
 

An inverse method for the design of TIR collimators to achieve
a uniform color light beam
Citation for published version (APA):
Prins, C. R., Thije Boonkkamp, ten, J. H. M., Tukker, T. W., & IJzerman, W. L. (2012). An inverse method for the
design of TIR collimators to achieve a uniform color light beam. (CASA-report; Vol. 1209). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/30177389-55c3-4642-8e4f-380c24a4cc50


                                        

 

 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computer Science 

 
 
 
 
 
 
 
 
 
 
 

CASA-Report 12-09 
April 2012 

 

 

 

An inverse method for the design of TIR collimators  
to achieve a uniform color light beam 

 
by 
 

C.R. Prins, J.H.M. ten Thije Boonkkamp, T.W. Tukker, W.L. IJzerman 
 
 

 

 
 

 

 

Centre for Analysis, Scientific computing and Applications 

Department of Mathematics and Computer Science 

Eindhoven University of Technology 

P.O. Box 513 

5600 MB Eindhoven, The Netherlands 

ISSN: 0926-4507 

  



 



An inverse method for the design of TIR collimators to

achieve a uniform color light beam.

C.R. Prins‡ § and J.H.M. ten Thije Boonkkamp§

Eindhoven University of Technology

T.W. Tukker and W.L. IJzerman
Philips Research, Philips Lighting

Abstract. Color over Angle (CoA) variation in the light output of white LEDs is a
common and unsolved problem. In this article we introduce a new method to reduce
CoA variation using a special collimator. The method is based on analytical inverse
design methods. We present a numerical algorithm to solve the differential equations
arising from this method and verify the results using Monte-Carlo raytracing.

Keywords: optical design, LED, inverse methods, optics, functional design method,
color-over-angle, color uniformity, TIR collimator, weighted color mixing, chromatic-
ity based color mixing

1. Introduction

White LED technology is at the point of surpassing traditional light
technologies such as compact fluorescent lamps in light output, light
quality and efficiency. Since the 70’s, the flux output per LED lumi-
naire has increased by more than a factor 20 every decade, while the
production cost per lumen has dropped by a factor 10 per decade [4].
LEDs are not sold separately, instead, they are built into a luminaire
that consists of one or more LEDs, an optical system, electronics, heat
sinks and a nice housing. The optical system is often a collimator which
focuses the light in a specific direction. In this article we consider single
LEDs in combination with a collimator.

Unfortunately, it is difficult to create an LED that emits light with
a uniform white color. Such LEDs are created by coating a blue LED
with a layer of yellow phosphor and possibly an additional layer of red
phosphor. This phosphor coating converts part of the blue light into
yellow or red light, resulting in white light. The fraction of the light that
is converted depends on the distance that a light ray travels through
the layers of phosphor, which is related to the emission angle of the
light. Therefore the color of the emitted light is angle-dependent: the
light emitted normal to the surface is more bluish white, while the light
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emitted nearly parallel to the surface is more yellowish [10, p. 353-357].
This is called Color-over-Angle (CoA) variation.

A lot of research has been done to reduce this CoA variation by
modifying the LED. It is often reduced by introducting bubbles in the
phosphor layer [14] or by applying a dichroic coating [9], but these
methods also reduce the efficiency and increase the production costs of
the LED. If the LED is used in combination with a collimating optic,
CoA variation can be reduced by using microstructures on top of the
collimator. This is a widely adopted technique. However, microstruc-
tures introduce extra costs in the production process of the collimator
and make the collimator look unattractive and broaden the light beam.

This article introduces an alternative method to reduce CoA vari-
ation, using freeform collimators. Reducing the CoA variation with
freeform collimators has two advantages. First, the special optic does
not introduce additional light loss, while modifications of the LED
usually do. Second, expensive modifications to the LED are no longer
necessary, resulting in cost reduction for the total optical system. Most
color mixing methods are based on reducing color variation by mixing
light from many different angles of the light source. Wang et al. [11]
study the reduction of CoA variation using domes which mix light
from two different angles. They note that it is theoretically possible to
completely remove the CoA variation, but they do not show a proof. In
this paper we will introduce a constructive method based on analytical
inverse design methods [2, 6, 7] which shows that a complete removal
of CoA variation is indeed possible.

