
Model Checking Combined Z and
Statechart Specifications

Technische Universität Berlin
Fakultät IV – Elektrotechnik und Informatik

Robert Büssow

Promotionsausschuss

Vorsitzender: Prof. Dr.-Ing. Günter Hommel

Berichter: Prof. Dr.-Ing. Stefan Jähnichen

Berichter: Prof. Dr. Peter Pepper

Vorgelegt von Diplom Informatiker Robert Büssow

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

Tag der wissenschaftlichen Aussprache: 18.11.2003

genehmigte Dissertation

Berlin 2003

D 83

2

Contents

Zusammenfassung 5

1 Introduction 7

1.1 Safety Critical Systems . 7

1.2 The Espress Project . 7

1.3 The Zeta System . 8

1.4 Consistency of the Specification . 10

1.5 Model Checking MSZ Specifications . 12

1.6 Model Checking Statemate Statecharts . 15

1.7 Model Checking Z . 16

1.8 Main Features . 17

1.9 Notation . 17

1.10 Acknowledgements . 18

2 The Intelligent Cruise Control (ICC) 19

2.1 Definitions . 19

2.2 Interfaces . 20

2.3 Internal Data . 20

2.4 Behavior . 21

2.5 Guards and Operations . 21

2.6 Safety . 23

2.7 Model Checking the ICC . 23

2.8 Annotated SMV Listing . 23

2.9 Complete SMV Listing . 28

3 Mathematical Definitions 31

3.1 Functions and Sequences . 31

3.2 Implode and Explode . 32

3.3 Fixed Points . 32

3.4 Sum and Product . 34

3.5 Macros for Type and Rewriting Rules . 34

3

CONTENTS

4 Model Checking 35

4.1 Kripke Structures . 35

4.2 Computation Tree Logic . 37

4.3 The Model Checking Algorithm for CTL Formulae 40

4.4 Fixed-Point Definition of the Model Checking Algorithm 41

4.5 Symbolic Model Checking . 42

4.6 Binary Decision Diagrams (BDDs) . 44

4.7 Other Model Checking Techniques . 46

4.8 Model Checking MSZ . 49

4.9 Kripke Structure With Constants . 52

4.10 Semantic Issues . 53

5 Syntax and Environment 55

5.1 Reduced Z Syntax . 55

5.2 Environment . 64

6 Statecharts 71

6.1 Statecharts and their Semantics . 71

6.2 Resolving Racing in Statecharts . 78

6.3 Translating Statecharts into a State Transition Relation 86

6.4 Statecharts Translation by Example . 92

7 Z Rewriting 97

7.1 Introduction . 97

7.2 Rewriting Strategy . 98

7.3 Simple Z . 102

7.4 Annotated Type System for Enumerable Expressions 103

7.5 Values . 120

7.6 Rewriting to Simple Z . 121

8 Translating Simple Z to SMV 137

8.1 SMV Syntax . 137

8.2 Translation . 140

9 Conclusion 143

9.1 Limitations . 143

9.2 Implementation . 144

9.3 The Meta Theory . 144

9.4 Implementation . 145

9.5 Processing the SMV Output . 145

9.6 Statemate Semantics . 145

Bibliography 147

Index 151

4

Zusammenfassung

Eine der bedeutendsten Herausforderungen der Softwareentwicklung besteht darin, einen

Entwicklungsprozess zu garantieren, der Fehlerfreiheit nicht nur gewährleistet sondern

auch nachweisbar macht. Beides ist von besonderer Bedeutung, wenn sicherheitskritische

Systeme entwickelt werden, etwa in den Bereichen der Medizin, der Produktionssteuer-

ung oder der Verkehrstechnik. Softwarefehler können hier lebensbedrohlich sein. Aus

diesem Grund ist es meist auch notwendig, die Fehlerfreiheit der Software einem Dritten

nachzuweisen. Die Steuerung einer Verkehrsampel muss beispielsweise nicht nur fehlerfrei

funktionieren, sondern auch vom TÜV abgenommen werden.

Der Einsatz formaler Methoden stellt einen vielversprechenden Ansatz dar, diese Pro-

bleme zu lösen. Formale Sprachen haben gegenüber den üblichen, nicht-formalen Metho-

den (umgangssprachliche Spezifikationsdokumente oder Spezifikationssprachen ohne ein-

deutige Semantik) den Vorteil einer eindeutigen Semantik. Damit können Anforderungen

an ein System eindeutig beschrieben und seine Eigenschaften mathematisch bewiesen wer-

den. In der Praxis haben sich diese Methoden allerdings bisher noch nicht durchgesetzt.

Zwei herausragende Ursachen hierfür sind:

1. Die formalen Spezifikationssprachen orientieren sich meist mehr an mathematischer

Eleganz als an einfachen und intuitiven Sprachmitteln. Das stellt eine große Hürde

für den praktischen Einsatz dar. Die Spezifikationssprache µSZ [11] versucht dieses

Problem zu lösen. Sie verbindet die von Harel [26] entwickelte und in der Industrie

akzeptierte grafische Sprache Statecharts mit der formalen Sprache Z. Damit liegt

eine intuitive Sprache vor, die den Anforderungen einer formalen Sprache genügt.

2. Formale Spezifikationen haben zwar eine präzise Semantik, sie lassen aber dem

Spezifikateur immer noch die Freiheit, inkonsistente oder fehlerhafte (nicht den

tatsächlichen Anforderungen entsprechende) Spezifikationen zu erstellen. Anderer-

seits ermöglichen sie es, Konsistenz und Eigenschaften formal zu beweisen und

so zu einer fehlerfreien Spezifikation zu gelangen. Werden solche Beweise nicht

geführt, ist gegenüber einer nicht-formalen Spezifikation wenig gewonnen. Um die

aufwändige Beweisführung praktikabel zu machen, ist eine möglichst weitgehende

Automatisierung unverzichtbar.

5

Zusammenfassung

Der Nachweis der Konsistenz sowie der Eigenschaften einer µSZ Spezifikation ist Ziel

der vorliegenden Arbeit. Hierfür werden Model Checking Techniken eingesetzt. Um dies

zu ermöglichen, wird die µSZ Spezifikation in drei Schritten übersetzt:

1. Übersetzung des Statechartanteils einer µSZ-Spezifikation nach Z. Damit werden

zusätzlich die Semantik der Statecharts und die Semantik die Integration von State-

charts und Z definiert. Außerdem erlaubt diese Vorgehensweise andere, reine Z-

Werkzeuge für die Analyse zu benutzen.

2. Vereinfachung der Z-Spezifikation in ein vereinfachtes Z (Simple Z), das vom

Sprachumfang der Eingabesprache eines Model Checkers entspricht. Dieser Schritt

erlaubt es, sowohl µSZ-Spezifikationen wie auch reine Z Spezifikationen für das

Model Checking vorzubereiten. Das vereinfachte Z kann leicht in die Eingabesprache

eines Model Checkers übersetzt werden.

3. Übersetzung von Simple Z in die Eingabesprache des SMV Model Checkers von

McMillan [38]. Der Model Checker kann dann Konsistenz und Eigenschaften der

Spezifikation beweisen.

6

Chapter 1

Introduction

1.1 Safety Critical Systems

One of today’s major problems in software engineering is to achieve a high and comprehen-

sive quality standard for the software development process, in order to maintain a reliable

high quality for the resulting products. This holds particularly true for safety critical

systems, where failure of the software may have life-threatening consequences. Here, not

only the quality of the software itself is important, but also the ability to convince a third

party of this very quality.

The usage of formal methods is one promising approach to achieve these goals. Roughly

speaking, formal methods introduce mathematical precision to the development process.

They do so by using formalisms with well defined semantics, and so stipulate formal proofs

to verify development steps.

This approach is all too well feasible in theory. In practice, however, one will encounter

various problems that impede a consequent usage of formal methods:

• The formal character of the proposed languages and the need to use them for every

aspect of the described system makes them too bulky. The reason for this is that

they often times concentrate more on the mathematical elegance of their underlying

semantics than on comfortable and intuitive usage.

• As adequate tool support is often missing, implementation of the formal proof obliga-

tions becomes practically impossible, because without any ools, these proofs are quite

complicated, and their development takes a lot of time.

To tackle these problems was one of the objectives of the Espress project.

1.2 The Espress Project

The Espress project was a joint project of the Daimler Benz AG, the Robert Bosch AG,

Fraunhofer ISST, GMD First, and the Technical University of Berlin. The project aimed

at a software development method for safety-critical embedded systems. The development

7

1 Introduction

method was supposed to support the development process from specification to testing,

being applicable throughout today’s practice of software engineering.

In the course of the project, the specification formalism µSZ [11] was developed. µSZ
uses techniques that are well-established within the scientific community and in industrial

practice. Harel’s Statecharts [26] on the one hand, and the Z formalism on the other

hand, were combined to a powerful specification language. In that, Statecharts serve

the comprehensive graphical and operational description of the specification’s behavioral

aspects, while the Z formalism (see Spivey [48]) is used for the axiomatic specification

of data, data invariants, and transformation. With this combination, the advantages

of the formalisms in their fields (operational behavior and axiomatic data specification,

respectively) can be exploited. The usability of the formalism and its advantage over

other formalisms in its application domain was shown in various case studies which were

conducted throughout the project [10, 8, 13, 9, 12].

1.3 The Zeta System

An important motivation of combining existing notations instead of designing a new lan-

guage from scratch, is to reuse existing tools. This has two major advantages. Users

can continue to work with the tools they are acquainted with (in the context of Espress,

this is the Statemate tool, widely used within the industry for embedded systems). Also,

integrating existing tools is a lot less expensive than implementing newly designed tools.

Therefore, tool support for µSZ was built integrating existing tools.

In the course of the Espress project, the Zeta system was developed to provide tool

support for the µSZ language.1 Zeta offers an open framework for the integration of

existing and newly written tools. These tools directly support the notations which are

semantically integrated as plugins into the µSZ notation. Zeta also supports generic

tools based on the Z or µSZ language (type checkers, provers, model checkers, compilers),

which can process the integrated notations by their mapping to Z and/or by proprietary

mappings, and other tools, e. g. tools for generating documentation.

The Zeta system provides a general framework for the integration of different tools

and languages, so called adaptors. The system itself is independent from the supported

languages. Only the adaptors are language specific.

The Zeta system handles different specification languages, represented in different for-

mats (e. g. abstract syntax, Postscript, or LATEX), the content. Adaptors create, translate,

and integrate the content. For example, a Zeta adaptor can create content in reading and

parsing a file from the file system or fetching a model from the Statemate tool. Other adap-

tors translate Z abstract syntax to type-checked abstract syntax or SMV. The Zeta system

is responsible for providing the input content of an adaptor by calling other adaptors.

The Zeta system is responsible for the following tasks:

• Upon request of some content, Zeta builds up a tool chain from the registered adaptors
1Zeta is available for download at http://uebb.cs.tu-berlin.de/zeta

8

1 Introduction

that compute the requested content. Once computed, the content is cached by the

system and recomputed if its sources have changed. This functionality is quite similar

to the well known make-command. However, writing makefiles is not needed, since

the configuration can be done automatically. The tool chain that is built up for model

checking is depicted in Figure 1.2 on page 14.

• Zeta provides a uniform user interface. The adaptors register the commands they can

perform and options that can be configured. The system builds a user interface for

that. The user can chose between three different user interfaces: a textual, a Swing

based graphical one, and an integration with the Xemacs editor. The system also

performs the error reporting.

The Zeta system is implemented in Java. For the adaptors, a Java API is provided.

The adaptors may either implement their translation themselves or integrate an external

tool via JNI, RMI, CORBA, or program execution.2

The adaptors exchange their content as Java objects, in the respective content format.

The Zirp format (Z intermediate representation) that is used to exchange µSZ abstract

syntax, carries particular relevance in this context.

The most important adaptors are:

• The LATEX adaptor, parser and type checker. It is responsible for reading Z/µSZ files,

parsing and type checking them. It produces Zirp content with type annotations. The

parser is also in charge of integrating specifications. For example, if the specification

contains a Statemate Statechart, the LATEX adaptor will replace the reference to the

Statemate model by its Zirp representation. The Zirp representation for the Statemate

model is provided by the Statemate adaptor.

• The Statemate adaptor (together with the StmToZirp adaptor) fetches Statemate mod-

els from the Statemate tool. It can retrieve models in Zirp and for documentation in

Postscript format. The Statemate adaptor asks Statemate to write the model to file

via the dataport. The StmToZirp adaptor then parses the file.

• The model checker adaptor translates a Zirp model into the input language of a model

checker and performs model checking by using this very checker.

• The Z execution adaptor Zap (see Grieskamp [25]) rewrites and executes Z specifica-

tions. This adaptor is not used for model checking.

• The Isabelle adaptor connects Zeta to Isabelle/Holz (see Kolyang, Santen and Wolff

[35]). This adaptor is not used for model checking.

• The LATEX documentation adaptor formats the specifications to printable documents.

This adaptor includes a special LATEX style that does the µSZ and Z formating.

2For example the Statemate adaptor uses the Statemate dataport library to get Statemate models.

The library is provided as shared object on Solaris and DLL on Windows NT. JNI is used to integrate the

dataport library on Solaris. On Windows NT, it is not possible to dynamically link the library to a Java

VM. Therefore, it runs in a separated process and is connected via Windows RPC. There is no dataport

library for Linux. Thus, a special server, running on Solaris, is connected via RMI.

9

1 Introduction

ValveController
min,max : N

PORT P
level : N; valve : { open, closed }
level < min ⇒ valve = closed

tank

gauge

valve

Figure 1.1: Specification of a Valve Controller

The Zeta system is implemented in Java. It runs under Linux, Solaris, and Windows

NT.

1.4 Consistency of the Specification

With µSZ, one can choose whether a requirement is specified operationally with State-

charts, axiomatically with Z or, redundantly, using both formalisms. This allows for the

specification of requirements on different levels of abstraction and from different perspec-

tives. This way, µSZ offers the possibility to formulate requirements as they are, rather

than reformulating them—a vital capacity for any specification method.

The specification of a valve-controller, depicted in Figure 1.1, may serve as an example:

The controller has to keep the water level in a tank below a predefined limit. In order

to do so, it measures the water level and controls a valve to evacuate water from the

tank. For that, the valve must stay closed whenever the water level is beneath a certain

threshold. An additional requirement may apply, such as: “Do not open and close the

valve too often”. The specification also contains the actual control algorithm for the valve.

The algorithm might be quite complex, since it has to fulfill all requirements. Because

of its complexity, it can be difficult to establish whether the algorithm really fulfills all

requirements or not. The advantage of the µSZ method is that a single requirement can be

specified without reformulating it or considering the other requirements. The specification

can be built up gradually, collecting requirements and adding them to the specification.

In the end, the actual control algorithm is specified, then including all requirements.

It is not guaranteed, however, that the control algorithm fulfills all properties. De-

ficiencies may occur because the requirements might be contradictory by themselves or

because a single requirement was overlooked. Such a specification is called inconsistent.

The problem of inconsistency is common among all axiomatic specification formalisms.

From the semantic point of view, there is no program that fulfills an inconsistent spec-

ification. It is thus impossible to implement such a specification. However, finding all

inconsistencies will often be just as impossible, as every single property of the specifi-

10

1 Introduction

cation would have to be checked against any other property. An engineer who has to

implement the controller for the above example will probably consider only the specifica-

tion of the control algorithm, because it is the most concrete one, and ignore the rest. He

will therefore not notice the inconsistency—the deficiency so moves onto the next devel-

opment stage. The later such a failure is detected, the more costly or even dangerous it

may become. Avoiding it at an early stage is therefore essential.

Moreover, suppose that the minimal water level is an important safety constraint and

that there is a third party who reviews the specification. It appears easy to convince the

reviewer that the property is being considered. However, it is also necessary to prove that

the property is not violated somewhere else in the specification, i. e. that the specification

is consistent. Without tool support, this proof is very difficult, since the entire specification

has to be considered.

The reason for inconsistencies is often a deep-seeded misconception of the specified

system. Suppose the second requirement of the presented example were more restrictive:

“There must be a minimal delay between opening and closing”. Now it can happen that

the water level drops beneath the threshold, but the delay has not yet elapsed. In this

situation, it is not possible to fulfill both requirements. The two requirements are thus

contradictory and the specification is inconsistent. This disagreement comes from the

original requirements themselves. Inconsistencies of such origin need to be detected in the

earliest stage possible.

Axiomatic specifications and redundancies may lead to inconsistent specifications.

However, an inconsistent specification is better than a consistent one with missing re-

quirements. With an inconsistent specification, there it at least the chance that the error

is detected. Inconsistencies are often not a problem of the used specification technique

but of inconsistent requirements. It is an advantage, if such inconsistencies become visible

in the specification. Detecting inconsistencies in the specification manually can prove to

be extremely complicated.

The objective of this work, therefore, is to provide a technique that is able to check

an µSZ specification for consistency automatically. This technique provides the following

advantages:

• Misconceptions and contradictory requirements are found at the beginning of the de-

velopment process.

• High-level specifications of properties can be used to convince a third party that the

property is fulfilled.

• If changes are made to the specification, it can be checked immediately whether im-

portant properties are still fulfilled.

• The developer is forced to provide a complete and consistent specification. He also

gets an impression of the behavioral characteristics of his specification. Thereby, using

µSZ will increase the quality of the specification.

In general, the development can be performed more efficiently, since failures can be

detected in the early development stages and the quality of the specification is increased.

11

1 Introduction

1.5 Model Checking MSZ Specifications

For verification, we use the technique of model checking (see Chapter 4 on page 35).

Model checking verifies a property by enumerating all possible states of a system. For

this, the set of states has to be finite and “small”. Its size determines the feasibility

of model checking. This restricts the applicability of model checking and hereby the

applicability of the presented approach. However, model checking carries the important

advantage that proofs are conducted without user interaction. Model checking is well

suited for control problems, as they are entailed by the utilization of Statecharts. In

addition, Statechart models are finite. Therefore, model checking is well suited for proving

properties of Statechart models.

Z models, on the other hand, are usually infinite or at least allow for no easy enumer-

ation of their states. In order to handle these problems, a subset of Z was defined (see

sections 5.1 on page 55 and 7.4 on page 103). In µSZ, Z is used to specify the data aspects

of control problems. For these applications, the proposed subset of Z is sufficient.

There are a number of model checking tools which can be utilized for the actual model

checking task. For this work, McMillan’s SMV model checker [38] was used. Most of the

presented solution is independent of the actual model checker used. It would be easy to

use some other tool. The SMV specific parts are presented in Chapter 8 on page 137.

In order to use an existing model checker, the model and the relevant properties have to

be translated into the input language of the model checker. In µSZ the model is specified

with Statecharts and Z whereas its properties are described with Z, enriched by temporal

logic.

1.5.1 Translating the Model

In brief, model checkers handle models that are defined by a set of Boolean variables, a

predicate defining a state transition relation, and a predicate defining the initial states.

The predicates are defined by Boolean operators (∧,∨,⇒⇔,¬) over Boolean variables.

In case of the state transition relation, two sets of the variables are used—one for the

pre-state and one for the post-state.

For this reason, Statecharts have to be translated into a state transition relation. In

µSZ, Statecharts contain Z expressions in the labels of the Statechart state transitions.

Hence, for the Statechart translation into a state transition relation, Z expressions have

to be translated as well. In order to reduce the complexity of the Statechart translation,

Statecharts are first translated into a state transition relation, defined by a Z predicate.

The Z expressions in the labels are not changed. In a second step, the Z predicate is

translated into the input language of a model checker. Besides simplifying the translation,

this approach makes the translation of the Statechart into a state transition relation

independent of the model checker used.

Büssow and Grieskamp [14] proposed a general scheme to integrate formalisms for

the description of operational behavior into µSZ. The approach allows to integrate any

12

1 Introduction

formalism, if a translation into a Z state transition relation can be given. The translation

defines the semantics of the integration. Z becomes the base formalism for the integration

of various formalisms: The chosen approach is well supported by the µSZ language design

and the Zeta system. There are three more benefits to this approach:

• Tools that can handle only Z such as a type checker or a theorem prover (e. g. Isa-

belle/Holz) can be used to analyze µSZ specifications with Statecharts without adap-

tations.

• If an automatic translation into a Z transition relation is provided, other languages for

the description of operational behavior (e. g. message sequence charts) can be model

checked.

• Pure Z specification, where the state transition relation is defined directly by a Z

predicate, can be model checked, too.

The logic supported by a model checker is rather restricted. For common µSZ specifi-

cations, this is not sufficient. Therefore, more sophisticated Z expressions and data types

are rewritten to simple ones that can be translated directly into the model checker input

language.

The model checking support for µSZ comprises three tasks:

1. Translate Statecharts into a state transition relation, including the handling of racing

and assignment semantics. This is described in Chapter 6 on page 71.

2. Rewrite Z expressions that are not directly handled by the model checker. This is

described in Chapter 7 on page 97.

3. Translate the Z model into the model checker input language and perform model

checking. This is a quite simple, syntactic translation. Thus, the model checker

can be changed easily. The translation is described for the SMV model checker in

Chapter 7 on page 142.

These steps are reflected by the architecture of the Zeta model checker adaptor. Fig-

ure 1.2 on the next page shows the complete tool chain as it is applied for model checking

in the Zeta system.

1.5.2 Temporal Properties

Büssow and Grieskamp [13] developed the temporal logic DZ (Dynamic Z), for the ab-

stract description of properties of an µSZ model. However, DZ is not supported by model

checkers. As described in Chapter 4 on page 35, the model checking algorithms imple-

mented by model checkers are specialized on a specific temporal logic. Moreover, there

are no efficient model checking algorithms for every temporal logic. Therefore, a temporal

logic that is implemented by a model checker is used instead of DZ.

Most model checkers, including SMV, support Computation Tree Logic (CTL,

see 4.2 on page 37), proposed by Clarke and Emerson [17]. In section 4.3 on page 40

13

1 Introduction

MCAdaptor

SMV

T
he

Z
et

a
S
ys

te
m

References

XEmacs Statemate

STM ModelmSZ (Latex)

Latex Adaptor STM Adaptor

StmAbsy

StmToZirp

SC Rewriter

Z Rewriter

SMV Model

MC Backend

Type Checker

Parser

Figure 1.2: The complete model checking tool chain. The rounded boxes describe data
types of the exchanged data. Zirp is exchanged, if rounded boxes are missing between two
tools. The tools inside the Zeta system are adaptors.

14

1 Introduction

it is shown how CTL can be defined for µSZ. That means, CTL operators are defined by

Z operators, the atomic (non-temporal) properties are specified with Z, and the underlying

semantics is defined by the µSZ trace semantics.

1.6 Model Checking Statemate Statecharts

The Statemate Extractor translates not only Statemate Statecharts to µSZ, but expres-

sions and variable declarations as well. That way, it is possible to specify a model using

Statemate only—without using µSZ. Statemate enjoys a relevant acceptance in the in-

dustry, so already existing Statemate specifications can be checked with the presented

approach as well as new ones. Thus, this work provides both: a model checker for µSZ
and for Statemate.

Model checking is a quite promising technology for the verification of properties of

control programs given by a finite model. Statemate is usually used for the specification

of such control programs, and its models are usually finite. It is exactly this characteristic

that makes Statemate models a well suited target for model checking.

Model checking Statecharts has been an issue for quite some time. The first approaches

for automatic verification of properties, such as absence of racing, were built into the

Statemate tool itself. However, this feature was abandoned later by i-Logix, since i-Logix

was not able to keep up with the technological progress in the area of software verification

and to provide the required quality for such a tool.

As one of the first ones, Day [21] translated Statemate Statecharts into the input

language of the HOL-Voss tool and used the symbolic model checker of this tool for the

verification of CTL properties.

Kelb [34] studied model checking of Statecharts and abstraction techniques. He also

used symbolic model checking, but did not provide an automatic translation of Statecharts.

Mikk et. al. [41, 42] used the model checkers Spin/Promela and SMV for model checking

Statecharts. They provided an abstract representation of Statemate Statecharts [39] from

which models are translated into the respective input languages of Spin and SMV. Spin’s

input language Promela is a process algebraic, asynchronous language. This makes the

translation of Statemate models rather complicated, since the synchronization of parallel

Statecharts has to be done explicitly, as Mikk et. al. pointed out in [40]. Their approach

was adopted by Hiemer [28] for the translation into CSP and verification with the FDR

model checker. Hiemer verified the correctness of the translation into the process algebra.

The performance of Mikk’s SMV translation was compared with the presented ap-

proach. As the target specification, a Statemate model of the production cell [34] was

used. The model had 30 events, 92 Statechart states (including 30 super states). 158 CTL

properties were shown. The model had 3 1025 states, 3 106 of which were reachable. The

results of the comparison are depicted in Table 1.1 on the next page. They show that the

SMV model created by the approach presented here, verifies the specification twice as fast

as Mikk’s approach. It is assumed that the reason for this is the hierarchical translation

scheme for Statecharts presented in section 6.3 on page 86, since this is the only major

15

1 Introduction

time/s memory/MB BDDs (total) BDDs (transition relation)

Mikk 295 3.0 126,000 44,000

Büssow 136 2.3 88,000 11,000
The tests were performed on a 233 MHz Intel Pentium II with 96 MB RAM running Linux 2.0. They
were executed with the following command line options: smv -inc -f -i pc.ord pc.smv, where pc.smv
is a model, generated by one of two approaches and pc.ord is the respective variable order file.

Table 1.1: Comparing Model Checking Performance

difference to Mikk’s approach.

As Mikk [42] points out, translation into a process algebra and verification with Spin

is much slower than the SMV approach. Verification of a single property only took more

than 1:30 hours.

Brockmeyer and Wittich [6, 5] use the Siemens symbolic model checker for the verifica-

tion of Statemate models. They focus particularly on the verification of time requirements.

For this, they apply a straightforward solution for Statemate timeouts that is also applied

in the approach presented here, and a timed CTL for the specification of properties. Timed

CTL is an extension of CTL by discrete time.

1.7 Model Checking Z

The results of this work can also be used to check pure Z specifications. However, the

Z language provides no means to describe a model with reactive behavior. Therefore,

reactive behavior of a Z specification cannot be verified. Z users usually work around this

deficiency by informally declaring a predicate to be the state transition relation. If µSZ
were used to declare the transition relation formally, the specification could also be model

checked (if the model is finite).

An alternative approach of checking Z specifications via state enumeration is presented

by Jackson, Jha, and Damon in [33]. Their Nitpick system checks specifications in the

relational calculus NP, which is, roughly, a subset of Z.

• The Nitpick system automatically applies finite bounds to free types. Hereby, it is pos-

sible to check “infinte” specifications with free types, as well. The approach presented

here, in contrary, assumes that finite bounds are applied to free types by hand. For

example a declaration x : Z has to be rewritten to x : 0 . . MAXVAL. The Nitpick

approach would be an interesting enhancement of the approach presented here.

• The Nitpick system uses its own model checking technique. It is based on removing

isomorphs in relations. Isomorphs are combinations of variable assignments that all

lead to the same valuation of the properties to show. Jackson, Jha and Damon report

that they can search state spaces of 1012 in “less than a minute”. As stated in the

previous section, BDD based model checking can cope with much larger models. How-

ever, this is not a thorough comparison, since model checking techniques do not only

depend on the size of the model.

16

1 Introduction

• The major drawback of the Nitpick system is that it supports only relations and neither

scalars nor sets. In particular, it does not support numbers. Thus, the approach

presented here supports a much greater subset of Z.

• Nitpick language has no step semantics. Therefore, it is not compatible with Statechart

semantics, and it is thus not suitable for a combination. Nor is it possible within Nitpick

to use temporal logic to specify certain properties in an abstract way.

1.8 Main Features

The main features of the presented work are:

• Support of constants from axiomatic definitions. For example, if the model contains

a constant limit < 255, the model is checked for all possible values of limit (This

complies to the Z semantics of such constants).

• Support of invariants from declarations of data invariants. For example in the decla-

ration of data variables a, b, c, a can be defined to be always b or c: [a, b, c : 0 . . 255 |
a ∈ { b, c }]

• Support of timeouts. Timeouts that trigger firing of a transition are supported.

• An efficient and fast translation scheme for Statecharts is used.

• Declarations of data variables, data transitions and properties can be described with

a rich (yet finite) subset of Z.

• Static analysis for racing is performed, and racing is supported with minimal overhead.

• Computation Tree Logic is defined for Z.

• It is integrated in the Zeta developing system and takes advantage of formating, type

checking, Statemate Extraction.

• Derived, port, and data variables are supported.

• The overall architecture allows to exchange the model checker easily.

• The translators are implemented in 100% pure Java. Only the Statemate Extractor

is platform dependend. The system has been tested under Linux, Windows NT and

Solaris.

• Other formalisms for the description of behavioral aspects are supported, provided

that they are translated into a Z state transition relation.

1.9 Notation

The mathematical theory presented in this work uses the Z notation. New features, of

the recently accepted Z standard [49, 45] were used. These features are in particular: (1)

Sections section that introduce separated name spaces to Z. (2) Schema expressions can

be ordinary expressions. The theory was type checked using the Zeta tools.

17

1 Introduction

1.10 Acknowledgements

I like to thank the entire Espress team for the often controversial but always fruitful

discussions. In particular I thank the group at the TU Berlin: Hartmut Ehrig, Robert

Geisler, Wolfgang Grieskamp, Stephan Herrmann, Stefan Jähnichen, Marcus Klar, Peter

Pepper, and Matthias Weber. Most valuable were the discussions and close cooperation

with Wolfgang during the project and later. I like to thank Stefan for supervising this work

and waiting so long until I finally got it done and Peter for being the second supervisor.

I like to thank Erich Mikk for the deep discussions on model checking Statecharts.

Special thanks go to Sonja Bonin and Jens-Christian Pastille for proof reading this

work and many valuable hours.

18

Chapter 2

The Intelligent Cruise Control

(ICC)

section icc

As one application of safety-critical systems, the Espress project focused on traffic

engineernig. The Intelligent Cruise Control (ICC) was one of the two reference case studies

in the Espress project. The ICC was independently developed by Daimler Benz during

the project. It is now sold under the product name “Distronic”. The ICC is presented

here as an introductory example.

In addition to normal features of a cruise control, the intelligent cruise control has sen-

sors to measure the distance to the traffic ahead, in order to adopt the speed accordingly.

The cruise control knows different modes of operation:

• activated by the driver or not and

• adopting the speed requested by the driver or by the traffic ahead.

The latter depends on whether the distance sensor detects a car ahead that drives

slower than the requested speed. Here, the mode control is defined. It is a part of the

intelligent cruise control (ICC). The mode control keeps track of the ICC’s current mode

of operation (e. g. if it is activated or not) and computes the nominal speed for the ICC.

2.1 Definitions

In order to be able to model check the specification, SPEED , ACCELERATION and

LENGTH are defined as bounded integers and the constants stepSpeed , minSpeed ,

maxSpeed and safeDistance are assigned concrete values. The original specification was

done without having model checking in mind, and these were the only adaptions needed

for model checking.

19

2 The Intelligent Cruise Control (ICC)

ICC
MAXINT == 255
stepSpeed == 2
minSpeed == 30
maxSpeed == 150
safeDistance == 100

SPEED == 0 . . MAXINT
ACCELERATION == 0 . . MAXINT
LENGTH == 0 . . MAXINT

2.2 Interfaces

The ICC has several interfaces to communicate with its environment. It reads the current

position of the lever (Lever) and the brake (Pedal), the current speed and acceleration

(Movement), and the distance and speed of a car ahead (Ahead). If there is no traffic

ahead, distAhead is zero. The only output of the system is the nominal speed of the car

(NominalSpeed) that has to be computed.

The input values (Lever , Pedal , Movement , and Ahead) are provided by the environ-

ment of the controller. This environment remains beyond the scope of the specification.

Therefore, concrete values for the input variables are unknown. The model checker han-

dles such input variables in verifying the properties for all possible combinations of input

variables.

µSZ, however, allows to specify invariants for the input variables. This is done in the

schema Ahead : distAhead > 0⇔ accelAhead > 0. The translation scheme presented here

takes such invariants into account. Many properties only hold if the environment fulfills

certain requirements. You cannot verify these properties if you cannot specify reasonable

assumptions about the environment.

ICC
LEVERPOS ::= increase | decrease | resume | off | idle

PORT Lever
lever : LEVERPOS

PORT Pedal
brake : signal

PORT Movement
curSpeed : SPEED
curAccel : ACCELERATION

PORT Ahead
distAhead : LENGTH
accelAhead : ACCELERATION

distAhead > 0⇔ accelAhead > 0

PORT NominalSpeed
nominalSpeed : SPEED

INIT NominalSpeedInit
NominalSpeed

nominalSpeed = 0

2.3 Internal Data

Internally, the ICC keeps the speed requested by the driver. nominalSpeed , the output of

the ICC, is set to this speed, if the ICC is activated and no car is driving ahead.

20

2 The Intelligent Cruise Control (ICC)

ICC
DATA RequestedSpeed

requestedSpeed : SPEED
INIT RequestedSpeedInit

RequestedSpeed

requestedSpeed = 0

2.4 Behavior

The behavior of the ICC is defined by two parallel Statecharts A and C . The charts are

references to external Statemate models.

ICC
root

A,C : RefState

DEACTIVATED ACTIVATED

[INCREASING()]/
INCREASE()

[DECREASING()]/
DECREASE()

[RESUMING()]

[DEFINING()]/DEFINE()

[DEACTIVATING()]

REQUESTED CALCULATED
[not RECOGNIZING()]

[RECOGNIZING()]

2.5 Guards and Operations

The guards and operations of the Statecharts are defined in Z as follows.

ICC
GUARD DEFINING

Lever ; Pedal ; Movement

lever = increase ∨ lever = decrease
¬ df brake
minSpeed ≤ curSpeed ≤ maxSpeed

OP DEFINE
Movement ; ∆RequestedSpeed

requestedSpeed ′ = curSpeed

GUARD INCREASING
Lever ; Pedal ; RequestedSpeed

lever = increase ∧ ¬ df brake

21

2 The Intelligent Cruise Control (ICC)

OP INCREASE
∆RequestedSpeed

requestedSpeed ′ =
if requestedSpeed + stepSpeed ≤ maxSpeed

then requestedSpeed + stepSpeed else requestedSpeed

GUARD DECREASING
Lever ; Pedal ; RequestedSpeed

lever = decrease ∧ ¬ df brake

OP DECREASE
∆RequestedSpeed

requestedSpeed ′ =
if requestedSpeed − stepSpeed > minSpeed

then requestedSpeed − stepSpeed
else requestedSpeed

GUARD RESUMING
Lever ; Pedal ; Movement ; RequestedSpeed

lever = resume
requestedSpeed > 0
¬ df brake
minSpeed ≤ curSpeed ≤ maxSpeed

GUARD DEACTIVATING
Lever ; Pedal ; Movement ; RequestedSpeed

lever = off
∨ df brake
∨ (curSpeed < minSpeed ∧

requestedSpeed > curSpeed)

GUARD RECOGNIZING
RequestedSpeed ; Ahead ; Movement

0 < distAhead ∧ distAhead < safeDistance

The nominal speed is defined by an invariant, depending on the Statechart states and

the speed requested by the driver.

ICC
DATA SetSpeed

Lever ; Pedal ; NominalSpeed ; RequestedSpeed ; Control

instateA :ACTIVATED ∧ instateC :REQUESTED ⇒
nominalSpeed = requestedSpeed

instateA :ACTIVATED ∧ instateC :CALCULATED ⇒
minSpeed ≤ nominalSpeed ≤ maxSpeed

instateA :DEACTIVATED ⇒ nominalSpeed = 0

22

2 The Intelligent Cruise Control (ICC)

2.6 Safety

The schema Safety specifies the security properties for the above specification (Safety).

The first affirms that the nominal speed is in the range the ICC is allowed to take control of

(minSpeed ≤ nominalSpeed ≤ maxSpeed). The second states that the ICC may only take

control after it was activated by the driver. Note that in order to make this property true,

we have a fairness (Fairness) constraint, ensuring that the ICC is activated eventually.

The third property states that if the driver pushes the brake (df brake) the cruise control

will switch itself off immediately.

ICC
Fairness

Lever

lever = increase

Regulating
DATA

nominalSpeed > 0

Safety
INIT
CTL[DATA]

AG([DATA | minSpeed ≤ nominalSpeed ≤ maxSpeed ∨ nominalSpeed = 0])
AG((¬ Regulating)⇒

A(¬ Regulating)U
[DATA | lever = increase ∨ lever = decrease ∨ lever = resume])

AG([DATA | df brake]⇒ AX (¬ Regulating))

2.7 Model Checking the ICC

Figure 2.1 on the next page shows a Zeta session which model checks the ICC specification.

The Zeta system performs the necessary translation for model checking. For this, it

executes a tool-chain consisting of the type-checker, the Statemate adaptor and the SMV

translator. The output of the translation can be seen in the upper part of the window.

In the lower part, the SMV model checker is executed. The box shows the actual SMV

output. The SMV model checker needs approximately 1.3 seconds (on an Intel PII 233

MHz) to verify the three properties.

2.8 Annotated SMV Listing

In order to give an impression of what the translation presented in the following chapter,

does, the generated SMV program is presented. The code is roughly explained. The SMV

syntax is explained in Chapter 8 on page 137.

Variables to store the active Statechart states (the configuration) are declared. One

variable is declared for each xor-state. The representation of the Statechart configuration

is discussed in section 6.1.5 on page 76.

23

2 The Intelligent Cruise Control (ICC)

Figure 2.1: Model checking the ICC with the Zeta toolkit

24

2 The Intelligent Cruise Control (ICC)

4 VAR

5 A_a : { A_ACTIVATED_s, A_DEACTIVATED_s };

6 C_a : { C_CALCULATED_s, C_REQUESTED_s };

The data variables are declared straightforwardly.

