arc small. In this case the convection
of the turbulent kinetic energy k, will be small as well. To firat order we can neglect the
convection of k, C(k), in Bq. (4.8).

Summarizing, for a swirling pipe Bow, the ASM system of equations can be written

as,

W
kJ = Bile + e bi; +wa (Cogs + Caiz) /e, (4.9)
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for the IP pressure-strain model and

_k_"' = (P +Co) e + 02 biy + w3 Caifes (4.10)
for the FIP pressure-strain model,
with,
_ l—cz _01+C1'3P/€—1 and _ 1
N+ Ple-1 VT Ot Fle—1 BT+ Ple—1
and ) and Oy the “return-to-isotropy” coefficient and

the “rapid-part” coeflicicnt, respectively.

4.2.3 Solving the Algebraic-Stress equations

For a given mean flow field, a given magnitude of k and a given magnitude of ¢, both systems
of equations, Eqs (4.9) and Eqs (4.10) are quasi-linear in the unknown compeonenta of the
Reynolds-stress tensor. The non-linear character of these equations is weak and stems from
the quantity P/e in the coefficients @y, 22 and 3. In most flows, the quotient of production
and dissipation varies slowly. Therefore the magnitude of P/¢ ray be assumed to be known
also. With all these assumptions the systemn of ASM equations reduces to a system of §
linear equations for 6 unknowns and a closed-form solution can be obtained. In general
this solution will be rather bulky and unattractive for further analysis.

However, consistent with the ASM-approximation for the convection of the
Reynolds-stresses, it can be assmmed that locally the flow is “frozen”. Instead of allow-
ing for a very slow development, locally the development in axial direction is neglected
altogether. For the “frozen” flow, the subsystem consisting of the equations for v¥, w¥ and
¥ 1s independent from the subsystem consisting of the equation for ¥, UF and ww. In
the assumption of a “frozen” pipe-flow aimple closed-form solutions of the ASM equations
emerge.

In the next sections we will consider the salution of the ASM-equations. Since the
70 component of the Reynolda-stresa tensor is the dominant term in the equation for the
circumferential momentum we will first concentrate on this component.

4.2.4 The radial transport of circumnferentially directed momentum

The solution of the ASM-subsystem for v¥, w? and 7% depends strongly on the specific
form, of the curvature-induced convection and diffusion terms in the ASM equations. Here
we will consider just three possibilities:

+ omission of all curvature-induced terms,

» omission of the curvature-induced diffusnion terms only,
and

# including all curvature-induced terms.
Apart from the form of the curvature terms the solution also depends on the choice of the
presgure-strain model. Here we will start with the IP model. In the second part of this
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section we will alsc analyse the results obtained with the FIP model for the “rapid part”,
For the three situations mentioned above the expresaion for 7 becomes:

2 aw W
Ty = —= wror— ( - ar..) (4.11)
i iy
=7 4.12

with

) K W ow w
Rige = *15 (21 + a) T \7 ( - + (PS_)

and

k
Wﬂ (1 + 4@3_";#5"/7'2)
T = ¢

k : 5 oW W (13)
1 + 4@3:1’“"“'/1‘2] - 4'LPELP3;§'VHMM I:"é'_ ] /T + .l’i:‘lW

Wkhen all curvature-induced terms arc neglected, i.e. Eq. {4.11), the solution of the ASM-
systemn reduces to the classical Boussinesq-approximation for the Reynolds stresses. The
expression for T consists of a dimensionless group of constants, a group of turbulent
quantities with & dimension of a viscosily and a group representing the deformation of the
mean flow field. Expressions (4.12) and (4.13) reveal that introduction of curveture terms
results in a correction factor on the original Boussinesq-zpproximation. For more complex
curvature terms the correction factor also becomes more complex.

It should be noted here that in the layer close to the wall the structure of the ex-
pression for TiF with the curvature induced convection terms included (Eq. (4.12)), is com-
parable to the expression for 7% for curved streamlings as proposed by Bradshaw (1973).
His expression for #d is based on a Richardson number for curved flows (scotion 2.4.2),
For the circular pipe the equivalent of Bradshaw’s expression is of the form,

7 = T (1 — ARi) {4.14)

where i denotes the Richardson number and
3 a case-dependent constant.

For amall Bi Eq. (4.14) is approximately equal to,
oy —— .
1+ AR
According to Bradshaw (1973) the Richardson number equals the ratio of the extra sirain
acting on the fluid due to the curvature of the streamlines and the original strain, i.e.

my =

. al
Rix Y e
wilh @ representing the angular velocity,
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It follows fram Eq. (4.12) that apparently the Richardson number for swirling flows

is of the form, \

Ri o I:T(wl + ) g (‘Plg + wa—‘:{) (4.15)
which differs from the Ri-number used by Bradshaw. Expression {4.15) suggesis that the
Richardson number is formed by the quotient of & production-like term and the dissipation
of turbulence,

Due to the no-slip condition at a solid wall, this Richardsen number will be small
close to the wall. However, further away from the well the circumfereptial velocty will
be much larger and we may expeet a larger Richardson number. When the Richardson
number is large and positive the resulting shear stress will be very small and consequently
the radial transport of circumferentially directed momentum will be reduced.

In turbulence folklore (Bradshaw (1973), Rodi (1979), Launder et al. (1977)) often a
similarity is pointed out between rotating flows and flows with a vertical density gradient.
The presence of a density gradient has a stabilizing or destabilizing influence on the fow,
depending on the direction of the gradient; In a gravity field a flow with a density gradient
opposite to the direction of the gravity field will be stabilized, while in the case that the
gravity field and the density gradient are in the same direction the flow will be deatabilized.
As a consequence the momentum exchange can either increase or decrease. Equivalently,
in a rotating flow the curvature can be either stabilizing or de-stabilizing, By analogy with
the Rayleigh circulation theorem for axisymmetric three-dimensional disturbances, which
states that the flow will be stable for low with a positive gradient of angular momentom
and unstable in the opposite case, one may expect that in a turbulent swirling pipe flow
the intensity of the radial velocity fluctuations increases when the gradient of angular
momentum is positive and decreases in the opposite case. Consequently, one may expect
that the radial transport of momentum may incresse or decreases. Thus, the “neutral”
distribution of cicumferential velocity which is neither atabilized nor destabilized is the
distnbution which satisfies,

g(rW)=0 or Wa~rl

According to Eq. (4.12) the neutral profile is given by

aw w
g T s = 0
or,
W~ p9iv1 — p—1/(1-GCa) (4.16)

Expression (4.16) shows that the neutral profile for momentum exchange is directly coupled
to the coefficient of the “rapid part™ of the pressure-strain model (see section 2.2.5).

A similar analysis can be performed when the FIP model is used for the “rapid
part”. Of course, changing the pressure-strain model does not affect the “curvatureless”
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result. However, the result obtained with the curvature-induced convection terms included

iz affected:
Ty

iy o (417)

TR

with

Mo = (B 5

kKW (BW W)

Contrary to the result oblained with the IP model, Fiq. (4.12), this result predicts & “neutral
atability profile” which is independent of the values of the cocfficients of the pressure-strain
model, i.e.

W et (4.18)

By comparing expression (4.12) and expression (4.17) it appears that ihe reduction of the
radial exchange of circumferential momentum in a stabilizing velocity profile may be quite
different for the two models. For a flow subjected Lo a solid-body rotation, W = fir, the
denominator of both expressions (4.12) and (4.17) can be expressed as,

k?
1+ &'—292,
&
where {) denotes the angular velocity.

If local equilibrium is assumed (Pfe = 1), & is given by,

2
4 (2 — Cg) for the II* rnadel,

=
a= Gy

1 2
16 (1 CCZ) for the FIP model.
i

Using the standard coefficients for the pressure-strain model (see section 2.2.5),
O, =15 and g = 0.6

the value of o for these models is

o = 3.5 for the IP model,
T 1.1 for the FIP model.
However, when applying the Gibson & Younis (1986) cocfficients for the JP model,
Ci=30 and ;=03

the magnitude of o equals:
ar 13,
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Clearly, the predicted stabilization effect using the FIP model with the standard coefficients
is in much better agreement with the magnitude predicted by the conventional IP model
with the Gibson/ Younis coefficients. This also explains that the performance of both models
in a awirling-jet geometry is equally successful (section 2.5.2).

Thus far we analysed the consequences of including the curvature-induced conveciion
terms. Now we will consider the effects on ¥@ of the curvature-induced diffusion terms
{Eq. (4.13)). Although it appears to be much more complicated, expression (4.13) has &
structure that is similar to the result according to Eq. (4.12), However, in the limit for
r — 0 both results differ considerably. While expression (4.12) predicts that the effective

fidud w

viscosity o« T (F - 7), gtays fipite in this limit, expression (4.13) predicts a zero

effective viscomty irrespective of the magnitude of the swirl,

4.2.5 The radial transport of axially directed momentum

Since the ¥T-component of the Reynolds-stress tensor is one of the dominant terme in the
¥-momentum equation, in this section this component will be analysed in some detail. To
find an expression for @o for the case of a pipe flow with swirl the second sub-system of
the set of ASM-equations will be solved. This sub-systern consista of the equations for 1,
ot and W,

First the analy=is will be restricted to two possible treatments of the curvature-
induced terms: to neglect them totally; or to include the curvature-induced convection
terms only, For the IP model the expressions for ¥% are

2 k* AU
WO ) —5 (P]'(PZTE (419)

d
aa . 1 + Riny
Ty = W

1T Rive/A)(L + Rivg)

(4.20)

with

. K W/ ow W
Risw = — (p1+ ) — (‘ﬂ? + (3v1 + ws) 7)

The corresponding expressiens obtained with the FIP model can be found by simply re-
placing wa by @y.

As expected, the result of the first approximation is again the classical Boussinesq
expression for #5. The result of the second approximation is slightly more complex than the
corresponding result for ¥w. However, when the switl-induced curvature of the streamlines
15 small enough, both correction factors will be similar.

When the pipe wall is approached, the curvature can indeed be regarded as being
small, In the sense that the regular deformation terms are much larger than the curvature
terms, % & &Y In this situation the 7%-component can be approximated by,

Ty
Dim ~

oW (4.21)
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while the ¥%-component can be approximated by
i

Ty o 1+4k2 )w i (4.22)
gt el ey

It appears that for a relatively small, swirl-induced, eurvatute of the streamlines, at least
as far as the T and T are concerned, the commonly quoted “non-alignment” of the stress
tensor and the strain is not present. Instead the momentum exchange in the wall layes
ig increased compared to the momentum exchange in a non-swirling wall layer. Thus the
effect can be described as a change of the characteristic length scale of the turbulence. In
o qualitative sense this result agrees with the arguments put forward by Bradshaw (1973),
Rodi (1979) and by Launder ¢t al (1977). They hypothesised that the change in length
scale is the most important effect in a swirling boundary layer and their adaptations of the
k — ¢ model also predict an increase of this length scale.

At a larger distance from the wall a misalignment of the stresses (4T and @) and
the strains (2 and ¥ _ %) oceurs. In a solid-body rotation the misalignment effect
is relatively small compared to the stabilization effect. However, when Lhe circumferential
velocity profile conforma to the “neutral” profile (section 4.2.4) both effects are of the same
magnitude, Expression (4.20) shows that, contrary to the exchange of circumderentially
directed momenturm, the exchange of axjally directed momentum is increased. At this
point the predictions from the modifications due to Bradshaw, Rodi and Launder may be
expected to differ considerably from the second-order closure-scheme predictions.

When the curvature induced diffusion terms are added to the equations, near the
axis of the pipe, U¥; exhibity the same anomalous behaviour as Tim,;

k —au
= " ((Pﬂ-?z T W% i-".m-.u)

or,

—l

1w =

¥
WE_-FJ——
@

3
1+ — = ¥ptrcns
£ r

For the limiting situation of (r — D) again the quotient of the stress WD and the strain %,
decreases to zero.

Although it is a straightforward censequence of Rodi's ASM approximatiou
(Eq. (4.1)) these resulta show that the gradient diffusion model (Eq. (4.6)) that under-
liea these results iz clearly inadequate. Close to the axis of the pipe the application of
the gradient-diffusion model leads to “unphysical™ results. Hence we are forced to relin-
quish the inclusion of curvature-induced diffuston terms, even though they are potentially
important.

4.2.8 Closure

In the foregoing scclinns we have presented an analysis of the behaviour of an Algebraic
Stress Model in an axisymmetric “frozen” switling pipe flow. It was shown that for a flow
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with strongly curved streamlines the ASM is possibly inaccurate. Only when the coor-
dinate system closely matches the flow copsidered, accurate results may be expected. In
general the character of the flow is not known beforehand and the choice of the coordinate
system cannet be based on the flow at hand. Thus the applicability of & model based vn an
algebraic representation of the transport of turbulence is limited. However, for a “frozen”
swirling pipe flow, the simplicity of the geometry and the simplicity of the flow allows the
use of an ASM. As a consequence, the results of an ASM will only be accurate to first order
in the case of a decaying swirling pipe flow. In addition to an analysis of the applicability
of ASM-type models, an assessment was made of the results predicted by the ASM. The
main results are:

# The transformation of an Algebraic Stress Model into a cybindrical coordinate sys-
tem i3 not trivial. The approximation of the diffusion of the Reynolds stresses
poses problems. The straightforward application of the gradient-diffusion model,
needed to obtain algebralc expressions, produces unacceptable results. Therefore
the curvature-induced diffusion terms are neglected, though close to the axis of the
pipe the neglected terms are potentially important.

# If one assumes that the ratio P/s is known, it is possible to formulate closed-form
expreasions for the Reynolds stresses. If one furtbermore assumes that the variations
in axial direction may be neglected and if one uses a simple model for the pressure-
strain correlation, these expressions are relatively simple and mitable for furthes
analysis.

# Different models for the pressure-strain interaction yield different expreasions for
the Reynolds stresses, However, by choosing appropriate coefficients the results of
the models may be similar,

# The closed-form expressions show that the swirl may have large effects on the struc-
ture of the turbulence. Momentam exchange as caused by the turbulent motions
can either be increased or decreased by swirl. Near the pipe axia the model predicts
& strong decrease of the exchange of momentum.

= In contrast to the flow near the axis the pipe, the momentum exchange in the wall
region ig increased by the swirl. In the wall region the predicted amplification of the
exchange of axially directed momentum and circumferentially directed momentum
appear to be same. As such the ASM predictions can be viewed upon a8 correction
factors on the mixing length and are in agreement with the intuitive models of
Bradshaw (1973), Launder (1977) and Rodi (1979).

