EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Efficient and fast data compression codes for discrete sources
with memory

Citation for published version (APA):

Tjalkens, T. J. (1987). Efficient and fast data compression codes for discrete sources with memory. [Phd Thesis
1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR273296

DOI:
10.6100/IR273296

Document status and date:
Published: 01/01/1987

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR273296
https://doi.org/10.6100/IR273296
https://research.tue.nl/en/publications/3b6bcb0c-8b8a-4ba4-b0be-e72140503ed7

EFFICIENT AND FAST
DATA COMPRESSION CODES
FOR DISCRETE SOURCES
WITH MEMORY

TJALLING TJALKENS

EFFICIENT AND FAST DATA OOMPRESSION CODES
FOR DISCRETE SOURCES WITH MEMORY.

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de rector magnificus, prof.dr. F.N. Hooge, voor
een commissie aangewezen door het college van
dekanen in het openbaar te verdedigen op

dinsdag 29 september 1987 te 16.00 uur

door

TJALLING JAN TJALKENS
geboren te Arnhem

Dit proefschrift is goedgekeurd door
de promotoren

prof.dr.ir. J.P.M. Schalkwijk

en

prof.dr. J.L. Massey

ISBN 90-71382-20-6

1.1.

1.2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.

Problem statement and summary of results .
General notations

A VARIABLE-TO-FIXED LENGTH CODE . .

Introduction
The Markov source
The algorithm
The performance

Bounds on the rate of the code .

Asymptotic behaviour .

.....

.....

.....

The converse+ .+
Complexity aspects e e e e

Discrete memoryless sources, .
Conclusions and remarks
ARITHMETIC CODES
Introduction e e e e .
The Elias algorithm

Partial encoding and decoding . .

Finite precision algorithms
Multiplication-free codes
Local and global tests e . -
Global and local designs
Bounds on the redundancy

Fast designs,

Complexity aspects

5 5 8 8 9 8 8 8 R

2 %

57

61

70

78

3.11. Some numerical examples 85

3.12. Implementation details 87
3.13. Discussion and conclusion o8
4. FINAL REMARKS« « v o v v v o v 101
ACKNOWLEDGEMENTS e e e e e e e 104
APPERDICES o v o v« i e e e ... 108
I. A segment source with a reducible state set 105
II. TheproofofLenmnaZ—l...............1@7
III. The proof of Lemma 2-3, 168
IV. The proof of Lemma 2-4 e e e e e e s 1‘10‘
V. The proof of Lemma 2-5 . . ., . , . e e e e e e . 1111
VI. The proof of Theorem 2-2 R e e 1113
VII. The proof of the testlemma 116

VIII. The region of optimality for Tunstall codes 118

IX. The proof of the global tests 122
X. The decodability of Design 2 124
XI. The decodability of Design 6 coe ... 126
XII. Simulation results B .1
REFERENCES T 1
SAMENVATTING e e e e e e e e e 140

1. INTRODUCTION.

1.1. Problem statement and summary of results.

This thesis concerns the compression of data sequences generated by
sources with memory. We will consider the (simplified) communication situ-
ation where a transmitter (source) selects messages (data sequences) from a
meséage set and wants to send these to a receiver (destination). For this
purpose it uses an error—free channel that is able to transfer symbols from
a finite set (channel alphabet) at a fixed rate, or at a fixed cost. To
transmit a message over the chamnel, it must first be converted into a
string of channel symbols, using an invertible map (codebook). The fact
that this map is invertible and that the channel is error-free allows the
receiver to decode the message exactly.

The purpose of data compression or noiseless source coding is to mini-
mize the number of channel digits needed to describe a message. Let us
first define in more detail what a source, a message, and a message set is.
All sources in Information Theory are modeled as stochastic processes. The
simplest class of these models consists of the discrete memorvless sources
(DMS). In later chapters we will also introduce the class of finite state
Markov sources (FMS) and the class of stationarvy ergodic sources (SES). All
these sources generate letters from a finite alphabet. The DMS generate
sequences of letters, each letter drawn independently from the source
alphabet according to some fixed probability vector. FMS and SES use proba-
bility vectors that are conditioned on the past, i.e. the previously gene-
rated letters. The definitions are such that the class of DMS is included
in the class of FMS and both are included in the class of SES. In all cases

we may define the message to be a string of source letters. The message set

is the set of strings over the source alphabet that we will consider as
units we want to assign codewords to. For example, let ¥ denote the source
alphabet {0, 1}. Possible message sets would be: 4 =9 .M2 = {00, 01, 10,
11}, AB = {0, 10, 11}, 14 = ﬂlw, i.e. the set of all infinite length strings
gw é Uy Ug Uy ... OVer the glplmbet 9.

With ‘“1 we want to assign separate codewords to each single letter of
the source string. 12 is an example of "blocking”. Usually coding for a
block of n (n > 1) symbols is more efficient than coding for single let-
ters. The strings (segments) in the message set need not be of the same
length, e.g. .&3 In this way some advantage can be taken from the typical
behaviour of a source. The last example designates a stream code. Actually,
J(4 states that codewords are assigned to each different mfiri;ite length
source string, but in practice we will have to build up the codéword as the
source letters “stream by" to avoid an infinite coding delay.

The last step in the code description is the assignment of codewords to
the segments. Let € denote the codeword set then its cardinality el must
be equal to [4|. |

Not every message set M and codeword set € is acceptable. We require
that all possible infinite length source strings are separable in segments
from . Usually, although not necessarily, we require that every string is
separable in exactly one way. Also, since the codewords are cdncatenated,
the decoder must be able to recognize the codewords. Two properties of sets
of strings are of interest here. First we say that a string set is complete
if every possible infinite length string has a prefix in the set. Also, a
string set 'is proper if every possible infinite length string has at most
one prefix in the set. Now we can say that A must be complete and usualiy
is also proper. The codeword set must allow the source sequence to be re—

constructed with finite delay from the encoded sequence. From the Kraft

Inequality ([1, Thm. 3.2.1]) and McMillans theorem ([1, Thm 3.2.2]) we can,
without loss of generality, require € to be proper. So we only consider
what are called prefix-free codes. It is not hard to see that if a proper
codeword set € is not complete then there exists a proper set €’ that is
complete, has at least as many codewords, and, contains, for every codeword
x in €, a corresponding codeword x' with length L{x') { L(x). Since we are
interested in a short description length €’ is an improvement over €. Thus
one could consider only codeword sets that are proper and complete. How-
ever, we shall éccasionally find it convenient to use codeword sets that
are proper and not complete. S0 a code is described by the message set A,
the codeword set € and an invertible mapping from A to €. In some cases a
code uses many message sets or codeword sets and a rule for selecting the
next set depending on the past.

According to the form of the message set and/or codeword set we can
differentiate between several forms of source coding. First we discriminate
between definite coding schemes, where £ is a finite set, and indefinite

coding schemes {or "stream coding schemes™), where A is an infinite set.

Definite schemes can be further subdivided into four classes depending ‘on
whether or not the strings in { respectively € are of the same length. Thus
we have the fixed-to-variable length (FV) schemes, here d = o', (n > 1).
and € contains variable length words. Next come the variable-to-fixed |
length {VF) schemes. where the source messages are of varying length and €
contains fixed length words. In this case we might as well assume that the
channel c¢an transmit symbols from a "super alphabet” of cardinality |<6|
The third class contains the variable~to-variable length (VV) schemes. Here
A as well as € contain varying length strings. Because the fixed-to-fixed
length (FF) schemes are inherently inefficient unless one waives the re-

quirement that the source sequence be uniquely reconstructable from the

encoded sequence (i.e. unless one allows "lossy coding"), FF schemes will
not be considered further in this thesis.

The goal is to minimize the average number of channel letters per
source letter (code rate). Thus for the FV schemes we must minimize the
average codeword length and for the VF schemes the average message length
must be maximized. In the case of a VV scheme the situation is more complex
since the selection of the message set influences the best choice for € and
as yet no algorithm is known for finding the best comhinatién except by
exhaustive search.

For the FV coding schemes the optimal code is generated by the Huffman
procedure [2]. For the class SES this algorithm gives the best possible
codeword set for a given number of codewords, i.e. it minimizes! the average
codeword length. A less known result is an VF coding algorithm by Tunstall
[3]. [4]. that generates proper and complete message sets for a given num-
ber of messages. This algorithm generates the optimal set if the source is
in the class of DMS. For a larger class no algorithm for optim1 VF codes
exists.

Stream coding schemes can be generated with the Eiias algorithm [5].
This algorithm, although it is nearly optimal in the sense that the expec-
ted code rate can be made arbitrarily close to the source entropy, suffers
from the fact that its per symbol complexity grows unbounded as the source
entropy is approached.

In general there are two ways to implement a definite coding scheme.
The first method is by table lcokup. Depending on the form of the scheme we
need tables to define the message set, codeword set, and the%mapping be~
tween these sets. In the other method the messages are recogrxiz;d by compu~
tational means. Also the corresponding codeword is computed by some algo-

rithm.

In this thesis we shall describe two source coding algorithms of the
last type. In chapter 2 we consider data sequences that are generated by
(finite state) Markov sources, (see [1, section 3.6]). It is assumed that
the Markov sources have the property that their state is uniquely deter—
mined by the previous output and the previous state and that their state
set is irreducible.

The coding strategy we employ is of the variable-to-fixed length form.
Each segment (message) is represented by its lexicographical index within
the set of possible segments. Which segments are possible depend on the
previous outputs of the Markov source. By knowing the lexicographical indi-
ces, it 1is possible to reconstruct the output sequence. Throughout this
chapter we assume that the starting state of the Markov source is known to
both the encoder and the decoder.

Variable-to-fixed length schemes for discrete memoryless sources in-
stead of Markov sources were also investigated by Verhoeff [6]. Jelinek and
Schneider [4], Schalkwijk, Antonio and Petry [7]. ‘and Schalkwijk [8].
Verhoeff [6] reinvented Tunstall’'s algorithm. If the number of segments in
the set grows to infinity, the code rate approaches the source entropy.
This was demonstrated both by Verhoeff [6] and by Jelinek and Schneider
[4]. A disadvantage of Tunstall’s algorithm is that it requires a codebook
fhat contains all segments with their lexicographical indices. This code-
book has to be stored in memory at the encoder and at the decoder.
Schalkwijk, et al. [7] devised a variable-to-fixed length source coding
algorithm, that uses a multidimensional array instead of the complete code-
book to determine the segment’s index or vice versa. Schalkwijk [8] sub-
sequently reported on a technique which uses a linear array and not a mul-
tidimensional one.

The algorithm we describe and analyse in this chapter uses as many seg-

ment sets as states of the Markov source. The lexicographical ‘indices are
computed in a way closely related to Schalkwijk's [8] recursive technique,
however, now with a linear array for every state of the source. Upper and
lower bounds are derived for the code rate of our algorithm. Using these
bounds we show that code rates arbitrarily close to the source entropy are
obtainable.

Chapter 3 describes a practical implementation of the Elias’ algorithm.
The resulting stream codes are known as arithmetic codes, introduced by
Rissanen [iQ] and Pasco [10]. In these codes the code stream is treated as a
number and encoding the next source symbol is done by adding a certain
amount to this number. The arithmetic code is a noiseless compr;ession tech—-
nique applicable in all situations where the source statistic; are known.
Its main advantage, apart from its efficiency, lies in the flexibility of
the algorithm. For sources with memory, the (conditional) pi'obabilities
change from symbol to symbol. Also, for not completely known sources we
might estimate the probabilities from the generated source outputs. The
encoder and decoder need these probabilities only when encodingi respective~
ly decoding that symbol, while any definite scheme needs them all in ad-
vance. |

The arithmetic codes described here are based on both Elias’ and
Rissanen’s work. We describe several code designs and analyse tbe resulting
redundancy and complexity. It appears that the redundancy and tfme complexi-
ty can be upperbounded by functions of the design parameters only, i.e.
they are independent of the source statistics. Since the redundancy is low
at a moderate code complexity these codes are an attractive practical al-
ternative to the definite schemes, e.g. the Huffman codes.

Finally, in chapter 4, we discuss the relations between thé two coding

schemes of the previous chapters. Here we show that the arithmetic codes

can be seen as approximations to the VF scheme of chapter 2.

1.2. General notations.

In this section we describe some notational conventions used throughout
this thesis.
Script uppercase symbols denote sets.
For a finite set Z we use the following notations:
{Z| is the cardipality of ¥,
¥, n=0,1, 2, ... is the set of all strings of length n over %, i.e.
z,25---2, €7 if z; €Z, fori=1,2, ... ,n, (%0 contains the

empty string),

7~ denotes the set of all finite length strings over ¥, or > - o U
zuu ...,
7” contains all infinite length strings Z,2zy- .. over Z.
We list some of the sets that are used here:
% 1is the source alphabet {0, 1, ..., c~1}. where ¢ is the siie of the
alphabet,
X is the code alphabet {0, 1, ..., d~1},

is the message set; usually £ C Q* or d C ‘!m,

€ is the codeword set; € C 9,)‘ or € C &m.

Strings are denoted by underscored italic symbols, e.g. u. We write:

En c un is the string Ujug. .U with u, €Y, 1<ign,
J-1 J-i, -1 _
u; €A oy o= Ujligp Uy OVer a.
go= is the empty string.
© o
u € 9%9%: is an infinite length string U ly. .. over A,
3

ue€Ev: u is a string of undefined but finite length over 4.

-10 -
(g)": is a sequence of m striggs (g)l (t_g)2 (g)a over 4.

Uppercase italics are used to name random variables, so

u,: is the ith random variable of the source.

" describes the first n outputs of the source.

Probabilities are denoted by the uppercase italics P and Q. P is a
{conditional) probability and Q is a (conditional) cumulative probability,
e.g. P(gfs) is the probability of the string u conditioned on the state s;
Q(ui ll_li—l) is the cumilative symbol probability given the previocus i-1 sym-
bols, i.e., the probability that the next source letter is lexicographically
less than u, given that the previous output sequence is gt-l. ; and 5 de-

note approximated probabilities.
All specific notations are introduced in the text where needed.

- 11 -

2. A VARIABLE-TO-FIXED LENGTH CODE.

2.1. Introduction.

This chapter describes a variable-to-fixed length code for Markov sour-
ces. The technique used is known as enumerative coding. The first known
enumerative source codes are the Lynch-Davisson code [11], [12] and
Schalkwi jk’s Pascal triangle algorithm [13]. Later Cover [14] described
some generalized applications of this technique.

In the mnext section we will define the class of (finite state} Markov
sources for which the coding scheme applies. Then we introduce the algo-
rithm and analyse its performance. Finally, we show the equivalence between
these codes and Tunstall’'s algorithm for the class of DMS. Thus we also

have a simple and optimal VF code for the discrete memoryless sources.

2.2. The Markov source.

A Markov source can be characterized by a source letter alphabet %4, a

finite state set ¥, a letter probability matrix P{.].) and a pext state

function T{.,.). With each unit of time the source emits a letter and as-
sumes a new state. The source sequence is denoted by Ugs Ugesee and the
state sequence by Sy» Sgr ver - The conditional probability that an output
u occurs given that the source is in state s is independent of all previous

outputs and all previous states as follows:

A
Pr(l =uls =s.U ,.8 ,....) = P(uls),

wvheren=1, 2, ... , u € Wand s € ¥, In this thesis we always assume that

- 12 -

the state of the source is uniquely determined by the previous state and

the previous output letter, i.e.:
s 47w _..s). for Pu_.|s) >0 (2-1)
n n-1'""n-1""* n-1"n~1 *

where n = 2, 3, This property makes it possible to reconistruct the
state sequence from the sequence of source outputs and the f irsf state s,.

Note that a more general type of (finite state) "Markov source” could
be defined, in which the state need not be uniquely determined ﬂy the pre~
vious state and previous source letter. We will not study such sources
here.

A set of states is irreducible if, from every state in the set every
other state in the set can be reached in one or more transitions but no
state outside this set can be reached. The period of an irreducible set of
states is the largest integer p such that all possible recurrence times for
states in the set are multiples of p. If p 2 2 the set is callgd perigdic:
if p = 1 the set is aperiodic or ergodic. A state s is tgm;sien;: if from it
another state can be reached in one or more transitions. but from there it
is impossible ever to return to s. The sources we investigate in this
thesis are those whose state set ¥ contains only one irreducible subset of
states, but we will not require that this subset be ergodic. 'I?lese sources
are started infinitely far in the past, so any transjient state Evnr:lll never
occur anjfmre and we may consider the irreducible subset of states as the
complete state set ¥.

Now define the state transition probability matrix W for t, s € ¥ such
that

wiels) 4 > P(uls).
u:T{u,s)=t

Let g{s). s € # be the probability vector that is the solution of

a(t) =2 a(s)¥(t|s). t €, (2-22)
s€¥

1=3 gqg(s). (2-2b)
s

where the uniqueness of ¢{s) follows from the fact that the state set has a
unique irreducible subset. The vector g{s) is referred to as the stationary
probability vector. We finally assume that the source starts in state s

with probability
A
Pr{Slzs) = q(s).

This has the effect that the source, after it has started, behaves as if it
was started infinitely far in the past (with each phase equiprobable if the
state set is periodic). Such a source is stationary and ergodic and the
notion of entropy for such a source makes semse. In fact for a Markov

source with an irreducible state set the entropy

H, (P,T) =s§$f g(s)H(P(U|s)) bit/source letter,

where H(Q(U]s)) 4 3 - P(uls)logé?(uls)
u€y

and 010g20 .é. O. Before we give an example of a Markov source, we remark

that in our short treatment of these sources we closely follow Gallager’s
approach [1].

Example (see Figure 2-1): Given ¥ = {0, 1, 2} and ¥ = {a, b, c} we have

- 14 -

P(O|a) = 0.7, P(1|a) = 0.2, P(2|a) = 0.1,

P(O|b) = 0.3, P(1|b) = 0.3, P(2|b) = 0.4,

P(0]c) = 1.0, P(1]c) = 0, P(2]c) = 0,

T(0.a) = 2, T(1,a)=1, T(2.a)=3,

T(0,b) = 3, T(1,b)=3, T(2.b)=1,

T(0.c) = 1, T(1l.c)=-. T(2.c)=-.
2‘ \

2]o0.1

Figure 2-1. A three state Markov source

It is easily seen that the state set of our example source is aperiodic.
The state transition probability matrix and the stationary probability vec-

tor turn out to be

¥(ala) = 0.2, ¥(bla) = 0.7, ¥(cla) = 0.1,
¥(a|b) = 0.4, ¥(blb) = 0, ¥(c|b) = 0.6,

¥(alc) = 1.0, ¥(blc) = O, ¥(c|c) = 0,

- 15 -

a(a) = 0.45045, g(b) = 0.31532, a(c) = 0.23423,

whereas the entropy of the source

H, (P.T) = 1.01642 bit/source letter.

2.3. The algorithm.

In a variable-to—fixed {(VF)} length source coding situation, Figure 2-2,

the encoder chops the source output sequence into pieces (segments) of
about the same probability. To inform the decoder, the encoder sends it the

lexicographical index of the segments. The decoder is then able to

(u),{u)y. .- iig... () (u)s- .-
Markov | ‘“T/1V=72°° Encoder 172 s] Decoder 1V=12

source

Figure 2-2. Variable-to-fixed length source coding situation.

reconstruct the segments. Two approaches exist to determine indices from
segments and vice-versa. In the first approach the encoder uses a table
that gives the lexicographical index with the segments as arﬁument, and the
decoder uses a table that tells him what the segment is with the index as
argument. The encoder in the second approach computes the index from the
segment and the decoder computes the segment using the index. Note that in
the second approach no tables are used to chop up the output sequence. The
encoder determines the end of a segment by some numerical method. The
second approach is followed here.

The objective that all segments should have approximately the same pro-

bability can be replaced by the cbjective that the logarithm of the proba-

- 16 -

bility of all segments should be about the same. This logarithm can be com-
puted by adding up the logarithms\of the conditional probabilities of the
letters in the segment. Since logarithms of probabilities are generally
infinite precision real numbers, and so require high precision: arithmetic
in the additions, we replace them by integers. Hence checking whether or
not the end of a segment is reached is a matter of adding up (small, as we
will see later) integers. To introduce these integers, we will first extend
the next state function and the letter probability matrix. The;refore. with
kA

some abuse of notation, define for k=1, 2, ... , u = Uy Uge oon U and

then, recursively,

Pu"ls) & Pl ITC P). P) >0
0, P ls) = 0;
T(e",s) 2 T, T 5)), Ptls) > 0
rells) 41, 1ls) = s (2-3)

We now assign a stepvalue function V(ul|s) for all u € 4, s €Y with
P(uls) > 0, in the manner that this function takes values in f:he non-nega-
tive integers and the sum of this function over every closed circuit of
states is positive. That a relation must exist between V(uls) ané P{uls) is
obvious. However, we will not explicitly describe this relatioﬂ now.

When we are not initialiy interested in the length of Ups Ug, oen Uy,
(k 2 1) we write u in stead of gk. Furthermore, if u = u;. uy. u.
then the length of u is L{u) é k.

Now assume that n is some fixed positive integer. Then f&r each state

s € ¥ we define the segment set

-17 -

am dw | Puls)>o

and 3 Vi IT@*s)) 20
k=1,L(u)

and 3 Ve, [T 8)) < n). (2-4)
k=1,L(w)-1

Note that such a segment set .ﬁs is proper (no segment is the prefix of an
other segment in the set) and complete {every possible infinite sequence
has a prefix in the segment set).

Next we define an grdering of the source alphabet 4. This makes it pos—
sible to order the segments in a segment set, (u { p if Y < Y for the
smallest k such that u, # vk).

The {lexicographical) index i of a segment u in J(s(n) is now given by
i (u.n) & [{u € 4 (n) such that p < u}]. (2-5)

This means that the index of a segment is equal to the number of segments
in the set "smaller” than that segment.

Now we have defined for each state s € ¥ the segment set and the lexi-
cographical index of a segment in the set. It will be clear that a
one-to-one relation exists between the segments and the indices. Note that
both the encoder and the decoder can keep track of the state in which a new
segment starts since (2-1) holds for our Markov source and the initial
state is known.

How does the encoder compute the index of a segment (and the end of a
segment)? To demonstrate the algorithm, we first introduce for s € ¥ and

form 2 1:

M) 2 |4 ().

- 18 -

With the convention that Hs(m) =1 if m { 0, these cardinalities can be
found recursively as follows:

M (m) & M(u.s)®Viuls). 1¢m<n (2-6)

z
u:P{u}s)>0

We remark here that Hs(m)‘ for each m must be computed in the right order
since stepvalues equal to zero can exist. Such a "right order” can easily
be found because no circuits whose stepvalues sum to zero exist. In what
follows we will neglect this aspect of the algorithm.