Section 2 describes how to design a TIR (Total Internal Reflection)
collimator with a specified output intensity distribution using inverse
methods, and Section 3 explains how to include color mixing in this
method. Subsequently, Section 4 discusses the numerical calculation
and verification. Finally, concluding remarks are presented in Section
5.

2. Design of a TIR collimator using inverse methods

Before discussing color mixing, we will explain how to design a TIR
collimator using inverse methods. A TIR collimator is a rotationally
symmetric collimator, usually made of a transparent plastic like poly-
carbonate (PC) or polymethyl methacrylate (PMMA). A profile of a
TIR collimator can be seen in Figure 1.

The design procedure consists of two steps: first we need to find
relations between the angles t of rays leaving the source and the angles
θ of rays leaving the collimator, the so-called transfer functions. Sub-
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Figure 1. Profile of a TIR collimator. A full TIR collimator can be obtained by
rotating the profile around the x-axis. The point light source S is located at the
origin. The collimator consists of four distinct surfaces: A, B, C and D. The solid
black lines indicate flat fixed surfaces, the dashed lines are the free surfaces that are
to be calculated. All rays in the collimator are exactly once refracted or reflected by
a free surface.

sequently we use these transfer functions to calculate the free surfaces
A and C of the TIR collimator.

2.1. Transfer functions

A transfer function η : [θmin, θmax] → [tmin, tmax] describes a relation
between the angle t ∈ [tmin, tmax] of the light emitted from the source
and the angle of the light θ ∈ [θmin, θmax] emitted from the TIR colli-
mator. The direction of a ray of light is denoted by its counterclockwise
angle with respect to the x-axis. The interval [tmin, tmax] can be a subset
of the emission angles of the source. Note that we could have chosen
the transfer functions as mappings [tmin, tmax] on [θmin, θmax] as well.
The latter choice is more common in literature, however, as we will see
later, our choice is more appropriate for the purpose of color mixing.
We choose the transfer functions to be strictly monotonic and thus
invertible.

We find a transfer function using conservation of luminous flux. Let
I(t, u) [lm/sr] be the rotationally symmetric intensity distribution of
the light source. Here t ∈ [0, π/2] is the angle with respect to the
symmetry axis (inclination), and u ∈ [0, 2π) is the angle that rotates
around the symmetry axis (azimuth). Because of the symmetry of
the system, the intensity I(t, u) is independent of u and denoted by
I(t). We introduce an effective intensity I(t), which is the flux per rad
through the circular strip [t, t + dt] on the unit sphere divided by 2π,
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by integrating I(t) over the angle u:

I(t) := 1

2π

∫ 2π

0
I(t) sin(t) du = I(t) sin(t). (1)

The effective intensity has units [lm/rad]. Similarly, there is an intensity
distribution of the light exiting the collimator, denoted by G(θ, ϕ),
where θ ∈ [0, π] and ϕ ∈ [0, 2π) are inclination and azimuth. We require
this target distribution to be rotationally symmetric as well, and we
denote it by G(θ). By integration over the angle ϕ, we find the effective
target intensity distribution G(θ) = G(θ) sin(θ). The transfer function
should be such that the intensity of the light exiting the collimator has
the required intensity G(θ). A more elaborate description of effective
intensity distributions can be found in Maes [6].

The luminous flux (in lm) that is emitted from the collimator be-
tween θ and θ+ dθ must be equal to the luminous flux emitted from the
source between η(θ) and η(θ+ dθ). This leads to the following relation:

G(θ) dθ = σ I(η(θ)) dη(θ), (2)

where σ = −1 for monotonically decreasing transfer functions and σ =
1 for monotonically increasing transfer functions. The transfer function
can be calculated by transforming (2) into the differential equation:

η′(θ) =
G(θ)

σ I(η(θ))
, (3)

which can be integrated with initial value η(θmin) = tmin (for increasing
η) or η(θmin) = tmax (for decreasing η).

We have to assure conservation of luminous flux for the entire op-
tical system. Integration of (2) from θmin to θmax yields the following
relation: ∫ θmax

θmin

G(θ) dθ =
∫ tmax

tmin

I(t) dt. (4)

The requirement (4) on the luminous flux in the system poses a re-
striction on the function G(θ). If it is not satisfied, the system has no
physical meaning.