11 VAR

12 curAccel_e : 0..255;

13 requestedSpeed_e : 0..255;

14 nominalSpeed_e : 0..255;

15 curSpeed_e : 0..255;

16 distAhead_e : 0..255;

17 accelAhead_e : 0..255;

18 lever_e : { increase, decrease, resume, off, idle };

19 brake_e : boolean;

In an operational specification language such as Statecharts, one would expect

that variables keep their value until they are assigned a new one (assignment seman-

tics/persistency of variables). For the translation into a state transition relation, extra

meaures have to be taken, in order to ensure this. For the variable requestedSpeed , an

auxiliary variable is introduced. It is zero in a step, if requestedSpeed is not written and

should preserve its value. The mechanism for handling persistent variables and racing,

which is used here, is presented in section 6.2.3 on page 79.

22 VAR

23 requestedSpeed_l : 0..1;

The SMV init predicate consists of the predicates of the init schemata and the in-

variants of the data and port schemata. The invariants have to hold in the initial state,

too, and this has to be ensured explicitly. Therefore, the invariants are added to the

init-predicate. The presented predicates origin form the schemata: Ahead , NominalSpeed ,

and RequestedSpeedInit . SetSpeed is omitted.

25 INIT

26 (((distAhead_e > 0) <-> (accelAhead_e > 0)) &

27 nominalSpeed_e=0 &

28 requestedSpeed_e=0 &

29 ...

The initial configuration of the Statechart:

41 INIT

42 (A_a=A_DEACTIVATED_s & C_a=C_REQUESTED_s)

25

2 The Intelligent Cruise Control (ICC)

In order to increase readability, the translator generates abbreviations for the State-

chart translation. For each transition, three abbreviations are generated: grd_i , lck_i ,

and act_i . The transition’s guard is represented by grd_i and the action by act_i . They

correspond to the function transGuard and trFullAct introduced in section 6.3 on page 86.

lck_i corresponds to protectOtherPlaces also introduced in section 6.3 on page 86. The

transitions are numbered subsequently. Transition 1 represents DEFINE/DEFINING , 2

INCREASING/INCREASE , etc.

46 DEFINE

47 grd_1 := (A_a=A_DEACTIVATED_s &

48 (lever_e=resume & (requestedSpeed_e > 0) & !(brake_e) &

49 ((30 <= curSpeed_e) & (curSpeed_e <= 150))));

50 lck_1 := !(next(requestedSpeed_l)=1);

51 act_1 := (grd_1 & (lck_1 & next(A_a)=A_ACTIVATED_s));

52 grd_2 := (A_a=A_ACTIVATED_s & (lever_e=increase & !(brake_e)));

53 lck_2 := 1;

54 act_2 := (grd_2 &

55 (lck_2 &

56 (next(A_a)=A_ACTIVATED_s &

57 (!(next(requestedSpeed_l)=0) &

58 (next(requestedSpeed_l)=1 ->

59 (next(requestedSpeed_l)=1 &

60 next(requestedSpeed_e)=case

61 ((requestedSpeed_e + 2) <= 150) :

62 (requestedSpeed_e + 2);

63 1 : requestedSpeed_e;

64 esac))))));

For each state, a transition relation is defined as an abbreviation. For an xor-state the

transition relation executes a transition if one of the state’s guards is true. Otherwise, it

remains in the same state and does not write any variable. The definition of the transition

relation corresponds to the function stateTrans.

93 trans_A := case

94 (grd_1 | grd_2 | grd_3 | grd_4 | grd_5) :

95 (act_1 | act_2 | act_3 | act_4 | act_5);

96 1 :

97 (next(A_a)=A_a &

98 case

99 1 : !(next(requestedSpeed_l)=1);

100 esac);

101 esac;

26

2 The Intelligent Cruise Control (ICC)

A transition relation is defined for the root state similar to the one of state A. Since

the root state is an and-state, its transition relation is the conjunction of its sub-states.

122 trans_root := (trans_A & trans_C);

The root state’s transition relation is added to the program’s transition relation.

126 TRANS

127 trans_root

This predicate ascertains that the persistent variable requestedSpeed keeps its value as

long as it is not written.

130 TRANS

131 (next(requestedSpeed_l)=0 -> next(requestedSpeed_e)=requestedSpeed_e)

In addition to the init predicate, the invariants of the schemata Ahead and SetSpeed

are also added to the transition relation.

134 TRANS

135 (((next(distAhead_e) > 0) <-> (next(accelAhead_e) > 0)) &

136 ((next(A_a)=A_ACTIVATED_s & next(C_a)=C_REQUESTED_s) ->

137 next(nominalSpeed_e)=next(requestedSpeed_e)) &

138 ...

The fairness schema is added as a fairness constraint.

149 FAIRNESS

150 lever_e=increase

Finally the properties to be shown are added.

152 SPEC

153 AG((((30 <= nominalSpeed_e) & (nominalSpeed_e <= 150)) | nominalSpeed_e=0))

154

155 SPEC

156 AG((!((nominalSpeed_e > 0)) ->

157 A[!((nominalSpeed_e > 0)) U ((lever_e=increase | lever_e=decrease) |

158 lever_e=resume)]))

159

160 SPEC

161 AG((brake_e -> AX(!((nominalSpeed_e > 0)))))

27

2 The Intelligent Cruise Control (ICC)

2.9 Complete SMV Listing

The following presents the complete SMV program as it is produced by the translator.

The pretty printing is done by the Zeta system’s pretty printer.

1 MODULE

2 main

3
4 VAR

5 A_a :

6 { A_ACTIVATED_s, A_DEACTIVATED_s };

7 C_a :

8 { C_CALCULATED_s, C_REQUESTED_s };

9
10 -- VARIABLES

11 VAR

12 curAccel_e : 0..255;

13 requestedSpeed_e : 0..255;

14 nominalSpeed_e : 0..255;

15 curSpeed_e : 0..255;

16 distAhead_e : 0..255;

17 accelAhead_e : 0..255;

18 lever_e : { increase, decrease, resume, off, idle };

19 brake_e : boolean;

20
21 -- LOCK VARIABLES

22 VAR

23 requestedSpeed_l : 0..1;

24
25 INIT

26 (((distAhead_e > 0) <-> (accelAhead_e > 0)) & nominalSpeed_e=0 &

27 requestedSpeed_e=0 &

28 ((A_a=A_ACTIVATED_s & C_a=C_REQUESTED_s) -> nominalSpeed_e=requestedSpeed_e

29) &

30 ((A_a=A_ACTIVATED_s & C_a=C_CALCULATED_s) ->

31 ((30 <= nominalSpeed_e) & (nominalSpeed_e <= 150))) &

32 (A_a=A_DEACTIVATED_s -> nominalSpeed_e=0) &

33 ((distAhead_e > 0) <-> (accelAhead_e > 0)) &

34 ((A_a=A_ACTIVATED_s & C_a=C_REQUESTED_s) -> nominalSpeed_e=requestedSpeed_e

35) &

36 ((A_a=A_ACTIVATED_s & C_a=C_CALCULATED_s) ->

37 ((30 <= nominalSpeed_e) & (nominalSpeed_e <= 150))) &

38 (A_a=A_DEACTIVATED_s -> nominalSpeed_e=0))

39
40 -- INITIAL CONFIGURATION

41 INIT

42 (A_a=A_DEACTIVATED_s & C_a=C_REQUESTED_s)

43
44 -- DEFINITIONS FOR STATE A

45 DEFINE

46 grd_1 := (A_a=A_DEACTIVATED_s &

47 (lever_e=resume & (requestedSpeed_e > 0) & !(brake_e) &

48 ((30 <= curSpeed_e) & (curSpeed_e <= 150))));

49 lck_1 := !(next(requestedSpeed_l)=1);

50 act_1 := (grd_1 & (lck_1 & next(A_a)=A_ACTIVATED_s));

51 grd_2 := (A_a=A_ACTIVATED_s & (lever_e=increase & !(brake_e)));

52 lck_2 := 1;

53 act_2 := (grd_2 &

54 (lck_2 &

55 (next(A_a)=A_ACTIVATED_s &

56 (!(next(requestedSpeed_l)=0) &

28

2 The Intelligent Cruise Control (ICC)

57 (next(requestedSpeed_l)=1 ->

58 (next(requestedSpeed_l)=1 &

59 next(requestedSpeed_e)=case

60 ((requestedSpeed_e + 2) <= 150) :

61 (requestedSpeed_e + 2);

62 1 : requestedSpeed_e;

63 esac))))));

64 grd_3 := (A_a=A_DEACTIVATED_s &

65 ((lever_e=increase | lever_e=decrease) & !(brake_e) &

66 ((30 <= curSpeed_e) & (curSpeed_e <= 150))));

67 lck_3 := 1;

68 act_3 := (grd_3 &

69 (lck_3 &

70 (next(A_a)=A_ACTIVATED_s &

71 (!(next(requestedSpeed_l)=0) &

72 (next(requestedSpeed_l)=1 ->

73 (next(requestedSpeed_l)=1 & next(requestedSpeed_e)=curSpeed_e)))))

74);

75 grd_4 := (A_a=A_ACTIVATED_s &

76 ((lever_e=off | brake_e) |

77 ((curSpeed_e < 30) & (requestedSpeed_e > curSpeed_e))));

78 lck_4 := !(next(requestedSpeed_l)=1);

79 act_4 := (grd_4 & (lck_4 & next(A_a)=A_DEACTIVATED_s));

80 grd_5 := (A_a=A_ACTIVATED_s & (lever_e=decrease & !(brake_e)));

81 lck_5 := 1;

82 act_5 := (grd_5 &

83 (lck_5 &

84 (next(A_a)=A_ACTIVATED_s &

85 (!(next(requestedSpeed_l)=0) &

86 (next(requestedSpeed_l)=1 ->

87 (next(requestedSpeed_l)=1 &

88 next(requestedSpeed_e)=case

89 ((requestedSpeed_e - 2) > 30) :

90 (requestedSpeed_e - 2);

91 1 : requestedSpeed_e;

92 esac))))));

93 trans_A := case

94 (grd_1 | grd_2 | grd_3 | grd_4 | grd_5) :

95 (act_1 | act_2 | act_3 | act_4 | act_5);

96 1 :

97 (next(A_a)=A_a &

98 case

99 1 : !(next(requestedSpeed_l)=1);

100 esac);

101 esac;

102
103 -- DEFINITIONS FOR STATE C

104 DEFINE

105 grd_6 := (C_a=C_REQUESTED_s & ((0 < distAhead_e) & (distAhead_e < 100)));

106 lck_6 := 1;

107 act_6 := (grd_6 & (lck_6 & next(C_a)=C_CALCULATED_s));

108 grd_7 := (C_a=C_CALCULATED_s & !(((0 < distAhead_e) & (distAhead_e < 100)))

109);

110 lck_7 := 1;

111 act_7 := (grd_7 & (lck_7 & next(C_a)=C_REQUESTED_s));

112 trans_C := case

113 (grd_6 | grd_7) : (act_6 | act_7);

114 1 :

115 (next(C_a)=C_a &

116 case

117 1 : 1;

29

2 The Intelligent Cruise Control (ICC)

118 esac);

119 esac;

120
121 -- DEFINITIONS FOR STATE \root

122 trans_root := (trans_A & trans_C);

123
124
125 -- THE TRANSITION RELATION

126 TRANS

127 trans_root

128
129 -- DEFAULT BEHAVIOR

130 TRANS

131 (next(requestedSpeed_l)=0 -> next(requestedSpeed_e)=requestedSpeed_e)

132
133 -- INVARIANTS

134 TRANS

135 (((next(distAhead_e) > 0) <-> (next(accelAhead_e) > 0)) &

136 ((next(A_a)=A_ACTIVATED_s & next(C_a)=C_REQUESTED_s) ->

137 next(nominalSpeed_e)=next(requestedSpeed_e)) &

138 ((next(A_a)=A_ACTIVATED_s & next(C_a)=C_CALCULATED_s) ->

139 ((30 <= next(nominalSpeed_e)) & (next(nominalSpeed_e) <= 150))) &

140 (next(A_a)=A_DEACTIVATED_s -> next(nominalSpeed_e)=0) &

141 ((next(distAhead_e) > 0) <-> (next(accelAhead_e) > 0)) &

142 ((next(A_a)=A_ACTIVATED_s & next(C_a)=C_REQUESTED_s) ->

143 next(nominalSpeed_e)=next(requestedSpeed_e)) &

144 ((next(A_a)=A_ACTIVATED_s & next(C_a)=C_CALCULATED_s) ->

145 ((30 <= next(nominalSpeed_e)) & (next(nominalSpeed_e) <= 150))) &

146 (next(A_a)=A_DEACTIVATED_s -> next(nominalSpeed_e)=0))

147
148 -- FAIRNESS CONSTRAINTS

149 FAIRNESS

150 lever_e=increase

151
152 SPEC

153 AG((((30 <= nominalSpeed_e) & (nominalSpeed_e <= 150)) | nominalSpeed_e=0))

154
155 SPEC

156 AG((!((nominalSpeed_e > 0)) ->

157 A[!((nominalSpeed_e > 0)) U ((lever_e=increase | lever_e=decrease) |

158 lever_e=resume)]))

159
160 SPEC

161 AG((brake_e -> AX(!((nominalSpeed_e > 0)))))

30

Chapter 3

Mathematical Definitions

section Aux

Z and the Z mathematical toolkit are used for the mathematical parts of this work.

The toolkit is extended by some more definitions, which are given in this chapter.

3.1 Functions and Sequences

Functions for “currying” functions:

[X ,Y ,Z]
curryFstOf 2 : (X ×Y ↔ Z)→ (X ↔ (Y ↔ Z))
currySndOf 2 : (X ×Y ↔ Z)→ (Y ↔ (X ↔ Z))

∀ f : X ×Y ↔ Z ; x : X ; y : Y •
curryFstOf 2 f x = (({ x } ×Y)−C f) ◦ (second∼) ∧
currySndOf 2 f y = ((X × { y })−C f) ◦ (first∼)

The zip function combines two sequences of equal length: zip(〈 a, b 〉, 〈 b, c 〉) =

〈(a, b), (b, c)〉.

[X ,Y]
zip : seqX × seqY 7→ seq(X ×Y)

zip = λ xs : seqX ; ys : seqY | dom xs = dom ys • (λ i : dom xs • xs i 7→ ys i)

reduce reduces a sequence from left to right with a given functions: reduce (+) 〈1, 3, 5〉
= (1 + 3) + 5

[X]
reduce : (X ×X →X)→ seq1 X →X

∀ f : X ×X →X ; xs : seqX ; x : X •
reduce f 〈x 〉 = x ∧
reduce f (xs a 〈x 〉) = f (x , reduce f xs)

31

3 Mathematical Definitions

setreduce reduces a set in an arbitrary order.

[X]
setreduce : (X ×X →X)→ P1 X →X

∀ f : X ×X →X ; xp : P1 X ; x : X | x /∈ xp •
setreduce f { x } = x ∧
setreduce f ({ x } ∪ xp) = f (x , setreduce f xp)

3.2 Implode and Explode

It is often necessary to translate a sequence of sets into a set of sequences and vice versa.

Consider for example the following problem. Let ~τ be a sequence of types (~τ = 〈τ1, . . . , τn〉)
and values : Type→ P Value a function, mapping types to their possible values (values =

{ τ1 7→ { a, b, c }, . . . , τn 7→ { x , y , z } }. Now, all sequences of possible values are searched:

{ 〈a, . . . , x 〉, 〈a, . . . , y〉, . . . } Formally: { vs : seqValue | dom vs = dom~τ ∧ ∀ i : dom vs •
vs i ∈ values(~τ i) }.

This problem can be expressed by explode. values ◦~τ is the sequence of possible values,

and explode(values◦~τ) translates this sequence into a set of sequences of values. A sequence

of two sets { a, b } and { b, c } is translated as follows:

explode〈{ a, b }, { b, c } 〉 = { 〈 a, b 〉, 〈 a, c 〉, 〈 b, b 〉, 〈 b, c 〉 }

explode is defined over an arbitrary index set X and a range set Y . The range sets

must not be empty (P1 Y).

The reverse function of explode is implode. Note that implode is not a total function.

It translates only sets of functions with equal domains, e. g. implode{ 〈 a, b 〉, 〈 b, c, d 〉 is

not defined.

explode and implode are usually used in conjunction with sequences and function map-

pings (◦).

[X ,Y]
explode : (X 7→ P1 Y) � P(X 7→Y)
implode : P(X 7→Y) 7→ (X 7→ P1 Y)

∀ f : X 7→ P1 Y •
explode f = { g : X 7→Y | dom f = dom g ∧ (∀ x : dom f • g x ∈ f x)}

implode = explode∼

3.3 Fixed Points

Z provides least fixed point declarations with its free types. The free type construction

has the disadvantage that it can only be used to introduce an new type, not to define a

subset of an existing type. Therefore, a new operator is defined. Firstly, some fix point

definitions are provided (according to Davey and Priestley [20]).

function 200 leftassoc (v)

32

3 Mathematical Definitions

A relation (v) is called a partial order, if it is reflexive and antisymmetric ((v
) ∩ (v)∼) = id[X] and transitive (v)+ ⊆ (v) }. For some set X , porder is the

set of all partial orders.

[X]
porder : P(X ↔X)

porder = { v : X ↔X | ((v) ∩ (v)∼) = id[X] ∧ (v)+ ⊆ (v) }

Fix-points, least fix-points, and greatest fix-points.

[X]
fix : (X →X)→ P X
lfix, gfix : porder [X]→ (X →X) 7→X

∀ f : X →X • fix f = { x : X | x = f x }
∀ v : porder [X]; f : X →X •

(lfix (v) f) ∈ fix f ∧
(∀ x : fix f • ((lfix (v) f), x) ∈ (v))

∀ v : porder [X]; f : X →X •
(gfix (v) f) ∈ fix f ∧
(∀ x : fix f • (x , (gfix (v) f)) ∈ (v))

The fix-point operators are used to construct smallest sets. Consider for example the

definition of the set Conj that represents only conjunctions of equality predicates. The

predicate type Pred is already declared. Assume that there are, among others, constructors

for equality (=) and conjunction (∧).

Conj is defined to be the smallest set the following axioms hold for:

1. ∀ e1, e2 : Expr • (e1 = e2) ∈ Conj (or (=)(|Expr × Expr |) ⊆ Conj)

2. ∀ p1, p2 : Conj • (p1 ∧ p2) ∈ Conj (or (∧)(|Conj × Conj |) ⊆ Conj)

This can be expressed as the least fix-point (one has to warrant that the lambda

abstraction is continuous):

Conj = lfix(⊆), (λX : P Pred • (=)(|Expr × Expr |) ∪
(∧)(|Conj × Conj |))

For more convenience, the \fixmax macro is introduced. The term

Xc
X←E1

‖ . . .

‖ En

is translated to Xc = lfix(⊆)(λXc : P X • E1∪. . .∪En). Using this macro, the definition

can be rewritten:

ConjPred← (=)(|Expr × Expr |)
‖ (∧)(|Conj × Conj |)

33

3 Mathematical Definitions

In order to define two sets that are mutually dependent, a subset relation for tuples of

sets is defined:

[X ,Y]
⊆2: ((P X)× P Y)↔ ((P X)× P Y)

∀X1,X2 : P X ; Y1,Y2 : P Y •
(X1,Y1) 7→ (X2,Y2) ∈⊆2⇔ X1 ⊆ X2 ∧ Y1 ⊆ Y2

⊆2∈ porder

The term Xc ←X EX1 ‖ . . . ‖EXn⊕Yc ←Y EY 1 ‖ . . . ‖EYm is translated to (Xc ,Yc) =

lfix(⊆2)(λXc : P X ; Yc : P Y • EX1 ∪ . . . ∪ EXn 7→ EY 1 ∪ . . . ∪ EYm
).

The fix point functions are used and typeset with the following macros:

%%macro \fixmore 0 \cup

%%macro \fixmac 3 (#1 = \lfix(_\subseteq_)(\lambda #1 : \power #2 @ #3))

%%macro \fixmacc 6

((#1,#3) = \lfix(\subseteqtuple)

(\lambda #1 : \power #2; #3 : \power #4 @ (#3) \mapsto (#6)))

3.4 Sum and Product

The well known sum (Σ) and product (Π) are defined for sequences of numbers.

Σ,Π : seq Z→ Z
Σ = reduce(+)⊕ {∅ 7→ 0 }
Π = reduce(∗)⊕ {∅ 7→ 1 }

3.5 Macros for Type and Rewriting Rules

For better presentation, the type and rewriting rules are formatted with special \rule

macro. The macro is defined as follows:

%%macro \rule 3 \forall #3 @ #1 \implies #2

As a TEX macro \rule produces the following:

∀#3 •

#1
#2

34

Chapter 4

Model Checking

This section describes the basic concepts and theories used for model checking and, in

particular, symbolic model checking. It describes

• Kripke structures for the representation of the model to be checked,

• Computation Tree Logic, for the formulation of properties of the model,

• the model checking algorithm that computes the validity of a formula for a given model,

• the usage of ordered Binary Decision Diagrams BDDs, to represent sets of states and

compute Boolean operators efficiently,

• how the presented concepts and theories can be used to check properties of µSZ classes,

and

• other model checking techniques.

4.1 Kripke Structures

section ModelChecking parents Aux

The technique of model checking for the verification of properties of finite models was

proposed by Emerson and Clarke [17] and independently by Quielle and Sifakis [47]. In

this work model checking is used for the verification of properties of a µSZ or Statemate

specification. The theory presented in this Chapter is implemented by the model checker

used (i. e. McMillan’s [38] SMV symbolic model checker).

The basic principle of model checking is that properties of a system, defined by a finite

model, are proven by complete enumeration of the system’s states (its state space) and

the possible traces. The model represents the system by a Kripke structure.1 A Kripke

structure is a triple (S ,R,L), where S is a set of states, R ⊆ S × S , is the state transition

1The term Kripke structure is taken from modal logic. The use of these structures, for defining the

validity of modal logic formulae, derives from the work of Saul Kripke (see [31]). The essence of this thesis

is, in fact, to translate an µSZ (or Statemate) specification into a Kripke structure, using a representation

accepted by the model checker.

35

4 Model Checking

relation, and L is a valuation function. The valuation function defines in which states a

primitive (i. e. non-modal) property is true.

For some system, for example, a state may consist of the values of the system’s variables

and its program counter. For such a system, the valuation function L would be defined in

such a way that a property, P ≡ a = 4 is true for all states s of the system (i. e. P ∈ L(s))

that assign the value 4 to the variable a.

For model checking, the state space S has to be finite. Classic model checking proves

that a model fulfills a specification given in a temporal logic. Other approaches, e. g. ap-

proaches based on automata theory, use finite state machines to represent the system

model and the specification. Verification is done by showing that the externally visible

behaviors of the model and the specification are compatible. In this work, temporal logic,

i. e. computation tree logic is used.

For an arbitrary domain of states State and properties Prop, a finite Kripke structure

with a total transition relation is defined as:2

Model [State,Prop]
S : F1 State
R : State↔ State
L : State 7→ P Prop

R ⊆ S × S
domR = domL = S

For a model, the set of paths are defined. A path of a model is an infinite sequence of

states, where each subsequent pair of states is member of R.

Path[State,Prop]
Model [State,Prop]
paths : P(N→ State)

paths = {~s : N→ S | (∀ i : N • (~s i ,~s(i + 1)) ∈ R) }

Note that while the state space is finite, the set of paths (or traces) is infinite. Both

their number and their length are infinite. Properties verified by model checking consider

paths rather then states. Thus, the model checking tools have to deal with the infiniteness

of the paths. Therefore, it is imprecise to say a model checkers simply enumerates the

finite state space. More precisely, model checkers use the fact that because of the finiteness

of the state space any reachable state, can be reached after a finite number of states.
2The totality of the transition relation (domR = S) is required for the definition of the CTL semantics

in the literature [22], [38]. This restriction is not mandatory. CTL and the model checking algorithms

could also be defined without it. The difference is that in order to support non-total relations, finite paths

(where the last state has no successor state) have to be considered, too. Model checkers such as the SMV

rely on a total transition relation, however. Therefore, only total relations are considered here.

36

4 Model Checking

4.2 Computation Tree Logic

Model checking can prove the reachability or non-reachability of certain states or fulfill-

ment of temporal logic properties. In the latter case, the model checking algorithms are

specialized in a certain temporal logic. Still, not for every temporal logic there is an effi-

cient model checking algorithm. Thus, the choice of the temporal logic is very important

for model checking.

Clarke and Emerson [17], propose Computation Tree Logic (CTL) for the specification

of properties of the model. According to the characterization of Emerson [22], CTL is a

propositional, global (non-compositional), branching time, point-based, discrete temporal

logic:

• Branching time: In distinction to linear time, in branching time logics, it is assumed

that each state can have different futures. For this, branching time logics have operators

to express whether a formula has to hold for all (A) futures or for some (E). This

implies some differences as to how the semantics can be formulated: Roughly spoken,

in branching time temporal logic, a formula holds for a state of a model, whereas in

linear time, a formula holds for a state in a trace.

Therefore, the fulfillment relation ` is defined differently: A branching time formula

Tbranch , holds for a state s in a model M if and only if:

(M , s) `b Tbranch

A linear time formula Tlin ,holds for the i-th state of a trace σ, if and only if:

(σ, i) `l Tlin

A branching time formula holds for a model, if it holds for all its (initial) states. A

linear time formula holds for a model if it holds for (the first state of all) its traces.

Model checkers use branching time logic to take advantage of the fact that formulae

hold for single states. They recursively perform the verification by computing the sets

of states that hold for each sub-formula. Since the state space is finite, these sets are

finite, too, and can be represented in a computer. A set of traces, in contrary to states,

may be infinite and is thus much harder to represent.

Manna and Pnueli [37] present a linear time temporal logic, whereas CTL is a branching

time logic.

Branching time and linear time temporal logics also differ in their expressiveness.

Consider the branching time formula (see Table 4.1 on the next page for a description

of the CTL operators) (AGP) ⇒ (EFQ) (“if P holds for all states of all paths, then

there is a path with a state satisfying Q”). And the similar linear time formula

(2P) ⇒ (�Q) (“for any path, if P holds for all states of the path, then Q holds for

some state of this very path”). The difference is subtle, but important. If for a path

of some model P , does not hold in all states, AGP is false and the model satisfies the

37

4 Model Checking

EXT exist next there exists some next state fulfilling T

AXT always next all next states fulfill T

EGT exist globally their exists a path such that all states fulfill T

AGT always globally all paths fulfill T globally

EFT exist finally their exists a path with a state that fulfills T

AFT always finally all paths have a state that fulfills T

ET U T ′ exist until their exists a path such that T holds until T ′ holds

AT U T ′ always until T holds until T ′ holds in all paths.

Table 4.1: CTL Operators

branching time formula for all paths. For the linear time formula, in contrary, there

can be paths that are not fulfilled and therefore the model does not fulfill the formula.

• Point Based: Formulae are true or false at points in time rather then time intervals.

In contrary to CTL, The interval logics, presented by Chaochen, Hoare and Ravn [16]

or Büssow and Grieskamp [13], are not point based.

• Discrete: A temporal logic is discrete if each state has a next state. The time domain

is thus the natural numbers. Continuous (or dense) logics, in contrary, interprete over

the real (or rational) numbers.

CTL is defined for some set of properties Prop. Most of the operators can be derived.

The names of the operators are shown in table 4.1.

function 200 leftassoc (∧)

function 200 leftassoc (∨)

function 200 leftassoc (⇒)

CTL[Prop] ::= prop〈〈Prop〉〉
| true
| (∨)〈〈CTL[Prop]× CTL[Prop]〉〉
| ¬ 〈〈CTL[Prop]〉〉
| EX 〈〈CTL[Prop]〉〉
| (E U)〈〈CTL[Prop]× CTL[Prop]〉〉
| (A U)〈〈CTL[Prop]× CTL[Prop]〉〉

false == ¬ true
(∧)[Prop] == λT ,T ′ : CTL[Prop] • ¬ (¬ T ∨ ¬ T ′)
(⇒)[Prop] == λT ,T ′ : CTL[Prop] • ¬ T ∨ T ′

AX == λT : CTL[Prop] • ¬ (EX (¬ T))
EG == λT : CTL[Prop] • ¬ (AF(¬ T))
AG == λT : CTL[Prop] • ¬ (EF(¬ T))
EF == λT : CTL[Prop] • E true UT
AF == λT : CTL[Prop] • A true UT

CTL formulae are evaluated for states of a model. The satisfaction relation ` defines

for which states of a given model a formula holds: (M , s) ` T if the state s of the model

38

4 Model Checking

M satisfies T , for short: s satisfies T in M .

relation (`)
[State,Prop]
` : (Model [State,Prop]× State)↔ CTL[Prop]

∀Path[State,Prop] •
∀M == θModel ; s : S ; P : Prop; T ,T ′ : CTL[Prop] •

((M , s) ` true) ∧
((M , s) ` prop P ⇔ P ∈ L(s)) ∧
((M , s) ` T ∨ T ′ ⇔ ((M , s) ` T) ∨ ((M , s) ` T ′)) ∧
((M , s) ` ¬ T ⇔ ¬ ((M , s) ` T)) ∧
((M , s) ` EX T ⇔ (∃ s ′ : S • (s, s ′) ∈ R ∧ (M , s ′) ` T)) ∧
((M , s) ` AT U T ′ ⇔

(∀~s : paths | head ~s = s •
∃ k : dom~s • (M ,~s k) ` T ′ ∧ (∀ i : 0 . . k − 1 • (M ,~s i) ` T))) ∧

((M , s) ` ET U T ′ ⇔
(∃~s : paths | head ~s = s •

∃ k : dom~s • (M ,~s k) ` T ′ ∧ (∀ i : 0 . . k − 1 • (M ,~s i) ` T)))

Model checkers usually add a set of initial states I to the Kripke structure and proof

satisfaction of formulae for the set of initial states. So the model checker shows that a

model M = (S ,R,L) with a set of initial states I ⊆ S satisfies a formula P : M , I � P .

relation (�)
[State,Prop]
� : (Model [State,Prop]× P State)↔ CTL[Prop]

∀M : Model [State,Prop]; I : P State; T : CTL[Prop] | I ⊆ M .S •
(M , I) � T ⇔ (∀ s : I • (M , s) ` T)

section CTLTransform parents ModelChecking

The function mapCTL maps a property-transformation function to CTL formulae made

of such properties. It will be used in the following chapters as an auxiliary function to

describe CTL transformations.

[X ,Y]
mapCTL : (X 7→Y)→ CTL[X] 7→ CTL[Y]

∀ f : X 7→Y ; T ,T ′ : CTL[X]; x : X •
dom(mapCTL f) = CTL[dom f] ∧
(mapCTL f)(true) = true ∧
(mapCTL f)(prop x) = prop(f x) ∧
(mapCTL f)(¬ T) = ¬ ((mapCTL f)T) ∧
(mapCTL f)(T ∨ T ′) = (mapCTL f T) ∨ (mapCTL f T ′) ∧
(mapCTL f)(AX T) = AX ((mapCTL f)T) ∧
(mapCTL f)(AT U T ′) = A(mapCTL f)T U (mapCTL f)T ′ ∧
(mapCTL f)(ET U T ′) = E(mapCTL f)T U (mapCTL f)T ′

39

4 Model Checking

4.3 The Model Checking Algorithm for CTL Formulae

The model checking algorithm computes, for some given formula T , the set of states

satisfying the formula: { s : S | (M , s) ` T }. This set is computed inductively by the

function sat : S → P State (the rules for A U are omitted).

Sat0[State,Prop]
Model [State,Prop]
SatExUntil [State,Prop]
sat : CTL[Prop]→ P State

∀T ,T ′ : CTL[Prop]; P : Prop •
sat(true) = S ∧
sat(prop P) = { s : S | P ∈ L(s) } ∧
sat(¬ T) = S \ sat(T) ∧
sat(T ∧ T ′) = sat(T) ∩ sat(T ′) ∧
sat(EX T) = { s : S | (∃ s ′ : sat(T) • (s, s ′) ∈ R) } = R∼(|sat(T)|) ∧
sat(ET U T ′) = sat exuntil(sat(T), sat(T ′))

Sat [State,Prop] == Sat0[State,Prop] \ (sat exuntil)

In order to compute the states fulfilling an until-formula, i. e. T0 = ET U T ′, the

graph of the state transition relation is considered (see Figure 4.1 on page 42). A path in

the Kripke structure corresponds to a path in the graph. Finding the states which fulfill

an until-formula can thus be regarded as a graph traversal problem. A state that fulfills

T0 either fulfills T ′, or there is a path from this state to a T ′-state, where all intermediate

states of the path are T -states. The computation is done backwards. First all states

fulfilling T ′ are computed. Then all T -states that are predecessors of these states are

added. This is repeated until no more additional states are added. Since the set of states

is finite, the computation terminates after a finite number of steps, that is at most #S :

It can be shown that if there is an infinite path to some state, their is also a finite one:

Because the number of states is finite, in an infinite path, states have to occur several

times, i. e. the path has loops. If the loops are removed, a valid path with respect to the

transition relation remains. If a state is reachable in a path after an infinite number of

states, loops before the occurrence of that state can be removed, and the resulting path

is still valid. If all loops are removed, each state appears not more than once in the path

and hence is a finite path leading to the state. The resulting set of states is the set of

states fulfilling T0.

This computation is done by the function sat exuntil for some given model. As input

the function gets the invariant ~T that has to hold for all states in the path and a set of

already collected states S̃ . S̃n is the set of states added in the step, that is the set of states

that are reachable from S̃ : (R∼)(|S̃ |) and that are a member of ~T . As the computation

is done backwards, the reverse R∼ of the transition relation R is used to compute the

40

4 Model Checking

reachable states.. The computation terminates if no more states are added: S̃n ∪ S̃ = S̃

(or S̃n ⊆ S̃).

SatExUntil [State,Prop]
Model [State,Prop]
sat exuntil : P State× P State 7→ P State

dom sat exuntil = P S × P S
∀TS , S̃ : P S •

(∃ S̃n == (TS ∩ (R∼)(|S̃ |)) •
sat exuntil(TS , S̃) = (if(S̃n ∪ S̃ = S̃)then S̃ else sat exuntil(TS , S̃ ∪ S̃n)))

The algorithm for checking a CTL formula T runs in O(length(T) #S 2) time, where

length(T) denotes the number of CTL operators in T . Note, however, that the compu-

tation critically depends on the representation of the set of states and the computation

of its union and intersection. So does the cost of the application of the state transition

relation. An efficient solution for this problem is the usage of BDDs (see section 4.5 on

the following page).

4.4 Fixed-Point Definition of the Model Checking Algorithm

The computation of the satisfying states for an until-operator can also be expressed by a

fixed-point definition. Consider the following axiom that holds for until:

[State,Prop]
Model [State,Prop]

∀T ,T ′ : CTL[Prop] • ET U T ′ = T ′ ∨ T ∧ EX (ET U T ′)

With this, the set of states, fulfilling a formula T (E U)T ′ can be defined as the

least fixed-point (under set inclusion) of the function λY • T ′ ∨ (T ∧ EXY). The exact

definition is:

[State,Prop]
Model [State,Prop]

∀T ,T ′ : CTL[Prop]; Sat [State,Prop] •
sat(ET U T ′) = lfix(⊆)(λY : P S • sat(T ′) ∪ (sat(T) ∩ R∼(|Y |)))

For the proof see Clarke, Grumberg, and Peled [18].

The computation of the satisfying states defined in Sat has to be compatible with the

CTL semantics, i. e.:

∀Sat [State,Prop] • ∀T : CTL[Prop] • sat T = { s : S | (θModel , s) ` T }

This property can be shown by structural induction over the CTL syntax. Hereby, the

induction step for until is shown by induction over the length of the interval, which is k

in the definition of (M ,S) ` ET U T ′.

41

4 Model Checking

E [T U T ′]
states that fulfill

transition relation

T -states

T ′-states 1st step
2nd step

other states

Figure 4.1: The CTL model checking algorithm for a formula E [T U T ′]. The figure
displays the graph of the transition relation R. First, the states that fulfill T ′ are computed
(dark circle). From these states, the transition relation is traversed backwards, adding
states that fulfill T . So the algorithm “radiates” outward from the states that fulfill T ′.
This is repeated, until no more states are added.

Remark on complexity: Clarke and Emerson [17] show that it is not possible to find a

polynomial time model checking algorithm for any temporal logic. If the CTL language is

extended by path quantifiers that prefix an arbitrary assertion (i. e. E(FP1 ∧ . . . ∧ FPn ∧
GQ1 ∧ . . . ∧ GQm)), it can be shown that the model checking problem for this logic also

solves the Hamiltonian Path problem and is thus NP-hard. This shows how important the

choice of the temporal logic is for model checking.

4.5 Symbolic Model Checking

The states of a Kripke structure are usually built by a set of variables and some kind

of program counter (here the program counter is the Statechart configuration, i. e. the

set of active or entered states). Thus, a state is a valuation function of the variables

plus the current value of the program counter. The properties are atomic properties

over the variables (e. g. x = 4, x ≤ y). The interpretation function (L) is then defined as

assigning each state (variable valuation) the atomic properties that are true under this very

valuation. Consider for example a variable valuation function V ∈ Val and an evaluation

function [[]] : Prop ×Val →{ true, false }, then L(V) = {P : Prop | [[P]]V = true }.
How efficiently the presented model checking algorithm can be executed depends on:

• the representation of sets of states (The state space grows exponentially with the

number of variables. Dealing with this state explosion problem is crucial for model

checking),

• the computation of equality of two sets of states wich is needed for the termination

condition,

• the computation of the union and intersection of two sets of states,

• the representation of the state transition relation, and

• the application of the state transition relation to a set of states.