Now assume that at time instant R the next segment starts. The source
is now in state Spe and both the encoder and the decoder are informed about
this state S The encoder now observes the next outputs of theisource. In
principle, this is a semi-infinite sequence -‘42 é Ups Yopqr ooo - The index

i and the end of the next segment are now determined as follows:

nk = n,
J = k,
step: i =i+ b (n, - V{vis.)).
Al i v(uj:P(u|sj))0 MT(U'sj) J J
s

ge1 = Tlugesy).
n = T V(ujlsj).
Jj = j41.

if nj < O stop; otherwise return to step. (2-7)

If & is the first time instant for n, < 0, then Uy q is the last letter of
the segment and ie is the lexicographical index (i) of the segment. This
index is now sent to the decoder. Using his knowledge of the state Sy the

decoder determines the next segment as follows:

19

initialization: ik =1,
nk. i= T,
Jj =k,
step: u, ‘= u iff 3 {n Y(vls) < i
J vu:P(v]s >0 HT(”’sj}
< 3 (n, - V(v|s))),
ugu:P(uls >0 HT(U'SJ) i 7
i =1, - (n; - ¥(vls,)),
+ I o, P(ulsj)>0 HT(U s) i
sj‘!_1 = T(uj'sj‘)’
nj+1 t=n, - V(ujlsj),
j = j‘l’l.
if nj € O stop: otherwise return to step. (2-8)

Again, if € is the first time instant for which n, ¢ 0, then is the

Ye-1
last letter of the segment. V

It should be clear that the encoder, by carrying out {2-7}), generates
the index defined in (2-5) and that the decoder finds the encoded segment
performing (2-8). Note that since the encoder and fhe decoder now know the
starting state and the segment, they can both form the starting state of
the following ségment. We now demonstrate our algorithm using the Markov

source of Figure 2-1.

Example: First, we choose the following stepvalue function ¥{u|s):

v{Ola) = 1, V(tla) = 2, v(2]|a) = 3,
v(olp) = 2. ¥(1]|p) = 2, v(2|b) = 1,
V{0lc) = 0O, ¥(1lc) = -, v(2le) = -,

where "-" implies that V(uls) is not defined for these values of u and s.

Note that there are no circuits whose stepvalues sum to zero {see also

Figure 2-3). The segment sets Jis(2), s =a, b, ¢, are given in Figure 2-4.

Figure 2-3, The Markov source with the steps.

As we see the number of segments in all sets is equal to 5 forn = 2. In
general, these numbers may differ from each other.

Now we define the ordering 0 (1 < 2 over Q In Figure 2-4 the segments
for n = 2 are already plotted in this order. The cardinalities of the seg-

ment sets can be found from

N (r) = N (n-2) + B (a-1) + H_(n-3)
Hb(n) = !a(m-l} +2Hc{ax-2)
Ilc(n} = Ha(u) L1 {mdn

Figure 2-42, Segment set Aa(z).

- 21 -

Figure 2—4b. Segment set ﬁb{2).

Figure 2-4%, Segment set 16(2).

We tabulate the first steps of this recursion as follows:

P 3 4 5 6 7 8 9 10
N, (n) 9 19 33 65 123 229 441 827
K, () 1 19 37 1 131 253 475 899
N_(m) 9 19 33 65 123 229 441 827

Consider next the segment sets for n = 10. Assume

that the source is in

- 29 -

state s = b, and let the output of the source be,21>1200100.., . What now is
the next segment and its index? It follows from Figure 2-5 that the next
segment is 2112001 and that

1,(2112001) = H_(8) + H_(8) + 4,(8) +
B,(6) + N (4) + N (3) + M_(-1)

220 + 220 + 253 + 71 + 19+ 9 + 1

= 811,

Figure 2-5. Illustration of the encoding process.

.2.4. The performance.

A VF length coding scheme for a Markov source {a _gegment set coding
scheme) consists of a number of (proper and complete) segment sets "s‘ one
for each state of the source. The message set is As when the source is in

state s at the time a new segment starts. Let ¥ be defined as

A A (4] [se9

then [log2 me] is the smallest length of a binary block code that can be
used to encode .A(s for all s. Thus it is natural to define the rate of this
VF length coding scheme as:
log N
R A % bits/source letter (2-9).

where EL is the expected average segment length. Here we have omitted the
rounding up of log2 Ilm to an integer, which represents the mismatch of
the binary coding alphabet to the size of the message set, but this has
negligible effect when the message set is large.

To find EL we will introduce the concept "segment source”. Note that
the starting state of a segment and the segment uniquely determine the
starting state of the next segment. Since the probability of a certain seg-

ment, given all previous segments and previous starting states, depends

only on the starting state of the segment, the source with segments as out-

put letters is again a Markov source, or form=1, 2, ... , s € ¥ and
u € M,
= s
A
Pr((U) =uls, =s. (@) ;. 8 _; ---) 2 Puls):
A
Spep = T(W,.s,) A P((H)mlsm) > 0.

Here we denote the mth segment by (l_l.)m and the sequence of segments by (l_L)M
etc. . The starting probabilities of the segment source are the same as the
starting probabilities of the "basic source”. They equal the stationary
vector g{s), s € ¥ defined in (2-2). The state set ¥ of the segment source

need not be irreducible {see Appendix I for an example) and hence the seg~"

- 94 -

ment source need not have unique stationary probabilities. But, bec@se the
starting state distribution is known, we can determine these pro?babilities
unambiguously. Assume that % é {‘3‘.} is the finite set of all irreducible
subsets ‘sr of 4. Then for the expectation of the average segment §lengl:h we

can write

EL = lim E Ls L
K (Q)”lsl{" A
= 3 Pr(%
¢ €% T
r

1
+ 3 limg 3 Pr{S.=si|¥) {L{)}
sesr Neyo ¥ m=1,N n r Ems

= X Pr(% z L{U)}. 2-10
o 2 r(9,.) 2 4,(8)Ey | {L(D)} (2-10)

Here Pr(‘sr) is the probability that the source will eventually enter subset

‘Br.‘ and qr(s) is the stationary probability vector of the segment source
when started in subset ‘Qr. This vector qr(s) can be found, for each r, ina
way similar to the method to find the stationary probability vector of - the
basic source. Instead of ¥ we now use ‘Qr. The expected segment length for

segments starting in s is given by

A
By|{L@) = 3 Pluls)L(y).
= ued
= s
We will now give an example to illustrate the foregoing formulas. Again we /
use the source in Figure 2-1.

Example: Consider 18(2}. s = a, b, ¢ (see Figure 2-4). The segment pro-

babilities are

P(00|a) = 0.21, P(O|b) = 0.3, P(000|c) = 0.21,

P(Ol}a) = 0.21, P(1]b) = 0.3, P(0o01lc) = 0.21,
P(02|a) = 0.28, P(20|b) = 0.28, P(002]c) = 0.28,
P(1la) = 0.2, P(21|b) = 0.08, P{0lle) = 0.2,
P(2{a) = 0.1, P{22]b) = 0.04, P(02]le) = 0.1.

The state transition probabilities can be found in Figure 2-6 in which the
segment source is depicted.

It will be clear that the segment source consists of only one irreduci~
ble subset ‘91 = {a, ¢}. State b is a transient state. The probability that

the source will enter ‘91 equals 1. The stationary probability vector over

Figure 2-6. The segment source.

this irreducible subset is

ql(a)‘ = 0.48 and ql{c) = 0.52.
Furthermore,

EU(s{L(g)} 1.7 letter/segment for s

1
L

i

]

1.4 letter/segment for s = b, and

i

il
[o]

2.7 letter/segment for s

Therefore, EL = 0.48 x 1.7 + 0.52 x 2.7 = 2.22 letter/segment. Now since

xmx = 5, the rate of this segment coding scheme is

log25

R=—35355

= 1.04591 bits/source letter.

Note that this rate is rather close to the source entropy (1.01642
bits/source letter}. In the next section we will study the performance of
the scheme by deriving upper and lower bounds for its rate as functions of

the code parameters and the source statistics.

2.5. Bounds on the rate of the code.

First we define the number of visits to state t for a given segment u

_ starting in state s as follows:

L,(u.5) 4 5 e ls) = o).
k=1,L(u)

with 8(true) A 1 and 8(false)] 0. Subsequently, in analogy with (2-10) we

define

A 1 m~1
EL = lim E = X L TJ((u ’
t m {Q}xisl{x ™ t((g)a ((u) 81})}

=, 2, P8 3 q o)y (L,@.5)). (2-11)

gf‘ r

where the expected number of visits to state t for segments starting in s

is given by

By[s{L,(L.5)} & 3 Pluls)L,(u.s). (2-12)

We will now state a crucial lemma which is proved in Appendix II.

Lemmo 2-1: For any segment set coding scheme for a Markov source
ELt = gq(t)EL, for all t € ¥.

Note that the segment sets need not be defined as in (2-4) for the lemma to

hold, but can be defined in an arbitrary way subject to the proper and com-

pleteness conditions. Next we define the pseudoprobability vector {with
a>0) ‘
Plulsy 2 27V@IS) | por all u. s with P(uls) > o. (2-13)

The parameter a is to be determined later. We call ; a pseudoprobability
vector since Eu;(ufs) need not be one; negative pseudoprobabilities, how-
ever, do not occur. For k = 1, 2, we define P(u|s) analogous to
P(u®|s) defined in (2-3).

Now for each s € ¥ regard the segment set Jts as the leaves of a rooted
tree. Then ‘:nt is defined as the set of all internal nodes of this tree,

including the root node. So:

A = ful3v : Lw) > O and w € 4)

'We now have

3 P(uls)log, = =
uek uls}ogzl’(ulS)
= 3 P(uls)[1 + log, Dels)
ek uleitice, P(uls) ogzP{gts)]
{a ~ |
= 3 ine PUISHPEIT(.)) + DPWIT@.$)IPEIT(w.5)))]
i
-8
= 33, Pls)[HPE]) + DEE])IPE])]
tes gﬂs
T{u.s)=t
(b) ~ |
=" 3 3 P(uls)L,(u.s)HE(P(IE)) + D(P(Ue)IPU]t))]
tes ucH

s
() ~
= 2, Byl @ sNEEE]D) + DEEIOIPE])]. (2-14)

where for t € ¥

7

D(P@|)PE[e) & = P(ult)los, P(ult)
u€y Plult)

We call the quantity D a conditional pseudodivergence since ; is’a pseudo—
probability vector. However, P is a probability vector (EuP(u]s} =1). In
{(2) and (b) we use Massey’'s [15] "leaf-node theorem” and in {c) we use
{2-12).

For a segment u € Jls(n) as defined in (2-4)

. 3 Vi |rwe)
Puls) =2 ")

and therefore, with me 4 max{V(u]s) Jue¥, s€?, P(u|s)>0} we find that

1
on €1 - Safn +V
%2 P(uls)

If we combine (2-14) with (2-15} we obtain

an < 3 By (L@ SNHEE]D) + DU IOIPE])]

aln + VW - 1).
If we now set the pseudodivergence

p,(P.P.T) & 3 q(s)D(P@Is)IP(U(s))
sey¥

it follows that

EL-(H_(P.T) + D_(P.P.T))

=R 3 a()[H(P(U]t)) + D(P(U|e)IP(U|¢))]
t

d : ~
(-_-} h Et[H(P(Uh)) + DEPU e P t)]
o ted

(e)
= X b Pr(‘sr)' 2 g (s)
tey ¢ €4 s€s_ |

By |4{L (L.)}HPUI)) + DP(U]e)IP(U[£))]

=€§§§Pr(‘§r} . ségqr{s)
r r
. tgy Ey|s{L (L. s)HHPUe)) + DPU|t)IPU]t))]

(2-15)

(2-16)

(2-17)

Here (d) follows from Lemma 2-1 and (e) from (2-11). Lemma 2~2 is now ob-
tained if we combine (2-16) with (2-17).

Lemma 2-2: For a segment set scheme as defined in (2-4) with ; as in
(2-13): ‘

an < EL+(H_(P.T) + D_(P.P.T)) ¢ a(n + V. - 1)

Now we want to relate logzﬂm(n) to an. Therefore, we introduce for A 2 1

the matrix A(\) 4 [A_,(\)] such that

A, () 4 5 2Yel) Ny sey. tev. (2-18)
uiP(uls)>0
T{u,s)=t

and define I to be the identity matrix, which leads to the following lemma.
Lemma 2-3: (Gantmecher [16]): Let

Ao 4 max{n|det[A(N)-1]=0}

and ¢ be the characteristic vector of A(?\m} for characteristic number 1
such that e’s largest component is 1. Then all components of ¢ are posi-

tive. This lemma is proved in Appendix III. Index the components of e with
s€Y, {le., g 4 (esis € ¥). Then define

A ;
€nin = Mn{e, |ses}

So €pin > 0. The next lemma is proved in Appendix IV.

Lemmo 2-4: For a segment set code as defined in (2-4) for 5 € ¥ and

nxil- Vm {n is an integer),

- 31 -

n 1 nt Vo~ 1
(Am) e SHs(n) g;——(h } e_.

nin | ROX s
where A is defined in Lemma 2-3.
max
We will now work towards the main theorem of this section. First set

n 4 (“logzemn)/logzkm. Then forn =1, 2, 3, ... it follows from Lemma

2~4 that

(n - m)logd, < log M (n) <

< (n+ me -1+ n)logz)\m. {2-19)

We now can choose the constant o in the definition of the pseudoprobabi-

lity:
A
a = logzkmx. (2-20)
Then
log2ﬁmx(n) < (n+ vmx -1+ n)1°g2>\mx
EL EL
n+V -14+7
- max .
- n
n + me -14+17 ~
4 T - (Hw(P.T) + Dm(P,P,T)), {2-21a)
and

log X ..(n) N (n - n)log A

58 2 53
) n-n . a{n + Vm)
n + Vm -1 EL
—n-m P
2 e ¢ (B (P.T) + D (P.P.T)). (2-21b)

nox

From {2-21) and definition (2-9) we obtain Theorem 2-1.
Theorem 2-1: For a segment set code as defined in (2-4) for n 2 1 (n is

an integer) the rate R{(n) is bounded as follows:

— D=0 . (g (P.T) + D(P.P.T)) < R(n) ¢

n+ ¥V -1
mox
n+V -1+7
mox

- - (H,(P.T) + D (P.P.T))-
In the definition of the pseudoprobabilities a is set equal to logzkmx
where ’\mx is formed as in Lemma 2-3. Then 1 can be computed. Note that the
stepvalue function V (together with the next-state function T) determines
}‘max’ a, ;. e and 7. All these parameters do not depend on n or P.

Example: For the source in Figure 2-1 with the stepvalue function as in

Figure 2-3, we can determine A(A) and)\max as follows:

R S
AQ) = » o a2 |, A =1.89320.
nox ‘
1 0 0

Now we determine ¢ and 7n:

e = 0.92070, e, = 1.00000, e, = 0.92070, 7 = 0.12944.
With a é legz)\max = 0.92090 we can find the pseudoprobabilities

P(0]a) = 0.52818, P(1]a) = 0.27898. P(2|a) = 0.14735,
P(O]b) = 0.27888, P(1|b) = 0.27888, P(2|b) = 0.52818,

P(O|c) = 1.00000, P(1]c) = -, P(2|c) = -.

For the pseudodivergence we find that
D (P.P,T} = 0.02892 bit/source letter.

Now we evaluate the bound in Theorem 2-1 for n = 10, 100, 1000 and 10000

and compare these values with the exact value of R:

n =10 0.85984 { R € 1.26794, R = 1.07397,
n = 100 1.02352 { R € 1.06760, R = 1.04839,
n = 1000 1.04312 { R § 1.04757, R = 1.04565,
n = 10000 1.04512 < R € 1.04556, R = 1.04537.

From our example it is clear that for n » @ the rate R approaches H_(P.T} +
Dw{P.;.T) = 1.04534. This asymptotical behaviour of our segment schemes is
the subject of the next section. We will also investigate the properties of
the scheme when we choose the steps more proportional to the logarithm of

the corresponding probabilities.

2.6. Asymptotic behaviour.

" The first result is an immediate consequence of‘ Theorem 2-1.

Corollary: For segment set coding schemes as defined in (2~4) we have

lim R(n) = B (P.T) + D (P.P.T).
b

where the pseudoprobabilities are determined with a = logz)\m and ?\mx is

defined in Lemma 2-3.

From the Corollary we see that D (P.P.T) plays an important role. What

are the values that this pseudodivergence can take on? A partial answer to
this question is given in Lemma 2-5. The proof of Lemma 2-5 can be found in
Appendix V.

Lemma 2-5: For segment set schemes as defined in {2-4). with pseudopro-
babilities that are determined with a = logz)\m and)\mx defined as in

Lemma 2-3,
Dw(P,P.T) 2 0.

A code designer would like to choose the stepvalue function such that
the pseudodivergence is as small as possible. What is the lowest possible
value of this pseudodivergence for which a stepvalue function still exists?
Theorem 2-2 states that pseudodivergences arbitrarily close to zero are
achievable.

Theorem 2-2: Let v > 0. Choose V,r(uls) 4 f‘-':iogzP(u]s)'I for u € 4,
s €Y such that P(u|s) > O. For segment set schemes as def ined in (2-4)
with pseudoprobabilities ;’Y that are determined with o set equal to
log27\mﬂ, and ?\W 4 88 in Lemma 2-3,

s

lim D (P.P_.T) = O.
b o4

Here faﬂ stands for the smallest integer not less than x. Note that for
obvious reasons we added a subscript v to quantities depending on ~. For
the proof of Theorem 2-2 we refer to Appendix VI.

At the end of this section we conclude that with segment set schemes as
defined in (2-4) we can achieve rates arbitrarily close to the source en-
tropy H (P.T). The encoding and decoding algorithms for these schemes are

easy to implement. However, it could be possible that with segment set

schemes that are not defined as in (2-4) even lower rates than H_(P.T) are

achievable. In the next section we show that this is not the case. With the

following example we demonstrate the results in the present section.
Example: For the source in Figure 2-1 and for a few values of 7,

Vq(uls) and Dw(P,P",T) are listed:

—logzP(u|s) Vo1 (uls) Vq___4(u.|s) V7=16(u Is)

u=0|s=a 0.51457 1 3 9
u=1|s=a 2.32193 3 10 37
u=2|s=a 3.32193 4 14 53
u=0|s=b 1.73697 2 7 28
u=1|s=b 1.73697 2 7 28
u=2|s=b 1.32193 2 6 21
u=0|s=c 0 0 0 0
Dw(P,;,',T) bit|lett. 0.00855 0.00216 0.00017

2.7. The converse.
In this section we prove the following.

Theorem 2-3: For an arbitrary segment set coding scheme for a Markov

source with entropy H (P.T). .
log N
A %82 max
R = —% > H(P.T).

Proof: Along the lines of {2-14) we obtain for the segment set "s' by set-

ting P(uls) éP(u|s) instead of {2-13), that

1
log ¥ =2 uza P(uls)iog, sriTey
8

= 3 Byl @) HEE]). (2-22)
Now as in (2-17),

EL.H (P.T) = EL. X q(t)H(P(U]t))
tes

it

b ELtou(P(ulz})\
tey

i}

=z Pr(‘@r) b4 qr(s)
¢ €8 €4

r
. ég» Egls{Lt(g,S)}'H(P(U;t))

$ 1°g2xmx

where the last step follows from (2-22).

If we combine Theorems 2-2 and 2-3 we find that for Markov sources seg-
ment set schemes as defined in {2-4) can be found with rates arbitrarily
close to the source entropy and that no {arbitrarily def ined); segment set
schemes exist with a rate less than the source entropy. Therefore, we con-
clude that the segment set schemes described and analysed here are not only
easy to 1implement but also asymptotically optimal with respect to their
compression capabilities. |

Note that Theorem 2-3 sometimes gives a better lower bound for R than
the lower bound in Theorem 2-1. Also note that Lemma 2-5 follows indirectly

from the converse in this section.

- 37 -

2.8. Complexity aspects.

The Ils(m) array, s € ¥, 1 {m { n, must be present in memory both at

the encoder and at the decoder. From Lemma 2-4 we observe that

logh _(n) < - loge .+ (V.. —1+n)logh

(Vo + MIOBA (2-23)

IR

So we need about nlog)\mwC bits to store an array value. So for this array

we need approximately
tor 2
c® = |#].n 1°g2)\nw,x bit locations.

We call Cstor the storage complexity. The computational complexity is equal

to the maximum number of operations that have to be performed per source

symbol, hence
coP o |a| -1 operations/symbol. (2-24)

This result holds for the encoder and only shows the maximum number of ad-
ditions and table indexings needed to add the next increment to the index,
see (2-7). The state update etc. is performed once per symbol and is
neglected here. The computational complexity of the decoder is also propor-
tional to |Ql| - 1 but the basic operation here is more complex. (We also
need comparisons). See (2-8).

The storage complexity can be decreased to

CStO & [#ln(r + logy(nlog,A,) bit locations (2-25)

if we compute the H;(m) as follows:

iy A . _
2T 2o Haa® Yl 1 gagn

1. m <O, (2-26)

where fA~2B]r with B an integer. 172 { 4 < 1, equals {A-zrl-zB"'i. Thus the
H‘;(m) *s are the r bit precision analogues of the integers !s(a) defined in
(2-6). When represented as floating point numbers the mantissa pf K; re-
quires only r bits, and the characteristic {or exponent) requires about
logz(nlogzkmx) bits. This follows from {2-23). In (2-26) the rounding up
is necessary to guarantee decodability of the scheme. What happens is that '
we overestimate the cardinalities of some of the subsets Js{g}; This also
increases me' but not by much, so {2-23) will still hold app;oximtely.

; ol
It is also possible to decrease the computational complexity to !

P o g ‘operation/symbol,

if we store, for every state s € ¥, every m such that 1 { m { n and every

possible source symbol u € %

Folmu) 4

3 -V . | (2-27
vu:P(v]s)>0 HT(v,s)(m (vls) })

Now the additions for every symbol of the source are carried out in advan-~
ce, but since the results fs(n,u) have to be stored, the stérage ;:omplgx-ity
is increased by a factor |%|. Thus a trade-off exists here between computa-
tional complexity and storage complexity. .

Decreasing the storage complexity to {2-25) increases the rate of the

scheme, since we need a larger codeword set to accomodate the estimated

-39 -

segment set cardinalities H;(n). However, if r is not too small, this ef-
fect can be neglected. Decreasing the computational complexity to 1 opera-
tion/symbol has no influence on the rate, It is, of course, possible to

combine the methods in (2-26) and (2-27).

