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Synchronization of weakly nonlinear oscillators with Huygens’ coupling

J. Pena Ramirez,a) Rob H. B. Fey,b) and H. Nijmeijerc)

Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

(Received 20 April 2013; accepted 9 July 2013; published online 30 July 2013)

In this paper, the occurrence of synchronization in pairs of weakly nonlinear self-sustained

oscillators that interact via Huygens’ coupling, i.e., a suspended rigid bar, is treated. In the

analysis, a generalized version of the classical Huygens’ experiment of synchronization of two

coupled pendulum clocks is considered, in which the clocks are replaced by arbitrary self-sustained

oscillators. Sufficient conditions for the existence and stability of synchronous solutions in the

coupled system are derived by using the Poincar�e method. The obtained results are supported by

computer simulations and experiments conducted on a dedicated experimental platform. It is

demonstrated that the mass of the coupling bar is an important parameter with respect to the limit

synchronous behaviour in the oscillators. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4816360]

Probably, the earliest writing on inanimate synchroniza-

tion is due to the Dutch scientist Christiaan Huygens

(1629–1695), who discovered that two pendulum clocks

hanging from a common support show synchronized

behaviour. Since then, Huygens’ synchronization has

drawn the attention of many researchers.3,7,20,21,28,33

However, a complete understanding of this phenomenon

is still missing. Consequently, the present contribution

aims to provide new insights into the intriguing synchro-

nization phenomenon discovered by Huygens. In particu-

lar, the following questions are addressed: given the

Huygens system of coupled pendulum clocks, is it possible

to replace the pendulum clocks by other types of second

order nonlinear oscillators and still to observe the

synchronized motion? Additionally, which is/are the key

parameter(s) in the coupled system for the occurrence

of in-phase, respectively, anti-phase, synchronization?

These questions are answered by means of theoretical

analysis, computer simulations, and experiments.

I. INTRODUCTION

Oscillatory motion is a ubiquitous form of motion in the

universe. When the oscillatory motion of a system is influ-

enced by the oscillations of (an)other oscillatory system(s),

then the interacting systems may experience a striking phe-

nomenon called synchronization. Synchronization, or as the

Oxford advanced dictionary defines it, “agreement in time”

or “happening at the same time,”1 is one of the most deeply

rooted and pervasive behaviours in nature. It extends from

human beings to unconscious entities.25,29,30

A natural question is: “under what conditions do a pair

or group of oscillatory systems show synchronized behav-

iour?” The famous example by Christiaan Huygens of two

pendulum clocks hanging from a suspended wooden bar, see

Figure 1(a), exhibiting anti-phase synchronized motion as he

brought forward in his notebook6 addresses this question.

Despite the lack of good modelling tools, Huygens did real-

ize that there is a “medium,” “the coupling,” responsible for

the synchronized motion, namely the bar, to which both pen-

dula were attached. This coupling bar is, therefore, referred

to as Huygens’ coupling.

In this paper, the onset of synchronization in pairs of

weakly nonlinear self-driven oscillators that interact via

Huygens’ coupling is investigated. In the analysis, a general-
ized version of the original Huygens system of pendulum

clocks, see Figure 1(b), is considered. It is generalized in the

sense that both pendulum clocks are replaced by two identi-

cal but arbitrary oscillators. The coupling bar supported by

two chairs, i.e., the Huygens coupling, is modelled by a sin-

gle degree of freedom (dof) suspended rigid bar, which is

considered as the key element in the occurrence of synchro-

nization. Moreover, it is assumed that the oscillators are

subject to the following limitations:

• small damping,
• weak nonlinearities, and
• small coupling strength.

Here, small has to be understood in the sense that the

value of the parameter (damping coefficient and/or coupling

strength parameter) is much less than unity. The term weak

indicates that the magnitude of the nonlinear terms is small

when compared to the magnitude of the linear terms. In con-

sequence, the dynamic behaviour of each nonlinear oscillator

is close to a harmonic oscillator.

The aforementioned assumptions/limitations on the oscil-

lators allow to analyze, to a large extent, the occurrence of syn-

chronization by means of approximate methods of the theory

of oscillations.2,4,8,10,32 For the present analysis, a result based

on the Poincar�e method is used in order to derive conditions,

under which synchronous solutions in a pair of nonlinear oscil-

lators with Huygens’ coupling exist and are stable. In particu-

lar, it is shown that the mass of the coupling bar, which is

directly associated with the coupling strength, is an important
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parameter with respect to the limit synchronized behaviour in

the oscillators, namely in-phase or anti-phase synchronization.

Throughout the manuscript, the synchronization phe-

nomenon is interpreted in the following manner. For the

theoretical analysis while assuming identical oscillators, the

strongest definition of synchronization is used: two oscilla-

tors are said to be synchronized if their frequencies and

amplitudes are identical and their mutual phase difference is

either 0 (in-phase synchronization) or p (anti-phase synchro-

nization). For the experimental analysis, where there are

unavoidable small mismatches between the oscillators, we

use the concept of practical synchronization:11 two oscilla-

tors are said to be practically synchronized if the difference

in their amplitudes and frequencies is below a certain

“small” threshold value and their mutual phase difference is

“sufficiently close” to 0 (practical in-phase synchronization)

or p (practical anti-phase synchronization).

This manuscript is organized as follows. First, in Sec. II

the mathematical framework used is briefly described. Next,

Sec. III presents an analysis of the synchronous behaviour

occurring in a pair of nonlinear oscillators, driven by an

energy-dependent term, which interact via Huygens’ cou-

pling. In Sec. IV, a similar analysis is performed for the case

of nonlinear oscillators driven by a van der Pol term. Finally,

in Sec. V, for both cases, it is experimentally demonstrated

that the two nonlinear oscillators may synchronize in-phase

or in anti-phase in a natural way via Huygens’ coupling. The

paper is concluded by a discussion of the obtained results.

II. PRELIMINARIES

Consider the dynamical system

_xs ¼
Xl

j¼1

asjxj þ lUsðx1;…; xlÞ; s ¼ 1;…; l; (1)

where asj are real constants and l > 0 is a “sufficiently

small” real parameter.12 The following assumption is made

on system (1):

A-1: The functions Usðx1;…; xlÞ are analytical functions

in x1;…; xl, i.e., they can be expanded as a power series in

x1;…; xl or they are polynomials.