42

4 Model Checking

(a ∧ b) ∨ c

variable true

variable false

c

0

variab
le

ord
er

b

a

1

Figure 4.2: Representing Formulae as Ordered Binary Decision Diagrams.OBDDs repre-
sent formulae over Boolean variables as a directed acyclic graph. The formula is normalized
in an if-then-else form, e. g. (a ∧ b) ∨ c is normalized to:

if a then if(b then true else if c then true else false)

else if c then true else false
The variable ordering (here a-b-c) defines at which depth the variables occur in the term.
In order to avoid exponential growth of the normalized formula, common sub-trees are
shared. Sharing is in fact the most important technique used for BDDs to avoid exponential
growth. In the example, this can be done for the gray underlayed sub-term.
A node in a BDD represents a (sub-)formula, i. e. one if-then-else term for a specific
variable. Thus, each node is a variable assigned. The nodes can be seen to be in layers,
where each layer holds all nodes of a specific variable. The node has two child nodes, one
for the then-case and one for the else-case. A BDD has exactly two leaves, one for true
and one for false.
With the decision diagrams, one can test whether a formula is true for a specific variable
valuation. For that, the graph is traversed from the node, representing the formula. The
routing is done with respect to the variable valuation. If the “true”-leave is reached, the
formula holds for the valuation, otherwise it does not hold.

43

4 Model Checking

McMillan [38] used propositional formulae to represent sets of states. So the set of all

states, where the variable x has the value 4, is represented by the formula x = 4. The state

transition relation is represented by formulae over two pairs of these variables, one for the

pre-state and one for the post-state. Z uses the same technique to represent operations.

The variables of the post-state are displayed primed. Incrementing x by one is for example

represented by x ′ = x + 1. Unions and intersections are computed by conjunction and

disjunction, respectively.

McMillan called his approach symbolic model checking, since the sets of states are not

represented explicitly, but by formulae. For McMillan’s approach it is still necessary that

the value domain of the variables is known and finite, since he represents them with binary

decision diagrams. This is an important difference to other symbolic techniques, such as

axiomatic theorem provers.

For the computation of the next operator, the state transition relation has to be applied

backwards. This backward application can be done by existential quantification. That

means, for a system with state variables x1, . . . , xn and a set of states defined by the

predicate S̃ ,

∃ x ′1, . . . , x
′
n • S̃ [x ′1/x1, . . . , x ′n/xn] ∧ R

defines the set of states that have a next state in S̃ .

4.6 Binary Decision Diagrams (BDDs)

For the representation of the formulae, McMillan used Bryant’s [7] Binary Decision Dia-

grams (BDD). BDDs provide a size-efficient, canonical representation of predicates over

Boolean variables. The size is reduced by sharing common subtrees (see Figure 4.2 on

the page before. Bryant also provides fast algorithms (quadratic in the size of the BDDs)

to compute the conjunction or disjunction of two formulae. The restriction to Boolean

variables does not cause a problem, since the value domains of the state variables are

finite. Non-Boolean state variables can be represented by a set of Boolean variables in

the same way as such variables are represented by sets of bits in computer hardware. The

same holds for addition, subtraction, etc. These operations have to be realized as logical

operations over the “bits”, representing the numbers. Existential quantification needed

for the application of the state transition relation can be translated into a disjunction,

using the following property:

∃ x : { true, false } • P ≡ P [true/x] ∨ P [false/x]

The cost of the BDD computation depends on the size of the BDD. Due to the “sym-

bolic” representation of the state space and the transition relation, the size of the BDDs

does not directly depend on the size of the represented set. However, the size of the set

defines an upper bound of the size of BDD (n Boolean variables spawn a state space of 2n

states. With no sharing at all, which is the worst case, the BDD is a binary tree of depth n,

44

4 Model Checking

0 0 P P

(a ⇔ b) ∧ P a ∧ b ∧ P

P

a
0

1
P

0

(a)
01

b 0 0

01
01

(c)
1

0
0 0P

0

0
(d)

variable true variable false

(b)

b
a a

bb

b

a

b

Figure 4.3: BDD Complexity and Variable Ordering. Only in (b) the BDD, representing
P , appears twice in the resulting BDD. The variable ordering in (a) avoids this. In (c)
and (d) the variables are not as closely related. Their ordering is therefore not important.

having 2n − 1 nodes.) The actual size depends on the “complexity” of the formula and on

the variable ordering. Roughly speaking, variables that are closely related, should also be

close in the variable ordering. Whether this can be achieved depends on the “complexity”

of the formula.

For example the BDD representing the set of all states where the Boolean variable a

is true needs one BDD node, no matter how big the state space is.

Another example is shown in Figure 4.3. Consider the formula (a ⇔ b) ∧ P , where

a and b are Boolean variables and P is s sub-formula with no occurences of a or b. The

BDD representing this formula depends on ordering of the a, b, and the variables occuring

in P . If all variables from P are in between a and b (Figure 4.3(b)), the resulting BDD

will have twice the size of P ’s BDD, whereas if a and b are above all variables from P

(Figure 4.3(a)), the BDD grows only by two nodes. Thus, this formula depends on the

variable ordering. For the formula a ∧ b ∧ P , in contrary, the BDD would grow only by

two in both cases. For these reasons it is hard to tell the size of a BDD representing a

specific model. Therefore, it is also difficult to find out, how big a model may be to be

feasible with symbolic model checking.

The largest Statemate model that was translated with the technique described in this

thesis had a state space of 1034 states, where 1025 states were reachable. The BDD repre-

senting the transition relation had 53,000 BDD nodes. Verification of about 40 reachability

formulae took 2 minutes on a 233 MHz Intel Pentium II. The model was only feasible with

a suitable variable ordering that had to be computed in several steps. This was done

using the dynamic variable reordering feature of the model checker. This computation

took several hours. The largest models that are feasible today, have up to 10120 states

([18]).

Note that the size of the state transition relation is the power of two of the size of the

state space (since R ⊆ S × S). Therefore, it is usually the size of the BDD representing

the state transition relation that is critical, not the representation of the sets of states.

Experience with symbolic model checking has shown that control problems, by contrast

to data driven problems, can be handled quite efficiently with symbolic model checking

45

4 Model Checking

a1

b1

a2

b2

a3

b3

0

0

0 0

0

0

1

a3

b1

b2

b3
0

0
0

0 0 0

0 0

00

0 01 1 1 1
(a) (b)

a2

a1

Figure 4.4: Exponential BDD Growth when Comparing two Integer Variables. The de-
picted BDDs test equality for two three-bit integer variables. The size of the BDD depends
on the variable ordering. In (a) the BDD grows exponentially with the number of bits,
whereas in (b) a better ordering causes linear growth only.

(the state explosion problem omitted). Normal algebra already causes problems: efficiency

of addition and subtraction depends on the variable ordering, as shown in Figure 4.4.

Multiplication cannot be represented efficiently at all, i. e. the size of the BDD grows

exponentially with the number of bits needed to represent the multiplied variables.

4.7 Other Model Checking Techniques

Besides CTL model checking and the application of BDDs to model checking, a number

of other techniques are presented by Clarke, Grumberg, and Peled [18]. These techniques

either extend the expressiveness of the input language (µ-calculus and real time model

checking) or try to tackle the state explosion problem with more sophisticated approaches

(partial order reduction and abstraction). The most important among these techniques

are presented in this section.

4.7.1 Mu-Calculus Model Checking

The propositional µ-calculus is an alternative to CTL for the specification of properties to

be checked. The µ-calculus is a temporal logic as well. It is more expressive than CTL, and

many temporal and program logics (including CTL) can be translated into the µ-calculus.

Instead of temporal operators such as always, sometimes, or until (AG, EG,AF , EF , (A U
), (E U) in CTL), the µ-calculus offers fixed-point operators. The temporal operators

can be constructed with these operators, using the fixed-point equations that are also used

by the CTL model checking algorithms. E. g. for the always operator the following rule

holds: EGf = f ∧ EX EG f . With this rule, the satisfaction function sat that computes

the set of states fulfilling a CTL formula, can be defined for the always operator by a

fixed-point definition:

sat(EGf) = gfix((⊆), λY • sat(f ∧ EX Y))

In µ-calculus syntax, this is expressed by: νY . f ∧ 〈a〉Y , where a is the state transition

relation.

46

4 Model Checking

s0

s ′1

s2

s1

t1

t1

t2

t2

Figure 4.5: Independent Transitions

The fixed-point operators make the µ-calculus very flexible, and so it is well suited as

a core formalism for model checkers that can be reused for different input logics. On the

other hand, it is rather impractical to use the µ-calculus directly as specification formalism,

because the formlae are not very intuitive.

µ-calculus formulae evaluate to sets of states the same way CTL formulae do. Sym-

bolic (BDD based) technique can also be applied for µ-calculus-model-checking and model

checkers for this language exist. For model checking, the µ-calculus is thus a good target

language of other temporal languages.

4.7.2 Partial Order Reduction

With Partial order reduction or model checking through representatives, the search per-

formed for the verification can be reduced. Partial order reduction does not decrease

the actual number of states as abstraction does. It reduces the number of traces to be

searched. Partial order reduction uses the fact that often times, the order of execution of

some transitions is of no relevance. In Figure 4.5, for example, it is shown that for the

transitions t1 and t2 the order of application does not matter (t1 ◦ t2 = t2 ◦ t1). In such

cases, it is sufficient to consider only one possible execution order and reduce the number

of paths to be searched. This may also lead to a reduction of the number of states, since, in

the example, one of the states s ′1 or s1 is not needed anymore, after partial order reduction

is applied.

Independent transitions occur mostly in asynchronous systems, where parallel exe-

cution is expressed by interleaving. With interleaving, parallel transitions are applied

sub-sequentially in an undetermined order. The model checker has to consider all execu-

tion orders. If the result of the application does not depend on the execution order, only

one order has to be considered. This is done by partial order reduction.

In fact, the independent transitions are introduced by the interleaving semantics. Since

Statecharts do not have an interleaving semantics, partial order reduction is not useful for

model checking their properties.

Partial order reduction is built into the Spin model checker presented by Holzmann

and Peled [30].

47

4 Model Checking

original abstract

x : Z x̄ : { pos, zero,neg }

x ′ = x + 1 x̄ ′ ∈

{ pos } iff. x̄ ∈ { pos, zero }

{neg , zero } iff. x̄ ∈ {neg }

x > 0 x̄ = pos

x < 0 x̄ = neg

Table 4.2: Data Abstraction for an Integer Variable

4.7.3 Abstraction

The most important technique for the reduction of the number of states in the state space

and thereby avoiding the state explosion problem, is abstraction. They are two approaches

for abstraction.

The first technique, the cone of influence reduction, reduces the variables that span the

state space. For a property to be shown, the set of variables is reduced to those variables

that are of interest for the property (i. e. are used in the formula, defining the property)

plus all variables these variables depend on. It is easy to apply the cone of influence

reduction automatically. However, it depends on the model and the property, whether an

actual reduction takes place. In many cases, there is no cone that is smaller than the state

space, so there is no reduction in the end.

Verification of data-driven models is one the of the greatest challenges of model check-

ing, since data quickly lead to large data space. The largest models that are tackled by

symbolic model checking today have a state space of up to 10120 states. This is about 400

boolean variables. With a state space of this size, it is not possible to encode more than

twelve 32-bit integers, which will be insufficient even for medium sized systems. Moreover,

typical operations such as multiplication cannot be executed efficiently with the proposed

techniques.

The second technique, the data abstraction, can be used to tackle these problems. Data

abstraction takes into consideration that, for a lot of properties to be shown, the actual

data values are not important. Therefore, it is sufficient to consider only the important

aspects of a date, i. e. the aspects that influence the property and the behavior of the

model. An integer variable, for example, could be abstracted to three states, (1) less than

zero, (2) equals zero, and (3) greater than zero. Such an abstraction is shown in Table 4.2

The problem of data abstraction is that there is no reasonable automatic way to find

a good abstraction. Hence, data abstraction must be done by the modeler. You can do

this by considering the abstraction within the model itself, or by providing an abstraction

function and thus performing the abstraction semi-automatically.

48

4 Model Checking

4.7.4 Real-Time

Checking real-time constraints (i. e. verifying required response times) is hardly possible

with CTL or µ-calculus model checking. It is possible to state that some event e has

to happen in the future (AGe). However, for model checking real time properties, one

has to state when e happens. For discrete real-time this can be done by using the next

operator, so the property that e happens within the next three steps can be specified by

EX (e ∨ EX (e ∨ EX e)). For such properties, real-time CTL (RTCTL) was introduced

by Emerson et. al. [23]. RTCTL introduces the bounded until operator that is annotated

with a time interval in which the property must be true. In ET U [a,b] T ′ the sub-formula

T ′ has to be true after a steps and before b steps (the above example can be specified

by E true U [1,3]e). RTCTL can be model checked with only slightly modified CTL model

checking algorithms. For checking EG[a,b]e, the first a steps are not considered in the

fixed-point computation, and the computation is stopped, after b stopped, rather then

after no additional states are found.

With discrete real-time, events can only happen at integer time values. This approach

is sufficient for synchronous systems, where all subsystems are synchronized by a global

clock and events happen simultaneously. For asynchronous systems, it is not sufficient.

Continuous model checking can be done for Timed Automata. These automata differen-

tiate between “discrete” steps (actions) that change values of variables and “continuous”

(time) steps that cause time to elapse. Change of variable values takes place only during

discrete actions.

Continuous real-time models are inherently infinite. Thus, in order to model check

them, a finite representation has to be found. Alur [1] tackles these problems in introducing

clock zone and difference bound matrices.

4.8 Model Checking MSZ

4.8.1 Instantiating Kripke Structures

The presented theory has to be instantiated for µSZ, in order to check properties of µSZ
classes. For this, µSZ classes have to be translated into Kripke structures and CTL has

to be defined for the classes. The definitions of the previous sections will be used for this.

As described by Büssow et. al. [11], there are implicitly defined schemata called DATA

and INIT for each µSZ class. The first is defined as the schema conjunction of all data

and port schemata of the class, hence it defines the data space of the class. The second is

defined as the conjunction of all init schemata, therefore it defines the set of initial states

of the class.

In order to provide an interface for the integration of formalisms that specify the dy-

namic behavior of the class, Büssow and Grieskamp [14] have proposed a schema TRANS,

defining the state transition relation of the class in a similar way. Formalisms can be

integrated in providing a translation into such a state transition relation. This is done for

Statecharts in section 6.2 on page 78.

49

4 Model Checking

With these schemata, the Kripke state space and the transition relation can be defined

immediately by the DATA schema and the TRANS schema respectively. A state s is a Z

binding of the variables declared in DATA, which means s ∈ DATA. Thus, for the Kripke

structure, DATA can be used as the state space. The state transition relation has to be a

subset of DATA × DATA. However, TRANS is a subset of ∆DATA. Therefore, TRANS

has to be transformed, using some Z tricks, to form a relation:

R = {TRANS • (θDATA) 7→ (θ(DATA)′) }

Properties are defined as schemata over the data state space, they are therefore sets of

bindings (P ∈ P DATA), too. The satisfaction function L is defined such that a state s ∈
DATA satisfies a property P if and only if s ∈ P . In class Example, shown in Figure 4.6 on

the next page, the property xGreater is defined. A state (binding) s = 〈x == 3, y == 2〉
fulfills xGreater , since s ∈ xGreater .

CTL
MSZModel

Model [DATA, P DATA]

S = DATA
R = {TRANS • (θDATA) 7→ (θ(DATA)′) }
L = λ s : DATA • {P : P DATA | s ∈ P }

For arbitrary µSZ classes, MSZModel defines the Kripke structure representing the

class. Note, however, that the state space has to be finite and the transition relation has

to be total. With this, CTL (i. e. CTL[P DATA]) and the semantics of model checking

are defined for µSZ classes. MSZModel is imported into other classes via the µSZ’s class

enrichment.

A class fulfills a CTL property T ∈ CTL[P DATA] if and only if

(MSZModel , INIT) � T

Model checkers, such as the SMV model checker, prove a given CTL formula for a

Kripke structure in checking the above given property. A special fulfillment operator

for this property is defined for µSZ classes. The model checker is able to verify exactly

this fulfillment relation.

CTL
relation ()

CTLProperty
MSZModel
 : P CTL[P DATA]

∀T : CTL[P DATA] •
T ⇔ (θModel , INIT) � T

50

4 Model Checking

Example
DATA Data

x , y : 0 . . 255

x 6= y

INIT Init
DATA

x − 1 = y = 0

xGreater
DATA

x > y

TRANS
∆DATA

x ′ = if y > x then y + 1 else x
y ′ ∈ { y + 2, 0 }

Figure 4.6: Data space, transition relation and property schemata of a class

Example
Property

CTLProperty

 prop {DATA | x = 255 }⇒AG(prop{DATA | x = 244 })

Figure 4.7: CTL property for the example class. If in any state of any path x equals 255,
it will keep this value in all following states.

The usage of CTL and its fulfillment operator is shown in Figure 4.7.

4.8.2 Different Kinds of Variable Declarations

The previous section explained how Kripke structures can be instantiated for µSZ speci-

fications. This instantiation raises some technical problems, which are discussed now.

Consider the different kinds of variable declarations occurring in an µSZ specification:

• Axiomatic Definitions: Variables can be declared in axiomatic definitions. These vari-

ables do not belong to the data space of any class. They never change their value

during execution. However, there value may not be defined definitly. Consider for

example the declaration of the variable limit :

limit : NUMBER

limit ≤ 255

A specification containing such declarations is considered to be a loose specification. A

loose specification can also be seen as a family of specifications. In the above example,

one specification for each value limit can take.

The concept of a loose specification does not exist in Kripke structures. In order to

support loose specifications, the variables causing the specification to be loose have to

51

4 Model Checking

be added to the state space. Their initial value is not defined, but restricted by the

property. The variables are constant, i. e. they never change their value: for limit the

following equation is added to the transition relation: limit ′ = limit . This variable

must not be written by any action.

DATA D
limit : NUMBER

INIT I
DATA

limit ≤ 255

TRANS T
∆DATA

limit ′ = limit

• Plain Schemata: Variables can be declared in ordinary Z schemata. These declarations

affect the specification only if the are used somewhere. Therefore, declarations in plain

schemata do not have to be considered.

• Port- and Data-Schemata: Declarations of port- and data-schemata are compiled to

the DATA schema, as already mentioned. In Z, a schema can also be seen as a set of

bindings. The DATA schema was used in the previous section to define the system’s

state space to be the set of bindings defined by the DATA schema. It is, however,

not always easy to compute this set of bindings, since it can be restricted by arbitrary

properties (invariants) in the port- and data-schemata. Consider the following example

(x and y must not be equal and x is a prime number):

DATA D
x , y : 0 . . 255

x 6= y ∧ (x ≥ 100⇒ y ∈ { x , 4 })

A model checker, such as the SMV, expects the state space to be given as a set of

variable declarations, for the above example: x:0..255; y:0..255. Therefore, only

the variable declarations are taken into consideration for the state space. In order to

preserve the invariants, they are added to the state transition relation.

The formal definition of MSZModel and CTLProperty that takes the above presented

concepts into consideration is given later.

4.9 Kripke Structure With Constants

The Kripke structure is the link between model checking theory and µSZ specifications.

A Kripke structure is defined, considering constant variables.

Assuming that a schema CONST contains all constant variables and predicates over

them, MSZModelWithConstants defines the Kripke structure that represents a µSZ class.

CTL
DATACONST == DATA ∧ CONST
INITCONST == INIT ∧ CONST

52

4 Model Checking

MSZModelWithConstants
Model [DATACONST , P DATACONST]

S = DATACONST
R = {TRANS; ∆CONST | θCONST = θ(CONST)′ •

(θDATACONST) 7→ (θ(DATACONST)′) }
L = (λ s : DATACONST • {P : P DATACONST | s ∈ P })

CTLPropertyWithConstants
MSZModelWithConstants
 : P CTL[P DATA]

∀T : CTL[P DATACONST] •
T ⇔ (θMSZModelWithConstants, INITCONST) � T

The data space and transition relation is also augmented by the Statechart translation.

For our purpose, it is assumed that this translation is already done and that the class

therefore contains the necessary declarations and predicates.

The schemata defined in the class CTL provide means of using CTL in a µSZ class

and define the semantic relation to model checking. The latter is done on a semantical

basis, using the implicitly defined schemata DATA, INIT, TRANS, and CONST . The

translation that is described in the following does not use these schemata. It translates

the schemata of the respective roles directly. The transformation relation is constructed by

translating the predicates of all schemata with role TRANS (see section 8.2.4 on page 141)

rather then translating the schema MSZModelWithConstants.

4.10 Semantic Issues

The presented approach implies that Kripke structures are used as a semantic model for

µSZ classes. The reactive semantic of a class is defined by the Kripke structure MSZModel .

This is not necessarily compatible with other approaches to model the µSZ semantics, for

instance the µSZ semantic of Geisler [24]. Moreover, the formalisms that are used to

describe the reactive behavior are restricted to formalisms the semantics of which can

be expressed by a state transition relation. For example, the semantics of Dynamic

Z, proposed by Büssow and Grieskamp [13] for the formulation of properties, cannot be

expressed by a state transition relation. It is not the aim here to present the semantics for

µSZ. The Kripke structures are introduced to µSZ and used only to define the semantic

relation between µSZ specifications and CTL formulae.

Technically, the Kripke structures do not interfere with other underlying semantics.

This would be the case only if the CTL semantics were defined on basis of another seman-

tics, which is not the case.

53

4 Model Checking

54

Chapter 5

Syntax and Environment

In this Chapter an abstract Z syntax is introduced. This abstract syntax serves as the

domain for the Z rewriting presented in Chapter 7 on page 97. Besides the syntax, an

environment to store the context of a translation is introduced.

5.1 Reduced Z Syntax

The µSZ transformation and translation presented in this work is based on the abstract

Z/µSZ syntax presented in this section. The syntax is similiar to the internal abstract

syntax used in the Zeta tool. Yet, it does not reflect the complete Z language. It assumes

some simplifications and does not include Z expressions that are not supported by the

translation.

Like all mathematical definitions, the abstract syntax is defined using Z. In order to

differentiate symbols of the actual Z (meta) language and symbols of the abstract syntax,

the following notational conventions are used:

• Z expressions are typeset in black as usual: ∀ x : Z • x < y

• Abstract syntax expressions are typeset in gray/red: ∀ var∅ v : var∅ Z • var∅ x <

var∅ y is the abstract syntax representation of the above predicate. In Z, it is an

expression of type Pred , which is subject to type checking.

5.1.1 Unsupported Expressions

In general, expressions that would demand extra (temporary) variables for the translation,

are not supported, and expressions that merely blow up the theory without introducing

new, interesting aspects, are omitted, too. Additionally, some syntactic simplifications are

assumed to be already applied. The restrictions and assumptions are:

• Schema inclusion in declarations has been removed. The declaration and property part

of the included schema is added to the declaration and property part of the including

schema, respectively.

55

5 Syntax and Environment

• Schema references in predicates have been replaced by the schema predicate and the

predicates induced by the declaration.

• General set comprehension: { d | p • e } has been simplified to { x : X | (∃ d | p • x =

e) }, i. e. the “bullet” from set comprehensions has been removed.

• µ-Expressions: a predicate containing a µ-expression p[µ d | q • E] has been simplified

to ∃1 t • (∃ d | q • t = E) ∧ p[t]. Note that the translation of quantors is very

expensive, and that the usage of µ-expressions and general set displays is thus not very

useful.

General set comprehension and µ-expressions can be removed in introducing existence

quantors. Such quantors are to be translated to disjunctions: ∃ x : { x1, . . . , xn } • p ≡
p[x1/x] ∨ . . . ∨ p[xn/x]. Thus, these constructs lead to an explosion of the size of the

formulae.

To keep the translation simple, the parametrized given types are not supported. The

branches of parametrized given types can carry values (branch〈〈Z〉〉) of powerset types.

The values can be finite or infinte. Parameterized type branches can be supported if the

parameters of the branchs are finite. For example branch〈〈{ a, b, c }〉〉 can be rewritten to

branch a | branch b | branch c.

5.1.2 Names

section Name

The identifiers that can be used in a Z specification are given by NAME . This includes

names of given- and free-types, names of given-type branches, numbers, abbreviations,

Statechart states, and variables.

[NAME]

A subset of NAME , special , is reserved for internal generated names, needed for the

translation. It is assumed that these names do not appear in a specification.

The function conc concatenates two variable names. It can be defined as: conc(a, b) =

a b.

prime computes the primed version of a variable: prime(a) = a ′.

BuiltinRel and BuiltinFun denote built-in functions of the target model checker that

do not need to be resolved.

prime : NAME →NAME
conc : NAME ×NAME � NAME
special ,BuiltinRel ,BuiltinFun : P NAME

disjoint 〈special ,BuiltinRel ,BuiltinFun,Number〉
ran conc ⊆ special

56

5 Syntax and Environment

5.1.3 Numbers

The set of number identifiers Number (0, 1, . . .) is a subset of NAME . Z is the name of

the given type, denoting the numbers. There is a bijection, Num, mapping numbers to

number identifiers in the meta language.

Number : P NAME
Z : NAME

Num : N �→Number

5.1.4 Ordering

An arbitrary ordering function is needed that transforms a set of names into a sequence.

An actual tanslator can use an alphabetical ordering for instance.

order : F NAME → seqNAME

order∼ ⊆ ran ∧ (# ◦ order ◦#∼) ⊆ (=)

The sequences must contain only elements from the original set and the number of

sequence elements has to be equal to the number of set elements (duplications have to be

avoided). Only finite sets of names can be mapped into sequences, since sequences are

defined to be finite themselves, in the Z mathematical toolkit.

5.1.5 Expressions

section Syntax parents zrm,Aux,Name,CTL

The abstract syntax is build up using Z given types. The common Z identifiers and Z

mixfix operators are used for the abstract syntax. With this, abstract syntax terms can

be formulated in the same way as Z terms. In order to differentiate them from the meta-

language, they are typeset in a different color. {x : var∅ Z; y : var∅ Z | var∅ x > var∅ y }
is, for example, an abstract syntax term, corresponding to the Z expressions: { x , y : N |
x > y }. Only the Cartesian product and the function application cannot be presented

in the same way as in Z, because the Cartesian product (e1 × . . . × en) operator with

arbitrary numbers of × cannot be expressed as a Z mixfix operator. For the “invisible

operators”, variable application and function application, operators have to be introduced

in the abstract syntax. These are var v respectively f ω e.

function 30({ | }) function 30(λ | •) function 1000({, , })
function 400((, ,)) function 30(if then else) function 30 leftassoc (.)

function 30 leftassoc (ω) function 30([|]) function 30([, ,])

function 30 leftassoc (==) function 30 leftassoc (.)

57

5 Syntax and Environment

Expr ::= var〈〈NAME × seqExpr〉〉 [(generic) variable application]
| ({ | })〈〈Decl × Pred〉〉 [set comprehension]
| ({, , })〈〈seq1 Expr〉〉 [set display]
| P〈〈Expr〉〉 [powerset]
| prod〈〈seq1 Expr〉〉 [Cartesian product]
| ((, ,))〈〈seq1 Expr〉〉 [tuple]
| (.)〈〈Expr × N〉〉 [tuple selection]
| (.)〈〈Expr ×NAME 〉〉 [binding selection]
| (λ | •)〈〈Decl × Pred × Expr〉〉 [lambda abstraction]
| (ω)〈〈Expr × Expr〉〉 [function application]
| ([|])〈〈Decl × Pred〉〉 [schema expression]
| ([, ,])〈〈seqBind〉〉 [schema binding]
| notE 〈〈Expr〉〉 [schema calculus negation]
| binE 〈〈BinType × Expr × Expr〉〉 [schema calculus (binary op.)]
| (if then else)〈〈Pred × Expr × Expr〉〉 [conditional]

Bind ::= (==)〈〈NAME × Expr〉〉 [binding]

The function bres transforms a valid binding ([a ==3, b ==4]) into the variable assign-

ment: { a 7→ 3, b 7→ 4 }. The variable assignment is a partial function, mapping variable

names to expressions. A binding is valid, if no variable occurs more than once.

bres : ran([, ,]) 7→ (NAME 7→ Expr)
bInv
res : (NAME 7→ Expr)→ Expr

∀ bs : seqBind | ran((==)∼ ◦ bs) ∈ (NAME 7→ Expr) •
bres (([, ,])(bs)) = ran((==)∼ ◦ bs)

∀ as : NAME 7→ Expr •
bInv
res as = ([, ,])((λn : dom as • n == as n) ◦ order(dom as))

Variable application (var) carries, in addition to the name of the variable, the actual-

ization of generic parameters. In the expression { 1 } ∪ { 2 }, for example, application of

(∪) would be represented by var(∪ , 〈 var(Z, ∅) 〉). The computation of the generic

variable actualization is not discussed here. It is assumed that the actualization is al-

ready computed, by the Z type checker of the Zeta system. For non-generic variables (for

example Z), the actualization list is empty. This is abbreviated with the var∅ function:

var∅ == λ v : NAME • var(v , ∅)

5.1.6 Predicates

function 100 leftassoc (∈) function 30 leftassoc (=)

function 30(Q | •) function 20 leftassoc (∧)

function 21 leftassoc (∨) function 22 leftassoc (⇒)

function 23 leftassoc (⇔) function 30(∀ | •)

58

5 Syntax and Environment

function 30(∃ | •)

BinType ::= and | or | iff | implies [Boolean operators]
QuantType ::= forall | exists [quantor types]
Pred ::= (=)〈〈Expr × Expr〉〉 [equality]

| (∈)〈〈Expr × Expr〉〉 [element test]
| ¬ 〈〈Pred〉〉 [negation]
| bin〈〈BinType × Pred × Pred〉〉 [binary operator]
| (Q | •)〈〈QuantType ×Decl × Pred × Pred〉〉

[quantor]
| true | false [truth and falsehood]

As described in section 4.8 on page 49, CTL properties appear as normal predicates

in specifications (see e. g. Figure 4.7 on page 51). In abstract syntax, presented here,

they thus appear as element tests and function applications. Out of convenience, the

function ctlmeta is introduced. It translates CTL properties from the meta language to

CTL formulae over Pred (without definition):

ctlmeta : Pred 7� CTL[Pred]

5.1.7 Syntax Expression Constructors

Some convenience functions are introduced for building predicates quickly:

(∧) == λ p, q : Pred • bin(and , p, q)
(∨) == λ p, q : Pred • bin(or , p, q)
(⇒) == λ p, q : Pred • bin(implies, p, q)
(⇔) == λ p, q : Pred • bin(iff , p, q)
(∀ | •) == λ d : Decl ; q , p : Pred • Qforall d | p • q
(∃ | •) == λ d : Decl ; q , p : Pred • Qexists d | p • q

For a set of predicates, constructor functions are defined that compute the disjunction

(
∨

) and the conjunction (
∧

) of the predicates:
∨
{ p1, . . . pn } = p1 ∨ . . . ∨ pn

For the empty set, these functions default to true or false, respectively.

A set of guarded expressions, i. e. tuples of predicates and expressions, are reduced to

a single case expression by case reduce. One guarded expression is chosen arbitrarily as

the default value.∨
== setreduce (∨) ∪ {∅ 7→ false }∧
== setreduce (∧) ∪ {∅ 7→ true }

case reduce : P1(Pred × Expr)→ Expr

∀ p : Pred ; e : Expr ; PE : P1(Pred × Expr) •
case reduce{ p 7→ e } = e ∧

(p 7→ e /∈ PE ⇒ case reduce({ p 7→ e } ∪ PE) =
if p then e else case reduce PE)

59

5 Syntax and Environment

5.1.8 Declarations

This abstract syntax introduces a uniform declarations that contains variable declaration

and abbreviations as well as free- and given-type declarations. Note that in Z, type-

declarations may only appear in zed-boxes. This restriction is relaxed in the abstract

syntax.

function 40 leftassoc (:) function 30 leftassoc (;)

function 30 leftassoc (==) function 30 leftassoc (|)

function 20 leftassoc (::=) function 1000([|])

function 30 leftassoc (;)

Branch ::= Const〈〈NAME 〉〉
| (|)〈〈Branch × Branch〉〉

Decl ::= (:)〈〈NAME × Expr〉〉 [variable declaration]
| (==)〈〈NAME × Expr〉〉 [abbrevation]
| (::=)〈〈NAME × Branch〉〉 [free type]
| (;)〈〈Decl ×Decl〉〉 [separator]
| Given〈〈NAME 〉〉 [givent type]
| ex 〈〈Expr〉〉 [schema]

5.1.9 Characteristic Tuple

The function ct computes the characteristic tuple of a declaration. The characteristic tuple

is the sequence of variable declarations. Abbreviations and type declarations are ignored.

If schema calculus expressions (e. g. S ∧ T) appear in a declaration, variables can be

declared in both involved schemata. In these cases, the second declaration is ignored.

ct : Decl → seq(NAME × Expr)

∀n : NAME ; e, e ′ : Expr ; b : Branch; d , d ′ : Decl ; bt : BinType; p : Pred •
ct(n: e) = 〈n 7→ e〉 ∧
ct(n == e) = ∅ ∧
ct(n ::= b) = ∅ ∧
ct(d ; d ′) = ct d a ct d ′ ∧
ct(Givenn) = ∅ ∧
ct(ex ([d | p])) = ct(d) ∧
ct(ex (binE (bt , e, e ′)))= ct(ex (e)) a (ct(ex (e ′))B

(dom(ran(ct(ex (e))))× Expr))

There is also a reverse function ct inv that translates a characteristic tuple into a canon-

ical declaration.

ct inv : (NAME ↔ Expr)→Decl

∀ as : NAME 7→ Expr •
ct inv as = setreduce(;)((:)(|as|))

A declaration always implies an additional predicate. The declared variables have to

be members of their type expressions (v : e implies that v ∈ e). declPred computes this

predicate for a given declaration (including schema expressions).

60

5 Syntax and Environment

declPred : Decl → Pred

∀n : NAME ; e, e ′ : Expr ; b : Branch; d , d ′ : Decl ; bt : BinType; p : Pred •
declPred(n: e) = var∅ n ∈ e ∧
declPred(n == e) = true ∧
declPred(n ::= b) = true ∧
declPred(d ; d ′) = declPred d ∧ declPred d ′ ∧
declPred(Givenn) = true ∧
declPred(ex ([d | p])) = declPred(d) ∧ p ∧
declPred(ex (binE (bt , e, e ′))) = bin(bt , declPred(ex (e)), declPred(ex (e ′)))

5.1.10 Specification

In µSZ, schemata can be annotated by roles they have in a µSZ class. Stype defines the

different roles. An ordinary Z schema has the type Plain. An additional role Fairness is

introduced, to handle fairness constraints. Fairness constraints are indispensible for CTL

model checking.

Stype ::= Plain | Data | Port | Init | Property | Transition | Fairness

The declaration of formal generic variables is a comma separated sequence of names:

GenFormals == seqNAME

Spec ::= ([|])〈〈Decl × Pred ×GenFormals〉〉 [axiomatic definition]
| Schema〈〈NAME × Stype ×Decl × Pred〉〉 [schema declaration]
| Statechart〈〈State〉〉 [Statechart]
| Class〈〈NAME × Spec〉〉 [class]
| (;)〈〈Spec × Spec〉〉 [separator]

([|]∅) is a convienience function to build non-generic schema expressions:

function 1000([|]∅)

[|]∅ == λ d : Decl ; p : Pred • [d | p]∅

5.1.11 Statecharts

The Statemate Extractor delivers a simplified Statechart representation. This representa-

tion is used here. The label of transition consists of one predicate—the guard—and a set

of predicates representing the actions. That means, a Statemate label I=4/I:=5; J:=I+1

is represented by (I = 4, { I ′ = 4, J ′ = J + 1 }). Note that the actions cannot simply be

combined by conjunctions, since racing can occur among them. If the transition consists

of several segments (combined by connectors), the guard is the conjunction of the guards

of all transition segments and the action is the set of actions of the transitions segments.

For a transition without guard, the guard is true. For a transition without actions, the

empty set is used.

Label == Pred × P Pred

61

5 Syntax and Environment

Transitions are presented as full compound transitions in the abstract syntax. They

consist of a set of source state names, a set of target state names and a label. Note that

the least common ancestor of a transition’s source and target states must be an and-state.

Trans == F NAME × F NAME × Label

State ::= Basic〈〈NAME 〉〉
| And〈〈NAME × F State〉〉
| Xor〈〈NAME × F Trans × F State〉〉

defaultState is used for µSZ classes without Statechart.

defaultStateName : NAME

defaultState == Basic defaultStateName

Some selector functions are defined for Statecharts:

stName == (λ s : ranBasic • (Basic∼) s) ∪
(λ s : ranAnd • ((And∼) s).1) ∪
(λ s : ranXor • ((Xor∼) s).1) [state’s name]

subs == { s : ranAnd ; s ′ : State | s ′ ∈ ((And∼) s).2 } ∪
{ s : ranXor ; s ′ : State | s ′ ∈ ((Xor∼) s).3 }

[super-state’s substates]
sources == λ t : Trans • t .1 [transition’s sources]
targets == λ t : Trans • t .2 [transition’s targets]
label == λ t : Trans • t .3 [transition’s label]
guard == λ l : Label • l .1 [transition’s guard]
actions == λ l : Label • l .2 [transition’s actions]

5.1.12 Built-Ins

There are certain functions that are handled by the model checker itself, or which can be

assumed to be replaced in later translation steps. Built-ins are not replaced during the

translation.

neq , leq , geq , less, greater , . ., plus,minus : NAME

BuiltinRel = {neq , leq , geq , less, greater }
BuiltinFun = { . ., plus,minus }

function 30 leftassoc (+) function 30 leftassoc (−)

function 30 leftassoc (<) function 30 leftassoc (≤)

function 30 leftassoc (>) function 30 leftassoc (≥)

function 30(6= []) function 60 leftassoc (. .)

