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Abstract This paper provides three algorithms for constructing system nets
from sets of partially-ordered causal runs. The three aggregation algorithms
differ with respect to the assumptions about the information contained in
the causal runs. Specifically, we look at the situations where labels of con-
ditions (i.e. references to places) or events (i.e. references to transitions) are
unknown. Since the paper focusses on aggregation in the context of process
mining, we solely look at workflow nets, i.e. the class of Petri nets with unique
start and end places. The difference of the work presented here and most work
on process mining is the assumption that events are logged as partial orders
instead of linear traces. Although the work is inspired by applications in the
process mining and workflow domains, the results are generic and can be
applied in other application domains.
Keywords: Process mining, Petri net Synthesis, Aggregation, Runs, Process nets.

1 Introduction

This paper proposes different approaches to “discover” process models from
observing runs, i.e., runs (also known as causal nets or occurrence nets, see[8])
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are aggregated into a single Petri net that captures the observed behaviour.
This is useful in many domains where processes are studied based on their
recorded behaviour. Some examples:

– Discovering administrative processes by following the document flows in
the organization with the goal to improve efficiency.

– Auditing processes in organizations in order to make sure that they con-
form to some predefined rules.

– Constructing enterprise models by observing transaction logs or document
flows in enterprise systems such as SAP, Peoplesoft and Oracle.

– Monitoring the flow of SOAP messages between web-services to see how
different services interact.

– Observing patient flows in hospitals to improve careflows and to verify
medical guidelines.

There are many techniques to discover sequential process models based
on event logs (also knows as transaction logs, audit trails, etc). Recently,
people working on process mining techniques [4] started to tackle situations
where processes may be concurrent and the set of observations is incomplete.
Note that the set of possible sequences is typically larger than the number
of process instances thus making it unrealistic to assume that all possible
combinations of behaviour have been observed.

In many applications, the event log is linear, e.g., sorted based on time-
stamps and an approach based on runs is not applicable. However, there are
processes where it is possible to monitor causal dependences (e.g., by analyz-
ing the dataflows). In the examples mentioned before, it is easy to identify
situations where activities are causally linked by documents or explicit mes-
sages and these could be monitored. Interestingly, we also encountered some
systems that actually log behaviour using a representation similar to runs.
The ad-hoc workflow management system InConcert of Tibco (formerly Xe-
rox) allows end users to define and modify process instances (e.g., a customer
order) while capturing the causal dependencies between the various activi-
ties. The representation used directly corresponds to runs. The analysis tool
ARIS PPM (Process Performance Monitor) of IDS Scheer can extract runs
represented as so-called instance EPCs (Event-driven Process Chains) from
systems such as SAP R/3 and Staffware. These examples show that in real-
life systems and processes runs can be recorded or already are being recorded
thus motivating the work presented in this paper.

To introduce the main topic of this paper we use the examples shown
in Figure 1. The left-hand side of this figure shows several runs. These are
the behaviours that have been observed by extracting information from e.g.
some enterprise information system. The right-hand side shows the models
that we would like to discover by aggregating the runs shown on the left-hand
side. Figure 1 (a) shows the easiest situation. Here we assume that in the run
all event and condition labels have been recorded in some event log. Note
that runs are represented by acyclic Petri nets without any choices, i.e., the
unfolding of a Petri net that may contain loops and choices. In Figure 1 (a)
there are two runs and it is easy to see that the aggregated model can indeed
reproduce these two runs. In this case no other runs are possible. However,
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Fig. 1 Example describing the three problems tackled in this paper.
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it is important to see that not all possible runs need to be present. In most
application domains the number of possible runs is larger than the actual
number of process instances, e.g., there may be less patients in a hospital that
the number of possible combinations of treatments. Figure 1 (b) describes a
more complex problem where not all event labels are recorded or where the
same label may refer to different transitions. For example, in Figure 1 (b)
the archive event is no longer visible and the two send events (send_goods
and send_bill) cannot be distinguished, since both of them are recorded
as send_something. Figure 1 (c) illustrates the most challenging problem,
i.e., the event labels are given but the condition labels are not recorded at
all. Nevertheless, it is clear that the Petri net on the right is the most likely
candidate process to exhibit such behaviour.

In this paper we will tackle the problem of aggregating runs into a Petri
net that can generate these runs. We will show that it is possible to do this
for the three situations depicted in Figure 1.

2 Related Work

The generation of system nets from their causal runs has been investigated
before. The first publication on this topic is [19]. Here the basis is assumed
to be the set of all runs. These runs are folded, i.e., events representing
the occurrence of the same transition are identified, and so are conditions
representing a token on the same place. In [9] a similar folding approach is
taken, but there the authors start with a set of causal runs, as we do in the
present paper. [9] does not present algorithms in details for the aggregation
of runs but rather concentrates on correctness criteria for the derived system
net.

The problem tackled in this paper is closely related to the so-called syn-
thesis problem of Petri nets (see [10] and [14] for the synthesis of elementary
net systems and [6] for more general cases). In this work, the behaviour is
given in the form of state graphs (where the events are known but the states
are anonymous). In process mining, the observed behaviour is not complete
and it is not known, which process executions lead to identical global states.
More recently, [18] extracts Petri nets from models which are based on Mes-
sage Sequence Charts (MSCs), a concept quite similar to causal runs. Less
related is the work presented in [15], where a special variant of MSCs is used
to generate a system implementation.

In a recent paper [17], regions are defined for partial orders of events rep-
resenting runs. These regions correspond to places of a Place/Transition net,
which can generate these partial orders. In contrast to our work, the consid-
ered partial orders are any linearizations of causal orders, i.e., two ordered
events can either occur in a sequence (then there is a causal run with a con-
dition ”between” the events) or they can occur concurrently. Consequently,
conditions representing tokens on places are not considered in these partial
orders whereas our approach heavily depends on these conditions.

The research domain process mining is relatively new. A complete overview
of recent process mining research is beyond the scope of this paper. Therefore,
we limit ourselves to a brief introduction to this topic and refer to [4,5] and
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our website http://www.processmining.org for a more complete overview.
The goal of process mining is to extract information about processes from
event logs. One of the aspects of process mining focusses on finding a process
specification, based on a set of executions of that process. In process mining
a process log is taken as a starting point and a variety of algorithms have
been proposed to generate a process model based on this log. Typically, such
a log is considered to consist of cases (i.e. process instances, for example one
insurance claim in a process dealing with insurance claims) and all tasks in
each case are totally ordered (typically based on the timestamps). In this
paper, we take a different approach. We start by looking at so-called runs.
These runs are a partial ordering on the tasks within each case. However,
in addition to the partial ordering of tasks, we may have information about
the state of the system from which the logs originated, i.e. for each event
the pre and post conditions are known. This closely relates to the process
mining algorithms presented in [11] and [12]. However, in these papers only
causal dependencies between events and no state information is assumed to
be known.

In this paper, we provide three algorithms for the aggregation of runs.
First, we assume we indeed have full knowledge of each event, its precon-
ditions and its postconditions. Then, we assume that we cannot uniquely
identify events, i.e. the label of an event may refer to multiple transitions.
Finally, we provide an algorithm that assumes less knowledge about pre- and
postconditions. However, before we elaborate on our results, we first provide
some preliminary definitions that we use throughout the paper.

3 Preliminaries

In this section, we introduce some basic definitions used in the remainder
of this paper and formalize the starting point for process mining. In the in-
troduction, we stated that we start with a partial order on a set of events.
Typically, a partial order is represented by a graph, and therefore we intro-
duce some concepts related to graphs, such as a complete subgraph and a
graph coloring. A graph-coloring is a way to label the nodes of a graph in
such a way that no two neighboring nodes (i.e. nodes connected by an edge)
have the same color.

Definition 3.1. (Subgraph)
Let G = (N,E) be a graph, i.e. N is the set of nodes and E ⊆ N × N is

the set of edges. Let N ′ ⊆ N . We say that G′ = (N ′, E ∩ (N ′ × N ′)) is a
subgraph of G.

Definition 3.2. (Undirected path in a graph)
Let G = (N,E) be a directed graph. Let a ∈ N and b ∈ N . We define

an undirected path from a to b in the standard way as a sequence of nodes
denoted by < n1, . . . , nk > with k ≥ 1 such that n1 = a and nk = b and
∀i∈{1...k−1}((ni, ni+1) ∈ E ∨ (ni+1, ni) ∈ E).