2.2. Design of a TIR collimator for known transfer
functions

When we have two transfer functions with ranges [0, tav] and [tav, π/2]
for some tav ∈ [0, π/2], we can design a TIR collimator. As shown
in Figure 1, a TIR collimator consists of the surfaces A up to D.
Light propagates through the collimator by two possible routes. In the
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first route, light is refracted by surface B, reflected by total internal
reflection by surface C and finally refracted by surface D. Light from
the LED emitted at angles in the range [tav, π/2] will follow this route.
In the second route, light is refracted by surface A and subsequently
refracted once more by surface D. Light emitted in the range [0, tav]
will follow this route.

Given a transfer function η, we can calculate the relation between
the angle t and the angle θ̃ of a ray before refraction by surface D.
By Snell’s law we have the relation n sin(θ̃) = sin(θ), where n is the
refractive index of the material of the collimator. This gives the relation

θ̃(t) = arcsin(sin(η−1(t))/n). (5)

θ

s

δ

f

β
β'

B
q

parallel to 

symmetry axis

C

α

~

d

x-axis

y-axis

t
s

Figure 2. Calculation of the free surface C. This figure is a magnification of a part
of Figure 1. The path of the light is denoted by the grey line.

First, consider the light through the route S-B-C-D. This light is
refracted at surface B, reflected by C and finally refracted by D. Let d
be the distance from the left end of surface B to the origin and α the
clockwise angle of this surface with respect to the x-axis (see Figure
2). Let (xB(t), yB(t)) be the coordinates of the profile of surface B. We
choose the parametrization such that a ray leaving the source at angle
t will hit surface B at (xB(t), yB(t)) and leaves this surface at angle s(t)
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with respect to the symmetry axis. We derive using basic geometry:

xB(t) =
d

tan(t) + tan(α)
, (6a)

yB(t) =
d tan(t)

tan(t) + tan(α)
, (6b)

s(t) = arccos

(
cos(α+ t)

n

)
− α, (6c)

where (6c) was derived using Snell’s law of refraction. Now we can
calculate surface C using the ’generalized functional method’ developed
by Bortz and Shatz [2, 3]. They have derived the following differential
equation, of which the variables are illustrated in Figure 2:

df

dq
=

ds

dq
tan(β) f + tan(β) cos(δ)− sin(δ). (7)

Here f is the distance a light ray travels from surface B to surface C,
q is the arc length along surface B, defined to be 0 at t = π/2, δ is
the ray-emission angle measured counterclockwise with respect to the
normal at the point of emission, and s is the angle of the ray leaving
surface B with respect to the symmetry axis. The angle β depends on
whether the optical surface is reflective or refractive. For a reflective
surface we have [2]

β =
1

2
(π − θ̃ + s). (8)

Usually we know q and s as functions of the emission angle t from the
original light source. Multiplying (7) with dq/ dt gives:

df

dt
=

ds

dt
tan(β) f +

dq

dt

(
tan(β) cos(δ)− sin(δ)

)
. (9)

From (6a)-(6c) we derive

q(t) =
d

cos(α) tan(t) + sin(α)
, (10a)

δ(t) = s(t)− π

2
− α. (10b)

Now we can calculate all the functions we need to solve equation (9).
Substitute the relations (5), (6c), (8), (10a) and (10b) in equation (9)
and calculate the function f . The position of the reflective surface is
described by

xC(t) = xB(t) + f(t) cos(s(t)), (11a)

yC(t) = yB(t) + f(t) sin(s(t)). (11b)
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Now consider the light through the route S-A-D. Similarly, we can
calculate the position of surface A. Because the light incident in A
comes directly from the point light source S, we can take q(t) = 0
and s(t) = t. This greatly simplifies (9). The refractive setting has the
following expression for β [2]:

tan(β) =
sin(θ̃ − t)

1/n− cos(θ̃ − t)
. (12)

If 1/n − cos(θ̃ − t) ≤ 0, then refraction from the angle t to the angle
θ̃ is physically not possible. Substituting q(t), s(t) and β in (9) yields
the equation:

df

dt
=

(
sin(θ̃(t)− t)

1/n− cos(θ̃(t)− t)

)
f, (13)

and we have the following description of surface A:

xA(t) = f(t) cos(t), (14a)

yA(t) = f(t) sin(t). (14b)

3. A color weighted TIR collimator

In Section 2 we have seen how to calculate the free surfaces of a TIR
collimator for given source and target intensities. In this section we
show how to incorporate color uniformity in this model. First we in-
troduce some theory of the human perception of color, and derive a
system of two coupled ordinary differential equations that is analogous
to equation (3). Subsequently, we discuss the removable singularities
arising in this system.

