

Efficient and fast data compression codes for discrete sources
with memory
Citation for published version (APA):
Tjalkens, T. J. (1987). Efficient and fast data compression codes for discrete sources with memory. [Phd Thesis
1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR273296

DOI:
10.6100/IR273296

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR273296
https://doi.org/10.6100/IR273296
https://research.tue.nl/en/publications/3b6bcb0c-8b8a-4ba4-b0be-e72140503ed7

EFFICIEIIT AIID FAST
DATA COMPRESSION CODES

FOR DISCRETE SOURCES
11riTH MEMORY

EFFICIENT AND FAST DATA OOMPRESSION CODES

FOR DISCRETE SOURCE'S 11111 MEMORY.

PROEFSOIR.IFT

ter verkrijging van de graad van doctor aan de

Techniscbe Universiteit Eindhoven, op gezag van

de rector magnificus, prof.dr. F.N. Hooge, voor

een commissie aangewezen door bet college van

dekanen in bet openbaar te verdedigen op

dinsdag 29 september 1987 te 16.00 uur

door

T JAI.l..ING JAN T JALKENS

geboren te Arnhem

Di t proefschrift is goedgekeurd door

de promotoren

prof.dr.ir. J.P.M. SChalkwijk

en

prof.dr. J.L. Massey

ISBN 90-71382-20-6

Ef-~ijl¢~)

- 1 -

1. INTROOOCI'ION • 3

1.1. Problem statement and summary of results 3

1.2. General notations . . . 9

2. A VARIABLE-TO-FIXED LENGTII roDE 11

2.1. Introduction . 11

2.2. The Markov source 11

2.3. The algorithm 15

2.4. The performance 22

2.5. Bounds on the rate of the code 26

2.6. Asymptotic behaviour 33

2.7. The converse • 35

2.8. Complexity aspects 37

2.9. Discrete memoryless sources 39

2.10. Conclusions and remarks 42

3. ARITHMETIC OODES 43

3.1. Introduction . . 43

3.2. The Elias algorithm 44

3.3. Partial encoding and decoding 51

3.4. Finite precision algorithms 52

3.5. Multiplication-free codes 57

3.6. Local and global tests • 61

3.7. Global and local designs 68

3.8. Bounds on the redundancy 70

3.9. Fast designs . 78

3.10. Complex! ty aspects so

-2-

3.11. Some numerical examples ~

3.12. Implementation details . 87

3.13. Discussion and conclusion 9S

4. FINAL REMARKS 101

Aa<NOWI..EDGEMEN 104

APP.EfiDI<::ES 105

I. A segment source with a reducible state set 105

II. The proof of Lemma 2-1 107

III. The proof of Lemma 2-3 lOS

IV. The proof of Lemma 2-4 110

v. The proof of Lemma 2-5 111

VI. The proof of Theorem 2-2 113

VII. The proof of the testlemma 116

VIII. The region of optimality for Tunstall codes 118

IX. The proof of the global tests 122

X. The decodabil i ty of Design 2 124

XI. The decodability of Design 6 126

XII. Simulation results 127

REFERENCES . 137

SAMENVATTING 140

aJRRiaH..UM VITAE 142

-3-

1. INTRODUCI"IOO.

1. 1. Problem statement and sWIIIIarv of results.

This thesis concerns the compression of data sequences generated by

sources with memory. We will consider the (simplified) coomunication situ­

ation where a transmitter (source) selects messages (data sequences} from a

message set and wants to send these to a receiver (destination). For this

purpose it uses an error-free channel that is able to transfer symbols from

a finite set (channel alphabet) at a fixed rate, or at a fixed cost. To

transmit a message over the channel. it must first be converted into a

string of channel symbols, using an invertible map (codebook). The fact

that this map is invertible and that the channel is error-free allows the

receiver to decode the message exactly.

The purpose of data compression or noiseless source coding is to mini­

mize the number of channel digits needed to describe a message. Let us

first define in more detail what a source, a message, and a message set is.

All squrces in Information Theory are modeled as stochastic processes. The

simplest class of these models consists of the discrete memorvless sources

(DMS). In later chapters we will also introduce the class of finite state

Markov sources (FMS) and the class of stationarv ergodic sources (SES). All

these sources generate letters from a finite alphabet. The DMS generate

sequences of letters, each letter drawn independently from the source

alphabet according to some fixed probability vector. FMS and SES use proba­

bility vectors that are conditioned on the past, i.e. the previously gene­

rated letters. The definitions are such that the class of DMS is included

in the class of FMS and both are included in the class of SES. In all cases

we may define the message to be a string of source letters. The message set

- 4-

is the set of strings over the source alphabet that we will consider as

units we want to assign codewords to. For example, let ~denote the source

alphabet {0, 1}. Possible message sets would be: ~~ = ~. ~ = {00, 01, 10,
00

11}, ~ = {0, 10, 11}, ~4 = ~ . i.e. the set of all infinite length strings
oo A

!.! = u1 ~ ~ over the alphabet ~.

With A1 we want to assign separate codewords to each single letter of

the source string. -'2 is an example of "blocking". Usually coding for a

block of n (n > 1) symbols is more efficient than coding for single let-

ters. The strings (segments) in the message set need not be of the same

length, e.g. ~· In this way some advantage can be taken from the typical

behaviour of a source. The last example designates a stream code. Actually,

~4 states that codewords are assigned to each different infirli te length
I

source string, but in practice we will have to build up the codeword as the

source letters "stream by" to avoid an infinite coding delay.

The last step in the code description is the assignment of codewords to

the segments.

be equal to 1~ 1.
Let 'fl denote the codeword set then its cardinal~ty l'fll must

!

Not every message set ~ and codeword set 'fl is acceptable. We require

that all possible infinite length source strings are separable in segments

from ~. Usually, although not necessarily, we require that every string is

separable in exactly one way. Also, since the codewords are concatenated,

the decoder must be able to recognize the codewords. Two properties of sets

of strings are of interest here. First we say that a string set is complete

if every possible infinite length string has a prefix in the set. Also, a

string set 'is ~ if every possible infinite length string has at most

one prefix in the set. Now we can say that A must be complete and usualiy

is also proper. The codeword set must allow the source sequence to be re-

constructed with finite delay from the encoded sequence. From the Kraft

- 5-

Inequality {[1, Thm. 3.2.1]) and McMillans theorem ([1. Thm 3.2.2]) we can,

without loss of generality, require~ to be proper. So we only consider

what are called prefix-free codes. It is not hard to see that if a proper

codeword set ~ is not complete then there exists a proper set ~· that is

complete, has at least as many codewords, and, contains, for every codeword

~ in ~. a corresponding codeword ~· with length L{~') ~ L{~). Sinee we are

interested in a short description length ~· is an improvement over ~. Thus

one could consider only codeword sets that are proper and complete. How­

ever, we shall occasionally find it convenient to use codeword sets that

are proper and not complete. So a code is described by the message set .M,

the codeword set ~ and an invertible mapping from .M to ~- In some cases a

code uses many message sets or codeword sets and a rule for selecting the

next set depending on the past.

According to the form of the message set and/or codeword set we can

differentiate between several forms of source coding. First we discriminate

between definite coding schemes, where .M is a finite set, and indefinite

coding schemes (or "stream coding schemes"), where .M is an infinite set.

Definite schemes can be further subdivided into four classes depending on

whether or not the strings in .M respectively ~ are of the same length. Thus

we have the fixed-to-variable length (FV) schemes, here .M = ~. (n ~ 1),

and ~ contains variable length words. Next come the yariable-to-fixed

length (VF) schemes, where the source messages are of varying length and ~

contains fixed length words. In this case we might as well assume that the

channel can transmit symbols from a "super alphabet" of cardinality 1~ 1.
The third class contains the variable-to=variable length (VV) schemes. Here

.M as well as ~ contain varying length strings. Because the fixed-to-fixed

length (FF) schemes are inherently inefficient unless one waives the re­

quirement that the source sequence be uniquely reconstructable from the

- 6-

encoded sequence (i.e. unless one allows "lossy coding"), FF schemes will

not be considered further in this thesis.

The goal is to minimize the aver.age number of channel letters per

source letter (code rate). Thus for the FV schemes we must minimize the

average codeword length and for the VF schemes the average message length

must be maximized. In the case of a VV scheme the situation is more complex

since the selection of the message set influences the best choice for ~ and

as yet no algorithm is known for finding the best combination except by

exhaustive search.

For the FV coding schemes the optimal code is generated by the Huffman

procedure [2]. For the class SES this algorithm gives the b~st possible

codeword set for a given number of codewords, i.e. it minimizes! the average

codeword length. A less known result is an VF coding algorithm by Tunstall

[3], [4], that generates proper and complete message sets for a given num-

her of messages. This algorithm generates the optimal set if the source is

in the class of DMS. For a larger class no algorithm for opti~l VF codes

exists.

Stream coding schemes can be generated with the Elias algorithm [5].

This algorithm, although it is nearly optimal in the sense that the expec-

ted code rate can be made arbitrarily close to the source entropy, suffers

I from the fact that its per symbol complexity grows unbounded as the source

entropy is approached.

In general there are two ways to implement a definite coding scheme.

The first method is by table lookup. Depending on the form of the scheme we

need tables to define the message set, codeword set, and the! mapping be­

tween these sets. In the other method the messages are recognized by £2!!!Rll-

tatiqnal means. Also the corresponding codeword is computed by some algo-

rithm.

- 7 -

In this thesis we shall describe two source coding algorithms of the

last type. In chapter 2 we consider data sequences that are generated by

{finite state} Markov sources, (see [1, section 3.6]}. It is assumed that

the Markov sources have the property that their state is uniquely deter­

mined by the previous output and the previous state and that their state

set is irreducible.

The coding strategy we employ is of the variable-to-fixed length form.

Each segment (message} is represented by its lexicographical index within

the set of possible segments. Which segments are possible depend on the

previous outputs of the Markov source. By knowing the lexicographical indi­

ces, it is possible to reconstruct the output sequence. Throughout this

chapter we assume that the starting state of the Markov source is known to

both the encoder and the decoder.

Variable-to-fixed length schemes for discrete memoryless sources in­

stead of Markov sources were also investigated by Verhoef£ [6], Jelinek and

Schneider [4], Schalkwijk, Antonio and Petry [7], and Schalkwijk [8].

Verhoef£ [6] reinvented Tunstall's algorithm. If the number of segments in

the set grows to infinity, the code rate approaches the source entropy.

This was demonstrated both by Verhoef£ [6] and by Jelinek and Schneider

[4]. A disadvantage of Tunstall's algorithm is that it requires a codebook

that contains all segments with their lexicographical indices. This code­

book has to be stored in memory at the encoder and at the decoder.

Schalkwijk, et al. [7] devised a variable-to-fixed length source coding

algorithm, that uses a multidimensional array instead of the complete code­

book to determine the segment's index or vice versa. Schalkwijk [8] sub­

sequently reported on a technique which uses a linear array and not a mul­

tidimensional one.

The algorithm we describe and analyse in this chapter uses as many seg-

- 8-

ment sets as states of the Markov source. The lexicographical indices are

computed in a way closely related to Schalkwijk's [8] recursive technique,

however, now with a linear array for every state of the source. Upper and

lower bounds are derived for the code rate of our algorithm. Using these

bounds we show that code rates arbitrarily close to the source entropy are

obtainable.

Chapter 3 describes a practical implementation of the Elias' algorithm.

The resulting stream codes are known as arithmetic codes, introduced by

Rissanen [9] and Pasco [10]. In these codes the code stream is treated as a

number and encoding the next source symbol is done by adding a certain

amount to this number. The arithmetic code is a noiseless comprfssion tech­

nique applicable in all situations where the source statistics are known.

Its main advantage, apart from its efficiency, lies in the flexibility of

the algorithm.
i

For sources with memory, the (conditional) probabilities

change from symbol to symbol. Also, for not completely known sources we

might estimate the probabilities from the generated source outputs. The

encoder and decoder need these probabilities only when encoding respective-

ly decoding that symbol. while any dertni te scheme needs them all in ad-

vance.

The art thmetic codes described here are based on both Elias' and

Rissanen' s work. We describe several code designs and analyse the resulting

redundancy and complexity. It appears that the redundancy and the complexi­

ty can be upperbounded by functions of the design parameters only, i.e.

they are independent of the source statistics. Since the redundancy is low

at a moderate code complex! ty these codes are an attractive practical al-

ternative to the definite schemes, e.g. the Huffman codes.

Finally, in chapter 4, we discuss the relations between the two coding

schemes of the previous chapters. Here we show that the arithmetic codes

- 9-

can be seen as approximations to the VF scheme of chapter 2.

1.2. General notations.

In this section we describe some notational conventions used throughout

this thesis.

Script uppercase symbols denote sets.

For a finite set ~we use the following notations:

1~ I is the cardinaH ty of ~,

~. n = 0, 1. 2, .•. is the set of all strings of length n over~. i.e.

z1z2 ... zn € ~if zt € ~. fori= 1. 2, ... , n, (~0 contains the

empty string),

~* denotes the set of all finite length strings over ~. or ~* = ~O U

~ uru
~ contains all infinite length strings z 1z2 ... over~-

We list some of the sets that are used here:

~ is the source alphabet {0, 1, ... , c-1}, where cis the size of the

alphabet,

~is the code alphabet {0, 1, ... , d-1},

* .. ~ is the message set; usually ~ c ~ or ~ C ~ ,

~ is the codeword set; ~ C ~ or ~ C ~"".

Strings are denoted by underscored italic symbols, e.g. y. We write:

.. ..
y € ~:

yn is the string u1u2 ... un with ui € ~. 1 ~ i ~ n.

j-1
Yi = uiui+1 ... uj_1 over~.

is the empty string.

is an infinite length string u1u2 ... over~-

y is a string of undefined but finite length over~.

- 10-

is a sequence of m strings (y)1 (y}2 ••• (y}m over~.

Uppercase italics are used to name random variables, so

u1: is the tth random variable of the source.

an: describes the first n outputs of the source.

Probabilities are denoted by the uppercase italics P and Q. P is a

{conditional) probability and Q is a (conditional) cumulative probability,

e.g. P(yls) is the probability of the stringy conditioned on the state s;

I i-1 Q(ut y) is the cumulative symbol probability given the previous t-1 sym-

bols, i.e. the probability that the next source letter is lexicographically

i.-1 less than u1 given that the previous output sequence is y . 1P and Q de-

note approximated probabilities.

All specific notations are introduced in the text where needed.

- 11 -

2. A VARIABLE-TO-FIXED LENGTH CDDE.

2.1. Introduction.

This chapter describes a variable-to-fixed length code for Markov sour-

ces. The technique used is known as enumerative coding. The first known

enumerative source codes are the Lynch-Davisson code [11]. [12] and

Schalkwijk's Pascal triangle algorithm [13]. Later Cover [14] described

some generalized applications of this technique.

In the next section we will define the class of (finite state} Markov

sources for which the coding scheme applies. Then we introduce the algo-

rithm and analyse its performance. Finally. we show the equivalence between

these codes and Tunstall's algorithm for the class of DMS. Thus we also

have a simple and optimal VF code for the discrete memoryless sources.

2.2. The Markov source.

A Markov source can be characterized by a source letter alphabet 11, a

finite state set ~. a letter probability matrix P(. I.) and a next state

sumes a new state. The source sequence is denoted by u1 . ~····and the

state sequence by s 1• s2 •.... The conditional probability that an output

u occurs given that the source is in state s is independent of all previous

outputs and all previous states as follows:

Pr(U =uls =s.U 1.s 1 •...) ~ P(ujs). n n n- n-

where n = 1. 2, ... , u € 11 and s € ~. In this thesis we always assume that

- 12 -

the state of the source is uniquely determined by the previous state and

the previous output letter, i.e.:

A s = T(u 1.s 1), for P(u 11s 1) > 0, n n- n- n- n- (2-1)

where n = 2, 3, This property makes it possible to the

state sequence from the sequence of source outputs and the first state s 1.

Note that a more general type of (finite state) "Markov source" could

be defined, in which the state need not be uniquely determined tiy the pre-

vious state and previous source letter. We will not study such sources

here.