62

5 Syntax and Environment

(6= []) == (λ e,E , e ′ : Expr • (e, e ′) ∈ var(neq , 〈E 〉))
(+) == (λ e, e ′ : Expr • (var∅ plus) ω (e, e ′))
(−) == (λ e, e ′ : Expr • (var∅ minus) ω (e, e ′))
(<) == (λ e, e ′ : Expr • (e, e ′) ∈ (var∅ less))
(≤) == (λ e, e ′ : Expr • (e, e ′) ∈ (var∅ leq))
(>) == (λ e, e ′ : Expr • (e, e ′) ∈ (var∅ greater))
(≥) == (λ e, e ′ : Expr • (e, e ′) ∈ (var∅ geq))
(. .) == (λ e, e ′ : Expr • (var∅ . .) ω (e, e ′))

5.1.13 Term Transformations

In the following sections, some rewriting is done on the abstract µSZ syntax. In order to

easily formulate term rewriters that change only particular sub-terms, some auxiliar func-

tions are defined. These functions get partial transformation functions as input (TRANS)

and construct total transformers from them.

For example, to replace all variable applications in an expression with its primed coun-

terparts (x to x ′), the following definition can be used:

transe [e == {n : NAME • var∅ n 7→ var∅(prime n) },
p == ∅,

d == {n : NAME ; e : Expr • n: e 7→ prime n: e]

TRANS
e : Expr 7→ Expr
p : Pred 7→ Pred
d : Decl 7→Decl

transe : TRANS → Expr → Expr

∃ transe0 : TRANS → Expr → Expr •
∀ f : TRANS •
∀ e, e ′ : Expr ; ~e : seq1 Expr ; v : NAME ; p : Pred ; d : Decl ; i : Z •

transe f = (transe0 f)⊕ (λ e : dom f .e • f .e e) ∧

transe0 f (var(v ,~e)) = var(v , (transe f) ◦ ~e) ∧
transe0 f ({d | p}) = {(transd f d) | (transp f p)} ∧
transe0 f ({, , }~e) = {, , }((transe f) ◦ ~e) ∧
transe0 f (P e) = P((transe f)(e)) ∧
transe0 f (prod ~e) = prod((transe f) ◦ ~e) ∧
transe0 f ((, ,)~e) = (, ,)((transe f) ◦ ~e) ∧
transe0 f (e . i) = (transe f)(e) . i ∧
transe0 f (λ d | p • e) = λ(transd f d) | (transp f p) • (transe f e) ∧
transe0 f (e ω e ′) = (transe f e) ω (transe f e ′) ∧
transe0 f (if p then e else e ′) =

if(transp f p) then(transe f e) else(transe f e ′)

63

5 Syntax and Environment

transp : TRANS → Pred → Pred

∃ transp0 : TRANS → Pred → Pred •
∀ f : TRANS •
∀ p, p′ : Pred ; e, e ′ : Expr ; d : Decl ; b : BinType; qt : QuantType •

transp f = (transp0 f)⊕ (λ p : dom f .p • f .p p) ∧

transp0(f)(e = e ′) = (transe f e) = (transe f e ′) ∧
transp0(f)(e ∈ e ′) = (transe f e) ∈ (transe f e ′) ∧
transp0(f)(¬ p) = ¬ (transp f p) ∧
transp0(f)(bin(b, p, p′)) = bin(b, transp f p, transp f p′) ∧
transp0(f)(Qqt d | p • p′) = Qqt transd f d | transp f p • transp f p′ ∧

transp0 f true = true ∧
transp0 f false = false

transd : TRANS →Decl →Decl

∃ transd0 : TRANS →Decl →Decl •
∀ f : TRANS •
∀ d , d ′ : Decl ; v : NAME ; e : Expr ; b : Branch •

transd f = (transd0 f)⊕ (λ d : dom f .d • f .d d) ∧

transd0(f)((:)(v , e)) = (:)(v , transe f e) ∧
transd0(f)(v == e) = v == (transe f e) ∧
transd0(f)(v ::= b) = v ::= b ∧
transd0(f)(d ; d ′) = (transd f d); (transd f d ′) ∧
transd0(f)(Given v) = Given v

Some abbreviations are defined:

transExpr == (λ f : Expr 7→ Expr • transe(µTRANS | e = f ∧ p = ∅ ∧ d = ∅))
transExprP == (λ f : Expr 7→ Expr • transp(µTRANS | e = f ∧ p = ∅ ∧ d = ∅))
transPred == (λ f : Pred 7→ Pred • transp(µTRANS | e = ∅ ∧ p = f ∧ d = ∅))
transDecl == (λ f : Decl 7→Decl • transd(µTRANS | e = ∅ ∧ p = ∅ ∧ d = f))

5.2 Environment

In order to perform computability analysis and rewriting, information on the context of

the specification is needed. The relevant context consists of the following symbols:

• Given types: Type definition such as [NewType].

• Free types: Types that are defined by a free construction. In Z, these types are

only abbreviation for given types and the declarations of the respective constructor

variables. The free construction property is insured by an implicit predicate. The free

construction property is quite important for the translation, because free types can be

finite. Therefore, the environment distinguishes between given and free types.

• Constant variables: Variables defined in axiomatic or generic definitions. As described

in section 4.8.2 on page 51, these variables are treated as constants and need special

treatment for model checking.

64

5 Syntax and Environment

• Data and port variables: Data and port variables are declared in the respective

schemata of a class. They constitute the class’ data space.

• Abbreviations: Abbreviations of expressions can be defined in all declarations. If

they are defined in axiomatic or generic definitions, they are visible throughout the

specification (section, class).

• Schema definition: The schemata that are defined in the specification. With µSZ,

schema definitions in classes have different roles, e. g. DATA, PORT, INIT, etc. These

schemata are of special interest for the translation, since they define the Kripke struc-

ture as described in section 4.8 on page 49. Schema definitions are important in two

cases: (1) if they have a role, contributing to the class semantics, i. e. DATA, PORT,

INIT, TRANS, or PROPERTY; or (2) if they are referenced somewhere else in the spec-

ification.

For the first case, only the names and types of data variables need to be collected. For

the second case, it is assumed that schema references are already resolved. For this

reason, it is not necessary to store the complete schema definitions in the environment.

• Classes: In µSZ, classes can be defined and used through enrichment and configura-

tions.

• Root/Parent State: The root Statechart state of a class and the state hierarchy.

• Built-ins: Built-in functions of the model checker (e. g. + and −). These symbols

do not belong to the context of a specification but to the context of the translation

process.

section Environment parents Syntax, TypeDecl

Env
free, given, data, port , const , builtins : F NAME
type : NAME 7→ seqNAME × Type
defs : NAME 7→ seqNAME × Expr
root : State
params : seqNAME

disjoint (〈free, given, data, port , const , builtins〉)
free ∪ given ∪ data ∪ port ∪ port ∪ const ∪ builtins ⊆ dom type
∀ v : free ∪ given • (type v).1 = ∅ ∧ type v ∈ {∅ } × ran basic

The empty environment ∅Env contains the built-in operators already. According to

the invariant of the Env schema, their types (see section 7.4 on page 103) have to be

defined, too. Note that neq , is a generic function.

65

5 Syntax and Environment

∅Env : Env
T : NAME

∅Env .free = ∅Env .given = ∅Env .port = ∅Env .const = ∅
∅Env .builtins = {neq , leq , geq , less, greater , . ., plus,minus }
∅Env .type = {neq 7→ (〈T 〉, power(prod〈basic(T ,NAME), basic(T ,NAME)〉)),

leq 7→ (∅, power(prod〈number, number〉)),
geq 7→ (∅, power(prod〈number, number〉)),
less 7→ (∅, power(prod〈number, number〉)),
greater 7→ (∅, power(prod〈number, number〉)),
. . 7→ (∅, fun(〈number, number〉, power number)),
plus 7→ (∅, fun(〈number, number〉, number)),
minus 7→ (∅, fun(〈number, number〉, number))}
∪
{n : Number • n 7→ (∅, basic(Z, {n })) }

∅Env .defs = ∅
∅Env .root = defaultState
∅Env .params = ∅

The type of a generic variable contains type variables. For example the type of a

variable x : P T , where T is a formal generic type parameter, is basic(T ,NAME). If the

generic variable x is used, the formal type parameters are instantiated by actual types.

A type instantiation assigns types to the formal parameters: ftoa : NAME 7→ Type. The

function trans instantiates a generic type with a given type instantiation.

trans : (NAME 7→ Type)→ Type→Type

∀ ftoa : NAME 7→ Type •
(∀ v : NAME ; V : P NAME •
trans(ftoa)(basic(v ,V)) = if v ∈ dom ftoa then ftoa v else basic(v ,V)) ∧
(∀ τ : Type • trans(ftoa)(power τ) = power(trans(ftoa)(τ))) ∧
(∀~τ : seq1 Type • trans(ftoa)(prod~τ) = prod((trans ftoa) ◦ ~τ)) ∧
(∀~τ : seq1 Type; τ : Type •
trans(ftoa)(fun(~τ , τ)) = fun((trans ftoa) ◦ ~τ , trans(ftoa)(τ)))

getType retrieves the type of a variable, with the given assignment of the generic

parameters. The assignment is empty, if the variable is not generic. The actual generic

parameters are given as a sequence of types (a : seq Type) that has to match the sequence of

formal parameters stored with the type: #a = #(E .type v).1. A function is built from the

sequences by zipping them together and dropping the index: ran(zip(first(E .type v), a)).

getType : Env → (NAME × seqType) 7→ Type

∀ E : Env ; v : NAME ; a : seq Type •
((v , a) ∈ dom(getType E)⇔ v ∈ dom E .type ∧ #a = #(E .type v).1) ∧
getType(E)(v , a) = trans(ran(zip((E .type v).1, a)))(E .type v).2

getDef retrieves the definition of an abbreviation. If the abbreviation is generic, the

actual parameters are given as a sequence of expressions. Occurrences of generic parame-

ters in the defining expression have to be actualized in a similar way to the actualization

of generic types in getType. The definition of getDef is quite similar to getType. It is

therefore skipped here.

66

5 Syntax and Environment

getType Get the type of a data, port or constant variable.

getDef Get the definition of an abbreviation.

getData, getPort Get the names of the data or port variables of the current

class.

getConst Get the names of the constant variables.

getParams Get the generic parameters of the current environment. Re-

turns the list of names in a generic definition and the empty

set otherwise.

getGiven Get the set of given types.

getFree Get the set of free types with their definitions.

getBuiltins Get the set of built-in functions.

getRoot Get the root Statechart state. With this, the Statechart of

a class is accessed.

getParent Get the parent state of a given Statechart state.

newName Compute some name that is not used in the environment.

Table 5.1: Environment Retrieval Functions

getDef : Env →NAME × seqExpr 7→ Expr

∀ E : Env ; v : NAME ; a : seqExpr •
((v , a) ∈ dom(getDef E)⇔ v ∈ dom E .defs ∧

#a = #((E .defs v).1)) ∧
getDef (E)(v , a) =

(transExpr(ran(zip(var∅ ◦(E .defs v).1, a)))((E .defs v).2))

Various retrieval functions, see Table 5.1 for explanations:

getData, getPort : Env → F NAME
getParams : Env → seqNAME
getGiven : Env → P NAME
getFree : Env → F NAME
getBuiltins : Env → F NAME
getSymbols : Env → F NAME

∀ E : Env •
getData E = E .data ∧
getPort E = E .port ∧
getParams E = E .params ∧
getGiven E = E .given ∧
getFree E = E .free ∧
getBuiltins E = E .builtins ∧
getSymbols E = dom E .type ∪ dom E .defs

Select a not yet declared name:

newName : Env →NAME

∀ E : Env • newName E /∈ (getSymbols E)

67

5 Syntax and Environment

Get the root state (getRoot), all states (getStates), and the parent state function

(getParent) of the current class’ Statechart. The parent state function returns for some

state name the parent state, if the state name exists.

getRoot : Env → State
getStates : Env → F State
getParent : Env →NAME 7→ State

∀ E : Env •
getRoot E = E .root ∧
getStates E = (subs∗)(|{ getRoot E }|) ∧
dom(getParent E) = stName(|getStates E \{ E .root }|) ∧
(∀n : dom(getParent E) •

getParent E n = (µ s : getStates E | n ∈ (stName ◦ subs)(|{ s }|)))

Add some declarations to the environment. A sequence of generic parameters can

be given in order to declare the symbols to be generic. The declarations are given by a

function, mapping names to their types.

addDecls : Env → seqNAME × (NAME 7→ Type)→ Env

∀Env ; E : Env ; params ′ : seqNAME ; vars : NAME 7→ Type •
addDecls(θEnv)(params ′, vars) = E ⇔

(∃ type == E .type ⊕ ((λ τ : Type • params ′ 7→ τ) ◦ vars) • θEnv = E)

Add some abbreviations to the environment. A sequence of generic parameters can be

given in order to declare the abbreviations to be generic. The abbreviations are given by

a function mapping names to their defining expressions.

addDefs : Env → seqNAME × (NAME 7→ Expr)→ Env

∀Env ; E : Env ; params ′ : seqNAME ; vars : NAME 7→ Expr •
addDefs(θEnv)(params ′, vars) = E ⇔
(∃ defs == E .defs ⊕ ((λ e : Expr • params ′ 7→ e) ◦ vars) • θEnv = E)

Add generic parameters to the environment.

addParams : Env → seqNAME → Env

∀Env ; E : Env ; new params : seqNAME •
addParams(θEnv)(new params) = E ⇔
(∃ params == new params • θEnv = E)

Add given and free types.

addGiven : Env →NAME → Env
addFree : Env →NAME → Env

∀Env ; E : Env ; n : NAME •
(addGiven(θ Env)(n) = E ⇔ (∃ given == given ∪ {n } • θ Env = E)) ∧
(addFree(θ Env)(n) = E ⇔ (∃ free == free ∪ {n } • θ Env = E))

68

5 Syntax and Environment

Add declarations of an environment as data-, port-, and constant variable declarations.

addData, addPort , addConst : Env → Env → Env

∀Env ; E , E ′ : Env •
(addData(θ Env)(E ′) = E ⇔

(∃ type == type ⊕ E ′.type;
data == data ∪ (dom E ′.type \ (E ′.free ∪ E ′.given)) • θEnv = E))

∧
(addPort(θ Env)(E ′) = E ⇔

(∃ type == type ⊕ E ′.type;
port == port ∪ (dom E ′.type \ (E ′.free ∪ E ′.given)) • θEnv = E))

∧
(addConst(θ Env)(E ′) = E ⇔

(∃ type == type ⊕ E ′.type;
const == const ∪ (dom E ′.type \ (E ′.free ∪ E ′.given))
• θEnv = E))

Add a Statechart to the environment.

addStatechart : Env → State→ Env

∀Env ; E : Env ; s : State •
addStatechart(θEnv)(s) = E ⇔ (∃ root == s • θEnv = E)

Join two environments. The two environments are supposed to be disjunct, i. e. not

declaring the same symbols. If the environments are not disjunct, the second environment

overrides declarations of the first one.

joinEnv : Env × Env 7→ Env

∀Env ; E , E ′ : Env •
joinEnv(E , E ′) = θEnv ⇔

type = E .type ⊕ E ′.type ∧
defs = E .defs ⊕ E ′.defs ∧
data = E .data ∪ E ′.data ∧
port = E .port ∪ E ′.port ∧
given = E .given ∪ E ′.given ∧
free = E .free ∪ E ′.free ∧
builtins = E .builtins ∪ E ′.builtins ∧
const = E .const ∪ E ′.const ∧
root = if E ′.root = defaultState then E .root else E ′.root ∧
params = E .params a E ′.params

Get the data schema of the current environment.

∆DATA,DATA : Env →Decl

∀Env • DATA(θ Env) =
setreduce (;)((:)(|(data ∪ port) C (typeToExpr ◦second ◦ type)|))

∀Env • ∆DATA(θ Env) =
setreduce (;)((:)(|(data ∪ port) C (typeToExpr ◦second ◦ type)|)

∪
(:)(|((data ∪ port) C (typeToExpr ◦second ◦ type)) ◦ prime∼|))

69

5 Syntax and Environment

Add the variables declared in the given declaration to the environment. The variables

are added with the given types, rather than the types of the declaration. The assignments

of variables to the types is done with respect to the declaration’s characteristic tuple. The

i-th variable in the characteristic tuple is assigned the i-th type in the given type sequence.

addVarsWithTypes : Env →Decl × seq1 Type 7→Env

∀ E : Env ; d : Decl ; ~τ : seq1 Type •
((d , ~τ) ∈ dom(addVarsWithTypes E)⇔ #(ct d) = #~τ) ∧
((d , ~τ) ∈ dom(addVarsWithTypes E)⇒

addVarsWithTypes(E)(d , ~τ) =
addDecls(E)(∅, ran(zip(first ◦ (ct d), ~τ))))

addVarsWithDefs : Env →Decl × seq1 Type× seq1 Expr 7→ Env

∀ E : Env ; d : Decl ; ~τ : seq1 Type; ~e : seq1 Expr •
((d , ~τ ,~e) ∈ dom(addVarsWithDefs E)⇔ #(ct d) = #~τ = #~e) ∧
((d , ~τ ,~e) ∈ dom(addVarsWithDefs E)⇒

addVarsWithDefs(E)(d , ~τ ,~e) =
addDefs(E)(∅, ran(zip(first ◦ ct d ,~e))))

70

Chapter 6

Statecharts

This Chapter describes the necessary translation for model checking Statecharts. It de-

scribes the semantic-preserving translation of Statecharts into a Z state transition relation.

The state transition relation will later be translated into the input language of the model

checker.

First, a short introduction to Statecharts semantics is given. In particular, the prob-

lems that are raised by its semantics are discussed. Second, the basic principles of the

translation are described. These are how Statechart steps are mapped to model checker

steps (the one-to-one step mapping), how time and timeouts are handled, how the Statem-

ate configuration (the set of active states) is represented, and how the problem of writing

variables and racing is handled (section 6.2 on page 78). For the latter, the notion of locks

and places is introduced. With the locks and places, the Statechart translation can be

done in a straightforward fashion. This is described in section 6.3 on page 86. Concluding,

an example translation is shown (section 6.4 on page 92).

6.1 Statecharts and their Semantics

6.1.1 Overview of Different Statechart Semantics

The Statechart formalism belongs to the family of synchronous languages. All synchronous

languages have in common that parallel sub-systems perform steps of concurrent sub-

systems or processes simultaneously. Communication takes place via events or global

variables. Events can be raised by any process; every other processes may react to them

(broadcasting). Events disappear after one step and are not queued or stored in any

other way. Therefore, if an event is not expected, it disappears. Because of this behavior,

events in synchronous languages are often called volatile variables. Other representatives

of synchronous languages are Esterel, presented by Berry et. al. [3], Lustre, presented by

Caspi et. al. [15], and VHDL.

Synchronous languages feature major advantages: They do not introduce non-

determinism through interleaving and they have a rather simple communication mech-

anism (no event queues are needed). They quite naturally model logical circuits, since

71

6 Statecharts

Left

Release
df right/df fire′ df left/df fire′

¬ df right
¬ df left ∧

Idle

¬ df right

timeout 4

Right

¬ df left

df left df right

(a)

¬ df right
¬ df left ∧

df left ∧
¬ df right

¬ df left
∧ df right

¬ df left
∧ df right

df left ∧
¬ df right

Left

Release
df right/df fire′ df left/df fire′

¬ df right
¬ df left ∧

Idle
¬ df left ∧
¬ df right

df left ∧
df right

timeout 4

Right

/df fire′

(b)

Figure 6.1: Statechart Specification of a Two Hand Press. If the left button is pressed,
the system changes to state Left and waits for the right button to be pressed. If this does
not happen in a certain interval, it waits until both buttons are released and returns to
the idle state. Otherwise, it starts the press and waits until both buttons are released.
The specification (a) is quite clear, but neglects simultaneous pressing of both buttons.
This situation is handled correctly in (b).

these are also synchronous (synchronized by a global clock) and use similar means of

communication.

Synchronous languages are not well suited to represent problems that appear in dis-

tributed systems or concurrent software systems, as no global synchronization takes place

in these systems. Modeling languages with some kind of interleaving semantics are much

more adequate for such systems.

Even if synchrony can be assumed, the unreliable means of communication, intro-

duced by Statecharts, are disadvantageous. When specifying with Statecharts, one has

to be careful not to miss any events. Consider for example the Statechart specifications

of the control of a two hand press in Figure 6.1. Statechart (a) ignores simultaneous

pressing of both buttons. Thus, if both buttons are pressed simultaneously, one will be

ignored. This kind of error is quite likely to happen when specifying with Statecharts.

Statechart (b) avoids the problem. However, this Statechart is considerably more complex

and incomprehensible, because it considers all special cases.

Errors of this type are quite hard to reveal and to reproduce by ordinary testing, since

it is often improbable that two events occur simultaneously. However, such errors are

easily detected by verification techniques such as model checking.

These problems are better handled by asynchronous languages such as process algebras

(Milner’s CCS [43], Hoare’s CSP [29], etc.) that queue incoming events or block the sender

until the receiver is ready.

72

6 Statecharts

Figure 6.2: Interlevel Transition

6.1.2 Statemate Semantics

Since the first presentation of Statecharts by Harel [26], much has been achieved in defin-

ing the semantics of Statecharts, leading to a number of different Statecharts variants.

Moreover, the formalism is used as a visualization frontend for many reactive specification

languages, adopting the language specific semantics. An overview of these formalisms has

been presented by von der Beeck [50].

The basis of Statecharts are finite state machines that have well defined and accepted

semantics. Statecharts add two concepts: hierarchy and parallelism, both raising funda-

mental semantical questions.

• Hierarchy: In fact, hierarchy is no problem of itself, but in relation to interlevel tran-

sitions. Interlevel transitions cross the state hierarchy. For example the transition

depicted in Figure 6.2 is an interlevel transition. Because of the interlevel transitions,

it is hard to find compositional semantics. For that reason, many Statechart dialects

disallow interlevel transitions. It is still possible to define a compositional Statechart

semantics as shown by Huizing and de Roever [32].

• Parallelism: When working with finite state machines, the number of states to be drawn

is likely to grow exponentially with the number of features added to the specification.

As Harel [26] points out, this is the main reason for introducing parallel states (or

orthogonal states, as he calls them). However, the introduction of parallelism raises

the known problem of concurrency—which finite state machines avoid. Therefore, a

model for handling concurrency and synchronization has to be chosen for Statecharts.

Besides avoiding state explosion, support of concurrency additionally opens the usage

of Statecharts for application domains like reactive systems.

Harel has proposed synchronous semantics for Statecharts, so that all parallel states

perform a step synchronously. Thereby, a very simple semantics for events can be applied.

Events are emitted and exist exactly in one state. During this state, all receivers can receive

the event. No more synchronization, no blocking, and no event queues are needed for

communication. By contrast, in process algebras, concurrent processes are synchronized

to exchange events. This is not necessary in a synchronous language, since all processes

are synchronized within each step anyway.

A problem of synchronous semantics is to find reasonable means of computational

abstraction. In a common programming language, for example, one would expect that

the statement: x := 3; x := x+1 is equivalent to x := 4. In Statecharts, however, this

is not true, since parallel processes synchronize on each step of the computation. In the

73

6 Statecharts

first case, a parallel process can observe the step where x = 3, whereas in the second case,

this step does not exist. Thus, the environment can and must observe how many steps a

computation takes.

Different solutions have been proposed to tackle this problem for synchronous lan-

guages, some of them were also applied to Statecharts.

• One of the first Statechart semantics was presented by Pnueli and Shalev [46]. Here

a transition that emits an event can trigger further transitions within the same step.

Transitions are executed until no more events are added. This approach abstracts

internal communication. Other synchronous languages such as Esterel adopt this se-

mantics as well. The means of abstraction apply only for events. A statement such

as [emit E ; when E emit F] is equivalent to [emit E ; emit F], or if E is not visible to

the environment [emit F]. However, these means of abstraction apply only to events.

Statements such as x := 3; x:= x+1 are not supported, because one variable can have

only one value during a step.

This also leads to the global consistency problem, which is raised, for instance, if a

specification contains the statements [when E emit F] and [when ¬ F emit E]. The

global consistency problem is the major drawback of this approach. Arbitrarily large

chains of events can cause inconsistencies and the larger a specification gets, the more

likely it is for such a problem to occur. It can happen especially if different modules

are put together. Therefore it is called global consistency problem. It makes it almost

impossible to handle large specifications. The global consistency problem is also the

main reason why Harel and i-Logix did not chose this semantics for Statemate.

• Multi clocked semantics can assign each variable its own clock with its own clock rate.

With this, it is possible to introduce local variables with faster clock rates that can be

used for internal calculations. Lustre has a multi clocked semantics.

• In Statemate, the semicolon operator in the action language is given a special meaning.

An action x := 3; x:= x+1 causes raising on x. For loops, Statement introduces

immediate variables, prefixed by a $. These variables can have different values during

on step. However, they cannot be used for internal communication and are thus not

suitable for abstraction.

6.1.3 Principles of the Translation

For symbolic model checking, a system is represented by a Kripke structure and a set of

initial states, as presented in section 4.1 on page 35. Here, the state space is modeled via

a set of variables with finite value domains. These variables can easily be transformed to

a set of Boolean variables.

In order to model check Statecharts or µSZ classes, the state space is built up by

the data variables plus some variables representing the set of active Statechart states,

i. e. the configuration (see section 6.1.5 on page 76). The state transition relation is then

deduced from the behavioral semantics of the Statecharts. This implies that one step of

74

6 Statecharts

the original Statechart is represented by exactly one step of the model checking algorithm.1

The one-to-one step mapping has several advantages:

• No extra steps are needed to compute reachable states.

• No extra states have to be added to the state space that would be needed to track the

intermediate steps.

• No intermediate states appear in the set of reachable states, so that the CTL formula

next operators (AX , EX) always represent the next Statechart state and not some

intermediate state.

This approach, however, suffers from one disadvantage: The state transition relation

may become quite complex, leading to a large BDD representation. Adding a fixed number

of intermediate steps causes linear growth of the number of steps needed for the compu-

tation of the reachable states, whereas the complexity of the BDD algorithms is quadratic

with respect to the size of the BDDs. Therefore, computing some extra steps may be

cheaper than a large transition relation.

This becomes true for complex computations in the transitions’ actions. Statemate

supports, for example, loops in the transitions’ actions. Computing these loops (if pos-

sible) in a single step causes a quite complex transition relation, since the loop has to

be completely unrolled. Moreover, “while-loops” cannot be supported at all. The same

applies for Z functions. As described in section 7.4 on page 103, functions are only sup-

ported if they can be expanded to flat expressions. This also leads to a large transition

relation. If a Z function was to be computed in several steps, however, the one-to-one

mapping would not be possible. While giving up the one-to-one mapping might make

sense for complex computations, it does not make sense for Statecharts. Computing the

Statecharts transition relation in several steps would make the relation only more complex.

Therefore, loops etc. are not supported.

6.1.4 Statecharts and Time

Statecharts adopt the synchrony hypothesis formulated by Berry and Gonthier [4]. The

synchrony hypothesis assumes for the system in question that it reacts so fast that it is

impossible for the environment to observe the computation time. That makes it is possible

to abstract from the actual computation time and to claim that the computation takes

place in zero time. The synchrony hypothesis offers a feasible abstraction from the details

of the system’s implementation. A consequence is, however, that it is impossible to specify

real-time constraints, i. e. that some computation has only limited time to conclude. The

only real-time support offered by Statecharts are therefore timeouts.

Statemate offers two time models, the synchronous and the asynchronous time model.

In the synchronous time model, time elapses after each step, whereas in the asynchronous
1The basic step algorithm presented by Harel and Naamad [27], for example, computes a Statechart

step with seven intermediate steps (the objective of their Statecharts semantics is definitely not model

checking).

75

6 Statecharts

S2

S21 S22S11 S12

S1

Figure 6.3: Example Statechart

time model, only elapses if the Statechart cannot perform further steps. However, even

though no time elapses in the Statemate model, Statemate still allows an external observer

to interact with the system. This reduces the idea of zero time to absurdity, since zero

time only applies to some virtual system time and not to the real-time of the environment.

Moreover, as pointed out by Harel and Naamad [27], the concrete semantics, implemented

in Statemate, differs slightly in the different Statemate tools. For these reasons, the

asynchronous time model is not subject of further consideration here.

Statecharts support time via timeouts. Timeouts are special events that are raised

some time after an arbitrary condition (activation condition) becomes true (e. g. five time

steps after Statechart state S was entered). These timeouts need special treatment for the

Statechart representation by a transition relation. Since the state space has to be finite,

it is not possible to introduce a clock variable that is incremented for each step. A clock

variable with a finite domain would limit the possible traces to traces with a fixed length.

Timeouts are realized via timer variables that are initialized when the activation condition

is true and are decremented thereafter.

Therefore, by contrast to Statemate’s timeouts, an upper bound of the length of a

timeout has to be known at compile time, in order to be able to declare the clock variable.

Note that due to this representation, timeouts enlarge the state space according to their

length.

6.1.5 Representation of the Configuration

In order to represent the Statechart semantics by a state transition relation, the configu-

ration (the set of active states) has to be represented somehow.

There are different ways to model the configuration. The model of the Statechart

configuration is crucial for model checking, since it strongly affects the size of the state

space and the transition relation. Besides being small, the model should also preserve

independence of the specification in order to keep the BDD small. If two independent

parts of the specification use the same variable to represent their configuration, the BDD,

representing the transition relation, grows significantly.

It is easy to compute the number of possible configurations of a Statechart over the

Statechart’s structure. This is done by the function #c . For a basic state, the number of

configurations is one, for an and-state it is the product of each of its sub-state’s number

of configurations, and for an xor-state it is the sum thereof.

76

6 Statecharts

Configuration Size Optimal Best

S1 S11 S12 S2 S21 S22 v1 v2 v1 v2 v3

× × - - - - 1 1 1 1 -

× - × - - - 1 0 1 0 -

- - - × × - 0 1 0 - 1

- - - × - × 0 0 0 - 0

Table 6.1: Configuration Model

#c : State→ N
∀n : NAME • #c(Basic n) = 1
∀n : NAME ; ~S : seq1 State • #c(And(n, ran ~S)) = Π

i:dom ~S

#c(~S i)

∀n : NAME ; T : F Trans; ~S : seq1 State • #c(Xor(n,T , ran ~S)) = Σ
i:dom ~S

#c(~S i)

A configuration model is optimal if for some Statechart with root state s, the number

of states needed to represent it equals #c s. Note that this reflects only the Statechart’s

structure and ignores its behavioral characteristics. The fact, that some combinations of

active states might be unreachable, is not taken into consideration. Such an analysis is

almost as complicated as proving temporal logic formulae.

Choosing an optimal configuration model with respect to its size, does not necessarily

lead to the best result. As stated in section 4.6 on page 44, BDD-based model checking

depends only indirectly on the size of the state space, but directly on the size of the BDD

representing the transition relation. This size is minimized if variables do not depend too

much on each other or do not appear in different sub-terms of the formula. Therefore, it

can be advantageous to introduce extra variables in order to maintain independence.

The minimal configuration model for the example Statechart depicted in Figure 6.3 on

the preceding page had four states. This can be represented with two Boolean variables:

one to represent which super-state is active (S1 or S2) and one to represent which sub-state

is active (S11 or S12 if S1 is active and S21 or S22 if S2 is active). The second variable is

reused for both super-states.

In order to preserve independence, it is better to introduce a third variable to represent

the sub-states of super-state S2. This is the approach that is used in this work.

The configuration is modeled in storing the active sub-state for each xor-state. In this

model, a state is active if and only if it is the root state, or its parent state is an active

and-state, or its parents state is an active xor-state and it is the active sub-state of its

parent. The advantages of this approach are:

• It is quite moderate in size, yet not optimal.

• It preserves independence.

• History can be modeled easily.

• In the transition relation, configuration variables of inactive states do not have to be

considered. This reduces the size of the BDDs significantly.

77

6 Statecharts

6.2 Resolving Racing in Statecharts

6.2.1 Racing and Persistency in Statecharts

section Racing parents Syntax,Environment,Aux

Variables as used in µSZ or Statecharts need a special treatment when being translated

to Z. The problems to be addressed are racing and persistency of non-written variables.

The situation that two or more parallel charts of a Statechart write the same variable

during one single step is called racing. To resolve this situation, only one of the charts is

allowed to write, whereas the others fail. In other words, one write access is executed and

the others are ignored. Which write access succeeds, is chosen non-deterministically.

To model this behavior, the notion of writing a variable has to be determined first. In

a common imperative programming language, such as the Statemate’s action language,

write access to a variable is easy to determine, since the variable appears on the left side

of an assignment statement, for example V:=4. In Z, this is not so easy, since values

of variables are changed by predicates over a variable’s primed counterpart (for example

4 ≥ x ′ ≥ x ∧ x ′ ∈ S). µSZ defines a variable to be written by an operation if its primed

counterpart is used in the respective predicate.

Even without parallel charts, some special treatment of variables is needed in order to

establish assignment semantics for variables. In Statecharts, a variable that is not assigned

any value during one step, keeps its value. In a Z transition relation, this has to be stated

explicitly.

Büssow and Grieskamp [13] proposed the concept of locks and places to handle the

problem of persistency and racing.

6.2.2 Derived Variables

In Z, it is a common practice to define the value of state variables through an invariant

rather than setting its value explicitly in an operation. This is done for the variable y

in data schema D . These variables change their value in order to obey to the property

without being explicitly written. This conflicts with µSZ’ notion of variable persistency,

were variables that are not written in an operation, keep their values.

DATA D
x , y , z : 0 . . 255

y = 2 ∗ x ∧ z > x

For this, µSZ introduces the notion of derived variables. By contrast to normal data

variables, there is no racing on derived variables and they are not kept persistent auto-

matically. Derived variables may not be used in their primed form, which means that they

may not be written. Their value is determined by the invariant of the data space.

In schema D , y , z can be declared as derived. Their values are derived from the value

of x . Thus, if the value of x is changed, the values of y and z are adapted automatically.

78

6 Statecharts

The behavior of derived variables corresponds with the behavior of normal Z variables.

There is no persistency nor racing. Therefore, no extra effort is needed to support them.

The measure presented in the following to support data variables, must not be applied

to derived variables. The translation takes this into account implicitly: Support of data

variables relies on the occurrence in primed form (writing occurrence). Derived variables

must not occur in primed form. Therefore, they are treated as normal Z variables

6.2.3 Locks and Places

Racing and persistency are handled by variable locks and places. Places give the concur-

rent activities identities. As presented in [14], each activity (i. e. a Statechart transition) is

assigned a unique place, identifying the activity. Each variable has a lock variable defining

the place that currently has writing access. There is a special place none that is chosen

if no activity is writing the variable and the variable should keep its value. If two places

write the same variable, they are said to be in conflict for this variable.

For a variable, the following situations may appear:

• No action is writing the variable during a step; the variable should keep its value

(default action). This happens if no action that writes the variable is executed during

the step. Volatile variables (events) are reset in this case. Nevertheless, these variables

are not subject of further consideration here.

• A single action is writing the variable; the variable gets the value assigned by this very

action. It is important that the choice is selected from the writing action. Non-writing

actions or the default action may not be executed, i. e. they must not hold the lock

for the variable. Note that the assignment may be non-deterministic, in this case one

admissible value is chosen non-deterministically and assigned to the variable.

• Several actions are writing the variable; one action is selected non-deterministically

and a value is assigned as in the previous case.

The function used computes the free variables of a predicate (definition omitted).

places represents the set of names that are used for places. lock computes the lock variable

for a variable name. none represents the none place, that is the place that has a variable’s

lock if no other place writes the variable.

used : Env × Pred → P NAME
places : P special
lock : NAME → special
none : special

Example: Consider a place plc and a variable v with the lock vlock . The variable v is

written at the place by some action, for example v ′ = 4. This action is transformed to

vlock 6= none ∧ (vlock = plc ⇒ v ′ = 4). This ensures that the variable is written by some

place (vlock 6= none), plc or another, but not none. Furthermore, it writes the variable, if

plc has the lock. If the action is not executed, because, in case of a Statechart transition,

79

6 Statecharts

S1 S2
E/V:=3; V:=5

Figure 6.4: Racing Caused by Transition Segments (Statemate Syntax)

S21 S22

S12S11

t1 : /v ′ = 1

t2 : /v ′ = 2

t3 : /v ′ = 3

t4 : /v ′ = 4

S1

S2

Figure 6.5: Conflicting and None-Conflicting Transitions. Transitions t1 and t2 are never
executed in the same step and can thus share a place. The same holds for t3 and t4. The
two pairs, however, need different places since they are executed simultaneously and cause
racing on v .

the transition is not executed, vlock 6= plc has to be ensured. The same holds for places

that never write the variable. Thus, if no place writes the variable, vlock equals none. To

establish persistency, vlock = none ⇒ v ′ = v is added as invariant for vlock . Note that the

places and locks are introduced to handle both racing and persistency.

Places are modeled as special identifiers:

Place : P special

6.2.4 Sharing Places

Lock variables range over the possible places and are added to the data space. For model

checking, this approach causes some overhead to the size of the data space, because the

number of system states is increased. It is important to keep this overhead as small as

possible. In order to warrant persistency, each variable that is written by at least one

place needs a lock variable with at least two values, i. e. none and the places of the

writing actions. The actual growth of the state space depends on how many values the

lock variable can take, i. e. the number of places that can write the variable. This number

should thus be kept as small as possible. Therefore, places have to be shared among

actions that are not in conflict. In order to compute the necessary places and the possible

sharing, analysis of the Statechart is needed. This will be described in the following.

For Statecharts, each transition segment is a place, since racing already occurs, if

different transition segments of a transition write the same variable. In Figure 6.4, the

transitions cause racing on v . Assigning each transition segment a unique place leads to

a relatively high number of places needed for a Statechart. Most transitions are not in

conflict, however, since they cannot fire simultaneously or do not write the same variable.