& In a flow without a radial gradient of angular momentum, intuitively one expects the
turbulent exchange in radial directron to be neither increased nor decreased. Qnly
the pressure-sirain model due to Fu et ol. (1987), Eq. (2.10), yields & “neutral”
profile for the exchange of eircumferentially directed momentum that coincides with
this profile. The conventional I[P model for the “rapid part” produces a different
“neutral” profile. For axially directed momentum no “neutral” profile exista.
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An analysis as performed here contains the risk that some of the conelusions on the strue-
ture of the turbulence are based on mere artefacts of the model. However, although they
are far from perfect, the building blocks of the model can be regarded as being “sound”.
Effects like the individual production of each component of the turbulent stresses and the
“pregsure acrambling” of these components are aceounted for.

Having a detailed understanding of the behaviour of the model in a simple flow will
certainly be of use for the interpretation of predictions in more complex flow situations.
Moreover, also the interpretation of experimental results may benefit from the insight
gained by this analysis. Hence, iu the next sections we will proceed with a more detailed
description of the structure of the axisymmetric swirling pipe flow, as predicled by an
ASM-type model.

4.3 The structure of a turbulent pipe flow with a decaying
awirl

4.3.1 An adapted Boussinesq approximation for swirling pipe flow

In this section we will describe the general features of a decaying swirl in a turbulent pipe
flow as predicted by ASM-type models. As indicated in scetion 4.2.1 the ASM approxima-
tion ia valid only for a limited class of flows. As long as recircufation doecs not ocour and as
long as the swirl decays slowly, the swirling pipe flow belongs to the class of flows where an
ASM is applicable. The strong constraints owing to these conditions, causes the application
of a full ASM closure to be somewhat controversial. Since the approximation of the convec-
lien terms neglects the extra “curvature scrambling” caused by the axial gradients, lakmg
these gradients into account in the ASM equations appears to be inconsistent, Therefore,
without loss of accuracy the axial gradients may be neglected when the ASM systemn of
equations i3 solved, The ASM model then yields closed form expressions for the stresses
{section 4.2.3). According to section 2.3.2 the expression for &7 in a “single-strain” flow can
be connected to the k .- ¢ model by replacing the group of dimensionless quantities 214,
by Lhe coefficient €. The cxpressions for %0 and 7w obtained by peglecting all curvature
terme, i.e. Bq. {(4.19) and Eq. {4.11) respectively, have the same structure as the expression
for &F in a “single strain” flow. In this sense, when the curvature effects are neglected, Lthe
ASM is equivalent to the conventional & — ¢ model.

When the curvature terms are added, according to Eq. (4.20) and Eq.(4.12) the cur-
vature effect can be aceounted for by a set of simple correction terms on the “curvatureless®
cxpressions fot the stresses, Le

T = G, ® correction factorg

and

pw = T, x correction factory .
Thease expressions open the possibility to modily a £ — ¢ type of method for developing
pipe flow, into a method for swirling pipe flow. Hence, it i3 possible to use the algorithm
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Figure 4.1: Radial distribution of the circumfersatial velocity component obtained with the full ASM
(FLUENT) and the madified Boussinesq approximation {(present algorithm) for the inrbulent stresoes,
(Vinter = 1.0, Winiwt = v/ R, Rep = 10%, /12 = 35, N=100)

as described in chapter 3 for the prediction of the development of pipe flow with swirl,
Indeed, the modified Boussinesq approximation and the full ASM yield very similar velocity
distributions. The largest difference between the results of these two methods occur in the
distribution of the cireumferential velocity component, see Fig. (4.1). The difference in the
magnitude of both distributions stems from a difference in the treatment of the boundary
condition at the wall. In the calculation employing the full ASM, a logarithmic law of the
wall 15 used, while in the calculation employing the modified k — ¢ model 2 “low-Reynolds.
number” model approach is followed. Moreover, also application of a full Reynolds-stress
closure scheme results in very similar distributions {Chen (1992)), indicating that neglecting
the memory effects in the Reynolds-stress tensor is justified for the class of flows considered.
Hence, in this study the modified k& — ¢ model is employed only.

4.3.2 Regimes of swirl decay
As it turns out, the decay of swirl in & developing pipe flow is a complex process in which
several mechanisma participate and interact mutually. However, the process can be divided
into several regimes in which different mechanisma dominate. The three main parts of the
decaying process are:

# a redistribution pasrt;

# a stable “mode® part: and

s an eddy-viscosity part.
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Figure 4.2: The circumn{ercatial velocity distribution in the eddy-viscowity part. (Uingee = 1.0, Wi = /8,
z/D = 100, Rep = 10%, N=100)

The reason for this specific division is based on the form of the ASM corrections for the
shear stresses. These corrections show that the momentum exchange is influenced by the
circumferential velocity distribution. Hence the last part of the three is cloar: at the end
of the decay the swirl will have become so small that its influence on the exchange of
mornentum has become negligible. As Fig. (4.2) shows, the character of the circumferential
velocity distribution is comparable to the one of the axial velocity distribution in an almasl
developed pipe flow, showipg the largest deformation close to the wall of the pipe and the
amallesl deformation near the axis of the pipe. Furthermore, comparison of iga (4.2) and
{4.3) shows that in thia region Lhe shape of the radial distribution of the circumfercntial
velocity component is almost identical to the shape of the distribution as predicted by the
conventional £ — e model, indicating that all effects of streamline curvature on the structure
of the turbulence have disappeared indeed.

Upstream of the eddy-viscosity part the phenomena are radically different. Here the
swirl is strong enough to have a profound effect. Expressions (4.12) and (4.20) show that
momentum exchange is strongly affected by the awirl. The consequences are dramatie. It
appears that the effect is so strong that the flow behaves as if Il were non-viseous. In the
core region of the pipe the flow virtually “freczes”, at least as far as the distribution of the
circumferential veloeity component concerns. It preserves its shape along a large part of the
total length considered. Moreover, it appears that there are fixed Lypes of distributions, or
*modes”. The shape of the distribulions seems to lock into a shape that strongly depends
an the initial profile. At least three types of “modes” can be distinguished;
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Figure 4.3: The circumferential velocity distribution computed using the conventional k — ¢ model at
different axial stations. (Uinra = 1.0, Wiata = r/R, Rep = 10%, N=100)

# Solid-hody rotation

& Centered-vortex rotation

» Wall-jet
Examples of these three “modes” are shown in Figs (4.4) to {4.6). The first “mode™ is
characterized by a large region with solid-body rotation near the axis of the pipe, the second
“mode” by a concentrated central region of high avial vorticity and the third “mode” by
a region of low vorticity near the pipe axis.

Having established that the flow apparently “locks” into certain states, the distine-
tion between the first and the second part is also obvieus. The upatream condition will in
general not coincide exactly to one of the “modes” the flow tends to “lock” in. Hence there
must be a region of large changes in the distribution of angular momentum, This redistri-
bution can have a larpe effect on the axial velocity profile. In a parabolized formulation of
the flow problem the pressure distribution is dominated by an equilibrium of the pressure
gradient and centrifugal forces. Provided the swirl is strong enough and the redistribution
is fast encugh, one may expect that locally the axial pressure gradient becomes positive.
At the same time the radial momentum trapsport by the turbulent stresses is strongly re-
duced, As a result of both effects the axial velocity distribution may show the well-known
“dip” near the pipe axis which is so characteristic for swirling flowa. The development of
this “dip” in the axial velocity profile and the strong redistobution of angular momen-
tum is closely related to the “vertex breakdown” phenemenon (see also section 3.1.1).
Indeed vortex breakdown is only observed at high enough swirl intensities (see for example
{Viseer et al. 1987)). Clearly, a parabolized formulation of the flow problem will not be
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Figure 4.8: An example of the wall-jet “mode™, using the Gibson & Younis pressure-strain cocflicicnts,
(Rep = 108, N=100)

valid when the flow approaches the regime where “vortex breakdown” occurs. Moreover,
approaching the “vortex.-breakdown” regime will also be detrimental for the accuracy of
any algebraic approximation of the transport of the turbulent stresses. As diacussed in sec-
tion 4.2.1 the ASM approximation is only accurate when the streamlines “match” with the
coordinate curves. Close to “vortex brealidown” this condition i1s not fulfilled. Furthermore
the “vortex-breakdown” phenomenon is connected with rapid changes in the flow. Memory
effects, that are not accounted for in the ASM, may then become important. Thus the
applicability of the present approach is not warranted in the redistribution region. As a
consequence, for strong swirl the predictions obtained with the modified k¥ — € model, may
not be reliable for the initial stagea of the development of the swirl. Howcver, for the initial
velocity distributions and swirl intensities considered here, the dip in the distribution of
the axial velocity will not appear. The remainder of this chapter will be devoted to the
second and third decay region, startiog with & detailed descoption of the stable “mode”
region.

4,3.3 A detailed description of the stable “maode” region

The most characteristic part in the decaying procesa is the part we denoted with the term
“stable mode decay”. Owing to the action of the curvature terms in a large part of the pips
cross-section the flow will behave as if it were inviscid. It is obvious that changes of the
time-averaged quantities can only take place over a long distance in axial direction, Hence
it seems that in the central region especially the circumferential velocity profile appears to
be “frozen”. Aa far as the axial velocity profile is coneerned it can be noted that, similar to
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Figurz 4.7; The accelerntion of the flow in axial direction. (Winiss = #/ £, Uintet = 1, Rep = 105, N=100}

the flow in the rediatribution part, the axial momentumn flux will be dominated by the axial
pressure gradient. However, sinee in this region the distribution of angular momentum is
almost constant-— apart from a slow decay of the inlegral amount of angular momentum—-
it is unlikely that close to the core of the swirl the axial pressure gradient remains positive.
Hence, eventually a platcau of high axial velocity may develop. This is demonstrated in
Fig- (4.7) for the case of solid-body-rotation inlet condition.

Clearly the above mentioned acceleration effect must be reflected in the circumfer-
ential velocity profile, Owing to the acceleration in axjal direction the axial directed vortex
tubes will be strotched. Indeed Figs (4.7) & (4.8) show that in downstream direction the
circumferential velocity profiles are steepened near the axis of the pipe and that the change
of the slope is proportional to the magpitude of the axial velocity.

Since the flow in the core region is apparently deminated by inviscid-flow mecha-
nisms, it appears that the different “modes” mentioned in the preceding section are nothing
more than the remnants of the upstream profiles. In other words when a solid-body-rotation
velocity distribution is offered as initial condition, the flow will lock into the “solid-body
mode”, when a awirling wall jet ig offered as initial condition the flow will lock into the
“wall jet mode”.

A tnore interesting region is the region in between Lhe immediate vicinity of the wall,
where viscous forces are clearly dominant, and the region near the axis of the pipe where
the flow is governed mainly by inviscid mechanisms. Becanse in the largest part of this
region the magnitude of the circumferential velocity is still high, according to Eqs (4.12)
and (4.20) viscous effects will be weak. The shape of the disiribution that develops in
thie region can be appreciated by assuming that the flow may be considered inviscid. In
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Figure 4.8: The stecpening of the cireumferantial velocity distribution as resut of the accaleration of the
flow in axisd direstion. (Winie = /B, Uit = 1, Ren = 10%, N=100)

inviscid flow with distributed vorticity, the vorticity tends to concentrate in regions with
a high level of voriicity, the so-called vortex cores. For the case of a awirling pipe flow this
would result in a concentration of axially directed verticity near the axis of the pipe and
an acceleration of the flow in axial direction. Clearly, the remaining velocity distribution in
the region between the, more and more in itself concentrating, core and the wall containg
little or no vorticity anymore. Of course, the distribution that belongs to a rotating flow
without vorticity is the potential-flow distribution (free-vortex distribution), i.e. W o 1/r.

Since the flow is only inviscid to first approximation one may expect that the shape
of the radial distribution of the circumferential velocity resembies the free-vortex distribu.
tion. Indeed, the computations do not show a prefect “free-vertex” shape of the velocity
distribution, Instead it appears that the shape is determined by the specific form of the
pressure-strain approximation. Comparison of results of computations employing different
coefficients and different models suggests that the profile in this region is determined by
the pressure-strain model (Fig. (4.9)). The expression for 7ir predicts a “neutral” velocity
distribution for momentum exchange W oc 1/r?, that depends on the specific form and
the coefficients of the pressure-strain approximation (see section 4.2.4)). Fig. (4.9) suggeats
that a correlation exists between the actual profile and this “ncutral” profile.

In any case, close to the wall the “free-vortex-like” behaviour must break down.
Since the integral amount of axial vorticity contained in the pipe cross section must be zero,
the large “core vorticity” must be balanced by an equal but oppesite directed amount of
vorticity. As argued in the foregoing paragraphs, due to the strong reduction of momentum
exchange in the intermediate region the vorticity contents of the region between wall and
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centre is low. Hence, the “core vorticily™ 18 largely balanced by the “wall vortieity™. As a
result the circumierential velocity distribution close to the wall will show a boundacy-layer
like structure, see Fig. (4.10).

4.3.4 A description of a turbulent swirling boundary layer

For understanding the structure of the wall layer in a swirling pipe flow it is necessary to
realize that the swirling wall layer may distinguish itself in two ways from a conventional
parallel wall layer. Firstly, the lenglh scale of the turbulence can be affected by the swirl
a8 a result of “curvature-scrambling” effects. Secondly, contrary to the ordinary wall layer
which is governed by onc length zcale only, in the swirling wall layer one can think of a
second length scale, the radius of the curved fluid motion. We will analyse both posaibilities.

A problem in analysing the first possibility is whether expressions like Eqgs (4.12)
and (4.20) for 7@ and w7 arc valid close to a wall. These expressions are based on simple
models for the pressure-strain interaction. A deficlency of these simple models is that
they predict equal u,¥ and ug? in a simple shear fow with @l/y/@z; as the only strain
rate, see Fig. (4.11). In experiments the two quantities are different, in a single shear
flow u3? will be smaller than % and uzZ. Owing to wall-reflection effects in the pressure-
strain interaction the imbalance of the normal stresses will become even stronger when
approaching a wall. Very close to 2 wall low-Reynolds-number effects become important as
well. These effects are neither accounted for in expression (4.20) and expression (4.12) nor
in any other prediction method based on simple pressure-strain models like the 1P meodel. In
contrast, the I madel (section 2.2.5) for the rapid part does predict a different magnitude
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Figure 4.11: The coordinate gyatem for & flow subjected to a single shear

for the stress components and, when extended with the proper wall-reflection terms and
low.Reynolds-number terms, satisfactory predictions of the wall region of turbulent pipe
flows can be obtained, see Lai & So (1990). However, the QI model is not as successful in
predicting swirling flows as the IP model, see Nikooy & Mongia {1991). Taking into account
these shortcominga it is unlikely that expressiona (4.20) and (4.12) will be successful in
predicting the swirling wall layer.