3.1. Transfer functions for color mixing

A lot of research has been done on perception of color by humans [8, 15].
It has been found that a beam of light can be fully described by its
luminous flux (in lm) and two dimensionless chromaticity coordinates
x and y with values between 0 and 1. Chromaticity coordinates can
be used in color mixing calculations. Suppose we have two beams of
light, numbered 1 and 2, with luminous fluxes L1 and L2 and color
coordinates (x1, y1) and (x2, y2), respectively. In Malacara [8, p.57-
58,103-105] we can find that the chromaticity coordinates (xT, yT) of
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Figure 3. Scatter plot of the measured x and y chromaticity coordinates of the LED
used in the numerical experiments in this article. The values are approximately on
a straight line. The size of the circles corresponds to the effective intensity. The
measured data in the lower left corner correspond to light emitted perpendicular to
the surface of the LED, the upper right to the light emitted parallel to the surface
of the LED.

the two colored light beams after mixing become:

xT =
x1 L1/y1 + x2 L2/y2
L1/y1 + L2/y2

, (15a)

yT =
L1 + L2

L1/y1 + L2/y2
. (15b)

Note that the resulting chromaticity coordinates (xT, yT) are on the
straight line segment between (x1, y1) and (x2, y2). For infinitesimal
angles dt1 and dt2, the luminous flux between t1 and t1 + dt1 and
between t2 and t2+ dt2 is I(t1) dt1 and I(t2) dt2 respectively. The rule
(15) translates to

xT =
x(t1) I(t1) dt1/y(t1) + x(t2) I(t2) dt2/y(t2)

I(t1) dt1/y(t1) + I(t2) dt2/y(t2)
, (16a)

yT =
I(t1) dt1 + I(t2) dt2

I(t1) dt1/y(t1) + I(t2) dt2/y(t2)
. (16b)

From measured data we have seen an approximately linear rela-
tion between x(t) and y(t), meaning that all chromaticity coordinates
(x(t), y(t)) are on a straight line (see Figure 3). Therefore we assume a
linear relation in this article. Also we have observed that x(t) and y(t)
are, apart from a region at large angles that contains little luminous

article2seg.tex; 21/03/2012; 14:11; p.8
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flux (see Figure 3 and Figure 4b), increasing functions of t. For the sake
of simplicity, we will assume that x(t) and y(t) are strictly increasing.

LED light sources are usually Lambertian or close to Lambertian,
i.e., the intensity distribution I(t, u) of the emitted light is proportional
to cos(t), or has an intensity distribution close to this. Multiplying
with a factor sin(t) for the rotationally symmetric setting, the LED
will have in general an effective intensity distribution close to I(t) =
1
2I0 sin(2t). The exact shape of I may vary, but we can always assume
that I(0) = I(π/2) = 0, the right derivative I ′

+(0) > 0 and the left
derivative I ′

−(π/2) < 0. Also we assume that I(t) > 0 for all 0 < t <
π/2. Similarly, we have G(0) = 0 and the right derivative G′

+(0) > 0.
Furthermore we will assume that G(θ) > 0 for all 0 < θ ≤ θmax.

To construct a collimator that mixes the light of the source in such
a way that the color point at the target is constant and the required
intensity at the target is G(θ), we devide the interval [θmin, θmax] in
N different segments. Define an ordered list 0 = τ0 < τ1 < . . . <
τN = π/2. Each segment i is a subinterval [τi−1, τi] ⊂ [0, π/2] (i =
1, 2, . . . , N). The relation between the angles of emission from the light
source and the angle of emission from the collimator is defined by the
transfer functions ηi : [0, θmax] → [τi−1, τi] ⊂ [0, π/2]. For every angle
θ at the far field target, there will be light from exactly one angle
in each segment. The chromaticity of the light at this angle at the
target will be a weighted average of the chromaticities of the light
from the different segments. Every transfer function is a monotonic,
invertible map by definition. For ease of notation, we will introduce the
following convention: Ii(θ) = I(ηi(θ)) is the intensity of the light at
the source (in segment i) that is directed to the angle θ. Similarly we
write xi(θ) = x(ηi(θ)) and yi(θ) = y(ηi(θ)) for i = 1, 2, . . . , N .