A set of states is irreducible if, from every state in the set every

other state in the set can be reached in one or more transitions but no

state outside this set can be reached. The period of an irreducible set of

states is the largest integer p such that all possible recurrence times for

states in the set are multiples of p. If p ~ 2· the set is called periodic;

if p = 1 the set is aperiodic or ergodic. A states is transient if from it

another state can be reached in one or more transitions. but from there it

is impossible ever to return to s. The sources we investigate in this

thesis are those whose state set ~ contains only one irreducible subset of

states, but we will not require that this subset be ergodic. These sources

are started infinitely far in the past, so any transient state 'will never

occur anymore and we may consider the irreducible subset of states as the

complete state set ~-

Now define the state transition probability matrix W for t, s € ~ such

that

W(t(s} ~ ~ P(uls).
u:T(u,s)=t

- 13 -

Let q{s). s € ~be the probability vector that is the solution of

q(t) =I q(s)W(tls),
~

1 =I q{s),
~

t € ~. (2-2a)

{2-2b)

where the uniqueness of q{s) follows from the fact that the state set has a

unique irreducible subset. The vector q(s) is referred to as the stationary

probability vector. We finally assume that the source starts in state s

with probability

This has the effect that the source, after it has started, behaves as if it

was started infinitely far in the past (with each phase equiprobable if the

state set is periodic). Such a source is stationary and ergodic and the

notion of entropy for such a source makes sense. In fact for a Markov

source with an irreducible state set the entropy

H~(P.T) =I q(s)H(P(Uis))
s~

where H(Q{Uis)) ~ I - P(uls)Iog2P(uls)
ua

bit/source letter,

A and 01~0 = 0. Before we give an example of a Markov source, we remark

that in our short treatment of these sources we closely follow Gallager's

approach [1].

Example (see Figure 2-1): Given .• = {0, 1, 2} and~= {a. b, c} we have

- 14 -

P(Oia) = 0.7, P(1la) = 0.2. P(2la> = o.1.

P(Oib) = 0.3, P(1lb) = 0.3, P(2lb) = 0.4,

P(Oic) = 1.0, P(1lc) = 0, P(2lc) = 0,

T(O,a) = 2, T(l.a)=l. T(2,a)=3,

T(O,b) = 3, T(l.b)=3, T(2,b)=1.

T(O,c) = 1, T(1,c)=-. T(2,c)=-.

011.0

210.1

Figure 2-1. A three state Markov source

It is easily seen that the state set of our example source is aperiodic.

The state transition probability matrix and the stationary probability vec­

tor turn out to be

W(alal = 0.2,

W(alb) = 0.4,

W{alc) = 1.0,

W{bla) = 0.7,

W(blb) = 0,

W(blc) = 0,

W(cla) = 0.1.

W(clb) = 0.6,

W(clc) = 0,

- 15 -

q(a} = 0.45045, q(b) = 0.31532, q(c) = 0.23423,

whereas the entropy of the source

H~(P,T) = 1.01642 bit/source letter.

2.3. The algorithm.

In a variable-to-fixed CVFl length source coding situation. Figure 2-2.

the encoder chops the source output sequence into pieces {segments) of

about the same probability. To inform the decoder, the encoder sends it the

lexicographical index of the segments. The decoder is then able to

Figure 2-2. Variable-to-fixed length source coding situation.

reconstruct the segments. Two approaches exist to determine indices from

segments and vice-versa. In the first approach the encoder uses a table

that gives the lexicographical index with the segments as argument, and the

decoder uses a table that tells him what the segment is with the index as

argument. The encoder in the second approach computes the index from the

segment and the decoder computes the segment using the index. Note that in

the second approach no tables are used to chop up the outpUt sequence. The

encoder determines the end of a segment by some numerical method. The

second approach is followed here.

The obJective that all segments should have approximately the same pro­

bability can be replaced by the objective that the logarithm of the proba-

- 16 -

bility of all segments should be about the same. This logarithm can be com-

puted by adding up the logarithms of the conditional probabilities of the

letters in the segment. Since logarithms of probabilities are generally

infinite precision real numbers, and so require high precision arithmetic

in the additions, we replace them by integers. Hence checking whether or

not the end of a segment is reached is a matter of adding up (small, as we

will see later) integers. To introduce these integers, we will first extend

the next state function and the letter probability matrix. Therefore, with

k A some abuse of notation, define fork= 1, 2 •... , y = u1 , u2 , ... ·~and

then, recursively,

k I A I k-1 k-1, P(y s) = P(~ T(y ,s))P(y s),

0,

P(yk-lls) > 0;

P(yk-lls) = 0;

k A k-1 kl T(y ,s) = T(~,T(y ,s)). P(y s) > 0

o
1

A 0 P(y s) = 1, T(y ,s) = s.

We now assign a stepvalue function V(ujs) for all u € ~.

(2-3)

s € <J' with

P(uls) > 0, in the manner that this function takes values in the non-nega-

tive integers and the sum of this function over every closed circuit of

states is positive. That a relation must exist between V(ujs) and P(ujs) is

obvious. However, we will not explicitly describe this relation now.

When we are not initially interested in the length of u1• u2 •...• ~·

then

k 1) we write y in stead of y .

A the length of y is L(y) = k.

Furthermore, if y

Now assume that n is some fixed positive integer. Then fdr each state

s € <J' we define the segment set

- 17-

I k.-1
and I V(~ T(y ,s)) ~ n

k=l,L(y)

l k.-1 and I V(~ T(y ,s)} < n}.
k=l,L(y}-1

(2-4)

Note that such a segment set .1
8

is proper (no segment is the prefix of an

other segment in the set} and complete (every possible infinite sequence

bas a prefix in the segment set).

Next we define an ordering of the source alphabet '1. This makes it pos-

sible to order the segments in a segment set, (y < ~ if ~ < ~ for the

smallest k. such that ~ ~ vk.).

The (lexicographical) index t of a segment y in .1
8

(n) is now given by

(2-5)

This means that the index of a segment is equal to the number of segments

in the set "smaller" than that segment.

Now we have defined for each state s E ~ the segment set and the lexi-

cographical index of a segment in the set. It will be clear that a

one-to-one relation exists between the segments and the indices. Note that

both the encoder and the decoder can keep track of the state in which a new

segment starts since (2-1) holds for our Markov source and the initial

state is known.

How does the encoder compute the index of a segment (and the end of a

segment)? To demonstrate the algorithm, we first introduce for s € ~and

for m ~ 1:

- 18 -

With the convention that I (m) = 1 if m ~ 0, these cardinalities can be s

found recursively as follows:

A
I (m) = ~ •-()(m-V(uls)).

s u:P(uls)>O ·-r u,s
(2-6)

We remark here that ls(m) for each m must be computed in the right order

since stepvalues equal to zero can exist. Such a "right order" can easily

be found because no circuits whose stepvalues sum to zero exist. In what

follows we will neglect this aspect of the algorithm.

Now assume that at time instant k the next segment starts. The source

is now in state ~· and both the encoder and the decoder are informed about

this state ~· The encoder now observes the next outputs of the source. In

wA
principle, this is a semi-infinite sequence~=~· ~+1 , The index

i and the end of the next segment are now determined as follows:

initialization: ik :: o.

"R. :: n.

J :: It,

J!!!m: tJ+l == t 1 + ~ "rc 1cn.- V(vls1)).
v<u

1
:P(vls

1
)>0 v,sj J

sj+l == T(u1,s1).

nj+l :: n1 - V(u11s1),

J :: j+l.

if n
1

~ 0 stop: otherwise return to step. (2-7)

If l is the first time instant for n2 ~ 0, then u2_1 is the last letter of

the segment and t
2

is the lexicographical index (i} of the segment. This

index is now sent to the decoder. Using his knowledge of the state ~· the

decoder determines the next segment as follows:

initialization: tk := t,

~ :=n,

J != k.

- 19 -

step: u
1

:= u iff X IT()(n. - V(vls1)} ~ t 1 u(u:P(uls
1

)>0 v.sj J

< X Ire)(nJ - V(vls1)}.
u~u:P(vJs1)>0 u,sj

tj+l == t 1 - X JT(v,s)(nj- V(ujs1)),
v<u

1
:P(vJs

1
)>0 J

sj+l == T(uj'sj}'

nj+l == nj- V(u1 Js1}.

j == j+l.

if n
1

~ 0 stop; otherwise return to step. (2-8)

Again, if e is the first time instant for which n, ~ o. then ue-1 is the

last letter of the segment.

It should be clear that the encoder, by carrying out (2-7), generates

the index defined in {2-5} and that the decoder finds the encoded segment

performing (2-8}. Note that since the encoder and the decoder now know the

starting state and the segment, they can both form the starting state of

the following segment. We now demonstrate our algorithm using the Markov

source of Figure 2-1.

Example: First. we choose the following stepvalue function V(uJs):

V(Oja} = 1.

V(Ojb) = 2,

V(Ojc) = 0,

V(lja} = 2,

V{ljb) = 2,

V{ljc) =-

V(2Ja) = 3,

V(2jb} = 1.

V(2jc) =-

where "-" implies that V(ujs) is not defined for these values of u and s.

Note that there are no circuits whose stepvalues sum to zero (see also

-20-

Figure 2-3). The segment sets A (2), s =a, b, c, are given in Figure 2-4. s

Figure 2-3. The Markov source with the steps.

As we see the number of segments in all sets is equal to 5 for n = 2. In

general, these numbers may differ from each other.

Now we define the ordering 0 < 1 < 2 over •· In Figure 2-4 the segments

for n = 2 are already plotted in this order. The cardinalities of the seg-

ment sets can be found from

Ma(•} = Ma(•-2) + ~(m-1} + Mc(m-3}

~(•} = •a<•-1} +2N0 (m-2}

M (a} = M (m} c a

- 21-

012 c

Figure 2-4a. Segment set .M (2). a

c

b Figure 2-4 Segment set ~(2).

We tabulate the first steps of this recursion as follows:

Ill. 1 2 3 4 5 6 7 8 9 10

lfa(m.) 3 5 9 19 33 65 123 229 441 827

lfb(m.) 3 5 11 19 37 71 131 253 475 899

lfc(m.) 3 5 9 19 33 65 123 229 441 827.

Consider next the segment sets for n = 10. Assume that the source is in

-22-

states= b, and let the output of the source be 211200100 .•.• What now is

the next segment and its index? It follows from Figure 2-5 that the next

segment is 2112001 and that

tb(2112001) = Hc{S) + Hc(S) + Hb(8) +

Hb(6) + ~(4) + Ha(3) + Hc(-1}

= 229 + 229 + 253 + 71 + 19 + 9 + 1

= 811.

2

Figure 2-5. Illustration o£ the encoding process •

. 2.4. The performance.

A VF length coding scheme for a Markov source (a segment set coding

scheme) consists of a number of (proper and complete) segment sets J1
8

, one

for each state of the source. The message set is Jls when the source is in

state s at the time a new segment starts. Let •max be defined as

-23-

If ~max max < l.M l I s € ~} s

then rio~ •max l is the smallest length of a binary block code that can be

used to encode .M for all s. Thus it is natural to define the rate of this
s

VF length coding scheme as:

bits/source letter {2-9}

where EL is the expected average segment length. Here we have omitted the

rounding up of 1~ Ifmax to an integer, which represents the mismatch of

the binary coding alphabet to the size of the message set, but this has

negligible effect when the message set is large.

To find EL we will introduce the concept "segment source". Note that

the starting state of a segment and the segment uniquely determine the

starting state of the next segment. Since the probability of a certain seg-

ment, given all previous segments and previous starting states, depends

only on the starting state of the segment, the source with segments as out-

put letters is again a Markov source, or form= 1, 2, ... s € ~ and

u€.M, - s

th M Here we denote the m segment by (y)m and the sequence of segments by (y)

etc .. The starting probabilities of the segment source are the same as the

starting probabilities of the "basic source". They equal the stationary

vector q(s), s € ~defined in {2-2}. The state set~ of the segment source

need not be irreducible (see Appendix I for an example} and hence the seg-

- 24 -

ment source need not have unique stationary probabilities. But, because the

starting state distribution is known, we can determine these prdbabilities

unambiguously. Assume that ~ ! {~r} is the finite set of all irreducible
I

subsets ~r of ';/. Then for the expectation of the average segment length we

can write

EL = lim E I {i ~ L((Y)m)}
~ (U) ls1 m=l,l

= ~ Pr(~)
~ €'& r

r

~ lim~ ~ Pr(S =sl~)F--1 {L(U)}
se&r I""P> n m=l.l m r !l s

= ~ Pr(~) ~ q (s)Fl-1 {L(U)}.
~€'& r s€'1 r !J.s

(2-10}

r r

Here Pr(~) is the probability that the source will eventually enter subset
r •

~r' and qr(s) is the stationary probability vector of the segment source

when started in subset ~ . This vector q (s) can be found, for each r, in a
r r

way similar to the method to find the stationary probability vector of the

basic source. Instead of ';/ we now use ~r· The expected segment length for

segments starting in s is given by

~~ 8{L(U)) ! ~ P(yls)L(y).
u€JI
- s

We will now give an example to illustrate the foregoing formulas. Again we

use the source in Figure 2-1.

Example: Consider A
8

(2), s =a, b, c (see Figure 2-4}. The segment pro­

babilities are

-25-

P(OOla) = 0.21. P(Olb) = 0.3. P(OOOlc} = 0.21,

P{01Ia) = 0.21, P{llb) = 0.3. P(001!c) = 0.21,

P(02Ia) = 0.28. P{20ib) = 0.28. P{002lc} = 0.28,

P{lla) = 0.2, P(21jb) = 0.08, P(Ollc) = 0.2.

P(2la) = 0.1. P(22jb) = 0.04. P{02Ic) = 0.1.

The state transition probabilities can be found in Figure 2-6 in which the

segment source is depicted.

It will be clear that the segment source consists of only one irreduci­

ble subset ~~ = {a, c}. State b is a transient state. The probability that

the source will enter~~ equals 1. The stationary probability vector over

Figure 2-6. The segment source.

this irreducible subset is

-26-

Furthermore,

~ls{L{U)} = 1.7 letter/segment for s =a,

= 1.4 letter/segment for s = b, and

= 2.7 letter/segment for s =c.

Therefore, EL = 0.48 x 1.7 + 0.52 x 2.7 = 2.22 letter/segment. Now since

Mmax = 5, the rate of this segment coding scheme is

1~5
R = 2 .22 = 1.04591 bits/source letter.

Note that this rate is rather close to the source entropy (1.01642

bits/source letter). In the next section we will study the performance of

the scheme by deriving upper and lower bounds for its rate as functions of

the code parameters and the source statistics.

2.5. Bounds on the rate of the cod,e.

First we define the number of visits to state t for a given segment y

starting in state s as follows:

with 9(true) ~ 1 and 9(false) ~ 0. Subsequently, in analogy with (2-10) we

define

-Zl-

(2-11)

where the expected number of visits to state t for segments starting in s

is given by

(2-12)

We will now state a crucial lellllla which is proved in Appendix II.

Lellllll4 2-1: For any segment set coding scheme for a Markov source

ELt = q(t)EL, for all t E ~.

Note that the segment sets need not be defined as in (2-4) for the lemma to

hold, but can be defined in an arbitrary way subject to the proper and com-

pleteness conditions. Next we define the pseudoprobability vector (with

o:>O)

P(ujs) ~ 2-o:V(uJs), for all u, s with P(uls) > 0. (2-13)

~

The parameter a is to be determined later. We call P a pseudoprobability

vector since IuP(ujs) need not be one; negative pseudoprobabilities, how­
~ k

ever, do not occur. Fork= 1, 2, we define P(y Is} analogous to

P(ykls) defined in (2-3).

Now for each s E ~ regard the segment set .M as the leaves of a rooted
s

tree. Then .Mt:n.t is defined as the set of all internal nodes of this tree,
-- s

including the root node. So:

-28-

We now have

~ P(yjs)l~ ~ =
yEAs P(yls)

= ~ P(yls)[lo~ _1_ + 1~ ~(ulsl]
yEAs P(yls} P(yls)

(a) ~
= ~ tnt P(y!s)[H(P(UjT(y,s))) + D(P(U!T(y,s))IIP(UjT(y,s)))]

yEAs

= ~ ~ 1 t P(y!s}[H(P(Uit}} + D(P(U!t)IIP{U!t))]
tel uEA n

- s
T(y,s)=t

(b)
= ~ ~ P(yls)Lt(y,s)[H(P(Uit)) + D(P(U!t}IIP{U!t))]

tel yEAs
(c} "'
= t~ Euls{Lt(Q,s}}[H{P(Uit)) + D(P(Uit}IIP(U!t))].

where for t € 'J'

D(P(Uit)IIP(Uit)} ~ ~ P(ult)l~ ~Cult} .
u~ P(ult)

"'

(2-14)

We call the quantity D a conditional pseudodivergence since P is a pseudo-

probability vector. However. Pis a probability vector (~ P(ujs) = 1). In u

(a) and (b) we use Massey's [15] "leaf-node theorem" and in (c) we use

(2-12).

For a segment y € ~s(n) as defined in (2-4)

-29-

and therefore, with V ~ max{V(ulsJiu€1, s~. P(uls)>O} we find that max

an ~ l~ ~ a(n + Vmax- 1).
P(yJs)

If we combine (2-14) with (2-15} we obtain

an~ t~ FyJ
8
{Lt(Jl,s)}[H(P(Ult)) + D(P(Ult)IIP(Ult))]

~ a(n + vmax- 1).