2.9. Discrete memoryless sources.

Consider a discrete memoryless source with source letter alphabet % and

probability vector P(u), u € 4. The entropy of the source is

HPU)) = = - P{u}logzP(u) bit/source letter.
u€¥

Choose for all u € 4 stepvalues V(u) € {1, 2, 3, ...}, and assume that
P(u) > O for all u € 4. Then let n be some positive integer. Now define the

segment set scheme for n as follows:

M) & el 2 V() 2moand
k=1,L(u)

3 17 < n}. | 2-98
ke L(g)-1 (u,) < n} ()

Note that encoding and decoding is as in section 2.3 if we assume that only
one state exists. Therefore, only one array M(m) exists which can be filled

recursively. Now let a be the solution of

s ooV _
u€y

If we now set

P(u) 4 272Y(W) (2-29)

then we obtain for the rate

— 2 -+ (H(P(V)) + D(P(U)P(D))) £ R(n) <

v -1

_:“"__ - (B(P(U)) + D(P(UYIP(V))).

&
+

where

ppPW)) & 3 P(u)log, 2L .
' u€y

P(u)

Note that ;(u). u € 4 is not a pseudoprobability vector but a vector whose
components sum to one, and, therefore, D{P(ll)ll;(U)) is a ordinary divergen-
ce.

Just as for Markov sources it can be proved that rates arbitrarily
close to the entropy of the source are achievable with properly chosen
stepvalues. Again no codes exist with rates lower than the source entropy.
The latter was already proved in [4].

The schemes described in this section equal the optimal :(Tunstall)
codes, [3]. [4]. if :

i) the stepvalues V(u) can be chosen such that ;(u), as given in (2-29),
equals P{u) for all u € 4, and

ii) the size of the Tunstall code equals [4(n)].

In addition, for probability sets P(+) "close” to the resulting ;(-), H#(n)

is still optimal. This in turn implies that for each source in the class

DMS, many optimal codes exist that are equivalent to schemes as defined in

{2-24) and, therefore, easy to implement.

We will now set out to prove these statements. First we repeat

- 41 -

Tunstall’s theorem.

Theorem 2-4 (Tunstall [3]): .HT(H) is a proper and complete segment set
over the source alphabet ¥ with M segments, N < =. If JLI.(I!) is obtained by
the following algorithm, then the average segment length of AT(H}, with
respect to the source probability vector P{+), is maximal over all proper

and complete segment sets of size M.

Algorithm:
() 44,
A+] - 1) 4 - @) U fusle € 9

where u € A (M) with P(u) = max{P(z) [ved(¥)}.
We say that #T(H) is extended at u.

We will give a alternative proof of this theorem, using what we call
the "test lemma”.

Lemmo 2-6 (test lemma): Let # be a proper and complete segment set over
%, (|4] = ¥ ¢ »). Over all possible segment sets 4 has the largest average
segment length with respect to a probability vector P(+) iff the P-probabi~-
lity of a segment in A does not exceed the P-probability of any proper pre-
fix of any segment in A.

The proof of this lemma is given in Appendix VII. Now it remains to
show that JT(H) satisfies the test lemma.

Proof: Consider Jl.r(|‘!l|). The only proper prefix is the empty string go.
Now P(go) 4 1, so the test lemma shows that the set is maximal. (Also,
a(|#]) is the only possible set}. Assume that 4 (M)) 1is maximal. Set
N=Ny+ 4] - 1. Let ue Ap(N,) be the segment that is extended. The set
of proper prefixes for A(T(H) consists of the set of proper prefixes for
Ar(llo} plus the segment u. Since P(u) is the largest probability over the
set .&T(llo) and P(uu) < P{u), u € %, it follows with the test lemma that

J!T(K} is also maximal. This proves the Tunstall algorithm, Theorem 2-4.

From the definition (2-28) it follows that the set M{n) also satisfies
the test lemma if ;(u) = P(u) for all u € ¥. This holds because for every
proper prefix v, P(u) > 27" and for every segment y in the set, P(u) ¢
2™ It is not hard to see that if ;(u) is "close” to P(u) then the test
lemma still holds, proving the second claim above. Appendix VIII shows this

result in more detail.

2.10. Conclusions and remarks.

¥We conclude that the variable-to-fixed length coding schemes that were
described and analysed in this chapter perform well for Markov sources.
Their rate can be close to the source entropy, and the storage and computa-
tional complexities are low.

A nice advantage of these schemes is that they are robust. When the
letter probabilities of the Markov source change slightly the difference
between the code rate and the source entropy does not increase too quickly
as follows from Theorem 2-1.

We remark that it is necessary, to guarantee a good performance, that
both the encoder and the decoder keep track of the state of the source.
This means that the first state of the source has to be known by both.

-Although it is important that for growing array lengths and growing
stepvalues the entropy can be achieved, it turns out that sometimes, for
reasonabljr small stepvalues and array lengths, schemes can be found with a
rate very close to source entropy. For our “example source™ with the steps
as in Figure 2~3, we find for n = 2 a scheme with rate R == 1.04591
bit/source letter, which is only 0.02950 bit away from the entropy of the
source. It is not known whether such good and simple schemes exist for all

Markov sources.

_43 -

3. ARITHMETIC CODES.

3.1. Introduction.

The arithmetic coding scheme is a stream code based on Elias’ algorithm
[5]. It is a noiseless compression technique applicable in all situations
where the source statistics are known. Like the scheme described in chapter
2, this scheme computes the codeword from the message and back.

The practical application of the Elias algorithm is hampered by the
fast growing arithmetical precision requirements. Pasco [10] solved this
problem using a rounding technique. He showed that, if properly performed,
rounding is allowable and incurs a small redundancy penalty. At the same
time Rissanen [9] introduced a similar technique that used an exponential
% to avoid the precision problem. Other authors, eg. Jones [17], Rubin
[18]. and Guazzo [19]. presented other arithmetic coding schemes.

In [20] Rissanen and Langdon generalized the arithmetic coding tech-
nique, and specifically treated the problem of optimizing the table values.
However, they did not deal with the problem of designing a scheme for a
given source. Also, because they optimized the table, the flexibility of
the algorithm was lost.

¥We approach the code design starting from a finite size and precision
table, thus retaining the flexibility. The upperbounds on the code redun-
dancy, or ineffic;iency. that result are functions of the two table parame-
ters, namely the size of the table and the precision of a table entry.

In the sections 3.2 and 3.3 we describe the Elias algorithm. In these sec~
tions, the important notion of source- and code intervals are introduced.
Also the decoding of these schemes is discussed. Section 3.4 describes some

previous arithmetic coding schemes like Pasco’s and Rissanen's finite pre-

cision algorithms. It also introduces a new carry-blocking technique. We
need this to allow the transmission of parts of the codeword before the
whole codeword is completed. In section 3.5 our finite precision and muli-
plication-free schemes are described. Two methods are given. T}ie P-me thod
has the better efficiency of the two and the Q-method is the fastest. In
section 3.6 we discuss the decodability criteria for these methods. In the
next two sections these criteria are used to give two code designs for each
method and to bound the resulting redundancies. Section 3.9 describes
"fast” designs. It 1is shown that the computational burden can be reduced
with an acceptable penalty in redundancy increase. The complexity of these
schemes 1is exposed in section 3.10 and the next section gives some numeri-
cal results. Section 3.12 describes the implementation of the encoder and
decoder. Here we discuss the trade-off between the extra size of the

adder-unit and the redundancy for low entropy sources. The last section

summarizes the results of this chapter.

3.2. The Elias algorithm.

The Elias algorithm represents source strings and codewords by subin-
tervals of [0. 1}. The coding scheme is defined by relating sour}ce inter-
vals to codg intervals.

A source in the class SES is defined by a finite, ordered aighabet Y=
{0. 1. c-1} and the string probabilities P(u"), for n =0, 1, 2,
For a detailed treatment of the class of discrete stationary and ergodic
sources we refer to [1]. The most important properties are

stationarity; the probability of a string is independent t;f the time

origin, and | i

ergodicity: this says that time averages of functions over all sample

source output sequences equal the ensemble averages, except possibly
for a set of sequences with probability zero.

The (block-) entropy of a string of n symbols is defined as:

Br@Y) 4 -3 Pios PR
=

The per letter source entropy is defined as the limit:

H,(P) 4 1im Lup™)
n-xo

The most important result is that the entropy of a source in the class SES
can be approached arbitrarily close. (Shannon - McMillan, see [1]).
We can extend the ordering on single letters of ¥ to a lexicographical

ordering of strings over 4. Now Q(gn) is the cumulative probability given

by:

Define the source interval I(gn) as:

I(w™) = (™. o™ + P(u™)) (3-1)

See Figure 3-1.
n n n n .
Now, since Q(u’) + P(u ') equals Q(v), where v is the "next” string in
the ordering, we observe that the set {I(g")lgp € %n}, n= 0,’1, ..., COM-

pletely subdivides the unit interval.

- 4G -

/‘\——"/'[\-“""‘/”\ ——————— 1
1(11)
(1) B R 5/9
I()
1(10)
g i e L R 173
1(01)
1{0)
B R 1/9
1(00)
' N | ¥ R T ¥ 0

Figure 3-1. Subdivision of [0, 1) by I(go), I(ul). I(gz)

with a binary memoryless source, P(0) = 1/3.

Elias’ main contribution is the following recursive generation of the
successive source intervals I(gi), 1 {i ¢ n. Denote by P(u‘gi) the condi-

tional symbol probability and by Q(u]gi) the conditional cumulative proba-

bility, or

i
.
Pulut) = (u l;). Pty > o,
Pu’)
o’y = 3 PElh). PEh >o.
vlu

- 47 -
Then

™) = owh) + Pty o, kY. (-2)
P'™) = Pa')Pluy,, uh). | (3-3)
The repeated application of {3-2) and (3-3). starting with the empty string
u®, Q®) = 0, P(go) = 1, gives us the interval I(gn) defined by (3-1).

S0 we now have an invertible mapping from source strings into subinter-
vals of [0, 1). The subdivision is determined by the source probabilities.
The usual description of this algorithm, c.f. [21] and [10], now continues
by constructing a codeword &m from a point ¢ € I(gn'), where a can be repre—
sented by an m digits d-ary fraction. The codeword length m is shown to be
upperbounded by [~log # P(t_gn)], however, the codewords that result from this
algorithmic construction cannot be concatenated. The standard solution is
to append a length defining prefix, increasing the codeword length by about |
logd n, [21], [10]. We will give a different algorithmic construction that
requires no more than one extra symbol above l'--logd P(u™)] to guarantee a
prefix-free code.

Let £ =4{0, 1, ..., d-1} be the finite code alphabet. Any d-ary pre-
fix~free code can be seen as a d-ary subdivision of the unit interval as
follows:

For g' € o™ define the rational number %{m} by:

xm) & 3 x at.

i

[k

1

Define the code interval J(gm) by:

16 4 [x(m), x(m) + a™).

- 48 -

Note that _:gm is a prefix of ye if and only if](zm) n](ge). Thus we have
the following lemma.

Lemma: the code is prefix-free if and only if no two code: intervals
have a point in common. |

Our construction of codewords for the Elias message set assigns to each

source string !n a variable length code string zm with
I(w") 2 J("). (3-9)

As can be seen in Figure 3-2.

m inclusion (3-4) defines a mapping from z_m to 1_1“, but not from l_l.n to
the codeword gm without an additional rule ti]at we will give later. Figure
3-2 gives an example of such a code. Note that some of the code intervals
are not used. These unused intervals are called gaps. They result in an
inefficiency of the scheme. Remember that a scheme can be inefficient even
without gaps if the codeword lengths are not assigned correctly.: The inef-
ficiency of this coding scheme will be upperbounded using the following
theorem.

- Theorem 3-1: i_l.n is a source string with probability P(z_;,n). There exists
a prefix-free code satisfying (3-4) such that the length m of the corres-

ponding code string gm satisfies:
' n n X
m < [—logdP(g)T +1 < -logP(u’) + 2.

Here [x]., where x is a real number, denotes the smallest integer mnot less

than x.

Proof: consider the code defined as follows.

Set m = [-log P(u™)] + 1 (3-5)

a™ [d*a™] ' (3-6)

and a

#t

Let ¥ be the codeword such that x(m) = a, or

: -i
@= 3 x;+d (3-7)
i=1 .
So](zm) = f[a, a + dhm). We complete the proof by showing that
I(u™) 3 ().
From (3-6): a2 o@™) (3-8)
From (3-6): a+d™<Qh) + 2™ (3-9)
From (3-5): a™ < aler™ (3-10)
From (3-9), (3-10): a + d™ < Q@) + 2-P(u")
< Q™) + P(wY) (3-11)
From (3-8). (3-11): I(¥™) 2 J(z™ Q.E.D.
So E _{»} <E {—1ogdp(_q")} + 2,
o o
and for stationary sources we get
1 1 2
mE () < RE@)) + 5 (3-12)

which approaches the source entropy as n - ®,

Remark 1: The formulas (3-5). (3-6). and (3-7) give us the additional
‘ rule to make the codeword assignment unique. While this rule guarantees the
decodability, it isn’t always the best possible choice. See Figure 3~2 for
a better selection of J{+), not in accordance with (3~5), but still decoda-
ble.

1 1
3/4
GAP
5/9 Hi;
172 " codebook
” u? | x
3/8
: 11 |11
173 H CAP fl 10 | o11
1/4 01 | 001
00 | 0000
1/8
179 M- GAP
1/16

I{00
o %
Figure 3-2. Codeword assignment.

So the Elias algorithm first computes the source interval and then, by
Theorem 3~1, finds the corresponding code interval and codeword. With
{3-12) we conclude that although this algorithm is mnot optimal, i.e. a
Huffman code [2] would be better, its implementation as n becomes large is
less complex and the resulting code rate still approaches the source entro-
PY.
| In the above description we formulated the algorithm as a FV {block)
scheme, It can be made into a stream coding scheme if we set n equal to

infinity. In this case we know with {3-12) that the source entropy will be

- achieved.

Now we have to deal with two new problems‘. The coding delay and the

- Bl — -

arithmetical precision in (3-2) and (3-3) become infinite. In the next sec-

tions we shall treat these problems.

3.3. Partial encoding and decoding.

In this section we discuss the coding delay problem occurring when we
use the Elias algorithm as a stream coding scheme. First observe that the
successive source intervals are included in each other. The same holds for

the code intervals, or

iy crel), o<ig<ign
{3-13)
I8 ci®), o<rgen
So. if I(u') € J(x*) then by (3-4) and (3-13): J(™) C J(x). so 2* is a
prefix of ggm and can be transmitted.

Decoding is done by simulating the encoder, that is, the decoder tries
to build its own source interval I (;n)} in accordance with the received code
string ;c_m. For this purpose it uses the same formulas etc. as the encoder.
We will give a recursive description of the decoding. Let ge be the recei-
ved part of the codeword. Let ;i be decoded correctly from gge, (;i = gi),
So, I(;i) 3](ze). Now let m 2 k 2 2 such that _:gk is the shortest extension

2

of 2~ with I{fuu) 2 J(x) for some symbol u € 4. Then g su=u L,

corresponding source symbol. Also the decoder can decide whether or not a

the

received code string part is sufficient to decode the next symbol. because
if g_k is insufficient then no u € ¥ exists with I(gin) " J(_:gk).
This partial encoding and decoding is a useful property of the scheme.

However, the determination whether or not a code interval is included in a

source interval might require arbitrarily high precision arithmetic and
arbitrarily long delays. In the next section we will introduce a,§ modifica-

tion that allows the use of bounded precision arithmetic.

3.4. Finite precision algorithms.

Pasco [10] gave the following description of the precision plioblem:

Suppose that all conditional probabilities P(ulu) and Q(u[g) are ap-
proximated by g digits precise numbers '};(u Ju) resp. a(ulg}. With (3-3) we
observe that ;(gi) needs ¢+i digits, thus preventing the encoding of large
source strings.

Pasco’s solution was to replace (3-2) and (3-3) by a rounded 'down ver-

sion:

Pt*l) = Pub) P, W], (314)

ety = ah) + Ph)-Qeu,, vt

} (3~-15)
resulting in a source interval:

1™ = [, e") + P™)
Here [x]k stands for the largest number y { x, where y is a k digits pre~
ecise, floé.ting point number. This effectively reduces the source interval
lengths by a small amount, thus increasing the code rate. Pasco proved

that:

:t“EUn{‘“} < Lup™) - 1oz 01 - al™y + 2 (3-16)

where m is again the length of the codeword K, see {(3-12}.

In this derivation the influence of the approximation of the probabili-
ty vectors P and Q has not been taken into account. Pasco shows that if the
effect on the codeword length due to this approximation is to be upperboun-
ded by a value 8 then it suffices to take g digits in the fractional part
of ;{uh_z) and E(um) such that:

1 1
q:ﬁq%i——+lm%g+lL (3-17)
min

Here Pmin is the smallest probability over all vectors P{ulu).
From (3-15} we note that we must add a g + k digit floating poeint
augend to Q{u). Figure 3-3 depicts this process for a binary code alphabet.

From this figure we see that, except from the occurring carry, only g + k

augend
posi tion

Qw) : 0.111011000111110100 1e+>
P(u)-Q(ulu): 0.000000000000[f01 1010
+ +

Qw)+P(w) *Q(u |u): a111o11001P00F000011

carry propagation

Figure 3-3. Encoding a symbol.

digits of a(l_l.) are affected. We define the augend position to be the posi~
tion just to the left of the first non-zero digit in the d-ary representa-
tion of 5@), c.f. Figure 3-3. Now we would like to be able to transmit
those symbols of 6(34) that are to the left of this augend position as soon
as they are generated. However, since a carry may change an arbitrary num—

ber of these digits this cannot be done. To prevent this carry propagation

Langdon and Rissanen [227 described a carry-blocking technique.

In short: they retain the last r {r = 16} digits to the left of the
augend position. All symbols to the left of these r digits are not allowed
to be changed anymore and can be transmitted. As long as the r d&igits, just
before adding E(g)ﬁ(u[g). are not all equal to d-1, a possible carry will
be stopped somewhere in these r positions. If all digits are d-1's, an
extra zero is inserted at the augend position. It is obvious that for each
addition at most one carry can occur. So, a resulting carry willinever pro—
pagate further than r symbols to the left of the augend positi;:m. The de-
coder removes this inserted symbol and processes any occuring carry thatwas
blocked in it. This technique fails, since, without extra precautions, r or
more d-1's can be transmitted without an extra inserted zero and the deco-
der cannot distinguish between real code symbols and inserted ones.

We propose a somewhat different method, that is more in line with the
whole algorithm. Just like Langdon and Rissanen, we save the last r symbols
directly to the left of the augend position in a special carry blocking
register C. Whenever, before encoding the next symbol, this reéister con—
tains only d-1’s, we shift the augend to the right, {or, equivalently, the
adder register E(g} and the C register to the left), until the C register
contains a symbol different from d-1.

So, whenever we encode a symbel any occuring carry will be istopped in
the C register. This method retains the relative positions of the different
source intervals, {it only shortens them when necessary)}. The decoder,
since it simulates the encoder, knows when these shifts occur and performs
them too. |

Now, how often does this occur?

The symbol probability at the output of the encoder will be about i/d

if the encoder is efficient. Thus, the probability of a shift event Iis

about d ". So, these events happen about once per d source symbols. As-
suming the same probabilities in the a(g) register, we need circa a‘:i-l-
shifts per event. Experiments indicate that this is a slightly conservaiive
estimate.

Another adapted version of the Elias algorithm is described by Rissanen
in [9]. The scheme given there also uses fixed precision arithmetic as in
Pasco’'s scheme. It differs from the previous coding schemes by the fact
that the coding scheme builds its codewords backwards. By this we mean that
if ;m is the codeword for gn then u. is the first symbol that can be deco-

ded from &m and so on until, finally, u, is decoded. This implies that the

1
partial encoding and decoding technique described in section 3.3 cannot be
used. It also means that the carry-over problem cannot occur because the
augend is added to the most significant part of a(g) as we will see.

The scheme uses a rational-valued approximated exponential table e(x) =
2% in the computation of ;(gt). Rissanen uses a finite precision, approxi-
mated cumulative symbol probability vector E{ui +1) and instead of the sym—
bol probability vector P{utﬂ) he uses a "length parameter” vector l(u“_l)
that is a rational-valued apptoxi_mation to '—logzP(ui +1) with q binary
digits in the fractional part.

The l{u} must satisfy the following condition for some ¢ > O:

3 27H¥) (o (3-18)
u€H

Let p(u) be a rational number such that:
plu) = 2—1{&)*-&(11): -2—§- Se(u)y {e. u€q

Now the finite precision cumulative probabilities are:

5(u) = 2 plu); wuex
viu ‘

and the table e{x) is defined for all g bit fractions x such that:

x+5(x) .

e{x) = 2 0365%.

Assume that p(u), Q{u), and e(x) can be described with r digits in their

fractional parts, where r will be a function of € and g. The formulas

become:

) =awh + Pl 0,)

L(gid) = L(ui) + Uuy,,)

-~ N i 1

P (gwl) = 2[14(3 *)j-e(L(g“l) _ [L(l_xi“)J)
o’ =0

L(EO) = 2er

Rissanen proves that

B mg—f‘“ﬁ(gn—)} <L) + e+ 279+ 0. C (3-19)
where F(n) = O(g(n)) means that there is a constant c such that: l[rin)} ¢
c+|g(n)| for all n sufficiently large.

In a later paper, Rissanen and Langdon [20], generalize these coding
schemes. They discuss the differences and similarities between the First In
- First Out type of scheme, like the Elias scheme and the Last In - First
Out coding scheme of [9]. Pasco, in his thesis, also treats this iaspect.

Rissanen and Langdon then propose to precompute P_l(giﬂ)'a(ui +1) and

- B7 -

to store these in an augend table. The remainder of this article discusses
the selection of optimal values for these augends given a length parameter
vector. A severe disadvantage of this optimization is that it is a very
complex operation and the optimal values strongly depend on fhe‘ length pa-
rameters. This implies that this technique can hardly be used for sources
with memory. In this case namely, we either precompute and store a table
for every possible length parameter vector or we have to perform a complex

optimization algorithm every time the vector changes.

3.5. Multiplication—-free codes.

Rissanens arithmetic code [9] uses the exponential table only to manage
the precision problem. As an extra it eliminates the multiplication present
in {3-3). In the remainder of this chapter we introduce and discuss arith-
metic coding schemes where the exponential table will be used to limit the
precision requirements as well as to eliminate all multiplications. The
Justification for the latter is the fact that a multiplication operation is
inherently more complex than an addition.