When l ¼ 0, system (1) can be written as a set of linear

differential equations with constant coefficients, i.e.,

_x ¼ Ax; (2)

where A 2 Rl�l and x ¼ ½x1;…; xl�T . For the matrix A, the

following assumption is made:

A-2: The characteristic equation associated to matrix A
has k ð0 < k � lÞ purely imaginary roots of any multiplic-

ity13 and the remaining roots are assumed to be either real or

complex but with negative real part.

Then, by using a nonsingular linear transformation, sys-

tem (1) can be transformed to the canonical form

_ys ¼ ksys þ lfsðy1;…; ylÞ s ¼ 1;…; l: (3)

The fundamental or generating system, i.e., system (3) with

l ¼ 0 is

_ys ¼ ksys; s ¼ 1;…; l; (4)

which has the solution

y0
s ¼ ase

kst; s ¼ 1;…; l; (5)

where as; s ¼ 1;…; l are arbitrary parameters determining

the amplitude of the solution.

A-3: In accordance with A-2, it is assumed that the char-
acteristic exponents ks; s ¼ 1;…; l are categorized as follows:

ks ¼
insx; s ¼ 1;…; k;
�as þ ibs; s ¼ k þ 1;…; l;

�
(6)

where i is the imaginary unit, i.e., i ¼
ffiffiffiffiffiffiffi
�1
p

; as > 0, ns is a

positive or negative integer, x ¼ 2p
T is the oscillation fre-

quency associated to system (4) and T is the period. It will

FIG. 1. Huygens’ original system of pendulum clocks and its generalized (and modern) version.
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also be assumed that only real solutions xs of Eq. (1) are of

interest (physical systems do not have complex solutions).

Therefore, the characteristic exponents with purely imagi-

nary part appear as complex conjugate pairs and likewise the

functions fs appear as complex conjugate pairs. This implies

that k is a positive even number.

From the above assumption, it follows that system (4)

will have periodic solutions of period T. Moreover, the

asymptotic periodic solutions associated to Eq. (4) can be

written as

y0
s ¼

ase
kst ¼ ase

insxt s ¼ 1;…; k;

0 s ¼ k þ 1;…; l:

(
(7)

The problem now is to determine the values of

as; s ¼ 1;…; k, such that (asymptotically) the periodic solu-

tions of Eq. (3) reduce, for l ¼ 0, to the generating solutions

(7) of period T. Moreover, the periodic solutions of Eq. (3)

will have a period different from T, i.e., T�ðlÞ ¼ T þ scðlÞ.
Therefore, it is also necessary to determine the “correction”

scðlÞ of the period. The following result, which is due to

Blekhman,4 addresses these issues and also provides condi-

tions for the existence and stability of periodic solutions in

system (3).

Theorem 1. [Blekhman5] Periodic solutions with period
T�ðlÞ ¼ T þ scðlÞ for the autonomous system (3) becoming
at l ¼ 0 periodic (period T) solutions (7) of the fundamental
system (4) can correspond only to such values of constants
a1;…; ak�2; ak�1 ¼ ak, which satisfy equations

Rsða1;…;akÞ ¼ aknkPs� asnsPk ¼ 0; s¼ 1;…;k� 1; (8)

where

Psða1;…; akÞ ¼
ðT

0

fsðy0
1;…; y0

l Þe�insxtdt (9)

¼
ðT

0

fsða1ein1xt;…;akeinkxt;0;…;0Þe�insxtdt;

s¼ 1;…;k: (10)

If for a certain set of constants a1 ¼ a�1;…; ak�2 ¼ a�k�2;
ak�1 ¼ ak ¼ a�k , which satisfy Eq. (8), the real parts of all
roots v of the following algebraic equation are negative14

@Rs

@aj
� aknkdsjv

����
���� ¼ 0; s; j ¼ 1;…; k � 1; (11)

then, for sufficiently small l, this set of constants will indeed
correspond to a unique, analytically w.r.t. l, stable periodic
solution of Eq. (3) with period T�ðlÞ ¼ T þ scðlÞ. At l ¼ 0,
it becomes a periodic (period T) solution (7) of the funda-
mental system (4). If the real part of at least one root of
Eq. (11) is positive, then the respective solution is unstable.
With accuracy up to terms of order l, the period correction
scðlÞ is determined by

scðlÞ ¼ �l
Pkða�1;…; a�k�2; a

�
k ; a
�
kÞ

kka�k
: (12)

The proof is sketched in Ref. 4 (in Russian) and in Ref. 23

(in English) and a recent application is presented in Ref. 7.

III. SYNCHRONIZATION OF OSCILLATORS DRIVEN BY
AN ENERGY-DEPENDENT TERM

Consider the schematic model depicted in Figure 1(b),

which can be seen as a simplified though generalized version

of Huygens’ setup of pendulum clocks. In this model, the two

pendulum clocks are now replaced by two (actuated) mass-

spring-damper oscillators. The wooden bar supported by two

chairs is substituted by a single dof suspended rigid bar.

Clearly, in the generalized model, rotational angles are

replaced by translational displacements. Furthermore, it comes

natural to relate the control inputs Ui, i¼ 1, 2 to the escape-

ment mechanisms (cf. Ref. 9) as used in the pendulum clocks.

The results presented in this section correspond to the

case where the resupply of energy into the oscillators is pro-

vided by the energy-dependent term

Ui ¼ �#ðHi � H�Þ _xi; i ¼ 1; 2; (13)

where # 2 Rþ and H� ¼ 1
2
jx2

ref , which is a reference energy

level with xref being a reference amplitude, and Hi is the

Hamiltonian of the uncoupled and unforced oscillator i and

is defined by

Hi ¼
1

2
m _x2

i þ
1

2
jx2

i ; i ¼ 1; 2: (14)

Hence, the dynamic behaviour of the generalized Huygens

system depicted in Figure 1(b) with inputs (13) is described

by the set of equations

€xi ¼�x2ðxi� x3Þ� 2fxð _xi� _x3Þ� kðHi�H�Þ _xi; i¼ 1;2;

(15)

€x3 ¼ �x2
3x3 � 2f3x3 _x3 � l

X2

i¼1

€xi; (16)

where xi 2 R, i¼ 1, 2, denotes the displacement of oscillator

i and x3 2 R denotes the displacement of the coupling

bar, x ¼
ffiffiffi
j
m

p
; j 2 Rþ; m 2 Rþ; f ¼ b

2xm ; b 2 Rþ are the

angular eigenfrequency, the stiffness, the mass, the dimen-

sionless damping coefficient, and the damping constant of

each oscillator, respectively. The angular eigenfrequency

of the coupling bar is denoted by x3 ¼
ffiffiffiffi
j3

m3

q
and j3

2 Rþ; m3 2 Rþ; f3 ¼ b3

2x3m3
; b3 2 Rþ are the stiffness, the

mass, the dimensionless damping coefficient, and the damp-

ing constant of the free coupling bar, respectively. The

dimensionless small parameter 0 < l ¼ m
m3
� 1 denotes the

coupling strength and k ¼ #
m 2 Rþ.