If we now set the pseudodivergence

~ A -
Dco(P,P,T) = ! q(s}D(P(Uls)IIP(Uis))

s~

it follows that

~

EL•(Hm(P.T) + Dm(P,P,T))

= EL· ! q(t)[H(P(Ujt)) + D(P(Uit)IIP(Uit))]
t~

(d) ~
= ! ELt[H(P(UJt)) + D(P(Uit}IIP(Uit))]
t~

(e)
= ! ! Pr(~)• ! q (s)
t~ ~ €'§ r s€'11 r

r r

• Fyi
8

{Lt(!l.s)}[H(P(Uit)) + D(P{Uit)IIP(Uit))]

= ! Pr(~) • ! q (s)
~ €'§ r s€'11 r

r r

(2-15)

(2-16}

• t~ FyJ
8
{Lt(!l,s)}[H(P(Uit)) + D(P(Uit)IIP{Uit))] (2-17)

-30-

Here (d) follows from Lemma 2-1 and (e) from (2-11). Lemma 2-2 is now ob­

tained if we combine (2-16) with (2-17).

"' Lemma. 2-2: For a segment set scheme as defined in (2-4} w1 th P as in

(2-13):

"' an ~ EL•(H~(P.T) + D~(P,P,T)) ~ a(n + Vmax - 1),

Now we want to relate log~max(n) to an. Therefore, we introduce! for A~ 1

the matrix A(A) ~ [A
5

t(A)] such tbat

A (A) 4 ~ A-V(uls}.
st u:P(u(s)>O

A z 1, s € ~. t € ~. (2-18)

T(u,s)=t

and define 1 to be the identity matrix, which leads to the following lemma.

Lemma. 2-3: (Gantmacher [16]}: Let

Amax ! max{Ajdet[A(A)-I]=O}

and ~ be the characteristic vector of A(Amax) for characteristic number 1

such tbat ~·s largest component is 1. Then all components of g are posi-

tive. This lemma. is proved in Appendix III. Index the components of g with

s € ~. i.e., g 4 (e
8
:s € ~).Then define

e f. 4 min{e lsel} m n s

So elltf.n > 0. The next lemma is proved in Appendix IV.

Le~~~~~~a 2-4: For a segment set code as defined in (2-4) for s € ~ and

n l 1 - vmax (n is an integer),

- 31 -

where Amax is defined in Lemma 2-3.

We will now work towards the main theorem o£ this section. First set

A
~ = (-log2emin}/log2Amax. Then for n = 1, 2, 3, ... it follows from Lemma

2-4 that

(n- ~)l~max ~ l~max(n} ~

~ (n + vmax - 1 + ~}lo~max· (2-19)

We now can choose the constant a in the definition of the pseudoprobabi-

lity:

Then

and

log-• (n) (n + V - 1 + ~}log.A --.z--max ~ max z iRax
FL FL

n + V - 1 + ~ max an = --=n.:.._ ___ • El..

n + vmax - 1 + ~ -
~ n • (H~(P.T) + Dm(P,P,T)),

log.Jf (n} (n - ~)log_). z·max > -.,.z iRax
El.. - El..

- n-y
-n+V -1

max

a(n + V) max
El..

n-y "' l n + y _ 1 • {Hm(P,T) + Dw(P,P,T)).
max

(2-20}

(2-21a)

(2-21b}

-32-

From (2-21) and definition (2-9) we obtain Theorem 2-1.

Theorem 2-1: For a segment set code as defined in (2-4) for n;~ 1 (n is
I

an integer) the rate R(n) is bounded as follows:

In the definition of the pseudoprobabilities a is set equal to log2Xmax

where Xmax is formed as in Lemma 2-3. Then 11 can be computed. Note that the

stepvalue function V (together with the next-state function T) determines
~

Xmax' a, P, ~and 11· All these parameters do not depend on n or P.

EXample: For the source in Figure 2-1 with the stepvalue function as in

Figure 2-3, we can determine A(X) and Xmax as follows:

[
x-2 J\-1 ,-3]

A(X) = x-1 0 -2
X max = 1.89329. 2A •

1 0 0

Now we determine ~ and 11:

ea = 0.92070, ~ = 1.00000, e
0

= 0.92070, 11 = 0.12944.

With a~ log~max = 0.92090 we can find the pseudoprobabilities

P(Oia) = 0.52818, P(lla) = 0.27898. P(2la) = 0.14735,

P(Oib) = 0.27898. P(llbl = 0.27898. PC2Ib> = 0.52818.

P(Oic} = 1.00000. P(1lc) =-. P(2lc) = -.

-33-

For the pseudodivergence we find that

Dw(P,P,T) = 0.02892 bit/source letter.

Now we evaluate the bound in Theorem 2-1 for n = 10, 100, 1000 and 10000

and compare these values with the exact value of R:

n = 10

n = 100

n = 1000

n = 10000

0.85984 ~ R ~ 1.26794,

1.02352 ~ R ~ 1.06760,

1.04312 ~ R ~ 1.04757,

1.04512 S R ~ 1.04556,

R = 1.07397,

R = 1.04839,

R = 1.04565,

R = 1.04537.

From our example it is clear that for n ~ w the rate R approaches H.(P,T) +

D ... {P.P,T) = 1.04534. This asymptotical behaviour of our segment schemes is

the subject of the next section. We will also investigate the properties of

the scheme when we choose the steps more proportional to the logarithm of

the corr~sponding probabilities.

2.6. Asymptotic behaviour.

The first result is an immediate consequence of Theorem 2-1.

Corol.l.ary: For segment set coding schemes as defined in (2-4) we have

lim R(n) = H ... (P,T) + D ... (P,P,T),
fl'40

where the pseudoprobabilities are determined with a= log
2

Amax and Xmax is

defined in Lemma 2-3.

From the Corollary we see that D ... (P,P,T) plays an important role. What

-34-

are the values that this pseudodivergence can take on? A partial answer to

this question is given in Lemma 2-5. The proof of Lemma 2-5 can be found in

Appendix V.

Lemma 2-5: For segment set schemes as defined in (2-4). with pseudopro­

babilities that are determined with a= l~max and Amax defined as in

Lemma 2-3,

A code designer would like to choose the stepvalue function such that

the pseudodivergence is as small as possible. What is the lowest possible

value of this pseudodivergence for which a stepvalue function still exists?

Theorem 2-2 states that pseudodivergences arbitrarily close to zero are

achievable.

Theorem 2-2: Let -r > 0. Choose V-r{u]s) ~ f-·rlog2P(u]s)l for u € 'tl,

s € ~ such that P(u]s) > 0. For segment set schemes as defined in (2-4}

with pseudoprobabilities P-r that are determined with a-r set equal to

l~max.-r' and Amax,-r as in Lemma 2-3,

Here fxl stands for the smallest integer not less than x. Note that for

obvious reasons we added a subscript 1' to quanti ties depending on ., . For

the proof of Theorem 2-2 we refer to Appendix VI.

At the end of this section we conclude that with segment set schemes as

defined in (2-4) we can achieve rates arbitrarily close to the source en-

tropy H
01

(P,T}. The encoding and decoding algorithms for these schemes are

easy to implement. However, it could be possible that with segment set

- 35-

schemes that are not defined as in (2-4) even lower rates than H..,(P,T) are

achievable. In the next section we show that this is not the case. With the

following example we demonstrate the results in the present section.

Example: For the source in Figure 2-1 and for a few values of ~.

V (uls) and D_(P,P ,T) are listed:
~ - ~

-l~P(uls) v~=1(uls) v~=4(uls) v~=16(uls)

U--ols=a 0.51457 1 3 9

U=lls=a 2.32193 3 10 37

U=2ls=a 3.32193 4 14 53

U--ols=b 1.73697 2 1 28

U=1ls=b 1.73697 2 1 28

U=2ls=b 1.32193 2 6 21

U=Ois=e 0 0 0 0

D..,(P,P~,T) bitllett. 0.00855 0.00216 0.00017

2.7. The converse.

In this section we prove the following.

Theorem 2-3: For an arbitrary segment set coding scheme for a Markov

source with entropy H..,(P,T).

A l~lfmax
R = EL ~ H..,(P,T).

Proof: Along the lines of (2-14) we obtain for the segment set ~s' by set-

- A ting P(uls) = P(uls) instead of (2-13), that

-36-

logz!max ~ ! P(yls}log2 P{~ls) u€.11: -- s

Now as in (2-17),

EL.Hw(P,T) = EL. ! q(t)H(P(Ujt})
tel

= ! ELt•H(P(Uit))
tel

= ! Pr(~) ! q (s)
~ €'9 r s€'9 r

r r

t~ £U1 5 {Lt{U.s)}•H(P(Uit))

~ l~Jfmax

where the last step follows from (2-22).

(2-22)

If we combine Theorems 2-2 and 2-3 we find that for Markov sources seg-

ment set schemes as defined in (2-4) can be found with rates arbitrarily

close to the source entropy and that no (arbitrarily defined} segment set

schemes exist with a rate less than the source entropy. Therefore. we con-

elude that the segment set schemes described and analysed here are not only

easy to implement but also asymptotically optimal with respect to their

compression capabilities.

Note that Theorem 2-3 sometimes gives a better lower bound for R than

the lower bound in Theorem 2-1. Also note that Lemma 2-5 follows indirectly

from the converse in this section.

- 37 -

2.8. Complexity aspects.

The II (m} array, s € ~. 1 ~ m ~ n, must be present in memory both at
s

the encoder and at the decoder. From LeDIIIIi 2-4 we observe that

loglls(n} ~ - logemtn + (Vmax -1 + n)logAmax

~ (Vmax + n}loY-max (2-23)

So we need about nlog]\max bits to store an array value. So for this array

we need approximately

....stor I I 2 L ~ ~ .n l~Xmax bit locations .

....stor We call L the storage complexity. The computational complexity is equal

to the maximum number of operations that have to be performed per source

symbol , hence

operations/symbol. (2-24}

This result holds for the encoder and only shows the maximum number of ad-

ditions and table indexings needed to add the next increment to the index,

see (2-7}. The state update etc. is performed once per symbol and is

neglected here. The computational complexity of the decoder is also propor-

tional to 1~1 - 1 but the basic operation here is more complex. (We also

need comparisons). See (2-8).

The storage complexity can be decreased to

bit locations (2-25)

-38-

i£ we compute the X~(a} as follows:

X~(a} ! f I Itf()(a - V(uls))l ,
u:P(ujs}>O u.s r

1. Ja s 0. (2-26}

where fA·~lr with Ban integer, 1/2 ~ A < 1. equals fA•2rH~B-r. Thus the

X~(a)'s are the r bit precision analogues o£ the integers Xs(•) defined in

(2-6). When represented as floating point numbers the mantissa of X' re-s

quires only r bits, and the characteristic (or exponent) requires about

l~(nl~lllaX) bits. This follows from (2-23). In (2-26} the rounding up

is necessary to guarantee decodability of the scheme. What hap~ns is that '

we overestimate the cardinalities of some of the subsets ~ (a). This also s

increases XlllaX. but not by much, so (2-23} will still hold appJi'OXimately.
I

It is also possible to decrease the computational complexity to

operation/symbol,

if we store, for every state s E ~. every m such that 1 ~ m ~ n and every

possible source symbol u E •

(2-27)

Now the additions for every symbol of the source are carried out in advan-

ce, but since the results f
8
(a,u) have to be stored, the storage complexity

is increased by a £actor 1•1· Thus a trade-off exists here between computa­

tional complexity and storage complexity.

Decreasing the storage complexity to {2-25) increases the rate of the

scheme, since we need a larger codeword set to accomodate the estimated

- 39-

segment set cardinalities R'(n). However, if r is not too small. this ef­
s

feet can be neglected. Decreasing the computational complexity to 1 opera-

tionlsymbol bas no influence on the rate. It is, of course, possible to

combine the methods in (2-26) and (2-27).

2.9. Discrete memoryless sources.

Consider a discrete memoryless source with source letter alphabet • and

probability vector P(u), u € •· The entropy of the source is

H(P(U)} = ~ - P(u)log~(u)
u~

bit/source letter.

Choose for all u € • stepvalues V(u} € {1, 2. 3, ... }.and assume that

P(u) > 0 for all u € •· Then let n be some positive integer. Now define the

segment set scheme for n as follows:

A(n) ~ {YI ~ V(~) 2 n and
R=l.L(y}

~ V(~) < n}.
R=l,L(y)-1

(2-28)

Note that encoding and decoding is as in section 2.3 if we assume that only

one state exists. Therefore, only one array R(m) exists which can be filled

recursively. Now let a be the solution of

~ 2-aV(u) = 1.
u~

If we now set

-40-

P(u) ~ 2-aV(u) (2-29}

then we obtain for the rate

"" n + y n _ 1 • (H(P(U)) + D(P(U}IIP{U})} ~ R{n) ~
llaX

n+V -1 ,.,
---=~=.:...- • (H(P(U)) + D(P(U}IIP(U))),

where

"" A Ptu' D(P(U}IIP(U)) = l P(u)lo"2 ~ .
· uE'I P(u)

"" Note that P(u), u € "'I is not a pseudoprobability vector but a vector whose
...

components sum to one, and, therefore, D{P(U}IIP(U)) is a ordinary divergen-

ce.

Just as for Markov sources it can be proved that rates arbitrarily

close to the.entropy of the source are achievable with properly chosen

stepvalues. Again no codes exist with rates lower than the source entropy.

The latter was already proved in [4].

The schemes described in this section equal the optimal {Tunstall}

codes, [3], [4], if

1) the stepvalues V(u) can be chosen such that P(u), as given in (2-29),

equals P(u) for all u € "'I, and

ii} the size of the Tunstall code equals l~(n)l.

"'
In addition, for probability sets P(•) "close" to the resulting P(•), ~(n}

is still optimal. This in turn implies that for each source in the class

:ntl!;, many optimal codes exist that are equivalent to schemes as defined in

(2-24) and, therefore, eaay to implement.

We will now set out to prove these statements. First we repeat

~ 41 -

Tunstall's theorem.

Theorem 2-4 (Tunstall [3]): Jf(l) is a proper and complete segment set

over the source alphabet "'I with I segments, I < oo. I£ Jf(l) is obtained by

the following algorithm, then the average segment length of Jtfl), with

respect to the source probability vector P(•), is maximal over all proper

and complete segment sets of size I.

Al.gortthm:

Jt<l•l> ~ •·
JT(I + 1•1 - 1) ~ {JT(I) - {y}) U {yulu € •}

where y € JT(I) with P(y) = max{P{~)I~(I}}.

We say that Jf(l) is extended at y.

We will give a alternative proof of this theorem, using what we call

the "test lemna".

LeiiiiiiQ 2-6 (test lemma): Let ..« be a proper and complete segment set over

•· (I.« I = I < oo}. Over all possible segment sets ..« has the largest average

segment length with respect to a probability vector P(•) iff the P~robabi­

lity of a segment in..« does not exceed the P-probability of any proper pre-

fix of any segment in ..«.

The proof of this lemma is given in Appendix VII. Now it remains to

show that JTCI} satisfies the test lemma.

Proof: Consider JT(1•!). The only proper prefix is the empty string y 0 .

Now P(y0) ~ 1, so the test lemma shows that the set is maximal. {Also,

Jt< 1"111) is the only possible set). Assume that JT{I0) is maximal. Set

I = 10 + I• I - 1. Let y € JT{10) be the segment that is extended. The set

of proper prefixes for JT{I} consists of the set of proper prefixes for

JT{I0) plus the segment y. Since P(y) is the largest probability over the

set JT(10) and P(yu) < P(y), u € •· it follows with the test lemma that

JT{.If} is also maximal. This proves the Tunstall algorithm, Theorem 2-4.

-42-

From the definition {2-28) it follows that the set A(n) also satisfies

the test lemma if P(u) = P(u} for all u € •· This holds because for every

-an proper prefix ~. P(~) > 2 and for every segment y in the set. P(y) ~

-an 2 . It is not hard to see that if P(u) is "close" to P(u} then the test

lemma still holds. proving the second claim above. Appendix VIII shows this

result in more detail.

2.10. COnclusions and remarks.

We conclude that the variable-to-fixed length coding schemes that were

described and analysed in this chapter perform well for Markov sources.

Their rate can be close to the source entropy, and the storage anq computa-

tiona! complexities are low.

A nice advantage of these schemes is that they are robust. lhen the

letter probabilities of the Markov source change slightly the difference

between the code rate and the source entropy does not increase too quickly

as follows from Theorem 2-1.

We remark that it is necessary, to guarantee a good performance, that

both the encoder and the decoder keep track of the state of the source.

This means that the first state of the source has to be known by both .