Not only shall we state the encoding and decoding equations but we will
give algorithms that design the code for a given probability vector. We
will consider the efficiency of these designs as well as their complexity.
The following example introduces the exponential table.

Example 1: Let A[i] be the table approximating)_f'. {(A\>1), and a and
b be positive reals. Now choose two integers i and j such that:

e A[t] 2AL,
b A[j]EA .
So, i and j are proportional to the logarithm of a resp. b.

The multiplication a+b is approximated by the table value A[{+j] & A,

The table A, as will be explained below, is generated using a f ipite number
of elements and each element has a finite precision. So there aré two sour-—
ces for imprecisions in the representation of a number.

Because the table is indexed by integers, not all the "logarithms" are

~exactly representable, and, because of the finite precision, the "multipli-
cation” A[i] » A[i] 4 A[i+j] is inexact.

These imprecisions result in an inefficiency of the code; this will be
the topic of the next chapters.

Summarizing: the unbounded precision problem is solved because we add
table entries of a fixed and finite precision and the complexity of the
multiplication is reduced since it is replaced by table referencing and an
addition.

We will now define the table and then proceed to describe the algo-
rithm. Let x[i] be a finite precision d-ary table, 0 { i < N, for some
integer N. Z is nonincreasing in i. N denotes the length of the table. This

table approximates, in some way, the exponential function 7\."', where

/N
d . (3-20)

e

We extend this table to A[£] for all integers € by the following:

are1 dhpe) arocecn
(3-21)

4 5730, e=jN+i, 0L <N

Note that, since A is a d-ary table, d-j is a simple shift over j places.

Now there exist two reals a and B such that for all i, 0 { i < N:

- 59 -
-1, e, -1
a*AN ~ < Afi] < BeA {(3—22)

Of course this also holds for A[2] as defined in (3-21).
Example 2: Define A[i] as d—k° rqu\—i'], where kR is a positive integer.

l-k).)\-i. soa=1,B=1+ dl_k.

It is easily seen that At CA[iI] < (1 +d
Every table entry is now described with a k digit precision.

A[2] will be used to facilitate the multiplications in the algorithm.
Ve now describe the encoding formulas for these schemes. There are two pos—
sibilities:

P-method: This construction uses approximations to the conditional sym-
bol probabilities. Define integer stepvalues s(ulgt). preferably such that
A[s(ulgt)] x P(ulgi). The conditions on and methods for selecting the step-
values are discussed in a later section. We also need an integer S(gi) It
performs the role of P(gi) in the algorithm, or better, A[S(gi)] = P(gi’).
The algorithm computés an approximation to Q(gi’) named B(gi). The formulas

are, cf. (3-2), (3-3):

B = Bh) + 3 Ars@) + s(wlut)] (3-23)
vy g
s'*h) = s@') + suy,, lub) (3-24)

With initial values: B(u®) = S(u°) = 0.
Q-method: This construction uses approximated cumulative probabilities
as well. Apart from the stepvalues s(u.|1_:.") we also need integer stepsums

T(u|gi) such that A[T(ulgi)] = Q(ulu'). The formulas become:

Bu'™) = B + AIS(') + T(u,; u) (3-25)

sy = s@h) + s(u,,,) (3-26)

B(u®) = S(u°) = 0. (3-27)

Now we define the source intervals for the two methods. 'wit;h Theorem
3~1 we can fifld the code intervals and thus complete the code dejcscription,
since we then have a mapping from the source strings into the §v::od'.avmrds,
c.f. chapters 3.2 and 3.3. :
|

First, consider the two source strings gi and gi with x_xiﬂl = ?Qi—l, v, =
u, + 1. From (3-23) and (3-24) we get for the P-method: B(u') = B') +
A[S(y,t)]. It seems reasonable to stack the intervals, because then we leave
no gaps in between and, as will be discussed in the next section, we do not

want the intervals to overlap. Define:
i, A i i i
I(u') = [B(z'). Blu) + A[S(u")1) (3-28)

both for the P- and the Q-method. See f igure 3-4.

Remark 2: If, in the two methods, the stepvalues and stepsums are rea-
sonable approximations to their corresponding probabilities, then B(ui} =
Q{Q{) and A[S(gi)] 2 P(gi} and the source interval of (3-28) approximates
the interval as defined by (3-1)}.

Remark 3: Although we use the same symbols in (3-23), (3-24) and
(3-25)-(3-27) there is no numerical correspondence. Wherever it is clear
from the context, we shall use symbols like B, 8, and s without discrimina—
tion.

Remark 4: The augend JA[S{u) + s{vfu)] in (3-23) is computed more accu-
rately than the corresponding term A[S(u) + T{ulu)] in (3-25). So. we may
expect the P-method to be a better approximation to the Elias algorithm and
thus have a bettér performance than the Q-method. However, the augend in
(3-23) takes more work to compute if the source alphabet is large. These
statements will be quantified in the coming sections.

Remark 5: Instead of {(3-5) - {3-7) to find the codeword we could use

- 61 -

the interval boundary B(l_l.i) as the codeword for gl. In the above Example 2
this would introduce less than k extra digits per codeword, which is negli-

gible when the source string length becomes large.

SN T SN T T T

GAP GAP
« B(u2) « B(u2)
+ +
A[S(u2)] A[S(u2)]
I(u2)
I(u2)
A« Bu2)
I(u) I(u) « B(u2)
I(ul) GAP
I(ul)
H
GAP
I{u0)
I(u0)
{18 18 R A X [5 —— _L.lJ
P-method Q-method

Figure 3-4. The source intervals.

3.6. Local and global tests.

In this section we discuss the condition for decodability. A code in-
terval uniquely specifies a source string of length n, if it is included in

exactly one source interval I(_u.i'). If the source intervals I(g.i) and I(l_)i)

- 62 -

do not overlap then the code is certainly decodable. In the case of the
Elias algorithm, this condition is satisfied because of the;definition
(3-1). For the P- and Q-method arithmetic codes this restricts the choice
of the code parameters s(ulu) and T(ulu). |

Two types of overlap prevention are needed:

i-1 i-1
v

i)} Let u = , v, =u, +1. So ;_1" is the string "next to"” gi. The

i i
intervals I(gi) and I(gi} are adjacent and they do not overlap if {(with

(3-28)):

B(xY) 2 B(u') + ALs(ut)] (3-20)

See Figure 3-5.

Figure 3~5. Decoding error due to overlapping
intervals. J(x) fits both in I{u)
and in I{v).

i-1

ii) Let u be any source string. Set u, = o. Here w é ¢ - 11is the lar-

gest source symbol. If the interval I(gi} is not totally included in

I (gi—l) then an overlap with an other interval I(gt) can occur. See
Figure 3-6. If I(gi) exceeds I(gt-l) then continuations of gi and Qi.
vwhere gi' is the string"'next to" ui‘. might be assigned the same code

interval. With (3~28) we get the condition:

'™ + ars' ™)1 2 B + ASE"H] (3-30)

Figure 3~6. Decoding error due to exceeding
an interval bound. I(gi’} exceeds I(gi’—lj

and conflicts with I(gi‘).

The conditions (3-29) and (3-30), if satisfied for all i { n, are a suffi-
cient condition for decodability. Because we want to use the arithmetic
schemes as stream coding schemes, i.e. n = ®, we require (3-29) and (3-30)
to hold for all &.

We study the restrictions that th§ conditions (3-29) and (3-30} impose

on the parameters of the P- and Q-methods. The Lemmas 3~1 and 3-2 are the

translations of {3-29) and (3-30) to the P-method and the Q-method. The
conditions in tﬁese two lemmas depend on the "local position” S(gi}, and
the actual table values A[-].

In some cases it is required that the code parameters s(0|°§ and T(+|+)
are selected such that a decodable code results independent of‘ the local
position. This is the case if we want to select the code parameters a-prio-
ri and use them for the encoding of all the source symbols. This is studied
next and the results are stated in the Lemmas 3-3 and 3-4.

Lemma 3-1: If for all i < n and u® € 4" holds:
AS(uh)] 2 3 AS(!) + s(ulut)] (3-31)
Ui

then the P-method code is decodable.

A[i] 1

172 +

R
4

1 1
S(u) S(u)+s(0fu) S(u)+s(1|u)

Figure 3-7. P-method interval generation.

Remark 6: Formula {3-31) is called the local P-test at position S(gt).
See Figure 3-7.

Proof: (3-20) is satisfied due to the definition (3-28) of the source
. intervals. For B(gi) and S{gi} with u, = @ we may write, {see (3-23) and

(3-24)):

Bu') = B'™y + 3 ast™) + st
uw

sy = s@'™) + s(ol'™)
Substituting this in {3-30) and subtracting B(gt“l) from both sides gives
us (3-31). Q.E.D.

Lemma 3-2: If for all © < n, gt € ‘Ht. u € % holds

ALS(e®) + T(s1lul)] 2

ALS(e") + T(uleh)] + ALS(®) + s(ulu’)) (3-32)
and also
T(o+1lut) 2 0 (3-33)
‘then the Q-method code is decodable.

Remark 7: The formulas (3-32) and {3-33) are called the local Q-test at
position S(gi). See Figure 3-8.
Proof: First we show that (3-29) holds if (3-32) holds. Let _qi' and gt

be defined as in (3-29). Then from (3-25) and {3-26}:

Bu') = B@'™) + s + Ty, ') |
B(e") = B@' ™) + s + T(u+1 "

s') = s@'™) + s(u, '™
Substituting this in {3-29) and subtracting B(gi_l} results in (3-32), so
both are equivalent.

-1

Now we show that {3-30) holds. Let gi' be any source string and u, =

w. Then, from {3-25) and (3-26):

Bu') = B'™) + as@™) + T(olut ™

sh) = s@'™) + st

After substituting this in {3-30) and subtracting B(gi-l) we obtain the

Q-method equivalent of condition (3-30):

atse'™1 2

As'™) + Tle!™7 + as@!™) + s(olut™?

)] (3-34)

Now, since A[i] is non increasing in i, we obtain (3-34) from (3-32) and
{3-33). So (3-30) is true if (3-33) holds and {3-32) holds for u = .
Q.E.D.

As said before, these local conditions depend on the current% position
in the table and the table values. In what follows we remove this dependen-
cy and obtain more restrictive global conditions.

Lemma 3-3: (Global P-test). If for all i < n, u® € 4, the stepvalues

are selected such that

t
3 As(ule) (2 (3-35)
u€y

|

- 67 —

holds, then the P-method code is decodable. For a and B see (3-22).

1 +
oo ————- .__GAP
A[i] 1 : B N
' I(ul) N\
. o
21 1w NG .

H
:
[] | i \ | |] i 1]] i L
i 1) 1 1 1 1 i 1 i i
1 23456 7 8 9101112131415 1617 1 -
1) T 1 , 1 ,
S(u) S(u)+T(1]|u) S(u)+s(0fu) S(u)+s(1]u)

Figure 3~-8. Q-method interval generation.

Lemma 3-4: {(Global Q-test). If for all { { n, gi € o' the stepvalues

are selected such that
Z‘.@. c-u —s(u}ui)
3 (a) A =71<1 (3-38)
uel :

holds, then stepsums T(u|u'). for all u € ¥, can be found and the Q-method
code is decodable.

| The proofs’ of the Lemmas 3-3 and 3-4 are contained in the Appendix IX.
Note the similarity between the two global tests and the Kraft inéqualify
[1]. [9] ’~ and especially between (3-35) and (3-18).

The four lemmas discussed in this section state conditions on the code

parameters such that decodable codes result. The conditions are not neces-
sary and counterexamples are easily constructed (we give an example at the
end of this section). However, with these conditions codes can be designed
that perform well for most sources. The design of codes is the topic of the
next section.

Example: let the table A contain N = 8 binary entries, each.described

with k = 5 digits, so!

A[0] = 1.0000, A[1] = 0.11110, A[2] = 0.11011, A[3] = 0.11001,
A[4] = 0.10111, A[5] = 0.10101, A[6] = 0.10100, A[7] = 0.10010.

So, a=1, B=1.0625, and A = 1.0905.

Let the source alphabet be % = { 0, 1, 2} and assume that the source is
memoryless, so all stepvalues s are functions only of the current sour-
ce letter. Also, suppose that s(o} = 6 and s{1) = 13. Then, the smal-
lest wvalue for s(2). such that (3-35) is satisfied, is 44. However, by
checking the actual table values and given that s{(0) = 6 and s(1) = 13,
we find that s{(2) = 36 never conflicts with Lemma 3~1, but violates
{3-35). So The global condition {Lemma 3-3) is not necessary. The same
can be shown for Lemma 3-4.

3.7. Global and local dgg; gZns.

A code design is a rule for selecting the stepvalues and stepsums, if
needed, depending on the source probabilities, such that a decodable code
results. One important distinction between designs is whether or mnot the
local position S(gi) influences the selection. If a rule selects !the step—

values independent of the local position and such that the global test is

satisfied, then we call this rule a global design. A local design results
if we select the stepvalues according to the local test at the current
position S{g”). In this section we will give a design for each of the four
cases mentioned above. At every time instant i+l we assume that the proba-
bility vectors P(ulgi‘) and Q(ulut) are available to the en— and decoder.

Design 1: {Global design for the P-method). For all u € ¥, set
s(ului) = [1 B . log P{u!ui)] {(3-37)
u) = [log, g - logyP(ulu))]-

Verification:

—s(u]ut) a i —s(u!gt) o
From {3-37) we find that A =7« ‘g‘P(“L‘é }so I A < Eand
uey

the global P-test is satisfied. The code is decodable,

Remark 8: If u, is the symbol to be encoded then {3-37) must be eva-

+1

luated for all u €4, udu Then we can compute the new interval

i+1°
1(u**) vy (3-23) and (3-24).

Design 2: {Global design for the Q-method). Set

s(ulu') = [(cmw)-1og, 2 - 10g, Pulu")] (3-39)
T(ulu') = [(c-u)-log, 2 - 1og,0(ulu)] (3-39)

The verification of this design is contained in Appendix X.

Remark 9: If U

must be computed for this value only. Compared with Design 1 this is much

is the symbol to be encoded then {3-38) and (3-39)

faster if Uil > 1 i.e., if the source alphabet is large.

Both designs make no use of the current position. In these global de-
signs we take into account the worst-case deviations as defined by (3-22).
In a local design we optimize the stepvalues by searching through the table

for the smallest stepvalues that satisfy the local tests. We proceed with

- T0 -

two more examples.

Design 3: (Local design for the P-method). First we evaluate (3-37) for
allu €9, 'f'hen ve repeatedly decrease the stepvalues by one until any
extra decrement would violate the local P-test. The search order could be:
First decrease s(O[gi') as much as possible, then s(l[gi), etc. A slightly
better method would be; select the smallest stepvalue and decrease it by
one. Repeat this until no new decrement is possible.

Remark 10: Compared to Design 1, the amount of work has increased enor-
mously.

Destgn 4: (Local design for the Q-method). Assume we want to encode
+ 1|y’) by (3-39). Now find the

u, - First compute T(u [u') and T(u,

i+1 i+l

smallest s(uw1 Lu_i) under the restriction of the local Q-test at position
S(u)- |

Remarh 11: This method is not much more complex than Design 2. Any
search operation in the table can easily be performed in 1og2N operations

since the table is ordered. See section 3.10,

8. Bounds on the redundancy.

In the previous sections we described some code designs and decodabili-
ty criteria. Here we discuss the achievable rates of these designs. Actual-
ly, we are interested in the difference between the code rate and the sour-
ce entropy This quantity is known as the code redundancy.

Denote by L(u } the length of the codeword assigned to u. by ‘some code,

then the rate of this code is given as

E _{L(™)}

R(n) & (3-40)

n

- 71 -
and the redundancy is given by
A 1 T
r{n} = R(n) ~ ;'H(P(“) (3-41)

For the length L(gn) we show that, both in the P- and Q-methods, holds:

n S@h

L{u’) ¢

+ 01}.

Proof: by {3-28), the length of the source interval I(gﬁ) is given by

A[S(gn)]. Theorem 3-1 then results in
L") < [-logy A[SE™IT + 1

Which, with (3-20)-(3-22) results in

S
L™ ¢ f— - logg o] + 1
Q.E.D.
Now we may write:
» " (")
E {L <E _{-1 P(U E {1 e 0{1}) (342
Qn{(-}} Q"{ °3d()}+gn{°gd)_ gn)}*{)()

For stationary sources the first term on the righthand side equals the
entropy H(P(Qn)) and the second term is almost a divergence {see for in-

stance Csiszar and Korner [23]). We will define the pseudodivergence:

- 72 -

~ P(U™)
ey ik o 3-43
P) - By —) (3-43)

Now with (3-40). (3-41), and (3-43) we get:
rn) < %~B(P(g“)ux's(gn)) + 0(1/n) (3-44)

Remark 12: If we define the codewords as described in Remark 5, we
still obtain (3-44), although the tolerance term 0(1/n) is larger in this
case.

We will now upperbound this divergence. Therefore, assume the existence

of a function t(u) 4 r-A", such that:

“s(uy ')
tu)A 2 Py lutTh (3-45)

for all i, 0 < i < n, and all gf’ € "Ili. I' and A are positive constants

determined by the design. Then

i-1 l1gn
-S(gn) - E.':' s(u, |u*) -n -n{c - =3 u,)
A =2 i=1 i ST 4A n Ti=l i P(un')
Now define the average symbol u by
- A1 ny., o
u== 3 Plu)(Z u,). (3-46)
et i=1 °©

With (3-44) we obtain:

r(n) < logg T + (c - a)-logd A + 0(1/n) (3-47)

- 73 -

For an arithmetic code, n can be made very large. So we wmight ignore

the term O{1/n). I and A will be expressed in the table parameters o and B

and thus we obtain a source-independent upperbound. We give two examples.
Exomple 3: {Redundancy bound for Design 1). From {3-37) we find:

i
A 5 3 Liaglpguluty (3-48)
so t{u} = y—; and the redundancy is upperbounded as:
r(n) < log, M; + 0(1/n) : (3-49)

Example 4: { Redundancy bound for Design 2). From {3-38) we obtain:

[0 ? 3

tw) = A T (3-50)
vhich gives:
r(n) < (c - @)-log, &; + logy A + 0(1/n) (3-51)

This is in the order of c times worse than (3-49).

For the global methods we can also derive similar lowerbounds. From the

fact that the code interval }(gm) is included in the source interval I (gn)

we find that:

L") 2 -logy A[S(u")]

or

n
L > S - 1o, .

- T4 -

As in (3-42) this results in:

E U,,{L(a")} > BPWY) + De@m STy + oq)

r(n) 2 -};5(?@"}(17\'5@1)y + o(i/n). (3-52)

Example 5: {Lowerbound for global P-designs). First, using the log-sum

a 2, a,
inequality [23], which states that 3, ai-log-b—i- 2 (Ei ai}*log;—bt, where
i it

all ai's and bi's are non-negative numbers, we obtain:

BeammS@))
n
> -logy(2, ASle),y
u
n —s{ui ,Qi—l}
= Tloggl ’%‘n" 1H1 »)
- (-
) -1ogd(s A s{uy lu). s 3(1‘21“1).
ulem u2€‘11
-s(u,)
< I A) (3-53)
une‘ll

Since any global P-design satisfies the global P-test, Lemma 3-3, we sub-

stitute (3-35) in {3-53) and obtain the following:

BerEmmn-ST)) n-logy &

a

And with (3-52) we find the lowerbound to the redundancy:

- 75 -
r(n) 2 1ogd§ + 0(1/n). (3-54)

Exomple 6: (Lowerbound for global Q-designs). The global Q-test,

Lemma 3-4, holds for a global Q-design so we use (3-368} in the following:

BerammS€y

P

~s(u, |u

= 3 P)log
1‘&neun d .
i=1

i—l)

n c-u,
3 PwMlegy 1 GH T
uea i=1
n
5 P(u")-log Ply)
Ticaft d . _ |
u n B c-u, s{ui u
Hi:l (C!) A

ix-l)

il

ne{c - ﬁ)‘logd %E +

3 | P(u")-log
uert d c-u, -s{u Igt
" AB. LY i

a
e - 0)e AN
2 n+{c | u) logd p Iogd(u 2

(b)

2 n+*{c - ﬁ}-logd 2‘8—.

In (a) we use the log~sum inequality and in (b) we use (3-36).
Again with (3-52) we obtain the lowerbound to the global Q-design re-

dundancy:

r(n) < (c - @)logg 22 + o(1/n) : (3-55)

-6 -

We want to stress the point that the lowerbounds only hold for global de-
signs satisfying the global P- or Q-test.

If we compare the upperbounds (3-49) and (3-51) with the corresponding
lowerbounds (3-54) and {3-55). we observe a difference between the bounds
of about log 4 A = 1/N. The difference between the upper— and lowerbound
becomes smaller as the size of the table increases. This. however, does not
imply that the bounds become tight. We will demonstrate the fact that the
bounds are not tight with the table defined as in Example 2.

Assume d = 2, i.e., a binary code alphabet, and let the size of the

table A[+] be C binary digits. We are interested in the minimum of 10g2 2@-

under the restriction that Nk = C. Allowing non-integer values for N and

=1+].og2 C-1. Denote by r; the upper-

k, this optimum is achieved by kcvpt

bound value {3-49) at the optimum for global P-designs, and by r; the

lowerbound value (3-54), still with non-integer hop For the relative dif-

£

ference

we find:

1+log20-1
T e 1.2

5, =
C'log2 1+——-C_1

p

So, for C = », 6P$—2—-N=°.

The global Q-design upperbound achieves its optimum close to hopt if

the source alphabet size ¢ becomes large. See section 3.11. Define rg as

the value of (3-51) at hopt and ré as the corresponding value of {3-55}).

The relative difference GQ is given as:

rQ - rQ log2 A

Q r'a o (c - {E){lag2 A+ 1052 B8)

1

(c - u)(1 + 1/85)

So, for C <+ o, we find that 6Q ~

A
i

In both cases, the relative difference will not approach zero demon-
strating the fact that the bounds are not tight in the case where we select
the table parameters N and k such that the upperbound is minimized.