Moreover, users of Statecharts usually avoid racing so that it appears quite rarely. Having

80

6 Statecharts

model checking in mind, a more sophisticated solution is needed in order to reduce the

number of places. The problem is that in the above presented approach, the domain of

each variable lock is the set of all places or at least the places that write the variable.

In order to minimize the needed places, first, places are assigned per variable. That

means an activity may get a different place for each variable it writes. Secondly, activities

that cannot be executed simultaneously and thus do not compete for writing, share places.

For this, the Statechart is analyzed to search for potential racing occurrences. This is done

only on the basis of the Statechart’s structure and not by considering the semantics of the

guards or the like. In Figure 6.5 on the preceding page, the two pairs of transitions t1, t2
and t3, t4 can each share a place.

6.2.4.1 Writing Occurrences

Racing can already occur in a single transition, if several transition segments write the

same variable as shown in Figure 6.4 on the facing page. Therefore, places have to be

assigned to transition segments. In the abstract syntax used here (see section 5.1 on

page 55), such a transition is defined by a transition t ∈ Trans and the specific action

predicate p ∈ actions(label t). This pair is called a writing occurrence.

wrtOcc : P(Trans × Pred)

∀ t : Trans; p : Pred • (t , p) ∈ wrtOcc ⇔ p ∈ actions(label t)

6.2.4.2 Non-Conflicting Writing Occurrences

For a given Statechart, each data-variable is written by a set of writing occurrences. A

subset of this set is called a set of non-conflicting writing occurrences, if all pairs of its

members cannot write the variable simultaneously. Thus all members of a set of non-

conflicting writing occurrences can share a place. In order to share places, these sets of

non-conflicting writing occurrences have to be computed.

To minimize the number of places needed for a variable, a “minimal” set of sets of

writing occurrences has to be computed. This set has to fulfill the following requirements:

• The writing occurrences of a non-conflicting set for the variable have to be pairwise

non-conflicting.

• Each transition segment (writing occurrence) that writes the variable has to be in at

least one set.

• The number of sets has to be as small as possible, thus the union of two sets of non-

conflicting writing occurrences must not be a set of non-conflicting writing occurrences.

Note, however, that a single writing occurrence may appear in several sets.

As an example consider Figure 6.6 on the following page.

81

6 Statecharts

t2 : /x ′ ∈ {2, 3} t2 : /x ′ ∈ {2, 3}

t4 : /x ′ = 4 t3 : /x ′ = 3

(b) (c)(a)

t3 :
/x ′ = 3

t1 : /x ′ = 4

t5 : /y ′ = 3

t1 : /x ′ = 4

t5 : /y ′ = 3
t4 :

/x ′ = 4

Figure 6.6: Sets of Non-Conflicting Writing Occurrences. In (a), the two transitions t1
and t2 concurrently write x . Thus, for x the set of non-conflicting writing occurrences is
{{ t1 }, { t2 }}. In (b), there is no conflict between the transitions t3 and t4, thus t3 and
t4 form a set of non-conflicting writing occurrences: {{ t3, t4 }}. When the two charts are
combined (c), a set of non-conflicting writing occurrences is, e. g. {{ t1, t3, t4 }, { t2, t3, t4 }}.
Since t1, t3, and t4 are all non-conflicting, they can be put into one set. By doing this,
the number of places is kept small and so does the domain of the lock variables. Note
that t3 and t4 are assigned several places. This does not cause a problem, however, the
set {{ t1 }, { t2, t3, t4 }} can be chosen as well; this is done in the solution presented here.

6.2.4.3 Computing Writing Occurrences for Statecharts

The sets of non-conflicting writing occurrences are firstly computed for a single transition.

As mentioned above, several actions in one transition (resulting from several transition

segments), cause racing. Thus, for some variable v , each action p that writes this variable,

forms a writing occurrences set with only one member.

Racing can only occur for port- and data-variables, thus only these are considered in

the definition of the writing occurrences.

The function used computes the free variables of a predicate under a given environment.

The environment is needed to resolve abbreviations. prime computes the primed coun-

terpart of a variable: prime v = v ′. Thus, prime∼(|used(E , p)|) computes the unprimed

versions of all primed free variables of the predicate p. With this, for some transition

t , raceTrans assigns each variable those writing occurrences of t that write the variable.

Variables that are not written by any action of t are assigned the empty set.

raceTrans : Env × Trans →NAME → F(F wrtOcc)

∀ E : Env ; t : Trans •
raceTrans(E , t) = (NAME × {∅ })⊕

(λ v : getData E ∪ getPort E •
{ p : actions(label t) | v ∈ prime∼(|used(E , p)|) • { t 7→ p }})

Note that no writing occurrences for derived variables are found, since these variables

must not occur in primed form.

The sets of writing occurrences are now computed for each state. Basic-states do not

cause any write access to variables, therefore their writing occurrences sets are empty

82

6 Statecharts

t3 : /x ′ ≤ 4t1 : /x ′ = 4 t4 : /x ′ = 5 t5 : /x ′ = 3t2 :

S1 S2

x ′ ∈ {2, 3}

Figure 6.7: Combining Writing Occurrences. For variable x , the Statechart state S1 has
three sets of writing occurrences ({ t1 }, { t2 }, { t3 }) and thus needs at least three places,
whereas S2 has only two sets ({ t4 }, { t5 }). The resulting set of non-conflicting writing
occurrences is, { t1, t4 }, { t2, t5 }, { t3 }. Each of the original writing occurrences sets is
subset of exactly one resulting set.

combine
{{conflicting︷ ︸︸ ︷
{ t3 }, { t2 }, { t1 }

}
,
{
{ t4 }︸ ︷︷ ︸

non-conflicting

, { t5 }
}}

=
{
{ t1, t4 }︸ ︷︷ ︸

non-conflicting

, { t2, t5 }, { t3 }
}

for every variable. And-states introduce racing, and their racing occurrences sets are

therefore combined. So if two sub-charts of an and-state write the same variable, they are

conflicting. Xor-states do not introduce racing. The writing occurrences sets are combined

in a minimal way. This is done by combine. See Figure 6.7 for an example.

raceState : Env × State→NAME → F(F wrtOcc)

∀ E : Env ; n : NAME •
raceState(E ,Basicn) = NAME × {∅ }

∀ E : Env ; n, v : NAME ; S : F State •
raceState(E ,And(n,S))(v) =

⋃
{ s : S • raceState(E , s)(v) }

∀ E : Env ; n, v : NAME ; T : F Trans; S : F State •
raceState(E ,Xor(n,T ,S))(v) =

combine({ s : S • raceState(E , s)(v) }∪
{ t : T • raceTrans(E , t)(v) })

combine : F(F(F wrtOcc))→ F(F wrtOcc)

∀TPP : F(F(F wrtOcc)) •⋃
(combine TPP) =

⋃
(
⋃

TPP) ∧
(∀TP : TPP • ∀ tp : TP •
∃1 tp′ : combine TPP •

tp ⊆ tp′ ∧
(∀ tp′′ : combine TPP \ { tp′ } • tp ∩ tp′′ = ∅)) ∧

#(combine TPP) = max (#(|TPP |))

6.2.4.4 Assigning Places to Sets of Writing Occurrences

A general function is defined which assigns places to sets of writing occurrences.

The individual writing occurrences in a set of writing occurrences tp share the place

placeAssigner tp. This assignment is carried out independently of the actual non-

83

6 Statecharts

conflicting sets of a concrete Statechart or µSZ class.

placeAssigner : F wrtOcc � Place

Some auxiliary functions are defined that compute writing occurrences of a given spec-

ification. The following information is computed from a specification defined by an envi-

ronment E (see sectionsec:env). The functions compute:

• which places can write a variable (varPlaces),

• which places can be used by a writing occurrence (occPlaces),

• which places are used by a transition (transPlaces), and

• which places are used by a state (statePlaces).

These definitions are needed to define the Statechart’s state transition in the following

sections.

Each variable is assigned the set of places that may write this variable. This is the

domain of its lock variable.

varPlaces : Env →NAME → F Place

∀ E : Env ; v : NAME •
varPlaces(E)(v) = placeAssigner(|raceState(E , getRoot E)(v)|)

For each variable, each writing occurrence is assigned the set of places under which it

may write the variable. Note that due to the definition of combine, these sets do not have

more than one element.

occPlaces : Env → wrtOcc→NAME → F Place

∀ E : Env ; t : Trans; p : Pred ; v : NAME •
occPlaces(E)(t , p)(v) =
{TP : raceState(E , getRoot E)(v) |

(t , p) ∈ TP • placeAssigner(TP) }

The places of a transition is computed by transPlaces as the union of the places of the

transition segments:

transPlaces : Env → Trans →NAME → F Place

∀ E : Env ; t : Trans; v : NAME •
transPlaces(E)(t)(v) = {T : raceState(E , getRoot E)(v) |

t ∈ domT •
placeAssigner(T) }

Each state is assigned the set of places of its (arena) transitions and its sub-states by

the function statePlaces:

84

6 Statecharts

statePlaces : Env → State 7→NAME → F Place

∀ E : Env ; n : NAME • statePlaces(E)(Basic(n)) = NAME × {∅ }
∀ E : Env ; n, v : NAME ; S : F State •

statePlaces(E)(And(n,S))(v) =
⋃
{ s : S • statePlaces(E)(s)(v) }

∀ E : Env ; n, v : NAME ; TT : F Trans; S : F State •
statePlaces(E)(Xor(n,TT ,S))(v) =⋃

{ s : S • statePlaces(E)(s)(v) } ∪⋃
{ t : TT • transPlaces(E)(t)(v) }

6.2.5 Rewriting Actions

In order to support the locks, actions have to be rewritten. Consider for example an action

x ′ = 4 ∧ y ′ = 3 that writes the variables x and y with locks xlock and ylock respectively.

Assume the action has the place plcx to write x and plcy to write y . The action is rewritten

as follows (the formula is annotated with the auxiliary function defined in the following):

someVarWritten︷ ︸︸ ︷
xlock 6= none ∨ ylock 6= none ∧(xlock ∈ { plcx } ∨ ylock ∈ { plcy })︸ ︷︷ ︸

someVarLocked

⇒
allVarLocked︷ ︸︸ ︷

(xlock = plcx ∧ ylock = plcy) ∧
(x ′ = 4 ∧ y ′ = 3)︸ ︷︷ ︸

original action

The action always writes all of the variables it intends to write, or none (allVarLocked).

If it writes none, there has to be another action writing at least one of the variables

(someVarWritten). If it has the lock of one variable, it must have the lock for both and

will then write these variables (someVarLocked ⇒ allVarLocked).

This rewriting is defined formally with the function trSimpleAct . For this, firstly the

above mentioned auxiliary functions that compute needed predicates are defined in the

following.

For a writing occurrence, the function someVarWritten computes a predicate which

states that at least one of the variables, being written by the occurrence is actually written.

The function someVarLocked states that the occurrence has at least one variable locked

and allVarLocked that it has all variables locked.

85

6 Statecharts

someVarWritten, someVarLocked , allVarLocked : Env → wrtOcc→ Pred

∀ E : Env ; tp : Trans × Pred •
someVarWritten(E)(tp) =∨

{ v : NAME |
occPlaces(E)(tp)(v) 6= ∅ •
¬ (var∅(lock v) = var∅ none) } ∧

someVarLocked(E)(tp) =∨
{ v : NAME |
occPlaces(E)(tp)(v) 6= ∅ •
var∅(lock v) ∈ {, , }(var∅ ◦(order(occPlaces(E)(tp)(v)))) } ∧

allVarLocked(E)(tp) =∧
{ v : NAME |
occPlaces(E)(tp)(v) 6= ∅ •
var∅(lock v) ∈ {, , }(var∅ ◦ order (occPlaces(E)(tp)(v))) }

trSimpleAct augments an action as discussed before. It adds the necessary behavior

to obey the place/locking system.

trSimpleAct : Env → Trans × Pred → Pred

∀ E : Env ; t : Trans; p : Pred •
trSimpleAct(E)(t , p) =

someVarWritten(E)(t , p) ∧
(someVarLocked(E)(t , p)⇒ allVarLocked(E)(t , p)) ∧ p

6.3 Translating Statecharts into a State Transition Relation

section Statecharts parents Racing

As discussed before, the Statechart defining the reactive behavior of an µSZ class has to

be translated into a Z state transition relation. This translation defines the semantics of

the Statechart embedding in µSZ and the mapping into a Kripke structure.

The state transition relation is built up hierarchical. For each Statechart state, a state

transition relation is defined, describing the “sub-behavior” that is performed, if this state

is active during a step (including not left and not entered).

For this, some basic facts of the Statechart semantics are used. Each Statechart tran-

sition has exactly one arena state: the least common ancestor of states it passes through.

An arena state is always an xor-state, since a transition, whose arena state is an and-

state, is a transition between parallel states, and that is inadmissible. Figure 6.8 gives an

example for arena states.

In a state (or configuration), several transitions can be ready to fire (all transitions

whose guards are true and whose source states are active). Some of these transitions

can fire simultaneously, whereas others are in conflict. Transitions that are in parallel,

i. e. whose arena state’s least common ancestor state is an and-state, can fire simultane-

ously. Conflicting transitions, whose arena state’s least common ancestor is an xor-state

must not fire simultaneously. Thus, in order to perform a valid step, from each set of

conflicting transitions one transition has to be selected that is executed. In Figure 6.8, the

86

6 Statecharts

S1

t1 :

t4 :

t5 :

S2

t ′4 :

t3 :

t2 :

t7 : t6 :

S

S21 S22

Figure 6.8: Arena States and Transitions. The arena state of t1 is S1, of t2, t3 it is S
and of t5 it is S22. The arena state of transition t4 is the and-state S2. The transition
is therefore illegal. However, Statemate allows such a transition and interprets it as t ′4.
Thus, its arena state is the xor-state S and the transition is legal.

least common ancestor of the arena states of the transition t5 and t6 is S2—an and-state.

These transitions may thus fire simultaneously.

Here, the transitions with the greatest arena state (with respect to the state hierarchy,

closest to the root state) have priority. Only if transitions have the same arena-state, a

non-deterministic choice is made. In order to observe this behavior, the transitions are

considered in the state transition relation of their arena state. The transitions that have a

common arena state are called this state’s arena transitions. In the abstract µSZ syntax

presented in section 5.1 on page 55, an xor-state-node already holds the arena-states of

this state. In Figure 6.8, the transitions t3 and t7 have the same arena state (S), and a

non-deterministic choice between them has to be made. The arena state of the transition

t6, in contrary, is S21 and t6 thus has lower priority.

Due to this prioritization, for an xor-state, all arena-transitions of its sub-states have

lower priority than its own arena-transitions. Therefore, if one of its arena transitions can

fire, the sub-states do not have to be regarded anymore.

The function stateTrans assigns each Statechart state its transition relation. A state

transition relation is assigned to each Statechart states, with to the following rules:

• Basic-State: The transition relation does nothing, i. e. the sub-Statechart idles. Thus,

for some basic-state S : stateTrans S = true.

• And-State: The transition relation of an and-state is defined as the conjunction of the

transition relation of its sub-states. Thus, for an and-state S with sub-states S1, . . . ,Sn :

stateTrans S = stateTrans S1 ∧ . . . ∧ stateTrans Sn .

• Xor-State: The transition relation of an xor-state is defined as follows: If one of its

arena-transitions can fire, execute this transition and otherwise execute the transition

relation of the active sub-state. Thus, for an xor-state S with configuration variable

confS :

87

6 Statecharts

stateTrans S = if some transition can fire

then transition fires

else confS = Si ⇒ conf ′S = Si ∧ stateTrans Si

6.3.1 Configuration

The current state, the configuration of a Statechart, is modeled by the configuration

variables. For each xor-state, a variable is introduced that holds the currently active sub-

state. The function conf maps state names to their configuration variable names, and st

maps state names to their occurrence names. For an xor-state S with sub-states S1,S2

this is conf S ∈ { st S1, st S2 }.
The function instatePred computes the instate predicate for a state. This predicate can

be used to test whether a state is active or not in the proposed configuration. instateNext

forces the given state to be entered.

conf : NAME � special
st : NAME � special
instatePred , instateNext : Env →NAME → Pred

∀ E : Env ; s : NAME •
instatePred E s =

var∅(conf (st(stName(getParent E s)))) = var∅(st s) ∧
instateNext E s =

var∅(prime(conf (st(stName(getParent E s))))) = var∅(st s)

6.3.2 In-State Predicates

The current configuration can be accessed from predicates with the instate relation. For

some Statechart state S , instateS is true if and only if the state S is active. The instate

relation has to be replaced by the respective instate predicates. The function transInstates

translates all occurrences of instate into a predicate.

Instate : NAME
transInstates : Env → Pred → Pred

∀ E : Env • transInstates E =
transPred { s : NAME • (var∅ s) ∈ (var∅ Instate) 7→ instatePred E s }

6.3.3 Timeouts

Statecharts support timeouts. Timeouts have a trigger and a delay. The trigger is an

event itself. If the time delay has elapsed since the last occurrence of the trigger event,

a timeout-event is fired automatically. The most important application of timeouts is to

limit the time a state is active.

µSZ has timeouts µSZ as well. The are modelled by the delay : State→ N function.

The delay function returns the time a Statechart state has been active. A timeout can be

realized by: delay s = 10. This predicate is true 10 steps after state s is entered.

88

6 Statecharts

Timeouts can be impelemented by timeout counters. Timeout counters are incre-

mented until the timeout trigger becomes true. Once that happens they are reset. This is

only possible if the timeouts are bounded, i. e. if a maximum value can be found for the

counter. For delay s = 10, a timeout counter with a maximum of 11 can be used. If 11 is

reached, the counting can be stopped.

In order to determine the maximum values, timeouts are only supported if they appear

as: delay s rel n (where rel ∈ {=, 6=, <, >,≤,≥} and n is a number). The maximal value

is n +1. Formalization of the analysis is omitted here. It is assumed that the environment

contains the necessary information and that there is a function getTimers that returns all

timers (i. e. a triple containing the timer name, the trigger predicate and the maximum

value):

getTimers : Env → F(NAME × Pred ×Number)

Note that it is possible to support arbitrary trigger predicates. Therefore, a predicate

is stored with the timer and not a state name. However, µSZ allows only delays for the

entering of states. The trigger predicate for a state s is: ¬ (instatePred s) ∧ instateNext s).

The delay function is declared in the meta-language:

Delay : Expr → Expr

The function Timer maps a state name to the name of the respective timer.

Timer : NAME → special
transTimers : Env → Pred → Pred

∀ E : Env • transTimers E =
transExprP { s : NAME ; n : Number ; rel : BuiltinRel •

Delay(var∅ s) 7→ var∅(Timer s) }

The necessary declarations for the timers are computed by timerDecls.

timerDecls : Env →Decl

∀ E : Env • timerDecls E =
setreduce (;) { t : getTimers E •

t .1: (var∅(Num 0)) . . (var∅(t .3)) }

timerPred computes the predicate that controls the counters. It resets the counter, if

the trigger is true and increments it up to its maximum otherwise.

timerPred : Env → Pred

∀ E : Env •
timerPred E =

∧
{ t : getTimers E •

var∅(prime t .1) = (if t .2 then var∅(Num 0)
else (if (var∅ t .1)≤ var∅(t .3)

then (var∅ t .1) + var∅(Num 1)
else (var∅ t .1))) }

89

6 Statecharts

6.3.4 Guards and Actions

A transition can fire if its guard is true and all source states are active. This statement is

computed by transGuard . Thus, if a transition’s arena state is active and transGuard(E)(t)
is true, the transition may fire:

transGuard : Env → Trans → Pred

∀ E : Env ; t : Trans •
transGuard(E)(t) =

((transInstates E) ◦ (transTimers E))(guard(label t)) ∧∧
{ s : sources t • instatePred E s }

If a transition fires, its (simple) action is executed and all target states are entered:

transAction : Env → State→ Trans → Pred

∀ E : Env ; s : State; t : Trans •
transAction(E)(s)(t) =∧

{ p : actions(label t) •
trSimpleAct(E)(t , ((transInstates E) ◦ (transTimers E))(p)) } ∧∧
{ s : targets t • instateNext E s }

If a transition fires, no other transition of its arena state or one of the arena state’s

sub-states can fire. Thus all places of the arena state that do not belong to the firing

transition must be disabled, i. e. they must not lock any variable. This is expressed by

protectOtherPlaces:

protectOtherPlaces : Env → State→ Trans → Pred

∀ E : Env ; s : State; t : Trans •
protectOtherPlaces E s t =∧

{ v : NAME |
transPlaces(E)(t)(v) 6= statePlaces(E)(s)(v) •
¬ (var∅(lock v) ∈
{, , }(var∅ ◦ order (statePlaces(E)(s)(v)\

transPlaces(E)(t)(v)))) }

The complete effect of a firing transition is expressed by trFullAct :

trFullAct : Env → State→ Trans → Pred

∀ E : Env ; s : State; t : Trans •
trFullAct E s t = transGuard E t ∧

transAction E s t ∧
protectOtherPlaces E s t

6.3.5 Statechart State Transition Relation

Now, the state-transition relation induced by the Statechart is defined recursively in as-

signing a state transition relation to each state. For some steps, this relation is applied, if

it has been active in the pre-state and none of its ancestor states fires a transition.

90

6 Statecharts

stateTrans : Env → State→ Pred

∀ E : Env ; n : NAME •
stateTrans(E)(Basic n) = true

∀ E : Env ; n : NAME ; S : F State •
stateTrans(E)(And(n,S)) =

∧
(stateTrans(E)(|S |))

∀ E : Env ; n : NAME ; TT : F Trans; S : F State •
∃ s == Xor(n,TT ,S) •
∃ someTransCanFire ==

∨
(transGuard(E)(|TT |));

someTransFires ==
∨

(trFullAct(E)(s)(|TT |));
noPlacesUsed ==∧

{ v : NAME |
statePlaces(E)(s)(v) 6= ∅ •
¬ (var∅(lock v) ∈ {, , }(var∅ ◦ order (statePlaces(E)(s)(v))))};

activeStateFires ==∧
{ s : S • var∅(conf n) = var∅(st(stName s))⇒ stateTrans(E)(s) } •

stateTrans(E)(Xor(n,TT ,S)) =
(someTransCanFire ⇒ someTransFires) ∧
¬ someTransCanFire ⇒ (var∅(prime(conf n)) = var∅(conf n)) ∧

noPlacesUsed ∧
activeStateFires

6.3.6 Declarations

The Statechart translation needs additional variable declarations. The function lockDecls

computes the declarations needed for the lock variables. The function confDecls computes

the declarations for the configurations.

lockDecls : Env →Decl

∀ E : Env • ∃ var places == statePlaces(E)(getRoot E) •
lockDecls E =

setreduce(;)
{ v : getData E •
lock v : {, , }(var∅ ◦ order (var places(v) ∪ {none }))}

confDecls : Env →Decl

∀ E : Env •
confDecls E = setreduce

(;)
{ s : ran(getParent E) ∩ ranXor •
conf (stName s): {, , }(var∅ ◦ st ◦ order (stName(|subs(|{ s }|)|))) }

All additional declarations needed for the Statechart are computed by statechartDecls.

statechartDecls : Env →Decl

∀ E : Env • statechartDecls E = (lockDecls E);
(confDecls E);
(timerDecls E)

91

6 Statecharts

The private data variables of the class are written only by the class, whereas the port

variables can also be written by the environment. Thus, only the data variables are kept

persistent if they are not written by the class. It is assumed that the port-variables’

locks are also exported in order to resolve racing with the environment. In each step, the

value of a port-variable is defined by the class, if it holds the lock, and is defined by the

environment otherwise. In the latter case, invariants of the port-variables must not be

violated by the environment.

persistencyPred : Env → Pred

∀ E : Env •
persistencyPred E =

∧
{ v : getData E |
v ∈ dom(statePlaces(E)(getRoot E)) •
(var∅(lock v) = var∅ none)⇒

(var∅(prime v) = var∅ v) }

The state transition relation for the Statechart of a class is computed by

statechartSemantics. In addition to the actual transition relation, computed by

stateTrans, it consists of the persistency predicate persistencyPred and the timerPred .

statechartSemantics : Env → Pred

∀ E : Env • statechartSemantics E = stateTrans(E)(getRoot E) ∧
(persistencyPred E) ∧
(timerPred E)

That’s it.

6.4 Statecharts Translation by Example

section StatechartExample parents Syntax,Statecharts

In this section, the semantic conversion is explained by an example. The translation of

the Statechart shown in Figure 6.9 on the facing page is presented.

6.4.1 Abstract Syntax of the Example Statechart

At first, the Statechart is translated into the abstract syntax, defined in Sect. 5.1 on

page 55. For this, names for the variables (X and Y) and for the states Sx have to be

declared. Obviously, these names are supposed to be mutually not equal.

X ,Y , root ,S1,S2,S11,S12,S111,S112,S22,S21,PLC1,PLC2 : NAME

〈X ,Y , root ,S1,S2,S11,S12,S111,S112,S22,S21〉 ∈ N 7� NAME

x == var∅ X
x ′ == var∅(prime X)

y == var∅ Y
y ′ == var∅(prime Y)

92

6 Statecharts

Example
DATA D

x , y : 0 . . . 255

S111 S112 S12

S22
S21

1 : x = y
2 : x = x + y

3 : x = y/x ′ = y

4 : ¬ x = y

5 : /x ′ = y

/x ′ = y

S2

S1

S11

Figure 6.9: Example Class with Statechart

the root == And(root , { the S1, the S2 })
the S1 == Xor(S1, { t2, t3 }, { the S11,Basic S12 })
the S11 == Xor(S11, { t1 }, {Basic S111,Basic S112 })
the S2 == Xor(S2, { t4, t5 }, {Basic S21,Basic S22 })
t1 == ({S111 }, {S112 }, (x = y , { y ′ = (x + y) }))
t2 == ({S11,S112 }, {S12 }, (x = y , { x ′ = y }))
t3 == ({S12 }, {S11,S111 }, (x = (y + x), { true, true }))
t4 == ({S21 }, {S22 }, (¬ (x = y), { true }))
t5 == ({S22 }, {S21 }, (true, { x ′ = y }))

Note that due to the default completion, transition t3 consists of two transition seg-

ments. Therefore it has two actions: true and true. The transition also has two targets,

since it enters state S11 and S111. The interlevel transition t2 has two source states: S11

and S112, which have to be active if t2 is to fire.

6.4.2 Augmentation of the Data Space

Two places are needed for the given Statechart, since the two parallel charts write x

concurrently. For the states S1 and S2, the places named PLC1 and PLC2 are introduced,

respectively. PLC1 is also used for the variable y .

93

6 Statecharts

PLC1,PLC2 : special
STATE ,D ,T : NAME

conf S1 == var∅(conf S1)
conf S ′

1 == var∅(prime(conf S1))
conf S2 == var∅(conf S2)
conf S ′

2 == var∅(prime(conf S2))
conf S11 == var∅(conf S11)
conf S ′

11 == var∅(prime(conf S11))

st S11 == var∅(st S11)
st S12 == var∅(st S12)
st S21 == var∅(st S21)
st S22 == var∅(st S22)
st S111 == var∅(st S111)
st S112 == var∅(st S112)

xlock == var∅(lock X)
ylock == var∅(lock Y)
plc1 == var∅ PLC1

plc2 == var∅ PLC2

STATEDECL == [STATE ::=Const(st root) | Const(st S1)
| Const(st S11) | Const(st S111)
| Const(st S112) | Const(st S12)
| Const(st S2) | Const(st S21)
| Const(st S22) | true]∅

DATADECL == Schema(D ,Data, conf S1: {st S11, st S12};
conf S2: {st S21, st S22};
conf S11: {st S111, st S112};
lock X : {plc1, plc2, var∅ none};
lock Y : {plc1, var∅ none},
(xlock = var∅ none ⇒ x ′ = x) ∧
(ylock = var∅ none ⇒ y ′ = y))

6.4.3 Semantic Conversion

The abstract syntax of the Statechart shown in Figure 6.9 on the preceding page is defined

by the root . It is converted into a state transition relation, given in plain Z. According to

the Z convention, the transition relation is defined as a predicate over the state variables

representing the pre-state, and their primed counterparts, which represent the post-state.

To do this, the configuration2 of the Statechart has to be modelled. This is done in intro-

ducing a configuration variable for each xor-state that holds the currently active substate

of the xor-state. A discussion on how the Statechart configuration can be modelled can

be found in section 6.1.5 on page 76. In the chosen model, a state is active, if and only if

it is the root state or:

• its parent state is active, and

• if its parent state is an xor-state, it is the parent’s active sub-state defined by the

configuration variable.

The function conf ∈ NAME � special maps xor-state names to the names of their

respective configuration variables.

The transition relation is built up according to the Statechart hierarchy. For each

state, a state transition relation is defined that is used if the respective state is active and
2The current state of a running Statechart is usually refered to as configuration in the literature, to

avoid confusion with the Statechart states (i. e. S1, S22, etc. in the example). Some authors also use the

term status.

94

6 Statecharts

no transition of an ancestor fires. In brief, an xor-state either fires one of its transitions,

or, if this is not possible, behaves as its active sub-state. An and-state behaves as the

conjunction of its sub-states, and a basic-state does nothing, except taking care that none

of its places is used.

For each transition, two predicates (guard and action) are introduced. The guard is

true, if the transition is able to fire, i. e. all source states are active and the transiton’s

guard is true. Note that only ancestors of the transition’s arena state are considered. The

complete firing condition is that the guard is true and the arena state is active. The action

ensures that all target states are entered and executes the transition’s action. The action

also warrants that non-written variables are not locked by its places (see section 6.2.3 on

page 79 for the concept of locks and places).

guard1 == conf S11 = st S111 ∧ x = y
action1 == conf S ′

11 = st S112 ∧
¬ (ylock = var∅ none) ∧
(ylock = plc1 ⇒ y ′ = x) ∧
¬ (xlock = plc1)

guard2 == (conf S1 = st S11) ∧ (conf S11 = st S112) ∧ (x = y)
action2 == conf S ′

1 = st S12 ∧
¬ (xlock = var∅ none) ∧
(xlock = plc1 ⇒ x ′ = y) ∧
¬ (ylock = plc1)

guard3 == (conf S1 = st S12) ∧ (x = (y + x))
action3 == conf S ′

1 = st S11 ∧
conf S ′

11 = st S111 ∧
¬ (xlock = plc1 ∨ ylock = plc1)

guard4 == conf S2 = st S21 ∧ ¬ (x = y)
action4 == conf S ′

2 = st S22 ∧ ¬ (xlock = plc2)
guard5 == conf S2 = st S22

action5 == conf S ′
2 = st S21 ∧ ¬ (ylock = var∅ none) ∧ (xlock = plc2 ⇒ x ′ = y)

The transition relation of a basic state is used only if no transition of its parallel

activity can fire. Thus, none of the activity’s locks can be used. This is ensured by the

state transition relation of the basic states:

trans S12 == ¬ (xlock = plc1 ∨ ylock = plc2)
trans S111 == ¬ (xlock = plc1 ∨ ylock = plc2)
trans S112 == ¬ (xlock = plc1 ∨ ylock = plc2)
trans S21 == ¬ (xlock = plc2)
trans S22 == ¬ (xlock = plc2)

trans S11 == (guard1 ⇒ guard1 ∧ action1) ∧
(¬ guard1 ⇒ conf S ′

11 = conf S11 ∧
(¬ (ylock = plc1)) ∧
(conf S11 = st S111 ⇒ trans S111) ∧
(conf S11 = st S111 ⇒ trans S112))

95

6 Statecharts

trans S1 == (guard2 ∨ guard3 ⇒ (guard2 ∧ action2 ∨ guard3 ∧ action3)) ∧
(¬ (guard2 ∨ guard3)⇒ conf S ′

1 = conf S1 ∧
(conf S1 = st S11 ⇒ trans S11) ∧
(conf S1 = st S12 ⇒ trans S12))

trans S2 == (guard4 ∨ guard5 ⇒ (guard4 ∧ action4) ∨ (guard5 ∧ action5)) ∧
(¬ (guard4 ∨ guard5)⇒ conf S ′

2 = conf S2 ∧
(conf S2 = st S21 ⇒ trans S21) ∧
(conf S2 = st S22 ⇒ trans S22))

trans root == trans S1 ∧ trans S2

6.4.4 The Resulting Class

result : NAME

Result == Class(result ,
STATEDECL;
DATADECL;
Schema(T ,

Transition,
ex (var∅ D); ex (var∅(prime D)),
trans root))

96

Chapter 7

Z Rewriting

This Chapter describes the Z rewriting needed to prepare Z specifications for model check-

ing. First, the overall rewriting strategy is introduced (section 7.2 on the next page),

followed by presenting the target Z sub-language Simple Z. The objective of the rewriting

is to translate Z into Simple Z (section 7.3 on page 102). Since only a subset of Z can

be translated into Simple Z, a typing system is introduced to discriminate this subset

and support the rewriting (section 7.4 on page 103). At last, the rewriting is defined

(section 7.6 on page 121).

7.1 Introduction

Models that common model checkers can handle, are defined as Kripke structures. In

section 4.8 on page 49 it was shown how a µSZ class defines a Kripke structure. Model

checkers have their own input language to define the Kripke structures. Therefore, the

µSZ class has to be translated into the input language of the model checker.

Alternatively, the µSZ class could be translated directly into BDDs. This has the ad-

vantage that specialized optimization can be applied. Some model checkers accept models

defined by BDDs. Thus the verification algorithms of the model checker can still be used.

However, BDD based model-checking can already fail when the state transition relation

BDD is computed. Thus, the translation into BDDs is critical in itself and requires partic-

ular attention. This is a problem of its own, addressed well by the available model checkers.

In order to use the BDD computations of the model checkers, their input language has to

be used.

In Chapter 6 on page 78, it was shown how the Statecharts of an µSZ class can be

translated into Z. The remaining problem is to translate Z into the model checker’s input

language.

The model checker languages are not as powerful as Z. With Z, it is possible to use

variables with infinite value domains or formulate predicates that are not computable.

Such predicates cannot be translated into a model checker language. Some Z expression

that are computable, are still not supported because of the one-to-one step mapping (see

97

7 Z Rewriting

section 6.1.3 on page 74). It requires one Statechart step to be represented by exactly

one step in the model. Consequently, all expressions have to be evaluated in one step.

Therefore, computations such as recursive functions are not supported, either.

Some Z features can be interpreted as solely syntactical. These terms include sets

and power sets (P) , membership tests (∈), tuples, Cartesian products (×), quantors

(∀,∃), function applications, schemata and bindings. The objective of the Z rewriting is

to translate these constructs into simple constructs that can be mapped directly into the

model-checker’s input language. The resulting Simple Z can then be translated directly

into the input language of some model-checker. Expressions using these features can be

translated into a model checker language. Providing such a translation has two advantages:

• The language that can be used is much more powerful than a model checker language.

This allows a more natural specification of the system. With this, Z can also be used

as superior input language for model checking.

• There is a greater chance that µSZ specifications can be model checked without adapt-

ing them. It is more likely that adaptations can be done locally. A local adaptation,

for example, would be the introduction of bounds for a variable.

Translation of Z into the model checker language is done in two steps. First, Z is

rewritten to Simple Z. Simple Z is a subset of Z that is designed to be as powerful as

a model checker input language. Second, Simple Z is directly translated into the model

checker language. Simple Z is defined in section 7.3 on page 102. The translation of Simple

Z to SMV can be found in Chapter 8 on page 137.

7.2 Rewriting Strategy

This section gives an informal introduction to the Z rewriting. The rewriting will be

formalized in the following sections of this Chapter.

The non-simple terms are translated into simple terms. Sometimes, this will lead to

an explosion of the given specification’s size. The aim is to support predicates such as

a ∈ { 1, 3 }∪{ x : Z | x ≥ 10 }, which can be rewritten efficiently (a = 1 ∨ a = 3 ∨ a ≥ 10).

However, the rewriting also supports inefficient rewriting, such as ∀ x , y : 0 . . 255 • P ,

which causes 2562 replications of the predicate P , since quantors are unfolded. It is the

responsibility of the user to avoid such cases. A concrete translator can give some support,

in stopping unwinding if some upper bound has been exceeded.

The rewriting is done in two steps. First, abbreviations, function applications, binding,

and tuple selections are removed, on the level of expressions. Second, on the level of

predicates, the remaining expressions are resolved according to their usage—in an element

test or equality.

Abbreviations are replaced by their definitions. Function applications are restricted

to functions, given as lambda abstractions. Therefore, application can be resolved by

β-reduction. Function application and tuple selection is distributed through conditionals.

The rewriting rules are applied iteratively, until all terms are rewritten to simple terms.

98

7 Z Rewriting

7.2.1 State Variable Declaration

Variables of power-set or Cartesian product types are translated into enumerations in

order to represent them. For instance a variable declaration v : P{ 1, 2 } is translated to

v : { empty , set 1, set 2, set 1 2 }. A variable declaration v : { 1, 2 } × { 2, 4 } is translated

into v : { tuple 1 2, tuple 1 4, tuple 2 2, tuple 2 4 }. This encoding has to be resolved when

the variables are applied, as it is done if a variable appears in a set element test. For

example a ∈ v has to be rewritten to:

(v = set 1⇒ a ∈ { 1 }) ∧ (v = set 2⇒ a ∈ { 2 }) ∧ . . .

Variables of schema type (bindings) are resolved in flattening the binding rather then

enumerating the values: A declaration v : [a : A; b : B] is translated to v a : A; v b :

B . This has the advantage that binding selections (v .a) can be supported much more

efficiently. On the other hand, variables that are sets of bindings cannot be represented

straightforward. Therefore such variables are not supported.

Actually, tuples and bindings are quite similar. Tuples can be represented by bindings

with numbered variable names: [e1 : A; e2 : B] for A × B . In spite of their similarity,

tuples and bindings are treated differently in this work. The reason for that is not a

technical one; the objective is to evaluate the two approaches.