Rescaling the time by s ¼ xt yields system (15), (16) in

the form

x00i ¼�ðxi� x3Þ� pðx0i� x03Þ� �kðax0i
2þjx2

i � cÞx0i; i¼ 1;2;

(17)

x003 ¼ �qx3 � sx03 � l
X2

i¼1

x00i ; (18)

033118-3 Pena Ramirez, Fey, and Nijmeijer Chaos 23, 033118 (2013)



where the primes denote differentiation with respect to the

dimensionless time s, p ¼ 2f; �k ¼ k
2x ; a ¼ mx2; c ¼ 2H�;

q ¼ x2
3

x2, and s ¼ 2f3x3

x .

Furthermore, it is assumed that the damping in the oscil-

lators is small, i.e., p ¼ ld and that the nonlinearity is small,

i.e., �k ¼ la. These assumptions yield the system

x00i ¼�ðxi� x3Þ�lðdðx0i� x03Þ�aðax0i
2þjx2

i � cÞx0iÞ; (19)

x003 ¼ �qx3 � sx03 � l
X2

i¼1

x00i ; i ¼ 1; 2: (20)

After neglecting quadratic terms in l, Eqs. (19) and (20) can

be written in the form

x0 ¼ Axþ lUðxÞ; (21)

with

A ¼

0 1 0 0 0 0

�1 0 0 0 1 0

0 0 0 1 0 0

0 0 �1 0 1 0

0 0 0 0 0 1

0 0 0 0 �q �s

2
666666666664

3
777777777775
;

UðxÞ ¼

0

�aðax01
2 þ jx2

1 � cÞx01 � dðx01 � x03Þ

0

�aðax02
2 þ jx2

2 � cÞx02 � dðx02 � x03Þ

0

x1 þ x2 � 2x3

2
666666666664

3
777777777775
;

(22)

and x ¼ ½ x1 x01 x2 x02 x3 x03 �
T
.

The next step is to determine the transformation that

leads to the canonical form (3). Since for l ¼ 0 system (21)

becomes linear, such transformation can be easily obtained

by diagonalizing A in the form A ¼ VDV�1, where D is a

diagonal matrix containing the eigenvalues of A and V the

matrix of corresponding eigenvectors, which are stored

column-wise. For A as defined in Eq. (22), the diagonal

matrix D verifies

D ¼ diagði;�i; i;�i; r1; r2Þ; (23)

where r1 ¼ 1
2
ð�sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4q

p
Þ and r2 ¼ 1

2
ð�s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4q

p
Þ.

Note that since s > 0 and q > 0; Reðr1Þ < 0 and Reðr2Þ
< 0. Note further that k¼4 and l¼ 6 in Eq. (6).

By defining x¼Vy, system (21) takes the canonical

form, see Eq. (3)15

y0 ¼ Dyþ lV�1UðVyÞ: (24)

According to Eq. (7), the generating system (4) associated to

Eq. (24) has solutions of the form

y1 ¼ a1eis; y2 ¼ a2e�is; y3 ¼ a3eis; y4 ¼ a4e�is;

y5 ¼ y6 ¼ 0:
(25)

The amplitudes of these solutions are assumed to be com-

plex,7 i.e., ai ¼ rie
i/i , i¼ 1, 2, 3, 4, where ai 2 C; ri 2 Rþ

and /i 2 S1. In this way, it is easy to analyze phase synchro-

nization by looking at the phase differences. At this point, it

is also worth noting that four eigenvalues of A appear in

complex conjugate pairs, see Eq. (23). In order to have real

solutions, it is necessary and sufficient that a2 ¼ �a1 and

a4 ¼ �a3, i.e., /2 ¼ �/1 and /4 ¼ �/3 and correspondingly

r1 ¼ r2 and r3 ¼ r4. This yields

a1 ¼ r1ei/1 ; a2 ¼ r1e�i/1 ; a3 ¼ r3ei/3 ; a4 ¼ r3e�i/3 : (26)

In order to have a characterization for the synchronized

regimen in terms of a single phase, the phase /3 is set to

zero. Hence, synchronization is characterized by the phase

/ ¼ /1. Moreover, it will be assumed that the amplitudes

are the same, i.e., r ¼ r1 ¼ r3 (compare this with Ref. 7).

Consequently, the solutions (25) of the generating system

become

y1 ¼ reiðsþ/Þ; y2 ¼ re�iðsþ/Þ; y3 ¼ reis;

y4 ¼ re�is; y5 ¼ y6 ¼ 0:
(27)

Next, the values of r and / are determined. This can be done

by writing condition (8) of Theorem 1 as a system of equa-

tions in terms of r and /. This yields

ei/½a c� ð3aþ jÞr2
� �

� d� � sð1þ ei/Þ
ð�1þ qÞ2 þ s2

¼ 0; (28)

a c� ð3aþ jÞr2
� �

� d � f ðs;/; qÞ
ð�1þ qÞ2 þ s2

¼ 0; (29)

ið1� e�2i/Þ
�1þ q� is

¼ 0; (30)

where

f ðs;/;qÞ¼ sþ s

2
ðei/þe�i/Þþ1

2
ð�1þqÞðei/þ e�i/Þi: (31)

From Eq. (30), it follows that16

/ ¼ 0 or / ¼ p: (32)

The corresponding expressions for the half-amplitudes r of

the periodic solutions are obtained by substitution of Eq.

(32) into Eq. (28) or Eq. (29). This yields

• Existence: / ¼ 0 (in-phase synchronization)

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� rþd

a

� �
ð3aþ jÞ

s
; (33)

with r ¼ 2s
ð�1þqÞ2þs2

. Note that Eq. (33) is defined if c > rþd
a .
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• Existence: / ¼ p (anti-phase synchronization)

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� d

a

� �
ð3aþ jÞ

s
: (34)

In this case, Eq. (34) will be defined if c > d
a.