From these bounds we conclude that the P-method redundancy is insensi-
tive to the source alphabet size and that the redundancy for the QO-method
increases linearly with ¢. This is not unexpected if we consider the way we
let the two methods stack their source intervals. In the P-method all ¢
intervals fit on top of each other, so this leaves only one gap at the top
of {0, 1) resulting in an inefficiency of about logd &;. In the Q-method we
approximate the augends by one table value, A[S(u)+T(ulu)]. and T{uju)} is
selected such that the u subintervals I{uv), 0 { v < u, always fit below
I{un). See Figure 3-4. From the Global Q-test {3~36) and the bounds {3-51)
and (3-55) we are led to the conclusion that the gap for symbol u, on the
average, introduces an inefficiency of about {c - u)- logd &;. With log‘d X
= ﬁl-, we see that every imprecision in the multiplication A[i] % A[j], as
mentioned in section 3.5, is accounted for. We can 'equate’ the redundancy
caused by approximating log # P{u) with %V' and the redundancy log 4 g with
the imprecise multiplication and the provisions we have to take to ensure
decodability. The experiments described in section 3.11 support this één"
clusion.

The local designs perform at least as well as the global designs they

are based on. These designs try to close the gaps left by the global de~

- TR -

signs. Generally, it will be impossible to close
because the global designs consider the worst case
a significant reduction in the redundancy. This

experiments in section 3.11.

3.9. Fast desipgns.

The codes resulting from the global designs of
well with respect to the code rate but the designs

cise arithmetic.

the gaps completely, but
situation we can expect

is also confimed by the

section 3.7 perform very

require complex and pre-

In this section we describe four designs that make use of the exponen-

tial table A[+]. The only operations required are searching in this table

and simple additions. The price that must bhe paid for the reduction in com—

plexity is an increased redundancy.

We will first introduce and analyse a global design for the P-method.

Design 5: Set
3
S = min{s[A[s] ¢ %—)
sy(uly) = min{s|A[s] < P(ulu)}
and
s(uly) = s, + 5y(ulu)

In this design §p can be precomputed.

(3-56)
(3-57)

{3-58)

First we show that this design results in decodable codes. From (3-22),

(3-56). (3-57). and (3-58) we find:

—g§—~P(u|u) ¢ aslulw) L. p(uluw)
253 Tl < prPlulu

(3-59)

- 79 -

From the righthand part of (3-59) it follows that the global P-test,
Lemma :3-3, 1is satisfied, and with the lefthand part and (3-45) -~ (3-47) we

find the following upperbound to the code redundancy:

r(n) < 3-logg 22 - log, A + 0(1/n) (3-60)
So the price here is a threefold increase in redundancy as compared to
Design 1.

The global Q-design is as follows:

Design 6: Set

23 u-
so(u) = min{s|A[s] ¢ az("—gL)u 4 (3-61)
a
SI(UIQ) = min{s|A[s] < P(ulu)} {3-62)
Tow) = splu) : (3-63)
T,(ulu) = min{t [ALt] < Qulu)} (3-61)
and
s(ulu) = so(u) + Sl(ul!_i.) (3-65)
T(uly) = Tyw) + T,(ulw) (3-66)

Again, the c constants so(u) can be precomputed. The decodability of this
design is proved in Appendix XI.

With (3-22) and (3-61) - (3-66) we find:

2 2.3 u-
As(uh) e AT by (3-67)
N B2 [+3

resulting in the upperbound:

- 80 ~
r(n) € 2-logg 2+ (c -){3-logy 22 - log, A} + O(1/n) (3-68)

Again, as compared to Design 2, the redundancy is about thrice as large.

As with the Designs 1 and 2, we can formulate local versionsi of the
fast designs. We introduce:

Design 7: (Local P~design based on Design 5). First evaluate (3-56) ~
(3-58) for all u € 4. Then, as in Design 3, decrease the stepvalues until
the local P-test would be violated by any further decrease.

Design 8: (Local Q-design based on Design 6). Let Uil be the symbol to
be encoded. Compute T(u, , + 1|ul) and L mi) using (3-61). (3-63).
(3-64), and (3-66) and find the smallest s{u, . |gi) under the restriction

of the local Q-test at position S(gi). See Design 4.

3.10. Complexity aspects.

A definite scheme e.g. the Huffman code, needs a memory to store the
codewords. Encoding and decoding is performed by indexing in, resp. search-
ing through, the codebook. Two types of complexity result from thié obser-
vation; the storage requirements and the amount of work needed in the enco-
ding and decoding process. We will consider these complexities for the P-
and Q-methods. and then compare it with the complexity of a Huffman code.

First, consider the storage requirements. As said in a previous section
assume that each table entry A[i] is expressable in k d-ary digits. Then,
we need N+k digits to store this table. Because the parameters a, B, and A
are functions of N and R, so are the redundancy bounds (3-49), (3~51),
{3-60), and (3-68), and we might solve for the minimum redundancy bound
given a constraint on N*k. An example thereof was already discussed in sec-

tion 3.8.

- 81 -

Now. we turn to the amount of work needed to encode and decode a source
symbol. We will illustrate the complexity using the same eight designs as
given in tﬂe previous sections.

Let u € % be the symbol to be encoded and decoded, and y is the string
of source symbols preceding u. '

Design 1. Encoding: (3-37) must be computed for all values v < u. Then,
the P-method (3-23) requires u table references and additions. (3-24) wmust
be computed once. So, the encoding time is proportional to u, {3-46), and
thus related to the source alphabet size.

Decoding: Assume we received enough code symbols to decode u. See sec-
tion 3.3. Successively we must compute the values B{u0}, B(ul).,
B{uu). This requires u + 1 evaluations of {3-37) and u references and addi-
tions in {3-23). Also u + 1 comparisons are needed. {3-24) is computed
once. So the decoding time is also proportional to u, although the constant
of proportionality is larger.

Design 2. Encoding: Compute (3-38) and (3-39) for u only. The Q-method
{3-25) requires one table reference and one addition. (3-26}) is computed
once also. The encoding time 1is independent of the cardinality of the
source alphabet.

Decoding: {3-39) and {3-25) must be computed for all v { u and every
time a comparison is made. (3-38) and (3-26) are computed only once. The
decoding time is, as in Design 1, proportional to u. However, a better per—
formance is obtained using a binary search resulting in at most log2 c eva-
luations and comparisons. In some cases, e.g. when the source is memoryless
and the probabilities are ordered. this search could even be optimized to,
on the average, H(P(U)}) evaluations etc. See Massey [24].

Design 3. Encoding: Compute all giobal stepvalues. This requires ¢ eva-

luations of (3-37). Now for every successive symbol v { u compute the sum

V= wiv A[S(u) + s(w|u)]. and then find the smallest s such that
A[S(u) + s] < A[S(u)] - V. Replace s(v|u) by s and repeat the above for the
next symbol v. The encoding time is K, -c + ﬁ-(K2~(c-1) + Ky-log, N), where
K, is the time needed to evaluate {3-37) once, and Kz-(c—l) the tiﬁe needed
to compute the sum ¥. K3°log2 N denotes the time spend in obtaining a mini-
mal stepvalue s, as we show in the discussion of Design 4 below. If we ac-
cept that u is proportional to ¢, the encoding time is proportional to cz.
Decoding: As with the discussion of Design 1, the encoding and decoding
processes are similar, resulting in a decoding time proportional to c2.
Design 4. Encoding: Compute (3-38) for the symbols u and u+l. Then
search through the table for the smallest index satisfying the local
Q-test. This search is performed in two steps; first determine the order of
the difference of the two augends, i.e. find an integer ¢ such that
de-(T(u+1|Q) - T{ulu)) € (d—l, 1]. Then search for the smallest index
1€{0, 1, ..., N-1} such that A[t] < d®(T(u*1]u) - T(ulw)). Using a bina-
ry search we need at most log2 N tries. So the search compiexity is log2 N.
Then compﬁte the stepvalue s{uju) = &*N + i, and now find the new interval
using (3-25) and {3-26). Although the amount of work has incresed compared
to Design 2 it is still a constant.
Decoding: the decoding 1is similar to the decoding of Design 2. Only,
per comparison we must perform all the computations we need to encode a
symbol, 1i.e. compute (3-39) twice, search through the table etc. So the
proportionality constant increases, but the decoding ti@e is still propor-
tional to Iog2 c or H(P(U)}. !
Design 5. Encoding: As in Design 1, compute (3-57) for all U'Q u. This
is done by searching through the table as described above. Then,i add the
precomputed constant 8¢ {3-56}. The P-method requires u add;tions and

table references for {3-23) and (3-24) is computed once. So the encoding

time is proportional to u, but compared to Design 1, the constant of pro-
portionality is much smaller.

Decodir;g: The decoding is also similar to the decoding of Design 1.
However, the complex computations in (3-37) are again replaced by the
searches in (3-57) and the additions in {3-58). So decoding too 1is faster
than in Design 1.

Design 6. Here the encoding and depoding are similar to those for
Design 2, again replacing the complex computations (3-38) and (3-38} by
searches etc.

The same holds for the local designs. Design 7 is similar to Design 3
and Design 8 looks like Design 4. again replacing the computations by
searches through the table.

Summarizing we may say that the the amount of work for the global
P-designs is proportional to u or, in a worst—case analysis, proportional
to the cardinality c. The local P-Designs are proportional to c2. In the
global and local Q-designs the encoding times are independent of c and the
decoding times are proportional to log2 c. The designs of section 3.9 are
faster due to the replacement of the, rather precise, computation of loga-
rithms by a search in A[+].

We will compare this with the complexity of a Huffman code. There are
M = ' different source messages of length n. A codebook implementation
requires a table of M entries, each able to store a codeword. More effi-
cient storage is achieved using a tree structure. Then, the storage com~
plexity is of O(N).

Another problem is the design of a Huffman code given a probability
vector P(gn). Van Voorhis, [25], described an algorithm that is 0(!2) in
time and space (storage). However, it only applies to binary codes. The
famous Hu-Tucker algorithm, [26], generates binary Huffman codes in 0(1(2)

time and O(M) space. The Garsia-Wachs implementation of the Hu-Tucker algo-

-84 ~

rithm [27] reduces the time complexity to 0(H~log2' ¥) while retaining a
O(¥)} complexity in space. Van Leeuwen, [28], shows that O(H'Iogz N) in time
is optimal for the design of binary Huffman codes. Now remember that
M = c"; thus the best Huffman design has a time complexity of O(niécn) and
O(Cn) in space. So we see that the complexities of a Huffman code are at
least exponential in the source string length, thus prohibiting the use of
large source strings and the resulting low redundancies.

| In order to illustrate the latter in some detail we first remark that
from the source coding theorem, {1]. we can upperbound the redundancy of a
Huffman code by 1/n, where n again denotes the source block length.
Gallager in [29] improved upon this resulting in the bound for a binary

Huf fman code:
r5P1+0.0861. O§P1<0.5

r$2—h(P1)~PI, 0.5$P1§1
where P1 is the largest probability in the vector P(gn) and h{x) §
—x'logzx - (1-x)-logz(1—x), the binary entropy function. For a d-ary code

he obtained:

d
r{eg*+Pi'mma

1
with o, = Iogd d~1 + logd(logd e) - logd e+ 31 Unfortunately o4 = ®as d

gets large, but not too fast. For example o

3=0.135, 0‘

5 = 0.194, and O’l

0 -
0.269.
Johnsen [30], and Capocelli et al. [31], improved the bound for a bina-

-ty code in the case 2/9 ¢ 191 € 0.5, Still these bounds are inferior to 1/n

as n becomes large. And because the redundancy of the P- and Q-method
schemes are functions of the table size only, and rather small for accepta-
ble table sizes, these schemes compare favourably with the Huffman code

designs. .

3.11. Some numerical examples.

In this section we discuss some simulations done with the eight de~
signs. The binary codes were designed using a table Z as given in Example
2, so :{[i} 4 d"k- fdh'd.im]. 0 < i < N; k and N are positive integers.

The storage complexity for these codes is N°k binary digits. We de-
signed tables with N+k 2 1000 and N<k = 10000, and k several values in the
range from 10 to 20. We selected values that should be representative for
the algorithms. -For instance, the minimum of log ?—\gunder the restriction

that Nk = C occurs at kop =1+ 1ogd C-1. For C = 1000 this gives kop =

t t

11 and if C = 10000 then kop Z 14. Since the local designs generally per-

t
formed best with rather precise tables, i.e. large k, we also selected
values in that range.

We evaluated the performance of the eight designs using sources with
cardinalities 2, 8, and 16. For each of thes;e cardinaiities we selected two
memoryless sources, one with a high entropy and one with a low entropy.
Every source was considered twice, once with ascending probabilities (high
u) and once with decending probabilities (low u). The detailed results are
stated in Appendix XII. The following observations can be made from these
results:

~ The global redundancy bounds appear to be tight in the sense that for
some combinations of table parameters and symbol probabilities the re-

sulting redundancy is close to either the lower- or the upperbound.

- From the Tables 5 and 9,‘ Appendix XII, we see that the global P-de—
signs are insensitive to the alphabet size c and, by definition they
are independent of the ordering of the probabilities.

~ The Tables 6 and 10 indicate that the global Q-designs behave as expec-
ted, i.e. proportional to (c - u).

- The actual improvements of the local designs over their global counter-
parts vary a lot. In some cases the improvement is only a few percent,
in other cases the redundancy decreases by a factor of ten or more.
Note that in some cases the local P-designs 3 and 7 and in most cases
the local Q-designs 4 and 8 achieve a lower redundancy than t;he lower~
bounds in the Tables 1 and 2; so they are essentially better than the
global methods, with respect to the redundancy.

~ If we compare the global Designs 1 and 2 with their fast counterparts 5
and 6 we find, on the average, a redundancy increase by a facter 2 te 3
as expected, although the actual values vary more. The variation in
redundancies between the local designs using logarithms and those using
the table is even higher, although here too we find an average factor
of 2 to 3.

- The local P-designs achieve the smallest redundancy for a g;ven table
compared to all other designs but do so at the cost of a very éhigh com-
putational complexity. '

- The fast local Q-design 8 appears to be the best compromise, especially
if the probabilities are ordered to achieve a maximal u. However, as we
will see in the next section, we cannot sort the probabilities; without

paying a penalty in increased complexity.

For a comparison of these designs with other arithmetic codesf we refer

to section 3.13.

3.12. Implementation details.

In secéion 3.3 we discussed the partial encoding and decoding of arith-
metic codes in a rather general setting. Section 3.4 lthen introduced a
carry-blocking technique and briefly indicated how to implement the enco-
der. See Figure 3-3. In this section we describe the implementation of the
encoder and decoder for both methods.

To implement the equations (3-23) and (3-24) respectively (3-25) and
{(3-26) we need an accumulator B that contains the relevant part of the co-
destring B(gi). Again, as in Example 2, assume that each table entry Z[']
is described in k digits, then the size of the accumulater B is at least R
symbols. However, the smaller the symbol probability is, the larger is the
corresponding stepvalue and the augend will ‘conta,i,n leading zeroes, relati-
ve to the left end of the accumulator. We allow for | extra symbol posi-
tions in B, resulting in a total accumulator length of k + 1 symbols. later
on in this section, we will return to the importance of the exact value of
1, for now we just assume that 1 is large enough to accomodate all occur—
ring additions.

In section 3.4 we loosely defined the augend position and indicated in
Figure 3-3 that we only had to deal with a few symbols around that posi-
tion. Now we are able to define this in all necessary detail. Observe the
augends in (3-23) and (3-25). We see that we want to add table entries with
indices larger than S(u). Also, by the definition of the source intervals
I(u), (3-28), we know the maximal value of the augend, namely A[S(g)]‘. Now
the number of leading zeroes in A[S(u)] is [S(u)/¥|. and except for a pos-
sible carry the first |S(u)/N] symbols in the codestring will not change
anymore. So we can define the augend position IA as |S{u)/N], where we im~

plicitely assume the dependence of IA on the source string u. This defini~

tion would suffice if we did not have to provide for the blockin;g of an
occurring carry. Now carry blocking, as discussed in section 3.4, repeated—
ly divides the interval by d without changing its lowerbound value. This
results in an increase over |S{u)/N] by one for each carry—-blocki:ng shift

that occurs, so:
A
I, = |S(u)/N] + No(w) (3-69)

where NC(Q) denotes the number of carry-blocking shifts that occurred
during the encoding of u.

The implementation of the encoder is depicted in Figure 3-9. The

f—r = Jehole—t—] f— R+l —
x €% -
transm.
carry
symbols
kR + 1 length
adder
3 carry

|

Figure 3-9. The implementation of the encoder.

register C is carry blocking register. B is the accumulator and A contains
the table wvalue, relative to IA' that must be added to the string. So A
contains A[S(u) + N-N(u) - N-I, + s(ulu)] if we must add A[S{u) + s(ulu)].

The new augend position is computed by (3-69) and the resultirig shifts,

dictated by the difference between the new and the old position, are per-

- 89 ~

formed. If, after the process of encoding the source symbol the C register
contains a string of r d-1 symbols, then both the C and the B registers are
shifted toNthe left until a symbol other than d~1 is shifted into C. Every
shift increases the shiftcount NC(I_&} by one.

Vhen =all the source symbols have been encoded the C and B registers

still contain a part of the codestring. The final interval length is given

-(I,+1
by A[S(") + N-N (™) 2 d Tart)

. With Theorem 3-1 we know that it suffi-
ces to take all the code symbols in C plus the leftmost two in B after
rounding B up. Alternatively, we could transmit all k+l symbols in B, in-
creasing the codestring length by k+1-2 digits, which should be negligible
compared to the source string length n.

The decoder is depicted in Figure 3-10. It consists of an encoder C’,
B', and A’, that mimicks the real encoder and a comparator that compares
this string with the received string in the receiver registers RC and RB.
Thié decoder implements the partial decoding scheme as outlined in the sec~
tions 3.3 and 3.10. Further details should be cobvious. We end with the re-
mark that every shift dictated by either the carry-blocking mechanism or
the augend position update also shifts the RC and RB receiver registers,
and loads the RB registers with newly received code digits.

We now give an algorithmic description of the encoder and decoder ope—
rations for both methods. In the O-method decoder we shall implement the
binary search technique.

Where applicable, we use the following variables:

u: for encoders: the symbol to be encoded. (input).
for decoders: the decoded symbol. (output).
S[+]: the stepvalue array s{-|u). generated by a design. (input).

T[+]: the stepsums T{-|u), generated by a Q-design. (input).

A[*]: the exponential table with an index range O ... N-1.

N: the table length.

C: the carry-blocking register.
B: the accumulator.
FS: the retained fraction of the local position.

FS = 8(u) + N~ C(g) - N-IA. { = S{u) mod N }
RC: receiver carry part register

RB: receiver accumulator part register.

RC] RB ¢ channel symbols
comparator
c’ : 3 A
carry

— —

kR + 1 length
adder

% carry|

Figure 3~10. The decoder implementation,

Remark: The arithmetic in the algorithms is done in number base d. (d

is the code alphabet size).

- 0] -

P-method encoder:
begin { first add the augend parts to the codestring }

end;

for vi=0 to U~1 { if U=0 then do not enter this loop }
do begin { perform the addition of A[S(u) + s(viu)] }
{ note that if P{ulu) = O then "s(uju) = »"

implying that nothing is added to C&B }

sft := (F§ + S[v]) div N; { this is the number of leading
zeroes w.r.t the augend position. }
pos = {FS + S{v]) mod N; { index in A, sft (1 }

C&B := (C&B + Shiftright{A[pos]. sft): { perform the
*shifted’ addition and process the possible carry }
end; A
{ now we continue with the computation of the new position }
sft := (FS + S[U])} div N; { augend position update # shifts }
FS := (FS + S[U]) mod N;: { update the retained fraction }
Shiftleft(C&B, sft): { shift the C and B registers to the left
and load B with zeroes. }
{ now perform the carry-blocking operation(s) }
while C = { d-1, d~1, ... , d-1} { fault condition ! }
do Shiftleft(C&B, 1});

{ the symbol U is encoded into the codestring }

Q-method encoder:
begin { first add the augend to the codestring if U > 0 }

ifU>0
then begin { compute and add augend }
sft = (FS + T[U]) div N; { this is the number of leading

zeroes w.r.t the augend position. }

pos i= (FS + T[U]) mod N; { index in A, sft < 1 ! }
C&B := C&B + Shiftright(A[pos], sft); { perform the
*shifted’ addition and process the possible carry }
end;
{ now we continue with the computation of the new position }
sft := {(FS + S[U]) div N; { augend position update # shifts }
F§ := (FS + S[U]) mod N; { update the retained fraction }
Shiftleft(C&B, sft); { shift the C and B registers to the left
and load B with zeroes. }
{ now perform the carry-blocking operation(s) }
while C = (d~1, d~1, ... , d-1}) { fault condition ! }
do Shiftleft{ C&B, 1);
end; { the symbol U is encoded into the codestring }

P-method decoder:
begin { find the next symbol by sequential search }

U := 0;

{ simulate the encoder until the reconstructed register contents
are larger than the received codestring part. Again we have no
problem with possible "zero probability” symbols. }

loop: sft := (FS + S[U]) div N; { determine augend part }5
pos = (FS + S[U]) mod N;

if (CBB + Shiftright(A[pos], sft)} > (RCRRB)

then goto decoded;

C&B := C&B + Shiftright{ A[pos]. sft);

U:=0+1;

goto loop;

- 93 -

decoded: { sft and pos are already computed and I is the correct

symbol, so }

Fé t= pos; { the new augend position. }

Shift&eft(C8&B, sft);

Shiftleft{ RC&RB, sft); { also shift the next digits from the

channel into RB. }

{ now again the carry blocking }

while C = (d~1, d-1, ... , d-1)

do begin Shiftleft{ C&B, 1):
Shiftleft{ RC&RB, 1) { don’'t forget the channel digits }

end

end;

Q-method decoder:

begin { this decoder implements a binary search }

high :

c; { c is the source alphabet cardinality }

low = O

{ now and later we assure that:

B(u. low) < RC&RB < B{u. high} }
while high - low > 1
do begin U := (high + low} div 2; { pivot point }
{ here we must ensure that P(Ulu) > 0 }

sft := (FS + T[U]) div N;
pos := (FS + T[U]) mod N;
if (C&B + Shiftright{ Afpos], sft)) ¢ (RC&RB)
then low = U
else high:= U

end; { here low contains the decoded symbel }

U := low;
sft := (FS + T[U]) div N;
pos = (FS + T{U]) wod N:
C&B := C&B + Shiftright{ A[pos], sft); { update C and B for next
symbol }
{ again, compute next augend position and process carry }
sft = (FS + S[U]) div N;
F8 := (FS + S[U]) mod N; { the new augend position. }
Shiftleft{ C&B, sft):
Shiftleft(RC&RB, sft):; { also shift the next digits from the
channel into RB. }
{ the carry blocking }
while C = (d-1, d-1, ... , déx)
do begin Shiftleft(C&B, 1};
Shiftleft{ RC&RB. 1) { don't forget the channel digits }
end |

end;

Remark: The 'mod’ and 'div’ operations in the algorithms can be repla-
ced by simple shifts if the table length N is a power of d.