Definition 3.3. (Complete graph)
Let G = (N,E) be a graph, i.e. N is the set of nodes and E ⊆ N ×N is the
set of edges. We say that G is a complete graph if and only if E = (N ×N).
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Definition 3.4. (Connected graph)
Let G = (N,E) be a graph. We say that G is a connected graph if and only
if for all n1, n2 ∈ N holds that there is an undirected path from n1 to n2.
A set of vertices N ′ ⊆ N generates a maximal connected subgraph if it is a
maximal set of vertices generating a connected subgraph.

Definition 3.5. (Graph coloring)
Let G = (N,E) be a graph. Let µ be a set of colors. A function f : N → µ

is a coloring function if and only if for all (n1, n2) ∈ E, either n1 = n2 or
f(n1) 6= f(n2).

Lemma 3.6. (Colorings on subgraphs can be combined)
Let G = (N,E) be a graph and E1, E2 ⊆ E, such that E1 ∪ E2 = E.

Furthermore, let f : N → µ be a coloring function on the graph (N,E1) as
well as a coloring function on the graph (N,E2). Then f is also a coloring
function on G.

Proof Let (n1, n2) ∈ E and n1 6= n2. Since E = E1 ∪ E2, we either have
(n1, n2) ∈ E1 or (n1, n2) ∈ E2. Since f is a coloring function on both (N,E1)
and (N,E2), f(n1) 6= f(n2). ut

In graphs, we would like to be able to talk about predecessors and suc-
cessors of nodes. Therefore, we introduce a special notation for that.

Definition 3.7. (Pre-set and Post-set)

Let G = (N,E) be a directed graph and let n ∈ N . We define
G
• n = {m ∈

N | (m,n) ∈ E} as the pre-set and n
G
•= {m ∈ N | (n,m) ∈ E} as the post-

set of n with respect to the graph G. If the context is clear, the superscript
G may be omitted, resulting in •n and n•.

As stated in the introduction, our starting point is not only a partial order
of events within a case, but also information about the state of a case. Since
we want to be able to represent both events and states, Petri nets provide
a natural basis for our approach. In this paper, we use a specific class of
Petri nets, called Place/Transition nets.

Definition 3.8. (Place/Transition net)
N = (P, T, F,M0) is a marked place/transition net (or P/T-net) if:

– P is a finite set of places,

– T is a finite, non-empty set of transitions, such that P ∩T = ∅ and T 6= ∅,

– F ⊆ (P × T ) ∪ (T × P ) is the flow relation of the net,

– M0 : P → IN represents the initial marking of the net, where a marking
is a bag over the set of places P , i.e. it is a function from P to the natural
numbers IN.

Note that any P/T net N = (P, T, F,M0) defines a directed graph ((P ∪
T ), F ). In this paper, we restrict ourselves to P/T nets where for all transi-
tions t holds that •t 6= ∅ and t• 6= ∅.
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Definition 3.9. (Bag Notations)
Let S be a set. A bag over S is a function from S to the natural numbers

IN. We use square brackets for the enumeration of the elements of a bag, e.g.
[2a, b, 3c] denotes the bag with two a’s, one b, and three c’s. The sum of two
bags (X ]Y ), the presence of an element in a bag (a ∈ X), and the notion of
subbags (X ≤ Y ) are defined in a straightforward way and they can handle
a mixture of sets and bags. Furthermore,

⊎

a∈A

(

f(a)
)

denotes the sum over
the bags that are a result of function f .

Petri nets specify processes. The behaviour of a Petri net is given in
terms of causal nets, representing process instances (i.e. cases). Therefore,
we introduce some concepts taken from [8]. First, we introduce the notion of
a causal net, this is a specification of one process instance of some process
specification.

Definition 3.10. (Causal net)
A P/T net (C,E,K, S0) is called a causal net, if and only if:

– For every place c ∈ C holds that | • c| ≤ 1 and |c • | ≤ 1,

– The transitive closure of K is irreflexive, i.e. it is a partial order on C∪E,

– For all places c ∈ C holds that S0(c) = 1 if •c = ∅ and S0(c) = 0 if •c 6= ∅.

In causal nets, we refer to places as conditions and to transitions as events.

A causal net is typically generated by a process (remember that it rep-
resents an instance of a process). Therefore, each transition and place in
a causal net should refer to a transition and place of some process specifi-
cation respectively. This reference is made by mapping the conditions and
events of a causal net onto places and transitions of a Petri net. We call the
combination of a causal net and such a mapping a run.

Definition 3.11. (Run)
A run (N,α, β) of a Place/Transition net (P, T, F,M0) is a causal net N =

(C,E,K, S0), together with two mappings α : C → P and β : E → T , such
that:

– For each event (transition) e ∈ E, the mapping α induces a bijection from
•e to •β(e) and a bijection from e• to β(e)•

– α(S0) = M0 where α is generalized to markings by α : (C → IN) → (P →
IN), such that α(S0)(p) =

∑

c|α(c)=p S0(c).

To avoid confusion, the P/T net (P, T, F,M0) is called system net in the
sequel.

When we take a system net and take all possible runs for that system
net, we say that we have the causal behaviour of that system net.

Definition 3.12. (Causal behaviour)
The causal behaviour of a P/T net (P, T, F,M0) is defined as its set of runs.

In this paper, we take a set of runs as a starting point. From these runs,
we generate a system net describing the behaviour of all individual runs.
Note that we do not assume to have all runs as a starting point. The causal
behaviour of a P/T net is not necessarily a finite set of runs, therefore we
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cannot assume that we have all runs. Furthermore, in process mining we have
to deal with logs which typically show representative examples of possible
behaviour, rather than all possible behaviour.

4 Aggregation of Runs

Generally, when looking at runs, it is assumed that the system net is used to
generate these runs. However, what if this is not the case? In this section, we
will introduce an approach that takes a set of runs as a starting point. From
this set of runs, a system net is constructed. However, to construct a system
net, we need to find a mapping from all the events and conditions in the causal
nets to the transitions and places in the system net. From Definition 3.11,
we know that there should exist a bijection between all places in the pre- or
post-set of an event in some causal net, and the pre- or post-set of a transition
in a system net. Therefore, two conditions belonging to the pre- or post-set

of an event should not be mapped onto the same label. This restriction is in
fact merely another way to express the fact that our P/T nets do not allow
for more than one edge between a place and a transition or vice versa. More
general, we define a labelling function on the nodes of a graph as a function
that does not give the same label to two nodes that have a common successor,
or a common predecessor.

Definition 4.1. (Labelling function)
Let µ be a set of labels. Let G = (N,E) be a graph. Let R = {(n1, n2) ⊆

N × N | n1
G
• ∩n2

G
• 6= ∅∨

G
• n1∩

G
• n2 6= ∅}. We define f : N → µ to be a

labelling function if and only if f is a coloring function on the graph (N,R).

In this paper, we focus on the aggregation of runs that originate from
a Petri net with a clearly defined starting state and completion state, i.e.
processes that describe a life-cycle of some case (e.g. a customer order, a
payment transaction, a job application, a production order, etc.). Note that
this assumption is very natural in the context of workflow management sys-
tems [1,3,13]. However, it applies to many other domains where processes
are instantiated for specific cases. Hence, we will limit ourselves to a special
class of Petri nets, namely Workflow-nets or WF-nets. A WF-net is defined
as follows:

Definition 4.2. (Workflow nets)
Let N = (P, T, F,M0) be a P/T-net. N is a workflow net (WF-net) if and

only if:

1. object creation: P contains an input place pini such that •pini = ∅,
2. object completion: P contains an output place pout such that pout• = ∅,
3. connectedness: there is a path from pini to every node and from every

node to pout,
4. initial marking : M0 = [pini], i.e. the initial marking marks only the input

place pini.

A WF-net is a Petri net with one input place. When looking at runs of a
WF-net, we can therefore conclude that there is always exactly one condition
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containing a token and all the other conditions do not contain tokens. A set
of causal nets fulfilling this condition is called a causal set.