Next, the local stability of the periodic solutions is

investigated by using Eq. (11) in Theorem 1. This requires

the computation of a characteristic polynomial for both the

in-phase solution and the anti-phase solution.

• Local stability: / ¼ 0 (in-phase synchronization)

After elaborated computations, one finds the following

characteristic polynomial:

pinðvÞ¼½vþ2pðac�d�rÞ�
½ðð1�qÞ2þ s2Þv2þ2pðac�d�2rÞvþ c�; (35)

where

r ¼ 2s

ð�1þ qÞ2 þ s2
; c ¼ 4p2 1þ sr� sðac� dÞð Þ: (36)

This polynomial will have roots with negative real part if

and only if

C1¼ c� rþd

a

� �
> 0; C2¼ c� 2rþd

a

� �
> 0; and

C3¼�ðac�dÞþrþ1

s
> 0:

(37)

Note that condition C1 > 0 is the same condition for the

existence of the in-phase synchronous solution, see Eq. (33).

Moreover, since r > 0, condition C1 > 0 is weaker than con-

dition C2 > 0. In other words, for Eq. (35) having negative

roots, it is necessary and sufficient that C2 > 0 and C3 > 0.

By substituting the original parameters of Eqs. (15) and

(16) in Eq. (37), it is possible to rewrite the conditions for C2

and C3 in terms of the original parameters including m3, i.e.,

the mass of the coupling bar. This yields

C2 ¼ 2H� � 8b3j
2m

k½j2m2
3� 2j3jmm3þj2

3m2þb2
3jm�

� 4b
2km

> 0;

(38)

C3¼�
km3ffiffiffiffiffiffiffi
jm
p H� þ 2m3b3ffiffiffi

j
m

p
m2

3�
2j3mm3

j
þj3

3m2

j2
þb2

3m

j

	 


þ bm3

m3=2
ffiffiffi
j
p þ

ffiffiffi
j
p

m3ffiffiffiffi
m
p

b3

> 0: (39)

• Local stability: / ¼ p (anti-phase synchronization)

Again, after elaborated computations, one finds the fol-

lowing characteristic polynomial:

pantiðvÞ¼½vþ2pðac�dÞ�
½zv2þ 2pzðac�dÞvþ4p2 1þ sðac�dÞð Þ

� �
�; (40)

where z ¼ ð�1þ qÞ2 þ s2. In this case, the roots of pantiðvÞ
will have negative real parts if and only if

C4 ¼ c� d

a

� �
> 0; C5 ¼ c�

d � 1
s

a

� �
> 0: (41)

Since d and s are positive, for pantiðvÞ having negative roots,

it is sufficient that C4 > 0. Note that, again, stability condi-

tion C4 > 0 coincides with the condition for the existence of

the solution, see Eq. (34).

Condition C4 > 0 can be rewritten in terms of the origi-

nal parameters of the system, i.e.,

C4 ¼ 2H� � 2b
km

> 0: (42)

Clearly, this condition for the existence and stability of the

anti-phase regime does not depend on m3, i.e., the mass of

the coupling bar. Note that this coincides with the fact that,

ideally, the coupling bar comes to standstill when the oscilla-

tors synchronize in anti-phase, i.e., the coupling “disappears”

during the anti-phase motion. Furthermore, it should be

noted that condition (41) is “softer” than condition (37) for

in-phase synchronization because if Eq. (37) is satisfied, then

Eq. (41) will be satisfied too, whereas the opposite is not

true.

Finally, the period of the synchronous solutions is

computed. From Theorem 1 and Eq. (12), it follows that the

in-phase synchronous solutions of system (21) have period

Tin ¼ Tþ scðlÞ ¼ 2p 1þ q� 1

ð�1þ qÞ2þ s2
l

" #
þOðl2Þ; (43)

which is in terms of dimensionless time s, whereas the anti-

phase synchronous solutions will have dimensionless period

Tanti ¼ T þ scðlÞ ¼ 2pþOðl2Þ: (44)

These results are very intuitive: when the oscillators syn-

chronize in anti-phase, the coupling bar has no influence

because it will be in rest and the oscillation frequency will

closely approximate the eigenfrequency of the uncoupled,

undamped oscillators. On the other hand, when the oscilla-

tors synchronize in-phase, the coupling bar converges to an

oscillatory motion, which will influence the oscillation fre-

quency of the oscillators.

The above results are summarized in the following two

theorems and corollary.

Theorem 2. Consider system (19), (20). Assume 0 <
l� 1 and that the parameter values satisfy conditions (37).
Then, in-phase synchronized solutions exist in system (19),
(20) and these solutions are (asymptotically) stable, i.e.,

lim
t!1

einðtÞ :¼ x1ðtÞ � x2ðtÞ ¼ 0;

lim
t!1

_einðtÞ :¼ _x1ðtÞ � _x2ðtÞ ¼ 0:
(45)

Moreover, the in-phase limit solutions corresponding to the
oscillators have amplitude
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Ain�phaseðlÞ ¼ 2r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� rþd

a

� �
ð3aþ jÞ

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H� � lh1 � 4fx

k

3mx2 þ j

s
;

(46)

with h1 ¼ 8f3x3x4

k½x4�2x2
3
x2þx4

3
þ4f2

3x
2
3
x2�, and period

Tin�phase ¼ T þ scðlÞ

¼ 2p 1þ q� 1

ð�1þ qÞ2 þ s2
l

" #
þOðl2Þ: (47)

Theorem 3. Consider system (19), (20). Assume that
0 < l� 1 and that the parameter values satisfy conditions
(41). Then, anti-phase synchronized solutions exist and are
(asymptotically) stable, i.e.,

lim
t!1

eanðtÞ :¼ x1ðtÞ þ x2ðtÞ ¼ 0;

lim
t!1

_eanðtÞ :¼ _x1ðtÞ þ _x2ðtÞ ¼ 0;
(48)

and

lim
t!1

x3ðtÞ ¼ _x3ðtÞ ¼ 0: (49)

Moreover, the anti-phase limit solutions corresponding to
the oscillators have amplitude

Aanti�phase ¼ 2r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� d

a

ð3aþ jÞ

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H� � 4fx

k

3mx2 þ j

s
(50)

and period

Tanti�phase ¼ T þ scðlÞ ¼ 2pþOðl2Þ: (51)

Corollary 1. If 0 < l� 1 and condition (37) is
satisfied then system (19), (20) admits both in-phase and
anti-phase synchronized solutions and both solutions are
locally asymptotically stable.