Variables of basic type v : e (where e is an expression), are supported if e denotes

a final set which can be computed at compile time. The declaration is transformed to

v : maxset(e) (where maxset(e) denotes the maximal set of values e can take).

7.2.2 Expressions

Three kinds of operators have to be removed:

• Function Application: Function application of functions, defined by lambda abstrac-

tion, is removed by β-conversion: (λ x : N • f)(e) = f [e/x]. With this, it is not possible

to handle recursive functions1

• Tuple Selection: Tuples have to be removed, and so has tuple selection, therefore.

Tuple selection can be removed by (a, b).1 = a, if the selection is applied to a tuple.

If it is applied to a tuple variable (e. g. v : { 1, 2 } × { 2, 4 }) things becomes more

complicated. In this case, the variable v holds the encoded value pairs, as described

above: v : { tuple 1 2, . . . }. In a tuple selection, the values have to be decoded:

v .1 = if v = tuple 1 2 then 1 else

• Binding Selection: Similar to tuples, binding selections have to be removed. If a

binding selection is applied to a binding display (e. g. [a == 4, b == 3]) it is easy:

[a == 4, b == 3].b = 3. If the binding is a variable (v : [a : A; b : B]), this variable is

represented by two variables: v a and v b (see above). The binding selection can then

be resolved: v .b = v b.
1Recursive functions could be supported if the maximum number of recursion steps were finite and

known. In this case, the β-conversion could be applied iteratively. However, rather sophisticated static

analysis would then be required.

99

7 Z Rewriting

Apart from the the cases described, the operators can also appear in other expressions

such as conditionals: (if a = 4 then(a, b) else(a, 5)).1. The selection (or application) is

then pushed into the term: if a = 4 then(a, b).1 else(a, 5.1).

7.2.3 Element Test

Sets and thus element tests, have to be removed entirely. The applied translation depends

on the syntax of the tested set:

• Set Display: A predicate e ∈ { e1, . . . en } is translated into e = e1 ∨ . . . ∨ e = en .

• Set Comprehension: A predicate e ∈ { x : E | P } is translated into the predicate

P , where x is replaced by e: P [e/x]. Additionally, e has to be a member of E , the

resulting predicate is thus e ∈ E ∧ P [e/x].

• Cartesian Product: The predicate e ∈ E1× . . .×En is translated into e.1 ∈ E1 ∧ . . . ∧
e.n ∈ En .

• Power-Set: The predicate e ∈ P E is translated into ∀ x : maxset(e) • x ∈ e ⇒
x ∈ E (Note that e ∈ P E is equal to e ⊆ E). Where maxset(e) denotes all values

the expression e can take. That means if e is a variable v : P{ 1, 2 } maxset(e) =

maxset(v) = { 1, 2 }. In contrary to set comprehension, power-set element tests are

only supported, if both the tested element and the set are finite and known at compile

time. The type system presented in section 7.4 on page 103 supports the computation

of maxset .

• Trivial Test: For some free- or given type T , e ∈ T is translated to true (this is

important for sets such as { x : Z | x ≥ 0 }).
• Variables: As already noted, variables of power-set types are represented as enumer-

ations, representing all possible sets. For example a declaration v : P{ 1, 2 } would be

translated into v : { empty , set 1, set 2, set 1 2 }. The element test of such sets (e ∈ v)

is translated into: (v = empty ⇒ e ∈ ∅) ∧ (v = set 1⇒ e ∈ { 1 }) ∧

7.2.4 Equality

• Simple Expressions: A predicate e = e ′ (where e and e ′ are of simple type: neither

schema, product nor power-set) is not changed.

• Tuples: The predicate e = e ′ (where e and e ′ are of type τ1 × . . . × τn) is translated

to e.1 = e ′.1 ∧ . . . ∧ e ′.n. If both expressions are variables, they can be compared

directly.

• Bindings: A predicate e = e ′ (where e and e ′ are of type [v1 : T1; . . . vn : Tn]) is

translated to e.v1 = e ′.v1 ∧ . . . ∧ e.vn = e ′.vn
• Power-Set: The predicate E = E ′ (where E and E ′ are of type P τ) is translated into

∀ x : maxset(E) ∪ maxset(E ′) • x ∈ E ⇔ x ∈ E ′. If E and E ′ are variables, the

encoded values can be compared directly. No rewriting is required.

100

7 Z Rewriting

7.2.5 Quantors

• All Quantor: The predicate ∀ x : e • p is translated into (e1 ∈ e ⇒ p[e1/x]) ∧ . . . ∧
(en ∈ e)⇒ p[en/x]), where maxset(e) = { e1, . . . , en }.

• Exists Quantor: The predicate ∃ x : e • p is translated into (e1 ∈ e ∧ p[e1/x]) ∨ . . . ∨
(en ∈ e ∧ p[en/x]), where maxset(e) = { e1, . . . , en }.

7.2.6 Set Union, Intersection, etc.

Set union, intersection, and set-minus do not need special treatment. They only have to

be defined as lambda-abstraction:

[X]
∪ == (λA,B : P X • { x : X | x ∈ A ∨ x ∈ B }
∩ == (λA,B : P X • { x : A | x ∈ B }
\ == (λA,B : P X • { x : A | ¬ x ∈ B }
⊆ == {A,B : P X | A ∈ P B }

The different rewriting steps are now illustrated with an example:

a ∈ { 1, 3 } ∪ {n : Z | n > 10 }
≡ a ∈ { x : Z | x ∈ { 1, 3 } ∨ x ∈ {n : Z | n > 10 }} abbreviation substitution

and β-conversion

≡ a ∈ Z ∧ (a ∈ { 1, 3 } ∨ a ∈ {n : Z | n > 10 }) set-comprehension rewriting

≡ a ∈ { 1, 3 } ∨ a ∈ {n : Z | n > 10 } trivial set rewriting

≡ a = 1 ∨ a = 3 ∨ a ∈ {n : Z | n > 10 } set-display rewriting

≡ a = 1 ∨ a = 3 ∨ a > 10 set-comprehension rewriting

7.2.7 Undefinedness

When the expressions are rewritten, definedness has to be considered. Consider for ex-

ample the following function application: (λ x : Z | x > 3 • x − 2)(1) which is undefined

in Z. Undefinedness constitutes a problem, since common symbolic model checkers do not

support undefinedness or three-valued-logic.2 Therefore, atomic predicates (equality and

element test) are defined to be false in case one of their expressions is undefined. The

Z semantics do not define how undefinedness is handled, but grant tool developers the

freedom to choose a definition. Thus, the handling of undefinedness complies with the Z

semantics.

Definedness is computed separately for every expression and extra predicates are gen-

erated to handle it. An atomic predicate is defined to be false, if one of the contained

expressions is not defined. For example the predicate (λ x : Z | x > 3 • x − 2)(a) = 1 is

only true, if a > 3. It is thus translated to a − 2 = 1 ∧ a > 3. The definedness predicate

of an expression has to be propagated to the predicate that uses the expression. The

definedness predicate is then conjuncted with the using predicate.
2In principle, it would be possible to extend the BDD by a third value and support undefined predicates.

101

7 Z Rewriting

7.3 Simple Z

section SimpleZ parents Syntax

Simple Z represents the indeed simple logic that is supported by a model checker. It

is designed in such a way that a direct translation into the input language of a symbolic

model checker is possible. In Chapter, 8 on page 137 the translation to the SMV input

language is shown. It has also been verified with other model checkers, such as VIS [2], that

a direct translation into the input language is possible. Moreover, with the exception of the

built-in functions, the logic corresponds to the capabilities offered by BDDs. Therefore,

any BDD based model checker supports this logic. However, some model checkers do not

allow the direct definition of the state transition relation as a predicate. These checkers

cannot be used.

The built-in functions still raise a problem. The SMV model checker supports enu-

merations, integers, and integer arithmetic (less, greater, plus, minus). The VIS checker,

for example, does not support this functionality. It supports only Boolean variables. In-

tegers have to be encoded as sets of Boolean variables (or bits) and integer arithmetic by

corresponding logic. If the checker does not support the built-in functions, their occur-

rences have to be removed in a second rewriting step. Not removing the built-ins has the

advantage of making it much easier to read and to debug the generated code.

The translation of Z to simple Z is described in section 7.6 on page 121.

Simple Z supports equality of expressions, logic operators, built-in relations, condi-

tionals, and built-in functions. The built-in are defined in section 5.1 on page 55. See

section 3.3 on page 32 for the mathematical definitions used.

Predf : P Pred ; Exprf : P Expr

Predf
Pred← { true, false }
‖ { e, e ′ : Exprf • e = e ′ }
‖ { bt : BinType; p, q : Predf • bin(bt , p, q) }
‖ { v : BuiltinRel ; e : Exprf • e ∈ var∅ v } ⊕

Exprf
Expr← var∅(|NAME |)
‖ { p : Predf ; e, e ′ : Exprf • if p then e else e ′ }
‖ { v : BuiltinFun; ~e : seq1 Exprf • (var∅ v) ω ((, ,)~e) }

Expressions used in declarations are restricted even more. Basically, only three kinds

of declarations are admissible:

• Numbers: a : 0 . . 255

• Enumeration of constants: a : { c1, c2, c3 } (if c1, c2, and c3 are branches of a free

type).

• Declarations of free types.

Expressions allowed in declarations are defined by DeclExpr . The context rules are

omitted.

102

7 Z Rewriting

Declf : P Decl

∃DeclExpr : P Expr •
DeclExpr

Expr← { emin , emax : var∅(|Number |) • emin . . emax }
‖ {~e : seq1(var∅(|NAME |)) • {, , }~e }

∧

Declf
Decl← {n : NAME ; e : DeclExpr • n: e }
‖ {F : NAME ; b : Branch • F ::= b }
‖ { d1, d2 : Declf • d1; d2 }

Only axiomatic definitions and schemata are allowed in specifications. Plain schemata

are not allowed, because they have no meaning to the semantics of a µSZ class and cannot

be referenced. Schema references have to be resolved in simple Z.

Specf : P Spec

Specf
Spec← { d : Declf ; p : Predf • [d | p]∅ }
‖ {n : NAME ; type : Stype \ {Plain }; d : Declf ; p : Predf •

Schema(n, type, d , p) }
‖ { s1, s2 : Specf • s1; s2 }

7.4 Annotated Type System for Enumerable Expressions

In this section, the exact supported subset of Z is defined. The decision, whether a Z

expression can be supported or not, depends on context information. Therefore, a type

system is established. This section defines the supported subset of Z via a type system.

It also shows how the maxset function used in the previous sections is computed.

7.4.1 The Type System

section TypeDecl parents Aux,Syntax,Name

The annotated type system of enumerable Z describes the subset of Z that is supported

by the rewriter and the translator. To establish enumerability, basic types are annotated

with a set of values (maxset). This is the set of values an expression of this type can take.

The set is an upper bound of the actual values that the expression can take, considering

the complete static and dynamic semantics. (See Table 7.1 on the next page for examples.)

This set of values corresponds to the maxset that was introduced above (see section 7.2 on

page 98). The value set annotation is used to determine whether an expression has a finite

and known value domain and to compute this very value domain.

The Z type system consists of basic types and three type constructors. Basic types

are introduced by given type declarations (i. e. [NewType]) and free type declarations

(i. e. FreeType ::= c1 | c2). A type also represents the set of values of this very type (its

carrier set). For given types, this set is not well defined, which means the specification

is loose with respect to the carrier set of this type. It can be empty, finite, or infinite.

For free types, the set of values is built by a free construction over its branches. If

only non-parametrized free types are considered, the carrier set is the set of branches

(i. e. FreeType = { c1, c2 }).

103

7 Z Rewriting

Expression Values

a { 1, 2, 4 }

a + 3 Z

3 { 3 }

{ a, 7 } P{ 1, 2, 4, 7 }

(λ x : { 1, 2, 4 } • { x , 4 }) e P{ 1, 2, 4 }

{ x : { 1, 2, 3, 4 } | x > 2 } P{ 1, 2, 3, 4 }

{ x : { a, 4 } | x > 2 } P{ 1, 2, 4 }

Table 7.1: Value annotations of expressions. a is assumed to be data variable, declared as
a : { 1, 2, 4 }.

In Z, variables are not declared with their type but with an expression, also called type

expression. A type expression must be of a power-set type. It defines all values the variable

can have (its value domain). The set, defined by the type expression, can be smaller than

the carrier set. It may happen (e. g. for numbers: x : { 1, 2 }) that the expression denotes

a finite set while the carrier set is infinite. Therefore, the type expression of a variable

declaration is used, rather then the carrier set of its type, to determine the variable’s value

domain. For this, the set of values that an expression can have, is needed.

The data space of a model is finite if and only if the value domains of all data variables

are finite. Therefore, the value domains of the data variables are already needed for

computability analysis.

In order to compute the set of values an expression can have, the type of an expression

is annotated with those very values. For a constant, this is the constant itself, and for a

given type, it is its carrier set. A variable is annotated with its value domain, according

to its declaration.

Because of the not well defined carrier set, support of free types is quite intricate. It

can be provided easily for numbers, where the carrier set is known. The type system

supports given types. However, since no constants of a type exist, no expression of finite

value domain can be constructed. Numbers are added as special cases to the initial

environment. Therefore, no variable of a free type (except numbers) can be declared.

More complex types can be constructed from the basic types by the three type con-

structors. These are: power set, Cartesian product, and schema type. From the set of

values of the basic types, the set of values of the constructed types can be computed.

A type, that is constructed only from types with finite value domains, has a finite value

domain itself. The number of values can grow exponentially, however.

Function applications have to be resolved statically. Therefore, no recursion is per-

mitted in function applications, and function application is only allowed to lambda ab-

straction. Therefore, function applications can be resolved by the well known rewriting

techniques of the lambda calculus. For function application to functions that are not

defined as lambda abstraction, auxiliary variables and existential quantification would be

104

7 Z Rewriting

needed. In order to discriminate functions defined by lambda abstractions from sets of

tuples, an extra type constructor for function is introduced. A function type is constructed

of the types of the parameters and the result type.

A basic type is constructed by the name of the (given or free) type and the set of values.

If the set of values is finite, it holds either numbers (Number) or constants, introduced

by free types. In the case of given types, the set of values is infinite and, for technical

reasons, equals the set of all names NAME . For a constant c of a free type F , the type is

basic(F , { c }). The type of F is power(basic(F , { b1, . . . , bn })), if F ::= b1 | . . . | bn .

The type constructors take only a finite number of parameters. This is ensured for the

Cartesian product and function type, since Z sequences are always finite. Finiteness of

the set of parameters of a schema has to be ensured explicitly.

Type ::= basic〈〈NAME × P NAME 〉〉
| power〈〈Type〉〉
| prod〈〈seq1 Type〉〉
| fun〈〈seq1 Type×Type〉〉
| schema〈〈(NAME 7→ Type) ∩ dom(#)〉〉

The type of numbers without any value constrains is denoted by number.

number == basic(Z,NAME)

7.4.2 Translating Types to Expressions

The function typeToExpr translates a type back into a Z expression of that type. In

order to declare a variable v that has the extended type τ ∈ Type, the declaration

v : typeToExpr τ can be used. This function preserves the enumerability of the type.

For this, a basic type with a finite value set annotation is translated into a set display:

typeToExpr(basic(Num, { 1, 2, 3 })) = { 1, 2, 3 }.

typeToExpr : Type→Expr

∀n : NAME ; N : P NAME •
typeToExpr(basic(n,N)) =

if N ∈ F NAME then{, , }(var∅ ◦ order N) else var∅ n
∀ τ : Type • typeToExpr(power τ) = P(typeToExpr τ)
∀~τ : seq1 Type • typeToExpr(prod ~τ) = prod(typeToExpr ◦~τ)
∀~τ : seq1 Type; τ : Type •

typeToExpr(fun(~τ , τ)) = prod〈prod(typeToExpr ◦~τ), typeToExpr τ〉
∀ τsig : NAME 7→ Type •
∃ d == setreduce (;) ((:)(|typeToExpr ◦τsig |)) •

typeToExpr(schema(τsig)) = [d | true]

7.4.3 Compatible Types

Because of the annotation, the annotated type system also discriminates type compatible

expressions, if they have different value domains. The predicate comp defines the sets of

compatible types, i. e. the types that are equal without regarding the value annotation.

105

7 Z Rewriting

Types are compatible if they are basic types of the same given or free type (basic(|{ v } ×
P NAME |) for some given or free type name v) plus all types that can be built with the

type constructors from these types.

comp is defined with the fixed point macros (section 3.3 on page 32). Thus, comp is

the smallest set that contains the five sets denoted below.

comp : P(P Type)

comp
P Type← { v : NAME ; N : P NAME • basic(|{ v } × P N |) }
‖ {T : comp • power(|T |) }
‖ { ~T : seq1 comp • prod(|explode ~T |) }
‖ { ~T : seq1 comp; T : comp •

fun(|(explode ~T)× T |) }
‖ {Tsig : NAME 7→ comp • schema(|explodeTsig |) }

7.4.4 Unification of Compatible Types

The members of e. g. a set comprehension { a, b }, have to be compatible, but may be

unequal. In order to determine the type of the set, a unification function is needed. The

unification computes from a set T ∈ comp of compatible types a unified type uni∪ T . The

unification function uni∪ basically computes the union of all possible values of the unified

types. Obviously, the unified type is supposed to be compatible to the types it unifies,

thus { uni∪ T } ∪ T ∈ comp.

uni∪ : comp→Type

∀T : comp •
(T ⊆ ran basic⇒ uni∪ T = basic((µ v : (first ◦ basic∼)(|T |)),⋃

((second ◦ basic∼)(|T |)))) ∧
(T ⊆ ran power⇒ uni∪ T = power(uni∪(power∼(|T |)))) ∧
(T ⊆ ran prod⇒ uni∪ T = prod(uni∪ ◦implode((prod∼)(|T |)))) ∧
(T ⊆ ran fun⇒ uni∪ T = fun(uni∪ ◦implode((first ◦ fun∼)(|T |)),

uni∪((second ◦ fun∼)(|T |))))
∧

(T ⊆ ran schema⇒ uni∪ T = schema(uni∪ ◦implode((schema∼)(|T |))))

Whereas uni∪ computes the maximal set of values, uni∩ computes the minimal set of

values.

uni∩ : comp→Type

∀T : comp •
(T ⊆ ran basic⇒ uni∪ T = basic((µ v : (first ◦ basic∼)(|T |)),⋂

((second ◦ basic∼)(|T |)))) ∧
(T ⊆ ran power⇒ uni∪ T = power(uni∪(power∼(|T |)))) ∧
(T ⊆ ran prod⇒ uni∪ T = prod(uni∪ ◦implode((prod∼)(|T |)))) ∧
(T ⊆ ran fun⇒ uni∪ T = fun(uni∪ ◦implode((first ◦ fun∼)(|T |)),

uni∪((second ◦ fun∼)(|T |))))
∧

(T ⊆ ran schema⇒ uni∪ T = schema(uni∪ ◦implode((schema∼)(|T |))))

106

7 Z Rewriting

7.4.5 Enumerable Types and Expressions

For the rewriting, expressions with a finite domain are of interest. The type system

describes both expressions with finite and infinite domain. The restricted set of types,

describing only expressions of finite domains, is defined by Typec . These types (or expres-

sions) are called enumerable in the following. Enumerable types are basic types, annotated

with a finite set of values and all types that can be constructed from these types by the

type constructors (the power set and Cartesian product). Function types are defined to

be not enumerable. The objective of the typing system it to preserve enumerability and to

compute all enumerable expressions. Because of the special treatment of schema variables

(see section 7.2 on page 98), schema types are only allowed at outermost position. That

is: Sets of schemata are defined to be not enumerable.

Typec : P Type

∃ type : P Type •
type

Type← basic(|NAME × F1 NAME |)
‖ power(|type|)
‖ prod(|seq1 type|)

∧
Typec = type ∪ schema(|(NAME 7→ type) ∩ dom #|)

7.4.6 Characteristic Tuples and Signatures

section Type parents Aux, Syntax, Environment, TypeDecl, Statecharts, ModelChecking

The Z type system introduces the notion of a characteristic tuple and a signature.

The type of a set that is defined by a set comprehension { d | p }, is the charac-

teristic tuple, defined by the declaration d . For example, the characteristic tuple of

the declaration a : A; b : B is A × B . Or, more precisely: type({ a : A; b : B }) =

power(prod〈type A, type B〉).
The type of a schema is the signature, defined by the declaration. This is: type([a :

A; b : B]) = power(schema{ a 7→ type A, b 7→ type B }).
Note that, depending on whether the characteristic tuple or the signature is needed,

the declarations are treated differently. In the first case, the order of the declaration is

considered and the names of the variables are ignored, whereas in the second case, the order

does not matter, but the names do. Moreover, schema expressions are treated differently,

since only in signatures, schema expressions are flattened: sigτ ([d | p]) = sigτ (d) while

ctτ ([d | p]) = schema(sigτ (d)).

The type of a set comprehension is defined by the characteristic tuple of its declaration

part. In order to evaluate its predicate, the environment has to be changed according the

signatures of the declarations. This is a somewhat confusing concept of Z, since in order

to determine the type of the set, the characteristic tuple is used, and in order to determine

which variables are declared, the signature is used.

The function ctτ computes the characteristic tuple of a declaration as a sequence of

types. For a declaration that contains variable declarations, this sequence is not empty.

107

7 Z Rewriting

For the type of a set comprehension with declaration part d is power(prod(ctτ d)).

ctτ : Env →Decl → seqType

∀ E : Env ; n : NAME ; e : Expr ; b : Branch; d , d ′ : Decl •
ctτ (E)(n == e) = ∅ ∧
ctτ (E)(n ::= b) = ∅ ∧
ctτ (E)(Given n) = ∅ ∧
(∃ τ : Type | E `E e : power τ • ctτ (E)(n: e) = 〈 τ 〉) ∧
ctτ (E)(d ; d ′) = (ctτ E d) a (ctτ E d ′) ∧
ctτ (E)(ex (e)) = 〈schema(sigτ E d)〉

The function sigτ computes the signature of a declaration as a mapping from variable

names to their types. power(schema(sigτ d)) is the type of a schema expression [d | p].

sigτ : Env →Decl → (NAME 7→ Type)

∀ E : Env ; n : NAME ; e, e ′ : Expr ; b : Branch; d , d ′ : Decl ; p : Pred •
sigτ (E)(n == e) = ∅ ∧
sigτ (E)(n ::= b) = ∅ ∧
sigτ (E)(Given n) = ∅ ∧
(∃ τ : Type | E `E e : power τ • sigτ (E)(n: e) = {n 7→ τ }) ∧
sigτ (E)(d ; d ′) = (sigτ E d)⊕ (sigτ E d ′) ∧
(∃ τsig : NAME 7→ Type | E `E e : power(schema τsig) • sigτ (E)(ex e) = τsig)

7.4.7 Reverting Types

In schema negation, all value domain restriction gets lost. This will be explained later.

The function revert removes all restrictions from the value domain annotations of a given

type. The formal definition of the function’s domain is omitted. For some environment E
all types τ are in the domain of revert if and only if all free and given types occuring in τ

are declared in E .

revert : Env → Type 7→Type

∀ E : Env •
(∀n : NAME ; N : P NAME •

revert E(basic(n,N)) = basic(n, ((basic∼)(getType E (n, ∅))).2)) ∧
(∀ τ : Type • revert E (power τ) = power(revert E (revert E τ))) ∧
(∀~τ : seq1 Type • revert E (prod~τ) = prod((revert E) ◦ ~τ)) ∧
(∀~τ : seq1 Type; τ : Type •

revert E (fun(~τ , τ)) = fun((revert E) ◦ ~τ , revert E τ)) ∧
(∀ τsig : NAME 7→ Type • revert E (schema τsig) = schema((revert E) ◦ τsig))

7.4.8 Type System Relations

The type system is defined via two relations. For some environment, `P defines the

supported predicates, and `E assigns types to expressions.

relation (`E :)

relation (`P)

108

7 Z Rewriting

`E : : P(Env × Expr × Type)
`P : P(Env × Pred)

With these relations, the sets of computable expressions and predicates can be defined

for a given environment. The functions ExprT and PredT compute all expressions and

predicates that are computable in a given environment.

ExprT : Env → P Expr
PredT : Env → P Pred

∀ E : Env •
ExprT E = { e : Expr | ∃ τ : Type • E `E e : τ } ∧

PredT E = { p : Pred | E `P p }

7.4.9 Expressions

7.4.9.1 Numbers

In order to be supported, numbers get a special treatment. In particular, a possibility to

specify number ranges is needed. For this, the Z upto function (. .) is used. Otherwise, users

would have to define number ranges by set displays (e. g. { 0, 1, 2, 3, 4, 5, 6, 7 } instead of

0 . .7), which is somewhat cumbersome for large sets. The upto operator is only supported

for constant ranges.

∀ E:Env ; emin ,emax :Expr ; min,max :Z •

E `E emin : basic(Z, {Num min }) ∧
E `E emax : basic(Z, {Num max }) ∧ min < max

E `E emin . . emax : power(basic(Z, { i : Z | min ≤ i ≤ max • Num i })) (7.4.1)

7.4.9.2 Set Displays

Membership tests of set displays (e ∈ {e1, e2}) are resolved into a disjunction of equal-

ities (e = e1 ∨ e = e2). Therefore, all elements in a set display have to be enumer-

able. The types of the elements have to be compatible. The resulting type is the

power-type of the unification of the element types. For instance, the type of the ex-

pression { 1, 3 } is power basic(Z, { 1, 3 }), and that of the expression {{ 1, 3 }, { 2, 3, 4 }} is

power power basic(Z, { 1, 2, 3, 4 }).

∀ E:Env ; ~e:seq1 Expr ; ~τ :seq1 Type|dom~e=dom ~τ •

ran~τ ⊆ Typec ∧ ran~τ ∈ comp ∧ (∀ i : dom~τ • E `E ~e i : ~τ i)
E `E{, , }(~e) : power(uni∪(ran~τ)) (7.4.2)

109

7 Z Rewriting

7.4.9.3 Set Comprehension

As mentioned in section 7.4.6 on page 107, a type of a set comprehension is determined by

its declaration’s characteristic tuple. For the evaluation of the predicate, the environment

is augmented according to the declaration’s signature. For this, the signature is added

to the current environment. The predicate and the predicate induced by the declaration

have to be computable.

∀ E:Env ; d:Decl; p:Pred •

(addDecls(E)(∅, sigτ E d))`P p ∧ E `P declPred d
E `E{d | p} : power(prod(ctτ E d)) (7.4.3)

The predicate p has to be computable for the local declarations in d already. In fact,

this restricts the computability more than necessary. Consider for example the predicate

{ 1, 3 } ∈ {X : P N | 3 ∈ X }. With the above definition, this predicate is not computable,

since 3 ∈ X for an unbound X is not computable. However, taking an actualization of X

with { 1, 3 } into consideration, the predicate is computable. Nevertheless, this problem

occurs only with sets of sets and is therefore not regarded as very serious. Because it

would make the type system much more complex, it is not supported.

7.4.9.4 Power Set

∀ E:Env ; e:Expr ; τ :Type •

E `E e : power τ

E `E P e : power(power τ) (7.4.4)

7.4.9.5 Variables

The type of a variable is simply its type as defined by the environment, with given actual-

ization of the generic parameters. The type of abbreviations is the type of their definition

with the given actualization.

In the definition, τ denotes the type of the variable and ~τ the types of the actual

parameters. There are two definitions, the first is for variables and the second for abbre-

viations.

∀ E:Env ; v :NAME ; actuals:seqExpr ; τ :Type; ~τ :seq Type|#~τ=#actuals •

(v , ~τ) ∈ dom(getType E) ∧ getType(E)(v , ~τ) = τ ∧
(∀ i : dom~τ • E `E actuals i : ~τ i)

E `E var(v , actuals) : τ (7.4.5)

110

7 Z Rewriting

∀ E:Env ; v :NAME ; actuals:seqExpr ; τ :Type •

(v , actuals) ∈ dom(getDef E) ∧ E `E getDef (E)(v , actuals) : τ

E `E var(v , actuals) : τ (7.4.6)

7.4.9.6 Cartesian Product

∀ E:Env ; ~τ :seq1 Type; ~e:seq1 Expr |dom ~τ=dom~e •

(∀ i : dom~τ • E `E ~e i : power(~τ i) ∧ ~τ i ∈ Typec)
E `E prod ~e : power(prod ~τ) (7.4.7)

7.4.9.7 Tuple

∀ E:Env ; ~e:seq1 Expr ; ~τ :seq1 Type|dom ~τ=dom~e •

∀ i : dom~τ • E `E ~e i : (~τ i)
E `E (, ,)(~e) : prod~τ (7.4.8)

7.4.9.8 Tuple Selection

∀ E:Env ; e:Expr ; ~τ :seq1 Type; i:Z •

E `E e : prod~τ ∧ i ∈ dom~τ

E `E e . i : ~τ i (7.4.9)

7.4.9.9 Binding Selection

∀ E:Env ; e:Expr ; τsig :NAME 7→Type; n:NAME •

E `E e : schema τsig ∧ n ∈ dom τsig

E `E e . n : τsig n (7.4.10)

7.4.9.10 Lambda Abstraction

Lambda abstraction is the only applicable expression supported. Moreover, lambda ab-

straction is only supported in function application. It cannot be used to denote a set of

tuples. A function is computable, if the expression (and the predicate) resulting from an

111

7 Z Rewriting

application of the function is computable. In order to decide this, the types of the formal

parameters are needed. The types of the formal parameters could be taken from their

declaration in the lambda expression, as it is done for set comprehension.

However, these types are usually not restrictive enough. Taking these types would

limit computability too much. Consider for example the definition of a set union operator

for numbers: ∪ == (λA,B : P Z • { x : Z | x ∈ A ∨ x ∈ B }). In order to define a useful

operator, the value domains of A and B cannot be restricted. With P Z as type for A and

B , however, the predicate x ∈ A ∨ x ∈ B is not computable. Therefore, the types of the

actual parameters in a function application are used. Doing this, a function application

of the above defined set union is computable, if the actual parameters allow element test.

For example the predicate v ∈ { 1, 2 }∪{ x : Z | x > 5 } is computable. It will be rewritten

to: v = 1 ∨ v = 2 ∨ v > 5.

Because of this, computability of lambda abstraction can only be determined if the

lambda abstraction is applied. Since lambda abstraction is only allowed to be used in

application, this is always possible.

The type fun(~τ , τ) of a lambda abstraction means that an expression of type prod~τ

can be applied and that the resulting expression is of type τ .

In order to define the type of a lambda abstraction, a declaration da is assumed. da

declares the variables of the lambda abstraction’s declaration d . The types assigned by

da are compatible to those defined by d , but are assumed to be the types of the actual

parameters rather than the formal one’s.

The lambda abstraction’s declaration predicate declPred d , the predicate p, and the

expression e have to be computable under the declaration da .

∀ E:Env ; d,da :Decl; p:Pred; f :Expr ; τ :Type •

addDecls (E)(∅, sigτ E da)`P declPred d ∧
addDecls(E)(∅, sigτ E da)`P p ∧

addDecls(E)(∅, sigτ E da)`E f : τ ∧
{ schema(sigτ E da), schema(sigτ E d) } ∈ comp

E `E λ d | p • f : fun(ctτ E da , τ) (7.4.11)

This definition for lambda abstractions gives each lambda abstraction several types,

one for each possible application.

7.4.9.11 Function Application

∀ E:Env ; f ,e:Expr ; ~τ :seq1 Type; τ :Type •

E `E f : fun(~τ , τ) ∧ E `E e : prod ~τ

E `E f ω e : τ (7.4.12)

112

7 Z Rewriting

7.4.9.12 Condition

∀ E:Env ; p:Pred; e,e′:Expr ; τ,τ ′:Type •

E `P p ∧ E `E e : τ ∧ E `E e ′ : τ ′ ∧ { τ, τ ′ } ∈ comp

E `E if p then e else e ′ : uni∪{ τ, τ ′ } (7.4.13)

7.4.9.13 Schema Expressions

A schema expression denotes a set of bindings and it is thus the power type of a schema

type. The type of a schema display is determined by the signature of its declaration part.

Note the treatment of schema calculus expressions. In the schema calculus, the same

variables can be declared multiple times: [a : { 1, 3 }] ∧ [a : Z; b : B]. If a variable is

declared twice, its value domain has to be computed from the two declarations. If the

declarations are combined by ∧, the value domain is computed by intersection. If the

declarations are combined by ∨, the value domain is computed by union. This is done by

uni∩ and uni∪, respectively.

∀ E:Env ; d:Decl; p:Pred •

addDecls (E)(∅, (sigτ E d))`P p ∧ E `P declPred d
E `E [d | p] : power(schema(sigτ E d)) (7.4.14)

∀ E:Env ; e,e′:Expr ; τsig ,τ ′
sig :NAME 7→Type •

E `E e : power(schema τsig) ∧ E `E e ′ : power(schema τ ′sig) ∧
ran(implode{ τsig , τ ′sig }) ⊆ comp

E `E binE (and , e, e ′) : power(schema(uni∩ ◦(implode{ τsig , τ ′sig}))) (7.4.15)

∀ E:Env ; e,e′:Expr ; τsig ,τ ′
sig :NAME 7→Type •

E `E e : power(schema τsig) ∧ E `E e ′ : power(schema τ ′sig) ∧
ran(implode{ τsig , τ ′sig }) ⊆ comp

E `E binE (or , e, e ′) : power(schema(uni∪ ◦(implode{ τsig , τ ′sig}))) (7.4.16)

At this point, it becomes apparent why the logical operators ¬ , ⇒, and ⇔ are prob-

lematic in schema calculus. Negation of a schema is interpreted not only as negation of

the predicate, but also as the negation of the predicate induced by the declaration. The

problem is that this predicate is used to get the value domain of a variable. Consider the

following example:

113

7 Z Rewriting

¬ [a : { 1, 3 } | a > 2]

=¬ [a : Z | a ∈ { 1, 3 } ∧ a > 2]

= [a : Z | ¬ (a ∈ { 1, 3 } ∧ a > 2)]

= [a : Z | a /∈ { 1, 3 } ∨ a ≤ 2]

Note that with the negation of the schema, any restriction of the value domain gets

lost. The variable a can still have the value 2: ¬ [a : { 1, 3 } | a > 2] 6= [a : Z \ { 1, 3 } |
¬ (a > 2)].

Thus, any restriction of the value domain gets lost with schema negation. In praxis,

however, this is not so bad, since schema negation usually gets along with non-negated

schemata. This can be seen in the definition of the schema xOdd :

D
x : 0 . . 255

xEven
D

∃ i : Z • x = 2 ∗ i

xOdd
D ∧ ¬ xEven

Even though the restriction of the value domain gets lost in the negation of the schema

xEven, it is restored when conjuncted with D . This is because the conjunction takes the

intersection of the value domains. With the presented definition, this is fully exploited.

∀ E:Env ; e:Expr ; τsig :NAME 7→Type •

E `E e : power(schema τsig)
E `E notE (e) : power(schema((revert E) ◦ τsig)) (7.4.17)

The same problem as for negation occurs with implication and equivalence, since they

imply negation. Implication and equivalence can be handled in transforming them: A⇒
B ≡ ¬ A ∨ B and A⇔ B ≡ (A ∧ B) ∨ (¬ A ∧ ¬ B).

7.4.9.14 Schema Binding

A valid binding b (b ∈ dom bres) defines an assignment from variables to expressions

(as =bres b). The type of a binding is a schema type. It assigns each variable of the

binding the type of the expression assigned to the variable.

∀ E:Env ; b:Expr ; as:NAME 7→Expr ; τsig :NAME 7→Type •

b ∈ dom bres∧ as = (bres b) ∧ dom as = dom τsig ∧
(∀ v : dom as • E `E as v : τsig v)

E `E b : schema τsig (7.4.18)

114

7 Z Rewriting

7.4.10 Predicates

7.4.10.1 Equality

Equality of two expressions is only supported if both expressions are enumerable. The

types of the expressions have to be compatible.

∀ E:Env ; e,e′:Expr ; τ,τ ′:Type •

τ ∈ Typec ∧ τ ′ ∈ Typec ∧ { τ, τ ′ } ∈ comp ∧ E `E e : τ ∧ E `E e ′ : τ ′

E `P e = e ′ (7.4.19)

7.4.10.2 Set Membership

Set membership is computable if both expressions are computable and type compatible.

∀ E:Env ; e,E :Expr ; τ,τ ′:Type •

τ ∈ Typec ∧ E `E e : τ ∧ E `E E : power τ ′ ∧ { τ, τ ′ } ∈ comp

E `P e ∈ E (7.4.20)

7.4.10.3 Logical Operators

∀ E:Env ; p:Pred •

E `P p
E `P ¬ p (7.4.21)

∀ E:Env ; bt:BinType; p,p′:Pred •

E `P p ∧ E `P p′

E `P bin(bt , p, p′) (7.4.22)

7.4.10.4 Quantors

Quantors are resolved in enumerating all possible values of the quantified variables, i. e.

∀ x : {e1, e2} • p, is resolved to p[e1/x] ∧ p[e2/x]. Therefore, all type expressions have

to be enumerable and p and q have to be computable under an environment, where the

quantified variables are declared according to d .

∀ E:Env ; qt:QuantType; d:Decl; p,q:Pred •

schema(sigτ E d) ∈ Typec ∧
addDecls(E)(∅, sigτ E d)`P p ⇒ q

E `P Qqt d | p • q (7.4.23)

115

7 Z Rewriting

7.4.10.5 Facts

∀ E:Env •

true
E `P true (7.4.24)

∀ E:Env •

true
E `P false (7.4.25)

7.4.11 Declarations

function 400([[]]D)

The interpretation function [[]]D translates a declaration in an environment, containing

nothing but the given declarations. The set of branches of a free type is computed by

branches: branches(b1 | . . . | bn) = { b1, . . . , bn }.
The supported declarations are computed by the function DeclT . These are all given

and free types and all variable declarations, where the type expression is enumerable.