The light directed to an angle θ will come from N different angles
ti = ηi(θ) at the source. Similar to (2), we have conservation of luminous
flux

G(θ) dθ =
N∑
i=1

σi I(ti) dηi(θ), (17)

and similar to (16), we have the target chromaticity denoted by (xT, yT):

xT =

∑N
i=1 σi Ii(θ)xi(θ) η′i(θ) dθ/yi(θ)∑N

i=1 σi Ii(θ) η′i(θ) dθ/yi(θ)
, (18a)

yT =

∑N
i=1 σi Ii(θ) η′i(θ) dθ∑N

i=1 σi Ii(θ) η′i(θ) dθ/yi(θ)
. (18b)

Here σi = −1 for monotonically decreasing ηi and σi = 1 for mono-
tonically increasing ηi. Later we will show that (xT, yT) is a weighted
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average chromaticity. The chromaticity coordinates (xT, yT) must be
on the straight line relating x(t) and y(t). From the color mixing rule
(15) we can see that the chromaticity resulting from mixing two beams
must be on the straight line segment between the chromaticities of
the original beams. Subsequently, either (18a) or (18b) is redundant.
It is most convenient to drop (18a), because (18a) is slightly more
complicated than (18b). From (17) and (18b) we derive the following
system of differential equations:

N∑
i=1

σi η
′
i(θ) Ii(θ) = G(θ), (19a)

N∑
i=1

σi η
′
i(θ) Ii(θ)/yi(θ) = G(θ)/yT. (19b)

The equations (19) describe a system of two coupled ordinary differ-
ential equations. In the following, we choose N = 2, because otherwise
the system is underdetermined.

From (18a) and (18b) we can derive expressions to calculate (xT, yT).
First rewrite (18a) and (18b) as(

2∑
i=1

σi Ii(θ) dti/yi(θ)

)
xT =

2∑
i=1

σi Ii(θ)xi(θ) dti/yi(θ), (20a)(
2∑

i=1

σi Ii(θ) dti/yi(θ)

)
yT =

2∑
i=1

σi Ii(θ) dti. (20b)

The domains of the transfer functions are adjacent. Therefore, for any
function F (s), we have

2∑
i=1

σi

∫ ηi(θmax)

ηi(0)
F (t) dt =

∫ π/2

0
F (t) dt, (21)

and thus, integrating (20) yields

xT =

∫ π/2
0 I(t)x(t)/y(t) dt∫ π/2

0 I(t)/y(t) dt
, (22a)

yT =

∫ π/2
0 I(t) dt∫ π/2

0 I(t)/y(t) dt
, (22b)

which shows that (xT, yT) are weighted average chromaticity coordi-
nates, indeed.
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Before evaluating these relations, we will have to choose the values
of σ1 and σ2. For now we will choose σ1 = 1 and σ2 = −1. This choice
immediately implies the initial values of η1 and η2. The function η1
should map [0, θmax] to an interval [0, τ1] for some τ1 ∈ (0, π/2) and
should be monotonically increasing. This implies η1(0) = 0. Similarly,
the function η2 should map [0, θmax] to the interval [τ1, π/2] and η2
should be monotonically decreasing, so η2(0) = π/2. If the coefficient
matrix of(19) is not singular, we can derive the following expression for
η′1 and η′2:

η′1(θ) =
G(θ)
I1(θ)

1/y2(θ)− 1/yT
1/y2(θ)− 1/y1(θ)

, (23a)

η′2(θ) = − G(θ)
I2(θ)

1/yT − 1/y1(θ)

1/y2(θ)− 1/y1(θ)
. (23b)

3.2. Removable singularities

At θ = 0 we have a division of 0 by 0 in (23) because I1(0) = I2(0) = 0
and G(0) = 0.

Theorem 1. Assume G′
+(0) > 0, I ′

+(0) > 0 and I ′
−(π/2) < 0. Also

assume η′1(0) ̸= 0 and η′2(0) ̸= 0. At θ = 0 we have

η′1(0) =

√
G′
+(0)

I ′
+(0)

1/y(π/2)− 1/yT
1/y(π/2)− 1/y(0)

, (24a)

η′2(0) = −

√
−

G′
+(0)

I ′
−(π/2)

1/yT − 1/y(0)

1/y(π/2)− 1/y(0)
. (24b)