Now, these analytical results are illustrated and

supported by means of numerical simulations. Consider

system (19), (20) with the following parameter

values: a ¼ 37:1080 ½kg rad2=s2�; c ¼ 1:6� 10�3 ½Nm�; j ¼
37:1080 ½N=m�; l ¼ 2:1�10�1

m3
½��; d ¼ 1:43�10�2

l ½��; a ¼ 19:9
l

½s2=ðkg m2 radÞ�; q ¼ 14:750l ½��, and s ¼ 1:169l ½��.
Some of these parameters have been chosen such that the

limitations on damping and nonlinearities, see Sec. I, are sat-

isfied. Other parameter values have been taken from a model

corresponding to the experimental platform presented in

Ref. 24 (see also Sec. V in this manuscript).

It follows that for the aforementioned values, conditions

(37) are satisfied if m3 > 5:68 ½kg�, see Figure 2. Here, a

value of m3 ¼ 16:8 ½kg� is considered. Consequently,

l ¼ 0:0125 ½��.
Figure 3 shows the obtained simulation results. The nonzero

initial conditions are x1ð0Þ ¼ 3� 10�3 ½m�; x2ð0Þ ¼ 2

�10�3 ½m�. After initial transient behaviour, the oscillators syn-

chronize in-phase, as depicted in Figure 3. By using Eq. (46), the

limit amplitude of the synchronized solution is computed. It fol-

lows that for the given parameters Ain�phase ¼ 4:713�10�3 ½m�.
This value and its negative counterpart are denoted by the hori-

zontal dotted lines in Figure 3(b). The agreement between the

analytical and the numerical results is evident. In fact, the differ-

ence between the actual amplitude and predicted amplitude is

2.256%. Additionally, the period of the synchronous solution is

computed by using Eq. (47). This yields Tin�phase ¼ 6:1928 ½��.
Again, this result is very close (with an error of 0.033%) to the

obtained result by numerical integration of Eqs. (19) and (20) as

depicted in Figure 3(b) (vertical dotted lines). These differences

are due to the fact that the theoretical analysis has been per-

formed by using an approximated method and, moreover, high

order terms in l have been neglected. Additionally, since for the

given parameter values also condition (41), see Theorem 3, holds

with C4 ¼ 8:487� 10�4, it follows that also stable anti-phase

synchronization exists. This case is presented in Figures 3(c) and

3(d). These results have been obtained by using the same param-

eter values as above except for the initial condition of oscillator

2, which now is x2ð0Þ ¼ �5� 10�4 ½m�. Clearly, the oscillators

are synchronized in anti-phase. The amplitude of the anti-phase

FIG. 2. Conditions (37) for in-phase

synchronization plotted as a function

of the mass of the coupling bar, i.e.,

m3. Figures 2(a) to 2(d): C2. Figure

2(e): C3.
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solution, computed by using Eq. (50) in Theorem 3, is

Aanti�phase ¼ 4:782� 10�3 ½m�. Again, this value and its nega-

tive counterpart are indicated by two horizontal lines in Figure

3(d). The error in the predicted amplitude and the actual ampli-

tude of the solution is 0.083%. The period of the solution, indi-

cated by two vertical lines in Figure 3(d), is Tanti�phase

¼ 6:2827 ½��, whereas the expected value from Eq. (51) in

Theorem 3 is T ¼ 2p, i.e., there is a difference of 0.006%.

In order to illustrate the influence of the coupling strength

l ¼ m
m3

in the limit synchronizing behaviour of the oscillators,

system (19), (20) is again numerically integrated by using the

same parameter values and initial conditions as used in the

first simulation presented above, except for the coupling

strength, which is increased by decreasing m3 to

m3 ¼ 4:1 ½kg�. This yields l ¼ 0:0512 ½��. Consequently,

condition (37), see Theorem 2, is not fulfilled. However,

condition (41), see Theorem 3, is satisfied and consequently

the only stable solution is anti-phase synchronization, as

depicted in Figure 4. It can be seen that although the initial

conditions of the system are very close to in-phase motion,

after initial transient behaviour, the system synchronizes in

anti-phase.

IV. SYNCHRONIZATION OF OSCILLATORS DRIVEN BY
A VAN DER POL TERM

A classical (circuit) model of a nonlinear oscillator

showing a self-sustained oscillation is due to van der Pol.26

The key feature in the model is the presence of a nonlinear

damping term, which dissipates energy for large ampli-

tudes—acting like ordinary positive damping—and gener-

ates energy at low amplitudes—acting like negative

damping. It should be noticed that this term has more or less

the same effect as an escapement mechanism in a pendulum

clock: energy is delivered to the system such that the oscilla-

tions do not damp out. Consequently, it is not surprising that

there exist several works related to the classical Huygens

system where the escapement mechanism has been modelled

by using the nonlinear damping term of the van der Pol equa-

tion, see, e.g., Refs. 5, 22, and 31. This facilitates the model-

ling of the real escapement mechanism and allows to

perform a fairly complete analytic analysis of the in-phase

and anti-phase synchronized motion, which becomes tremen-

dously involved if the escapement is modelled, for instance,

by an impulsive function.9,27

This section investigates the occurrence of synchroniza-

tion in the system of coupled oscillators depicted in Figure

1(b) for the case where the resupply of energy into the oscil-

lators is provided by the van der Pol term

Ui ¼ �gðax2
i � 1Þ _xi; i ¼ 1; 2; (52)

where g 2 Rþ determines the amount of nonlinearity and

the strength of the damping and a 2 Rþ is a parameter,

which defines the switching between positive and negative

damping. For xi <
1ffiffi
a
p , the velocity in oscillator i is increased

and for xi >
1ffiffi
a
p , it is decreased.

By again assuming identical oscillators, it can be shown

that the dynamic behaviour of the coupled system shown in

Figure 1(b) with input (52) is described by

€xi ¼ �x2ðxi � x3Þ � 2fxð _xi � _x3Þ � �ðax2
i � 1Þ _xi i ¼ 1; 2;

(53)

€x3 ¼ �x2
3x3 � 2f3x3 _x3 � l

X2

i¼1

€xi; (54)

where as defined in Sec. III, x;x3; f; f3 are positive parame-

ters, � ¼ g
m 2 Rþ, and l is the coupling strength.