As stated in section 4.3.1, expressions (4.20) and (4.12} are merely used to incor-
porate effects of swirl in the Boussinesq approximation. Turbulence models based on the
Boussinesg-approximation, like the & — ¢ model, are tailored to “single-strain™ flows. Espe-
cially when low-Reynolds-number modifications are included, flows like turbulent pipe flows
can be predicted quite well. Apparently the anisotropic character of “single-atrain” flows or
flows near walls is accounted for by a proper cholee of the coefficients in the model. Martin-
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uzzi et al. (1989) concluded that for turbulent pipe lows low-Reynolds-number k—¢ models
are to be preferred above algebraic-siress models.

If one assurnes that the effect of swirl on the structure of the wall layer is considerably
smalier than the wall effects, clearly the approach of incorporating effects of awirl into the
Boussinesg-approximation can be used close to the wall also. Thercfore in our caleulations
the k— ¢ model with the low-Reynolds-number modification due to Chien (1982) war used.

Eqgs (4.21) and (4.22) in section 4.2.5 show that the dominant siress and dominant
atrain components are aligned provided that g <, %, Cloge to the pipe wall Lhis condition
will be satisfied. Equations (4.22) and (4.21) also show that for small awirl angles these
expressiona can be considered as a swirl-corrected version of the elassical mixing-length
expression and that the correction factor will have a “Bradshaw-like” structure, i

2
In =1y (1 - 4% {ip1 + 1) @,%%—T) for the IP pressure-strain model (4.23)
with,
B Wwaw
e ar
In contrast to the core region of the flow, according to Eq. {4.23), momentum transfer
is enlarged in the wall region (%PTV < 0). Since the increase of the momentum transfer is
small, & *law of the wall”-like behaviour for the total velocity vIU'® + W2 may be expected.
When the awirl s strong enough we may expecl a deviation from the “law of the wall”-like
bebaviour.

The second poasibility for the swirling wall layer to distinguish itself from a conven-
tional wall layer, ia the possibility that more than onc length scale play a role. An obvious
candidate for a second scale is the curvature of the streamlinea, However, since this second
length scale 1s always larger than the pipe radius, this cffect will be notable only when the
Reynolds number is small enough. Only then will the ratio of the internal length scale of
the wall layer and the curvature of the streamlines be close enough to unity to bhave an
effect.

£ 1

How strong both effects are s difficult to judge in advance. Hence we will use the
computed results to invstigate this matter. First we consider the results of a calculation
of gwirling pipe flow with a conventional low-Reynolds-number k — ¢ turbulence model
(Fig. (4.12)). In this figure the swirl angle (ten~'(¥)), notmalized with the limiting swirl
angle at the wall, is plotted as a function of wall unita. Since a conventional k£ — ¢ model
is used, the zecond effect--the “Bradshaw” effeet --is excluded. When the curvature of the
strearnlines is important one may expect, for example, a dependence of the swirl angle on
the distance to the wall. Such a dependence would clearly show that the flow in the wall
region iz governed by more than one length scale. The results in Fig. (4.12) show thal for
low Reynolds number (Hepn = 104} an effect ia clearly visible. Starting at the inner edge of
the logarithmic region the effect grows as the distance to the wall grows. As expected, at
higher Reynolds numbers (fep = 10°) the effect i much weaker. Though the variation of
the swirl-angle is qualitatively the same, the y+ at which the effect is noticable bas now
moved to the cuter edge of the logarithmic region. However, the fact that at this Reynolds
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Figure 4.12: The swir! angle iz the wall region at different Reynolds numbers calculated with the Chien
low-Reynolds-mumber & — ¢ turbulence model.

number there is still & notable effect is somewhat surprising. If the behaviour of the flow at
the edge of the logarithmic region iz influenced by a process with an intrinsic length scale
considerably larger than the pipe radius, why do we observe a logarithmic region at all?

The next step is to ineclude also the curvature-correction terms. Results of calcula-
tions with these terms included are shown in Fig. (4.13). The main extra effect of the swirl,
the change in length scale, should be reflected in the distribution of the velocity magnitude,
Fig. (4.13) shows that at the moderate swirl intensities we are concerned with, almost no
dependence ia prescnt.

In conclusien, the predictions of the models suggest that at moderate swirl inten-
sities, the structure of the swirling wall layer is comparable to the structure of the non-
awirling wall layer provided the Reynolds-number is high enough. Up to—and beyond—the
outer edge of the conventional logarithmic region the swirl does not have a notable effect
on the mean flow. As a consequence the use of conventional wall-lawa for numerical pre-
dictions is a realistic option. When the Reynolds-number ia too low (Re < 10%), curvature
effects are present in the logarithmic layver and conventional wall laws cannot be used any
more.

4.3.5 The rate of decay of the swirl

Az annpunced in section 4.1 a subject of even greater concern in a swirling pipe flow than
a detailed prediction of the velocity field is the prediction of the full development in axial
direction of a swirling flow. To study this development it is advantageous to define an
integral measure to characterize the swirl. An appropriate measure is the “swirl number”
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5. In the literature the swirl number 5 1 often used to characterize the flow. However, the
definition of & varies. Here we will use a definition directly inspired by the moment of the
Wetransport equation,

=9 jRU(rW) rdr (TR Ucon?) (4.24)

A O -
Az defined here, S denotes the total axial flux of angular mement. The reason for Lhis
choice becomes apparent as follows. Multipying the ¢component of the Reynolds-averaged

momentum equation by r and integrating the resulting expression over the pipe cross
section defines,

j 2 uwlre + f [ (rrvw) +] ridr =
9

e 52 E-D)

Intreducing Kq. (4.24) and evaluating the intcgrals yiclds,

as
Az =—2 Tawally (4'25)
th _1 (W _w
wi Tewntl = 72 (3r — 7)o
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Expression (4.25) shows that the development of § is determined by the wall shear stress
only.

In the literature (see chapter 1) the decay of swirl in turbulent pipe flow is often de-
scribed as being exponential with the downstream distance. As was shown in section 4.3.2,
for small swirl intensities the flow regime can be referred to as the “eddy-viscosity regime”.
In this decay region the swirl does not have a notable influence on the turbulence structure
any more. Here an exponential decay may take place. The wall shear stress in a swirling
pipe flow can be related to the wall shear stress in & non-swirling pipe flow as follows,

lim ,—]
Twnll ( [ vt we )

T, awi = l
wall,om swul ™ ( 51‘ [I'Umn-sw:rl])

]

The eircurmnferential component of the wall shear stress can be expressed as,

lim (l E [rW])
Tw.wa].l r—l

Twall Iim ( [r \/(W])

and combining both expressions givea,

m 18
Foall e (;g[rW])
Twall nonswirl  lim (1 8 ) '

rar (MU son-swirl]

],

Since it is assumed that the structure of the turbulence 1s not affected by the swirl
U nonmswirt May be approximated by U, and,

lim (1 a [rW])
Tw.wa.ll _ r—1
Twall,non-swirl Lim [TU]
reel rar

Furthermore, according to section 4.3.4, the ratio W/l is constant across the viscous sub-

layer. Hence,
lim (18
rst (Fﬁlrw}) lim

_ w
Izm _arIU] r—1 (U)
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which in turn represents the pitch of the limiting streamline at the pipe wall. Since the
shape of the radial distribution of W is assumed to be constant inz’, one may assume that

this pitch is proportional to 5,
lim /W
— | = A5,
(U ) A

r—l

3 denotes a dimensionless coeflicient or “shape factor”

Finally, Tnon—suirt can be approximated vsing the friction factor for fully developed
flow,

Trun—pyriel = g

where f denotes the friction factor, Blevins (1984),

Combining the above expressions and substituting in Eq. (4.25) gives

a8 ﬁfs

e (1:26)

vielding the expected exponential decay.

At higher intensities, the swirl does not exbibit an cxpenential decay any more. The
wall shear stress will become a function of the awirl number, and & function of the “swirl
mode” (Fig, (4.14)). The way the wall shear stress depends on the mode is predictable,
the more the swirl is concentrated near the pipe wall, the higher the wall shear stress will
be. For low swirl intensilies the different curves representing the different “modes” col-
lapse onte one curve. In this region the coefficient 3 in equation (4.26) can be evaluated,
Sinee the exponential decay law is based on the assumption that the swirl has no effect
on the turbulence structure, its magnitude may depend only on the Reynolds number. In
contrast to the assumption of Mottram & Rawat (1986), according o the present compu-
tational results, both the friction factor f, and the shape factor § in Eq. {4.26) depend
on the Reynolds number. The magnitude of 8 for a range of Reynolds numbers is given in

Table (4.1).

| Re|1-10T]3-10%F5-107]1-10° [3-10° [5.10° [ 1-10
[ 3 197 | 2.05 | 2,08 | 210 | 210 | 210 | 210

Table 4.1; The shape facter § as a function of Reynolds number

In contrast to the strong sensitivity of the circumfercntial component of the wall
ghear stress to the “decay mode”, the sensitivity to the pressure-strain model that is em-
ployed ia small, Fig. (4.15). This in spite of the fact that the shape of the vircumferential
velocity distribution in the “free-vortex” tegion is determined by the model for the pressure-
strain inleraction, see Fig. (4.9). However, the effect of the choice of the pressure-strain
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with differcnt prewsure-strain models and coefficients. (“Solid-bady-rotation mode®, Rep = 10%, N=100)
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maodel is most notable far from the pipe wall. The velocities close to the wall layer do nol
seem too different. Hence, the resulting shear stress and consequently the decay of the swirl
will be comparable for different models.

4.3.6 Closure

In the second part of this chapter a detailed study was carried out 1nto the structure of a
decaying switl in a turbulent axisymmetric pipe flow as predicted by a modified £—¢ model.
The most important aspect of the flow is that according to this model the momentum
exchange in radial direction is strongly reduced in large parta of the pipe cross-section. As
a direct consequence, the rate of development of a swirling pipe flow is much smaller than
the rate of development of a non-swirling pipe flow.

For the description of the decay of swirl, the integral amount of angular momentum
flux offers a suitable mecasure. The decrease of the integral amount of angular momentum
flux is governed by the wall shear stress only. When the ASM is used as a firsteorder correc-
tion to account for the effecls of swirl in a conventional low-Reynolds-number turbulence
maodel, there are no cuevature effects in the region adjacent to the pipe wall, If the Reynolds
number 1s high enough the tegion that is not affected by the streamline curvature extends
throughout the logarithmic layer. Thus the choice for the pressure-strain model does not
influence the prediction of the wall shear atress much. Az a result the decay of swirl is not
critically dependent on the paricular choice for the pressure.strain model.

In econtrast, the decay of the swirl depends strongly on the initial distribution of
swirl. Owing to the suppression of momentum exchange the initial character of the core
region of the flow is preserved. The magnitude of the wall shear stress is determined by
the velocity distribution in the region between the wall region and the core region. If the
vorticity 1s concentrated mainly in the core region the magnitude of the wall ahear stress ia
low even though the swirl number may be high. Vice versa, if the vorticity is concentrated
close to the wall the magnitude of the shear stress will be high.

In cxperimental studies, the decay of swirl is often fitted to an exponential decay
curve, see chapter 1. However, the reported eocficients for the decay of swirl exhibit a large
scatter. The results presented in this chapter indicate that part of the explanation for this
scatter may be found in the strong effect on the wall shear stress of the “swirl mode” and
the region of decay.

On either side of the “stable mode” region the flow phenomena observed are different.
Downstream of this region the swirl is too weak to affect the turbulence structure, and the
decay of the swirl can be described by an exponential decay law. Upsiream of the “stable
mode” region the flow ia characterized by rapid changes in the distribution of momentum as
well as the structure of the turbulence. An approach based on an algebraic approximation
of the turbulent stresses may not be accurate here,
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5. Aspects of non-axisymmetry in a
decaying swirling flow

8.1 Imtroduction

Disturbances commonly epcountered in flows through pipes may exhibit a non-
axisymmetnic chatacter. The reason 13 that most disturbances are caused by components
like elbowa and valves that do not possess any symmetry with respect to the pipe axia.
Thus the velocity distribution downstream of these cornponents will lack symmetry with
respect to the avia,

For non-swirling pipe flows the development of non-axisymmetric disturbances does
not seem to yield new, essentially different, regimes of flow development. In contrast, for
awirling flows the development of a slightly non-axisymmetric flow may be guite different
from the development of an axisymmettic flow. In this chapter 2 preliminary survey of the
subject will be made.

For neon-axisymmetric switling flows several scenanion ate possible for the flow to
develop. For example, the non-axisymmetric character of the flow may decay faster than
the awirl itself, leaving non-axisymmetric aspecis of the decay process limited to the initial
parts of the pipe. A second possibility is that the the non-axisymmetric chazacter of the
flow is amplified by the swirl. In the latier scenario the non-axisymmetric character is an
important feature of the decaying swirling flow. Also it is likely that the non-axisymmetric
character of the swirl distribution will be reflected in the axial velocity profile. Since the
swirl decays, one may expect that eventually the axial velocity profile becomes symmetric
again, If this scenario is followed still different possibilities exist for the development of the
swirl distribution. Either the swirl becomes symmetric as well, or the pon-axisymmetric
character of the swirl distribution is retained throughout the decay process. For this latter
poasibility, in the limiting situation where the strength of the swirl approaches zero the
centre of the swirl will maintain its off-axis position.

1t is difficult to predict which of these decay scenarios is actually followed. Clearly,
the different phenomena will be governed by a competition between viscous effects, that
may restore symmetry of the flow, and the essentially inviseid interaction of axially directed
vorticity and the cross-flow-plane components of the vorticity, that wmay enhance non-
axisymmetric modes in the flow. The non-viacous interaction of the axial and azimuthal
varticity components is rather complex. Even in a non-viscous axisymmetric pipe flow the
interaction between the axial and azimuthal motions is described as being “rather puzzling”
Batchelor (1957). Analytical solutions that describe this interaction are only possible for a
limited class of initial conditions. Hence, even for the non-viscous flows the prediction of
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non-axisymmetric awirling flows seems only possible using numerical techniques.