Proof. Because of the properties of I(t), η1(θ) and η2(θ) mentioned
earlier, we have that I1(θ) → 0 and I2(θ) → 0 when θ ↓ 0. Also we have
G(θ) → 0. We can calculate limθ↓0 G(θ)/I1(θ) and limθ↓0 G(θ)/I2(θ)
using l’Hôpital’s rule:

lim
θ↓0

G(θ)
I(η1(θ))

= lim
θ↓0

d
dθG(θ)

d
dθI(η1(θ))

=
G′
+(0)

I ′
+(0) η

′
1(0)

, (25a)

lim
θ↓0

G(θ)
I(η2(θ))

= lim
θ↓0

d
dθG(θ)

d
dθI(η2(θ))

=
G′
+(0)

I ′
−(π/2) η

′
2(0)

. (25b)

Note that G′
+(0), I ′

+(0) and I ′
−(π/2) are the left and right derivatives as

defined earlier. Evaluating (23) for θ ↓ 0 with substitution of (25) yields
(24). Also note that the expressions under the square root are always
strictly positive because 1/y(t) is a monotonic function, G′

+(0) > 0 and
σi I ′(ηi(0)) > 0.
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Lemma 1. η1(θ) ≤ η2(θ) for all θ ∈ [0, θmax].

Proof. Suppose η1(θ) > η2(θ) for some 0 ≤ θ ≤ θmax. Integration of
(19a) yields

2∑
i=1

σi

∫ ηi(θ)

ηi(0)
I(t) dt =

∫ θ

0
G(ψ) dψ. (26)

Using (26) we have:∫ θ

0
G(ψ) dψ =

∫ η1(θ)

0
I(t) dt+

∫ π/2

η2(θ)
I(t) dt >∫ π/2

0
I(t) dt =

∫ θ

0
G(ψ)dψ,

(27)

where the last equality arises from conservation of luminous flux. This
shows that such values for η1(θ) and η2(θ) cannot be a solution to the
integral equations, and we can conclude η1(θ) ≤ η2(θ).

Now we define tav such that y(tav) = yT. We will see that η1(θmax) =
η2(θmax) = tav.

Lemma 2. η1(θmax) = η2(θmax) = tav.

Proof. From Lemma 1 we deduce that η1(θmax) ≤ η2(θmax). From
(26) we can see that conservation of luminous flux is not satisfied
for η1(θmax) < η2(θmax), and we conclude that η1(θmax) = η2(θmax).
Integrate (19a) and (19b) from θ to θmax to find

2∑
i=1

σi

∫ ηi(θmax)

ηi(θ)
I(t) yT

y(t)
dt =

2∑
i=1

σi

∫ ηi(θmax)

ηi(θ)
I(t) dt. (28)

Using η1(θmax) = η2(θmax) this simplifies to∫ η2(θ)

η1(θ)
I(t) yT

y(t)
dt =

∫ η2(θ)

η1(θ)
I(t) dt. (29)

Suppose that for some θ, η1(θ) > tav. Because y(t) is monotonically
increasing, we have yT/y(t) < 1 for t ≥ η1(θ), and (29) is not satisfied.
Similarly, (29) is not satisfied if η2(θ) < tav. We can conclude that
η1(θ) ≤ tav and η2(θ) ≥ tav Combining these two results for θ = θmax,
we may conclude

η1(θmax) = tav = η2(θmax). (30)
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Figure 5b shows the consequence of the last two lemmas: the graph
of η1 is always below η2 and both graphs end at tav. This gives rise to
a second singularity at θ ↑ θmax: both y1(θ) and y2(θ) approach yT and
again we have division of 0 by 0 in (23).

Theorem 2. The singularity of (23) at θ = θmax can be removed with

η′1(θmax) =
G(θmax)

2 I(tav)
> 0, (31a)

η′2(θmax) = −G(θmax)

2 I(tav)
< 0. (31b)

Proof. Using l’Hôpital’s rule and the chain rule for differentiation, we
derive from (23):

η′1(θmax) = lim
θ↑θmax

η′1(θ) =
G(θmax)

I(tav)
η′2(θmax)

η′2(θmax)− η′1(θmax)
, (32a)

η′2(θmax) = lim
θ↑θmax

η′2(θ) =
G(θmax)

I(tav)
η′1(θmax)

η′2(θmax)− η′1(θmax)
. (32b)

Solving these for η1(θmax) and η2(θmax) yields (31). Here we ignored the
possibility η′1(θmax) = η′2(θmax) = 0, but substitution in (19) shows that
the derivatives of η1 and η2 must be non-zero indeed, if G(θmax) > 0.