DeclT : Env → P Decl

∀ E : Env • ∃ decl == DeclT E •
declDecl← { e : Expr ; n : NAME ; τ : Typec | E `E e : power τ • n: e }

‖ {n : NAME ; b : Branch • n ::= b }
‖ {n : NAME • Givenn }
‖ { d , d ′ : decl • d ; d ′ }

[[]]D : Env ×Decl 7→ Env
branches : Branch→ P NAME

dom([[]]D) = { E : Env ; d : Decl | d ∈ DeclT E }
∀ v : NAME • branches(Const v) = { v }
∀ b1, b2 : Branch • branches(b1 | b2) = branches b1 ∪ branches b2

7.4.11.1 Variable Declaration

A simple variable declaration creates an environment containing only the declared variable.

The type of the variable has to be enumerable. Generic variables are not supported.

Therefore, there must not be any current formal generic parameter.

According to the Z type rules, the type expression e has to be a power type.

∀ E:Env ; v :NAME ; e:Expr ; τ :Type •

E `E e : power τ ∧ τ ∈ Typec
[[v : e]]DE = (addDecls ∅Env)(∅, {v 7→ τ }) (7.4.26)

116

7 Z Rewriting

Schema types (bindings) are only allowed at top-level and therefore need a special

treatment.

∀ E:Env ; v :NAME ; e:Expr ; τsig :NAME 7→Type •

E `E e : power(schema τsig) ∧ ran τsig ⊆ Typec

[[v : e]]DE = (addDecls ∅Env)(∅, {v 7→ schema τsig }) (7.4.27)

7.4.11.2 Abbreviation

An abbreviation declaration creates a new environment, containing this very abbreviation.

The declaration is added with the current formal generic parameters that are stored

in the environment: getParams E . In a generic axiomatic definition or a generic schema,

the current generic parameters are set to the generic parameters of the respective box.

Otherwise, the list of generic parameters is empty.

∀ E:Env ; v :NAME ; e:Expr ; τ :Type •

E `E e : τ

[[v == e]]DE = addDefs(∅Env)(getParams E , { v 7→ e }) (7.4.28)

7.4.11.3 Continuation

∀ E:Env ; d,d′:Decl •

true
[[d ; d ′]]DE = joinEnv([[d]]DE , [[d ′]]DE) (7.4.29)

7.4.11.4 Free Type

A free type declaration declares the type and its values as constants in the environment.

The set of values of the given type is restricted to the values, ensuring that it is enumerable.

∀ E:Env ; v :NAME ; b:Branch •

true
[[v ::= b]]DE = addDecls(∅Env)(getParams E ,

{ v 7→ power(basic(v , branches b))}∪
(λ c : branches b • basic(v , { c })))

(7.4.30)

117

7 Z Rewriting

7.4.11.5 Given Type

A given type declaration adds the type to the environment. The set of values is set

to NAME . This set is actually too large, since it includes also identifiers of other types.

Nevertheless, the actual set of values of a given type is not known. Therefore, the maximal

set is taken.

∀ E:Env ; v :NAME •

true
[[Given v]]DE = addDecls(∅Env)(getParams E ,

{ v 7→ power(basic(v ,NAME)) })
(7.4.31)

7.4.11.6 Schema Expression

∀ E:Env ; e:Expr ; τsig :NAME 7→Type •

E `E e : power(schema τsig)

[[ex e]]DE = (addDecls ∅Env)(∅, τsig) (7.4.32)

7.4.12 Specification

Now, computability for a complete specification can be defined:

relation (`S) function 1000([[]]SP)

[[]]SP : Env × Spec→ Env
`S : Env ↔ Spec

dom([[]]SP) = (`S)

7.4.12.1 Axiomatic Definitions

An axiomatic definition with formal generic parameters G , variable declaration d , and

predicate p [d | p]G adds the variables declared in d as constants to the environment.

∀ E,E′:Env ; d:Decl; p:Pred; G:seqNAME •

E ′ = addConst(E)([[d]]D(addParams E G)) ∧ E
′ `P p ∧ E `P declPred d

E `S [d | p]G ∧ [[[d | p]G]]SPE = E ′ (7.4.33)

7.4.12.2 Data Schemata

The predicate of data schemata has to be computable. The declaration of the schema is

added to the environment for computability check. Only the names of the data variables

118

7 Z Rewriting

are then added to the environment with addData. Variables that are declared are not

automitally visible in a class.

∀ E,E′:Env ; n:NAME ; d:Decl; p:Pred •

E ′ = joinEnv(E , [[d]]DE) ∧ E ′ `P p ∧ d ∈ DeclT E
E `S Schema(n,Data, d , p) ∧

[[Schema(n,Data, d , p)]]SPE = addData E E ′ (7.4.34)

7.4.12.3 Port Schemata

Port schemata are treated as data schemata with the only exception that variables are

added as port variables to the environment.

∀ E,E′:Env ; n:NAME ; d:Decl; p:Pred •

E ′ = joinEnv(E , [[d]]DE) ∧ E ′ `P p ∧ d ∈ DeclT E
E `S Schema(n,Port , d , p) ∧

[[Schema(n,Port , d , p)]]SPE = addPort E E ′ (7.4.35)

7.4.12.4 Init Schemata

The predicates of init schemata have to be checked for computability. The environment

is not augmented.

∀ E,E′:Env ; n:NAME ; d:Decl; p:Pred •

E ′ = joinEnv(E , [[d]]DE) ∧ E ′ `P p ∧ E `P declPred d
E `S Schema(n, Init , d , p) ∧

[[Schema(n, Init , d , p)]]SPE = E (7.4.36)

7.4.12.5 Property Schemata

In property schemata, only CTL formulae are allowed. The non-modal predicates in the

CTL formulae have to be computable. The environment is not altered.

∀ E:Env ; T :CTL[Pred]; n:NAME ; d:Decl •

T ∈ CTL[{ p : Pred | E `P p }] ∧ T ∈ ran ctlmeta ∧ E `P declPred d

E `S Schema(n,Property , d , (ctlmeta∼)T) ∧
[[Schema(n,Property , d , (ctlmeta∼)T)]]SPE = E (7.4.37)

119

7 Z Rewriting

7.4.12.6 Transition Relation Schema

The predicate of the transition relation schema has to be computable. The environment

is not changed.

∀ E,E′:Env ; n:NAME ; d:Decl; p:Pred •

E ′ = joinEnv(E , [[d]]DE) ∧ E ′ `P p ∧ E `P declPred d
E `S Schema(n,Transition, d , p) ∧

[[Schema(n,Transition, d , p)]]SPE = E (7.4.38)

7.4.12.7 Statechart

The state transition relation computed from the Statechart has to be computable as a

transition schema.

∀ E:Env ; n:NAME ; s:State •

E `S Schema(n,Transition,∆DATA E , stateTrans E s)

E `S Statechart s ∧ [[Statechart s]]SPE = addStatechart E s (7.4.39)

7.4.12.8 Item Concatination

Specification items (axiomatic definitions, schemata, etc.) are subsequently added to the

environment.

∀ E,E′:Env ; S1,S2:Spec •

E `S S1 ∧ E ′ = [[S1]]
SP
E ∧ E ′ `S S2

E `S S1; S2 ∧ [[S1; S2]]
SP
E = [[S2]]

SP
E′ (7.4.40)

7.5 Values

section Values parents Type

Enumerable types can be assigend a set of simple expressions. Simple expressions are

variables as well as power set and tuples constructed from simple expressions.

Exprc : P Expr

Exprc
Expr← var∅(|NAME |)
‖ P(|Exprc |)
‖ (, ,)(|seq1 Exprc |)

120

7 Z Rewriting

values : Typec → F Exprc
∀ v : NAME ; V : F NAME • values(basic(v ,V)) = var(|V ×∅|)
∀ τ : Typec • values(power τ) = P(|values τ |)
∀~τ : seq1 Typec • values(prod~τ) = (, ,)(|explode(values ◦ ~τ)|)
∀ τsig : (NAME 7→ Typec) • values(schema τsig) =bInv

res (|explode(values ◦ τsig)|)

In order to support variables of power or product type, such values have to be encoded

as variables. This is done by the code function. The code function uses the special

(special ⊆ NAME) name space.

code : Exprc � special
decode : special 7� Exprc
code∼ = decode

Consider, for example, a declaration v : P{ a, b, c }. The annotated type of v is

power(basic(F , { a, b, c })) (if a, b, and c are constants of the free type F). Clearly, the

type is enumerable. The values v can take are:

values(power(basic(F , { a, b, c })) =

{∅, { a }, { b }, { c }, { a, b }, { a, c }, { b, c }, { a, b, c } }

In order to rewrite v to a flat type, these values are now encoded by constants. This

could be for example:

(code ◦ values)(power(basic(F , { a, b, c })) =

{ set empty , set a, set b, set c, set a b, set a c, set b c, set a b c }

7.6 Rewriting to Simple Z

This section describes how Z is translated to Simple Z. The domain of the translation are

Z expressions and predicates that are computable as defined by the type system presented

in section 7.4 on page 103. A predicate p ∈ Pred can be translated (in an environment E)
if and only if E `P p. The translation concepts are explained in section 7.2 on page 98.

section Rewrite parents SimpleZ,Type,Values,CTLTransform

function 100([[]]P) function 1000([[]]E) function 1000([[]]S)

function 1000([[]]D) function 1000([[]]Spec) function 1000([[←]])

function 1000([[≡]]) function 1000([[�]]Sel) function 1000([[∼]]App)

function 1000([[∼]]Apps) function 1000([[�]]Bind)

7.6.1 Tuple and Binding Selection

Tuple and binding selection are syntactically resolved. The problem of handling tuple

and binding selection is that it can appear at every expression that is of tuple or schema

type, respectively. Besides tuples and bindings themselves, also variables, conditionals,

and applications of product or schema type can be of tuple or schema type. It can also

appear at selection, i. e. t .1.3 or b.a.4. In reduced Z, it is possible to push selection down

121

7 Z Rewriting

to variables and bindings or tuples and resolve them. This is done by [[�]]Sel for tuple

selection and [[�]]Bind for binding selection. Note that selection at lambda abstractions is

not possible. It only occurs during the resolution.

[[�]]Sel : Env × Expr × N 7→ Expr

dom([[�]]Sel) = { E : Env ; e : Expr ; i : N |
(∃~τ : seq1 Type • E `E e : prod~τ ∧ i ∈ dom~τ) }

∀ E : Env ; v ,n : NAME ; e, e ′, f : Expr ; p : Pred ; i , i ′ : N; ~e : seqExpr •
[[f ω e � i]]Sel

E = ([[f � i]]Sel
E) ω e ∧

[[e . n � i]]Sel
E = [[([[e � n]]Bind

E) � i]]Sel
E ∧

[[if p then e else e ′ � i]]Sel
E = if p then[[e � i]]Sel

E else[[e ′ � i]]Sel
E ∧

(∃~τ : seq1 Type | E `E var∅ v : prod~τ •
[[var∅ v � i]]Sel

E = case reduce{~e : explode(values ◦ ~τ) •
var∅ v = var∅(code((, ,)~e)) 7→ ~e i }) ∧

(∃ e ′ == [[e � i ′]]Sel
E • [[e . i ′ � i]]Sel

E = [[e ′ � i]]Sel
E) ∧

[[(, ,)~e � i]]Sel
E = ~e i

[[�]]Bind : Env × Expr ×NAME 7→ Expr

dom([[�]]Bind) =
{ E : Env ; e : Expr ; n : NAME |

(∃ τsig : NAME 7→ Type • E `E e : schema τsig ∧ n ∈ dom τsig) }
∀ E : Env ; v ,n,n ′ : NAME ; e, e ′, f : Expr ; p : Pred ; d : Decl ; i : N •

[[(λ d | p • e) � n]]Bind
E = [[e � n]]Bind

E ∧
[[f ω e � n]]Bind

E = ([[f � n]]Bind
E) ω e ∧

[[e . i � n]]Bind
E = [[([[e � i]]Sel

E) � n]]Bind
E ∧

[[if p then e else e ′ � n]]Bind
E = if p then[[e � n]]Bind

E else[[e ′ � n]]Bind
E ∧

[[var∅ v � n]]Bind
E = var∅(conc(v ,n)) ∧

(∃ e ′ == [[e � n ′]]Bind
E • [[e . n ′ � n]]Bind

E = [[e ′ � n]]Bind
E) ∧

(e ∈ ran([, ,])⇒ [[e � n]]Bind
E = (bres e)(n))

7.6.2 Expressions

The function [[]]E rewrites an expression under a given environment. [[]]S computes the

predicate that has to be hold for the expression to be defined. This is also called the

definedness condition. For example, for a function application f ω e it is: [[f ω e]]SE = e ∈
dom f .

[[]]E : Env × Expr 7→ Expr
[[]]S : Env × Expr 7→ Pred

dom([[]]E) = dom([[]]S) = { t : (`E :) • (t .1, t .2) }

A curried version of the expression rewriting function [[�]]E is defined, to ease the trans-

lation of sequences.

122

7 Z Rewriting

function 1000([[�]]E)

[[�]]E == curryFstOf 2([[]]E)

Expression rewriting removes function applications and by that also lambda expres-

sions, tuple selection, and abbreviation. It ensures that

• Expressions of basic type are either variables, application of built-ins, or conditionals.

Note that built-in functions always return values of basic type.

• Expression of power-set type are variables, set comprehensions, set displays, power-

sets, Cartesian products, or conditionals.

• Expressions of product type are variables, tuples, or conditionals.

• Expressions of function type are lambda abstractions. Note that the type system

ensures that lambda abstractions appear only in applications. Therefore, an expression

like (x , y) ∈ (λ i : N • i + i) is not admissible.

7.6.2.1 Set Comprehension

The sub-terms of set comprehensions are simplified when simplifying membership test

predicates. A set comprehension is defined if and only if the type expressions of its

declarations are defined.

∀ E:Env ; d:Decl; p:Pred; τ :Type •

E `E{d | p} : τ

[[{d | p}]]EE = {d | p} ∧
[[{d | p}]]SE =

∧
{ e : ran(second ◦ (ct d)) • [[e]]SE } (7.6.1)

7.6.2.2 Set Display

Rewriting of set displays descends to the set members. The set display is defined, if

all its members are defined. Note that the set { e1, . . . , en } is denoted by {, , }~e where

~e = 〈 e1, . . . , en 〉.

∀ E:Env ; ~e:seq1 Expr ; τ :Type •

E `E{, , }~e : τ

[[{, , }~e]]EE = {, , }([[�]]EE ◦ ~e) ∧
[[{, , }~e]]SE =

∧
{ e : ran~e • [[e]]SE } (7.6.2)

7.6.2.3 Power Set

The power set construction itself is not changed. Rewriting is pushed to the included

expression. If this expression is defined, then the power set construction is defined as well.

123

7 Z Rewriting

∀ E:Env ; e:Expr ; τ :Type •

E `E P e : τ

[[P e]]EE = P[[e]]EE ∧ [[P e]]SE = [[e]]SE (7.6.3)

7.6.2.4 Abbreviations

Abbreviations are replaced by their definitions. Actually, the defining expression has to

be interpreted under the environment, where the abbreviation was defined, to avoid name

clashes with locally bound variables. Consider the following example:

X == { x : Z | x > 3 }
∃Z : N • 5 ∈ X

If X would be replaced by simple textual replacement, the resulting expression would

not be well typed anymore. To avoid this problem, α-conversion has to be applied. How-

ever, this is omitted here. It is assumed that name clashes are already removed by some

other translation step.

∀ E:Env ; v :NAME ; a:seqExpr ; e:Expr •

(v , a) ∈ dom(getDef E) ∧ e = getDef (E)(v , a)

[[var(v , a)]]EE = [[e]]EE ∧
[[var(v , a)]]SE = [[e]]SE (7.6.4)

7.6.2.5 Variables

Variables are left as they are. They may be changed by the predicate rewriter, however.

Variables are always defined.

∀ E:Env ; v :NAME •

(v , ∅) ∈ dom(getType E)
[[var∅ v]]EE = var∅ v ∧ [[var∅ v]]SE = true (7.6.5)

7.6.2.6 Cartesian Product

Rewriting of Cartesian product descends to the product members. The product is defined

if all its members are defined.

124

7 Z Rewriting

∀ E:Env ; ~e:seq1 Expr ; τ :Type •

E `E prod ~e : τ

[[prod ~e]]EE = prod([[�]]EE ◦ ~e) ∧
[[prod ~e]]SE =

∧
{ e : ran~e • [[e]]SE } (7.6.6)

7.6.2.7 Tuple

Rewriting of tuples descends to the tuple members. The tuple is defined, if all its members

are defined.

∀ E:Env ; ~e:seq1 Expr ; τ :Type •

E `E (, ,)~e : τ

[[(, ,)~e]]EE = (, ,)([[�]]EE ◦ ~e) ∧
[[(, ,)~e]]SE =

∧
{ e : ran~e • [[e]]SE } (7.6.7)

7.6.2.8 Tuple Selection

Tuple selection is handled by the tuple selection rewriter ([[�]]Sel), introduced in sec-

tion 7.6.1 on page 121.

∀ E:Env ; e:Expr ; i:N; ~τ :seq1 Type •

i ∈ dom~τ ∧ E `E e : prod~τ

[[e . i]]EE = [[[[e � i]]Sel
E]]EE ∧

[[e . i]]SE = [[[[e � i]]Sel
E]]SE (7.6.8)

7.6.2.9 Binding Selection

Binding selection is handled by the binding selection rewriter ([[�]]Bind), introduced in

section 7.6.1 on page 121.

∀ E:Env ; e:Expr ; n:NAME ; τsig :NAME 7→Type •

n ∈ dom τsig ∧ E `E e : schema τsig

[[e . n]]EE = [[[[e � n]]Bind
E]]EE ∧

[[e . n]]SE = [[[[e � n]]Bind
E]]SE (7.6.9)

125

7 Z Rewriting

7.6.2.10 Lambda Abstraction

Lambda abstractions are handled with the function applications. The definedness of

lambda abstractions is also handled in the applications.

∀ E:Env ; d:Decl; p:Pred; f :Expr ; τ :Type •

E `E λ d | p • f : τ

[[(λ d | p • f)]]EE = λ d | p • f ∧
[[(λ d | p • f)]]SE = true (7.6.10)

7.6.2.11 Application

Similar to the functions to remove binding and tuple selection, a special function to remove

function applications is defined. The function and its argument are rewritten first, to

remove binding and tuple selections.

[[∼]]App : Env × Expr × Expr 7→ Expr
[[∼]]Apps : Env × Expr × Expr 7→ Pred

∀ E:Env ; e,f :Expr ; τ :Type •

E `E f ω e : τ

[[f ω e]]EE = [[[[f]]EE ∼ [[e]]EE]]App
E ∧

[[f ω e]]SE = [[[[f]]EE ∼ [[e]]EE]]Apps

E (7.6.11)

Function application to lambda abstraction is resolved by β-reduction. This is done by

adding the variables of the declaration as abbreviations to the environment. The actual

parameters of the application are taken as values.

∀ E,E:Env ; d:Decl; p:Pred; e,f :Expr ; ~τ :seq1 Type; τ :Type •

E `E e : prod~τ ∧ E `E λ d | p • f : fun(~τ , τ) ∧
E = addVarsWithDefs(E)(d , ~τ , (λ i : dom~τ • [[e � i]]Sel

E))

[[(λ d | p • f)∼ e]]App
E = [[f]]EE ∧

[[(λ d | p • f)∼ e]]Apps

E = [[(declPred d) ∧ p]]PE (7.6.12)

If the function is a conditional, the application is pushed into the sub-terms. The

definedness condition is non-strict.

126

7 Z Rewriting

∀ E:Env ; e,f ,f ′:Expr ; p:Pred; ~τ :seq1 Type; τ :Type •

E `E (if p then f else f ′) : fun(~τ , τ) ∧ E `E e : prod~τ

[[if p then f else f ′ ∼ e]]App
E = [[if p then f ω e else f ′ ω e]]EE ∧

[[if p then f else f ′ ∼ e]]Apps

E = [[if p then f ω e else f ′ ω e]]SE (7.6.13)

Built-in function applications are not changed.

∀ E:Env ; e:Expr ; v :NAME ; a:seqExpr ; ~τ,~τa :seq1 Type; τ :Type|dom a=dom ~τa •

v ∈ getBuiltins E ∧ getType(E)(v , ~τa) = fun(~τ , τ) ∧
(∀ i : dom a • E `E a i : ~τa i) ∧ E `E e : prod~τ

[[(var(v , a))∼ e]]App
E = (var(v , a)) ω e ∧

[[(var(v , a))∼ e]]Apps

E = [[e]]SE (7.6.14)

7.6.2.12 Conditional

Conditionals are not rewritten. Rewriting is distributed through these expressions.

∀ E:Env ; p:Pred; e,e′:Expr ; τ :Type •

E `E if p then e else e ′ : τ

[[if p then e else e ′]]EE = if [[p]]PE then[[e]]EE else[[e ′]]EE ∧
[[if p then e else e ′]]SE = ([[p]]PE ⇒ [[e]]SE) ∧ (¬ ([[p]]PE)⇒ [[e ′]]SE) (7.6.15)

7.6.3 Predicates

The function [[]]P rewrites predicates. All predicates p that are computable with respect

to the type system (E `P p), are supported. Most rewriting takes place for equality and

membership predicates. For these predicates, special rewriting functions are introduced:

[[≡]] and [[←]] , respectively.

[[]]P : Env × Pred 7→ Pred

dom([[]]P) = (`P)

A curried version of the predicate rewriting function [[�]]P is defined, to make the trans-

lation easier.

function 1000([[�]]P)

[[�]]P == curryFstOf 2([[]]P)

127

7 Z Rewriting

7.6.3.1 Equality

[[≡]] : Env × Expr × Expr 7→ Pred

Equality is handled depending on the type of the expressions. The objective of the

translation is that equality tests remain only between simple expressions (of basic type).

For an equality test to be true, both expressions have to be defined.

∀ E:Env ; e,e′:Expr ; τ :Type •

τ ∈ Typec ∧ E `E e : τ ∧ E `E e : τ

[[e = e ′]]PE = [[[[e]]EE ≡ [[e ′]]EE]]E ∧ [[e]]SE ∧ [[e ′]]SE (7.6.16)

Equality of variables can be left as it is, since if the variables are of power or product

type, their values are encoded, and they can thus be compared directly.

∀ E:Env ; v ,v ′:NAME ; τ,τ ′:Type •

E `E (var∅ v) : τ ∧ E `E (var∅ v ′) : τ ′ ∧ { τ, τ ′ } ∈ comp

[[(var∅ v)≡ (var∅ v ′)]]E = ((var∅ v) = (var∅ v ′)) (7.6.17)

Equality tests between simple expressions need not be rewritten.

∀ E:Env ; e,e′:Expr ; F :NAME ; V ,V ′:P NAME •

E `E e : basic(F ,V) ∧ E `E e ′ : basic(F ,V ′)
[[e ≡ e ′]]E = e = e ′ (7.6.18)

An equality test for two sets E = E ′ is resolved in ∀ e : values • (e ∈ E ⇔ e ∈ E ′),

where values denotes all possible members of E and E ′.

∀ E:Env ; E ,E ′:Expr ; τ,τ ′:Type •

E `E E : power τ ∧ E `E E ′ : power τ ′ ∧
{ τ, τ ′ } ∈ comp ∧ { τ, τ ′ } ⊆ Typec

[[E ≡ E ′]]E =
∧
{ e : values τ ∪ values τ ′ • [[E ← e]]E ⇔ [[E ′← e]]E } (7.6.19)

An equality test of two n-tuples e = e ′ is resolved by comparing the tuple members,

i. e. e.1 = e ′.1 ∧ e.n = e ′.n.

128

7 Z Rewriting

∀ E:Env ; e,e′:Expr ; ~τ :seq1 Type •

E `E e : prod~τ ∧ E `E e ′ : prod~τ

[[e ≡ e ′]]E =
∧
{ i : dom~τ • [[[[e � i]]Sel

E ≡ [[e ′ � i]]Sel
E]]E } ∧

[[e]]SE ∧ [[e ′]]SE

(7.6.20)

An equality test of binding expression is resolved by comparing the members of the

binding.

∀ E:Env ; e,e′:Expr ; τsig :NAME 7→Type •

E `E e : schema τsig ∧ E `E e ′ : schema τsig

[[e ≡ e ′]]E =
∧
{n : dom τsig • [[[[e � n]]Bind

E ≡ [[e ′ � n]]Bind
E]]E } ∧

[[e]]SE ∧ [[e ′]]SE

(7.6.21)

7.6.3.2 Set Membership

[[←]] : Env × Expr × Expr 7→ Pred

dom([[←]]) = { E : Env ; E : Expr ; e : Expr |
(∃ τ, τ ′ : Type •
{ τ, τ ′ } ∈ comp ∧
E `E E : power τ ∧ E `E e : τ ′)}

∀ E:Env ; e,E :Expr ; τ :Type •

E `E e : τ ∧ E `E E : power τ

[[e ∈ E]]PE = [[[[E]]EE ← e]]E ∧ [[E]]SE ∧ [[e]]SE (7.6.22)

A membership test to number ranges e ∈ e1 . . e2 is resolved by using built-in relation,

i. e. e ≥ e1 ∧ e ≤ e2.

∀ E:Env ; e,e1,e2:Expr ; V ,V1,V2:F NAME •

E `E e : basic(Z,V) ∧ E `E e1 : basic(Z,V1) ∧ E `E e2 : basic(Z,V2)
[[e1 . . e2← e]]E = e ≥ e1 ∧ e ≤ e2 (7.6.23)

A membership test to set comprehension (e ∈ { d | p }) is resolved, similar to function

application, by β-reduction. The formal variables declared in d are bound to the actual

values, defined by e. The predicate is evaluated with this valuation of the parameters.

This is done by adding the parameters to the environment.

It addition, the predicate, induced by the declaration, has to be evaluated. A predicate

e ∈ { x : X | p } has to be rewritten to e ∈ X ∧ p[x/e].

129

7 Z Rewriting

∀ E:Env ; e:Expr ; d:Decl; p:Pred; ~τ,~τ ′:seq1 Type •

{ prod ~τ , prod ~τ ′ } ∈ comp ∧ E `E e : prod~τ ′ ∧
E `E{d | p} : power(prod~τ)

[[({d | p})← e]]E = [[p]]PaddVarsWithDefs(E)(d,~τ,(λ i:dom ~τ • [[e�i]]Sel
E)) ∧

[[prod(second ◦ (ct d))← e]]E

(7.6.24)

Schema expressions are treated similar to set comprehensions. In order to preserve the

declaration predicate, the function declPred is used that computes the predicate induced

by a declaration.

∀ E:Env ; e:Expr ; d:Decl; p:Pred; τ :Type; τsig :NAME 7→Type •

{ schema τsig , τ } ∈ comp ∧
E `E e : schema τsig ∧ E `E [d | p] : power τ

[[([d | p])← e]]E =

[[(declPred d) ∧ p]]PaddDefs(E)(∅,(λ n:dom τsig • [[e�n]]Bind
E)) (7.6.25)

Set displays are rewritten to disjunctions. A predicate e ∈ { e1, . . . , en } is rewritten

to e = e1 ∨ . . . ∨ en .

∀ E:Env ; e:Expr ; ~e:seq1 Expr ; τ :Type •

τ ∈ Typec ∧ E `E e : τ ∧ E `E{, , }(~e) : power τ

[[{, , }(~e)← e]]E =
∨
{ ei : ran~e • [[e = ei]]

P
E } (7.6.26)

Membership tests to power-sets (e ∈ P E) are equivalent to subset relations: e ⊆ E .

Each possible value of e has to be a member of E : ∀ ei : values • ei ∈ e ⇒ ei ∈ E .

∀ E:Env ; e,E :Expr ; τ :Type •

τ ∈ Typec ∧ E `E e : power τ ∧ E `E P E : power(power τ)
[[P E ← e]]E =

∧
{ ei : values τ •

[[e← ei]]E ⇒ [[E ← ei]]E }
(7.6.27)

Membership tests to given types (e ∈ F) are always true, since e can only have values

from F .

∀ E:Env ; e:Expr ; F :NAME ; V ,V ′:P NAME •

E `E e : basic(F ,V) ∧ E `E var(F , ∅) : basic(F ,V ′)
[[var∅ F ← e]]E = true (7.6.28)

130

7 Z Rewriting

In order to handle variables of power-set type, the sets are encoded in values. In order

to handle membership tests, the variables are decoded.

∀ E:Env ; e:Expr ; v :NAME ; τ :Type •

E `E e : τ ∧ E `E var∅ v : power τ

[[var∅ v ← e]]E =
∧
{E : values(power τ) •

var∅(code E) = var∅ v ⇒ [[E ← e]]E } (7.6.29)

A membership test to tuples (e ∈ A×B) is resolved by testing the single tuple elements:

e.1 ∈ A and e.2 ∈ B .

∀ E:Env ; e:Expr ; ~e:seq1 Expr ; ~τ :seq1 Type •

E `E e : prod~τ ∧ E `E prod ~e : power(prod~τ)

[[prod ~e← e]]E =
∧
{ i : dom~τ • [[~e i ← [[[[e]]EE � i]]Sel

E]]E } (7.6.30)

Membership tests to sets, defined by conditionals (e ∈ if p thenE elseE ′), are pushed

into the conditional: (p ⇒ e ∈ E) ∧ (¬ p ⇒ e ∈ E ′).

∀ E:Env ; p:Pred; e,E ,E ′:Expr ; τ :Type •

E `E if p thenE elseE ′ : power τ ∧
E `E e : τ

[[if p thenE elseE ′← e]]E = ([[p]]PE ⇒ [[E ← e]]E) ∧
((¬ ([[p]]PE))⇒ [[E ′← e]]E)

(7.6.31)

7.6.3.3 Logical Operators

Logical operators are left as they are. Only the included predicates are rewritten.

∀ E:Env ; p:Pred •

E `P ¬ p

[[¬ p]]PE = ¬ ([[p]]PE) (7.6.32)

∀ E:Env ; bt:BinType; p,q:Pred •

E `P bin(bt , p, q)

[[bin(bt , p, q)]]PE = bin(bt , [[p]]PE , [[q]]PE) (7.6.33)

131

7 Z Rewriting

7.6.3.4 Quantors

Quantors are conjunctions or disjunctions over the value domain of the quantified variables.

For example ∀ x : { 1, 2, 3 } • x > y is rewritten to 1 > y ∧ 2 > y ∧ 3 > y . The definition

for existence quantors is omitted.

∀ E:Env ; d:Decl; p,q:Pred; ~τ :seq1 Type •

∀ i : dom~τ • E `E second((ct d) i) : ~τ i ∧ E `P Qforall d | p • q

[[Qforall d | p • q]]PE =
∧
{~e : explode(values ◦ ~τ) •

[[((, ,)~e) ∈ prod(second ◦ (ct d)) ∧ p ⇒ q]]PaddVarsWithDefs(E)(d,~τ,~e) } (7.6.34)

7.6.3.5 Computation Tree Logic

Computation Tree Logic formulae can be left as their are, except for the plain properties

they contain. These properties have to be rewritten, too. CTL formulae are defined over

Z expressions, where the expressions have to be sets of bindings. Moreover, as defined by

the type system, the expressions have to be given by schema displays. Rewriting is done

using the CTL mapping function mapCTL.

∀ E:Env ; T :CTL[Pred]; d:Decl •

T ∈ CTL[{ p : Pred | E `P p }] ∧ T ∈ ran ctlmeta

[[(ctlmeta∼)T]]PE = (ctlmeta∼)(mapCTL [[�]]PE T) (7.6.35)

7.6.4 Declarations

In Simple Z, only set displays and number ranges (0 . . . 255) over constants are allowed.

Other expressions have to be rewritten to these kinds. This is done by using the values

of the expressions. The values function, introduced in section 7.5 on page 120, assigns

an enumerable expression all possible values. For constructed types (i. e. product and

schema), the values (tuples and bindings, respectively) have to be encoded as constants.

For this, section 7.5 on page 120 also introduces the code function.

Considering this, a type expression e of type τ can be rewritten to code(|valuesτ |).
There is a special treatment for bindings such as b : [x , y : 0 . . . 255]. They are trans-

lated to a set of variable declaration: b x , b y : 0 . . . 255. With this, it is easier to reference

these variables.

Abbreviations and free type declarations are left as they are. In fact, they are not

needed anymore in Simple Z.

[[]]D : Env ×Decl 7→Declf

dom([[]]D) = dom([[]]D)

132

7 Z Rewriting

∀ E:Env ; e:Expr ; v :NAME ; τ :Type •

τ ∈ Typec ∧ E `E e : power τ

[[v : e]]DE = v : {, , }(var∅ ◦ order (code(|values τ |))) (7.6.36)

∀ E:Env ; v :NAME ; e:Expr ; τsig :NAME 7→Type •

ran τsig ⊆ Typec ∧ E `E e : power(schema τsig)

[[v : e]]DE = setreduce(;)

({n : dom τsig • conc(v ,n):

{, , }(var∅ ◦ order (code(|values(τsig n)|))) })

(7.6.37)

∀ E:Env ; d,d′:Decl •

true
[[d ; d ′]]DE = [[d]]DE ; [[d ′]]DE (7.6.38)

∀ E:Env ; v :NAME ; e:Expr ; τ :Type •

E `E e : τ

[[v == e]]DE = v == e (7.6.39)

∀ E:Env ; v :NAME ; b:Branch •

true
[[v ::= b]]DE = v ::= b (7.6.40)

7.6.5 Specification

The function [[]]Spec rewrites a complete µSZ class. Here, the special treatment of the

different components (axiomatic definition, schemata with different roles, Statechart) of a

class are applied.

Note that Simple Z still supports the different schema roles. Only plain schemata have

to be removed. This can be done, since references to these schemata are resolved and they

are thus not needed anymore.

[[]]Spec : Env × Spec 7→ Spec

dom([[]]Spec) = (`S)

7.6.5.1 Axiomatic Definitions

Axiomatic definitions are used for the declaration of abbreviations (A == e), given types

([TYPE]), free types (F ::= a | b), and constant variables. Axiomatic definitions may also

contain predicates over the variables, declared in axiomatic definitions.

Only the constant variables and predicates are subject to rewriting. Constant variables

may by loose, i. e. they can have different values. The value of a constant variable is only

restricted by the predicate. According to Spivey [48], specifications with loose variables

can be interpreted as families of specifications. The family has one member for each value

the variable can take.

133

7 Z Rewriting

Properties have to be verified for each member of these families of specification, thus

they have to be verified for each possible value. The value of the variable must not change

dynamically.

For this, the constant variables are added as data variables to the data space. Their

value is set initially, as defined by the predicate. During the transition execution, the

value is kept constant. Note that the predicate has to hold during all steps and not only

the first one. However, since the predicate uses only constant variables, it is sufficient that

it holds in the beginning. It cannot be violated during the transition execution.

An axiomatic definition is translated into three schemata. A data-, init- and a

transition-schema. The names of these schemata are chosen at random.

persistend : Env ×Declf → Predf

∀ E:Env ; d,d′:Decl; p,constant:Pred •

E 7→ d ∈ dom([[]]D) ∧ E `P p ∧ d ′ = [[d]]DE ∧
constant =

∧
{n : dom(ran(ct d)) • var∅(prime n) = var∅ n }

[[[d | p]∅]]Spec
E = Schema(newName E ,Data, d ′, true);

Schema(newName E , Init , d ′, [[p]]PE);

Schema(newName E ,Transition,∆DATA E , constant)

(7.6.41)

7.6.5.2 Schemata

Schemata with roles (Data, Port , Init , Property and Transition) are left as they are. Plain

schemata are removed.

∀ E:Env ; n:NAME ; type:Stype; d:Decl; p:Pred •

E `P p ∧ type 6= Plain

[[Schema(n, type, d , p)]]Spec
E = Schema(n, type, [[d]]DE , [[p]]PE) (7.6.42)

7.6.5.3 Statecharts

Statecharts are translated as described in section 6.3 on page 86. The Statechart is trans-

lated into a state transition relation (stateTrans Env state) and replaced by this relation.

A Statechart implies the introduction of the racing and persistency semantics.

The Statechart of a class implies the introduction of the racing and persistency seman-

tics (see section 6 on page 78) for the class’ variables. Thus, for all data-variables, the

required lock variables and persistency predicates are generated, if a Statechart is found

in a class.

Note that for racing, all transition predicates have to obey to the locks, which means

they may only write to a variable if they hold its lock. This does not apply for the

134

7 Z Rewriting

transition predicates generated for constant variables and invariants, as described in the

previous sections, since these predicates do not perform writing actions but apply invari-

ants. Invariants are not subject to racing, they have to hold independently of any other

writing actions. For the constant variables, no lock variables are generated, since they are

superfluous.

If, on the other hand, transitions are supposed to perform writing action, they have to

be assigned places and writing has to observe the locks. An example for such transitions

are static reactions, known from Statemate. Such additional places would have to be

considered during the computation of the writers (see section 6.2.3 on page 79), which is

not done. Therefore, other writing transitions are not supported in the presented solution.

Nevertheless, in general, this is possible.

∀ E:Env ; state:State •

true
[[Statechart(state)]]Spec

E =

Schema(newName E ,Transition,∆DATA E , stateTrans E state);

Schema(newName E ,Data, statechartDecls E , true);

Schema(newName E ,Transition,∆DATA E , persistencyPred E)

(7.6.43)

135

7 Z Rewriting

136

Chapter 8

Translating Simple Z to SMV

section SMV parents Name, Syntax, ModelChecking, SimpleZ, Environment, Type,

CTLTransform

The objective of simple Z is its translation into the input language of a model checker. In

this section, the translation into the input language of McMillan’s [38] SMV model checker

is shown.