However, as already indicated in chapter 3, the accurate numerical treatment of non-
axisymmetric swirling flows is not trivial. Since the cross-flow-plane velocity components
may be quite strong for this class of flow, a fine mesh in the cross-flow plane is necessary.
Combined with the large decay length of the swirl, the accurste simulation of the flow poses
very large demands on computer resources. Thus a fully three-dimensional solution proce-
dure does not seem feasible. An option to reduce the excessive needs for computer power is
again to parabolize the flow equations. As was mentioned in chapter 3, the parabolization
of the flow equations in a situation with strong cross-flow-plane velocity components is not
a straightforward extension of the parabolization of the fiow equations for the symmetric
case, In order to obtain a “well-poscd” initial-value problem special measures have to be
taken for the calculation of the pressure.

An extra step in complexity is the prediction of a decaying turbulent flow. As demon-
strated in the preceding chapters, turbulence models based on an eddy-viscosity concept
are not always suited for predicting swirling flows. In some situations, for example for flows
with sirong swirls, second-order closure schemes appear o be necessary. However, for the
metering problem the swirl levels are only moderate. For the awirl intensities relevant to
the metering problem, the differences between the predictions of second-order turbulence
models and those of eddy-viscosity models are only small. Hence, application of higher-
order cloaure achemes for this class of flows does not seem appropriate. Furthermore, the
application of second-order closure schemes also poses extra demands. As was argued in the
preceding chapters, second-order closure schemes based on algebraic approximations of the
turbulent stresses are not suitable. For accurate algebraic approximations of the trapsport
of the turbulent stresses it is necessary that the curvature of the streamlines ia propetly
accounted for by the coordinate system used. In general this condition will not be met for
a flow that appreciably deviates from axisymmetry. Only full Reynolds-Stress models may
be expected to handle these flows aceurately. Reynolds-Stress models again pose large de-
mands on computer resources. Due to the limited relevance for the metering problem, the
difficulties in the numerical treatment and the necessity of elaborate and computationally
expensive turbulence closures, a simulation of non-axisymmetric swirling flow at moderate
or high swirl intensity does not appear to be opportune within the framework of this study.

Nevertheless, some information about the extent te which decaying swirling pipe
flowa tend to become non-axisymmetric is important. In this chapter we will attempt to gain
some insight into the problem of a non-axisymmetric swirling flow. First some altention
will be given to the literalure, calculations and experiments concerning non-axisymmetric
swirling pipe flows and finally some computed results for steady non-axisymmetric flows
at a low swir] intensity are presented.
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5.2 Experimental, theoretical and numerical work on
non-axisymmetric swirling pipe flows

Much theoretical work on nom-axisymmetric aspects of awirling flows is devoted to the
stability of Poiseuille flow in axislly rotating pipes (see for example Landman (1990),
Pedley (1969) and Topolosky & Akylas (1988)). Pedley (1969) showed that in the “rapid-
rotation” limit (U/wR < 1) the solid-body rotation may have 2 strong destabilizing effect
on the otherwise stable Poisenille flow, causing a linear instability at Reynolds numbers
as low as 3. The linear spiral instability waves found by Pedley (1969) are essentially
time dependent and rotate in the direction oppesite to the direction of the basic awirl.
Topolosky & Akylas (1988) performed numerical simulations of a rotating Poiseuille flow.
For the “slow-rotation” limit they found periodic perturbations with a helical symmetry.
As the axial pressure gradient was kept fixed in these simulations, the axial mean flow
induced by the helical waves caused a flux defect. In certain cases the defect appeared to
be as large as 40-50% of the undisturbed mass flux. Landman (1990) solved the Navier-
Stokes equations subject to impeséd helical symmetry with a fixed pitch, A Iimited study
way cattied out in the parameter space of the the axial and azimuthal Reynolds numbers
and the pitch of the imposed helical symmetry. The steadily rotating waves found by
Topolosky & Akylas (1988) were observed to undergo a series of bifurcations, from periodic
to a-periodic variations with time.

Clearly, these studies show that rotation is capable of destabilizing pipe flows and
that the inastabilitics may have a non-axisymmetric structure. However, a complex time
dependence as outliped in these studies may prevent practically feasible turbulent flow
calculations based o one-point closure schemes. On the other hand, the flows considered
in the studics mentioned above, are quite different from the flows we are concerned with.
For the present study they are only relevant in the sense that they indicate that symmetry
of awirling pipe flows i3 not elways possible. To our knowledge, for tutbulent swirling pipe
flows, no extensive theoretical or numerical studies have been performed. For this class of
flows the only sources of information are experimental resulta.

Indeed, in some experimental studies including the experiments described in chap-
ter 6, asymmetry of the velocity distribution has been reported. Even though the initial
velocity profiles were carefully kept symmetric, in the experiments performed in our lab-
oratory (see chapter 6) at some distance downstrearn of the “swirl gemerator” the flow
exhibited a non-axisymmetric character. Further downstreamn, as the intensity of the swirl
became much weaker, not only the axial velocity distribution but alse the circumferential
velocity distribution became more symmetric again.

In a study of swirl produced by two out-of-plane bends performed at the NBS by
Mattingly & Yeh (1988) the cxperimental results suggest that the centre of the swirl follows
a helieal path. The same result was found by Kite (1984). Also in this experiment, which
wag specifically devoted to the study of the asymmetry, the initially symmetric awirling pipe
flow became non-axisymimetric at some distance downstream of the entrance region. Simnilar
to the experiments of Mattingly & Yeb (1988) the centre of the swirl followed a helical
trajectory and the centre of the swirl was observed to “rotate” in the same direction as the
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gwirl itself. Contrary to the theoretical results of laminar flow in rotating pipes, no periodic
variation with time was observed in these experiments. However, since these experimental
studies were performed in turbulent flows, a periodicity may be difficult to detecl. Any
periodicity in the meassured signals is likely to be swamped by the Auctuations induced by
the turbulence, Moreover, the cnergy contained in the pon-axisymmetric modes is likely to
enter the turbulence cascade immediately. In this respect periodic or quasi-periodic modes
can be congidered as the large-ncale eddies of the turbulence.

Indeed in none of the experiments mentioned above, nor in the experiment described
in chapter 6, a clear periodicity was found. In this experiment, for the purpose of investi-
gating a possible periodicity, also an exploratory visualization study was performed. Small
air bubbles were injected ¢lose to the symmetry axis of the swirl generator. The centrifugal
acceleration caused by the swirling motion causes the bubbles to remain in the centre of the
swirl. Thus, non-axisymmetry and periodicity are easily detected. However, while a slight
non-axisymmetry was visible in the bubble path, periodicity was not found. Therefore it
appears thal the decaying turbulent swirling pipe flow can be considered as a “steady”
flow, Aa a consequence the computation of turbulent swirling flow employing a steady-flow
method 13 considered to be feasible.

5.3 Numerical simulation

In this section we will computationally study the effects of non-axiasymmetry on the decay
of the swirl and the effects of swirl on the non-axisymmetry of the flow.

A problem encountered in the study of non-axisymmetric flows iz how Lo quantify
the deviations from axisymmetry. In experiments this deviation is often quantified by mea-
suring the position of the centre of the swirl. Disadvantage of a measure like this is ita
local nature, For example, a growth in the displacement of the centre of the switl not nec-
essarily implicates a growth in the non.axisymmetry of the velocity distribution. The non-
axisyminetry as indicated by the swirl centre may be different from the non-axisymmetry of
the axtal flow field, while also Lthe angular distribution of angular momentum is net neces-
sarily correctly characterized by the position of the centre of the swirl. A more appropriate
method to quantify non-axisymmetry is to use a combination of integral quantities. For
the axial velocity distnibution an appropriate measure ts a “contre of mass flow” defined
as,

E- A FUdSt/ fn U2 | (5.1)

with {} representing the cross-sectional area of the pipe.

An equivalent measure for the asymmetry of the swirl is for example a “centre of angular
momentum flow”,

o _ 2 2 c e
F, = fn U U l72dsY/ fn Uello|712d52 . (5.2)
Using the measures defined above, the evolution of the ron-axisymmetry can be followed

eastly.
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As was shown already in section 3.3.2, for following the evolution of the asymmetry
in & swirling pipe flow the application of the reduced Navier-Stokes equations is a neces-
gity. In contrast to symmetric swirling flow, in & non-axisymmetric swizling flow potentially
strong convection effecta may ceeur in the cross-flow plane. Furthermore, the cirenmferen-
tial velocity components cannot be considered small any more. Contrary to a pon-switling
pipe flow, or a symmetric swirling flow, in which the radial velocity components acale with,

R
Ucmaa—ﬂow-plme =0 (fUmuaI) '

in a non-axisymmetric swirling pipe flow the cross-flow-plane velocity compopenta are
partly independent of the axial velocity field. Instead, they must be considered as the sum
of three contributions:

» & “scalar-potential”® part (Ve, Wa) given by

il a% 2 U
Va—gg, W'WHE and V‘b_E’
* & “vector-potential” part (Vy, Wy) given by
av aw
Vw—E, and qu—ﬁ,md

» an inviscid part (V;, Wi} caused by the interaction of the axial and the cross-flow-
plane vorticity components. {For example the flow induced by the extra axial vor-
ticity produced by “vortex sireching” in an axially accelerating flow.)

The magnitude of the “scalar-potential” part and the inviseid part of the velocity may be as-
sumed to be small, see Briley & McDonald (1984). The magnitude of the “vector-potential”
part of the cross-flow-plane velocity ficld iz determined by the initial swirl intensity and
19 independent from the development of the axial velocity distribution. Thus the reduced
Navier-Stokes equations are needed for an accurate deseription of the flow development.

However, as shown in chapter 3, the approximation of the pressure field might pose
problems. Due to the pressure-cootinuity coupling the “well posedness™ of the aystem of
equations may be destroyed. To guarantee that the system of equations remains “well
posed” it is necessary that the coupling between the axial pressure gradient and the conti-
nuity equation is removed. In a symmetric swirling flow this may be achieved by restricting
the radial variation of the axial pressure gradient such that it is a function of the -
component of the cross-flow-plane velocity anly. In a non-axisymmetric flow an equivalent
procedure to obtain the cross-flow-plane variation of the axial pressure gradient is to use a
Poisson equation for the pressure (section 3.3.2). To obtain an “uncoupled” pressure field
all “scalar-potential” coptributions in the cross-flow-plane velocity field must be removed
from the pressure-Poisson equation. Since in this algorithm the separate components of the
cross-flow-plane velocity distribution are net known, this procedure is not feasible. Thus
we are forced to neglect the radial variation of the axial pressure gradient.
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Clearly, for non-swirling flows the approximation of a uniform axial pressure gradient
is consistent with the parabolization concept. For swirling flow the approximation of a
uniform axial pressure gradient may be invalid. To assess the validity of this approximation
we will perform an order-of- magnitude analysis of the pressure term in the axial momentum
equation.

Assume that the ow can be categorized as a “fully viscous flow” Rubin (1984). In
this situation the axial pressure gradient can be approximated with,

ar Umean
s
it H
Owing to the evolution of the azimuthal velocity distribution the axial pressure gradient
is “modulated” with a term proportional to the square of the circumferential velocity and
proportional to the reciprocal of a typical length scale £, for the downstream evelution of

the swirl,
aaF

Oz

The evolution length scele is proportional to aRe R, were @ is of order 107! and hence,

Uz .
- swirl .
oY)

wirl

dr (aRe R) )

A necessary condition for the validity of the uniform axial pressure gradient in the cross-
flow plane ia

0AP _ Ul

AP _ ap
8z < 9z’

2 a2
allicin € Uean -

The result is that the calculations based on a uniform axial pressure gradient in the cross-
flow plane must be restricted to low swirl intensities. In the calculations presented here
Uywicl/ Umean = O(107%) to O(1071).

For turbulent flows, as a consequence of the low admissible swirl intensity, the tur-
bulent stresascs may be modelled with relatively simple turbulence closures. Tt follows from
the computational results reported in chapter 4 that the predictions using eddy-viscosity
turbulence meodela and second-order closures coincide for low swirl intensities. Hence, for
the present turbulent-flow calculations a simple mixing-length model will be used.

In the next sections we will present results for non-axisymmetric swirling flow. First
results of a simulation of a larinar flow will be presented, next results for a turbulent flow
are presented. The calculations are based on the parabolic penalty type of algorithm that
has been presented in section 3.3.2.

5.3.1 Laminar non-axisymmetric swirling pipe flow

The firat resulls presented here concern the evolution of an arbitrary but symmetric inlet
condition. In this caleulation the distribution of the axial velocity component is that of
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Figure 5.1: The path of the COM (a) and COAM (b) in a swirling pipe ow. (Symmeiric inlet condition,
initial swirl number, $inigiar = 0.08, laminar flow, Rep = 2+ 10%)

a fully developed flow, the inlet condition for the circumferential velocity distribution is
given by

Veoz(l=y?—2%) and W~ —y(l -y®=7%).

Fig. (5.1) shows the evolution of the position of the “centre of mass flow” (COM), see
Eq. (5.1}, and the “centre of angular momentum flow” (COAM), see Eq. (5.2). Though,
even for the initial profile, the finite resolution of the discretization causes the COM and
the COAM 1o be located off the centre of the pipe, no appreciable asymmetry develops.
However, the evolution of the position of the OOM and the COAM does not seem to be
completely arbitrary. Possibly, the kivematics of the flow affects the development of this
discretization-error-induced asymmetry, Since the error in the position of the COM and
COAM induced by the discretization error, is not negligible, conclusions concerning the
stability of the flow against non-axisymmetric perturbations cannot be drawn from this
result.

Next a non-axisymmetric perturbation in the initial profile is intzoduced. The am-
plitude of this perturbation is small compared to the “basic” flow, but large compared to
the discretization-induced errors. Naturally there is a large freedom in the choice the type
of perturbation that can be chosen. Here two extreme types are chosen. The first type (1)
congists of a strictly two-dimensional dipole-like strueture in the cross-flow plane. It can
be viewed upon as induced by a vector potential,
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with
T, ~ y{l — 3% ~ 2%)®  as x-component of a vector potential

The second lype (/1) perturbation consists of a disturbance of the axial velocity distribu-

tion only,
Up~y(1—¢* —2%).