4. Numerical results

The method described in Section 2 has been tested for an LED with a
particularly high CoA variation. The chromaticity and intensity of this
LED has been measured, and this data has been used to calculate the
free surfaces of a TIR collimator. Because degrees are more common in
optics, the calculations and experiments in this section are expressed
in degrees instead of radians. We evaluated the performance of the TIR
collimator using the raytracing software LightTools [1].

4.1. Modelling of the LED

The LED has been measured using a goniophotometer. A goniopho-
tometer is a device which measures intensity, chromaticity, and many
other characteristics of light at different solid angles. Our LED was
measured at 46 different angles t (with respect to the surface normal),
between 0 and 90 degrees, and at 4 different angles u. The values were
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averaged over the angles u because we assume rotational symmetry of
the system.

The measured intensity of the LED has been fitted in Matlab using
the polynomials ti − 90i with i = 2, . . . , 7. This set of polynomials has
been chosen because they are zero at t = 90◦. Furthermore, I(t, u) is
smooth, therefore the set of polynomials must have zero derivative with
respect to t at t = 0◦. A linear least squares fit[5] yields coefficients Ci.
The following effective intensity function has been used in the Matlab
calculation:

I(t) = sin(t)

(
7∑

i=2

Ci

(
ti − 90i

))
. (33)

The x and y chromaticity values have been fitted using the polynomials
ti for i = 0, 2, 3, 4, 5, 6, 7. These polynomials have been chosen because
they have zero derivative at t = 0. The linear least squares fit yields
coefficients Dx

i and Dy
i . The chromaticity functions used in the Matlab

calculations are

x(t) = Dx
0 +

7∑
i=2

Dx
i t

i, (34a)

y(t) = Dy
0 +

7∑
i=2

Dy
i t

i. (34b)

The polynomials in (33), (34a) and (34b) have been used in solving
the differential equations (23). Plots of the polynomials can be seen in
Figure 4a and 4b. The monotonicity assumed in Subsection 3.1 is not
fulfilled at angles larger than 70◦, but because of the small luminous flux
within this range, this does not affect the numerical solution method
and the solvability for the ODE.

In the raytracing program LightTools, a 3D model was made to sim-
ulate the LED. The model was constructed using 46 emitting surfaces.
Every surface emits light within a range of angles. The surfaces k =
2, 3, . . . , 45 emit light within a range of angles (2(k−1)−1, 2(k−1)+1),
with the intensity and chromaticity coordinates corresponding to the
measurement at angle t = 2(k − 1). Surface 1 and 46 emit light corre-
sponding the measured data at angle 0 and 90, but emit only in the
ranges (0, 1) and (89, 90). A far-field receiver is added to the model,
which measures the angles of the emitted light rays and calculates
the intensity and chromaticity pattern from a Monte-Carlo raytracing
simulation.

A comparison of the measured data, the least squares fit and the
raytracing results of the LightTools model of the LED without colli-
mator can be seen in Figure 4a and 4b. The measured data show an
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(b) Chromaticity coordinates x and y as function of t.

Figure 4. Comparison of measured data, least squares fit and LightTools model of
the LED.

intensity pattern close to Lambertian, but display some irregularity
at large angles, both in intensity and in chromaticity values. These
irregularities are due to imperfections in the measurements. A scatter
plot of the measured x and y chromaticity coordinates has been shown
earlier in Figure 3. The plot shows the near-linear relationship between
x and y, indeed.
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4.2. Computation of the transfer functions

An example calculation has been done using the data as seen in Figure
4a and 4b. The target intensity was chosen to be a Gaussian profile[13]
with Full Width at Half Maximum (FWHM)[12] at 20◦. This yields an
effective target intensity

G(θ) = C sin(θ) exp

(
−4 ln(2)

(
θ

θFWHM

)2
)
, (35)

with 0 ≤ θ ≤ 1.25 θFWHM, θFWHM = 20◦ and C chosen such that∫ 1.25θFWHM

0
G(θ) dθ =

∫ 90

0
I(t) dt. (36)

We can solve the differential equations (23) using for example ode45
in Matlab. For small values of I1(θ) and I2(θ) at small θ, the relations
(24) should be used. However, for θ → θmax, the numerical solution
(Figure 5a) shows a singlarity that cannot be solved using (31). At this
point, the graphs of η1(θ) and η2(θ) approach the line t = tav. Because
of slight calculation errors in the calculation of yT, tav and in solving
the differential equation, the η-functions will not converge exactly to
tav. When one of the η-functions crosses the line t = tav, the sign of
the derivative of the other η-function changes. From that point on, the
error rapidly increases.