. AI though it is important that for growing array lengths and growing

stepvalues the entropy can be achieved, it turns out that sometimes, for

reasonably small stepvalues and array lengths, schemes can be found with a

rate very close to source entropy. For our "example source" with the steps

as in Figure 2-3, we find for n = 2 a scheme with rate R = 1.04591

bit/source letter, which is only 0.02950 bit away from the entropy of the

source. It is not known whether such good and simple schemes exist for all

Markov sources.

- .43 -

3. ARITIIMETIC OODES.

3.1. Introduction.

The arithmetic coding scheme is a stream code based on Elias' algorithm

[5]. It is a noiseless compression technique applicable in all situations

where the source statistics are known. Like the scheme described in chapter

2, this scheme computes the codeword from the message and back.

The practical application of the Elias algorithm is hampered by the

fast growing arithmetical precision requirements. Pasco [10] solved this

problem using a rounding technique. He showed that, if properly performed,

rounding is allowable and incurs a small redundancy penalty. At the same

time Rissanen [9] introduced a similar technique that used an exponential

table to avoid the precision problem. Other authors, eg. Jones [17], Rubin

[18]. and Guazzo [19], presented other arithmetic coding schemes.

In [20] Rissanen and Langdon generalized the arithmetic coding tech­

nique, and specifically treated the problem of optimizing the table values.

However, they did not deal with the problem of designing a scheme for a

given source. Also, because they optimized the table, the flexibility of

the algorithm was lost.

We approach the code design starting from a finite size and precision

table, thus retaining the flexibility. The upperbounds on the code redun­

dancy, or inefficiency, that result are functions of the two table parame­

ters, namely the size of the table and the precision of a table entry.

In the sections 3.2 and 3.3 we describe the Elias algorithm. In these sec­

tions, the important notion of source- and code intervals are introduced.

Also the decoding of these schemes is discussed. Section 3.4 describes some

previous arithmetic coding schemes like Pasco's and Rissanen's finite pre-

-44-

cision algorithms. It also introduces a new carry-blocking technique. We

need this to allow the transmission of parts of the codeword before the

whole codeword is completed. In section 3.5 our finite precision,and muli­

plication-free schemes are described. Two methods are given. nie P-method

has the better efficiency of the two and the Q-method is the fastest. In

section 3.6 we discuss the decodability criteria for these methods. In the

next two sections these criteria are used to give two code designs for each

method and to bound the resulting redundancies. Section 3.9 describes

"fast" designs. It is shown that the computational burden can be reduced

with an acceptable penalty in redundancy increase. The complexity of these

schemes is exposed in section 3.10 and the next section gives some numeri-

cal results. Section 3.12 describes the implementation of the encoder and

decoder. Here we discuss the trade-off between the extra size of the

adder-unit and the redundancy for low entropy sources. The last section

summarizes the results of this chapter.

3.2. The Elias algorithm.

The Elias algorithm represents source strings and codewords b.Y subin-

ter~ls of [0, 1}. The coding scheme is defined b.Y relating source inter­

vals to code intervals.

A source in the class SES is defined by a finite, ordered alphabet ~ =
. n

{0, 1, ••• , c-1} and the string probabilities P{y), for n = 0, 1, 2, ...•

For a detailed treatment of the class of discrete stationary and ergodic

sources we refer to [1]. The most important properties are

stationarity; the probability of a string is independent of the time

origin, and

ergodicity: this says that time averages of functions over all sample

- 45-

source output sequences equal the ensemble averages, except possibly

for a set of sequences with probability zero.

The (block-) entropy of a string of n symbols is defined as:

H(P(un)) ~ - ~ P(yn)log P(yn)
ynaf

The per letter source entropy is defined as the limit:

Hm(P) ~ lim ~H(P(un))
n-IDI>

The most important result is that the entropy of a source in the class SES

can be approached arbitrarily close. (Shannon -McMillan, see [1]).

We can extend the ordering on single letters of ~ to a lexicographical

ordering of strings over~- Now Q(yn) is the cumulative probability given

by:

Q(yn) = ~ P(Qn).
Qn<yn

Define the source interval I(yn) as:

(3-1)

See Figure 3-1 .

Now, since Q(yn) + P(yn) equals Q(Qn). where Qn is the "next" string in

the ordering, we observe that the set {I(yn)IYn € ~}. n = 0, 1, ... , com-

pletely subdivides the unit interval.

- 46-

------- 1

I{ll)

I()

I(l) +-------~
I(lO)

---+-------113
I(Ol)

Il(O) ~-------1/9

---I~)------- 0

with a binary memoryless source, P(O} = 1/3.

Elias' main contribution is the following recursive generation of the

successive source intervals I(yi), 1 ~ i ~ n. Denote by P(ulyi) the condi­

tional symbol probability and by Q(ulyi) the conditional cumulative proba-

bility, or

- 47-

Then

t+t t t I t Q(y) = Q(y) + P(y)•Q(ut+l y),

t+t t I t P(y) = P(y)•P(u1+1 y).

(3-2)

(3-3)

The repeated application of (3-2) and (3-3), starting with the empty string

y0
, Q(y0

) = 0, P(y0
) = 1, gives us the interval I(~) defined~ (3-1).

So we now have an invertible mapping from source strings into subinter-

vals of [0, 1). The subdivision is determined~ the source probabilities.

The usual description of this algorithm, c.f. [21] and [10], now continues

by constructing a codeword ~m from a point a E I(yn), where a can be repre-

sen ted ~ an • digits d-ary fraction. The codeword length 11t is shown to be

upperbounded ~ r-logd P(yn) 1. however, the codewords that result from this

algorithmic construction cannot be concatenated. The standard solution is

to append a length defining prefix, increasing the codeword length ~ about

logd n, [21], [10]. We will give a different algorithmic construction that

requires no more than one extra symbol above r-logd P{yn) 1 to guarantee a

prefix-free code.

Let !: = {0. 1. d-1} be the finite code alphabet. Any d-ary pre-

fix-free code can be seen as a d-ary subdivision o£ the unit interval as

follows:

For x• E ~define the rational number x{m) by:

Define the code interval](~m) ~:

- 48 -

Note m t m t . that ~ is a prefix of y if and only if J(~) J J(y). Thus we have

the following lemma.

Lemma: the code is prefix-free if and only if no two code intervals

have a point in COIIIROn.

Our construction of codewords for the Elias message set assigns to each

source string yn a variable length code string~ with

(3-4)

As can be seen in Figure 3-2.

The inclusion (3-4) defines a mapping from ~m to 1r. but not from yn to

the codeword ~m without an additional rule that we will give later. Figure

3-2 gives an example of such a code. Note that some of the code intervals

are not used. These unused intervals are called~· They result in an

inefficiency of the scheme. Remember that a scheme can be inefficient even

without gaps if the codeword lengths are not assigned correctly. The inef-

ficiency of this coding scheme will be upperbounded using the following

theorem.

Theorem 3-1: yn is a source string with probability P(yn}. There exists

a prefix-free code satisfying (3-4) such that the length m of the corres­

ponding code string ~m satisfies:

Here fxl. where xis a real number, denotes the smallest integer not less

than x.

Proof: consider the code defined as follows.

So

Set • = r-logc{(Y:n)l + 1

and a = d--· rd""·Q(yn) l

-49-

Let {"' be the codeword such that x(a) = a., or

(3-5)

(3-6)

Ill -t
a. = I x •d (3-7)

t=l t

So J(?J:.a) = [a., a. + d-a). We complete the proof by showing that

I(yn) ::J J(?J:.a).

From {3-6):

From {3-6):

From (3-5):

From (3-9), (3-10):

From (3-8), (3-11):

a ~ Q(yn}

a + d-a < Q(yn) + 2•d-a

d-a < d-1·P(yn)

-a n 2 n a. + d < Q(y) + ifP(y)

~ Q(yn) + P{yn)

I(yn) ::J J(?J:.'a)

(3-8}

{3-9)

(3-10)

{3-11)

Q.E.D.

and for stationary sources we get

1 1 • .n 2 -E {m} < -H{P{u) } + -n yn n - n

which approaches the source entropy as n -+GO.

{3-12}

Remark t: The formulas {3-5), {3-6), and (3-7} give us the additional

rule to make the codeword assignment unique. While this rule guarantees the

decodability, it isn't always the best possible choice. See Figure 3-2 for

a better selection of J(•), not in accordance with {3-5), but still decoda-

ble.

-50-

1 1

3/4

GAP

5/9

1/2 code book

y2 2!:

3/S

1/3 GAP 11 11
10 011

1/4 01 001
00 0000

I
1/S

1/9 GAP
1/16

0

Figure 3-2. Codeword assignment.

So the Elias algorithm first computes the source interval and then, by

Theorem 3-l, finds the corresponding code interval and codeword. With

(3-12) we conclude that although this algorithm is not optimal, i.e. a

Huffman code [2] would be better, its implementation as n becomes large is

less complex and the resulting code rate still approaches the source entro-

py.

In the above description we formulated the algorithm as a FV {block)

scheme. It can be made into a stream coding scheme if we set n equal to

infinity. In this case we know with (3-12) that the source entropy will be

achieved.

Now we have to deal with two new problems. The coding delay and the

-51-

arithmetical precision in (3-2} and (3-3} become infinite. In the next sec-

tions we shall treat these problems.

3.3. Partial encoding and decoding.

In this section we discuss the coding delay problem occurring when we

use the Elias algorithm as a stream coding scheme. First observe that the

successive source intervals are included in each other. The same holds for

the code intervals, or

(3-13}

So, k so 2r: is a

prefix of 2r:m and can be transmitted.

Decoding is done by simulating the encoder, that is, the decoder tries

to build its own source interval I(~) in accordance with the received code

string 2rim· For this purpose it uses the same formulas etc. as the encoder.

i We will give a recursive description of the decoding. Let 2r: be the recei-

ved
At i At t

part of the codeword. Let y be decoded correctly from 2!! , (y = 1:1:),

So.
At i k I(y) j 1(2!'!). Now let m ~ k ~ i such that 2!! is the shortest extension

i AlA k A A A

of 2!! with I(y u) j J(2!'!) for some symbol u € ~. Then ui+l = u = ut+l' the

corresponding source symbol. Also the decoder can decide whether or not a

received code string part is sufficient to decode the next symbol, because
k A AiA k

if 2r: is insufficient then no u € ~exists with I(y u) j](2!;).

This partial encoding and decoding is a useful property of the scheme.

However, the determination whether or not a code interval is included in a

-52-

source interval might require arbitrarily high precision arithmetic and

arbitrarily long delays. In the next section we will introduce a: modifica-

tion that allows the use of bounded precision arithmetic.

3.4. Finite precision algorithms.

Pasco [10] gave the following description of the precision problem:

Suppose that all conditional probabilities P(uluJ and Q(uly) are ap­

proximated by q digits precise numbers P(ulyJ resp. Q(uly). With {3-3) we

"" i observe that P(y) needs q•i digits, thus preventing the encoding of large

source strings.

Pasco's solution was to replace {3-2) and (3-3) by a rounded down ver-

sion:

resulting in a source interval:

I(!f) "" n - n ""'" n = [Q(y), Q(y) + P(y))

(3-14)

(3-15}

Here LxJk stands for the largest number y ~ x, where y is a k ~igits pre­

cise, floating point number. This effectively reduces the source interval

lengths by a small amount, thus increasing the code rate. Pasco proved

that:

(3-16}

-53-

where m is again the length of the codeword ~m. see (3-12}.

In this derivation the influence of the approximation of the probabili-

ty vectors P and Q has not been taken into account. Pasco shows that if the

effect on the codeword length due to this approximation is to be upperboun-

ded by a value o then it suffices to take q digits in the fractional part

of P(ubd and Q(uh:!:) such that:

(3-17)

Here Pmin is the smallest probability over all vectors P(uly}.

From (3-15) we note that we must add a q + R. digit floating point
~

augend to Q(y}. Figure 3-3 depicts this process for a binary code alphabet.

From this figure we see that, except from the occurring carry, only q + R.

Q{y)

-------+

augend
position

l
0. 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1•••

o. o o o o o o o o o o o oil o 1 1 o 1 ol

0. 1 1 1 0 1 1 0 0 11? 0 011 0 0 0 0 1 1

carry propagation

+

Figure 3-3. Encoding a symbol.

digits of Q(y) are affected. We define the augend position to be the posi-

tion just to the left of the first non-zero digit in the d-ary representa-

"' tion of P(y), c.£. Figure 3-3. Now we would like to be able to transmit
"'

those symbols of Q(y) that are to the left of this augend position as soon

as they are generated. However, since a carry may change an arbitrary num-

ber of these digits this cannot be done. To prevent this carry propagation

-54-

Langdon and Rissanen [22] described a carry-blocking technique.

In short: they retain the last r (r ~ 16) digits to the left of the

augend position. All symbols to the left of these r digits are not allowed

to be changed anymore and can be transmitted. As long as the r digits, just

before adding P(y)•Q(uly), are not all equal to d-1. a possible carry will

be stopped somewhere in these r positions. If all digits are d-l's, an

extra zero is inserted at the augend post tion. It is obvious that for each

addition at most one carry can occur. So. a resulting carry will I never pro-

pagate further than r symbols to the left of the augend position. The de-

coder removes this inserted symbol and processes any occuring carry thatwas

blocked in it. This technique fails. since, without extra precautions, r or

more d-l's can be transmitted without an extra inserted zero and. the deco-

der cannot distinguish between real code symbols and inserted ones.

We propose a somewhat different method, that is more in line with the

whole algorithm. Just like langdon and Rissanen, we save the last r symbols

directly to the left of the augend position in a special carry blocking
I

register C. Whenever, before encoding the next symbol, this register con-

tains only d-l's, we shift the augend to the right, (or, equivalently, the

adder register Q(y) and the C register to the left), until the C register

contains a symbol different from d-1.
I

So, whenever we encode a symbol any occuring carry will be stopped in

the C register. This method retains the relative positions of the different

source intervals, {it only shortens them when necessary). The decoder,

since it simulates the encoder, knows when these shifts occur ~ performs

them too.

Now, how often does this occur?

The symbol probability at the output of the encoder will be about 1/d

if the encoder is efficient. Thus, the probability of a shift event is

-55-

about d-r. So, these events happen about once per dr source symbols. A.s­

d
suming the same probabilities in the Q(y) register, we need circa d-l

shifts per event. Experiments indicate that this is a slightly conservative

estimate.

Another adapted version of the Elias algorithm is described by Rissanen

in (9]. The scheme given there also uses fixed precision arithmetic as in

Pasco's scheme. It differs from the previous coding schemes by the fact

that the coding scheme builds its codewords backwards. By this we mean that

if ~· is the codeword for yn then un is the first symbol that can be deco­

• ded from~ and so on until. finally, u
1

is decoded. This implies that the

partial encoding and decoding technique described in section 3.3 cannot be

used. It also means that the carry-over problem cannot occur because the
~

augend is added to the most significant part of Q(y) as we will see.

The scheme uses a rational-valued approximated exponential table e(x) a:

"' i T in the computation of P(y) . Rissanen uses a finite precision, approxi-

"'
mated cumulative symbol probability vector Q{ui+l) and instead of the sym-

bol probability vector P(ui+1) he uses a "length parameter" vector t(ui+l)

that is a rational-valued approximation to -l~(uf.+l) with q binary

digits in the fractional part.

The t(u) must satisfy the following condition for some ~ > 0:

(3-18)

Let p{u) be a rational number such that:

-t(u)~(u) 2e
p(u) = 2 : 3 ~ e.(u) ~ e., u € II.

Now the finite precision cumulative probabilities are:

-56-

"' Q(u) = I p(u); u € •
v<u

and the table e(x) is defined for all q bit fractions x such that:

e(x) = 2x+6(x).. 0 / ~ / e
.:> u .:> 2•

Assume that p(u), Q(u), and e(x) can be described with r digits in their

fractional parts, where r will be a function of e and q. The formulas

become:

~ i+l ~ t "'-1 t+1 "'
Q(y) = Q(y) + p (y)•Q(ui+l)

t+l t
L(y) = L(y) + l(ui+l)

J;-1 (y i+l) = 2 LL(yt+l) J.e(L(y i+l) _ lL(y t+l) J)

Q(yo) = o

Rissanen proves that

(3-19)

where f(n) = O(g(n)) means that there is a constant c such that lf(n) I !;

c•lg(n)l for all n sufficiently large.

In a later paper, Rissanen and Langdon [20], generalize these coding

schemes. They discuss the differences and similarities between the First In

- First Out type of scheme. like the Elias scheme and the Last In - First

Out coding scheme of [9]. Pasco, in his thesis, also treats this aspect.