¥e return te the relation between the extra register length 1 required
by the algorithm and the stepvalues. The number of shifts in the summations

in the algorithms is upperbounded by 1 oi-:
(FS + S[v]) div K <1, (FS + T[U]) div N { L.

And with FS < N we find

S[v] < 1N, T[U] < LN
or

aslulu) y gt Tlelw) 4t (3-70)

We are interested in the relation between 1 and P{ulu), Q(ulu). Thus we
have to consider how the different designs assign stepvalues and stepsums
to symbols. Formula (3-45) enables us to a worst-case analysis for the four
global designs. Because the local designs have stepvalues and stepsums not
larger than those of the corresponding global designs, they require no
separate analysis.

First we study the P-method Designs 1 and 5. Observe that if P{ulu) 2

. A

P(ulu) then s{ulu) < s{v]u)., so the largest stepvalue occurs for P!ai.n =

min{P(u|u) jucu, QGQ(*}. With {3-48) we find for Design 1:

In a realistic situation we must assume 1L to be fixed by e.g. the hard-

< Tl _ AN -
ware designer. So we must ensure that Pmin 2ed ", (&= ’61 = =g OF € = &g

s 228
= =3). We shall examine the following approach, probability clipping:
o

Define the clipped probability P(ulu) as:

;(u fu) = Pluly) + &

1 + c*d

for some positive constant 5.

¥We observe that

> &
Plulu) 2 1T e

and so we shall use P(ulu) in our designs.

From the lowerbound on P we solve:
min

As in (3-45) - (3-47) we bound:

e n S) By - Plulw) +0

and so:

,\-S(Bn) 2 [L T n«[ﬁ“ + P(uM)]
i1

[o4
(1+ce8)-T+A

This, with {(3-42) - (3-44) results in, c.f. (3-47):

r(n) < logy(1+c+8) + log,l + (c-ii)-logyh + O(3)

Thus, clipping costs us circa c-e-dml bits per symbol in redundéncy. Note

that the clipping method described here is not optimal, but it suffices

illustrate, with =2 rather simple proof, the exponential dependency of the

redundancy on the clipping parameter 1.

Now we study the relation between 1 and the source probabilities

- OFf -

the Q-method Designs 2 and 6. Here the stepsums T are required to satisfy
{3-69). Since we do not use the stepvalues s in the addition, there is no
corresponding limit on s{u|u). From (3-50), (3-67). and the definitions of

the Designs 2 and 6 we find the condition:

Qulu) > ed ',
c-u 2 2.3 c-u
e=ey IAM) . (Design2). ore =gt (53 -A55 . (Desigm 6).
24

The largest bound occurs for u = 1 and the worst—case situation is comple—
ted if Q(1lu) = Pmm. We obtain the condition:
P 25"&»1 €& = &, OT € = €
min ’ 2 6"
Again we can use the probability-clipping technique, however, an inte—
resting result follows if we reorder the probabilities, such that P(Olu} is
maximal. Then we have:

Q(1lw) = POfu) > = QCuluw) 23, u> 1.

The Q-method works for all {ordered) probabilities if

1 -1 -
E-Zed 1 E = €, OF € = €4,
This implies that we can fix | and use the encoder and decoder for all
sources. This seems a perfect solution, but still it increases the redun-

dancy. From the bounds {3-51) and (3-68) and the fact that u is not maximal

if the probabilities are ordered as required above, we find that there can

- O - : ’

be an increase in code rate. This actually happens as we see from section
3.11, and this seems acceptable when we realize that the Designs 2 and 6

adjust the stepvalues for the first symbols most.

3.13. Discussion and conclusion.

In this section we compare Rissanen’s code [9] and Pasco's code [10]
with those described in chapter 3. First from Formula (3-19) we find the

upperbound to the redundancy of Rissanen’s code:
—~q 1
r<e+2*+ O(H) {3-71)

Now comparing Rissanen’s condition (3-18) with the global P-test we can
‘equate”’ 27% with % or e ¥ 10g2 g. Alsc Rissanen's table e(x) has 29
digits precise entries. Our table Z contains N k-digit numbers so we are
led to relating N with 29, From this we see that {(3-71) and the Design 1
upperbound (3-49) actually are the same bounds.
The same holds for Pasco’s code. Recall (3-16) and observe that
~logy(1 - 2'7%) > log,(1 + 2'7F).

Howevér. the difference is small. Also if Z[i] is defined not as in Example
2 but as the k digits precise truncated approximation of ?\—f', i.e. X[i] =
a®. {dh'lx—ij, then a = 1 - 21®, B =1 and so log, g—: ~log,(1 - 21—k}. Here
we want to remark that Pasco truncates the augends in (3-14). In his code
this is the only possible choice to guarantee decodability. The difference
between his and our approach is that Pasco uses the given pro{babilities

directly while we adapt them according to the selected table. If we further

consider the influence of truncation in Pasco's work, see (3-17), and we
ignore the influence of Pnu‘,n’ we can set g 2 ~log 6. Now g is the precision
used in tt;e miltiplication, because ;(u |u) was defined to be g digits pre-
cise. This leads to the approximate equality of our table length N and 29,
s0 § & %— This shows that Pasco’'s bound and the global P-bound are essen—
tially the same.

For a complete comparison we need to consider the complexity too. In
Rissanen's code the table e contains r-29 digits, wﬁereas our table X needs
N+k digits. However, in [9] no clear relation between e, ¢ and r has been
given, complicating the comparison. Rissanen indicates that for binary
codes r % g + 2, somewhat comparable with our optimal choice R 2 1 +
logd(G-l}, see section 3.8. We conclude that roughly r £ k.

In Pasco’s case, the comparison is even more difficult since he uses
actual multiplications instead of a table. We stated earlier that a multi-
plication is more difficult that an addition, however, we must consider the
size of the table ; in this respect. A table~lookup implementation of a
maltiplier would require, for a k digit x g digit input, k digit result
table, some 2q+h°k digits. As above 29 = g, resulting in about N-k-2k
digits for a lookup table as compared to N+k digits for X However, there
are more ways to implement the multiplication so a reasonable comparison
cannot be made. Although these considerations are somewhat superficial they
indicate that Pasco’s code and Rissanen’s code are similar in performance
to our global P-design 1 code.

The coding schemes described here offer a selection from more complex
designs with a very low redundancy to the fast but less efficient Designs 5
to 8. The decodability criteria we introduced here allow us the design of

efficient codes and give a clear view of the performance we can expect.

If we turn to the results tabulated in section 3.11 and also consider

- 100 -

the computational complexity of the different methods we can conclude that
these codes are a practical solution to many data compression problems
since they are adaptable to many sources, even sources with Temory; in
fact, the coding unit only needs the current symbol and its p%obability
vector. Also, if we consider the trade-off between speed and red&ndancy we
can choose between the fast code like Design 6 or its local variation, and
an efficient algorithm like Design 1, or its very efficient but very com—
plex local counterpart, Design 3.

Finally. we remark that Langdon and Rissanen introduced a very simple
binary arithmetic code, i.e. ¢ = 2 and d = 2, in [32]. This code needs no
table and approximates the probabilities P(1) and P(h), P(1l) { P(h), by a
skew mnumber g or, P(1) = 279, P(h) =1 - 279, So this is also a code that
is easily adaptable to different binary sources. The worst case redundancy

of this code is about 0.035 bit/symbol, corresponding to a table of ca. 300

binary digits for Design 1 or ca. 1000 binary digits for Design 5.

- 101 -
4. FINAL REMARKS.

In this thesis we described two source coding algorithms. Both compute
the codewords from the source data in stead of using a predesigned code-
book. A strong similarity exists between these schemes. The VF scheme of

chapter 2 might be called the combinatorial or exact coding scheme and the

arithmetic code the probabilistic or inexact one. Actually, the arithmetic
code developed from the combinatorial scheme as a result of some observa-—
tions similar to those stated in section 2.8. We will briefly sketch this
"derivation”.

First, recall that the set cardinalities Hs(m} of the segment sets
.&s(m). {2-4). can be overestimated without losing the decodability property

of the code, as long as for all states s the following holds:

~

N (n) 2 nll‘,r(u‘s}(m - V(uls))., 1< m<n.

b)
u:P{uls)>0
(4-1)

N (m) 21, m<O0.

Note that Es{n) need not be an integer and also observe the similarity be-
tween {4-1) and the decodability criteria for the arithmetic codes, Lemmas
3-1 and 3-2. So, as already said in section 2.8, (2-26), is(m) can be a
finite precision floating point number.

Another reduction in the storage complexity follows if the is(m) tables

are circular, i.e., if an integer L and a number K exist such that:
Hs(m + mo) = K~Ks{m). (4-2)

Note that if Ms(m} is a finite precision d-ary number then K must be a

- 102 -

power of d. Another reduction in the storage requirement results if all the

tables contain the same values, i.e. if Hs(m) = M(m) foi’ all statejs s. We
i

expand a little on the latter. Define: l

|

i

M(m) = max{ 3 Nm - V(us)) | s € 9) (4-3)
u:P(uls)>0

It is not difficult to see that the Theorems 2~1 and 2-2 carry over to
similar theorems for the table as defined in (4-3). So the resulting code
still achieves the source entropy asymptotically. However, compared to the
original code the rate of convergence is slower.

Example: Again we use the source of Figure 2-1 and the stepvalues as tabu-

lated in section 2.8. We obtain:

uls v () (3) p1) p(2) p3)
Ola 1 3 9 0.57735 0.60910 0.67780
1la 3 10 37 0.19245 0.19156 0.20213
2|a 4 14 53 0.11111 0.08891 0.10125
o 2 7 28 0.33333 0.31450 0.20822
il 2 7 28 0.33333 0.31450 0.20822
2| 2 6 21 0.33333 0.37101 0.40356
olc 0 o 0 1 1 1

AL 173005 A D o1170es A3 - 1.04416
max o max
p{!} = 0.00021 D{® - o0.0700 p{>

il

0.01248

In this table ?\rg.:)c denotes the exponential growth of M(m) as given by (4-3}
with the steps Y{i), i=1, 2, 3. Dc(j‘) is the resulting pseudodivergence or

asymptotic redundancy. Compare this with the table of section 2.8.

- 103 -

The flexibility of the code using this table has increased, because we
can use any set of stepvalues V(u), u € 4, as long as the resulting expo-

nential growth parameter X does not exceed the actual growth A of the

table. or equivalently:

V(W)
5. A <1 4-4
u:P(u)>0 ™ (=4

Compare {4-4) with the Kraft inequality e.t.c.!
Combining the ideas of (4-1) - (4-3) with Elias’ algorithm resulted in

the arithmetic codes of chapter 3.

- 104 -

ACKNOWLEDGEMENTS

I wish to thank Prof. J.P.M. Schalkwijk for introducing me to the sub-
ject of Information Theory, for conveying his enthusiasm in it, and for his
valuable advice during this research.

For their support in these years and especially for relieving me of all
other tasks during the writing of this thesis I thank all my colleagues at
the Information and Communication Theory group.

Above that I wish to mention and thank Frans Willems, with whom I co-
operated these years and whose contributions to this work are too numerous

to mention.

- 105 -

APPENDICES.

Appendix I.

A segment source with a reducible state sget.

In this appendix we give a Markov source and a collection eof segment
sets, resulting from the selection rules given in (2-4)., such that the cor-
responding segment source contains a reducible state set. In Figure I~1 a
binary-alphabet Markov source is depicted. This source is characterized by:

the source letter alphabet % = { 0, 1}.

the state set ¥ = { a, b, ¢, d},

the letter probabilities

P(0|a)

0.68, P(O]|b} = 0.50,

i}
]

0.50,

i
i

P(0le) = 0.32, P(0|d)
and the next state function T as is shown in Figure I-1.

The stationary probability vector is

[

0.2164, q{b) = 0.2490,

i

afa)

g{c) 0.2164,

1
[

0.3182, a(d)

and the source entropy is

H (P,T) = 0.9485 bit / source letter.

We assign the following stepvalues:

- 106 -

i
N

V(0la) = 1. V(ila) =3, V(ob) =2, V(1|p)

0
w

V(ole) = 3. V(le) = 1. V(0o|d) =2. V(1]d)

Figure I-1.

It is easily checked that the segment source resulting from this source
together with the segment sets .Als(5). s =a, b, ¢, d, as defined by (2-4},
contains a reducible state set. The states a and b form the irreducible
subset ‘61. state ¢ makes the irreducible subset ‘32. and state d is a tran-

sient state, from which the segment source always enters subset ‘62. Thus we

obtain

Pr{‘@l} = gf{a) + g(b) = 0.4654,
Pr{‘@2} = g{c) + g{d) = 0.5346,
ql(a) = 0.68, ql(b) = 0.32,

Q2(c) =1.

Also

- 107 -

LI
Ebls{L(g)} = 3.36 letter/segment for s = a,

2.68 letter/segment for s = b,

3.1424 letter/segment for s

#

H
o

[}

2.68 letter/segment for s = d.

Therefore, EL = 3.1424 letter/segment and the code rate R = 1.0088
bit/source letter. So, this particular code performs worse than not coding
the source sequence, however, by analising the asymptotic behaviour we find
that for sets As(m). with m > 40, the coding scheme actually compresses the

source sequence, and asymptotically achieves the rate R = 0,9491.

Appendix II.

The proof of lLemma 2-1. .

Call the actual state in which the Markov source starts and

Sstart
assume that the source enters the irreducible subset gr‘ Then with {condi-
tional} probability one the source generates a sequence of segments U Uy,

Uy, - such that

1 -1
Vg 2 L (W), T sy,)
=3] 6, () | {L, (8.9)}- (11-1)

Alternatively

- 108 - !

1 m—1
lims 2 L ((uw), .T({u)" .s))
Moo N n=1,¥ t m start |

=limg 3 L T s,)
1.

Tstart

3 uf-tfmlm»“(u)’“'i'ssmm

m=1,
3 L((w), T(™ s,)
m=1.¥
3L (), T s,)
= lim a=1.M 1
Be 3 L((), T .sgyn,))
m=1,M
1 ~1
Lin g miﬁu(mm.f({g)"‘ Serart))
= q(t): 3 q.(s)Ey) {LL.S)}. (11-2)
s€Y -

r

where the last equality again holds with®(conditional) probability one.

From {II~1) and (II-2) it follows that

sggr 4,(s)Ey | (L, (T.8)} =
q{t)'sggrq,.(a)ﬁz_”s{fu(ﬁ.s)}- (11-3)

Combining (II-3) with (2-10) and {2-11) proves the lemma.
Appendix III.
The proof of Lemma 2-3.

The matrix A{A)} as defined in {2-18) is irreducible (since the Markov

T- 109 -

source contains one irreducible state set ¥) and nomnegative. Therefore,
Frobenius' theorem (see Gantmacher [16, Chapter III, p.65]) applies. This
theorem states the following:

i. an irreducible nonnegative matrix A always has a positive charac—

teristic number r,

ii. the moduli of all the other characteristic numbers are at most r,
and
iii. a characteristic vector with positive coordinates corresponds to

the "dominant" characteristic number r.

A A .
Now let p =3 A fors€fandp . = mm{pslsesf}. Then for the charac-

teristic number r of A we have that (see [16, p.76]):

r2 Puin'

For A = 1 we obtain that r(1) 2 pmm{l} 2 1. For A » ®, since the stepsizes

are chosen such that neo zero-circuits exist, we know that
Al s @) =0 (1II-1)

where |#| is the number of states of the source and Q is the all-zero
matrix. Note that As*ip;()\ + %) equals the number of paths, whose stepvalues
sum to zero, from state s to state t. The consequence of (III-1) is that
r{A » @) = 0. Since r(A) is continuous in A and since r(1) 2 1 and r(A » =)

= O a largest value of A must exist for which r(A) = 1. Call this value ’}\:

]

We will now prove that A = }‘max‘ It is obvious that A £)\max’ Suppose that
A < N __. Since r{A) is continuous in A, it is clear that r{\) < 1.
me max

Since A()\W) has a characteristic number equal to 1. then because of the

- 110 -

Frobenius theorem part ii, r(I\W) 2> 1. This contradicts the aésumption

that A < AW. Therefore, A = }\max' Frobenius part iii finally yields the

positiveness of the coordinates of g.

Appendix IV.

The _proof of Lemma 2-4.

From (2-6) and Lemma 2-3 it follows for s € ¥ and {1 ~ vmax {n <0 that

(Iv-1)

Note that this is only possible because all components of ¢ are positive.

We will now prove the lemma by induction. The hypothesis is that (IV-1)

holdsforsegandl-vmxgngm-lwheremz1. By (2-8) for n=m

and for each s € ¥ we have that

M) & M) = Viuls)

z
u:P(uls)>0

3 N V(u‘s)e

w:P(uls)>0 ™ T(u.s)

= 3 3 aYuls),

"X teg uiP(uls)>o ™ t
T(u.s)=t

()

A:ax Z Ast{?\mx)et = ?\rmlaxes’
tey

and, analogously,

- 111 -

n - V{u|s) + Vo ~ 1

; 1
B (n) £ b3 e
s wP(uls)>0 Cmin O T(u.s)
1 " + vmax -1
e 7\max 2 Ast()\max)et
min tey
{3¢) 1 n+¥V -1
= A e .
e . max s
min

The crucial steps (%) follow from the fact that ¢ is a characteristic vec-

tor of A(Amax)"ﬁith characteristic number 1.
Appendix V.

The proof of Lemma 2-5.

Let A be the matrix A(kmax) and Z be the diagonal matrix with diagonal

values e, s € ¥. Now

is a stochastic matrix (see [16, chapter III, p.101]).

Then for n = 1, 2, 3, ... we have for the nth power of A that
A (zaz (™) gp(ndgt (v-1)
1

where we used the fact that A = ZBZ .
¥We now proceed with some notation. First observe that the state transi-

tion pseudoprobability A(tls)). Then denote the following for

= Agt M
n=1, 2, 3,

- 112 -

- the stationary probabilities g(s) by g, : \

- the conditional probabilities Wn(ti, . tnls) by W x Wy x ... x

tz, .
Wn (where ¥ is the state transition probability matrix)

- the joint pfobabilities Wn(tl. tos o s tnls)q(s) by Wl x Wy x Lo. x
Wn x g, and
. . n)
- the conditional pseudoprobabilities A (tl, tge --- s tn|s) by Al x A2 X
. x A .
n

Furthermore. note that the (marginal) conditional probabilities Wn(tnls)
equal ?(n); the nth power of W. Analogously, the (marginal} _conditional
pseudoprobabilities An(tnls) equals A(n’).

First we have that

e

D(Wlx x...anﬁAle x...XAnlq)

¥y 2
D(W, 1A, la) + D(W,llA, |¥, x q)

#

+ ., D(Vn“AnlWl xWy x oo x W4 xq)
= nD(¥, |4, la). (v-2)
Furthermore, by the log-sum inequality, [23, p.48]
p_ 2 o™V g). (v-3)

Combining (V-1), (V-2), and (V-3) we find that

D(wl “A1 ‘Q)
= Lpw™ o« qlza™z «)

> L teg,(x zBMz(e]s)a(s))
t,s

- 113 -

where the last step again follows from the log-sum inequality and the fact

that ?{n) is a stochastic matrix resulting in Et SW(n)(tls)q(s)

observe that since B(n) is a stochastic matrix,

z Mz (e |s)a(s) < -
t.s min

Therefore, for all n=1, 2, 3,

1

e
min

¥, 14 la) > =L g,
yields

D(¥, 1A, la) 2 O.
Finally, if we extrapolate the notation somewhat,

D(P.P.T) = D(P, P la)

> DOV, A, la)

2> 0.

= 1. Now

Here the first inequality “surprisingly” follows from the log-sum inequali-

ty.

Appendix VI.

The proof of Theorem 2-2.

First we define

- 114 -

Upin = min{—logzp(u|s)|ueu, s€¥, O<P(uls)<1},
A
U = max{—logzP(u|s) |ueu, sey, 0<P(uls)}.
then
A . -
womin = mln{Vq(uls)lue‘!l, s€¥, O<P(u|s)<1} 2 W in (VI-1)
A
V. max = mx{v,’(uls)lueqz, s€¥, 0<P(u[s)} < W+ 1 (VI-2)

Now we have for u € .lls(n) that

-logzP(g|s) = %k,_lzL() —'vlogzP(uth(gk—l.s))
1 L(u
1 k-1
<L s vy re®t
T el L() (Uki (u” ".s))
eV, -1
u
<X(uaau) =20 i Do) (VI-3)
and
~log,P(uls) > %(k_lxu) Yy IT@* . 9)) - L)
=1,L{U
1
Ao
> Xn - G+ DD ?

To obtain (VI-3) and (VI-4) we used the definition of V‘Y(uls). the defini-
tion of .ﬂs(n) {see (2-4)), and (VI-1) and (VI-2).

It follows from (2-19) and (2-20) that

a = lim
4

- 115 -

log M (1)

n

n—

Therefore, with (VI-3} and (VI-4) we find that

This proves that

lim vea_ = 1. {VI-5)
- v

Rote that
lima_ = 0. (VI-6)
e

Now for u. s for

;,,(Uls)

and

which P(uls} > O we obtain for the pseudoprobabilities

—aﬂrvﬂ'(u|s)

-

2~a_1 [—vlogzP(u Is)]
2—a1(—’vlog2P(u]s))
21a710g2}’(u |s)

ya
Pluls) 7 (VI-7)

- 116 -

~ -a_(-loggP(uls) + 1) -

P?(u[s) 52 a’{—'\r og P(uls

« 1
Y (VI-8)

- ¥
=2 "P(uls)

Hence from {VI-7} and (VI-8) using (VI-5) and (VI-6) we can conclide for u,

s such that P{u|s) > O that g

lim ; (uls) = P(uls).
- v .

This proves the theorem.
Appendix VII.

The proof of the test lemma.

'

Let ‘int denote the set of proper prefixes of a set M, where M is a

proper and complete set of strings over a finite alphabet ¥. So,

int

A7 15 i () >0 and wp € 4).

First we show that if A is maximal for a probability vector P, then
int |
Vu€d, ued : P(u) < P(v). (VII-1)
Proof: Assume (VII-1} does not hold, i.e., there isau € dand a v € At
with P(u) > P{p). Without loss of generality, we may take v to be a maximal

proper prefix, i.e., for all u € 4, pu € 4. Now consider the segment set M’

with

- 117 -

o o= (U= {oulu e) U uufuew)

so |#] = |4’ |. Now use the well known average length lemma, e.g. Massey

[15]. which states that

-

EL

i

2 Plu)L(u)

2 3., P). (VII-2)

k5

Then we obtain, denoting the average length of A’ by EL",

EL® - EL = P(u) - P{u) > O,

which contradicts the assumption that # is maximal. So {VII-1) holds.