Definition 4.3. (Causal set)
Let n ∈ IN and let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a set of causal nets.
We call this set a causal set if and only if for all 0 ≤ i < n holds that:

– All sets Ci, Ei, Ki, Cj , Ej and Kj are disjoint.

–
∑

c∈Ci
Si(c) = 1, i.e. there is exactly one condition with an empty preset,

– For all e ∈ Ei with c ∈ •e such that Si(c) = 1 holds that {c} = •e,i.e.
each event in the postset of one of these conditions has only this initially
marked condition in its preset,

– For all c ∈ C with c• = ∅ holds that ∀e∈•ce• = {c}, i.e. each event in
the preset of a condition with empty postset (representing a token on the
place pout) has only this condition in its postset.

The concept of constructing a system net from a causal set is called
aggregation. This concept can be applied if we assume that each causal net
in the given set can be called a run of some system net. From Definition 3.11,
we know that we need two mappings α and β satisfying the two properties
mentioned. Using the definition of a system net and the relation between
system nets and runs, we can conclude that any aggregation algorithm should
have the following functionality:

– It should provide the set of places P of the system net.
– It should provide the set of transitions T of the system net.
– It should provide the flow relation F of the system net.
– It should provide the initial marking M0 of the system net.
– For each causal net in the causal set, it should provide the mappings

αi : Ci → P and βi : Ei → T , in such a way that for all causal nets, αi(Si)
is the same (i.e. they have the same initial marking) and they induce
bijections between pre- and post-sets of events and their corresponding
transitions.

From Definition 3.11, we know that each event that appears in a causal net
has a corresponding transition in the original system net. More important,
however, is the fact that bijections exist between the pre- and post-sets of
this event and the corresponding transitions. In order to express this in terms
of labelling functions of causal nets, we formalize this using the notion of
transition equivalence.

Definition 4.4. (Transition equivalence)
Let µ, ν be two sets of labels, such that µ ∩ ν = ∅. Let Φ = {Ni =

(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a causal set, and let Ψ = {(αi : Ci → µ, βi :
Ei → ν) | 0 ≤ i < n} be a set of labelling functions of (Ci, Ei,Ki, Si). We
define (Φ, Ψ) to respect transition equivalence if and only if for each ei ∈ Ei

and ej ∈ Ej with βi(ei) = βj(ej) the following holds:

– for each (pi, ei) ∈ Ki we have a (pj , ej) ∈ Kj such that αi(pi) = αj(pj),
– for each (ei, pi) ∈ Ki we have a (ej , pj) ∈ Kj such that αi(pi) = αj(pj).

In the remainder of this paper, we will introduce three aggregation algo-
rithms.
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5 Aggregation with Known Labels

In this section, we present an aggregation algorithm that assumes that we
know all mapping functions, and that these mapping functions adhere to
the definition of a run. To illustrate the aggregation process, we make use
of a running example throughout the paper. Consider Figure 2 where four
part of runs are shown. It is important to realize that these are not com-
plete runs, but merely parts of runs. We do assume however that the events
A,B,C,D,E,F and G do not appear in any other part of each run.

··
A

p1

p2 B

C
(a)

·· ··
A

p2

p1

D

(b)

·· ··
E p2 B

(c)

·· ··
p2

p1

D
F

G
(d)

··

Fig. 2 Four examples of parts of runs.

Our first aggregation algorithm is called the ALK aggregation algorithm
(short for “All Labels Known”). This algorithm assumes all information such
as presented in Figure 2 to be present, i.e. it assumes known labels for events
and known labels for conditions. These labels refer to concrete transitions
and places in the aggregated system net.

Definition 5.1. (ALK aggregation algorithm)
Let µ, ν be two sets of labels, such that µ ∩ ν = ∅. Let Φ be a causal set of

size n and let (Ci, Ei,Ki, Si) ∈ Φ correspond to a causal net with 0 ≤ i < n.
Furthermore, let {(αi : Ci → µ, βi : Ei → ν) | 0 ≤ i < n} be a set of
labelling functions respecting transition equivalence, such that for all causal
nets αi(Si) is the same. We construct the system net (P, T, F,M0) belonging
to these runs as follows:

– P =
⋃

0≤i<n rng(αi) is the set of places (note that P ⊆ µ)1,

– T =
⋃

0≤i<n rng(βi) is the set of transitions (note that T ⊆ ν),

– F =
⋃

0≤i<n{(αi(c), βi(e)) ∈ P × T | (c, e) ∈ Ki ∩ (Ci × Ei)}∪
⋃

0≤i<n{(βi(e), αi(c)) ∈ T × P | (e, c) ∈ Ki ∩ (Ei × Ci)}
is the flow relation,

– M0 = α0(S0) is the initial marking.

The result of the ALK aggregation algorithm from Definition 5.1 for the
parts presented in Figure 2 is shown in Figure 3. Another example is given
in Figure 1(a).

It is easy to see that the aggregated net shown in Figure 3 can actually
generate the runs shown in Figure 2. We show that this is always the case
after applying the ALK aggregation algorithm.

1 With rng we denote the range of a function, i.e. rng(f) = {f(x) | x ∈ dom(f)}



Aggregating Causal Runs into Workflow nets 11

. . .

A

p1

p2 B

C

D

E

F

G

. . .

Fig. 3 The aggregated Petri net.

Property 5.2. (ALK algorithm is correct)
To prove the ALK algorithm is correct, we show that for 0 ≤ i < n holds

that Ni = (Ci, Ei,Ki, Si), (Ni, αi, βi) is indeed a run of σ = (P, T, F,M0),
(i.e. the requirements stated in Definition 3.11 are fulfilled).

Proof Since we assumed that all Ni = (Ci, Ei,Ki, Si) are causal nets, we
need to prove the following for each αi and βi.

1. αi is a function from Ci onto P . This trivially follows from Definition 5.1.

2. βi is a function from Ei onto T . This trivially follows from Definition 5.1.

3. αi(Si) = M0 holds by definition, since it holds for S0 and for all causal
nets, αi(Si) is the same.

4. For each event e ∈ Ei, the mapping αi induces a bijection from •e to
•βi(e) and a bijection from e• to βi(e)•.

Let e ∈ Ei. We start by showing that αi(
Ni
• e) =

σ
• βi(e) and αi(e

Ni
•

) = βi(e)
σ
•. Assume p ∈ αi(

Ni
• e)\

σ
• βi(e), i.e. there exists a c ∈ Ci

with (c, e) ∈ Ki, such that p = αi(c), βi(e) = t and (p, t) 6∈ F . Clearly
this contradicts with the definition of F in Definition 5.1. Now assume
p ∈

σ
•βi(e) \αi(

Ni
• e), i.e. there is a (p, t) ∈ F such that βi(e) = t and there

is no c ∈ Ci with αi(c) = p, such that (c, e) ∈ Ki. If this is the case in
all causal nets for 0 ≤ i < n, then this leads to a contradiction since this
would imply (p, t) 6∈ F (cf. Definition of F in Definition 5.1). If there is
a 0 ≤ j < n, such that (c′, e′) ∈ Kj with βj(e

′) = t and αj(c
′) = p, then

there has to be a c ∈ Ci such that (c, e) ∈ Ki, since αi(
Ni
• e) = αj(

Ni
• e′)

(cf. Definition 4.4). Combined with the fact that αi and βi are labelling

functions, αi(
Ni
• e) =

σ
• βi(e) and αi(e

Ni
• ) = βi(e)

σ
• yields the bijection.

Similar arguments apply for the post-set.
ut

The aggregation algorithm presented in Definition 5.1 is a rather triv-
ial aggregation over a set of runs. However, it is assumed that the mapping
functions αi and βi are known for each causal net, in such a way that Defini-
tion 3.11 is followed. Furthermore, we assume two sets of labels µ and ν to be
known. However, when applying these techniques in the context of process
mining, it is often not realistic to assume that all of these are present. There-
fore, in the remainder of this paper, we relax some of these assumptions to
obtain more usable process mining algorithms.
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6 Aggregation with Duplicate or Missing Transition Labels

In this section, we will assume that the causal set used to generate the system
net and the labelling functions, does not respect transition equivalence. We
introduce an algorithm to change the labelling function for events in such
a way that this property holds again. In the domain of process mining, the
problem of so-called “duplicate transitions” (i.e. several transitions with the
same label) is well-known (cf. [2,7,16]). Therefore, there is a need for algo-
rithms to find out which events actually belong to which transition. In this
section, we assume that we have causal nets with labelling functions, where
some events have the same label, even though they may refer to different
transitions, which is shown in Figure 4. Note that this figure is similar to
Figure 2, except that we now labelled events F and G both with a new label
X.