"'-1 t+l "'
Rissanen and Langdon then propose to precompute P (y)•Q(ut+l) and

- 57 -

to store these in an augend table. The remainder of this article discusses

the selection of optimal values for these augends given a length parameter

vector. A severe disadvantage of this optimization is that it is a very

complex operation and the optimal values strongly depend on the length pa­

rameters. This implies that this technique can hardly be used for sources

with memory. In this case namely, we either precompute and store a table

for every possible length parameter vector or we have to perform a complex

optimization algorithm every time the vector changes.

3.5. Multiplication-free cgdes.

Rissanens arithmetic code [9] uses the eXpOnential table only to manage

the precision problem. As an extra it eliminates the multiplication present

in (3-3). In the remainder of this chapter we introduce and discuss arith­

metic coding schemes where the exponential table will be used to limit the

precision requirements as well as to eliminate all multiplications. The

justification for the latter is the fact that a multiplication operation is

inherently more complex than an addition.

Not only shall we state the encoding and decoding equations but we will

give algorithms that design the code for a given probability vector. We

will consider the efficiency of these designs as well as their complexity.

The following example introduces the exponential table.

Exalaple t: Let A[t] be the table approximating A-t. {A> 1), and a and

b be positive reals. Now choose two integers t and J such that:

a~ A[i] ~ A-i,

b ~ A[J] ~ A-J.

So, t and J are proportional to the logarithm of a resp. b.

The multiplication a•b is approximated by the table value A[t+J] ~ A-t-j.

-58-

The table A, as will be explained below, is generated using a fi~ite number

of elements and each element has a finite precision. So there ar~ two sour-

ces for imprecisions in the representation of a number.

Because the table is indexed by integers, not all the "logarithms" are

exactly representable, and, because of the finite precision, the "mul tipli­

cation" A[t] * A[t] ~ A[t+J] is inexact.

These imprecisions result in an inefficiency of the code; this will be

the topic of the next chapters.

Summarizing: the unbounded precision problem is solved because we add

table entries of a fixed and finite precision and the complexity of the

multiplication is reduced since it is replaced by table referencing and an

addition.

We will now define the table and then proceed to describe the algo-

rithm. Let A[i] be a finite precision d~ry table, 0 ~ i < N, for some

integer N. A is nonincreasing in i. N denotes the length of the ~ble. This

-i
table approximates, in some way, the exponential function A , where

A 1/N
X=d .

I

We extend this table to A[t] for all integers e by the following:

ifO~t<N

A J ~ = d- •A[t], e = jN + i, 0 ~ t < N

{3-20)

(3-21)

Note that, since A is a d-ary table, d-J is a simple shift over j places.

Now there exist two reals a and~ such that for all i, 0 ~ t < N:

- 59 -

(3-22)

Of course this also holds for A[i] as defined in (3-21).

Example 2: Define A[t] as d-k·rdk·A-11. where k is a positive integer.

It is easily seen that A-t~ A[i] < (1 + d1-k)·A-t, so a= 1, ~ = 1 + d1-k.

Every table entry is now described with a k digit precision.

A[i] will be used to facilitate the multiplications in the algorithm.

We now describe the encoding formulas for these schemes. There are two pos-

sibilities:

P-method: This construction uses approximations to the conditional sym­

bol probabilities. Define integer stepvalues s(uly1), preferably such that

A[s(uly1)] ~ P(uly1). The conditions on and methods for selecting the step­

values are discussed in a later section. We also need an integer S(y1) It

performs the role of P(y1) in the algorithm, or better, i i A[S(y)] ~ P(y).

The algorithm computes an approximation to Q(y1) named B(y1). The formulas

are, cf. (3-2), (3-3):

(3-23)

(3-24)

With initial values: B(y0
) = S(y0

) = 0.

Q=method: This construction uses approximated cumulative probabilities

as well. Apart from the stepvalues s(uly1) we also need integer stepsums

T(uly1) such that A[T(uly1)] ~ Q(uly1). The formulas become:

t+1 t t I t B(y) = B(y) + A[S(y) + T(u1+1 y)]

t+1 t I t S(y) = S(y) + s(u1+1 y)

B(y0
) = S(y0

) = 0.

(3-25)

(3-26)

(3-27)

- 60-

Now we define the source intervals for the two methods. With Theorem

3-1 we can find the code intervals and thus complete the code d~scription,
!

since we then have a mapping from the source strings the lcodewords, into

c.£. chapters 3.2 and 3.3.

i i . i-1 t-1 First, consider the two source strings y andy w1th y = ~ vi

i i u1 + 1. From (3-23) and (3-24) we get for the P-method: B(~) = B(y) +

A[S(y1
)]. It seems reasonable to stack the intervals, because then we leave

no gaps in between and, as will be discussed in the next section, we do not

want the intervals to overlap. Define:

t A i i i I(y) = [B(y), B(y) + A[S(y)]) (3-28}

both for the P- and the Q-method. See figure 3-4.

Remark 2: If, in the two methods, the stepvalues and stepsums are rea-

sonahle approximations i to their corresponding probabilities, then B(y) ~

Q(y1
) and A[S(y1

)] ~ P(y1
) and the source interval of {3-28) approximates

the interval as defined by (3-1).

Remark 3: Although we use the same symbols in (3-23), (3-24) and

(3-25)-(3-27) there is no numerical correspondence. Wherever it is clear

from the context, we shall use symbols like B. S, and s without discrimina-

tion.

Remark 4: The augend ~A[S(y) + s(vly)] in (3-23) is computed more accu­

rately than the corresponding term A[S(y) + T(uly)] in (3-25). So, we may

expect the P-method to be a better approximation to the Elias algorithm and

thus have a better performance than the Q-method. However, the augend in

(3-23) takes more work to compute if the source alphabet is large. These

statements will be quantified in the coming sections.

Remark 5: Instead of (3-5) - (3-7) to find the codeword we could use

- 61 -

t t the interval boundary B(y) as the codeword for y . In the above Example 2

this would introduce less thank extra digits per codeword, which is negli-

gible when the source string length becomes large.

GAP

+- B(y2)

+
A(S(y2)]

I(y)

I(yl)

t
!(yO)

I(yl}

f~
!(yO) ___ _l ____ t.L

Q-.ethod

Figure 3-4. The source intervals.

3.6. Local and global tests.

In this section we discuss the condition for decodability. A code in-

terval uniquely specifies a source string of length n, if it is included in

exactly one source inte~l I(y1). If the source intervals I(y1) and I(~t)

- 62 -

do not overlap then the code is certainly decodable. In the case of the

Elias algorithm, this condition is satisfied because of the definition

(3-1). For the P- and Q-method arithmetic codes this restricts the choice

of the code parameters s(uly) and T(uly).

Two types of overlap prevention are needed:

i) Let yt-1 = yt-l v
1

= u
1

+ 1. So y1 is the string "next to" y1. The

intervals I(y1) and I(y1) are adjacent and they do not overlap if {with

(3-28)):

See Figure 3-5.

OVERLAP-+

--T---r- """'----- -7J'
I(y) J(~)

l I(y) / ____ tL -- ___ t/
Figure 3-5. Decoding error due to overlapping

intervals.](~) fits both in I(y)

and in I (:2) .

{3-29)

i-1 A ii) Let y be any source string. Set u1 = ~. Here ~ = c - 1 is the lar-

gest source symbpl. If the interval I(y1) is not totally included in

-63-

I(yf.-l) then an overlap with an other interval I(ll) can occur. See

t t-1 t t
Figure 3-6. If I(y) exceeds I(y) then continuations of y and y •

where yf. is the string "next to" y 1 • might be assigned the same code

interval. With (3-28} we get the condition:

LIMIT
EXCEEDED-+

Figure 3-6. Decoding error due to exceeding

an interval bound. I(yt) exceeds I(yt-lj

and conflicts with I(yt).

(3-30)

The conditions (3-29) and (3-30), if satisfied for all t ~ n, are a suffi-

cient condition for decodability. Because we want to use the arithmetic

schemes as stream coding schemes, i.e. n == 01 , we require (3-29) and (3-30)

to hold for all t.

We study the restrictions that the conditions (3-29) and (3-30) impose

on the parameters of the P- and Q-methods. The Lemmas 3-1 and 3-2 are the

-64-

translations of (3-29) and (3-30) to the P-method and the Q-method. The

conditions in these two lemmas depend on the "local position" S(yi.). and

the actual table values A[•].

In some cases it is required that the code parameters s(•I•) and T(•I•)

are selected such that a decodable code results independent of the local

position. This is the case if we want to select the code parameters a-prio-

ri and use them for the encoding of all the source symbols. This is studied

next and the results are stated in the Lemmas 3-3 and 3-4.

Lemma 3-1: If for all i. <nand yi. € ~i. holds:

t . i.
A[S(y)] ~ I A[S(y~) + s(ujy)] (3-31}

u€'1

then the P-method code is decodable.

1

--- - "'! oe GAP

A[t] t "' ·I~: "-..

1/2 "-..
I(y)

"-..' "' I(!!O)

"' ~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ~

t t t
S(y) S(y}+s(Oiy) S(y)+s(1jy)

Figure 3-7. P-method interval generation.

- 65-

t Remark 6: Formula {3-31) is called the local P-test at position S{y).

See Figure 3-7.

Proof: (3-29) is satisfied due to the definition (3-28) of the source

t t intervals. For B(y) and S(y) with ut =~we may write, (see (3-23) and

(3-24)):

Substituting this in (3-30) and subtracting B(yt-l) from both sides gives

us (3-31). Q.E.D.

LeMma 3-2: If for all t < n. yt € tt, u € t holds

A[S(yt) + T(u+llyt)] ~
t t . .

A[S(y) + T(uly)] + A[S(y~) + s{uly~)] {3-32)

and also

(3-33}

then the Q-method code is decodable.

Remark 7: The formulas (3-32) and (3-33) are called the local Q-test at

position S(yt). See Figure 3-8.

Proof: First we show that (3-29) holds if (3-32) holds. Let yt and yt

be defined as in (3-29). Then from (3-25) and (3-26):

-66-

B(yt) = B(yt-1) + A[S(yt-1) + T(utiYt-1)]

B(~t) = B(yt-1) + A[S(yt-1) + T(ui+llyt-1)]

t t-t I t-1 S(y) = S(y) + s(u1 y)

t-1 Substituting this in (3-29) and subtracting B(y) results in (3-32), so

both are equivalent.

t-1 Now we show that (3-30) holds. Let y be any source string and u
1

w. Then, from {3-25) and (3-26):

B(yt) = B(yt-1) + A[S(yt-1) + T{wlyt-1)]

S(yt) = S(yt-1} + s(wlyt-1}

After substituting this in (3-30) and subtracting B(y1- 1) we obtain the

Q-method equivalent of condition (3-30):

A[S(yi-1)] ~

A[S(yt-1) + T(wlyi-1)] + A[S(yt-1) + s(wlyi-1)] {3-34)

Now, since A[i] is non increasing in t, we obtain (3-34) from (3-32) and

(3-33). So (3-30) is true if (3-33) holds and (3-32) holds for u = w.

Q.E.D.

As said before. these local conditions depend on the current position

in the table and the table values. In what follows we remove this dependen-

cy and obtain more restrictive global conditions.

Lemma 3-3: (Global P-test). If for all i < n, y
1 E • 1• the stepvalues

are selected such that

(3-35)

- 67 -

holds, then the P-method code is decodable. For a and fJ see (3-22).

1

A(t] t

1/2 I(y)

'· I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 t ~
t t t t

S{y) S(y)+T(lly) S(y)+s(O!y} S(y)+s(lly)

Figure 3-8. Q-method interval generation.

Lelllllla 3-4: (Global Q-test). If for all i < n, yi € 1lt the stepvalues

are selected such that

(3-36)

holds, then stepsums T(uly1). for all u € 1l, can be found and the Q-method

code is decodable.

The proofs of the Lellllllil.s 3-3 and 3-4 are contained in the Appendix IX.

Note the similarity between the two global tests and the Kraft inequality

(1], [9], and especially between (3-35) and (3-18}.

The four lellllllil.s discussed in this section state conditions on the code

-68-

parameters such that decodable codes result. The coruiitions are not neces-

sary and counterexamples are easily constructed (we give an example at the

end of this section). However, with these conditions codes can be designed

that perform well for 1110st sources. The design of codes is the topic of the

next section.

Exampte: let the table A contain N = 8 binary entries, each,described

with k = 5 digits, so:

A[O] = 1.0000, A[1] = 0.11110, A[2] = 0.11011. A[3] = 0.11001,

A[4] = 0.10111, A(5] = 0.10101, A[6] = 0.10100, A[7] = 0.10010.

So, a = 1. fj = 1.0625, and 1\ = 1.0905.

Let the source alphabet be 'V = { 0, 1. 2} and assume that the source is

memoryless, so all stepvalues s are functions only of the current sour-

ce letter. Also, suppose that s(O) = 6 and s{1) = 13. Then, the smal­

lest value for s(2), such that (3-35) is satisfied, is 44. However, by

checking the actual table values and given that s(O) = 6 and s(l) = 13,

we find that s(2) = 36 never conflicts with Lemma 3-1. but violates

{3-35). So The global condition (Lemma 3-3) is not necessary. The same

can be shown for Lemma 3-4.

3. 7. Global and local desims.

A code design is a rule for selecting the stepvalues and stepsums. if

needed, depending on the source probabilities, such that a decodable code

results. One important distinction between designs is whether or not the

i i
local position S(y) influences the selection. If a rule selects 1 the step-

values independent of the local position and such that the global test is

-69-

satisfied, then we call this rule a global design. A local design results

if we select the stepvalues according to the local test at the current

position S(y1). In this section we will give a design for each of the four

cases mentioned above. At every time instant t+l we assume that the proba­

bility vectors P(uly1) and Q(uly1) are available to the en- and decoder.

Design 1: {Global design for the P-method). For all u € •· set

(3-37}

Verification:

F (3 37) -s(ulu
1

) a (It) so ~ ~-s(uly1) ~~and rom - we find that A - ~ ;rP u Y u~ 1\ .:. p

the global P-test is satisfied. The code is decodable.

Remark 8: If ui.+l is the symbol to be encoded then (3-37) must be eva­

luated for all u € •· u ~ ut+l' Then we can compute the new interval

I(yi.+l) by (3-23) and {3-24).

Destgn 2: (Global design for the Q-method). Set

s{ulyt) = f(c-u)•logA ~- logAP{ulyi.)l

T{ulyi.) = f(c-u)·l~ ~- logAQ(ulyi.)l

The verification of this design is contained in Appendix X.

{3-38}

(3-39)

Remark 9: If ui.+l is the symbol to be encoded then (3-38) and (3-39)

must be computed for this value only. Compared with Design 1 this is much

faster if ut+l > 1 i.e., if the source alphabet is large.

Both designs make no use of the current position. In these global de­

signs we take into account the worst-case deviations as defined by {3-22).

In a local design we optimize the stepvalues by searching through the table

for the smallest stepvalues that satisfy the local tests. We proceed with

- 70 -

two more examples.

Design 3: (Local design for the P-method). First we evaluate (3-37) for

all·u € •· Then we repeatedly decrease the stepvalues by one until any

extra decrement would violate the local P-test. The search order could be:

First decrease s(Oiyt) as much as possible, then s(llyt), etc. A slightly

better method would be; select the smallest stepvalue and decrease it by

one. Repeat this until no new decrement is possible.

Remark. 10: Compared to Design 1. the amount of work has increased enor-

mously.

Design 4: (Local design for the Q-method). Assume we want to encode

ut+l" First compute T(ut+liYi) and T(ui+l + tlyt) by (3-39}. Now: find the

smallest s(ut+liYt) under the restriction of the local Q-test at position

S(yi).

Remark. 11: This method is not much more complex than Design 2. Any

search operation in the table can easily be performed in 1~ operations

since the table is ordered. See section 3.10.

3. 8. BoundS on the reciundancy.

In the previous sections we described some code designs and decodabili-

ty criteria. Here we discuss the achievable rates of· these designs. Actual-

ly, we are interested in the difference between the code rate and the sour-

ce entropy. This quantity is known as the code redundancy.

Denote by L(yn) the l!m&!.h of the codeword assigned to yn by jsome code,

then the rate of this code is given as

E {L(Jf)}
R(n) ~ ~rfl.__ __

n (3-40)

- 71 -

and the redundancy is given by

A 1 .n
r(n} = R(n) - ~H{P(~)) (3-41)

For the length L{!.r} we show that, both in the P- and Q-methods, holds:

Proof: by (3-28}, the length of the source interval I(yn) is given by

A[S(yn)]. Theorem 3-1 then results in

Which, with (3-20)-(3-22) results in

S(yn)
L(yn) < f 1 1 1 - --- ogd a +

N

Q.E.D.