Now we prove that if
int |
Vu € d, p €A : P(u) € P(u) (VII-3)
then A is maximal.

Proof: Let M be a maximal segment set with |A('[= |4}, and let Ji'im

be its set of proper prefixes. Define

7 4 goint g yint (VII-4a)
A int

%, = A - 7, (V1I-4b)

g, 4 wtnt _ g (VII-4c)

Since A’ is maximal we have EL < EL’. Assume that

EL < EL', (Vii-5})

- 118 -
then, using (VII-2) and (VII-4),

2 P(v) < Z Plw).

veF, veFy

And with 152, = 393] we know that a pair v € 3‘2. w € "}3 exists with

P{v) < P(w) (VII-6)

t

Now from (VII-4) we get w € .&m . So w, or a proper prefix of w, belongs to

A Also, v € 4™, and with (VII-3) we find

P{v) 2 P(w),

vwhich contradicts {(VII-6) and {VII-5}, thus EL = EL’. This proves the final

part.
Appendix VIII.

The region of optimality for Tunstall codes.

V¥e demonstrate the following two related results for the algorithm for
discrete memoryless sources. |
rl) Given a {proper and complete) segment set M, we find the subset of
DMS for which 4 is maximal.
r2) Given 2 Tunstall segment set ‘“T satisfying an extra constraint
stated below, we show that a segment set Md{n). as d?fined in
(2-28), exists such that #(n) = '“T |

First we introduce some notations. i

- 119 -
The type of a string u € %* is defined as the h!] dimensional vector
blu) 2 (b,(w)lu € %)
with
b d i ct L, u=uy | uew

Given a set H. denote by #(d) the set of types of all segments in KA. These
sets can easily be visualized as a set of gridpoints in the space (IRZO) M‘.
i.e., every coordinatekxu. u € %4, is non-negative.

Let W be a plane in this space. We say that W agrees_with a segment set

A if all points of H(A™

)} lie inside, or on the boundary of the subspace
enclosed by ¥ and the planes x, = 0, u € 4, and the points of %(A) lie out-
side this subspace or on ¥. We give an example.

Exomple: Let % = {0, 1} and W: (—10320.7)3:0 + (-l(:~g20.3}:z1 = 3.6. See
Figure VIII-1. From this figure we see that W agrees with the following

segment set A:

4 = {0000G00. 0000001, 000001, 00001, 00010, 00011, 00100,
00101, 0011, 01000, 01001, 0101, 011, 10000,

10001, 1001, 101, 110, 111} (VIII-1}.
So. #(4) = { (7.0), (6.1). (5.1). (4.1). (3.2). (2.2). (1.2). (0.3)}. and

is indicated by the crosses in Figure VIII-1.

Define for a probability vector P omn %, the planes WP(Q) as follows:

WP(Q)z zZ (- loggP(u))xu =
u€y

- 120 ~

Figure VIII-1.

Now we can reformulate the testlemma.
If a segment set A is optimal for a probability vector P then d agrees
with WP(Q) for some 2 € R and vice versa.
In the example of this appendix the plane W is Wp,(3.6) for P = {0!7, 0.3}.
So K, {VIII-1), is maximal for this P.

Given a set #, define the plane set ¥#{#) as follows:
w(4) & (W|¥ agrees with)

Now the first claim (rl) follows from the fact that ¥{id) can be descri-
bed by a finite set of 'extreme’ planes, and these define the range of pro—
bability vectors for which M is maximal. We clarify this,' continuing our
example.

Let 4 be defined by (VIII-1) then, see Figure VIII-2, #{4) is bounded

by:

=12 and W,: 2x, + Tx, = 14.

¥io 2xp + 5x) 2' 2 1

1

- 121 -

Using the definition of WP. ve see that

i

Wl = WPI(QI), P1 = {r”, r), 01 -121og2r,

and r is the scolution of: r2 + r'5 =1, so r = 0.8087.

2 7
12 = WP2(92), Pz = (s”, s'}. 92 -lZlogzs.

and s is the solution of: 52 + s? =1, so s = 0.8398.

So A is optimal if and only if 0.6540 { P{0) < 0.7053.
We show that a Tunstall set ‘“T can be generated by the algorithm if it

satisfies the following (weak) extra condition:

JLI. satisfies the testlemma without eguality, i.e.,
- JAnt |
Vuce€ "T v € .&r : P{u) < P(u). {VI111-2)

This implies that no point from .‘ﬁ(.&mt) is on the plane WP. Now, the algo-

rithm generates sets M(n) with planes W(n): = V(u):vcu = n.
u€%

Figure VIII-2.

1f Jlr satisfies (VIII-2} and a W(n) exists such that W(n) € !’{J(T). then

- 122 - !

M(n) = ’"T Now this is always possible since l'(.ltl.) contains planes’ descri-

bed with rational w(u) and Q and due to (VIII-2) these planes do' not con-

int

tain points from B(A4). Thus proving claim (r2).

Appendix IX.
The proof of the global tests.

In this appendix we will give the proof of the global tests (3—35) and
(3-36). ' '

Proof of Lemma 3-3: We only have to show that, if

i
3 A"s(ulﬁ) < @
u€i P I

then, for all local positions S(u'). (3-31) holds.
Note: s(ulgi) only depends on P{ulgi). not on the local position, i.e.

if the source is memoryless then s(ulu') = s(u).

. i
From (3-22): A[S(z%)] » a-a (&)

i i E
From (3-22): 3 A[S(w)) + s(ulu)] ¢ paS@) 3 xSl
u€¥ u€y
Together with {3-35) we obtain

5 AS@Y + s(uluh)] ¢ pASE)L ¢ prsry)
u€l ‘

'Q.E.D.

- 123 -

The proof of Lemma 3~4 is a bit more involved, since we must also con-
sider the stepsums T(u[gl}. We take the following approach. First fix the
stepvalues s(u Ig‘). Then try to select stepsums T(ulgt) such that decodabi~-
lity is guarantied. Now, what bounds on s{u}gl) follow?

If ?\-T(uﬂlgi) 5 g, {,\-T(ului) + ,\-S(umt)) (1X-1)

then the local condition (3-32) at S(u') is satisfied for all S(u'). The

proof of this involves only the application of (3-22) as before.

i i
If T(ur ') = -[log, {%(N‘T(“’ﬂl} + amsluluyyg (1x-2)

then (IX-1) is also true.

This implies that we can find stepsums such that both {3-32) holds and
~T(u+1 |u) A8, T(uleh) —suleh)
A =< p {2 =7 % A =73 {IX-3)

Observe the encoding formula (3-25) and conclude that for the symbol

u, . = 0 we do not have to add anything to B(gi). We may set

i+l

T(Olu') = » (1X-4)
Using (IX-3) and (IX-4) we can prove by induction on u that

AT(ut lut) <)_\g "2‘ (M;)u-u,,;s(vlzi) (1X-5)
=0

Now we know that for given stepvalues we can find, by (IX-2), stepsums,

- 124 -

such that (3-32) is satisfied. If (3-33) also holds then decodability is

guarantied. So, suppose that the global Q-test holds, then by (IX-5)

1> 3 (bﬁ)c'u.;\'s(ului) > A—T(Gﬂ*l Iﬂi)
uey &

s0 {3-33) holds and the code is decodable.
Summarizing: If the stepvalues are selected such that (3-36) is satisfied,
then by (IX-2) stepsums can be found such that the resulting code is deco~

dable independent of S(gf‘).
Appendix X.

The decodability of Design 2.

Here we want to show that the global method in Design 2 generates a

decodable code. First we show that the selection
i i
sulu’) = T(c - u)-log, 22 - 1og P(ulu’)] (3-38)

satisfies the global Q-test.

i - .
Proof: By (3-38): A s(ul#) ¢ (%goc uop(ulg‘} (x-1)

So s (ﬁﬁ)c-—u.;\"s(ulﬁi)
uey &

¢ 3 Pl =1
uc%

Q.E.D.
As shown in Appendix IX we know that there exist stepsums in accordance

with the steps found, but the question remains whether (3-39) is a good

- 125 ~

choice. We proceed to prove that this is the case:

First from T(ulgi} = [(c—u)logkbg-— 1ogAQ(u§gi)] (3-39)
we find
u—c i u~c .)
N1 aqlat) < aTCD ¢ A8 oty *-2)

We verify (3-33):
i wtl-c 5
AT+ [u’) o A gl =1

So T(w+1|gt) 2 0 in accordance with (3~33).
Now it remains to check (3-32). In Appendix IX we stated that if (IX-1)

holds then {3-32) holds for all local positions. We proceed:

i) +1- ;
Tt fut) ©@ N1 ety + puleh)]

. u-c u-c s
= L&y aukh + 22D puph

o
) prlahy |, py-stuluh)
o [+

Here (a) follows from (X-2)} and (b) from (¥~1) and (X-2). So (IX~1) holds
and thus (3-32) and {3-33) hold.

Remark: By using (3-33) and (IX-1) in the proof we eliminated the need
to know the local position S(gi} in the table. In this way we again obtain

a global result.

- 195 - |
Appendix XI.

The decodability of Design 6.

This appendix contains the proof that the global Q-design 6 is decoda-
ble. From (3-61) ~ {3-66) we find that:

2.,2.3 u-—c 2.3 u-c

2 A opuly <3G ¢ AT)
o a

2.2.3 u—c 2.3 u-c
& ALY el aTE ¢ X e @
AB [: 2 o

We verify {3-33} using (XI-1}:

AT+ 18 o+ 1) = 1. (XI-2)

Now, from Appendix IX we know that if (IX-1) is satisfied then (3-32}

holds. So:

2.3 u-
AT+ 1lu) (L%)u c-ga[Q(u)g) + Pulu)]
o

> g—’(R—T(ulg) + }\'s{uhi)j’

and this, with (¥I-2), proves that the local Q-test, Lemma 3-2, holds for

all positions S(u). so the code is decodable.

- 127 -

Appendix XII.

Simulation results.

This appendix contains the results of the simulations done with the
eight designs. The binary codes were designed using a table X as given in
Example 2. so ;[i] éd“h- fdktd—i/N], 0 i <N; kand N are positive inte~
gers.

The storage complexity for these codes is N+k binary digits. We desig-
ned tables with Nek = 1000 and N-k # 10000, and k several values in the
range from 10 to 20. We selected values that should be representative for
the algorithms. For instance, the minimum of log % under the restriction

that N+k = C occurs at k =1+ log, C-1. For C = 1000 this gives k =
op d op

t t
11 and if C = 10000 then k % 14. Since the local designs generally per-

opt
formed best’with rather precise tables, i.e. large k, we also selected
values in that range.

In Table 1 we Ilist the global P-method redundancy bounds. The first
data colum states the lowerbound result, (3-54), the second columm gives
the upperbound for Design 1. (3-49), and the last column tabulates the
upperbound (3-60)} for Design 5.

We select the following memoryless sources:

Source Bl: ¢ = 2; P(0} = 0.75, P(1) = 0.25; H(P(U)) = 0.8113 bits.

u = 0.25.
Source B2: ¢ = 2; P{0) = 0.999139, P(1) = 0.000861; H(P(U)}) = 0.0100
u = 0.0009. |

Source B3: ¢ = 8; P(i) = A+(i + 1}_0'?3

, 0 ¢ i< c; HP(U)) = 2.8012
‘u = 2.3623.

A normalizes the probabilities.

- 128 -

B985 5 < i < e BHP)) = 0.1016

Source B4: c = 8; P(i) = A+(i + 1)
u = 0.01354.

A normalizes the probabilities. |

Source BS: c = 16; P(i) = A(i + 1) %, 0 ¢ 1 < ; H(P(V)) = 3.0023
u = 2.7438.
A normalizes the probabilities.

Source B6: ¢ = 16; P(i) = A=(i + 1)°°%, 0 ¢ i < ¢; BP®)) = 0.1010

u = 0.01345.

A normalizes the probabilities.
So for each of the three cardinalities, ¢ = 2, 8, 16, we select a high~ and
a low entropy source. Because the Q—design is sensitive to u we reorder the
probabilities in the six sources such that u is maximal. So we define!

Source Bl': ¢ = 2; P(0) = 0.25, P(1) = 0.75; H(P(U)) = 0.8113 bits.

u = 0.75.

Source B2': ¢ = 2; P(0) = 0.000861, P(1) = 0.999139; H(P(0)) = 0.0100
u = 0.9991. ;

Source B3': ¢ = 8; P(i) = A-(c - 1) 073, 0 ¢ © < ¢; H(P(U)) = 2.8012
u = 4.6377.
A normalizes the probabilities.

Source B4': c = 8; P(1) = A*(c - 1) 0%, 0 ¢ t < ¢; H(P(D)) = 0.1016
u = 6.9865.
A normalizes the probabilities.

Source B5': ¢ = 16; P{i) = A+(c - i)—l“zg, 0<ti<c H(P(U))yz 3.0023
u = 12.256.
A normalizes the probabilities.

Source B6': ¢ = 16; P(i) = A-(c - 1)"0"%, 0 ¢ ¢ < ;: HP@)) = 0.1010

u = 14.987.

A normalizes the probabilities.

- 190 -~

In the Tables 2 we present the lowerbound results for global Q-designs,
{3-55), for eacﬁ of the twelve sources. The Tables 3 and 4 give the upper-
bound, (3-51) resp. {3-68), for the global Q-designs, Design 2 and Design
6. The next tables list the redundancies resulting from the actual imple-
mentation of the Designs 1 to 8 for the twelve sources.

For the global designs, (1, 2, 5, and 6), the redundancy is computed by
{3-44) using the stepvalues as given by the designs. In the case of a local
design, (3. 4. 7, and 8}, the stepvalues depend on the local position. In
the tables we list the redundancy computed by (3-44) using the worst set of
stepvalues. We find this set by an exhaustive search over all N local posi-
tions. So these values are upperbounds to the actual redundancies and we

may expect that in most cases the actual redundancy is even lower.

- 130 -

N k lowerbound) upperbound upperbound

Design 1 Design 5
100 10 .00282 .0128 .0284
91 11 .00141 .0124 .0262
83 12 .000704 .0128 L0262 ¢
713 .000352 .0133 .0270
5 18 .0000110 .0179 .0357
53 19 . 0000055 .0189 .0378 '
769 13 .000352 .00165 .00366
714 14 .000176 .00158 .00333
667 15 . 0000881 00159 .00326
625 16 . 0000440 .00164 .00333
556 18 .0000110 .00181 .00363
500 20 .0000028 . 00200 . 00401

Table 1. Global P-Design upper— and lowerbounds.

N k Bl B2 B3 B4 B5 B6
100 10 .0224 .0256 L0722 .102 170 .205
91 11 .0217 .0248 .0699 .09%0 .164 .198
83 12 .0223 L0255 L0719 .102 .169 .204
77 13 .0233 L0267 L0752 .107 177 .213
5 18 .0313 .0357 .101 .143 .237 .286
53 19 .0330 L0377 . 106 .151 . 250 .302
e 13 .00289 .00330 .00032 .0132 L0219 0264
714 14 .00276 .00315 .00889 .0126 L0209 L0252
667 15 .00278 -00317 .00895 .0127 .0210 .0254
625 16 .00288 .00329 .00927 .0131 .0218 .0263
556 18 .00317 .00362 .0102 .0145 .0240 .0289
500 20 .00350 .00400 .0113 .0160 .0265 .0320

Table 2. Global Q-design lowerbounds.

N k Bt B2* B3’ B4* B5” BB’
100 10 .0160 .0128 .0431 .0130 .0480. L0130
91 11 .0155 .0124 0417 .0126 0464 L0126
83 12 .0158 0128 .0429 .0129 0477 .0129
77 13 0167 0134 .0448 .0135 .0499, L0135
56 18 0223 .0178 .0601 .0181 .0669 .0181
53 19 .0236 .0189 L0635 .0191 .0706 019
769 13 .00207 .00165 .00556 .00167 .00619 .00167
714 14 .00197 .00158 .00530 .00160 .00590 .00160
667 15 .00198 .00159 .00534 .00161 .00594 .00161
625 16 . 00206 .00165 00553 .00167 .00616 .00167
556 18 .00226 .00181 . 00608 00183 - .00677 .00183
500 20 .00250 .00200 .00673 .00203 .00750 .00203
b

Table 27. Global Q-design lowerbounds.

- 131 -

N k Bl B2 B3 B4 B5 B6
100 10 .0324 .0356 .0822 .112 .180 .215
91 11 .0327 .0358 .0809 - .110 175 .209
83 12 .0344 .0375 .0839 .114 .181 .216
77 13 .0363 .0397 .0882 .120 . 190 .226
56 18 .0491 .0536 .119 .161 .255 .304
53 19 .0519 .0566 .1256 .170 .269 .321
769 13 .00419 .00460 .0106 .0145 .0232 0277
714 14 .00416 .00455 .0103 .0140 .0223 0266
667 15 .00428 .00467 .0104 .0142 .0225 0269
625 16 .00448 .00489 .0109 .0147 .0234 0279
556 18 .00497 .00542 .0120 .0163 .0259 0307
500 20 .00550 .00600 .0133 .0180 .0285 0340
Table 3%. Global Q-design upperbounds for Design 2.
N k B1’ B2’ B3’ B4’ B5® B6®
100 10 .0260 .0228 .0531 .0230 .0580 .0230
91 11 .0265 .0234 .0527 .0236 .0574 .0236
83 12 .0280 .0248 .0549 .0250 .0598 .0250
77 13 .0297 .0263 .0578 .0265 .0629 .0265
56 18 . 0402 .0357 .0779 .0360 .0848 .0360
53 19 .0425 .0378 .0823 .0380 .0895 .0380
769 13 .00337 .00295 .00686 .00298 .00749 .00298
714 14 .00337 .00298 .00670 .00300 .00730 .00300
667 15 .00348 .00309 .00684 .00311 .00744 .00311
625 16 .00366 .00325 .00713 .00327 .00776 .00327
556 18 .00406 .00361 .00788 .00363 .00857 .00363
500 20 .00450 .00400 .00873 .00403 .00950 .00403
Table 3b. Global Q-design upperbounds for Design 2.
N k Bl B2 B3 B4 B5 B6
100 10 .0754 .0825 .186 .253 .403 .480
91 11 .0706 0772 .173 .234 .372 .444
83 12 .0714 0779 .173 .235 .373 .444
77 13 .0740 .0807 .179 .243 .385 .459
56 18 .0983 .107 .237 .321 .510 .607
53 19 .104 .113 .251 .339 .538 .641
769 13 .00971 .0106 .0239 .0325 .0518 .0618
714 14 .00898 .00981 .0219 .0297 .0473 .0564
667 15 .00888 .00970 .0216 .0293 .0464 .0553
625 16 .00912 .00995 .0221 .0299 .0475 .0566
556 18 .00997 .0109 .0241 .0326 .0517 .0617
500 20 .0110 .0120 .0266 .0360 .0571 .0681

Table 4%. Global Q-design upperbound for Design 6.

- 132 -

Table 6. The measured global Q-method redundancy (Design 2).

N k B’ B2’ B3’ B4’ B5* BG®
100 10 .0612 .0541 .121 .0545 .132 L0545
91 i1 L0575 L0510 .113 .0514 .123 L0513
83 12 .0583 L0517 .114 L0521 .124 L0521
7 13 L0605 L0537 .118 .0541 .128 L0541
56 18 .0804 .0715 .155 .0720 170 | .0720
53 19 .0849 0755 .1656 L0760 179 o760
769 13 .00788 .00697 L0156 .00701 0170 .00701
714 14 .00732 .00649 .0143 .00653 0156 .00653
667 15 00725 .00644 .0141 .00648 0154 .00648
625 16 .00745 00662 .0145 00667 L0158 . 00666
556 18 .00816 00725 .0158 .00730 0172 | .00730
500 20 .00902 . 00802 .0175 00807 .0190 .00807
Table 4b. Global Q-design upperbound for Design 6.
N k Bl=B1’ B2=B2" B3=B3’ B4=B4' B5=B5" B6=B6"
100 10 .00622 .00876 .00954 .0121 .00717 .0123
91 11 .00466 00974 .00675 .00414 00747 . 00427
83 12 .00800 L0108 .00795 .00620 .00611 .00635
77 13 .00366 L0117 .00553 .00817 .00563 .00818
56 18 .0146 .0166 .00959 L0178 .00903 . 000190
53 19 .00476 0176 00845 .00105 .00716 .00128
769 13 00114 .00136 00100 .000368 .00117 .000484
714 14 00104 .00156 .00103 . 000367 . 000554 .000491
667 15 000566 .000257 000677 .000153 . 000903 .000270
. 825 16 .00112 .000358 . 000880 .00134 .00102 .00147
- 556 18 .000772 000857 .000871 .000149 . 000943 .000265
500 20 .00122 000757 .00100 .000148 .000271 .000276
Table 5. The measured global P-method redundancy (Design 1).
N 3 Bi B2 B3 B4 B5 BG
100 10 .0312 .0287 .0788 .112 174 | .212
91 11 .0321 L0317 0750 .103 172 .202
83 12 .0291 .0349 L0759 .103 175 .211
77 13 .0361 0377 .0810 .112 .181 .216
56 18 .0459 .0523 .110 . 160 .246 | .303
53 19 .0378 .0553 L1158 .152 257 .303
769 13 .00342 .00396 00872 .0133 .0228 .0265
714 14 .00350 .00436 .00972 L0129 .0214 0257
667 15 .00319 .00325 .00985 .0136 .0220 L0257
€625 16 .00392 .00356 .0104 .0141 .0224 L0270
556 18 .00392 .00415 .0110 .0145 .0248 .0G290
500 20 00472 .00476 .0123 L0161 L0272 .0322

- 133 -

N k Bl B2* B3’ B4’ B Be’
100 10 L0187 .0188 . 0489 .0223 .0533 0224

g1 11 .0184 .0207 .0472 .0153 .0521 .0154
83 12 .0231 .0229 .0485 .0184 L0527 .0186

7 13 .0199 .0247 .0492 .0213 . 0560 .0213
5 18 .0369 .0345 . 0696 .0359 .0759 .0183
53 19 .0283 .0365 0719 .0202 L0778 .0204
769 13 .00277 .00266 .00618 .00169 00699 .00180
714 14 .00280 00296 .00618 .00179 .00645 .00191
667 15 .00244 .00176 00634 .00167 .00686 .00179
625 16 .00312 .00196 . 00626 00296 .00706 .00309
556 18 .00302 .00236 . 00692 .00197 00772 .00209
500 20 .00372 00276 00773 .00218 .00821 00230

Table Gb. The measured global Q-method redundancy (Design 2).