··
A

p1

p2 B

C
(a)

·· ··
A

p2

p1

D

(b)

·· ··
E p2 B

(c)

·· ··
p2

p1

D
X

X
(d)

··

Fig. 4 Four examples of parts of runs.

In terms of an aggregation algorithm, the problem of duplicate labels
translates to the situation where the property of transition equivalence (Prop-
erty 4.4) is not satisfied. Since the aggregation algorithm presented in the
previous section only works if this property holds, we provide an algorithm
to redefine the labelling functions for events. Furthermore, we will prove that
after applying this algorithm, the desired property holds.

Definition 6.1. (Relabelling algorithm)
Let µ, ν be two sets of labels, such that µ ∩ ν = ∅. Let Φ = {Ni | 0 ≤

i < n ∧ Ni = (Ci, Ei,Ki, Si)} be a causal set, and let Ψ = {(αi : Ci →
µ, βi : Ei → ν) | 0 ≤ i < n} be a set of labelling functions in (Ci, Ei,Ki, Si),
such that αi(Si) is the same for all causal nets. Furthermore, assume that
µ and ν are minimal, i.e.

⋃

0≤i<n rng(αi) = µ and
⋃

0≤i<n rng(βi) = ν. Let

E? =
⋃

0≤i<n Ei be the set of all events in the causal set. We define the
relabelling algorithm as follows:

1. Define ./⊆ E? × E? as an equivalence relation on the elements of E?

in such a way that ei ./ ej with ei ∈ Ei and ej ∈ Ej if and only if

βi(ei) = βj(ej), αi(
Ni
• ei) = αj(

Ni
• ej), and αi(ei

Ni
• ) = αj(ej

Ni
• ).

2. For each e ∈ E?, we say eqvl(e) = {e′ ∈ E? | e ./ e′}.
3. Let ν′ be the set of equivalence classes of ./, i.e. ν ′ = {eqvl(e) | e ∈ E?}.
4. For all causal nets (Ci, Ei,Ki, Si) and labelling functions αi, define a

labelling function β′
i : Ei → ν′ such that for an event ei, β′

i(ei) = eqvl(ei),
i.e. it returns the equivalence class of ./ containing ei.

After re-labelling the events, the part of the run shown in Figure 4(d)
is relabelled to include the pre- and postconditions. Figure 5(a) shows the
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p2

p1

D
X

X
(a)

p2

p1

D
X

X

p1

p2

(b)

Fig. 5 The original and relabelled part of Figure 4(d).

fragment before relabelling, whereas Figure 5(b) shows the fragment after
relabelling. However, in Figure 5(b) we only show the relabelling with respect
to the post conditions.

Applying the ALK algorithm of Definition 5.1 to the relabelled runs
yields the result as shown in Figure 6. Note that we do not show the ν ′ labels
explicitly, i.e. B refers to the equivalence class of events labelled B.

. . .

A

p1

p2 B

C

D

E

X

X
p2

p1

. . .

Fig. 6 A part of the aggregated net.

What remains to be shown is that our algorithm does not only work for
our small running example, but also in the general case. Note that the only
difference between the assumptions in Definition 5.1 and Definition 6.1 is the
requirement with respect to transition equivalence. Therefore, if suffices to
prove that after applying the relabelling algorithm on a causal set, we can
establish transition equivalence.

Property 6.2. (Transition equivalence holds after relabelling)
Let µ, ν be two sets of labels, such that µ∩ν = ∅. Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤
i < n} be a causal set, and let Ψ = {(αi : Ci → µ, βi : Ei → ν) | 0 ≤ i < n}
be a set of labelling functions in (Ci, Ei,Ki, Si), such that αi(Si) is the same
for all causal nets. After applying the relabelling algorithm, the property of
transition equivalence holds for (Φ, Ψ ′), with Ψ ′ = {(αi : Ci → µ, β′

i : Ei →
ν′) | 0 ≤ i < n}, and β′

i as defined in Definition 6.1.

Proof We prove that Property 4.4 holds for (Φ, Ψ ′) after applying the rela-
belling function. Assume (Ci, Ei,Ki, Si) and (Cj , Ej ,Kj , Sj) are two causal
nets from Φ. The new function β′

i is indeed a function, since for each event
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ei ∈ Ei there exists exactly one equivalence class containing ei. Further-
more, let ei ∈ Ei and ej ∈ Ej , such that β′

i(ei) = β′
j(ej). We know that

ei ./ ej and from the definition of ./, we know that αi(•ei) = αj(•ej) and
αi(ei•) = αj(ej•), which directly implies transition equivalence. ut

The algorithm presented above is capable of finding events that have
the same label, but correspond to different transitions in the system net.
When no transition labels are known at all, it can be applied to find all

transition labels, by using an initial ν = {τ} and initial mapping functions
βi, mapping everything onto τ . However, in that case, no distinction can be
made between events that have the same pre- and post set, but should have
different labels. After applying this relabelling algorithm, the aggregation
algorithm of Section 5 can be used to find the system net belonging to the
given causal nets.

7 Aggregation with Unknown Place Labels

In Section 6, we have shown a way to identify the transitions in a system net,
based on the labels of events in causal nets. However, what if condition labels
are not known? In this section, we take one step back. We assume all events to
refer to the correct transition and we try to identify the labels of conditions.
We introduce an algorithm to aggregate causal nets to a system net, and we
prove that the original causal nets are indeed runs of that system net. In
Figure 7, we again show our small example of the aggregation problem, only
this time there are no labels for conditions p1 and p2, which we did have in
figures 2 and 4.

··
A

B

C
(a)

·· ··
A D

(b)

·· ··
E B

(c)

·· ··
D

F

G
(d)

··

Fig. 7 Four examples of parts of runs.

Consider the four runs of Figure 7. Remember that they are parts of
causal nets, in such a way that the tasks A,B,C,D,E, F and G do not
appear in any other way in another causal net. In contrast to the algorithms
presented in previous sections, we cannot always derive a unique aggregated
system net for causal nets if we do not have labels for the conditions. Instead,
we define an aggregation class, describing a class of WF-nets that could have
generated these causal nets. Table 1 shows some requirements all WF-nets
in the aggregation class of our example should satisfy.

The information in Table 1 is derived using the concept of a segment,
which can be considered to be the context of a condition in a causal net.
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Table 1 Information derived from runs shown in Figure 7.

Fragment Conclusions
Fig. 7 (a) A• = •B ] •C
Fig. 7 (b) A• = •D
Fig. 7 (c) E• = •B
Fig. 7 (d) F • ]G• = •D

Definition 7.1. (Segment)
Let N = (C,E,K, S0) be a causal net. Furthermore, let N ′ = (C ′, Ein, Eout)
be such that C ′ ⊆ C, Ein ∪Eout ⊆ E and Ein 6= ∅ and Eout 6= ∅. We call N ′

a segment if and only if for all c ∈ C ′ holds that •c ⊆ Ein and c• ⊆ Eout and
for all e ∈ Ein holds that •e ∩C ′ = ∅ and e• ⊆ C ′ and for all e ∈ Eout holds
that •e ⊆ C ′ and e • ∩C ′ = ∅. Furthermore, the subgraph of N made up by
C ′ ∪Ein ∪Eout is connected. We call the events in Ein the input events and
the events in Eout the output events.

For the fragments of Figure 7, it is easy to see that each of them contains
only one segment, where the input events are the events on the left hand side
and the output events are the events on the right hand side. The meaning of
a segment is as follows. If we have a run and a segment in that run, then we
know that after each of the events in the input set of the segment occurred, all
the events in the output set occurred in the execution represented by this run.
This translates directly to a marking in a system net, since the occurrence
of a set of transitions would lead to some marking (i.e. a bag over places),
which enables another set of transitions. Furthermore, each transition only
produces one token in each output place. Combining this leads to the fact that
for each segment in a causal net the bag of places following the transitions
corresponding to the input events of the segment should be the same as the
bag of places preceding the transitions corresponding to the output set of
events, as indicated in Table 1.