Now we may write:

P(rfl)
E {L{~)} ~ E {-logd P(un}} + E {logd - } + 0(1} (3-42)
un un ~ "-scun>

For stationary sources the first term on the righthand side equals the

entropy H(P(un)) and the second term is almost a divergence (see for in-

stance Csiszar and ~orner [23]). We will define the pseudodivergence:

- 72 -

(3-43)

Now with (3-40}, (3-41), and (3-43} we get:

(3-44)

Remark 12: If we define the codewords as described in Remark 5, we

still obtain (3-44), although the tolerance term 0(1/n) is larger in this

case.

We will now upperbound this divergence. Therefore, assume the existence

A c-u of a function t(u) = f•A , such that:

(3-45)

for all i, 0 ~ i < n, and all ui € ~i. f and A are positive constants

determined by the design. Then

n n I i-1 1 n
~-S(y) = ~- ~L· __ 1s(uL. y) -n -n(c- -~. 1 u.)
~ ~ ~ r A n L= L P(yn)

Now define the average svmbol u by

- A 1 n n
u =- ~ P(u)•(~ u.).

n yn~ - i=l L

With (3-44) we obtain:

r(n) ~ logd f + (c - u)•logd A+ 0(1/n)

(;3-46)

(3-47)

- 73 ...:

For an arithmetic code, n can be made very large. So we might ignore

the term 0(1/n). rand A will be expressed in the table parameters a and 13

and thus we obtain a source-independent upperbound. We give two examples.

Example 3: (Redundancy bound for Design 1). From (3-37} we find:

so t (u) = M and the redundancy is upper bounded as: a

r(n) < logd ~+ 0(1/n}

(3-48)

(3-49)

Exampl.e 4: (Redundancy bound for Design 2). From (3-38) we obtain:

(3-50)

which gives:

r(n) < (c- u)•logd ~+ logd X+ 0{1/n) (3-51)

This is in the order of c times worse than {3-49}.

For the global methods we can also derive similar lowerbounds. From the

fact that the code interval J(~m) is included in the source interval I(yn)

we find that:

or

n
n ~ L(y) ~ N - logd fj.

- 74-

As in (3-42) this results in:

and

(3-52)

EX~.U~tpte 5: (Lowerbound for global P-designs). First, using the log-sum

at It at
inequality [23], which states that I. a. ·I~ ~ (It a.) •logrt)• where

~ ~ t ~ t t

all at's and bt's are non-negative numbers, we obtain:

u €'ll
n

(3-53)

Since any global P-design satisfies the global P-test, Lemma 3-3, we sub-

stitute {3-35) in (3-53) and obtain the following:

And with (3-52) we find the lowerbound to the redundancy:

- 75 -

r(n) ~ logd ! + 0(1/n). (3-54)

Example 6: (Lowerbound for global Q-designs). The global Q-test,

Lemma 3-4, holds for a global Q-design so we use (3-36) in the following:

I t-1
AR c-u, -s(u. g)

(!..:!::.) ~ •fl. 1.
a

I t-1
AR c-u. -s(u, g }

(!..:!::.) 1. •fl. ~
a

In (a) we use the log-sum inequality and in (b) we use (3-36).

Again with (3-52) we obtain the lowerbound to the global Q-design re-

dundancy:

r(n) s; (c - u}•logd f!- + 0{1/n) (3-55)

- 76 -

We want to stress the point that the lowerbounds only hold for global de-

signs satisfying the global P- or Q-test.

If we compare the upperbounds {3-49) and {3-51) with the corresponding

lowerbounds {3-54) and (3-55}. we observe a difference between the bounds

of about logd >- = 1/N. The difference between the upper- and lowerbound

becomes smaller as the size of the table increases. This. however, does not

imply that the bounds become tight. We will demonstrate the fact that the

bounds are not tight with the table defined as in Example 2.

Assume d = 2. i.e. a binary code alphabet, and let the size of the

table A[•] be C binary digits. We are interested in the minimum of 1~ ~

under the restriction that N•k = C. Allowing non-integer values for N and

+ k, this optimum is achieved by kopt = 1 + 1~ C-1. Denote by rp the upper-

bound value (3-49) at the optimum for global P-designs, and by r; the

lowerbound value (3-54), still with non-integer k t" For the relative dif-op

ference

we find:

1 + 1~ C-1
6p = 2

C·l~ t•c-t

So, for C-+ co, 6p :::: ln
2
C-+ co

The global Q-design upperbound achieves its optimum close to kopt if

+ the source alphabet size c becomes large. See section 3.11. Define rQ as

the value of {3-51) at kopt and rQ as the corresponding value of (3-55}.

The relative difference 6Q is given as:

-77-

1

(c - u)(1 + 1/op)

1 So. for C -+co, we find that oQ ::: ---::-·
c-u

In both cases, the relative difference will not approach zero demon-

strating the fact that the bounds are not tight in the case where we select

the table parameters N and k such that the upperbound is minimized.

From these bounds we conclude that the P-method redundancy is insensi-

tive to the source alphabet size and that the redundancy for the Q-method

increases linearly with c. This is not unexpected if we consider the way we

let the two methods stack their source intervals. In the P-method all en

intervals fit on top of each other, so this leaves only one gap at the top

of [0, 1) resulting in an inefficiency of about logd ~· In the Q-method we

approximate the augends by one table value, A[S(y)+T(uiy)]. and T(uly) is

selected such that the u subintervals I(yv), 0 ~ v < u, always fit below

I(!:!:IJ.). See Figure 3-4. From the Global Q-test (3-36) and the bounds (3-51)

and (3-55) we are led to the conclusion that the gap for symbol u. on the

average, introduces an inefficiency of about (c - u)• logd ~· With logd A

= k· we see that every imprecision in the multiplication A[i] * A[j), as

mentioned in section 3.5. is accounted for. We can 'equate' the redundancy

caused by approximating logd P(yJ with k· and the redundancy logd ~ with

the imprecise multiplication and the provisions we have to take to ensure

decodability. The experiments described in section 3.11 support this con-

elusion.

The local designs perform at least as well as the global designs they

are based on. These designs try to close the gaps left by the global de-

- 78-

signs. Generally. it will be impossible to close the gaps completely, but

because the global designs consider the worst case situation we can expect

a significant reduction in the redundancy. This is also confirmed by the

experiments in section 3.11.

3.9. Fast designs.

The codes resulting from the global designs of section 3. 7 perform very

well with respect to the code rate but the designs require complex and pre-

cise arithmetic.

In this section we describe four designs that make use of the exponen-

tial table A[•]. The only operations required are searching in this table

and simple additions. The price that must be paid for the reduction in com-

plexi ty is an increased redundancy.

We will first introduce and analyse a global design for the P-method.

Design 5: Set

3
s0 = min{siA[s] ~ p }
s 1(uly) = min{siA[s] S P{uly)}

and

In this design s0 can be precomputed.

(3-56)

(3-57)

(3-58)

First we show that this design results in decodable codes. From {3-22),

(3-56). {3-57), and (3-58) we find:

3 .
a I -s(ulu) a I ~P(u y) s X - S n•P(u y).

Xfj ,..
{3-59)

- 79 -

From the rightband part of (3-59) it follows that the global P-test,

Lemma 3-3, is satisfied, and with the lefthand part and (3-45) - (3-47) we

find the following upperbound to the code redundancy:

r(n) ~ 3•logd ~ - logd A + 0(1/n) (3-60)

So the price here is a threefold increase in redundancy as compared to

Design 1.

and

The global Q-design is as follows:

Design 6: Set

2 l\2(p u-c
= min{siA[s] ~a { 3) }

a

s 1 (ul~) = min{siA[s] ~ P(ul~)}

r0(u) = s0(u)

T1 (ul~) = min{tiA[t] ~ Q(ul~)}

s(ul~> = so{u) + sl(ul~l

T(ul~) = r0 (u) + T1 (ul~)

(3-61)

(3-62)

(3-63)

(3-64)

(3-65)

(3-66)

Again, the c constants s0(u) can be precomputed. The decodability of this

design is proved in Appendix XI.

With (3-22) and (3-61) - (3-66) we find:

I 2 23u-c
A-s(u ~) ~ ~-2 (A~) •P(ul~)

1\ p a
(3-67)

resulting in the upperbound:

- 80 -

r(n} ~ 2•logd ~ + (c- u){3•logd ~- logd X} + 0{1/n) {3-68)

Again, as compared to Design 2, the redundancy is about thrice as large.

As with the Designs 1 and 2, we can formulate local versions of the

fast designs. We introduce:

Destgn 7: (Local P-design based on Design 5). First evaluate (3-56) -

(3-58} for all u € •· Then, as in Design 3, decrease the stepvalues until

the local P-test would be violated by any further decrease.

Design 8: (Local Q-design based on Design 6}. Let ut+l be the symbol to

be encoded. Compute T(ut+l + tlyi) and T{ui+tiYi) using (3-61), (3-63),

(3-64), and (3-66) and find the smallest s(ui+liYi) under the restriction

t of the local Q-test at position S(y). See Design 4.

3.10. Complexity aspects.

A definite scheme e.g. the Huffman code, needs a memory to store the

codewords. Encoding and decoding is performed by indexing in, resp. search-

ing through, the codebook. Two types of complexity result from this obser-

vation; the storage requirements and the amount of work needed in the enco-

ding and decoding process. We will consider these complexities for the P-

and Q-methods. and then compare it with the complexity of a Huffman code.

First, consider the storage requirements. A~ said in a previous section

assume that each table entry A[i] is expressable in k d-ary digits. Then,

we need N•k digits to store this table. Because the parameters a, ~. and X

are functions of Nand k, so are the redundancy bounds (3-49), (3-51},

(3-60), and (3-68), and we might solve for the minimum redundancy bound

given a constraint on N•k. An example thereof was already discussed in sec-

tion 3.8.

- 81 -

Now. we turn to the amount of work needed to encode and decode a source

symbol. We will illustrate the complexity using the same eight designs as

given in the previous sections.

Let u € ~ be the symbol to be encoded and decoded, and y is the string

of source symbols preceding u.

Design 1. Encoding: (3-37) must be computed for all values v ~ u. Then,

the P-method (3-23) requires u table references and additions. (3-24) must

be computed once. So. the encoding time is proportional to u, (3-46), and

thus related to the source alphabet size.

Decoding: Assume we received enough code symbols to decode u. See sec­

tion 3.3. Successively we must compute the values B{yO). B(y1}.

B(YU). This requires u + 1 evaluations of (3-37) and u references and addi­

tions in (3-23). Also u + 1 comparisons are needed. (3-24) is computed

once. So the decoding time is also proportional to u, although the constant

of proportionality is larger.

Design 2. Encoding: Compute (3-38) and (3-39) for u only. The Q-method

(3-25) requires one table reference and one addition. (3-26) is computed

once also. The encoding time is independent of the cardinality of the

source alphabet.

Decoding: (3-39) and (3-25) must be computed for all v ~ u and every

time a comparison is made. (3-38} and (3-26) are computed only once. The

decoding time is, as in Design 1, proportional to u. However, a better per­

formance is obtained using a binary search resulting in at most log2 c eva­

luations and comparisons. In some cases, e.g. when the source is memoryless

aDd the probabilities are ordered, this search could even be optimized to,

on the average, H(P(U)) evaluations etc. See Massey [24].

Design 3. Encoding: Compute all global stepvalues. This requires c eva­

luations of (3-37). Now for every successive symbol v ~ u compute the sum

-82-

W = w!v A[S{y) + s{wjy}]. and then find the smallest s such that

A[S(y) + s] ~ A[S(y)J - W. Replace s(vjy) by s and repeat the above for the

next symbol v. The encoding time is K1·c + u·(~·(c-1) + K3•log2 N). where

K1 is the time needed to evaluate {3-37) once, and ~·(c-1) the time needed

to compute the sum W. K3·l~ N denotes the time spend in obtaining a mini­

mal stepvalue s, as we show in the discussion of Design 4 below. If we ac­

cept that u is proportional to c. the encoding time is proportional to c2 .

Decoding: As with the discussion of Design 1, the encoding and decoding

processes are similar, resulting in a decoding time proportional to c2 .

Design 4. Encoding: Q)mpute {3-39) for the symbols u and u+l. Then

search through the table for the smallest index satisfying the local

Q-test. This search is performed in two steps; first determine the order of

the difference of the two augends, i.e. find an integer e such that

t I I -t d •{T(u+l y) - T(u y)) € (d , 1]. Then search for the smallest index

t € {0, 1, ... , N-1} such that A[i] ~ dt•(T(u+lly)- T(uly)). Using a bina-

ry search we need at most 1~ N tries. So the search complexity is log2 N.

Then compute the stepvalue s(uly) = i•N + t. and now find the new interval

using (3-25) and (3-26). Although the amount of work has incresed compared

to Design 2 it is still a constant.

Decoding: the decoding is similar to the decoding of Design 2. Only,

per comparison we must perform all the computations we need to encode a

symbol, i.e. compute (3-39} twice, search through the table etc. So the

proportionality constant increases. but the decoding time is still propor-

tiona! to log2 c or H(P(U)).

Design 5. Encoding: As in Design 1, compute (3-57) for all v ~ u. This
i

is done by searching through the table as described above. Then, 1 add the

precomputed constant s0 , (3-56). The P-method requires u additions and

table references for (3-23) and (3-24) is computed once. So the encoding

-83-

time is proportional to u, but compared to Design 1, the constant of pro­

portionality is much smaller.

Decoding: The decoding is also similar to the decoding of Design 1.

However, the complex computations in (3-37) are again replaced by the

searches in (3-57) and the additions in (3-58). So decoding too is faster

than in Design 1.

Design 6. Here the encoding and decoding are similar to those for

Design 2, again replacing the complex computations (3-38} and (3-39) by

searches etc.

The same holds for the local designs. Design 7 is similar to Design 3

and Design 8 looks like Design 4, again replacing the computations by

searches through the table.

Summarizing we may say that the the amount of work for the global

P-designs is proportional to u or, in a worst-case analysis, proportional

to the cardinality c. The local P-Designs are proportional to c2 . In the

global and local Q-designs the encoding times are independent of c and the

decoding times are proportional to log2 c. The designs of section 3.9 are

faster due to the replacement of the, rather precise. computation of loga­

rithms by a search in A[•].

We will compare this with the complexity of a Huffman code. There are

M = en different source messages of length n. A codebook implementation

requires a table of M entries, each able to store a codeword. More effi-

cient storage is achieved using a tree structure. Then, the storage com-

plexity is of O(M).

Another problem is the design of a Huffman code given a probability

vector P(yn). Van Voorhis, [25], described an algorithm that is O(x2) in

time and space {storage). However, it only applies to binary codes. The

famous Hu-Tucker algorithm, [26], generates binary Huffman codes in o(x2)

time and O(M) space. The Garsia-Wachs implementation of the Hu-Tucker algo-

-84-

rithm [27] reduces the time complexity to O(N·l~ N) while retaining a

O(N) complexity in space. Van Leeuwen, [28], shows that O(N•log2 N) in time

is optimal for the design of binary Huffman codes. Now remember that

N = en; thus the best Huffman design has a time complexity of O(ntcn} and

O{cn) in space. So we see that the complexities of a Huffman code are at

least exponential in the source string length, thus prohibiting the use of

large source strings and the resulting low redundancies.

In order to illustrate the latter in some detail we first remark that

from the source coding theorem, [1], we can upperbound the redundancy of a

Huffman code by 1/n, where n again denotes the source block length.

Gallager in (29] improved upon this resulting in the bound for a binary

Huffman code:

r ~ P1 + 0.0861, 0 S P1 < 0.5

n A where P1 is the largest probability in the vector P{y) and n(x) =

-x•log2x- (1-x)•log2{1-x), the binary entropy function. For a d-ary code

he obtained:

with ad= logd d-1 + logd{logd e)- logd e + d~l. Unfortunately ad_...,., as d

gets large, but not too fast. For example a
3

= 0.135, a
5

= 0.194, and a 10 =
0.269.

Johnsen [30], and (apocelli et al. [31], improved the bound for a bina-

ry code in the case 2/9 ~ P1 ~ 0.5. Still these bounds are inferior to 1/n

-85-

as n becomes large. And because the redundancy of the P- and Q-method

schemes are functions of the table size only, and rather small for accepta-

ble table sizes, these schemes compare favourably with the Huffman code

designs.

3.11. Some numerical examples.

In this section we discuss some simulations done with the eight de-

signs. The binary codes were designed using a table A as given in Example

2. so A[t] ~ d-k·rdk·d-t/N1. 0 ~ t" < N; k and N are positive integers.