System (53), (54) resembles a pair of van der Pol oscilla-

tors with Huygens’ coupling. In order to derive conditions

for the onset of in-phase and anti-phase synchronized motion

in the coupled system (53), (54), the analytical method

presented in Sec. II is used again. This again requires to

transform the system into the form (3). By setting

s ¼ xt; p ¼ 2f; q ¼ x2
3

x2 ; s ¼ 2f3x3

x , and �k ¼ �
x, and assuming

that the damping in the oscillators and, therefore, the amplitude

of the nonlinear van der Pol term are small, i.e., p ¼ ld and
�k ¼ la, it is possible to rewrite Eqs. (53) and (54) in the form

FIG. 3. For a small coupling strength (m3 large) and initial conditions close

to in-phase, system (19), (20) synchronizes in-phase as depicted in Figures

3(a) and 3(b). For the same coupling strength and initial conditions close to

anti-phase, the oscillators synchronize in anti-phase, as shown in Figures

3(c) and 3(d), where black line: x1 and grey line: x2.

FIG. 4. When the coupling strength is increased (by decreasing m3) the only

synchronous solution in system (19), (20) is anti-phase synchronization. In

Fig. 4(b), black line: x1 and grey line: x2. In Fig. 4(c), black line: transient

behaviour and grey: long term behaviour.
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x0 ¼ Axþ lU1ðxÞ þ l2U2ðxÞ; (55)

where the prime denotes differentiation with respect to the

dimensionless time s ¼ xt, and x ¼ ½x1 x01 x2 x02 x3 x03�
T

is the

state vector, A is as given by Eq. (22), and

U1 ¼

0

�dðx01 � x03Þ � aðax2
1 � 1Þx01

0

�dðx02 � x03Þ � aðax2
2 � 1Þx02

0

x1 þ x2 � 2x3

2
666666664

3
777777775
;

U2 ¼

0

0

0

0

0X2

i¼1

�
dx0i þ aðax2

i � 1Þx0i
�
� 2dx03

2
6666666664

3
7777777775
:

(56)

By following a similar approach as presented in Sec. III,

it is possible to show that the following results for system

(55), (56) hold.

Theorem 4. Consider system (55), (56). Assume
0 < l� 1 and that the parameter values satisfy the follow-
ing conditions:

C1 ¼ 1� 2rþ d

a

� �
> 0; and C2 ¼�1þ

rþ dþ 1
s

a

� �
> 0;

(57)

where r is defined by Eq. (36). Then, in-phase synchronized
solutions exist in system (55) and these solutions are (asymp-
totically) stable, i.e.,

lim
t!1

einðtÞ :¼ x1ðtÞ�x2ðtÞ¼ 0; lim
t!1

_einðtÞ :¼ _x1ðtÞ� _x2ðtÞ¼ 0:

(58)

Moreover, the in-phase limit solutions corresponding to the
oscillators have amplitude

Ain�phaseðlÞ ¼ 2r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� ðrþ dÞ

aa

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lh1 � 2fx

�

a

s
;

(59)

with h1 ¼ 4f3x3x4

k½x4�2x2
3
x2þx4

3
þ4f2

3x
2
3
x2�, and period

Tin�phase ¼ T þ scðlÞ ¼ 2p 1þ q� 1

ð�1þ qÞ2 þ s2
l

" #
þOðl2Þ:

(60)

Theorem 5. Consider system (55), (56). Assume
0 < l� 1 and that the following condition holds:

a� d > 0: (61)

Then, anti-phase synchronized solutions exist and are
(asymptotically) stable, i.e.,

lim
t!1

eanðtÞ :¼ x1ðtÞþ x2ðtÞ¼ 0; lim
t!1

_eanðtÞ :¼ _x1ðtÞþ _x2ðtÞ¼ 0

(62)

and

lim
t!1

x3ðtÞ ¼ _x3ðtÞ ¼ 0: (63)

Moreover, the anti-phase limit solutions corresponding to
the oscillators have amplitude

Aanti�phase ¼ 2r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1� d

a

a

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fx

�

a

s
(64)

and period

Tanti�phase ¼ T þ scðlÞ ¼ 2pþOðl2Þ: (65)

Note that condition (61) is weaker than condition (57).

Hence, when Eq. (57) is satisfied, both in-phase and anti-

phase synchronous solutions exist and are locally asymptoti-

cally stable. On the other hand, when Eq. (61) is satisfied

and condition (57) is not satisfied, then the only stable syn-

chronous solution is anti-phase synchronization. By means

of numerical integration, it is possible to show countless

examples.

V. EXPERIMENTAL RESULTS

The obtained results in Secs. III and IV have been

derived under the assumption that the oscillators are identi-
cal. Obviously, in a real physical system, it is impossible to

have two identical oscillators. A mathematical treatment, in

which external perturbations (like noise) and unmodelled dy-

namics are taken into account, turns out to be complicated

and the available mathematical tools are limited. Therefore,

in this section, an experimental analysis is performed in

order to get insight into the existence of synchronization in a

real system where there are unavoidable small mismatches/

disturbances in the oscillators. The analysis is conducted by

using the electro-mechanical setup depicted in Figure 5,

which is schematically depicted in Figure 1(b). It consists of

two actuated oscillators mounted on an (actuated) elastically

supported rigid bar. The system has 3 dofs corresponding to

the horizontal displacements of the two oscillators and the

bar, respectively.

Since the oscillators are actuated separately, then via

computer-controlled feedback it is possible to mimic a vari-

ety of different controlled/uncontrolled synchronizing sys-

tems. In fact, the purpose of the control inputs U1 and U2

(see Figure 1(b)) is twofold: to guarantee self-sustained

oscillations and to modify the inherent dynamic properties of

the oscillators, such as mass, stiffness, and damping proper-

ties, in a desired way. For a detailed description of the setup,

the interested reader is referred to Ref. 24.