Clearly, when looking only at these fragments, what we are looking for
are the places that should be put between tasks A,E, F and G on the one
hand, and B,C and D on the other hand. Therefore, we only focus on this
part of the causal nets. For this specific example, there are two possibilities,
both of which are equally correct, namely the two WF-net fragments shown
in Figure 8.

. . . A

B

C

D

E

G

F

(a)

. . . . . . A

B

C

D

E

F

G

(b)

. . .

Fig. 8 Two part of aggregated nets.
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From the small example, we have seen that it is possible to take a set of
causal nets without labels for any of the conditions (but with labels for all
the events) and to define a class of WF-nets that could be system nets of
the causal nets. In the remainder of this section, we show that this is indeed
possible for all causal set s. For this, we first introduce the NCL algorithm.

7.1 NCL Algorithm

Before actually presenting the NCL algorithm (which stands for “No Con-
dition Labels”), we first take a look at a more intuitive example. Consider
Figure 9, where we present three causal nets, each of which corresponds to
a paper review process. In the first causal net, three reviewers are invited to
review the paper and after the three reviews are received, the paper is ac-
cepted. In the second causal net, only two reviews are received (the third one
is not received on time), but the paper is rejected nonetheless (apparently
the two reviewers that replied rejected the paper). In the third example only
one review is received in time, and therefore an additional reviewer is invited,
which hands in his review in time, but does not accept the paper.

Invite
reviewers

Get 
review 1

Get 
review 2

Get 
review 3

Collect
& Decide

Accept 
paper

(a)

Invite
reviewers

Get 
review 1

Get 
review 2

Time-out 
review 3

Collect
& Decide

Reject 
paper

(b)

Invite
reviewers

Time-out 
review 1

Time-out 
review 2

Get 
review 3

Collect
& Decide

Invite add. 
reviewer

Get add.
review

Reject 
paper

(c)

Fig. 9 Three causal nets of a review process of a paper.



Aggregating Causal Runs into Workflow nets 17

As we stated before, we define an aggregation class of a causal set, that
contains all WF-nets that are capable of generating the causal nets in the
causal set. The information needed for this aggregation class comes directly
from the causal nets, using segments. In Table 2, we present the conclusions
we can draw based on the three causal nets. Note that in this table, just like in
Table 1, we consider bags of pre- and post-sets of transitions in the aggrega-
tion class. The information in this table is obtained from the causal nets in the
following way. Consider for example Figure 9(a), where invite reviewers is
followed by Get review 1, Get review 2 and Get review 3. This implies
that the bag of output places of invite reviewers, should be the same as
the sum over the bags of the input places of Get review 1, Get review 2

and Get review 3.
Consider the information presented in Table 2. We formalize the conclu-

sions sketched there in the concept of an aggregation class.

Definition 7.2. (Aggregation class)
Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a causal set, and let σ =

(P, T, F,M0) be a marked WF-net. For each causal net, let βi : Ei → T
be a mapping from the events of that causal net to T , such that βi is a la-
belling function for (Ci, Ei,Ki, Si). We define AΦ, the aggregation class of Φ,
as the set of all pairs (σ,B), such that the following conditions are satisfied:

1. T =
⋃

0≤i<n Rng(βi) is the set of transitions, i.e. each transition appears
as an event at least once in some causal net,

2. B is the set of all labelling functions, i.e. B = {βi | 0 ≤ i < n}. We use βi ∈
B to denote the labelling function for events belonging to (Ci, Ei,Ki, Si) ∈
Φ.

3. For all p ∈ P holds that
σ
•p ∪ p

σ
• 6= ∅,

4. M0 = [pini] and
σ
•pini = ∅,

5. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds
that if Si(

γ
•e) = 1 then pini ∈

σ
• t,

6. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds
that |t

σ
• | = |e

γ
• | and |

σ
• t| = |

γ
•e|,

7. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T
holds that |t

σ
• ∩

⋃

t′∈T ′(
σ
• t′)| ≥

∑

e′∈Ei,β(e′)∈T ′ |e
γ
• ∩

γ
•e′|,

8. For each causal net γ = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T
holds that |

⋃

t′∈T ′(t′
σ
•)∩

σ
• t| ≥

∑

e′∈Ei,β(e′)∈T ′ |e′
γ
• ∩

γ
•e|,

9. For each causal net γ = (Ci, Ei,Ki, Si) and any segment (C ′
i, Ein, Eout)

of γ, holds that
⊎

e∈Ein

(

βi(e)
σ
•

)

=
⊎

e∈Eout

(

σ
•βi(e)

)

.

Figure 10 is used to gain more insight into part 9 of Definition 7.2. In
the lower causal net of that figure, there is a token travelling from A to
D and from B to C. The upper causal net on the other hand only con-
nects A and C. Assuming that these are the only causal nets in which these
transitions appear, we know that the condition between A and D and be-
tween B and C should represent a token in the same place, since there is a
segment ({c1, c2, c3}, {A,B}, {C,D}) in the lower causal net and therefore,
A • ]B• = •C ] •D = [p1, 2p2].
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Table 2 Information derived from review example.

Causal net Conclusions on transitions in the aggregation class

Fig. 9 (a) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” ]
•“Get review 2” ]
•“Get review 3”

“Get review 1” • ]
“Get review 2” • ]
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Accept paper”

|“Accept paper” • | = 1

Fig. 9 (b) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” ]
•“Get review 2” ]
•“Time-out review 3”

“Get review 1” • ]
“Get review 2” • ]
“Time-out review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Reject paper”

|“Reject paper” • | = 1

Fig. 9 (c) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Time-out review 1”]
•“Time-out review 2”]
•“Get review 3”

“Time-out review 1”• ]
“Time-out review 2”• ]
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Invite add. reviewer”

“Invite add. reviewer”• = •“Get add. review”

“Get add. review”• = •“Reject paper”

|“Reject paper” • | = 1
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Fig. 10 Example explaining the use of bags.

Definition 7.2 defines a finite class of Workflow nets for a causal set. What
remains to be given are the conditions under which it is a finite non-empty

class of Petri nets and the proof that each Petri net with its mappings is
indeed a system net for the causal set. To prove this, we first introduce the
concept of a condition graph.

Definition 7.3. (Condition graph)

Let N = (C,E,K, S) be a causal net. We define the condition graph
∆N = (C,A) as an undirected graph, such that A = {(c1, c2) ∈ C ×

C | ∃e∈E{c1, c2} ⊆
N
• e ∨ {c1, c2} ⊆ e

N
•}. Note that since a condition graph is

undirected, (c1, c2) ∈ A implies that (c2, c1) ∈ A.

We use condition graphs to prove that each Petri net with its mappings
in the aggregation class of a causal set is indeed a system net for that causal
set. For this, we first introduce some lemmas on these condition graphs that
show the relation between condition graphs and causal nets. We start by
showing that pre- and post-sets of events correspond to complete subgraphs
in the condition graph, i.e. subgraphs where each pair of nodes is connected
by an edge.

Lemma 7.4. (Pre- and post sets relate to complete subgraphs in
condition graphs)

Let N = (C,E,K, S) be a causal net and ∆N = (C,A) its condition graph.

We show that for all e ∈ E, holds that ∆N restricted to
N
• e is a complete

subgraph and ∆N restricted to e
N
• is a complete subgraph. Furthermore, for

each complete subgraph (C ′, A′), there exists an e ∈ E, such that C ′ ⊆
N
• e or

C ′ ⊆ e
N
• .
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Proof Since for all {c1, c2} ⊆
N
• e, holds that (c1, c2) ∈ A by definition, the

first part is correct. The same applies to e
N
• .

Now assume (C ′, A′) is a complete subgraph. Assume
{c1, c2} ⊆ C ′. Since we are looking at a complete sub-
graph, we know (c1, c2) ∈ A′, therefore there exists an

e1 ∈ E, such that {c1, c2} ⊆
N
• e1 or {c1, c2} ⊆ e1

N
• .