The storage complexity for these codes is N•k binary digits. We de-

signed tables with N•k ~ 1000 and N•k ~ 10000, and k several values in the

range from 10 to 20. We selected values that should be representative for

the algorithms. For instance, the minimum of log ~under the restriction
a

that N•k = C occurs at kopt = 1 + logd C-1. For C = 1000 this gives kopt ~

11 and if C = 10000 then kopt ~ 14. Since the local designs generally per­

formed best with rather precise tables, i.e. large k, we also selected

values in that range.

We evaluated the performance of the eight designs using sources with

cardinalities 2, 8, and 16. For each of these cardinalities we selected two

memoryless sources, one with a high entropy and one with a low entropy.

Every source was considered twice, once with ascending probabilities (high

u) and once with decending probabilities (low u). The detailed results are

stated in Appendix XII. The following observations can be made from these

results:

- The global redundancy bounds appear to be tight in the sense that for

some combinations of table parameters and symbol probabilities the re-

suiting redundancy is close to either the lower- or the upperbound.

-86-

- From the Tables 5 and 9, Appendix XII, we see that the global P-de-

signs are insensitive to the alphabet size c and, by definition they

are independent or the ordering or the probabilities.

- The Tables 6 and 10 indicate that the global Q-designs behave as expec­

ted, i.e. proportional to (c - u).

- The actual improvements of the local designs over their global counter-

parts vary a lot. In some cases the improvement is only a few percent.

in other cases the redundancy decreases by a factor of ten or more.

Note that in some cases the local P-designs 3 and 7 and in most cases

the local Q-designs 4 and 8 achieve,a lower redundancy than the lower­

bounds in the Tables 1 and 2; so they are essentially better than the

global methods, with respect to the redundancy.

- If we compare the global Designs 1 and 2 with their fast counterparts 5

and 6 we find, on the average, a redundancy increase by a factor 2 to 3

as expected, although the actual values vary more. The variation in

redundancies between the local designs using logarithms and those using

the table is even higher, although here too we find an average factor

of 2 to 3.

- The local P-designs achieve the smallest redundancy for a given table

compared to all other designs but do so at the cost of a very 'high com-

putational complexity.

- The fast local Q-design 8 appears to be the best compromise, especially

if the probabilities are ordered to achieve a maximal u. However, as we

will see in the next section, we cannot sort the probabilities without

paying a penalty in increased complexity.

For a comparison of these designs with other arithmetic codes we refer
I

to section 3.13.

-87-

3.12. Implementation details.

In section 3.3 we discussed the partial encoding and decoding of arith-

metic codes in a rather general setting. Section 3.4 then introduced a

carry-blocking technique and briefly indicated how to implement the enco-

der. See Figure 3-3. In this section we describe the implementation of the

encoder and decoder for both methods.

To implement the equations {3-23) and (3-24) respectively {3-25} and

(3-26} we need an accumulator B that contains the relevant part of the co-

f. destring B(!!). -Again, as in Example 2, assume that each table entry A[•]

is described ink digits, then the size of the accumulater B is at least k

symbols. However, the smaller the symbol probability is, the larger is the

corresponding stepvalue and the augend will contaJn leading zeroes, relati-

ve to the left end of the accumulator. We allow for l extra symbol posi-

tions in B. resulting in a total accumulator length of k + l symbols. Later

on in this section, we will return to the importance of the exact value of

l, for now we just assume that l is large enough to accomodate all occur-

ring additions.

In section 3.4 we loosely defined the augend position and indicated in

Figure 3-3 that we only had to deal with a few symbols around that posi-

tion. Now we are able to define this in all necessary detail. Observe the

augends in (3-23) and (3-25). We see that we want to add table entries with

indices larger than S(!!). Also, by the definition of the source intervals

I(!!). {3-28). we know the maximal value of the augend, namely A[S(!!)]. Now

the number of leading zeroes in A[S(!!}] is lS{!!)INj, and except for a pos­

sible carry the first lS(!!}/Nj symbols in the codestring will not change

anymore. So we can define the augend position IA as lS{!!)/Nj, where we im­

plicitely assume the dependence of IA on the source string u. This defini-

-88-

tion would suffice if we did not have to provide for the blocki~ of an

occurring carry. Now carry blocking, as discussed in section 3.4, repeated-

ly divides the interval by d without changing its lowerbound value. This

results in an increase over LS(y)/Nj by one for each carry-blocking shift

that occurs, so:

(3-69)

where Nc(Y:) denotes the number of carry-blocking shifts that occurred

during the encoding of y.

The implementation of the encoder is depicted in Figure 3-9. The

1--k + t ---
x€~

I c 1¢=1 I
B I I A I I

I
transm. carry
symbols

1L ll
k + I. length

adder

.I carry

II I

Figure 3-9. The implementation of the encoder.

register C is carry blocking register. B is the accumulator and A contains

the table value, relative to IA' that must be added to the string. So A

contains A[S(y} + N•Nc(Y:) - N•IA + s(uly)] if we must add A[S(y) + s(uly)].
'

The new augend position is computed by (3-69) and the resulti~ shifts,

dictated by the difference between the new and the old position, are per-

- 89 -

formed. If, after the process of encoding the source symbol the C register

contains a string of r d-1 symbols, then both the C and the B registers are

shifted to the left until a symbol other than d-1 is shifted into C. Every

shift increases the shiftcount Nc(Y) by one.

When all the source symbols have been encoded the C and B registers

still contain a part of the codestring. The final interval length is given

-(IA+l)
by A[S(yn} + N•Nc(Yn}] ~ d With Theorem 3-1 we know that it suffi-

ces to take all the code symbols in C plus the leftmost two in B after

rounding B up. Alternatively. we could transmit all R+l symbols in B. in-

creasing the codestring length by k+l-2 digits, which should be negligible

compared to the source string length n.

The decoder is depicted in Figure 3-10. It consists of an encoder C',

B', and A', that mimicks the real encoder and a comparator that compares

this string with the received string in the receiver registers RC and RB.

This decoder implements the partial decoding scheme as outlined in the sec-

tions 3.3 and 3.10. Further details should be obvious. We end with the re-

mark that every shift dictated by either the carry-blocking mechanism or

the augend position update also shifts the RC and RB receiver registers,

and loads the RB registers with newly received code digits.

We now give an algorithmic description of the encoder and decoder ope-

rations for both methods. In the Q-method decoder we shall implement the

binary search technique.

Where applicable, we use the following variables:

U: for encoders: the symbol to be encoded. (input).

for decoders: the decoded symbol. (output).

S[•]: the stepvalue array s{•ly). generated by a design. {input).

T[•]: the stepsums T(•ly), generated by a Q-design. {input).

-90-

A[•]: the exponential table with an index range 0 ... N~l.

N: the table length.

C: the carry-blocking register.

B: the accumulator.

FS: the retained fraction of the local position.

RC: receiver carry part register

RB: receiver accumulator part register.

- channel symbols

k. + l length
adder

Figure 3-10. The decoder implementation.

A'

Remark.: The arithmetic in the algorithms is done in number
1
base d. {d

is the code alphabet size).

- 91 -

P-method encgder:

begin { first add the augend parts to the codestring }

for v:=O to U-1 { if U=O then do not enter this loop }

do begin { perform the addition of A[S(y) + s(vly)] }

{ note that if P(uly) = 0 then "s(uly) = ro"

implying that nothing is added to C&B }

sft := (FS + S[v]) div N; { this is the number of leading

zeroes w.r.t the augend position. }
~

pos :: (FS + S[v]) mod N; { index in A. sft ~ l ! }

C&B :: C&B + Shiftright(A[pos]. sft); { perform the

'shifted' addition and process the possible carry }

end;

{ now we continue with the computation of the new position }

sft :: (FS + S[U]) div N;

FS :: (FS + S[U]) mod N;

{ augend position update # shifts }

{ update the retained fraction }

Shiftleft(C&B, sft); { shift the C and B registers to the left

and load B with zeroes. }

{ now perform the carry-blocking operation(s) }

while C = { d-1, d-1, ...• d-1) {fault condition }

do Shiftleft(C&B, 1);

end: { the symbol U is encoded into the codestring }

Q=method encoder:

begin { first add the augend to the codestring if U > 0 }

if u > 0

then begin { compute and add augend }

sft :: (FS + T[U]) div N: { this is the number of leading

zeroes w.r.t the augend position. }

-92-

pos :: (FS + T[U]) mod N; { index in A, sft ~ l ! }

C&B := C&B + Shiftright(A[pos], sft): { perform the

'shifted' addition and process the possible carry }

end;

{ now we continue with the computation of the new position }

sft == (FS + S[U]) div N; { augend position update # shifts }

FS :: (FS + S[U]) mod N; { update the retained fraction }

Shiftleft(C&B, sft); { shift the C and B registers to the left

and load B with zeroes. }

{ now perform the carry-blocking operation(s) }

while C = (d-1. d-1, ... , d-1) {fault condition }

do Shiftleft(C&B. 1);

end: { the symbol U is encoded into the codestring }

P-method decoder:

begin { find the next symbol by sequential search }

u :: 0:

{ simulate the encoder until the reconstructed register contents

are larger than the received codestring part. Again we have no

problem with possible "zero probability" symbols. }

loop: sft :: (FS + S[U]) div N; { determine augend part }

pos :: (FS + S(U]) mod N;

if (C&B + Shiftright(A[pos], sft)} > (RC&RB)

then goto decoded:

C&B :: C&B + Shiftright(A[pos], sft);

u :: u + 1:

goto loop:

- 93-

decoded: { sft and pos are already computed and U is the correct

end:

symbol, so }

FS == pos: { the new augend position. }

Shift\eft(C&B, sft);

Shiftleft(RC&RB, sft); { also shift the next digits from the

channel into RB. }

{ now again the carry blocking }

while C = (d-1, d-1, ... , d-1)

do begin Shiftleft(C&B, 1};

Shiftleft(RC&RB, 1} { don't forget the channel digits }

end

(}=method decoder:

begin { this decoder implements a binary search }

high == c; { c is the source alphabet cardinality }

low == 0;

{ now and later we assure that:

B(y. low) ~ RC&RB < B(y, high) }

while high - low > 1

do begin U == (high + low) div 2: { pivot point }

{ here we must ensure that P(Uiy)) 0 }

sft == {FS + T[U]) div N;

pos == (FS + T[U]) mod N;

if (C&B + Shiftrigbt(A[pos], sft)) ~ (RC&RB)

then low == U

else high:= U

end: { here low contains the decoded symbol }

end;

U == low:

sft :::: (FS + T[U]) div N:

pos :::: (FS + T[U]) mod N:

-94-

C&B == C&B + Shiftright(A[pos], srt}; { update C and B for next

symbol }

{ again, compute next augend position and process carry }

sft :: (FS + S(U]} div N:

FS == (FS + S[U]} mod N; { the new augend position. }

Shiftleft(C&B, sft);

Shiftleft(RC&RB, sft); {also shift the next digits from the

channel into RB. }

{ the carry blocking }

while C = (d-1, d-1, ... , d-1)

do begin Shiftleft(C&B. 1);

Shift left(RC&RB, 1) { don't forget the channel digits }

end

Remark: The 'mod' and 'div' operations in the algorithms can be repla­

ced by simple shifts if the table length N is a power of d.

We return to the relation between the extra register length t required

by the algorithm and the stepvalues. The number of shifts in the summations

in the algorithms is upperbounded by t or:

(FS + S[v]) div N ~ t, (FS + T[U]) div N s t.

And with FS < N we find

-95-

S[v] ~ L•N, T[U] ~ L•N

or

(3-70)

We are interested in the relation between t and P(uly), Q(uly). Thus we

~ve to consider how the different designs assign stepvalues and stepsums

to symbols. Formula (3-45) enables us to a worst-case analysis for the four

global designs. Because the local designs have stepvalues and stepsums not

larger than those of the corresponding global designs, they require no

separate analysis.

First we study the P-method Designs 1 and 5. Observe that if P(uly) z
P(vly) then s(ujy} ~ s(vly), so the largest stepvalue occurs for Pain ~

min{P(uly)luew, yew*}. With (3-48) we find for Design 1:

and with {3-59) the same for Design 5 becomes:

In a realistic situation we must assume L to be fixed by e.g. the hard-

-!. AM ware designer. So we must ensure that Pain l e•d , (e = e 1 = a' or e = e5

A?!Jl = 3). We shall examine the following approach, probability clipping:
a

Define the clipped probability P(uly) as:

~ 1 _ P(ulu) + 6
P(u y) - 1 + c•li

-96-

for some positive constant 6.

We observe that

and so we shall use P(uly} in our designs.

From the lowerbound on Pmtn we solve:

As in (3-45) - (3-47} we bound:

and so:

t(u)·A-s(uly} ~ P{uly} P(ulu) + 6
1 + c•6

This, with (3-42) - (3-44) results in, c.f. (3-47):

Thus, clipping costs us circa c·~·d-t bits per symbol in redundancy. Note

that the clipping metbod described here is not optimal, but it suffices to

illustrate, with a rather simple proof, the exponential dependency of the

redundancy on the clipping parameter L

Now we study the relation between t and the source probabilities for

- 97 -

the Q-method Designs 2 and 6. Here the stepsums T are required to satisfy

(3-69). Since we do not use the stepvalues s in the addition, there is no

corresponding limit on s(uly). From (3-50), (3-67), and the definitions of

the Designs 2 and 6 we find the condition:

e, =

The

I -t Q(u y) :l ~:.•d ,

A ?1!.. c-u A a 2 A. 2(!3 c-u
=A.{ a) , (Design 2), or e.= e.6 = (A(!) •(2) , (Design 6).

a

largest bound occurs for u = 1 and the worst-case situation is comple-

ted if Q(llu) = Pmtn· We obtain the condition:

Again we can use the probability-clipping technique, however, an inte­

resting result follows if we reorder the probabilities, such that P(Oiy) is

maximal . Then we have:

The Q-method works for all (ordered} probabilities if

This implies that we can fix 1 and use the encoder and decoder for all

sources. This seems a perfect solution, but still it increases the redun-

dancy. From the bounds (3-51) and (3-68) and the fact that ii is not maximal

if the probabilities are ordered as required above, we find that there can

-98-

be an increase in code rate. This actually happens as we see from section

3.11, and this seems acceptable when we realize that the Desi~s 2 and 6

adjust the stepvalues for the first symbols most.

3.13. Discussion and conclusion.

In this section we compare Rissanen's code [9] and Pasco's code [10]

with those described in chapter 3. First from Formula (3-19) we find the

upperbound to the redundancy of Rissanen's code:

-q 1
r < e + 2 + 0(-) n {3-71}

Now comparing Rissanen's condition (3-18} with the global P-tes:t we can

'equate' 2-e with ~ or e ~ Iog2 ~· Also Rissanen's table e(x) has 2q r

digits precise entries. Our table A contains N k-digit numbers so we are

led to relating N with 2q. From this we see that (3-71) and the Design 1

upperbound {3-49) actually are the same bounds.

The same holds for Pasco's code. Recall (3-16) and observe t~t

-However, the difference is small. Also if A(i] is defined not as in Example

-t 2 but as the k digits precise truncated approximation of A , i.e. A[i] =
-k 1 k_ -ij 1-k f!. 1-k d *La~ • then a= 1-2 • P = 1 and so logd a= -logd(l- 2). Here

we want to remark that Pasco truncates the augends in (3-14). In his code

this is the only possible choice to guarantee decodability. The ~ifference

between his and our approach is that Pasco uses the given propabilities

directly while we adapt them according to the selected table. If we further

-99-

consider the influence of truncation in Pasco's work, see (3-17), and we

ignore the influence of Pmin' we can set q ~-log o. Now q is the precision

used in th~ multiplication, because P(uly) was defined to be q digits pre­

cise. This leads to the approximate equality of our table length Nand 2q.

so 6 ~ k· This shows that Pasco's bound and the global P-bound are essen­

tially the same.

For a complete comparison we need to consider the complexity too. In

Rissanen's code the table e contains r•2q digits, whereas our table A needs

N•k digits. However, in [9] no clear relation between e, q and r has been

given, complicating the comparison. Rissanen indicates that for binary

codes r ~ q + 2, somewhat comparable with our optimal choice k ~ 1 +

logd(C-1), see section 3.8. We conclude that roughly r ~ k.

In Pasco's case, the comparison is even more difficult since he uses

actual multiplications instead of a table. We stated earlier that a multi-

plication is more difficult that an addition, however, we must consider the

size of the table A in this respect. A table-lookup implementation of a

multiplier would require, for a k digit x q digit input, k digit result

table, some 2q+k•k digits. As above 2g ~ N. resulting in about N•k•2k

digits for a lookup table as compared to N•k digits for A. However, there

are more ways to implement the multiplication so a reasonable comparison

cannot be made. Although these considerations are somewhat superficial they

indicate that Pasco's code and Rissanen's code are similar in performance

to our global P-design 1 code.