A. Energy-dependent escapement

In a first set of experiments, the inherent mechanical

properties of the experimental setup of Figure 5 are adjusted
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such that its dynamic behaviour is described by the set of

equations (19) and (20). The parameter values for the experi-

ments are given in Table I. For the experiments, all parame-

ter values and initial conditions are fixed and the only

parameter that is modified from experiment to experiment is

m3, the mass of the coupling bar, which influences the cou-

pling strength l ¼ m
m3

. The nonzero initial conditions are

x1ð0Þ ¼ 4 ½mm�; x2ð0Þ ¼ 3:5 ½mm�. Note that in the experi-

ment the intention still is to make the oscillators identical but

it should be noted that it will be practically impossible to re-

alize this.

In a first experiment, the mass of the coupling bar is

m3 ¼ 4:1 ½kg� and, consequently, l ¼ 0:0512 ½��. For the

given parameter values, condition (41), see Theorem 3, is

satisfied, whereas condition (37), see Theorem 2, is not ful-

filled.17 Hence, anti-phase synchronization is expected to

occur in this experiment.

Figure 6 summarizes the main results. Although the

oscillators are released close to in-phase, as depicted in

Figure 6(a), after initial transient behaviour, the oscillators

practically synchronize in anti-phase, as shown in Figures

6(b) and 6(d). Although initially the oscillations in the cou-

pling bar are large due to the nearly in-phase start-up, in the

limit, when the oscillators practically synchronize in anti-

phase, the amplitude of the oscillations (in the motion) of the

coupling bar becomes relatively small as depicted in Figure

6(c). Ideally, for identical oscillators, the oscillations in the

coupling bar should decay to zero. However, in the experi-

ment, the oscillators are not identical as can be seen from

Figures 6(b) and 6(d). Roughly speaking, the “pushing force”

of one oscillator exerted to the coupling bar is larger than the

“pulling force” exerted by the other oscillator and, conse-

quently, the coupling bar does not come to a complete

standstill.

In a second experiment, the mass of the coupling bar is

increased by adding five steel plates with a mass of approxi-

mately 2.370 [kg] each. This yields m3 � 15:95 ½kg�, i.e.,

l ¼ 0:0131 ½��. The remaining parameter values and initial

conditions are the same as used in the previous experiment.

Note that in this case, condition (37) in Theorem 2 is satis-

fied. As a consequence of adding mass to the coupling bar,

the oscillators now practically synchronize in-phase as

shown in Figure 7. The coupling bar converges to an oscilla-

tory motion with fixed amplitude and frequency, as shown in

Figure 7(c). Moreover, the frequency of the in-phase syn-

chronous solution of the oscillators is very close to x3. The

amplitude of the vibrations in the coupling bar is of the same

order in Figures 6 and 7. Note, however, that the mass of the

coupling bar is about four times higher in Figure 7.

In both experiments, the amplitudes and frequencies of

the synchronous solutions differ from the analytical values

given by Theorems 2 and 3, respectively. For instance, in

case of the first experiment, the amplitude of the anti-phase

synchronous solution is 6.47 [mm] for the first oscillator and

6.31 [mm] for the second one. If the parameter values used

FIG. 5. Photo of the experimental setup.

TABLE I. Parameter values for the energy-dependent escapement

experiments.

Oscillator 1,2 Coupling bar

m ¼ 2:10� 10�1 ½kg� m3 2 f4:1; 15:95g ½kg�
j ¼ 37:108 ½N=m� j3 ¼ 3:8871� 102 ½N=m�
b ¼ 5� 10�2 ½Ns=m� b3 ¼ 3:2656 ½Ns=m�
d ¼ 8:52� 10�2m3 ½�� …

a ¼ 106:71m3 ½�� …

a¼ 37.108 [�] …

c ¼ 1:567� 10�3 ½�� …

FIG. 6. Experimental results. For relatively large coupling strength, the

oscillators practically synchronize in anti-phase. In Figures 6(a) and 6(b),

black line: x1 and grey line: x2. Figure 6(d) does not contain transient

behaviour.

FIG. 7. In this experiment, the mass of the coupling bar is increased to m3

¼ 15:95 ½kg� (coupling strength is decreased). As a consequence, the oscilla-

tors practically synchronize in-phase. In Figures 7(a) and 7(b), black line:

x1 and grey line: x2. Figure 7(d) does not contain transient behaviour.
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during the experiment are substituted in Eq. (50), then the

expected amplitude is 4.551 [mm]. Regarding the frequency

of the synchronous solution, the same experiment reveals

that the oscillators synchronize in anti-phase with a fre-

quency of 2.1155 Hz, i.e., T¼ 0.4727 [s], whereas Eq. (51)

in Theorem 3 yields T¼ 0.4726 [s] (converting dimension-

less time s back to the real time t). For the second experi-

ment, the amplitude of the oscillations in oscillator 1 is

5.166 [mm] and 4.939 [mm] for the second oscillator,

whereas the predicted amplitude from Theorem 2 is 4.479

[mm]. The frequency of the in-phase synchronous solution in

the experiment is T¼ 0.4342 [s], whereas the predicted pe-

riod from Theorem 2 is T¼ 0.4654 [s]. These differences

should not be surprising since, as has been mentioned before,

the oscillators in the experimental setup are not identical and

the theoretical results summarized in Theorems 2 and 3 have

been derived under the assumption of identical oscillators.

Moreover, the theoretical analysis has been conducted for

the nonlinear system in an approximated form.

B. van der Pol escapement

Similar experiments have been conducted for the case

where the experimental setup is adjusted to mimic the dy-

namics (in terms of the time t) of the coupled system (55) an-

alyzed in Sec. IV. The parameter values for the experiments

are provided in Table II. For the experiments, all parameter

values and initial conditions are fixed and the only parameter

that is modified from experiment to experiment is m3, the

mass of the coupling bar, which influences the coupling

strength l ¼ m
m3

. The nonzero initial conditions are x1ð0Þ
¼ 3 ½mm� and x2ð0Þ ¼ 2:8 ½mm�.

Again, in the first experiment, a light coupling bar, i.e.,

m3 ¼ 4:1 ½kg�, i.e., l ¼ 0:0512 ½��, is used. For the given pa-

rameter values, condition (61) in Theorem 5 is satisfied,

whereas condition (57) in Theorem 4 is not fulfilled,18

Hence, for this experiment, anti-phase synchronization is

expected to occur.