The type ! disturbance shifta the centre of the swirl to an ofl-axis position, the type
Il disturbance shifts the position where the axial velocity is maximum to an off-axis
position (Fig. (5.2)). In pipe flows with awitl generated by out-of-plane bends, the non-
axisymmelric character of the flow appears to be very similar to the character of the type
IT disturbance, see Mattingly (1988). The evolution in downstream direction of the type

'R + l*::,o’lt

'R ¥R

Figure 5.2: An exammple of the initial velocity distribution for (a), the type [ disturbance, contours of the
wain! component of the axial vorticity, and (b) the type IT disturhance, contowrs of the axial velocity
compaonent

II disturbance is shown in Fig. (5.3) for 0 £ /0 = 50 and for a different magnitude of
the initial disturbance. According to Fig. (5.3) the initial asymmetry of the profile indeed
grows. Furthermere, Fig. (3.3) shows that the magritude of the asymmetry scales with the
magnitude of the initial disturbance.

Apart from the development of an increasingly more asymmetric velocity distribu-
tion, the swirl contained in the flow also decays. Since the driving force of the asymmetry
decays, one may expect that eventually the axial velocity profile should become symmetric
again. Figs (5.4) and (5.5) show the evolution of the position of the COM and COAM
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Figure 5.3: The evolution of the position of the COM and COAM as a function of the initial disturbance.
The relative magnitude of the disturbance (Amplitude perturbation/Amplitude base fiow) ia a) 1%, b)
2% and c) 5%, Type IT disturbance, laminar flow,, initial swirl number, Siitiq = 0.08, laminar flow,

Rep = 2107

COM COAM
R
Q.10 Z 0.25 EIF:JD—OO
D500 ’
.00 k x 0,00 K"_“\
*D=200 =200
-0.10 -.25
-0.10 0.00 Q10 -0.25 0.00 0.25
¥R ¥R
(2) (b)

Figure 6.4: The path of the (a) COM and the (b) COAM for 0 = z/D < 200, type [ disturbance, laminar
flow, initial swirl number, Sipirnaz = 0.08, laminar flow, Kep = 2+ 10%
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Figure 5.5: The path of the (a) COM and the (b) COAM for 0 £ =/ D < 200, type 1T disturbagce, laminar
How, initinl wwirl number, Siniia = 0,08, lnminar flow, Rep = 2 107

with increasing distance along the pipe. They show that when the swirl intensity ia low, the
COM as well as the COAM returns to the axis of the pipe. Apparently non-axisymmetric
modes are triggered only if the swirl is strong enough, as 1s illustrated by Fig. (5.6). This
figure shows the evolution of the asymmetry for an identical initial condition but for differ-
ent values of the Reynolds number. According to Fig. (5.6), for ftep = 2 + 10* asymmetry
is growing, for Rep = 4 * 10° the asymmetty initially neither grows or decays, while for
Rep = 2+ 10? the asymmetry decays.

The results described above show that for swirls that are strong enough, the sym-
metric swirling mode is a meta-stable state. Any initially non-axisymmetric disturbance
tends to grow m the downstream direction. The extent to which the flow becomes non-
axisymmetric scales with the magnitude of the initial disturbance, Thus the flow exhibits
a lincar spatial inatability. T'he growth rate of the instability is determined by the ratio of
the swirl inteasity and the viseous forces, e, a cirenmferential Reynolds number based on
the swirl velocity. When this ratio is smaller than a critical value the non-axisymmetric
modes decay; when it exceeds the critical value, the non-axisymmetric modes grow, Qwing
to the decay of the switl, the driving force, eventually all asymumetry must disappear.

It must be kept in mind that for laminar flows there is no guarantee that the flow
remains stationary. As indicated in section 5.2 instationary modes are possible. When non-
stalionary modes do occur, the possibility exists that within a short distance downatream
of the initial disturbance the instationary modes will dominate the flow. Clearly, in this
situation none of the steady-state results shown above will occur in practice.
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Figurc 5.6: The path of the COM and the COAM for 0 £ =/R < 0.05 * Rep and different Reyaolds
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5.3.2 Turbulent nop-axisymmetric swirling pipe flow

For the turbulent pipe flow a mixing-length turbulence model has been applied. In this
model the turbulent stresses are given by,

av;
mﬂ? - Uza'z—j N

The eddy viscosity is prescribed by a mixing length formula,

ol [aU: | JU;

_ 2
yi"“("cyn) an [6m,+ Bm.] 1
with ¥ Tepresenting the “oormal” distance from the wall
and r the von Karman coefficient.

For regions close to the pipe wall, the van Driest damping of the mixing length I, is used,

- (1 _ eRe,/A+)

with Rer = yfrfp yafv
and At =26,

Since the largest velocity gradients occur close to the wall, in the discretization the ele-
ments become rapidly smaller close to the wall, see Fig. (5.7). Similar to the calculations
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Figure 5.7: The element distribution for the turhulent fow caloylations.

for laminar flow, Lthe initial velocity distribution is taken as a fully developed axial velocity
distribution. Added to this developed axial velocity distribution is & symmetric swirl com-
ponent. Contrary to the laminar case, the position of the COM and the COAM remain
stable throughout the length of the pipe considered. Even when a type I disturbance is
used as perturbation to the initial velocity distribution, both the position of the COM
and of the COAM relurn quickly to the axis of the pipe, see Fig. (5.8). When a type
f1 disturbance is used as perturbation, the asymmetry is more proncunced, but still the
non-axisymrnetry is much weaker than is observed in laminar flow, see Fig. (5.8).

There are two possible explanations for the apparent higher stability of turbulent
flows against non.exisymmetric perturbations. The first reason is that in the turbulent
Hlow at Rey = 2+ 10% the momentum exchange is stronger than in a laminar flow at
Rep = 24 10% Thus the effective circumferential Reynolds number is lower and the flow
will be more stable. Mareover, even though the Reynolds number in the laminar flow case
is a factor ten lower, the decay of swirl in the turbulent flow case is faster than 1o the
laminar fow case, Thus the driving force of the asymmetry disappears more quickly than
in the laminat case.

A second explanation for the enhanced stability for the turbulent flow is found in the
shape of the axial velocity distribution. Away from the wall the axial velocity distribution
is much flatter than the developed axial velocity distribution in a laminar flow. Therefore,
convection effects in the axial momentum equation, caused by a non-axisymmetric cross-
flow-plane velacity distribution, are much smaller than in a laminar flow. On the other
hand, in the region close Lo the wall, where large velocity gradients do occur, the wall
forces the flow to be symmetric. Thus a part of the interaction between the axially directed
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vorticity and the cross-flow-plane vorticity components is suppressed and again stability is
enhanced. Indeed, it turns ont that alse laminar swirling flows are much more stable when
the initial axial velocity distribution is more uniform.

Finally, in Fig. (5.10) the effect of the asymmetry of the awir] distribution on the
decay rate is shown. When the non-axisymmetric circumferential velocity distributien is
considered to be a superpaosition of a symmetric ewirl and a dipole-like perturhation, one
would expect that, to first order, asymmetry ia not relevant for the rate of decay of the
swirl. {}ue to the mirror-symmetric character of the perturbation, the countribution of the
perturbation to the wall-shear stress cancela. However, for a turbulent flow, the turbulent
momentum exchange iz affceted by asymmetry, Even a simple mixing-length approxima-
tion for the eddy viscosity is capable of accounting for this effect. Such a mixing-length
model predicts that the non-axisymmetric part of the velocity distribution causes a non-
axisymmetric eddy-viscosity distnibulion. As a resuit the symmetry of the wall-shear stress
distribution is destroyed. Consequently, a non-axisymmetric velocity distribution may be
reflected in the decay rate of the swirl. The results presented in Fig. (5.10) show that the
effect is very small. For the flows considered in this chapter the decay rate is not affected
by the asymmetry.

5.4 Closure

In this chapter an exploratory study was carried out into nop-axisymmetric aspects of
laminar and turbulent swicling pipe flows. Qur own experiments, experiments describad
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in the literature and theoretical studies have indicated that symmetry with respect to the
pipe axis is not self-evident. Even a simple flow like a Poiseuille flow in an axially rotating
pipe, may exhibit strong and still not fully understood instabilities.

In this study some simulations were performed to investigate the spatial atability
of swirling flow in a stationary pipe. For laminar flows, above a critical swirl intensity, the
flow appears to be linearly unstable for non-axisymmetric disturbances. The driving force
that triggers these disturbances is the swirl itaelf. Since the swirl decays with distance
along the pipe, the driving force for the non-axisymmetric modes disappears gradually.
Eventually, the awirl intensity will become too small to sustain the non-axdsymmetric
modes and the flow becomes axisymmetric again. This implies that the asymmetry of the
flow is of importance during the first stages of the decay only.

A turbulent flow with a mild swirl appears to be more stable against pon-axisym-
metric disturbances than a laminar flow. Two effects may be responsible for the stronger
resistance to asymmetry. Compared to a laminar flow, the exchange of momentum is rela.
tively stromger in a turbulent flow. Thus the effective Reynolds number based on swirl may
be lower for a turbulent flow. The second reason is that distribution of the axial velocity
is much more uniform than the distribution for a Poiseuille low. This prevents a strong
interaction of the axial and the cross-flow-plane components of the vorticity vector.

On the basis of a mixing-length hypothesis for the turbulent stresses one may expect
that the decay of the swirl is mfluenced by asymmetry. However, the computational results
indicate that this effect is negligible. Hence, for low swirl intensities, asymmetry needs not
to be considered for an accurate description of the decay of the swirl,
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6. Experiments

6.1 Introduction

In this chapter experimental results concerning swirl in a turbulent pipe flow are presentod.
The results presented here are first results of a large and exploratory experimental study of
pipe flows with swirl, see Steenbergen (1992). The objective of the measurements presented
here has been to study the decay of swir! in flows relevant to the problem of flow metering.
As noted in chapter 1, swirl in transport systems for natural gas may be produced by
a combination of two vut-of-plane bends. Swirl produced by this mechanism, ia seldomly
very intcnse, is concentrated nesr the pipe wall and is never axisymmetric.

In the present work swirl is introduced into the flow by means of an assembly of
guide vanes, rather than by a combination of sut-of-plane bends. By using adjuatable guide
vanes for generating swirl, a large number of different velacity distributions cen be gener-
ated. Moreover, contrary to the swirling flow produced by out-of-plane bends, the velocity
distribution produced by guide vanes can ecasily be made axisymmetnic, Clearly, axisym-
metrie velocity distributions will case the interpretation of the meoasurements considerably.
However, although the swirl is introduced differently, it this study care is taken to produce
velocity distributions not too different from the profiles typical for the flow produced by a
combination of bends.

In earlier experimental studies of switling pipe flows (for example Kitoh (1991)) the
initial awirl intensity was high (5 > 1.0), the initial velocity distribution exhibited reversal
of the axial component and a strong concentration of axial vorticity near the axds of the
pipe. In contrast, in the present experiment the intensity of the initial swizl ia moderate
(% £ 0.5), no flow reversal occurs and the concentration of the axial vorticity near the axis
of the pipe is not very pronounced.

6.2 Experimental method and flow configuration

6.2.1 Flow configuration

A schematic representation of the experimental setup using water as the flow medium is
given in Fig. (6.1). Its main paris are the “swirl generator”, the test scction with a circular
cross-section and an inner diameter of 0.07 7 and a total length of 20 m and the measuring
gection. A conatant flow of water is maintained by controlling the water level in a supply
vessel. The level iz regulated using a combination of pumps, each equipped with a simple
on-off water-level sensor. The maximum realizable volume flow in the water circuit 1o about
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Figure §.1: A sehematic view of the experimental set-up

8¢ m®/hr. The maximum variation in a specified flow rate is less than 2%. The maximum
attainable Reypolds number hased on the mean velocity and the pipe diameter ia 300, 000.

Swir] is introduced in the flow by means of a “swirl generator”, see Fig. (6.2). The
generator conaists of an assembly of guide vanes mounted onto a central body within a
wider seclion of the tube. Flow reversal near the axis of the pipe is prevented by allowing a
part of the water to flow through a channel passing centrally through the central body. By
changing the diameter of the central channel and adjusting the angle of the guide vanes, 2
large variety of initial velocily distributions may be realized. In the series of measurements
deacribed here, one setting of the vane angle, central channel diameter (20 em) and flow
rate was chosen.

Front View Side View

Figure 6.3 The ywirl geaerator

The test section consists of a set of straight brass pipes of different lengths, all with
an inner diameter of 0.07 m. The pipes were manufactured according to DIN 17660 and
DIN 1755 standards. However, the pipes used in the test section were specially selected
to meet additional criteria. These extra criteria were defined to guarantee that the pipe
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system itself does not introduce disturbances to the flow, These criteria were on:

» straightness, only pipes without a visible curvature were used;

w internal roundness, the maximum variation allowed was 2 % 107* m; and

o wall thickness, the maximum allowed eccentricity of the inner and outer diameter

was 5 x 107 m.
Special pipe-to-pipe connections were designed to give a minimum discontinuity between
two consecutive pipes, Measurements of the static pressure drop have indieated that the
pipes may be considered as almost “hydraulically” smooth, The mean roughness parameter
obtained from the Moody diagram was ¢/ D = 1075
The LDV measurements (section 6.2.2) have been carried out in the apecially built

measuring section, see Fig. (6.3), The measuring section consists of an ordinary pipe see-
tion. To allow optical access to the pipe, in three sub-sections of approximately 1 inner
diameter long, the brass pipe wall was replaced by a thin (100 prn) polyester film. To
minimize undesired optical effects and to stabilize the polyester film, the polyester sections
are contained in water-filled boxes with flat windews. The pressure in the boxes is kept at a
slightly lower level than the pressure in the pipe. This is achieved by externally conpecting
the boxes to 2 point downstream. Thus, effectively the polyesier sections are very rigid
and it may be assumed that they preserve their cylindrical shape., The complete measuring
section can be rotated around the axis of the pipe to allow for measurements at different
inclination angles. It may be placed anywhere in the test section. Apart from the first eight
diameters, measurements are possible at every downstream position.

Presaure Connection

Polyester
Film

Flow
¢ direction

Glug
Windows

Front View Side View

Figure 6.3: One sub-gection of the measuring section

6.2.2 Laser doppler velecimeter

The velocities are measured using a two-component Laser Doppler Velocimeter (LDV)
{DANTEC). The system iz operated in the reference beam mode. For each measurement
within the pipe, a combination of three independent measurements using three different
inclination angles (~45°%, 0* and 45°), yields the three velocily compenents and all compo
nents of the Reynolds-stress tensor.