Assume {c1, c2} ⊆
N
• e1 (The proof is symmetrical for

e1
N
•). Now assume c3 ∈ C ′ such that c1 6= c3 and

c2 6= c3. Let c3 6∈
N
• e1. We show that this leads to a

contradiction. Since for all c ∈ C holds that |c
N
• | ≤ 1,

and {c1, c2} ⊆
N
• e1, we know that there must be an

e2 ∈ E, such that {c2, c3} ⊆ e2
N
• .

c1 c2

c3

e1

e2e3

Similarly, we know that there is an e3 ∈ E, such that {c1, c3} ⊆ e3
N
• . However,

since |
N
• c3| ≤ 1, this implies that e2 = e3 and thus {c1, c2, c3} ⊆ e2

N
• . ut

Using the fact that each pre- and post-set correspond to a complete sub-
graph, we can infer that each segment in a causal net corresponds to a con-
nected subgraph in the condition graph, i.e. a subgraph such that there is a
path between each two nodes. Furthermore, we show that these connected
subgraphs are maximal, i.e. all nodes in the subgraph are only connected to
nodes inside the subgraph.

Lemma 7.5. (Segments correspond to maximal connected subgraphs
in condition graphs)

Let N = (C,E,K, S) be a causal net and ∆N = (C,A) its condition graph.
Let (C ′, Ein, Eout) be a segment in N . We show that (C ′, A∩ (C ′ ×C ′)) is a
maximal connected subgraph of ∆N .

Proof From Definition 7.1 we know that the graph (C ′∪Ein∪Eout,K∩((C ′∪
Ein ∪Eout)× (C ′ ∪Ein ∪Eout))) is a connected graph. Now, let c ∈ C ′ be a

condition in the segment and assume that {ein} =
N
• c and {eout} = c

N
• . From

Lemma 7.4, we know that ein
N
• and

N
• eout make up a complete subgraph

in ∆N and since c ∈
N
• eout ∩ ein

N
• that these two complete subgraphs make

up a connected subgraph. By induction over the elements of C ′, it is easy to
see that C ′ makes up a connected subgraph in ∆N . Therefore, each segment
defines a complete subgraph G′ in ∆N . Furthermore, let G′ = (C ′, A′) be the
connected subgraph of ∆N corresponding to the segment. Let c ∈ C \C ′ and
assume there exists a c′ ∈ C ′, such that (c, c′) ∈ A. This implies that there

is an e ∈ E, such that {c, c′} ⊆
N
• e or {c, c′} ⊆ e

N
• . However, this implies that

e ∈ Ein or e ∈ Eout either of which imply that c ∈ C ′. Therefore, such a c
does not exist and G′ is maximal. ut

At this point, we look at the definitions of Section 3 again. If we assume
that we have a system net and the causal behaviour of this system net, we
can derive the next lemma using Definition 3.5.
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Lemma 7.6. (System nets color condition graphs)
Let σ = (P, T, F,M0) be a system net and (N,α, β) be a run of that system
net, with N = (C,E,K, S0). Furthermore, let ∆N = (C,A) be the condition
graph of N. The mapping α : C → P is a coloring function of ∆N , with the
set of colors being P .

Proof Let n1, n2 ∈ C be two nodes in ∆N with n1 6= n2. For α to be a
coloring, α(n1) 6= α(n2) should hold if (n1, n2) ∈ A. Assume (n1, n2) ∈ A.

This means that there is an e ∈ E such that {n1, n2} ⊆
N
• e or {n1, n2} ⊆ e

N
• .

From Definition 3.11, we know that α induces a bijection from
N
• e to

σ
•β(e)

and from e
N
• to β(e)

σ
•. Therefore, α(n1) 6= α(n2). ut

We have shown that system nets color condition graphs. However, we
can go one step further and introduce the concept of a conditional coloring,
which is a coloring on the condition graph, such that the coloring function,
when applied to the conditions in a causal net, induces local bijections for
the input and output sets of events.

Definition 7.7. (Conditional coloring)
Let Φ be a causal set and let A be the aggregation class of Φ. Moreover, let
(σ,B) ∈ A, with σ = (P, T, F,M0) and let N = (C,E,K, S) ∈ Φ be a causal
net and ∆N = (C,A) be the condition graph of N . Assume α : C → P is
a function, such that α is a coloring on ∆N and for all c ∈ C holds that

α(c) ∈ {p ∈ P | β(
N
• c) ⊆

σ
•p∧ β(c

N
•) ⊆ p

σ
•}. 2 We call α a conditional coloring

of ∆N .

The concept of a conditional coloring we introduced here is often referred
to in mathematics as a list coloring.

Lemma 7.8. (Conditional coloring induces bijections)
Let Φ be a causal set and let A be the aggregation class of Φ, and let

(σ,B) ∈ A, with σ = (P, T, F,M0). Let N = (C,E,K, S) ∈ Φ be a causal
net and ∆N = (C,A) be the condition graph of N . Let α : C → P be a
conditional coloring of ∆N . We show that for all e ∈ E, α induces a bijection

from
N
• e to

σ
•β(e) and from e

N
• to β(e)

σ
•.

Proof The requirements stated in Definition 7.2, imply that |
N
• e| = |

σ
•β(e)|.

Furthermore, since ∆N restricted to
N
• e is a complete graph (Lemma 7.4),

and α is a coloring function (Lemma 7.6), we know that |α(
N
• e)| = |

N
• e| Since

all elements in
N
• e are mapped to different colors. Combining both implies

that |α(
N
• e)| = |

σ
•β(e)|.

For all c ∈
N
• e holds that α(c) ∈ {p ∈ P | β(

N
• c) ⊆

σ
• p ∧ β(c

N
•) ⊆ p

σ
•}

(Definition 7.7) and c
N
•= {e}, because N is a causal net we know that

α(c) ∈ {p ∈ P | β(e) ∈ p
σ
•} and thus α(c) ∈

σ
• β(e). Since this holds for all

c ∈
N
• e, we can conclude that α(

N
• e) ⊆

σ
•β(e). By combining the above, we can

conclude that α(
N
• e) =

σ
•β(e), and thus that α induces a bijection from

N
• e to

σ
•β(e). A similar proof holds for the mapping from e

N
• to β(e)

σ
•. ut

2 Note that β is generalized, i.e. for a set E holds that β(E) = {β(e) | e ∈ E}.
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At this point we still need to prove the following for an arbitrary WF-net
in the aggregation class. For each causal net in a causal set, we should be
able to color its condition graph using a conditional coloring. If we are able
to construct such a coloring, we have satisfied the first requirement stated in
Definition 3.11.

Lemma 7.9. (Conditional coloring exists)
Let Φ be a causal set, let A be the aggregation class of Φ, and let (σ,B) ∈ A,
with σ = (P, T, F,M0). Let N = (C,E,K, S) ∈ Φ be a causal net and
∆N = (C,A) be the condition graph of N . Let βi ∈ B be a labelling function
belonging to Ni. We show that we can construct a mapping α : C → P , such
that α is a conditional coloring of ∆N .

Proof First, we look at the initial condition, i.e. the initially marked source

condition. Assume c ∈ C such that
N
• c = ∅. We call c

N
•= {e}. From the

definition of a causal set (Def. 4.3), we know that {c} =
N
• e and thus that

there is no c′ ∈ C with c 6= c′ and (c, c′) ∈ A. We know that
σ
•βi(e) = {pini}

(Def. 7.2). By setting α(c) = pini, we have a correct coloring for the initial
condition c in N .

Second, we look at the final conditions, i.e. the sink conditions. Assume

c ∈ C such that c
N
•= ∅. We call

N
• c = {e}. From the definition of a causal

set (Def. 4.3), we know that {c} = e
N
• and thus that there is no c′ ∈ C with

c 6= c′ and (c, c′) ∈ A. We know that |βi(e)
σ
• | = 1 (Def. 7.2). We say that

βi(e)
σ
•= {p}. By setting α(c) = p, we have a correct coloring for any final

condition c in N .
Finally, we split the graph up into two subgraphs. Let Ain = {(c1, c2) ∈

A |
N
• c1 =

N
• c2} and let Aout = {(c1, c2) ∈ A | c1

N
•= c2

N
•}. Using the

definition of a condition graph it is easy to see that Ain ∪Aout = A. We now
show that for each subgraph δin(N) = (C,Ain) and δout(N) = (C,Aout) we
can construct at least one conditional coloring. Then, we show that there is
at least one conditional coloring that is the same for both subgraphs after
which we can use Lemma 3.6 to show that this is a conditional coloring on
the complete graph.