As becomes clear from Figures 8(b) and 8(d), indeed the

oscillators practically synchronize in anti-phase, although

they were released close to in-phase synchronization as

depicted in Figure 8(a). The behaviour of the coupling bar is

depicted in Figure 8(c). Initially, the transient part of the

displacement of the bar is relatively large due to the nearly

in-phase startup of the oscillators. Later, when the phase dif-

ference between the oscillators tends to p [rad], the ampli-

tude of the oscillations in the bar reduces to a small value. In

the experiment, the amplitude of the oscillations is 7.776

[mm] for the first oscillator and 6.09 [mm] for the second os-

cillator. Furthermore, the period of the synchronous solution

is T¼ 0.4729 [s]. The amplitude and period of the synchro-

nous solution when computed by using Eqs. (64) and (65)

are 4.976 [mm] and 0.4726 [s], respectively.

In a second experiment, the mass of the coupling bar is

increased by adding ten steel plates of approximately 2.370

[kg] each. This yields m3 � 27:8 ½kg�, i.e., l ¼ 0:0075 ½��.
The remaining parameters and initial conditions are the same

as used in the previous experiment. Note that in this case, con-

dition (57) in Theorem 4 is satisfied. In fact, as a consequence

of adding mass to the coupling bar, the oscillators practically

synchronize in-phase as depicted in Figure 9. The motion of

the coupling bar converges to an oscillatory motion with fixed

amplitude and frequency, as shown in Figure 9(c). Moreover,

the frequency of the in-phase synchronous solution is very

close to the frequency of the coupling bar. The oscillations in

the first oscillator have amplitude 5.871 [mm], whereas for the

second oscillator the amplitude of the oscillations is 5.603

[mm]. The in-phase synchronous solution has period

T¼ 0.4340 [s]. For the given parameter values, Theorem

4 predicts a synchronous solution with amplitude equal to

4.891 [mm] and period T¼ 0.4687 [s].

Finally, in order to illustrate the influence of the initial

conditions in the limit synchronizing behaviour of the

TABLE II. Parameter values for the van der Pol escapement experiments.

Oscillator 1,2 Coupling bar

m ¼ 2:10� 10�1 ½kg� m3 2 f4:1; 15:95g ½kg�
j ¼ 37:108 ½N=m� j3 ¼ 3:8871� 102 ½N=m�
b ¼ 8� 10�3 ½Ns=m� b3 ¼ 3:2656 ½Ns=m�
d ¼ 1:36� 10�2m3 ½�� …

a ¼ 3:58� 10�2m3 ½�� …

a ¼ 1� 105 ½1=m2� …

FIG. 8. Experimental results. For a light coupling bar m3 ¼ 4:1 ½kg� (rela-

tively large coupling strength l), practical anti-phase synchronization

occurs. In Figures 8(a) and 8(b), black line: x1 and grey line: x2. In Figure

8(d), transient behaviour has been omitted.

FIG. 9. In this experiment, the oscillators practically synchronize in-phase.

The oscillators have been released from initial conditions close to in-phase

and the mass of the coupling bar has been increased to m3 ¼ 27:8 ½kg�.
In Figures 9(a) and 9(b), black line: x1 and grey line: x2. In Figure 9(d),

transient behaviour has been omitted.
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system, experiment 2 is repeated by only changing the initial

condition of oscillator 2, which now is x2ð0Þ ¼ 0 ½rad�. As

can be seen in Figure 10, the oscillators now synchronize in

anti-phase.

Summarizing, the experimental results qualitatively agree

with the analytical results. Quantitative differences, as

explained before, originate from the fact that in the real physi-

cal system the oscillators are not identical and original dynam-

ics of the setup cannot be completely cancelled. Moreover,

Theorems 2 to 5 are used in an approximated form (higher

order terms are neglected). Nevertheless, analytical results and

experimental results convey the same message: the mass of the

coupling bar m3 (or the coupling strength l) influences the

limit synchronizing behaviour in the oscillators.

Note that the results obtained here are largely in agree-

ment with other experimental results available in the litera-

ture. Consider for example the system described in Ref. 20.

It consists of two metronomes attached to a bar that can

move horizontally. The authors observed that anti-phase syn-

chronization was the “dominant” synchronous solution.

Moreover, the authors mention that in-phase synchronization

was observed only when the mass of the bar was increased.

Likewise, in Ref. 22, where the setup consists of a pair of

metronomes placed on a freely moving rigid bar, which rests

on top of two soda cans, the author explains that anti-phase

synchronization was observed only when the coupling

strength was increased.

VI. DISCUSSION

The occurrence of synchronized motion in pairs of

weakly nonlinear oscillators interacting via Huygens’ cou-

pling has been investigated. Sufficient conditions for the ex-

istence and local stability of synchronous solutions have

been derived using the Poincar�e method based on a small pa-

rameter. For the present case, this “small parameter” appears

naturally in the system and corresponds to the coupling

strength l, i.e., the ratio between the oscillators’ mass m and

the mass of the coupling bar m3.19

The analysis has revealed that the mass of the coupling

bar (or the coupling strength) influences the limit synchron-

ized behaviour in the system, namely anti-phase or in-phase

synchronization. Decreasing the coupling strength, i.e.,

increasing the mass of the coupling bar, facilitates the onset

of in-phase synchronization. On the other hand, when the

coupling strength is increased, i.e., by decreasing the mass of

the coupling bar, anti-phase synchronization is the only

expected stable synchronous mode.

Moreover, Corollary 1 establishes that by decreasing the

coupling strength l, it is possible to have two coexisting

types of stable synchronous motion: in-phase and anti-phase.

Consequently, the limit behaviour in this case is determined

by the initial conditions. Computer simulations have

revealed that when the oscillators are released close to in-

phase then the limit behaviour of the system will be in-phase

synchronization, whereas for the remaining initial conditions

the limit behaviour is anti-phase synchronization, i.e., the

region of attraction for anti-phase is larger than the attraction

region for in-phase.

Additionally, the onset of synchronization in two oscilla-

tors with Huygens’ coupling has been investigated in a real

system, i.e., by means of experiments. In fact, the experiments

have confirmed that a light coupling bar yields anti-phase syn-

chronous motion in the oscillators, whereas with a heavier

coupling bar in-phase synchronization can be observed.

In conclusion, if the reader reflects on the results pre-

sented in this manuscript the following must be clear: the

synchronization phenomenon observed by Huygens more

than 300 years ago in a pair of pendulum clocks can also be

observed if the pendulums are replaced by other oscillators.
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