The measurement volume has a length of 1000 g and a diameter of 100 pm. As
a reference point for the orientation of the measurement volume, the axis of the pipe is
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used. The position of the axis is determined uaing a aignal produced by the polyester pipe
wall. When the measurement volume is placed on the polyester section of the pipe wall,
a strong continuous signal with a frequency equal to the shift frequency 1 produced. A
traverse of the measurement volume through the pipe wall in the direction normal to the
wall, yields an approximately symmetric intensity profile as a function of the distance along
the traverse. By definition, the position of the pipe wall was chosen to be at the symmetry
plane of the intensity profile. By combining three measurements of the wall position at
three inclination angles the position of the axis of the pipe is determined.

The messurement volume i3 positioned by positioning the LDV system ar a whole.
For this purposc the LDV system is mounted onto & rotatable two-degree-of-freedom
traversing system operated by stepping motors. A more extensive description of the exper-
imental set-up and measuring system can be found in Steenbergen (1992).

6.3 Results

Measured results for the turbulent pipe flow with switl are shown in Figs (6.4) to (6.11).
In total, three “traverses” ! at three different inclination angles were made. However, the
non-axigymmetric character of the measured velocily distributions appeared to he weak
(see also chapter 5). $ince the measured distributions appeared to be almost axisymmetrie,
here only the results of the traverse in the ¥ = O-plane are presented, The complete results
of the experiments can be found in Steenbergen (1592). The Reynolds number based on
the mean axial velecity and the pipe diameter was 50,000, The initial swirl aumber S
(Fa. (4.24)) is estimated to be S,y == 0.42. Figs (6.4) and {6.5) show the mean axial
velocity component. At the first station, (z/0} = 8.7), an elevated platean of higher axial
velocity is visible. Possibly, this plateau is related to the platean that s predicted by the
calculationa obtained with the modified-k — ¢ model, see section 4.3.3. However 1L may
alac be a remnant of a “jat-like” axial flow generated by the hole in the cenfral body of
the “swirl generator”. Further downstream, this plateau disappears and the axial velocity
digtribution develops rapidly towards a remarkably flat distributien (z/D = 36, 50, 70).
At 2/D = 96 the character of the distribution of I7 starts to resemble the character of &
fully developed pipe flow. However, the difference between this distribulion and the fully
developed distribution is still appreciable, illustrating the long distance needed for the
decay of swirling pipe flow.

The distribution of 1he mean circumferential velocity components is shown in Figs
(6.6) and (6.7). Even though the flow passing through the central channel of the “swird
genecrator” ia not subjected to any circumferential excitation, and a low level of vorticity
near the axis of the pipe might be expected, already at z/D = B.7 the circumferential
velocity distribution exhibits a concentrated central region with a high level of vorticity.
The character of the circumferential velocity profile at the first station resembles the char-
acteristic distribution of the circumferential velocity found in other experiments, such as

1. Note that in fact one “traverse” congists of three different traverses performed with three different
orientations of the messurement volume with respect to the traversing direction.
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Figure 8.4: The mean axial velocity component as function of the distance from the axis of the pipe at
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Kitob (1991) and Algifri et ol. (1987).

According to Kitoh (1991) and Algifri et al. (1987) the cireumferential velocity
distribution can be divided into three regions, a core region which rotates as a solid body,
an intermediate region or “free vartex” region containing only a small amount of vorticity
and s wall region where the circumferential velocity sharply decreases to zero as a funetion
of the distance to the wall, At /D = 8.7 the present circumferential velocity distribution
clearly exhibits a “solid-body-rotation”™ core region. Howaver, the concentration of the axial
vorticity component near the axis of the pipe is not as pronounced as in the experiment
of Kitoh (1991), see Fig. (6.12). Furthermore, the “free-vortex” character of the outer
region is only weak. The sharp decrease of circumferential velocity as a function of the
distance from the axis of the pipe in the wall region is again clearly reproduced by the
present measurements. At the second station z/D = 22, the threeregion character has
dizsappeared. In the region ¢lose to the axis, the magnitude of the axial vorticity component
has decreased considerably and no *free-vortex” region can be distinguished any more. At
this station the deviations from axjgymmetry appear to be the most pronounced. Further
downstream, see Fig. (6.7), the “solid-body-rotation” region expands until it fills the cross-
sectional area of the pipe almost completely and the flow returns to an axisymmetric state.
At larger distances from the “swirl generator”, where the intensity of the swirl has become
low, the shape of the velocity distribution remains almost constant,

Regrettably, due to an unforeseen technical problem, reliable measurements of the
turbulent shear stresses could not be obtained. A strong external signal witk a frequency
close to the shift frequency jammed the diode signals and effectively prevented the reli-
able evaluation of the turbulent shear stresses. The messurements of the normal stresses
bowever, did not suffer from this problern.

The development of these components of the Reynolds-stress tensor is shown in
Figs (6.8) to (6.11). Near the axis of the pipe, the distributions of the normal-stresses
exhibit a strong peak at the first station dewnstream of the “awirl generator”, see Fig. (6.8).
Furthermore, at this axial station, the turbulence appears to be approximately isotropic.
Apart from the region close to the pipe wall the three normal components are of the same
order of magnitude. At the next station, as Fig. (6.9) shows, the level of the u?-component
has decreased considerably near the axis. Here the radial distribution of the u?-component
of the Reynolds-stress tensor is almoat uniform. In strong contrast with this is the hehaviour
of the v%-component and the wi-component of the Reynolds-stress tensor. The value of
these stress components remains approximately of the same ordet of magnitude and the
radial distoibutions of the two components remain peaky. In downstream direction the
magnitude of v¥ and w? decreases gradually. Howaver the peaky radial distributions may
be distinguished until /D = 50. At larger distances downstream of the “swirl generator”
this striking difference in the distribution of energy between the three normal eompenents
of the Reynolds.stress tensor gradually develops towards a more isotropic distribution,
see Fig. (6.11). Here the distributions of the normal stresses start to resemble the radial
distributions of a fully developed nop-swirling pipe flow, showing that the u? component
has the largest magnitude and that the normal stresses are smallest at the axis of the pipe.
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6.4 Comparison with results of other experiments

In this chapler results have been presented of an experimental investigation concerning a
turbulent pipe flow with swirl, In this experiment emphasiz was put op & type of swirl
compatable to the swirl that is likely to be encountered in large-acale transport systems for
natural gas. However, unlike the velocity distributions encountered in transport systems for
natural gas, the velocity distributions in the present experiment are almost axisymmetric,
In this sense the present experiment can be distinguished from earlier experiments described
in literature. In the experiments described in recent literature (e.g. Kitoh (1991), Algifri
et al. (1987) and Mattingly & Yeh (1988)), either the swirl is introduced by means of
a device similar to the device used in the present experiment, or the swirl is gencrated
by a combination of out-of-plane bends. The flow in the former type of experiments is
characterized by a very concentrated core with solid-body rotation, by a swirl intensity
that is high and by a central zone of recirculation attached to the swirl generator, see
Fig. (6.12). The flow produced by a combination of out-of-plane bends is characleriged
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Figure 6.12: Some typical radial distributions of the circumicrential and axial vefocity components as
mensured by Kitoh (1891) in a turbulent pipe fow at Rep = 108

by a much smoother distribution of swirl and by a low swirl intensity, see Figs (6.13)
& (6.14). In the distribution of the axial flow vo recirculation zones or even “dips” arc
present. However, immediately downstream of the bends the axial and the circumferential
velocity profiles are sirongly nou-axisymmetric.

The results presented here reflect features characteristic for both types of experi-
ments. Close to the swirl generator, the flow exhibits the three-region character—a “solid-
body-rotation” core, a “free-vortex” annunlar region and a “wall” region—typical for the
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first group of experiments. However, contrary to the radial distributions of the circurnfer-
ential velocity compenent measured by Kitoh (1991), which keep a high radial gradient
along a large part of the pipe, in the present experiment the “solid-body-rotation” core
starts to expand immediately in the cross-sectional planc. From a relatively short distance
behind the swirl generator on, the circumferential velocity profile is in closer resemblance
with the results obtained by Mattingly & Yeh (1988) than that measured by Kitoh (1991).

The radial distributions of the axial velocity component measured in the present
experiment differ from the results in both types of experiments described above. Apart
from the region close to the “awirl generator” the radial distributions of the axial veloc-
ity component at the differept axial positions are rather uniform. Neither the results of
Kitoh {1991) and Algifri e al. (1987) nor the results of Mattingly & Yeh (1988) exhibit
comparable distributions. Clearly, the central recirculation region distinguishes the axial
velocity distributions of Kitoh (1991) and Algifri et al. (1987) from the present results. In
the results obtained by Mattingly & Yeh (1988) the radial distribution of the axial velocity
component is strongly affected by the non-axisymmetric character of the flow.
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Finally, one of the most striking features of the present rosults s the behaviour of
the normal Reynolds-stresses in the “solid-body-rotation™ core of the flow. In the litera-
ture, no comparable effect has been reported. Since the flow is not subjected to a strong
deformation in this region, it appears that the development in downstream direction of the
normal components is not caused by extra swirl-induced production of turbulence. It may
be assurned that the mutual interaction of the small-scale turbulent eddies is affected by
the large-scale background vorticity caused by the swirl, or even that a strong direcl inter-
action exists between the large-scale background vorticity distribution and the small-scale
turbulent eddies.

The comparigon of the resulls presented in this chapter and some typical results
reported in the literature clearly indicates the diversity of the problem of a decaying awirl
in @ turbulent pipe flow, Although in some aspecis the different results show a degree of
resemblance, in general each of the results also appear to have strongly different character-
istics. The differences may be partly caused by differences in the method of swirl generation
or in the intensity of the swirl. However, the comparison of the results of the experiments
indicates that the differences in the initial velocity distribution for these experiments also
cause the swirl to develop differently in downstream direction,
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7. Comparison and discussion

7.1 Comparison

In this section we will compare the measurements presented in chapter 6 with predictions for
exisymmetric low based on the turbulence models presented in chapter 4. The comparison
is carried out for a Reynolds number of 50,000 and a moderate value of initial swirl. The
profiles of the mean flow quamtities measnred at the first axial station (z/D = 8.7) are
used as an initial condition for the computation. For the region between the pipe wall
and the measuring point closest to the wall, the initial velocity distribution is obtained by
interpolation according to the logarithmic law of the wall.

The k and ¢ inlet conditions are obtained by a relaxation method: to the axial and
angular momentum equations an additional “force” term F is added. For example for the
axial momentum equation this texm is

F = Croree(Vinitial(r; 0) = U(r; 2)),

with
Corce representing a constant of magnitude ¢&(101),
Uipitial the velocity distribution obtained from experiment
and
v the present velocity distribution.

is added. With these force terms added, the solution of the continuity equation, the three
momentum cquations and the k and ¢ equations, is allowed to evolve until it reaches a
fully developed state. In this state the radial distribution of, for cxample, U(r;z) will be
very similar to the distribution of Uipyia(r;0) provided that ... is large enough. The k,
& and velocity distributions belonging to thiz solution arc used aa the initial condition for
the actual calculation, without F added.

In this comparison we consider the standard k& — ¢ model and the swirl-corrected
k — ¢ model, using the Gibson/Youniz pressure-strain coeflicients, descnbed in chapter 4,
Neither the full ASM nor the RSM model are considered in this comparison. As indicated
in chapter 4 the results of the ASM are almest identical to the results of the swirl-corrected
k — ¢ model. According to Chen (1992) the results of calculations employing an RSM based
ot the Gibson & Younis (1986) pressure-strain approximation are, at least in a qualitative
senae, in agreement with the results of the computations using the swirl-corrected k —
& model

Fig. (7.1) shows a comparison of the predicted and measured radial distributions
of the circumferential velocity W at four axial positions. Neither the swirl-corrected & —
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Figare 7.1: A comparison of the computed radial distributions of the circumferential velocity component
W, and the measured distributions at different axial stations. Rep = 5 x 107

¢ model {M-k-eps) nor the standard & — ¢ model (k-epa) appears to be capable of represent-
ing the true behaviour of the flow with switl. The swirl-corrected & — ¢ model predicts an
efficient reduction of the radial exchange of angular momentum by the swirl, that results
in a “three-region” character of the radial distribution of W with a distinet “free-vortex”
region along a larpe part of the pipe. In all expenments reported by other authors, per-
formed at a higher awirl intensity (Algifri (1987) and Kitoh (1991}), a similar “three-region”
behaviour is found.

The standard k& — ¢ model predicts a radial exchange of angular momentum that is
not affected by the swirl. It results in a rapid development of the radial distribution of the
circumferential velocity component towards a “self-sirmlar™ distzibution that i3 preserved
up to the last station considered. This behaviour is in better agreement with the results of
expeniments using out-of-plane bends as switl generating mechanism.

The measured distributions of W show that neither of these two scenarios is followed.
While: in the first part of the pipe (/D < 50) the radial distributions exhibit a “three-
region” character, in the second part of the pipe (z/D > 50) the measured distribution of
W develops towards an almeost perfect “solid-bedy-rotation” velocity distribution. Though
not as pronounced as predicted by the swirl-corrected & — ¢ model, the measured radial
distributions of W suggest that in the initial stages of the decay the radial exchange of
momenturn i reduced. In contrast, the experimental results suggest that during the final
stages of the decay an effective radial exchange of momentum occurs. The almost perfect
“golid-body-rotation” velocity distribution even suggests that in the second part of the
pipe (z/D > 50} the radial exchange of momentum in the experiment is more effective
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Figure 7.2: A comparison of the computed radial distributions of the axial velocity component U, and the
mensured disteibutions at diffarent mxial stations. Rep = b x 10%

then the radial exchange predicted by the standard & — ¢ model.

The measured and predicted axial velocity distributions, Fig. (7.2), partly confirm
this suggestion. While the results of the calculation based on the standard k — ¢ model
rezemble the “developed pipe-flow distribution® already at z/D = 36, the measured dis-
tribution develops to an almest uniform distribution. Only beyond z/I} = 100 the experi-
mentally determined distributions of I/ reaches a state comparable to the fully developed
state, see Steenbergen (1992).

The predictions of the switl-cotrected k — ¢ model exhibit a central jet-like plateau
in the distribution of I/ that is not present in the measurements, see Fig. (7.2). Thus, also
the strong reduction of the radial exchange of axially directed momentum, that is predicted
by the corrected £ — € model, iz not reflected by the measurements.