Consider the subgraph δin(N) = (C,Ain). Using Lemma 7.4, it is easy to
see that this graph consists of several complete components and that each

component is a complete graph. Let e ∈ E. We know that e
N
•⊆ C and that

e
N
• defines a complete component in δin(N). Now, let V1, . . . , Vn be maximal

sets, such that for each 0 < i ≤ n holds that Vi ⊆ E
N
• and for all c1, c2 ∈ Vi

holds that c1
N
•= c2

N
• . For each Vi and c ∈ Vi, we say that Vi,in = {e} and

Vi,out = c
N
• .

From Definition 7.7, we know that for each c ∈ Vi must hold that α(c) ∈
{p ∈ P | β({e}) ⊆

σ
• p ∧ β(Vi,out) ⊆ p

σ
•}. Using rule 7 of Definition 7.2,

we first prove a necessary condition for this. Assume β({e}) = {t}, and

β(Vi,out) = T ′ = {t′}. Rule 7 shows us that |t
σ
• ∩

σ
• t′| ≥

∑

e′∈Vi,out
|e

N
• ∩

N
• e′|.

From the definition of partition V , we know that
∑

e′∈Vi,out
|e

N
• ∩

N
• e′| = |Vi|.

Furthermore, t
σ
• ∩

σ
• t′ = {p ∈ P | β(Vi,in) ⊆

σ
• p ∧ β(Vi,out) ⊆ p

σ
•}. Therefore

we know that there are at least enough colors available for each partition
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Vi. The same way of reasoning can be used to show that there are at least
enough colors available for each set of partitions υ ⊆ {V1, . . . , Vn}. (The
latter requires the use of rule 8 instead of 7 of Definition 7.2). Therefore,
there exists at least one conditional coloring for the entire subgraph δin(N).
Similarly, this can be shown for δout(N).

At this point, we have shown that we can construct conditional colorings
for two subgraphs of δ(N), namely δin(N) and δout(N). The final part of the
proof uses rule 8 of Definition 7.2, since we now have to show that the same

conditional coloring can be constructed for both subgraphs. For this pur-
pose, we consider a segment (C ′, Ein, Eout) in N . Since segments correspond
to connected components of δ(N), it is sufficient to show that the same con-
ditional coloring can be constructed for δin(N) and δout(N), restricted to C ′,
which we call δ′in(N) and δ′out(N). From the definition of a segment, it is clear
that this restriction does not disturb the structure of δin(N) and δout(N),
i.e. in both graphs, each connected component is still a complete subgraph.
Now consider a possible conditional coloring on δ′in(N). Each color given to a
condition in that graph refers to a place in the causal net. However, multiple
conditions can be mapped onto each place, namely one condition for each
token that was produced in that place by an element of Ein. The same holds
for δ′out(N), i.e. multiple condition can be mapped onto each place, namely
one condition for each token that was consumed by a succeeding element of
Eout. Since rule 9 of Definition 7.2 states that the tokens produced by Ein

are the tokens consumed by Eout, it must be possible to construct the same
conditional coloring α for both δ′in(N) and δ′out(N). Using Lemma 3.6, we
then know that this coloring α is a conditional coloring on δ(N)′, i.e. the
restriction of δ(N) to C ′.

Since we can now provide a conditional coloring on each connected com-
ponent of δ(N), we have shown that we can construct a conditional coloring
on the entire graph δ(N). ut

To clarify the rather complex proof of Lemma 7.9 we use an example.
Consider a causal net containing the fragment of a WF-net presented in
Figure 11. We numbered the conditions 1 through 8 to be able to distinguish
them. Now, assume that the two Petri nets presented in Figure 12 are parts of
two alternative system nets appearing in the aggregation class of that causal
net.

The proof of Lemma 7.9 depends on the condition graph of a run. There-
fore, in Figure 13 we present the condition graph of the run presented in
Figure 11. Note that we labelled the edges to show from which event the
edge was derived.

In Lemma 7.9, the condition graph of Figure 13 (i.e. δ(N) in the lemma)
is split up into two subgraphs, namely one for the input side of events (i.e.
δin(N), see Figure 14) and one for the output sides of events (i.e. δout(N),
see Figure 15).

Then the proof continues, by showing that for each of these two subgraphs
it is possible to provide a conditional coloring. Figure 16 shows the possible
labels for each subgraph and both Petri nets from Figure 12. It is easy to see
that this indeed leads to several possible colorings in each graph.
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Fig. 11 A part of a run containing
two segments.
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Fig. 12 Two parts of system nets in an
aggregation class.

c1

c2 c5c4c3
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ea
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f
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Fig. 13 Part of the condition graph of the run of Figure 11.

c1

c2 c5c4c3

c6c7
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cc8

a

Fig. 14 Input subgraph of Figure 13.

c1

c2 c5c4c3

c6c7

e

f

f

f

c8

Fig. 15 Output subgraph of Figure 13.

Finally, at this point it is proven that it is always possible to construct
two coloring functions on the input and output subgraph that give the same
label to each condition in both graphs. If we look at Figure 16 and we take
the input subgraph shown in Figure 12(a) (i.e. the left-top figure) then it
is easy to see that it is possible to label c4 with p2 and c5 with p1. This
however is not possible in the output subgraph, since neighbour c6 has to be
mapped onto p1. Instead there is only one mapping that is the same for both
subgraphs. The last part of the proof uses the fact that for each segment the
input enables the output. This implies that the tokens that is placed in p1

has to be consumed from there again. Therefore, if we would label c5 with
p1 then this would be the same as saying that transition A produces a token
in p1 which is consumed by transition F again. However, transition F also
consumes another token from p1, namely the one corresponding to c6, i.e.
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coming from transition B. This violates the fact that only one edge can exist
between a place and a transition.

Figure 17 shows the only possible conditional coloring of the condition
graph of Figure 13, using the labels provided by the system net 12(a) and
Figure 18 shows the only possible conditional coloring of the condition graph
of Figure 13, using the labels provided by the system net 12(b). Note that in
general additional conditional colorings may be possible.

From figures 17 and 18, we can conclude that both system nets depicted
in Figure 12 are indeed capable of producing the causal net of Figure 11,
since we can construct a conditional coloring on the condition graphs.

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p3p4p1

input subgraph

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p3p4p1

output subgraph
Labels according to Figure 12(a).

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p2,p3p2p1

input subgraph

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p2,p3p2p1

output subgraph
Labels according to Figure 12(b).

Fig. 16 Possible conditional colorings for the subgraphs of figures 14 and 15.

c1

c2 c5c4c3

c6c7c8

p1 p2 p1 p2

p1p3p4p1

Fig. 17 The conditional coloring of Figure 13 according to Figure 12(a).

c1

c2 c5c4c3

c6c7c8

p1 p2 p1 p2

p1p3p2p1

Fig. 18 The conditional coloring of Figure 13 according to Figure 12(b).
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What remains to be shown is that the conditional coloring also fulfills the
last part of the definition of a run, namely the demand with respect to the
initial marking. Furthermore, it is interesting to note that we can conclude
that at least three places are needed in the system net and that for example
the place between C and G could also be p1.

Lemma 7.10. (Initial marking can be mapped)
Let Φ be a causal set, let A be the aggregation class of Φ and let (σ,B) ∈ A
with σ = (P, T, F,M0). Let N = (C,E,K, S) ∈ Φ be a causal net and
∆N = (C,A) be the condition graph of N . Let α : C → P , such that α is a
conditional coloring of ∆N . We show that α(S) = M0.

Proof From Definition 7.2, we know that M0 = [pini]. Furthermore, from
Definition 4.3, we know that there is exactly one c ∈ C with S(c) = 1.
Moreover, using Lemma 7.9, we conclude that α(c) = pini and thus α(S) =
[pini] = M0. ut

Finally, we can combine everything and state that each WF-net in an
aggregation class is indeed a system net of a causal set.