N k Bl B2 B3 B4 B5 B6
100 10 .00372 . 00645 .00200 .00156 .00146 .00157
91 11 .00191 .00714 . 000665 .00114 .000772 .00116
83 12 .00197 .00804 .000977 .00132 .000525 .00135
77 13 .000410 . 00886 .000405 .00163 . 000167 .00167
56 18 00122 .0133 .0000521 .0000164 .000219 .0000173
53 19 .00004256 .0143 000537 .0000338 .000288 .0000416
768 13 000490 .000581 .000250 .000268 .000193 .000270
714 14 .000347 .000150 .0000923 .000153 .0000990 .000155
667 15 .000191 .0000883 .0000481 .0000736 .0000638 .0000750
625 16 .000322 .0000724 .0000257 .0000884 .0000294 .0000989
556 18 .000323 .000103 .0000371 .0000100 .00000653 .0000114
500 20 000222 ,000168 .0000743 .00000316 .00000599 .00000481

Table 7*. The measured local P-method redundancy bound for Design 3.

N k Bt - B2’ B3’ B4’ B5’ B6®
100 10 - .00372 .00645 .00256 .0121 .00349 .0123

o1 11 .00191 .00714 .00117 .00412 00185 00427
83 12 .00197 . 00804 .00107 .00618 .00129 . 00635
713 000410 .008B86 .000588 .00815 .00101 .00818
56 18 .00122 .0133 000524 .0178 .00189 .000190
53 19 0000426 .0143 .00127 .00103 .00129 .00128
769 13 .000490 .000582 .000260 .000359 .000243 .000484
T4 14 .000347 .000614 .000140 .000357 .000118 .000401
667 15 .000191 .0000883 .000106 .000146 .0000867 .000269
625 16 .000322 .0000724 .0000680 .00133 0000625 .00146
556 18 .000323 .000103 .0000729 .000141 .0000438 .000265
500 20 000222 .000168 .000114 .000139 .0000315 .000275

b

Table 7. The measured local P-method redundancy bound for Design 3.

- 134 ~

N k B1 B2 B3 B4 B5 B6
100 10 .00372 L0154 .00836 L0796 L0322 .186
91 11 .00191 0172 .00868 0774 L0305 176
83 12 .00197 .0192 .0106 .0807 .6312; .182
77 13 000410 . 0210 . 00896 0877 .0386° .192
5 18 .00122 .0303 .0153 .126 .0553 . 269
53 19 00476 .0322 L0176 .126 .0584 277
%9 13 000490 .00133 000828 .00901 .00121 .0220
714 14 .000347 .00149 000874 .00833 .00123 .0208
667 15 .000191 000693 000746 .00893 .00118 .0209
625 16 000322 .000795 .000927 .00959 .00137 .0224
B56 18 .000323 .00104 000799 .0101 .00127 0244
500 20 .000222 00131 .000938 .0113 .00165 L0273
Table 8*. The measured local Q-method redundancy bound for Design 4.
N k B1’ B2* B3® B4’ B5* B6®
100 10 .00872 .00877 00745 .00241 00774 .00253
91 11 .00740 00975 .00771 .00442 .00842 .00455
83 12 00197 .0108 00574 . 00650 .00761 . 00665
77 13 . 00690 .0118 00669 .00836 .00478 .00851
56 18 00569 .0166 00617 000432 .00828 .000431
53 19 - .00948 L0176 .00957 00154 .00930 .00154
769 13 000490 .00136 .00103 000386 .000791 .000503
714 14 000347 .000159 .000995 .000387 .000762 .000526
687 15 000041 .000259 .00105 000174 .000863 .00Q307
625 16 000322 .000358 .000903 .00137 .00125 00151
556 18 .00122 000558 .00077T8 .000196 .000703 .000290
500 20 .000222 .000759 .000547 .000198 .00129 .000303
Table Sb. The measured local Q-method redundancy bound for Design 4.
N kR B1=B1’ B2=B2’ B3=B3" B4=B4" 85=BS:‘ B6=B6"’
100 10 L0137 .0188 L0195 .0122 L0172 L0123
91 11 .0129 L0207 L0177 .0151 .0185 L0153
83 12 L0170 .0229 .0200 .0182 L0182 L0184
T 13 .0134 .0247 .0185 L0212 .0186 .0212
56 18 .0280 .0345 .0274 .0180 L0269 .0180
53 19 .0189 .0365 .0273 L0199 L0260 .0201
769 13 ..00212 00266 .00208 .00165 .00244 .00178
714 14 .00210 .00156 .00243 00177 .00182 .00189
667 15 .00169 .00176 .00218 .00165 .00240 00177
625 16 .00232 .00196 .00248 .00294 00262 .00307
556 18 .00212 .00236 00267 .00195 .00271 . 00206
500 20 .00272 .00276 . 00300 .00215 00272 .00228

Table 9. The measured redundancy for Design 5.

- 135 -

N k B1 B2 B3 B4 B B
100 10 v L0562 L0687 176 .232 .390 .462
91 11 L0514 .0647 .161 .223 .362 .432
83 12 L0592 .0710 .163 .223 .358 .428
77 13 . 0589 .0766 .165 .229 .372 . 449
56 18 . 0905 . 106 .229 .303 .500 .589
53 19 .0849 .112 .240 .321 .526 .623
769 13 .00764 .00916 .0220 .0302 . 0506 .0602
714 14 00700 00716 L0207 .0283 L0455 L0550
667 15 .00694 00775 .0200 0271 .0447 L0527
625 16 00792 .00835 L0205 .0285 .0462 L0558
556 18 .00842 .00955 .0229 .0307 .0504 . 0596
500 20 .00792 .0108 0256 .0341 L0557 L0662
Table 10%. The measured redundancy for Design 6.
N k B1* B2’ B3’ B4’ B5* B6’
100 10 .0412 .0388 .110 .0326 .118 .0327
91 11 L0404 L0427 .101 .0374 L1111 .0375
83 12 L0472 .0470 104 .0427 .112 .0428
77 13 .0459 0507 L1068 .0475 L1117 .0475
56 18 0727 0702 .148 .0642 .161 L0542
53 19 L0661 .0743 .154 .0582 .187 .0584
769 13 . 00569 .00526 .0136 .00431 .0154 .00444
714 14 . 00560 .00436 .0130 .00461 .0136 .00473
667 15 .00544 00476 .0126 .00469 .0141 .00481
625 16 .00632 .00516 .0132 .00619 .0147 .00631
556 18 .00662 .00596 .0148 .00559 - .0162 .00571
500 20 00772 .00676 .0165 .00620 L0177 .00633
Table 10b. The measured redundancy for Design 6.
N k ’ B1 B2 B3 B4 B5 B6
100 10 .00372 .00645 .00217 .00156 00138 .00157
91 11 .00191 00714 000971 .00114 000739 .00116
83 12 .00197 . 00804 .000989 .00132 000487 .00135
7 13 .000410 .00886 ,000391 .00163 .000380 .00167
5 18 .00122 .0133 00160 .0000165 000281 .0000173
53 19 .0000426 .0143 .000490 .0000338 .000247 .0000416
765 13 .000450 .000581 .000194 .000268 .000234 .000270
714 14 .000347 .000150 .000157 .000153 .000116 .000155
667 15 .000181 .0000883 .0000444 .0000736 .0000534 .0000750
625 16 .000322 .0000724 .0000391 .0000884 .0000281 .0000989
556 18 .000323 .000103 .0000671 .0000100 .0000250 .0000114
500 20 .000222 .000168 .000108 .00000317 .0000116 .00000480

Table 11%. The local P-method redundancy for Design 7.

- 136 -

Table 12b. The local Q-method redundancy for Design 8.

N R - B1’ B2’ B3’ B4’ B5’ B6*
100 10 .00372 .0154 .00304 .0121 .00617 .0123
91 11 .00191 .0172 .00240 .0151 .00649 .0153
83 12 .00197 .0192 .00242 .0182 .00611 .0184
7 13 .000410 .0210 .00204 .0211 .00635 .0212
56 18 .00122 .0303 .00366 .0180 0110/ .0180
53 19 .00476 .0322 .00338 .0199 0103 .0201
769 13 .000490 .00133 .000262 .00164 .000363 .00178
714 14 .000347 .000614 .000208 .00175 .000189 .00189
667 15 .000191 .000693 .0000837 .00164 .000203 .00177
625 16 .000322 .000795 .000146 .00293 .000222 .00306
556 18 .000323 .00104 .0000460 .00193 .000227 .00206
500 20 .000222 .00131 .0000843 .00213 .000209 00228

Table llb. The local P-method redundancy for Design 7.

N k B1 B2 B3 B4 B5 B6
100 10 .00372 .0345 .0192 .193 .109 .418

91 11 .00466 .0383 .0190 175 .0952; .384

83 12 .00499 .0424 .0189 .181 .0957 .386

77 13 .00366 .0461 .0216 .184 .101 .405

56 18 .00569 .0651 .0311 .250 .160 .535
53 19 .00476 .0691 .0392 .265 173 .567
769 13 .000490 .00326 .000939 .0214 .00342 .0511
714 14 .000347 .00252 .00103 .0199 .00302 . 0466
667 15 .000191 .00281 .000911 .0190 .00297 .0449
625 16 .000322 .00313 .00110 .0195 .00304 . 0466
556 18 .000323 .00377 .000998 .0219 .00350 .0507
500 20 .000222 .00444 .00133 .0246 .00446 .0566

Table 12%. The local Q-method redundancy for Design 8.

N k B1’ B2’ B3’ B4’ B5’ B6’
100 10 .00372 .00878 .00949 .00267 .0101 .00280
91 11 .00191 .00977 .00884 .00469 .0113 .00470
83 12 .00499 .0108 .0109 .00668 .00836 .00682
77 13 .000410 .0118 .00885 .00868 .0143 .00884
56 18 .0102 .0167 0131 .000893 .0194 .000886
53 19 .0142 .0177 0206 .00202 .0159 00202
769 13 .000816 .00136 .000959 .000419 .00107 .000537
714 14 000697 .000162 .000951 .000421 .000811 .000546
667 15 .000191 .000261 .000857 .000212 .000785 .000345
625 16 .000722 .000362 .00101 .00141 .00112 00155
556 18 .000323 .000562 .000728 .000222 .00114 000336
500 20 .000722 .000762 .000687 .000250 .00123 000354

REFERENCES.

[1] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[2] D. A. Huffman, "A method for the construction of minimum-redundancy
codes,” in Proc. IRE, vol 40, pp 1098-1101, Sept. 1952.

[3] B. P. Tunstall, "Synthesis of noiseless compression codes,”
Ph.D. dissertation, Georgia Inst. Tech., Atlanta, GA, Sept. 1967.

[4] F. Jelinek and K. 8. Schneider, "On variable-length-to~block
coding,” IEEE Trans. Inform. Theory, vol IT-18, pp 765-774, Nov.
1972,

[5] F. Jelinek, Probabilistic Information Theory. New York: McGraw-Hill,
1968. ‘

[6] J. Verhoeff, "A mnew data compression technique,” Ann. Syst. Res.,
vol 6, pp 139-148, 1977. :

[7] J. P. M. Schalkwijk, F. Antonio and R. Petry, "An efficient
algorithm for data reduction,” 1in Proc. Hawaii Int. Conf. System
Sciences, pp 498-499, 1972.

[8] J. P. M. Schalkwijk, "On Petry's extension of a source coding
algorithm,”™ in Proc. 2nd Symp. Inform. Theory Benelux, pp 99-102,
1981.

[91 J. J. Rissanen, "Generalized Kraft inequality and arithmetic
coding,” IBM J. Res. Develop., vol 20, pp 198-203, May 1976.

[10] R. C. Pasco, "Source coding algorithms for fast data compression,”
Ph.D. dissertation, Stanford Univ., CA, 1976.

[11] T. J. Lynch, "Sequence time coding for data compression,” in Proc.

- 137 -

IEEE (Corresp.). vol 54, pp 1490-1491, Oct. 1966.

[12]

[13]

[14]

[15]

(18]

[17]

18]

f19]

[20]

[21]

[22]

[23]

- 138 -

L. D. Davisson, "Comments on ’Sequence time coding for data
compression’,” in Proc. IEEE (Corresp.), vol 54, pp 2010, Dec. 1966.

J. P. M. Schalkwijk, "An algorithm for source coding," IEEE Trans.
Inform. Theory, vol IT-18, pp 395-399, May 1972.

T. Cover, "Enumerative source coding,"” IEEE Trans. Inform. Theory,
vol IT-19, pp 73-76, Jan. 1973.

J. L. ¥assey, "The entropy of a rooted tree with probabilities,”
presented ‘at IEEE Int. Symp. Inform. Theory, St. Jovite, Canada,
Sept. 1983,

F. R. Gantmacher, Application of the Theory of Matrices. New York:
Interscience, 1959. .

C. B. Jones, "An efficient coding system for long source sejuenbes."
IEEE Trans. Inform. Theory, vol IT-27, pp 280-291, May 1981.

F. Rubin, "Arithmetic stream coding using fixed precision
registers,” IEEE Trans. Inform. Theory, vel IT-25, pp 672-675, Nov.
1979. :

M. Guazzo, "A general minimm-redundancy source-coding algorithm,”
IEEE Trans. Inform. Theory, vol 1T-26, pp 15-25, Jan. 1980.

J. J. Rissanen and G. G. Langdon, Jr., "Arithmetic coding,” IBY J.
Res. Develop., vol 23, pp 149-162, Mar. 1979. ‘

F. Jelinek and G. Longo, "Algorithms for source coding.,"” in: CISN
Courses and Lectures, no 216, Ed: G. Longo, Wien-New York: Springer,
PP 283 ~ 330, 1975.

J. Rissanen and G. G. Langdon, Jr., "Universal modeling and :‘coding,"
IEEE Trans. Inform. Theory, vol IT-27, pp 12-23, Jan. 1981.

I. Csiszar and J. Korner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. Budapest: Akademiai Kiado, 1981i.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

- 139 -

J. L. Massey, "An information theoretic approach to algorithms.,” in
The Impact of Processing Techniques on Communication, Ed: J. K.
Skwirzynski, NATO ASI Series E, Dordrecht, Boston: Nijhoff Publ.,
1985,

D. C. van Voorhis, "Constructing codes with ordered codeword
lengths,” IEEE Trans. Inform. Theory, vel IT-21, pp 105 - 106, Jan
1975,

T. C. Hu and A. C. Tucker, "Optimal computer search trees and
variable length alphabetic codes,” SIAM J. Appl. Math., vol 21,
pp 514 —- 532, 1971.

A. M. Garsia and M. L. Wachs, "A new algorithm for minimum cost
binary trees,” SIAM J. Comput., vol 6, pp 622 - 642, Dec 1977.

J. wvan Leeuwen, "On the construction of Huffman trees,"” In: Proc.
3rd Int. Collog. Automata, Languages, Programming, Edinburgh,

pp 382 ~ 410, July 1976.

R. G. Gallager, "Variations on a theme by Huffman,"” IEEE Trans
Inform. Theory, vol IT-24, pp 668 ~ 674, Nov 1978.

0. Johnsen, "On the redundancy of binary Huffman codes,” IEEE Trans.
Inform. Theory, vol IT-26, pp 220 - 222, March 1980.

R. M. Capocelli, R. Giancarlo, and I. J. Taneja, "Bounds on the
redundancy of Huffman codes,” IEEE Trans. Inform. Theory, vol IT-32,
pp 854 - 857, Nov 1986.

G. G. Langdon., Jr. and J. Rissanen, "Compression of black-white
images with arithmetic coding,” IEEE Trans. Comm., wvol COMM-29,
pp 858-867, June 1981.

- 140 -

EFFICIENTE EN SNELLE DATA KOMPRESSIE KODES VOOR

DISKRETE BRONNEN MET GEHEUGEN. !
SAMENVATTING

Dit proefschrift behandelt de kompressie van datarijen, gegenereerd
door bronnen met geheugen. Het doel van de data kompressie is het minimali-
seren van het aantal kenaal symbolen dat nodig is om het oorspxl-onkelijke
bericht exact te beschri jven. |

In de Informatie Theorie wordt een bron gezien als een st?chastisch
proces, meestal met diskrete tijdstappen en een eindige uitkomstenruimte.

[
Van de verschillende mogelijke vormen van de foutvrije kodes worden er hier

twee behandeld. ’

De eerste kode is van het variabele— naar vaste lengte type. Gebruik
makend van Schalkwijks enumeratieve kodering is een kode ontworéen voor de
klasse van Markov bronnen. Het proefschrift beschrijft deze kode en de ana-
lyse hiervan. Bewezen wordt de asymptotische optimaliteit van deze kode en
de robuustheid ervan. Dit laatste betekent dat de efficiéntie van de kode
niet snel verandert ten gevolge van variaties in de bron parameters. Ook
wordt bewezen dat voor de subklasse van de geheugenloze bronnen;, d.i. pro-
cessen met identiek verdeelde, onafhankelijke diskrete stocha#ten, deze
kodes overgaan in de optimale Tunstall kodes. Hiermee is tevens een snelle
en laag komplexe kodeer methode gegeven voor deze Tunstall kodes:.

De tweede hierin beschreven kode is van het stroom type, d.w%.z. dat de
rij van kode symbolen stapsgewijs opgebouwd wordt als de opvdlgende bron
symbolen "voorbij stromen”. Het fundamentele algoritme is bescﬁreven door
Elias. Door zijn flexibiliteit is deze kode toepasbaar voor de gehele

klasse van de stationaire, ergodische bronnen. Het nadeel van dit algoritme

- 141 -

is de onmogeli jkheid een praktische implementatie te realiseren. Verschil-
lende auteurs hebben praktische implementaties gevonden en de hier beschre-
ven kode is daarop een voortzetting.

Het proefschrift beoogt inzicht te geven in het Elias algoritme en de
praktische implementaties hiervan. Hierbij blijkt dat het koderings wmecha-
nisme en het ontwerpen van de kode parameters gescheiden plaats kunnen
vinden. Er worden twee koderings mechanismen beschreven welke in een of
meerdere opzichten afwijken van de voorgaande oplossingen. Het meest in het
oog springend verschil is de eliminatie van de vermenigvuldigingen nodig in
de andere algoritmen. Ook de kode parameter ontwerp algoritmen wijken af
van de vorige algoritmen. Het blijkt mogelijk en zinvol om lokaal, d.w.z.
tijdens het koderen van elk volgend symbool, de parameters te optimalise-
ren. De analyse van deze kodes resulteert in wederzijds afhankelijke kom—
plexiteits— en redundantie grenzen, die een keuze uit de verschillende kode
vormen mogelijk maken, afhankelijk van de behoefte. Ook deze kodes blijken
een zelfde robuustheid te vertonen als de in het eerste deel beschreven

kode.

- 142 -
CURRICULUM VITAE.

Tjalling Jan Tjalkens was born in Arnhem, The Netherlands, on April 4,
1957. He received his M.S8. degree in electrical engineering“from the
Eindhoven University of Technology, Eindhoven, The Netherlands, in 1983.

Currently he is working at the Department of Electrical Engineering,

Eindhoven University of Technology. His research interest is in source

coding and wodelling.

STELLINGEN

bij het proefschrift van Tj.J. Tjalkens
29 september 1987, Technische Universiteit Eindhoven.

Met behulp van Ott’s algoritme is een asymptotisch korrekte toestandsschat-

ter voor Markovketens te maken.

G. Ott, "Compact encoding of stationary Markov sources’, IEEE Trans.
Inform. Theory, IT-13,(1},1967.

1

De entropie van een bronmodel is in het algemeen geen maat voor de kompres—
sie van een aan de hand van dit model ontworpen kode. Dit geldt echter wel
voor het speciale geval van de optimale rE {k < m) orde benadering van een

n® orde Markov bron.

H. Tanaka et al., "Efficient encoding of sources with memory”, IEEE
Trans. Inform. Theory, IT-25,(2),1979.

J. Rissanen, "A universal data compression system”, IEEE Trans. Inform.
Theory, IT-29,(5),1983.

E.N. Gilbert, "Codes based on inaccurate source probabilities", IEEE
Trans. Inform. Theory, IT-17,(3),1971.

IIY
Door in Van Voorhis algoritme P enkel die waarden te berekenen en op te
slaan die werkelijk nodig zijn in een gegeven kode ontwerp wordt de hoe-

veelheid werk aanzienlijk gereduceerd.

D.C. wvan Voorhis, "Constructing codes with bounded codeword lengths™,
IEEE Trans. Inform. Theory, IT-20,(2)},1974.

v

De beste benadering, met een gegeven komplexiteit, van een n® orde Markov
bron is niet de k® {k < m) orde Markov bron. ;

J. Rissanen, "A universal data compression system”, IEEE 'I‘r'an[‘s. Inform.
Theory, 1T-29,(5),1983.

|

v
Universele kodes waarbij de kodewoorden direkt uit de data gegenereerd wor-

den, zijn superieur aan algoritmen welke symbool- of rijkansen schatten.

J. Z2iv, A. Lempel, "Compression of individual sequences vi;a variable
rate coding”, IEEE Trans. Inform. Theory, IT-24,(5),1978.
P. Elias, "Interval and recency rank source coding: two on-line adap-
tive variable-length schemes"”, IEEE Trans. Inform. Theory, IT—33,‘(1),1987. ‘
"F.M.J. Willems, "Repetition times and universal data compressi)ion"; Proc
7th Symp. Inform. Theory Benelux, Noordwijkerhout, The Netherlands, 1986.
T.M. Cover, "Enumerative source encoding”. IEEE Trans. Inform. Theory,
17-19,(1),1973.
" L.D. Davisson, "Universal noiseless coding”, IEEE Trans. Inform.
Theory, 1T~19,{6),1973.

vI

Door gebruik te maken van de samengestelde bron in het ontwerp van een
Lawrence-achtige universele bronkode is een lagere redundantie ' bereikbaar
dan die welke de originele kode realiseert in het interessante gebied waar

de entropie laag is.

‘J.C. Lawrence, "A new universal coding scheme for the binary memoryless
source”, IEEE Trans. Inform. Theory., I1T-23,(4),1977.

Tj.J. Tjalkens, F.M.J. Willems, "Universal variable~ to fixed length
source coding for binary memoryless sources”, Proc Bth

Symp. Inﬁom. Theory
Benelux, Deventer, The Netherlands, '1987. T : i