8.1 SMV Syntax

8.1.1 Introduction

In order to describe the translation of simple Z to SMV, firstly the SMV syntax is defined

as the Z free type SMV . A SMV model specification contains the following items:

• DEFINE: Definitions of abbreviations. The translation does not use abbreviations.

• VAR: Declarations of data variables.

• ASSIGN: SMV offers two ways of defining the initial state and the state transition

relation. The first way is to define a set of assignments that define the initial state and

the next state for each variable. The second way is to define the initial state and the

transition relation directly by predicates. These predicates are defined by INIT and

TRANS items, as described below. The translation uses the second method, because the

initial state and the transition relation are already given by predicates.

• INIT: Definition of the initial state by a predicate.

• TRANS: Definition of the state transition relation by a predicate.

• FAIRNESS: Definition of a fairness constraint. The fairness constraint is given by a

predicate. If a fairness constraint is given, the applicable traces are limited to those

traces where the fairness constraint is indefinitly often true.

• SPEC: Definition of a CTL predicate that is to be shown.

137

8 Translating Simple Z to SMV

8.1.2 Module

SMV ::= MODULE〈〈NAME × item〉〉

8.1.3 Items

function 20(init) (:=) function 20(next () :=) function 20({, , })
function 21 leftassoc (..) function 20(:) function 20(:)

function 20(;) function 20 leftassoc (;) function 20(;)

function 20 leftassoc (;) function 4 leftassoc (SEP) function 20(;)

item ::= DEFINE〈〈defines〉〉
| VAR〈〈decls〉〉
| ASSIGN〈〈assigns〉〉
| INIT〈〈ExprSMV 〉〉
| TRANS〈〈ExprSMV 〉〉
| FAIRNESS〈〈ExprSMV 〉〉
| SPEC〈〈CTL〉〉
| (SEP)〈〈item× item〉〉

define ::= (:)〈〈NAME × ExprSMV 〉〉
defines ::= (;)〈〈define〉〉

| (;)〈〈define× defines〉〉
assign ::= (init () :=)〈〈NAME × ExprSMV 〉〉

| (next () :=)〈〈NAME × ExprSMV 〉〉
assigns ::= (;)〈〈assign〉〉

| (;)〈〈assigns× assigns〉〉
decl ::= (:)〈〈NAME × type〉〉
decls ::= (;)〈〈decl〉〉

| (;)〈〈decl× decls〉〉
type ::= boolean

| ({, , })〈〈seq1 NAME 〉〉
| (..)〈〈Z× Z〉〉

138

8 Translating Simple Z to SMV

8.1.4 Expressions

function 30({, , }) function 20 leftassoc (*) function 20 leftassoc (/)

function 21 leftassoc (+) function 21 leftassoc (-) function 22 leftassoc (mod)

function 23 leftassoc (=) function 23 leftassoc (<) function 23 leftassoc (<=)

function 23 leftassoc (>) function 23 leftassoc (in) function 23 leftassoc (>=)

function 25 leftassoc (&) function 26 leftassoc (|) function 27 leftassoc (->)

function 27 leftassoc (<->) function 20(next ()) function 25 leftassoc (:)

function 24 rightassoc (;) function 23 leftassoc (union) function 14(case)

ExprSMV ::= num〈〈Z〉〉
| var〈〈NAME 〉〉
| !〈〈ExprSMV 〉〉
| (&)〈〈ExprSMV ×ExprSMV 〉〉
| (|)〈〈ExprSMV ×ExprSMV 〉〉
| (->)〈〈ExprSMV ×ExprSMV 〉〉
| (<->)〈〈ExprSMV ×ExprSMV 〉〉
| (=)〈〈ExprSMV ×ExprSMV 〉〉
| (<)〈〈ExprSMV ×ExprSMV 〉〉
| (<=)〈〈ExprSMV ×ExprSMV 〉〉
| (>)〈〈ExprSMV ×ExprSMV 〉〉
| (>=)〈〈ExprSMV ×ExprSMV 〉〉
| (+)〈〈ExprSMV ×ExprSMV 〉〉
| (-)〈〈ExprSMV ×ExprSMV 〉〉
| (*)〈〈ExprSMV ×ExprSMV 〉〉
| (/)〈〈ExprSMV ×ExprSMV 〉〉
| (mod)〈〈ExprSMV ×ExprSMV 〉〉
| (in)〈〈ExprSMV ×ExprSMV 〉〉
| (union)〈〈ExprSMV ×ExprSMV 〉〉
| (next ())〈〈NAME 〉〉
| ({, , })〈〈seq1 ExprSMV 〉〉
| (case)〈〈CasesSMV 〉〉

CasesSMV ::= (;)〈〈CaseExprSMV ×CasesSMV 〉〉
| esac

CaseExprSMV ::= (:)〈〈ExprSMV ×ExprSMV 〉〉

8.1.5 Computation Tree Logic

SMV CTL predicates are ordinary CTL formulae, with ExprSMV as properties.

CTL == CTL[ExprSMV]

True and false are defined as one and zero, respectively:

1 == num 1
0 == num 0

139

8 Translating Simple Z to SMV

8.2 Translation

8.2.1 Predicates

function 200([[]]P)

[[]]P : Predf → ExprSMV

∀ •

true
[[true]]P = 1 (8.2.1)

∀ •

true
[[false]]P = 0 (8.2.2)

∀ p:Predf •

true
[[¬ p]]P = !([[p]]P) (8.2.3)

∀ p,p′:Predf •

true
[[p ∧ p′]]P = [[p]]P & [[p′]]P (8.2.4)

∀ p,p′:Predf •

true
[[p ∨ p′]]P = [[p]]P | [[p′]]P (8.2.5)

∀ p,p′:Predf •

true
[[p ⇒ p′]]P = [[p]]P -> [[p′]]P (8.2.6)

∀ p,p′:Predf •

true
[[p ⇔ p′]]P = [[p]]P <-> [[p′]]P (8.2.7)

∀ e,e′:Exprf •

true
[[e = e ′]]P = [[e]]E = [[e ′]]E (8.2.8)

∀ e,e′:Exprf •

true
[[e < e ′]]P = [[e]]E < [[e ′]]E (8.2.9)

∀ e,e′:Exprf •

true
[[e ≤ e ′]]P = [[e]]E <= [[e ′]]E (8.2.10)

∀ e,e′:Exprf •

true
[[e > e ′]]P = [[e]]E > [[e ′]]E (8.2.11)

∀ e,e′:Exprf •

true
[[e ≥ e ′]]P = [[e]]E >= [[e ′]]E (8.2.12)

∀ e,e′,E :Exprf •

true
[[e 6= [e ′] E]]P = !([[e]]E = [[e ′]]E) (8.2.13)

8.2.2 Expressions

function 200([[]]E)

[[]]E : Exprf → ExprSMV

∀ v :NAME •

v /∈ dom prime

[[var∅ v]]E = var v (8.2.14)

140

8 Translating Simple Z to SMV

∀ v :NAME •

v ∈ dom prime

([[(var∅ v)]]E = next (((prime∼)v))) (8.2.15)

∀ p:Predf ; e,e′:Exprf •

true
[[if p then e else e ′]]E = case ([[p]]P) :([[e]]E) ;

1 :([[e ′]]E) ;
esac

(8.2.16)

∀ e,e′:Exprf •

true
[[e + e ′]]E = ([[e]]E) + ([[e ′]]E) (8.2.17)

∀ e,e′:Exprf •

true
[[e − e ′]]E = ([[e]]E) - ([[e ′]]E) (8.2.18)

8.2.3 Declarations

function 200([[]]DD)

function 200([[]]D)

[[]]D : Declf 7→ decl
[[]]DD : Declf 7→ decls

∀ E:Env ; n:NAME ; emin ,emax :var∅(|Number |); min,max :Z •

var∅(Num min) = emin ∧ var∅(Num max) = emax

[[n: emin . . emax]]D = n :min ..max (8.2.19)

∀ E:Env ; n:NAME ; ~e:seq1 var∅(|NAME |) •

true
[[n: {, , }~e]]D = n :({, , })(var∅

∼ ◦~e) (8.2.20)

∀ E:Env ; n:NAME ; e:Expr ; d:Declf •

n: e ∈ Declf
[[n: e; d]]DD = ([[n: e]]D) ;([[d]]DD) (8.2.21)

8.2.4 Specifications

function 200([[]]S)

[[]]S : Specf 7→ item

The next function translates a predicate by translating all variables into their primed

version. It translates a predicate into a predicate that holds in the next-state: next(v=4) =

v ′ = 4.

141

8 Translating Simple Z to SMV

next : Pred → Pred

∀n:NAME ; dataport:Stype; d:Declf ; p:Predf •

dataport ∈ {Data,Port }
[[Schema(n, dataport , d , p)]]S = VAR([[d]]DD) SEP TRANS([[next(p)]]P) (8.2.22)

∀ d:Declf ; p:Predf •

true
[[([d | p]∅)]]S = VAR([[d]]DD) SEP INIT([[p]]P) (8.2.23)

∀n:NAME ; d:Declf ; p:Predf •

true
[[(Schema(n, Init , d , p))]]S = INIT([[p]]P) (8.2.24)

∀n:NAME ; d:Declf ; p:Predf •

true
[[Schema(n,Transition, d , p)]]S = TRANS([[p]]P) (8.2.25)

∀n:NAME ; d:Declf ; p:Predf •

true
[[Schema(n,Fairness, d , p)]]S = FAIRNESS([[p]]P) (8.2.26)

∀ E:Env ; n:NAME ; d:Declf ; T :CTL[Expr] •

T ∈ CTL[{ p : Pred | E `P p }] ∧ T ∈ ran ctlmeta

[[Schema(n,Property , d , (ctlmeta∼)T)]]S = SPEC(mapCTL([[]]P)(T)) (8.2.27)

142

Chapter 9

Conclusion

In this work an approach for model checking µSZ specifications is presented. The model

checking is done by translating the specification into the input language of the SMV

model checker. Other model checkers can be integrated easily, too. The µSZ language is

supported to a large extent. Limitations are “model checking intrinsic”, such as finiteness

of the model.

As a side result, pure Z or pure Statemate specifications can be checked as well. Com-

paring the performance of Statemate checking with other approaches (see section 1.6 on

page 15) shows that the translation scheme is very efficient and that the integration with

Z does not cause any performance penalties.

Z offers a much richer expression language than Statemate. This advantage of Z can

be fully exploited for model checking. This is true for both: specifying the properties to

be verified as well as specifying guards and actions in the Statecharts. This shows that

the combination of Statemate/Statecharts and Z is very well suited for the application of

verification techniques.

9.1 Limitations

For small and medium sized control specifications, the results that can be achieved with

model checking are very good. However, due to the exponential growth of the state space,

model checking can not be used for large specifications. Nevertheless, it is possible to

verify single modules of large specifications.

Moreover, integer arithmetic (integer and floating point) is not efficiently supported

by BDD based symbolic model checking. Other model checking techniques are needed to

support this better.

Model checking has been used successfully for hardware specifications (e. g. in processor

design). Hardware problems have the advantage that the number of registers etc. is finite

and known. They are therefore finite by nature. Usually, this number is also rather small.

Thus, hardware problems are a perfect target for model checking.

In software, the number of variables is usually quite high and not bound. Even if it is

143

9 Conclusion

possible to restrict the state space to be finite, it is likely too huge to be subject of model

checking. Thus, considering today’s model checking technology, software problems can

not be tackled with model checking, yet. However, model checking is a quickly developing

area, and there are a number of promising approaches that try to cope with these problems

(see section 4.7 on page 46).

Fortunately, control problems such as the Espress project’s reference case studies, the

intelligent cruise control and traffic light systems, are not as hard to handle as general

software problems. They have a bounded state space and do not contain much integer

arithmetic.

9.2 Implementation

With the exception of most of the Z rewriting, the presented translations (Statemate to

abstract Statemate syntax, abstract Statemate syntax to a Z state transition relation, and

Z to SMV) have been implemented by the author. The implementation was done using

the Java dialect Pizza ([44]) and the JavaCC compiler-compiler. It runs under Sun’s Java

Standard Edition Runtime Environments 1.1.8 and 1.2 under Linux, Solaris, and Windows

NT. For integration and type checking, Grieskamp’s Zeta Z type checker was used. The

translators where integrated using the Zeta system ([14]).

The Zeta system has proven to be very effective in:

• managing the chain of translators,

• modularizing the translation,

• offering a uniform (graphical) user interface, and

• integrating third party translators.

9.3 The Meta Theory

The mathematical theory of this work was done using Z as meta language. It was syntax

and type checked with the Zeta type checker. Using a formal language like Z is sometimes

a little bit long winded. However, the checker reveals flaws in the specification very quickly

and thoroughly. Finding these bugs without automatization would call for extensive proof

readings. Due to the size of the theory (approx. 350 function and variable declarations),

this would be particularly hard. Also reading the theory is easier if one can rely on syntax

and type correctness.

Some of the Z deficiencies can be circumvented in using TEX macros together with the

Zeta %%macro directive. In defining TEX macros for functions, the printed representation

can look quite different from what the type checker sees. Zeta macros are replaced by the

type checker, before the checking is done.

With this mechanism it is, for example, possible to “overload” symbols. This is not

possible in Z. For instance, to overload +, one could define a second operator \myPlus and

define: \def\myPlus{+}. For the reader of the printed representation, the specification is

144

9 Conclusion

not type correct, because he cannot see the difference. Therefore, this technique has to be

used with care. In this work, such tricks are explained whenever they are used.

9.4 Implementation

As already mentioned, the Z rewriting is not completely implemented. Most of its im-

plementation was done for experimental purposes. In order to implement it, one could

consider the Isabelle theory Holz for Z, presented by Kolyang, Santen and Wolff [35]. This

has the advantage of guaranteeing the correctness of the rewriting. There is an Isabelle

adaptor for Zeta that allows the integration of Isabelle/Holz translations into the Zeta tool

chain. With this, it would be easy to integrate Isabelle/Holz rewriting into the translation

process. However, the Isabelle adaptor has not been in the state of development that it

could be used for this purpose, when this work was conducted.

9.5 Processing the SMV Output

The SMV model checker outputs the results of the verification. This comprises the verified

formulae and, for failed formulae, the error backtrace. The backtrace shows a sequence of

states which violate the formula. These backtraces are very important for understanding,

why a formula does not hold. For the time being, the SMV output is presented as it is,

with only marginal post-processing.

It would be desirable to present the backtraces as Statemate simulation runs. With

this, the user could reproduce the trace in an environment he is used to. Statemate

presents the active states and firing transitions graphically and offers elaborated support

for monitoring variables.

Unfortunately, the Statemate interface that could be used to feed the backtrace in

Statemate, is too limited. It does not support non-deterministic specification sufficiently.

Therefore, this approach was abandoned.

An alternative could be to write a new tool to visualize the backtrace. This tool could

use the graphical information found in the Statemate model, to visualize the Statemate

Statecharts. It could also be used to present errors found in the Statemate model by

a translator or the type checker. Currently, such errors can only be presented textual,

e. g. “undeclared variable I in transition from state A to state B”. The Zeta systems

would support such an alternative way to present errors.

In order to make the tool user-friendly and to increase the acceptance, post-processing

of the SMV output is indispensable.

9.6 Statemate Semantics

The Statemate translation presented here is based on the abstract syntax presented in

section 5.1 on page 55. A translation from Statemate textual model representation format

145

9 Conclusion

into the abstract syntax is presented by Li [36]. Any graphical information (coordinates

of states etc.) found in the Statemate model is ignored.

This approach is not necessarily correct. Moreover, it is not convincing for the reader,

since he knows only the graphical representation and not the Statemate file format.

In order to describe the semantics of a graphical language, a visual grammar is needed,

and the semantics have to be described based on this grammar. Recent work on visual

languages and visual grammars also provide support for Statechart. See for example

Costagliola et. al. [19].

146

Bibliography

[1] Rajeev Alur. Timed automata. In 11th Intl. Conf. on Computer-Aided Verification, volume 1633 of

LNCS, pages 8–22. Springer-Verlag, 1999.

[2] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer, Sriram K. Rajamani, and Serdar

Tasiran. Mocha: Modularity in model checking. In Proc. of the Tenth Intl. Conf. on Computer-aided

Verification (CAV 1998), volume 1427 of LNCS, pages 521–525. Springer-Verlag, 1998.

[3] G. Berry, S. Moisan, and J.-P. Rigault. ESTEREL: Towards a synchronous and semantically sound

high-level language for real-time applications. In Proc. IEEE Real-Time Systems Symposium, volume

IEEE catalog 83CH1941-4, pages 30–40, 1983.

[4] Gérard Berry and Georges Gonthier. The esterel synchronous programming language: Design, se-

mantics, implementation. Science of Computer Programming, 19 no. 2:87–152, 1992.

[5] U. Brockmeyer and G. Wittich. Tamagotchis need not die – verification of statemate designs. In

Bernhard Steffen, editor, Proc. of the 4th Intl. Conf. on Tools and Algorithms for the Construction

and Analysis of Systems – TACAS’98, volume 1384 of Lecture Notes in Computer Science, pages

217–231. Springer-Verlag, 1998.

[6] Udo Brockmeyer and Gunnar Wittich. Real-time verification of Statemate designs. In Alan Hu,

editor, Computer Aided Verification, Lecture Notes in Computer Science. Springer Verlag, 1998.

[7] Randale E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677–691, August 1986.

[8] R. Büssow, R. Geisler, and M. Klar. Spezifikation eingebetteter Steuerungssysteme mit Z und State-

charts. In Tagungsband zur 5. Fachtagung: Entwurf komplexer Automatisierungssysteme. Technische

Universität Braunschweig, 1997.

[9] R. Büssow, R. Geisler, and M. Klar. Specifying safety-critical embedded systems with statecharts and

Z: A case study. In Egidio Astesiano, editor, Proc. of the 1st Intl. Conf. on Fundemantal Approaches

to Software Engineering – FASE’98, volume 1382 of LNCS, pages 71–87. Springer-Verlag, 1998.

[10] R. Büssow, R. Geisler, M. Klar, and S. Mann. Spezifikation einer Lichtsignalanlagen-Steuerung mit

µSZ. Technical Report 97–13, Technische Universität Berlin, Fachbereich Informatik, 1997.

[11] Robert Büssow, Robert Geisler, Wolfgang Grieskamp, and Marcus Klar. The µSZ notation version

1.0. Technical Report 97–26, Technische Universität Berlin, Fachbereich Informatik, December 1997.

[12] Robert Büssow, Robert Geisler, Wolfgang Grieskamp, and Marcus Klar. Integrating Z with dynamic

modeling techniques for the specification of reactive systems. 1998.

[13] Robert Büssow and Wolfgang Grieskamp. Combining Z and temporal interval logics for the formaliza-

tion of properties and behaviors of embedded systems. In R. K. Shyamasundar and K. Ueda, editors,

Advances in Computing Science – Asian ’97, volume 1345 of LNCS, pages 46–56. Springer-Verlag,

1997.

[14] Robert Büssow and Wolfgang Grieskamp. A modular framework for the integration of heterogenous

notations and tools. In Keijiro Araki, Andy Galloway, and Kenji Taguchi, editors, Proc. of the 1st

Intl. Conference on Integrated Formal Methods—IFM’99. Springer-Verlag, London, June 1999.

147

BIBLIOGRAPHY

[15] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarative language for programming

synchronous systems. In 14th ACM Conf. on Principles of Programming Languages, 1987.

[16] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information Processing

Letters, 40(5):269–276, 1991.

[17] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal

logic. In Dexter Kozen, editor, Logic of Programs, number 131 in Lecture Notes in Computer Science.

Springer-Verlag, 1981.

[18] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,

Cambridge Massachusetts, 1999.

[19] G. Costagliola, F. Ferrucci, G. Polese, and G. Vitiello. Supporting hybrid and hierarchical visual

language definition. In Proc. of the 1999 IEEE Symposium on Visual Languages, pages 236–245,

September 1999.

[20] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge University Press,

1990.

[21] Nancy Day. A model checker for statecharts. Technical Report TR-93-35, UBC, October 1993.

[22] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, Volume B: Formal Methods and Semantics, pages 995–1072. MIT press, 1990.

[23] E. A. Emerson, A. K. Mok, and A. P. Sistla. Quantative temporal reasoning. In E. M. Clarke

and R. P. Kurshan, editors, Workshop on Computer-Aided Verification. 2nd Intl. Conf. CAV’90,

Proceedings, volume 531 of LNCS, pages 136–145. Springer-Verlag, 1990.

[24] Robert Geisler. Formal Specification for the Integration of Statecharts and Z in a Metamodel-Based

Framework. PhD thesis, Technische Universität Berlin, 1999.

[25] Wolfgang Grieskamp. A Set-Based Calculus and its Implementation. PhD thesis, Technische Uni-

versität Berlin, 1999.

[26] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Program-

ming, 8(3):231–274, June 1987.

[27] David Harel and Amnon Naamad. The statemate semantics of statecharts. Technical report, The

Weizmann Institute of Science, October 1995.

[28] Jan-Juan Hiemer. Statecharts in CSP – Ein Prozeßmodell in CSP zur Analyse von Statemate-

Statecharts. PhD thesis, Technische Universität Berlin, 1998.

[29] C. A. R. Hoare. Communicating Sequential Processes. Printice Hall, 1985.

[30] G. J. Holzmann and D. Peled. The state of Spin. In T. A. Henzinger and R. Alur, editors, CAV

’96: 8th Intl. Conf. on Computer Aided Verification, volume 1102 of LNCS, pages 385–389. Springer-

Verlag, 1996.

[31] G. E. Hughes and M. J. Cresswell. A new Introduction to Modal Logic. Routledge, London, 1996.

[32] C. Huizing, R. Gerth, and W. P. de Roever. Modelling statecharts behaviour in a fully abstract way.

In Proc. 13th CAAP, volume 299 of Lecture Notes in Computer Science. Springer-Verlag, 1988.

[33] Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model enumeration: A new method

for checking relational specifications. ACM Transactions on Programming Languages and Systems,

20(2):302–343, March 1998.

[34] Peter Kelb. Abstraktionstechniken für automatische Verifikationsmethoden. PhD thesis, Universität

Oldenburg, 1995.

[35] Kolyang, T. Santen, and B. Wolff. Towards structure preserving encoding of Z in HOL. Technical

Report 986, Arbeitspapiere der GMD, April 1996.

[36] Ye Li. Übersetzung von Statemate Modellen nach MSZ. Diplomarbeit, Technische Universität Berlin,

2000.

148

BIBLIOGRAPHY

[37] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems – Specifi-

cation. Springer-Verlag, 1992.

[38] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[39] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for statecharts. In Asian

Computing Science Conference (ASIAN’97), volume 1345 of Lecture Notes in Computer Science.

Springer Verlag, December 1997.

[40] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in Promela/SPIN.

In Proc. of WIFT98, 1998.

[41] Erich Mikk. The MOCES user’s guide. http://www.informatik.uni-kiel.de/˜erm/MOCES/, 1998.

[42] Erich Mikk. Semantics and Verification of Statecharts. PhD thesis, Christian Albrechts Universität

Kiel, 2000.

[43] Robin Milner. Communcating and Concurrency. Printice Hall, 1989.

[44] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In Proc. 24th

ACM Symposium on Principles of Programming Languages, January 1997.

[45] International Standardization Organization. Information technology – Z formal specification language

notation – syntax, type system and semantics. International Standard 13568, June 2002.

[46] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In Takayasu Ito and

Albert R. Meyer, editors, Theoretical Aspects of Computer Software, volume 526 of Lecture Notes

in Computer Science, pages 244–264. Springer-Verlag, September 1991.

[47] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR. In

M. Dezani-Ciancaglini and U. Montanari, editors, Proc. of the Fifth Intl. Symposium on Program-

ming, number 137 in Lecture Notes in Computer Science. Springer-Verlag, 1982.

[48] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer

Science, 2nd edition, 1992.

[49] I. Toyn. Innovations in standard Z notation. In J. P. Bowen, A. Fett, and M. G. Hinchey, editors,

ZUM’98: The Z Formal Specification Notation, volume 1493 of Lecture Notes in Computer Science,

pages 192–213. Springer-Verlag, 1998.

[50] Michael von der Beeck. A comparison of statecharts variants. In Langmaak, de Roever, and Vytopil,

editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes

in Computer Science, pages 128–148, 1994.

149

BIBLIOGRAPHY

150

Index

action1, 95

action2, 95

action3, 95

action4, 95

action5, 95

actions , 62

addConst , 69

addData , 69

addDecls , 68

addDefs , 68

addFree , 68

addGiven , 68

addParams , 68

addPort , 69

addStatechart , 69

addVarsWithDefs , 70

addVarsWithTypes , 70∧
, 59

And , 62

(ω) , 57

ASSIGN , 138

assign , 138

assigns , 138

(A U) , 38

Basic , 62

basic , 105

bin , 59

(.) , 57

binE , 57

boolean , 138

(|) , 60

Branch , 60

branches , 116

bres , 58

bInv
res , 58

BuiltinFun , 56

BuiltinRel , 56

∩ , 101

(case) , 139

CaseExprSMV , 139

case reduce , 59

Class , 61

(::=) , 60

(:) , 139

(:) , 138

(:) , 138

combine , 83

comp , 106

DeclT , 116

ExprT , 109

PredT , 109

conc , 56

conf S1, 93

conf S2, 93

Const , 60

(SEP) , 138

ct , 60

ctτ , 107

ct inv , 60

CTL , 139

ctlmeta , 59

CTLProperty , 50

CTLPropertyWithConstants , 53

sigτ , 108

∪ , 101

curryFstOf 2 , 31

currySndOf 2 , 31

151

INDEX

D , 93

D , 114

DATA , 69

Data , 61

DATACONST , 53

DATA D , 52, 78

DATA Data , 51

DATADECL, 94

DATA D , 52

declPred , 60

transDecl , 64

transd , 64

defaultState , 62

defaultStateName , 62

DEFINE , 138

define , 138

defines , 138

∆DATA , 69

ex , 60

(:) , 60

(/) , 139

(;) , 60

∅Env , 65

Env , 65

(==) , 60

(==) , 57

(=) , 59

(=) , 139

esac , 139

(E U) , 38

EX , 38

exists , 59

explode , 32

Expr , 57

ExprSMV , 139

`E : , 108

transExpr , 64

transe , 63

transExprP , 64

FAIRNESS , 138

false , 59

0 , 139

Declf , 102

fix , 33

forall , 59

Predf , 102

Specf , 103

fun , 105

GenFormals , 61

(≥) , 62

(>=) , 139

geq , 62

getBuiltins , 67

getData , 67

getDef , 66

getFree , 67

getGiven , 67

getParams , 67

getParent , 68

getPort , 67

getRoot , 68

newName , 67

getStates , 68

getSymbols , 67

getType , 66

gfix , 33

Given , 60

(>) , 62

(>) , 139

greater , 62

guard , 62

guard1, 95

guard2, 95

guard3, 95

guard4, 95

guard5, 95

(⇔) , 59

(<->) , 139

iff , 59

(if then else) , 57

152

INDEX

Σ , 34

(⇒) , 59

(->) , 139

implies , 59

implode , 32

(∈) , 59

(in) , 139

Init , 61

INITCONST , 53

INIT , 138

INIT Init , 51

(init () :=) , 138

INIT I , 52

item , 138

joinEnv , 69

label , 62

Label , 61

(λ | •) , 57

(∧) , 59

(&) , 139

and , 59

[[∼]]App , 126

[[∼]]Apps , 126

([|]) , 61

[|]∅ , 61

[, 57

{ , 57

{ , 139

({ | }) , 57

{ , 138

([|]) , 57

[[]]D , 116

[[]]DD , 141

[[]]D , 141

(≤) , 62

(<=) , 139

leq , 62

[[]]E , 140

(<) , 62

(<) , 139

less , 62

lfix , 33

limit , 52

(∨) , 59

(|) , 139

or , 59

(, 57

[[]]P , 140

[[]]SP , 118

[[]]S , 141

[[�]]P , 127

mapCTL , 39

max , 10

� , 39

min , 10

(−) , 62

(-) , 139

minus , 62

(mod) , 139

Model [State,Prop] , 36

MODULE , 138

MSZModel , 50

MSZModelWithConstants , 53

(*) , 139

neq , 62

(6= []) , 62

(;) , 61

next , 141

(next () :=) , 138

(next ()) , 139

¬ , 38

¬ , 59

! , 139

notE , 57

Num , 57

num , 139

Z , 57

Number , 57

number , 105

#c , 76

153

INDEX

(∨) , 38

order , 57∨
, 59

Path[State,Prop] , 36

Π , 34

Plain , 61

PLC1, 92, 93

plc1, 94

PLC2, 92, 93

plc2, 94

(+) , 62

(+) , 139

plus , 62

porder , 33

Port , 61

PORT P , 10

P , 57

power , 105

`P , 108

transPred , 64

transp , 63

prime , 56

prod , 105

prod , 57

prop , 38

Property , 51

Property , 61

(Q | •) , 59

QuantType , 59

TRANS , 51

TRANS T , 52

reduce , 31

Result , 96

result , 96

revert , 108

Sat0[State,Prop] , 40

SatExUntil [State,Prop] , 41

Schema , 61

schema , 105

(;) , 139

(;) , 138

(;) , 138

(;) , 138

(;) , 138

(;) , 138

(;) , 138

(.) , 57

\ , 101

setreduce , 32

SMV , 138

sources , 62

Spec , 61

SPEC , 138

`S , 118

special , 56

STATE , 93

State , 62

Statechart , 61

statechartDecls , 91

statechartSemantics , 92

STATEDECL, 94

stName , 62

Stype , 61

subs , 62

⊆ , 101

⊆2 , 34

T , 65

t1, 92

t2, 92

t3, 92

t4, 92

t5, 92

targets , 62

the root , 92

the S1, 92

the S2, 92

TRANS , 63

Trans , 62

trans , 66

Fairness , 61

154

INDEX

Transition , 61

TRANS , 138

trans root , 96

trans S1, 95

trans S2, 96

true , 38

true , 59

1 , 139

Typec , 107

typeToExpr , 105

uni∪ , 106

uni∩ , 106

(union) , 139

(. .) , 62

(..) , 138

. . , 62

VAR , 138

var∅ , 58

var , 139

var , 57

` , 39

X , 124

x , 92

xEven , 114

xGreater , 51

xlock , 94

xOdd , 114

Xor , 62

y , 92

ylock , 94

zip , 31

155

	 0 Zusammenfassung
	 1 Introduction
	 1.1 Safety Critical Systems
	 1.2 The Espress Project
	 1.3 The Zeta System
	 1.4 Consistency of the Specification
	 1.5 Model Checking MSZ Specifications
	 1.5.1 Translating the Model
	 1.5.2 Temporal Properties

	 1.6 Model Checking Statemate Statecharts
	 1.7 Model Checking Z
	 1.8 Main Features
	 1.9 Notation
	 1.10 Acknowledgements

	 2 The Intelligent Cruise Control (ICC)
	 2.1 Definitions
	 2.2 Interfaces
	 2.3 Internal Data
	 2.4 Behavior
	 2.5 Guards and Operations
	 2.6 Safety
	 2.7 Model Checking the ICC
	 2.8 Annotated SMV Listing
	 2.9 Complete SMV Listing

	 3 Mathematical Definitions
	 3.1 Functions and Sequences
	 3.2 Implode and Explode
	 3.3 Fixed Points
	 3.4 Sum and Product
	 3.5 Macros for Type and Rewriting Rules

	 4 Model Checking
	 4.1 Kripke Structures
	 4.2 Computation Tree Logic
	 4.3 The Model Checking Algorithm for CTL Formulae
	 4.4 Fixed-Point Definition of the Model Checking Algorithm
	 4.5 Symbolic Model Checking
	 4.6 Binary Decision Diagrams (BDDs)
	 4.7 Other Model Checking Techniques
	 4.7.1 Mu-Calculus Model Checking
	 4.7.2 Partial Order Reduction
	 4.7.3 Abstraction
	 4.7.4 Real-Time

	 4.8 Model Checking MSZ
	 4.8.1 Instantiating Kripke Structures
	 4.8.2 Different Kinds of Variable Declarations

	 4.9 Kripke Structure With Constants
	 4.10 Semantic Issues

	 5 Syntax and Environment
	 5.1 Reduced Z Syntax
	 5.1.1 Unsupported Expressions
	 5.1.2 Names
	 5.1.3 Numbers
	 5.1.4 Ordering
	 5.1.5 Expressions
	 5.1.6 Predicates
	 5.1.7 Syntax Expression Constructors
	 5.1.8 Declarations
	 5.1.9 Characteristic Tuple
	 5.1.10 Specification
	 5.1.11 Statecharts
	 5.1.12 Built-Ins
	 5.1.13 Term Transformations

	 5.2 Environment

	 6 Statecharts
	 6.1 Statecharts and their Semantics
	 6.1.1 Overview of Different Statechart Semantics
	 6.1.2 Statemate Semantics
	 6.1.3 Principles of the Translation
	 6.1.4 Statecharts and Time
	 6.1.5 Representation of the Configuration

	 6.2 Resolving Racing in Statecharts
	 6.2.1 Racing and Persistency in Statecharts
	 6.2.2 Derived Variables
	 6.2.3 Locks and Places
	 6.2.4 Sharing Places
	 6.2.4.1 Writing Occurrences
	 6.2.4.2 Non-Conflicting Writing Occurrences
	 6.2.4.3 Computing Writing Occurrences for Statecharts
	 6.2.4.4 Assigning Places to Sets of Writing Occurrences

	 6.2.5 Rewriting Actions

	 6.3 Translating Statecharts into a State Transition Relation
	 6.3.1 Configuration
	 6.3.2 In-State Predicates
	 6.3.3 Timeouts
	 6.3.4 Guards and Actions
	 6.3.5 Statechart State Transition Relation
	 6.3.6 Declarations

	 6.4 Statecharts Translation by Example
	 6.4.1 Abstract Syntax of the Example Statechart
	 6.4.2 Augmentation of the Data Space
	 6.4.3 Semantic Conversion
	 6.4.4 The Resulting Class

	 7 Z Rewriting
	 7.1 Introduction
	 7.2 Rewriting Strategy
	 7.2.1 State Variable Declaration
	 7.2.2 Expressions
	 7.2.3 Element Test
	 7.2.4 Equality
	 7.2.5 Quantors
	 7.2.6 Set Union, Intersection, etc.
	 7.2.7 Undefinedness

	 7.3 Simple Z
	 7.4 Annotated Type System for Enumerable Expressions
	 7.4.1 The Type System
	 7.4.2 Translating Types to Expressions
	 7.4.3 Compatible Types
	 7.4.4 Unification of Compatible Types
	 7.4.5 Enumerable Types and Expressions
	 7.4.6 Characteristic Tuples and Signatures
	 7.4.7 Reverting Types
	 7.4.8 Type System Relations
	 7.4.9 Expressions
	 7.4.9.1 Numbers
	 7.4.9.2 Set Displays
	 7.4.9.3 Set Comprehension
	 7.4.9.4 Power Set
	 7.4.9.5 Variables
	 7.4.9.6 Cartesian Product
	 7.4.9.7 Tuple
	 7.4.9.8 Tuple Selection
	 7.4.9.9 Binding Selection
	 7.4.9.10 Lambda Abstraction
	 7.4.9.11 Function Application
	 7.4.9.12 Condition
	 7.4.9.13 Schema Expressions
	 7.4.9.14 Schema Binding

	 7.4.10 Predicates
	 7.4.10.1 Equality
	 7.4.10.2 Set Membership
	 7.4.10.3 Logical Operators
	 7.4.10.4 Quantors
	 7.4.10.5 Facts

	 7.4.11 Declarations
	 7.4.11.1 Variable Declaration
	 7.4.11.2 Abbreviation
	 7.4.11.3 Continuation
	 7.4.11.4 Free Type
	 7.4.11.5 Given Type
	 7.4.11.6 Schema Expression

	 7.4.12 Specification
	 7.4.12.1 Axiomatic Definitions
	 7.4.12.2 Data Schemata
	 7.4.12.3 Port Schemata
	 7.4.12.4 Init Schemata
	 7.4.12.5 Property Schemata
	 7.4.12.6 Transition Relation Schema
	 7.4.12.7 Statechart
	 7.4.12.8 Item Concatination

	 7.5 Values
	 7.6 Rewriting to Simple Z
	 7.6.1 Tuple and Binding Selection
	 7.6.2 Expressions
	 7.6.2.1 Set Comprehension
	 7.6.2.2 Set Display
	 7.6.2.3 Power Set
	 7.6.2.4 Abbreviations
	 7.6.2.5 Variables
	 7.6.2.6 Cartesian Product
	 7.6.2.7 Tuple
	 7.6.2.8 Tuple Selection
	 7.6.2.9 Binding Selection
	 7.6.2.10 Lambda Abstraction
	 7.6.2.11 Application
	 7.6.2.12 Conditional

	 7.6.3 Predicates
	 7.6.3.1 Equality
	 7.6.3.2 Set Membership
	 7.6.3.3 Logical Operators
	 7.6.3.4 Quantors
	 7.6.3.5 Computation Tree Logic

	 7.6.4 Declarations
	 7.6.5 Specification
	 7.6.5.1 Axiomatic Definitions
	 7.6.5.2 Schemata
	 7.6.5.3 Statecharts

	 8 Translating Simple Z to SMV
	 8.1 SMV Syntax
	 8.1.1 Introduction
	 8.1.2 Module
	 8.1.3 Items
	 8.1.4 Expressions
	 8.1.5 Computation Tree Logic

	 8.2 Translation
	 8.2.1 Predicates
	 8.2.2 Expressions
	 8.2.3 Declarations
	 8.2.4 Specifications

	 9 Conclusion
	 9.1 Limitations
	 9.2 Implementation
	 9.3 The Meta Theory
	 9.4 Implementation
	 9.5 Processing the SMV Output
	 9.6 Statemate Semantics

	 10.6 Bibliography
	 11.6 Index