Property 7.11. (Aggregation class contains system nets)
Let Φ be a causal set, let A be the aggregation class of Φ and let (σ,B) ∈ A
with σ = (P, T, F,M0). Let N = (C,E,K, S) ∈ Φ be a causal net with event
labelling function β ∈ B, condition graph ∆N = (C,A) and α : C → P a
conditional coloring of ∆N . (N,α, β) is a run of σ.

Proof This proof is given by combining Lemma 7.8, (which shows that for

all e ∈ E, α induces a bijection from
N
• e to

σ
•β(e) and from e

N
• to β(e)

σ
•) and

Lemma 7.10 (which shows that α(S) = M0). ut

We have shown that it is possible to take a set of causal nets and construct
a system net such that each causal net is a run of that system net, as long as
the causal nets have one initially marked condition. What we did not show
are the conditions under which the aggregation class is not empty. These
conditions however, cannot be given based on a set of causal nets. Even if
these causal nets belong to one causal set, this is still not enough. What we
can show however, is that if we start from a sound WF-net as a system net,
generate a set of runs and remove the labels of places, the original WF-net is
in the aggregation class. For the full definition of soundness, we refer to [1].

Property 7.12. (A system net is in the aggregation class of its runs)
Let σ = (P, T, F,M0) be a sound WF-net. We consider σ to be a system

net. Let B = {(Ni, αi, βi) | 0 ≤ i < n} be the causal behaviour of that
system net, such that each (Ni, αi, βi) is a run of that system net, with
Ni = (Ci, Ei,Ki, Si). Let B = {βi | 0 ≤ i < n} and Φ = {Ni | 0 ≤ i < n} be
a causal set. We show that (σ,B) ∈ A(Φ).

Proof We show that all conditions of Definition 7.2 are satisfied.

1. T =
⋃

0≤i<n Rng(βi) is the set of transitions. Since the WF-net is sound,
there are no dead transitions thus implying that in its causal set each
transition appears as an event at least once.
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2. B is the set of all labelling functions, i.e. B = {βi | 0 ≤ i < n}.

3. For all p ∈ P holds that
σ
• p ∪ p

σ
• 6= ∅. Since every sound WF-net is

connected, this condition is satisfied,

4. M0 = [pini] and
σ
•pini = ∅. Since σ is a WF-net, there is exactly one place

pini ∈ P , such that
σ
•pini = ∅ and M0 = [pini],

5. For each causal net Ni, with e ∈ Ei and βi(e) = t and
Ni
• e = {c}, holds

that if Si(c) = 1 then pini ∈
σ
• t. Since Si(c) = 1, we know that

Ni
• c = ∅.

Now assume αi(c) = p. The fact that for all e′ ∈ Ei, αi induces local

bijections from e′
Ni
• to βi(e

′)
σ
• implies that

σ
• p = ∅ and since σ is a

workflow net, this implies that p = pini. Moreover, the fact that for all

αi induces local bijections from
Ni
• e to

σ
• t implies that pini ∈

σ
• t,

6. For each causal net Ni, with e ∈ Ei and βi(e) = t holds that |t
σ
• | = |e

Ni
• |

and |
σ
• t| = |

Ni
• e|. Since αi induces bijections from e

Ni
• to t

σ
• and from

Ni
• e

to
σ
• t, this condition is satisfied,

7. For each causal net Ni, with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds that

|t
σ
• ∩

⋃

t′∈T ′(
σ
• t′)| ≥

∑

e′∈Ei,β(e′)∈T ′ |e
Ni
• ∩

Ni
• e′|. Let e ∈ Ei with βi(e) = t

and let T ′ ⊆ T . Assume that there |t
σ
• ∩

⋃

t′∈T ′(
σ
• t′)| = m, i.e. there are m

places between t and T ′. Furthermore, assume that
∑

e′∈Ei,β(e′)∈T ′ |e
Ni
•

∩
Ni
• e′| < m. Since for all e′ ∈ Ei with betai(ei) = ti, αi induces local

bijections from
Ni
• ei to

σ
• ti, we know that there are at least two c1, c2 ∈ e

Ni
•

that are mapped onto the same p ∈ P . However, since p ∈ t
σ
• this violates

the local bijection property of αi,

8. For each causal net Ni, with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds that

|
⋃

t′∈T ′(t′
σ
•)∩

σ
• t| ≥

∑

e′∈Ei,β(e′)∈T ′ |e′
Ni
• ∩

Ni
• e|. The proof for this

property is similar to the previous one.

9. For each causal net Ni and any segment (C ′
i, Ein, Eout) of Ni holds that

⊎

e∈Ein

(

βi(e)
σ
•

)

=
⊎

e∈Eout

(

σ
•βi(e)

)

. This property relates to soundness.
If one set of transitions produces tokens then these tokens will be con-
sumed by another set of transitions (i.e. no tokens are “left behind” in the
execution of a sound WF-net). The only exception is the transition that
produces a token in the output place, but that transition cannot produce
any tokens in any other place. Therefore, in each run, the input events of
a segment will enable the output events of that segment.

ut

In this section, we have presented the NLC algorithm, that takes a set
of runs without condition labels as a starting point. From these runs, an
aggregation class of WF-nets is defined. Moreover, we have shown that if the
runs were generated from some sound WF-net, then the WF-net itself is in
that aggregation class. We conclude this paper with an elaborate example of
the application of the NCL algorithm.
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8 Example

In this section, we again give an example of the aggregation process of a set
of causal nets. Consider the four causal nets presented in Figure 19. These
causal nets originate from a workflow system in which two activities need to
be performed. These activities are labelled L and R. However, in the work-
flow design, there are several options. First, the system initializes the two
activities trough event Init LR. Then, a person can decide to perform both
activities at once, which is represented by the event Do LR. When both ac-
tivities have been performed, the workflow can be finished through event
exit LR. However, in a typical workflow environment, people can make mis-
takes and therefore, in Figure 19(b), both activities have been undone, thus
generating events Undo L and Undo R. Finally, in Figure 19(c) and (d) it is
shown that the workflow system allows for the two activities to be executed
separately, through Do L and Do R. To keep things interesting, the last causal
net belongs to a case in the workflow system that is not finished yet. How-
ever, this set of causal nets still conforms to the definition of a causal set (i.e.
Definition 4.3).

Init
LR

Do
LR

Exit
LR

(a)

Init
LR

Do
LR

Exit
LR

Undo
L

Undo
R

Do
LR

(b)

Init
LR

Do
LR

Exit
LR

Undo
L

Do
L

(c)

Init
LR

Do
L

Do
R

Undo
R

(d)

Fig. 19 Four causal nets without condition labels.
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Using the NCL algorithm given by Definition 7.2, we can generate the
aggregation class of the causal set of Figure 19. In fact, this aggregation class
only contains one workflow net, namely the workflow net shown in Figure 20.

Init
LR

Do
LR

Do
R

Do
L

Undo
R

Undo
L

Exit
LR

Fig. 20 The only element of the aggregation class of the four nets of Figure 19.

It is important to note that the workflow net in Figure 20 actually allows
for more behaviour than is shown in the four causal nets of Figure 19. It is
for example possible to execute a long sequence of Do L and Undo L, which is
not shown in the causal nets. Therefore, this example once more shows that
each net in the aggregation class can actually generate the runs of the causal
set it was constructed from, but it might be able to generate more runs.

9 Conclusion and Future Work

In this paper, we looked at process mining from a new perspective. Instead
of starting with a set of traces, we started with runs, which are partial
orders on events. We presented three algorithms to generate a Petri net
from these runs. The first algorithm assumes that for each run, all labels
of both conditions and events are known. The second algorithm relaxes this
by assuming that some transitions can have the same label (i.e. duplicate
labels are allowed in the system net). This algorithm can also be used if only
condition/place-labels were recorded. Finally, we provided an algorithm that
does not require condition labels, i.e. the event/transition labels are known,
the condition/place labels are unknown and duplicate transition labels are
not allowed.

The results presented in this paper hold for a sub-class of Petri nets, so-
called WF-nets. However, the first two algorithms presented here can easily
be generalized to be applicable to any Petri net. For the third algorithm this
can also be done, however, explicit knowledge about the initial marking would
be required. When taking a set of runs as a starting point, this knowledge is
not present in the general case.
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