Keeping in mind the large discrepancies between the calculated vedocity distribu-
tions and the measured distributions, it is bo surprise that the experimentally determined
rate of decay of the swirl differs from the calculated rate of decay. A comparison of the
measured and the calculated decay rates is shown in Fig. {7.3). However, it appears that
the differences between the measured and calculated decay rate are far less dramatic than
the differences occurring in the distributions of the mean velocity profiles. Partly this can
be explained by the observation that the decrease of the total amount of swirl is deter-
mined by the wall-shear stress only, see Eqg. (4.25). The magnitude of the wall-shear stress
is determined by the magnitude of the mean velocity close to the wall, Differences in the
velocity distribution close to the axis of the pipe will not affect the decay rate as long as
the magnitude of the predicted mean velocity close to the wall is the same as the measured
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Figure 7.3: A comparisop of the measured rate of decay of swirl and the calculated reie of
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velocity.

It must be noted here thal since the expression for the integral ameunt of axial
angular momentum flux, Eq. (4.24) contains a weight factor r?, the determination of 5
from experiment is very sensitive to the method of interpolation in the region betwesn the
point closest Lo the wall where data is taken and the pipe wall. For the determination of
& from the experimental results we assume that the wall-layer behaves according to the
“law of the wall”, 1.2, the flow i3 in perfect “local equilibrium” and the velocity veclor 1s
not akewed. Assuming that the friction velocity varies between 0.1 = u"/Upean = 0.05
along the pipe, the point closest to the wall where data is measured lies at the outermost
edge of the logarithmic region (r/H = 0.9, 250 = y* = 123). Since the Reynolds number
used in the present experiment ia not very high (Hep = 5 x 10%) the assumption of a
“law of the wall” behaviour may be inappropriate, especially in the first part of the pipe.
Congequently, an uncertaloly in the magoitude of § may be expected. A first estimate
for the maximum magnitude of the uncertainty in the value of 5, is found by comparing
the value of § oblained using a logarithmic interpolation and the value of § obtained
using a linear interpolation between r/H = 0.9 and r/R = 1.0, It turns out that the
difference in the magnitude of § resulting from the different treatment of the wall region
is AS/S = 10 — 15%.

Keeping in mind the uncertainty in the magnitude of § obtained from the experi-
mental data, we conclude that the main observation made in the comparison of the radial
digtributions of circurnferential and axial veloeity component is confirmed by Fig. (7.3).
Since the experimentally found decay of S ia faster than the decay according to the “awirl-
corrected” k — ¢ model, it seems that the radial exchange of momentum is underpredicted
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by thiz madel.

The decay of the integral amount of angular momentum predicted by the standard
k — ¢ model seems in much better agreement with the measurements. However, at the end
of the decay region the measured decay seems even faster than the decay predicted by the
standard k — ¢ model, indicating a larger radial exchange of momenturmn than predicted by
any of the modcls considered in this study.

7.2 Discussion

An important aspect of the flows considered in thiz study is the assumption of a cylin-
drical symmetry in the distribution of the flow quantities. The circumferential velocity
compenent drives a continuous redistribution of energy between the various components of
the Reynolds-stress tensor only when this symmetry is present. Without this “convection-
scrambling” effect the predicted radial exchange of momentum is much stronger (see sec-
tion 4.2.4). The measured distributions of the normal components of the Reynolds-stress
tensor show that, apart from the region close to the pipe wall, the levels of v% and w?
are approximately the same, while the magnitude of u? level is much lower (Fig. (6.8)
to Fig. (6.10)). Furthermore, the radial distribution of 42 is almost uniform. Henee the
Ycurvature-scrambling” effect is not as pronounced as it is assumed to be within the ASM.
It may be expected that the typical distribution of energy between the normal components
of the Reynolds-stress temsor will have its effect on the magnitude of the shear stresses.
Indeed, when the ASM equations (e.g. Eq. (4.9)) are solved, using a given distribution of
the normal-stress components similar to the measured distribution, i.e.

u¥=20(r)k and ¥ =uT=(l-ofr)k
with  0<alr) <3

the resulting expression for 7w predicts a radial exchange of momentum comparable to the
corresponding standard k — € expressions, namely

oo (-2)

w=—(l—a)ep— (7.1)

¢
Thus, apart from the comparison of the computed and measured distributions of the mean
circumferential and axial velocity components, alse the measured radial distributions of
the normal-stresses suggeat that the reduction of radial momentum transport predicted by
the swirl-corrected & — ¢ model is too streng,

A final indication that the swirl-corrected & — ¢ model cxaggerates the reduction
of the shear stresses is obtained when the predicted reduction of the radial momentum
transport is artificially weakened. This can be effectuated by replacing, the eorrection
factors Rigy and Rigg, in Eqs (4.20) and {4.12), by vRi g and yRigg, with « a reduction
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factor, i.e.

14 yRim

B = W )  y Riva)(1 + 7 Riva/4)

and

T
TP Ty Rim
Figs (7.4) and (7.5) show that even for v = 0.5 the dramatic differences between the
measurements and the cormputations are reduced considerably.

Clearly, the above observations merely suggest that some of the discrepancies be-
tween measurement and computation may partly be explained by the characteristic distri-
bution of energy between the normal components of the Reynolds-stregs tensor. Of course,
the question that remains is, where this specific distribution of energy originates from.
The conventional pressure-sirain models do not offer an explanation. Near the axis of the
pipe where the anisotropy between the cross-flow-plane velocity fluctuations and the axial
velocity fluctuations is the most explicit, the deformation of the mean velocity distnbu-
tions is minimal. Hence, the production terms of turbulence are small in this region and a
sirong anisotropy can only be maintained by the pressure-strain interaction terms. How-
ever, it appears that the popular modcls for the pressurc-strain interaction are not capable
of reflecting the experimentally obeerved anisotropy. Since the production terms are small,
the “rapid-part” of the Gibson-Younis (1986) pressure-strain mode! is small as well. The
“rapid-part” of the pressure-strain model due to Fu et of. (1987) only contains the contri-
hution due to convection. Also this contribution does not redistribute energy hetween the
cross-flow-plane components of the velocity fluctuations and the axial component of the
velocity fuctuations. Thus, alse the pressure-strain model due to Fu et ol. (1987) cannot
explain the distribution observed in the experiment.

For a perfect solid-body rotation without a deformation of the axial velocity distribu-
tion, even the Launder, Reece and Rodi model (1975) (I.LRR-meodel) for the pressure-strain
interaction, which for a simple shear flow zllows the strongest anisotropy between the nor-
mal components, does not predict a redistribution between the cross-flow-plape and the
axial components of the normal stresses. For the idealized swirl flow the LRR-pressure-
strain term predicta that the sum of v¥ and w? remains independent of the rate of rotation:

Tk (E*_;g_ 2Q(po —¢n +W)W) and
€

e (23ﬂ+ 2Q(wc—wu+w)w)
€
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with

where € and e; represent the pressure-strain coefficients belonging to
the pressure-strain interaction model (Eqs. (2.8) and (2.7)),
and £ represents the rotation rate.

Without & continuous supply of energy to the cross-low-plane components of the
velocity fluetuations one may expect thal the magnitude of these components will decrease
rapidly. For this particular distribution of energy between the normal components of the
Reynolds-stress tensor, both the conventional “return-to-lsetropy™ term and the conven-
tional dissipation term in the transport equations for the Reynoids-stresses will act to
diminish the magnitude of both ¥? and w?.
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One of the identified weaknesses of all present one-point closure schemes is their
inability to take effects of system retation inte account, For example studies by Bardina et
al. (1985) and Traugott (1968) clearly show that the dissipatton of turbulence is reduced
by system rotation. Furthermore, the simulations of Bardina et al. (1985) show that the
primary effect of rotation iz a redistribution of energy in wave-number space, leading {0 an
increase of the length scales in the flow, especially those along the axis of rotation.

Faor the present experiment, an appropriate indication for the importance of rotation
effects as described by Bardina et al. (1985) and Traugoett (1958), is given by a local Rosaby
number, for example defined as,

_ {DyDy
Bo = ;8% "2
with
_ Bl _ aU; o at  au;
l_r‘-a_zj 'B'?‘ &Ild D.J_a_zj-i-a-t."

For Ao < 1 rotation effects are expected to be important, while for Re > 1 rotation
effects will be small. Fig. (7.6) shows that in the region close to the axis of the pipe, the
totsl rotation is large compared to the total deformation of the mean velocity distribution,
Hence one may expect that in the present flow, close to the axis of the pipe, rotation effects
are important,

Weinstack (1981), (1982) and Weinstock and Burk (1985) showed that for a gim-
ple shear flow the LRR model provides a good approximation for the “rapid-part” of the
pressure-strain interaction and that discrepancies between predicted stress levels and mea-
stured stress levels must be attributed to Rotta’s (1951) “return-te-isotropy” approximation,
Rather than provoking & “return-to-isotropy® the pressute-strain term should resist to a
large anisatropy. The formal difference between the Rotta (1951) “return-to-isctropy™ term
and the term derived by Weinatock (1931), (1982) and Weinstock and Burk (1985) is that
the “return-to-isotropy” coefficient Y, is different for all components of the Reynolds-stress
tensor and varies with the anisotropy of the flow. Furthermore, Weinstock (1981), (1982)
shows that the *return-to-lsotropy” coefficients are senaitive to the shape of the spectrum
of the turbulence.

Taking inte consideration the relative magnitude of the rate of rotation compared
to that of the rate of deformation of the flow, clearly at least part of the explanation
for the incorrectly predicted distribution of energy among the normal-components of the
Reynolds-stress temsor may be found in the effect of rotation on the distribution of energy
in wavenumber space, demonstrated by Bardina et of. (1985), combined with sensitivity
of “returp-to-isotropy® term to the spectrum of the turbulence predicted by Weinstock
{1981}, (1982) and Weinstock and Burk (1985).

Alas, the studies of Bardina et ol (1985), and Weinstock (1981), (1982) and We-
instock and Burk (1985) apply only to flows very different from the swirling pipe flow. In
literature, no expressions are given for the “return-to-isotropy” coefficients € 4, for rotat-
ing flows. Furthermore studies on the effect of rotation on for example the spectra or the
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dissipation in non-homegeneous and non-isotropic turbulence bave not yet been careied out,
In the flow subject of the present study the distribution of turbulence is non-homaogenesus
and non-isotropic. Hence, if the flow near the axis of the pipe is indeed dotninated by
retation, it seems that none of the presently used one-point-closure schemes is capable of
capturing the experimentally cbserved distribution of energy between the normal compe-
nents of the Reynolds-stress tensor. Even the simplest expressions for the pressure-strain
interaction show that the poor prediction of the normal-stresses may lead to an underpre.
diction of the turbulent shear atresses and consequently to an underprediction of the decay
of swirl
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8. Concluding remarks

Since the occurrence of swirl is a principle source of error in flow metering, knowledge of the
rate of decay of swirl is of utmost importance for the prediction of the installation effects of
flow meters. ln piping systems, swirl is usually generated by two consecutive out-of-plane
bends. Current standards (c.g. I50-5167 or ANSI/API-2530) for flow metering do not fully
recognize swirl ax a source of error and hence do not seem fully adequate for defining the
installation requirements in the presence of swirl. As a result, flow-measuring devices are
often employed in non-ideal inatallations, leading to an enhanced uncertainty in the flow
metering results.

Experimental work aimed at the decay of swirl has been performed in the past but
does not seem to be conclusive. Furthermore, mozt experimental work hes bean performed
under conditions very different from the conditions relevant to the practice of large-scale
ttansport systems for natural gas.

In this thesis we investigated the possibility of numerically predicting the decay of
gwirl in a turbulent pipe flow. The prime motivation of this study is the deasire to obtain a
fundamental understanding of the decay process and the desire to obtain a tool to translate
experimental results for the decay of swirl cbtained in the laboratory at sub-scale conditions
to conditions relevant to full-scale transport systems for natural gas. Accurate predictions
of the decay length of swirl would open the possibility to assess installation effects on flow
metering devices, thereby teducing the uncertainty in the flow-metering results.

It appears that numerical predictions of turbulent swirling pipe flow depend crit.
ically on the quality of the model for the Reynolds stresses. This suggests that accurate
predictions are only possible if “second-order” turbulence closure schemes are used, Oaly
these models have the potential to capture the most important mechanisms governing the
decay of swirl in a turbulent pipe flow. For the case of a straight section of a pipe, and
for slowly decaying swirls, the simpler versions of the “second-order” turbulence closure
schemes can be shown to reduce to & simple correction to the well-known k — ¢ model of
turbulence.

The main effect of the correction consists of a change of the length-scale on which
the momentum exchange ocours. For the case of a switling pipe flow, the “second-order”
models predict that, apart form the region close to the wall of the pipe, the length scales
are reduced, leading to a reduction of the radial exchange of momentum. The reduction of
the radial mixing of momentum results in strong memory effects and a strong dependence
of the rate of decay of the swirl o the initial velocity distributions.

In the region close to the wall of the pipe the momentum exchange may be enhanced.
However, this effect appears to be weak. For fiows at a high Reynolds number (Rep >
©(10%)), the computational resulte suggest that in this region the velocity distribution
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obeys the “logarithmic law of the wall”. Also the angle between the velocity vector and
the axis of the pipe remains conatant in this region,

In general the flows encountered in pipe systems will be non-axisymmetric. From a
cormnputational point of view non-axisymmetric swirling flows are difficult to handle. A fully
three-dimensional representation of the governing equations easily leads to unacceptable
demands on computer resources. Qn the other hand, a parabolization of the system of equa-
tions, without destroying the “well-posedness™ of the system requires careful analysis. For
high Reynolds number, a preliminary study of non-axtaymmetric swirling pipe flows at low
swirl intensities shows that the non-axisymmetric character of the flow is pathelegical. In
this situation even an initially axisymmetric swirling flow develops to a non-axisymmetrie
flow. The flow becomes axisymmetrie again, only upon almost complete decay of the swirl,
For low levels of awirl, the effect of non-axizsymmetric velocity distributions on the rate of
decay of the switl can be shown to be negligible.

The results of the computations are only partly in agreement with the experimental
results. As predicted by the computations, initially the velocity distribution develops to-
wards a pon-axisymmetric distribution, while furiber downstream the distribution returns
to an axisymmetric distribution again. The predicted pronounced reduction of the radial
exchange of rmomentwin is not observed in the measurements. The three-region character
of the radial distribution of the circumferential velocity is recognizable very close Lo the
“awirl generator® only. This suggests that the reduction of the radial exchange of momen-
tum exchange 13 overpredicted by the models. The downstreamn development of the swirl
number &, determined from the experiment, supports this cbservation. The experimentally
found decay is faster than the computed one.