A solution to this problem is implementing a custom ODE-solver,
which recalculates yT every step in θ. This does not significantly alter
the value of yT, but the slight correction stabilizes the solver signifi-
cantly. For this experiment, a custom Runge-Kutta method was imple-
mented. The method calculates η1 and η2 at discrete levels θ0, θ1, . . . , θNs

with fixed step size. At every θi, the value of yT is recalculated over
the angles that have not yet been integrated, according to:

yTi =

∫ η2(θi)
η1(θi)

I(t) dt∫ η2(θi)
η1(θi)

I(t)/y(t) dt
. (37)

Then, in every step of the Runge-Kutta algorithm, the value yTi is used
instead of yT in (23). This method stabilizes the solver. The running
time of this algorithm is a few seconds for Ns = 500. The solution for
the example problem found with this method can be seen in Figure 5b.
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(a) Solution by ode45 from matlab.
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(b) Solution by a yT-recalculating ODE solver with Ns = 500.

Figure 5. Solutions of (23) using fitted data and target intensity G(θ) with Full
Width Half Max at 20 degrees with two different ODE solvers. Note the instability
at θ = θmax in the ode45 solution.
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4.3. Evaluation of the TIR collimator

Subsequently, a TIR collimator was calculated using the acquired trans-
fer functions, using the method described in Subsection 2.2. This col-
limator was converted into a LightTools model. Every free surface was
discretized by 500 points. An impression of the LightTools model of
this collimator can be seen in Figure 6. The opening in the bottom of
the collimator has a radius of 5 mm, and the collimator has a height of
9.47 mm.

Figure 6. An impression of the LightTools model of the designed TIR collimator.

The model of the LED with the TIR collimator was evaluated by
tracing 106 rays in non-dispersive mode. To ensure point-source be-
havior, the LED model was reduced in size to 0.01 mm by 0.01 mm.
The results of the raytracing can be seen in Figure 7. The effective
intensity shows the expected profile of a sine times a Gaussian between
0 and 21 degrees. The peak between 21 and 24 degrees is, judging from
the chromaticity value of this light, due to a too high intensity coming
from the reflective surface, possibly due to imperfections of the surface
interpolation in LightTools. The chromaticity values are on two straight
lines. The values between 0 and 1 degree are slightly too high. Part of
this light originates from large angles from the LED, which is where the
measurements show some irregularity, and especially the y-chromaticity
values are a bit higher in the measurements than in the least squares
fit. The chromaticity of the emitted light is entirely contained within
one MacAdams ellipse, so the color difference is not noticeable for the
human eye.
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Figure 7. Results of the simulation with the two-segment collimator using Light-
Tools. Here the source has a width of 0.01 mm. The bar plot shows the effective
intensity. The open and closed dotted lines show the x and y chromaticity values.

5. Conclusion

A new approach has been introduced for reducing CoA variation in
LED lighting systems based on inverse design methods. A system of two
coupled ordinary differential equations was derived. Several character-
istics of the solution were discussed in Section 3, and numerical issues
of integrating the ODE system were resolved in Section 4. The method
has been implemented for an LED spotlight with a TIR collimator. The
collimator has been tested for a point source by Monte-Carlo raytracing
in the raytracing software LightTools. The result of the experiment
shows a reduction of the CoA variation to within the limits of visual
perception (Figure 7).

In this article it has been shown that angular color mixing in the
far field is possible for a point light source using inverse methods. Also,
it has been shown that it is possible to remove all color variation by
mixing light from only two different emission angles from the light
source.

In future research, we want to include the finite size of the light
source in the method. LEDs have a diameter of typically a millimeter,
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which is too large compared to the optics size to be considered a point
source. Furthermore, we are interested in solutions of (19) for N > 2.
This would allow the calculation of transfer functions for a broader
range of collimators, and allows for more design freedom of TIR col-
limators. Finally, an equivalent method for LEDs that have a curved
x-y-chromaticity characteristic would be of interest.
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