An explanation for the discrepancies between computation and measurement may
be found in possible effects of rotation on the dissipation of turbulence and on the “return-
to-motropy” inleraction. In the models used in the preseut calenlations these effects are not
present. Theoretical studies and direct simulations of, and experiments in, much simpler
flows, i.e. homogeneous, isotropic turbulence, suggest that an effect of rotation on the
rate of dissipation of the turbulence and on the “return-to-isotropy” imteraction maybe
immportant.

As a final note we conclude that, even though the decay of the swirl is not repro-
duced to great accuracy by any of the models used, the models used in the calculations
do capture some of Lthe important mechanisms present in swirling pipe flows, Hence, the
computational methods may serve as a tool to obtain a first order asscsament of the ef-
fects of for example Reynolds number, inlet conditions or wall ronghness on the decay of
swirl. In this fashion the computational study of swirling pipe flows does contribute to the
interpretation of experimental results, and the extrapolation of experimental results from
sub-scale conditions to full-scale operational conditions.
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Summary

For the international trapspori of large amounts of gaseous fuels through piping systems,
accurate measurement of the tota}l volume flow is of utmost economic importance. Recent
research has shown that the aceuracy of the two standard measuring devices, Le. orifice
meters and turbine meters, for large-scale low measurement in pipes, is not adequate in
all situations. The inaccuracy is assumed to be caused by “installation effects”, i.e. caused
by non-ideal flow conditions at the metering device. A notorious cause of error is the
appearance of an axially directed vorticity component in the flow. A flow with an axially
directed vorticity component, or “switling” flow, is known to develop very slowly and to
have a latge effect on flow meters performance.

This thesis describes a study initiated by Dutch Gasunie. The study is aimed at the
description of the development of a turbulent flow with swirl in a straight pipe. Since exten-
give experimental studies are not feasible under conditions relevant to large-scale transport
gystema for natural gas, ip this study emphasis was put on the numerical modelling of
turbulent pipe flows with awirl.

For the class of flows with “secondary strains®, to which swirling flows belong, most
researchers apree that only “second-order” turbulence models, like the Reynolds Stress
and Algebraic Stress Model, are capable of eapturing the important physical phenomena.
However, for the simple geometry of a straight pipe, for low swirl intensities and for axisym-
metric flows, the some varants of these “second-order” turbulence models can be shown to
reduce to a much simpler form. This simpler form may considered as a modification to the
well-known k— e model of turbulence. In this thesis this modified verston of the k — ¢ model
is used to study the development of a turbulent pipe flow with swirl,

The most important effect that is predicted by the modified & —¢ model s, compared
to the exchange that is predicted by the conventional k — ¢ model, a strong reduction of
the radial exchange of momentum. This reduction results in appreciable memory effects
in the flow. Decaying lengths for swirl depend strongly on the initial velocity distribution.
For very low swirl intensities the modifications to the & — ¢ model can be shown to have
no effect.

In gencral, flows cocountered in pipe system will be non-axisymmetrie, Preliminary
computations show that even for axisymmetric initial conditions, swirling pipe flows tend
to become non-axisymmetric. The velocity distribution becomes axisaymmetrie again, only
upon the swirl has decayed almost completely. However, the effect of the non-axisymmetric
velocity distribution on the decay rate of the swirl appears to be minimal.

The numerical results are only partly confirmed by the first results of an experi-
mental study. The experimental tesults indicate that the suppresion of radial momentum
exchange is not as strong as predicted by the modified k — e model. It appears that, apart
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from the first stages of the decay, the predictions of the conventional k — e model are even
better than the predictions of the modified & — ¢ model and the “second-order” turbulence
models,

The experimental results suggest that, contrary to the assumptions of the one-point
turbulence closures, the non-linear interactions between the small-scale turbulent eddies
are affected by the large-scale background rotation caused by the swirl. Furthermore, the
experimental results show, instead of an expected strong anisotropy between the circums-
ferential and radial velocity fluctnations, a strong anisotropy between the axial and the
cross-low-plane velocity fluctuations. This effect is completely missed by the modified
k — ¢ model and the popular variants of the RSM and ASM! Yet, the measured anisotropy
of the turbulent fluctuations can be shown to have a “restoring” effect on the radial ex.
change of momentum.

The predictions obtained with the corrected k = ¢ model, the RSM and the ASM
provide a conservative estimate of the switl decay rate and consequently also for the length
required for the swirl to decay. Compared to the measured rate of decay the conventional
k — € model predicts a higher rate of decay in the initial stages of the decay, while in the
final stages of the decay a slightly lower rate of decay is predicted.
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Samenvatting

Voor het grootschalige internationale transport van gassen en vloeistoffen door pijplei-
dingen is een nauwkeurige debietmeting van het allerprootste economische belang. Re-
cent onderzoek heeft aangetoond dat de nauwkeurigheid van de twee standaardtechnieken
gebruikt voor pijpstromingen, de meetflens en de turbinemeter, in een aantal situaties
piet voldoende is. Aangenomen wordt dat de onnawwkeurigheid vercorzaakt wordt door
installatie-effecten, dat wil zeggen door niet ideale aanstroomcondities van de meter. Een
beruchte vorzaak van meetfouten is de aanwezigheid van cen axiaal gerichte rotatie in de
stroming. Bekend van ecn pijpstroming met een axiale rotatiecomponent, ofwel een pijp-
stroming met “swirl”, is dat deze bijzonder langzaam opiwikkelt en dat de debietmeting
sterk wordt belnvloed.

Het onderzoek beschreven in dit proefschrift is gestart op initiatief van de N.V.
Nederlandse Gasunie. In dit onderzoek wordt gepoogd een beschrijving te geven van de
ontwikkeling van pijpstromingen met swirl. Omdat turbulentiemetingen moeilijk uitvoer-
baar zijn bij de hoge Reynoldspgetallen waarvan in praktijk sprake is, wordt in de hier
beachreven studie de nadruk gelegd op de numerieke modellering van pijpstromingen met
swirl.

Voor de klasse van stromingen met “secondary strains”, waartoe de pijpsiroming
met switl behoort, wordt in het algemeen aangencmen dat alleen de “second-order” tur-
bulentie modellen, zoals het Reynolds Stress Model (RSM) en het Algebraic Stress Model
{ASM), m staat zijn de essentiéle verschijnselen van deze klasse van stromingen te be-
schrijven. Voor een eenvoudige siroming als de axi-symmetrische pijpstroming met swirl,
kunnen een aantal versies van de “second-order” sterk vercenvoudipgd worden. Ze kunnen
in deze vereenvoudigde vorm. beschouwd worden als een correctie op het bekende k — € tur-
bulentie model, In het hier beschreven onderzoek wordt een gecorrigeerde versic van het
k — ¢ turbulentie model gebruikt.

Het belangrijkste effect van de cortectie is dat, vergeleken met de impuls-nitwisseling
voorspeld door het standaard k — ¢ model, de impuls-uitwisseling sterk onderdrukt wordt.
Deze onderdrukking van de impuls-uilwisseling heeft tot gevolg dat de stroming een sterk
“geheugen” heeft. De lengte nodig voor het verdwijnen van de swirl hangt hierdoor sterk
af van de intrecconditie van de stroming. Voor hele lage awirlintensiteiten kan worden
aangetoond dat de correcties geen effect hebben.

Pijpstromingen zoals ze in praktijk voorkomen zullen in het algemeen niet axi-
symmetrisch zijn. Verkennende berekeningen tonen aan, dat zelfs voor symmetrische be-
gincondities een pijpstroming met swirl de neiging heeft asymmetrisch te worden, Pas
wanneer de swirl bijna helernaal is vitgedempt wordt de stroming weer axi-symmetrisch.
Het effect van de asymmetrie op demping van swirl blijkt minimaal te zijn.
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De pumerieke resultaten worden slechis in boperkte mate bevestigd door de expe-
rimenten. De experimentele resultaten geven zan dat de onderdrukking van de impuls-
uitwisseling vesl minder sterk is dan wordt voorspeld door het gecorrigeerde k — ¢ model.
Behalve gedurende de eerste paar diameters, levert het standaard k¥ — € model betere re-
sultaten op dan het gecorrigeerde k — € model en de meer algemene “second-order” turbu-
lentiemodellen, De experimentele resultaten sugperen dat, in tegenstelling tot de basisver-
onderstellingen van de gencemde turbulentiemodelien, de niet-lineaire interacties tussen
de turbulente eddics op de kleinste schaal worden bemmvieed door de grootschalige ach-
tergrondrotatie. Verder geven de experimentele resultaten, in plaats van een algemeen
verwachie storke anjsotropie tussen de radiaal en azimutaal gerichte turbulente snelheids-
fluctuaties, juist een sterke anistropie tussen de axiale fuctuaties enerzijds en de radiale
en azimutale fluctuaties anderzijds. Dit effect wordt volledig gemist door zowel hol gecor-
rigeerde k& — ¢ model als door de ASM en RSM meodellen. Van deze gemeten anisotropie
van de normaalspanningen kan worden aangetoond dat deze de impuls-uitwisseling weer
kan bevarderen,

De voorspellingen van bovenstaande modellen geven een behoudende schatting voor
de snelheid waarmee een swirl in cen pijpstroming uildempt, Het standaard k& — ¢ model
geeft, vergeleken met de gemeten demping, aanvankelijk een te sterke demping, terwijl het
voor lage swirlintensiteiten een te zwakke demping geeft,
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Stellingen behorende bij het proefschrift
“Decay of swirl in turbulent pipe flows”
door R.R. Parchen

1. De veronderstelling dat er loslating optreedt bij de instroming van de glottis zoals
voorgesteld door Ishizaka (1972) en Miller (1988) is het gevolg van het toepassen
van een onaanvaardbare vereenvoudiging van de geometrie van de glottis, waarkij de
glottis wordt voorgesteld als een contractie met scherpe randen. De veronderstelling
dat het drukverlies gekoppeld is aan een vena-contracta factor is daarom onrealistisch
en dient achterwege gelaten te worden.

Ishizaka, K. & Matsudara, M., (1972), Speech Communication Research Laboratory,
Monograph no. &
Milter, J.A., et al., (1988), J. Sound and Vibration, 121, 277

2. De storing in het gasdistributiesysteem in Goirle (1988), waarbij de eindverbruikers
een druk van ongeveer 3 bar aangeboden kregen in plaats van de gewenste 30 mbar
was het gevolg van de incompressibele benadering van de wet van Bernoulli bij het
ontwerp van het regelsysteemn. Het over het hoofd zien van de beperkte geldigheid
van deze wet benadrukt het belang van het oppemen van het vak gasdynamica
het verplichte curriculum voor de studie van werktuighouwkundig ingenieur.

Kolkman, M., (1992), Afstudeerverslag, Hogeschool Enschede

3. Bij de beschrijving van demping van akoestizche golven in turbulente pijpstroming
iz het essentice] dat de eindige relaxatietijd van de turbulentie in rekening gebracht
wordt.

Ronneberger, 1., & Ahrens , C.0,, (1977), J. Fluid Mech., 83, 433
Peters, M.C.A.M, et al., (1992), Submitted to J, Fluid Mech.

4. Het verdient sanbeveling om wandschuifspanningen in pulserende turbulente pijp-
stromingen, in plaats van rechtstreeks met behulp van hete draad- of hete filmopne-
mers, indirect met een mulii-microfoen methode te bepalen.

Reijnen, A.J., (1992), Afstudeerverslag R-1183-A, vakgroep Transport{ysica, Techni-
sche Universiteit Eindhoven
Mankbadi, R.R., Liu, }.T.C., (1992), J. Fluid Mech., 238, 55



5.

6.

De veronderstelling van Fletcher & Rossing dal de amplitude van het akosstische
veld in cen fluit alleen begrensd wordt door de, door de eindige breedie van de jet bij
het labium, verzadigende fluctuerende volumestroom leidt tol cen voorspelling van
do akoestische amplitude welke tenminste één orde groter is dan de experimentes
waargenomen amplitudes, [Je kwalificatie van deze overeenkomst door Fletcher &
Rossing als aijnde “redelijk goed” is misplaatst, Een madel waarbii het al in 1969
door Coltman gesuggerecrde niet-lineaire effect van wervelafachudding in rekening
gebracht wordt, levert namelijk wil de correcte orde van grootie van de amplitude
op (Fabre, 1992),

Fleteher, N.H. & Rossing, T.D., (1981), The Physics of Musical Instrumenta, Sprin-
ger Verlag

Coltman, J.W._, (1069), J. Acousl. Soc. Am., 46, 477

Fabre, B., (1992), Proefschrifl, Le Mans

Kitoh (1991) typeert bet buitengebied van een pijpstroming met swirl als zijude van
het “vrije wervel” type. Berekeningen met Reynelds Stress en Algebrafsche Stress
modellen geven aan dat de distributic van azimuiale snetheid sterk afhangt van de
details van het gebruikte model. De term “vrije wervel” suggereert echter dal vis-
ceuze effecten verwaarlooshaar zouden zijn en is daaror misloidend.

Kitoh, O., (1991}, J. Fiuid Mech., 225, 445

. De veronderstelling dat een turbulente stroming onderworpen aan een solid-hbody

rolatic gestabiliseerd wou worden, gaat voorbij aan de mogelijk destabiliserende in-
teractie tussen de axiaal en amimutaal gerichte vorticiteit, De door Bradshaw (1969)
geponeerde analogie met een stroming onderworpen aan een temperaluurgradiént
wordt daarom in het algemeen ten onrechte gecileerd,

Rradshaw, P, (1960), J. Fluid Mech., 36, 177

. Om het gedrag van een oscillerende stroming bij hoge frequentie in een poreus ma-

teriaal te onderszocken, kan men volstaan met ket berekenen van een stationaire
sLrouing,

Smeulders, D.M.J,(1992), Proefschrift, Technlsche Universiteit Eindhoven



9.

10.

De door Girschick en Chin (1990} voorgestelde vitdrukking voor de homogene nuele-
atiesnclheid in een oververzadigde damp berust op cen niet gerechtvaardigde toeken-
ning van macroscopische eigenschappen aan “clusters” bestaande nit één melecuul.
De verbeterde overeenkomst tussen de nicuwe theorie en sommige experimentele re-
sultaten berust dan ook op toeval,

Girschik, 8.L., Chin, C.P., (1990), J. Chem. Phys., 83, 1273

Een verbod van voorruiten en andere vormen van rijwindbescherming in ket gemo-
toriseerde verkeer zal de verkeersveiligheid in belangrijke mate verhogen,
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