The coding schemes described here offer a selection from more complex

designs with a very low redundancy to the fast but less efficient Designs 5

to 8. The decodability criteria we introduced here allow us the design of

efficient codes and give a clear view of the performance we can expect.

If we turn to the results tabulated in section 3.11 and also consider

- 100-

the computational complexity of the different methods we can conclude that

these codes are a practical solution to many data compression problems

since they are adaptable to many sources, even sources with memory; in

fact, the coding unit only needs the current symbol and its ptobability

I
vector. Also, if we consider the trade-off between speed and red~dancy we

can choose between the fast code like Design 6 or its local variation, and

an efficient algorithm like Design 1, or its very efficient but very com-

plex local counterpart, Design 3.

Finally, we remark that Langdon and Rissanen introduced a very simple

binary arithmetic code, i.e. c = 2 and d = 2, in [32]. This code needs no

table and approximates the probabilities P(l) and P(h), P(l) ~ P(h), by a

skew number q or, P(l) = 2-q. P(h) = 1 - 2-q. So this is also a code that

is easily adaptable to different binary sources. The worst case redundancy

of this code is about 0.035 bit/symbol, corresponding to a table of ca. 300

binary digits for Design 1 or ca. 1000 binary digits for Design 5.

- 101 -

4. FINAL REMARKS.

In this thesis we described two source coding algorithms. Both compute

the codewords from the source data in stead of using a predesigned code-

book. A strong similarity exists between these schemes. The VF scheme of

chapter 2 might be called the combinatorial or exact coding scheme and the

arithmetic code the probabilistic or inexact one. Actually. the arithmetic

code developed from the combinatorial scheme as a result of some observa-

tions similar to those stated in section 2.8. We will briefly sketch this

.. derivation ...

First, recall that the set cardinalities I (m) of the segment sets s

~8 (m), (2-4). can be overestimated without losing the decodability property

of the code, as long as for all states s the following holds:

i (m} ~ l i_()(m - V(uls)). 1 ~ m ~ n.
8 u:P(uls)>O ·;r u.s

(4-1)

m $; 0.

Note that J
8

(m) need not be an integer and also observe the similarity be­

tween (4-1) and the decodability criteria for the arithmetic codes, Lemmas

3-1 and 3-2. So, as already said jn section 2.8, (2-26}, J
8

(m} can be a

finite precision floating point number.

Another reduction in the storage complexity follows if the J
8

(m) tables

are circular, i.e., if an integer m0 and a number K exist such that:

(4-2)

"' Note that if J
8

(m} is a finite precision d-ary number then K must be a

- 102-

power of d. Another reduction in the storage requirement results if all the

"' "' tables contain the same values, i.e. if M (m) = M(m) for all stat~s s. We s

expand a little on the latter. Define:

i{m) = max{ ~ i(m - V(uls)) I s € ~}
u:P(uls)>O

(4-3)

It is not difficult to see that the Theorems 2-1 and 2-2 carry over to

similar theorems for the table as defined in {4-3). So the resulting code

still achieves the source entropy asymptotically. However, compared,to the

original code the rate of convergence is slower.

EXample: Again we use the source of Figure 2-1 and the stepvalues as tabu-

lated in section 2.8. We obtain:

uls y(ll y(2) y(3) p(l) p(2} p(3)

Ola 1 3 9 0.57735 0.60910 0.67780

lla 3 10 37 0.19245 0.19156 0.20213

2la 4 14 53 0.11111 0.09891 0.10125

Olb 2 7 28 0.33333 0.31450 0.29822

lib 2 7 28 0.33333 0.31450 0.29822

2lb 2 6 21 0.33333 0.37101 0.40356

ole 0 0 0 1 1

;.._(1} = 1. 73205 ;... (2) = 1.17969 ;.._(3) = 1.04416
max max max

D(l) = 0.09021
Cll

D(2) = 0.07040
Cll

D(3) = 0.01248
""

In this table A~ denotes the exponential growth of i(m) as given by (4-3)

with the steps y(i), i = 1, 2, 3. D~i) is the resulting pseudodivergence or

asymptotic redundancy. COmpare this with the table of section 2.8.

- 103 -

The flexibility of the code using this table has increased, because we

can use any set of stepvalues V(u), u € ~. as long as the resulting expo-

nential growth parameter A does not exceed the actual growth Amax of the

table, or equivalently:

! A-V(u) ~ 1
u:P(u)>O max

Compare {4-4) with the Kraft inequality e.t.c.!

(4-4)

Combining the ideas of {4-1) - (4-3) with Elias' algorithm resulted in

the arithmetic codes of chapter 3.

- 104-

I wish to thank Prof. J.P.M. Schalkwijk for introducing me to the sub­

ject of Information Theory, for conveying his enthusiasm in it, and for his

valuable advice during this research.

For their support in these years and especially for relieving me of all

other tasks during the writing of this thesis I thank all my colleagues at

the Information and Communication Theory group.

Above that I wish to mention and thank Frans Willems, with whom I co­

operated these years and whose contributions to this work are too numerous

to mention.

105 -

APPENDICES.

Appendix I.

A segment source wi,th a re4ucible state set.

In this appendix we give a Markov source and a collection of segment

sets, resulting from the selection rules given in (2-4), such that the cor­

responding segment source contains a reducible state set. In Figure I-1 a

binary-alphabet Markov source is depicted. This source is characterized by:

the source letter alphabet ~ = { 0, 1},

the state set~= {a, b, c, d},

the letter probabilities

P(Oia) = 0.68,

P(Oic) = 0.32,

P(Oib} 0.50,

P(Oid) = 0.50,

and the next state function T as is shown in Figure I-1.

The stationary probability vector is

q(a) = 0.2164,

q(c) = 0.3182,

and the source entropy is

q(b) = 0.2490,

q(d) = 0.2164,

H
00

(P,T) = 0.9489 bit I source letter.

We assign the following stepvalues:

- 106-

V(Oja) = 1. V{lja) = 3, V{Ojb) = 2, V(ljb) = 2,

V(O!c} = 3, V(ljc) = l, V(Ojd) = 2, V(ljd) = 2.

Figure I-1.

It is easily checked that the segment source resulting from this source

together with the segment sets~ (5), s =a, b, c, d, as defined by {2-4),
s

contains a reducible state set. The states a and b form the irreducible

subset ~1 • state c makes the irreducible subset ~2 • and stated is a tran­

sient state, from which the segment source always enters subset ~2 . Thus we

obtain

Also

Pr{~1 } = q(a) + q(b) = 0.4654,

Pr{~2} = q(c) + q(d) = 0.5346,

q 1 (a) = 0.68,

q2(c) = 1.

ql(b) = 0.32,

- 107 -

1(
max = 9.

-i!ls{L(!l}} = 3.36 letter/segment for s a,

= 2.68 letter/segment for s = b,

= 3.1424 letter/segment for s = c.

= 2.68 letter/segment for s = d.

Therefore. EL = 3.1424 letter/segment and the code rate R = 1.0088

bit/source letter. So, this particular code performs worse than not coding

the source sequence, however, by analising the asymptotic behaviour we find

that for sets ~s(m). with m > 40. the coding scheme actually compresses the

source sequence, and asymptotically achieves the rate R
00

= 0,9491.

Appendix II.

The proof of Lemma 2-1. •

Call the actual state in which the Markov source starts sstart and

assume that the source enters the irreducible subset~ . Then with (condi­
r

tiona!) probability one the source generates a sequence of segments y 1, ~·

~· ... such that

1 m-1
lim 'ii .I Lt((y) ,T((y) ,s t t))
1(~ n m=l,l(m s ar

= .I qr(s)EUis{Lt(Q.s)}.
s€'9

r

Alternatively

(II-1}

- 108-

. 1 m-1
l1m ii }; Lt((yJ .T((Y:) ,s t t))
lf~ a m=l,lf m s ar

(II-2)

where the last equality again holds with•{conditional) probability one.

From {II-1) and (II-2} it follows that

: (II-3)

COmbining (II-3} with (2-10) and (2-11) proves the lemma.

Appendix I II.

The proof of Lemma 2-3.

The matrix A{A) as defined in (2-18) is irreducible (since the Markov

- 109-

source contains one irreducible state set 9') and nonnegative. Therefore,

Frobenius' theorem (see Gantmacher [16, Chapter III. p.65]) applies. This

theorem states the following:

i. an irreducible nonnegative matrix A always has a positive charac-

teristic number r,

ii. the moduli of all the other characteristic numbers are at most r,

and

iii. a characteristic vector with positive coordinates corresponds to

the "dominant" characteristic number r.

Now for s € 9' and p . ~ min{p ls€9'}. 11nn s Then for the charac-

teristic number r of A we have that (see [16, p.76]):

For A= 1 we obtain that r(l) ~ pmin{1) ~ 1. For A 4 ro, since the stepsizes

are chosen such that no zero-circuits exist, we know that

where 19'1 is the number of states of the source and Q is the all-zero

matrix. Note that A!~I{A 4 ro) equals the number of paths. whose stepvalues

sum to zero, from state s to state t. The consequence of (III-1) is that

r(A ~ro) = 0. Since r(A) is continuous in A and since r(1} ~ 1 and r(A 4 ro)

= 0 a largest value of A must exist for which r(A) 1. Call this value A.

-We will now prove that A = Amax. It is obvious that A ~ Amax. Suppose that

A < Amax. Since r(A) is continuous in A, it is clear that r(Amax) < 1.

Since A(Amax) has a characteristic number equal to 1. then because of the

- 110-

Frobenius theorem part ii, r(Amax) ~ 1. This contradicts the assumption

"" -that A < A . Therefore, A =A . Frobenius part iii finally yields the max max

positiveness of the coordinates of ~-

Appendix IV.

The proof of Lemma 2-4.

From (2-6) and Lemma 2-3 it follows for s € ~and 1 - Vmax ~ n ~ 0 that

(IV-1)

Note that this is only possible because all components of ~are positive.

We will now prove the lemma by induction. The hypothesis is that (IV-1)

holds for s € ~and 1 - Vmax ~ n ~ m- 1 where m ~ 1. By (2-6) for n = m

and for each s € ~ we have that

A
I (n) = ~ I_()(n- V(uls))
s u:P(uls)>O -!· u,s

~ ~ An - V{uls)e
u:P(uls)>O max T(u,s)

~ ~ ~-V(uls}
" et

t~ u:P{uls}>O max
T(u,s)=t

and, analogously,

- 111 -

n - V(uls} + V - 1
If (n) ~ }; A max

s u:P(uls)>O emin max

(*) 1 n + vmax - 1
= --A e

8 emtn max

The crucial steps (*) follow from the fact that ~ is a characteristic vec­

tor of A('A) 'with characteristic number 1.
max

Appendix V.

The proof of Lemma 2-5.

Let A be the matrix A{f..) and Z be the diagonal matrix with diagonal max

values es' s € ~. Now

is a stochastic matrix (see [16, chapter III. p.lOl]).

th Then for n = 1, 2, 3, ... we have for then power of A that

-1 where we used the fact that A = ZBZ •

(V-1)

We now proceed with some notation. First observe that the state transi-

tion pseudoprobability A(tjs) = Ast{f..max). Then denote the following for

n = 1. 2. 3, ...

- 112-

· the stationary probabilities q(s) by q,

the conditional probabilities lfl(tl' t2' ...• tnls} by wl)(w2)(...)(

Wn (where W is the state transition probability matrix)

the joint p;obabilitieS fR(t 1 , t 2, ••• , tnls)q{s) by w1 X Yf2 X X

Wn x q, and

the conditional pseudoprobabilities An(t
1

, t2 , ... , tnls) by A1 x ~ x

••• x An.

Furthermore, note that the {marginal) conditional probabilities Wn(tnls}

equal w<n>. the nth power of w. Analogously, the (marginal). conditional

pseudoprobabilities An(tnls) equals A{n)_

First we have that

Dn ~ D(Wl X w2)(... X WniiAl X A2 X ... X Anlq)

= D(WliiAllq) + D(W211A21Wl X q)

+ ..• + D(WniiAnlwl X w2 X ••• X "'n-1 X q)

= nD(W
1

11A1 Jq). (V-2)

Furthermore. by the log-sum inequality, [23, p.48]

(V-3)

Combining {V-1), {V-2), and (V-3) we find that

- 113-

where the last step again follows from the log-sum inequality and the fact

that W(n) is a stochastic matrix resulting in !t W(n)(tls)q{s) = 1. Now
,S

observe that since B(n) is a stochastic matrix,

! ZB{n)z-1{tls)q(s) ~
t,s emin

Therefore, for all n = 1, 2, 3, ... ,

yields

Finally, if we extrapolate the notation somewhat,

DCXI(P,P,T) = D(PliiPllq)

2 D{W111A1 Iq)

2 0.

Here the first inequality "surprisingly" follows from the log-sum inequali-

ty.

Appendix VI.

The proof of Theorem 2-2.

First we define

then

- 114-

Umtn ~ min{-log2P(uls)luet, s~. O<P(uls)<1},

Umax ~ max{-log2P(uls)luE~. s~. O<P(uls)},

V . ~ min{V (uls)luE~. s~. O<P(uls)<1} ~ 7U-in' 7,ml.n 7 ...

V ~ max{V (uls)lu€~. s~. O<P(uls)} < 7U + 1. 7,max 7 max

Now we have for y € ~s(n) that

and

1 I k-1 = ~ ~ -7log2P(~ T(y ,s))
k=1,L(y)

1 I k-1 ~ ~ ~ V(~ T(y ,s))
k=l.L(y)

1
~ - (n + V - 1)

7 7,max

1 n 7Umax < - (n + 7U) = :::C1+ --)
7 max 7 n

1 I k-1 > ;< ~ V(~ T(y ,s)) - L(y)}
k=l,L(y)

> ~n- (~+ lHfl)
7,mtn

~ ~n - (7Un. + 1} 1:~1>
mtn

= ~1 _ __~&_- Jti.).
7 7Ymtn n

(VI-1)

(VI-2)

(VI-3)

(VI-4)

To obtain (VI-3) and (VI-4) we used the definition of V (uls), the defini-
7

tion of ~ (n) (see (2-4)). and (VI-1) and (VI-2). s

It follows from (2-19) and (2-20) that

- 115-

Therefore. with (VI-3) and (VI-4) we find that

This proves that

Note that

lim -r•a = 1.
"'(

lim a = 0.
"(-'PI "'(

(VI-5)

(VI-6}

Now for u. s for which P(uls) > 0 we obtain for the pseudoprobabilities

P (uls)
"'(

and

• -a V (uls) g 2 'Y 'Y

-a f--rl0i2P(uls)l
= 2 "'(

-a (-'Ylog2P(uls))
~ 2 "'(

=
2
-ra'Yiogz(uls)

-ra
= P(uls) -r (VI-7)

116 -

-a (-7log2P(uls} + 1}
P (ujs} ~ 2 ~
~

-a ~a

~ I ~ = 2 P(u s) (VI-8}

Hence from (VI-7) and (VI-8) using {VI-5} and (VI-6) we can conclude for u.

s such that P(ujs) > 0 that

limP (uls) = P(uls).
~~ ~

This proves the theorem.

Appendix VII.

The proof of the test lemma.

Let ~tnt denote the set of proper prefixes of a set ~. where ~ is a

proper and complete set of strings over a finite alphabet~- So,

First we show that if~ is maximal for a probability vector p, then

Proof:

Vy € ~. ~ € ~tnt P(y) ~ P(~}. (VII-1)

tnt Assume (VII-1) does not hold, i.e., there is a y € ~and a v € A

with P(y) > P(~). Without loss of generality, we may take ~ to be a maximal

proper prefix, i.e., for all u € ~. ~u € ~-Now consider the segment set A'

with

- 117 -

~· (~- {Qu[u € ~}} U {yu[u € ~}

so 1~1 = 1~· 1. Now use the well known average length lemma, e.g. Massey

[15], which states that

A EL = I P(y)L(y) = I int P(Q).
yU QU

(VII-2)

Then we obtain, denoting the average length of J' by EL',

EL' - EL = P(y) - P(u) > 0,

which contradicts the assumption that~ is maximal. So (VII-1) holds.

Now we prove that if

Vy € ~. Q € ~tnt P(y) ~ P(y)

then ~ is maximal.

Proof: Let ~· be a maximal segment set with IJ'I
be its set of proper prefixes. Define

~1 ~~,tnt n ~int

~2 ~ ~tnt _ ~~

~3 ~ ~.int _ ~~

Since ~· is maximal we have EL ~ EL'. Assume that

EL < EL',

(VII-3)

r~ 1. and let J' tnt

{VII-4a}

(VII-4b}

(VII-4c)

(VII-5)

- 118 -

then. using (VII-2) and {VII-4).

L P(Q) < L P(~).

QES2 ~3

P(Q) < P(m) (VII-6}

tnt Now from (VII-4) we get ~ ~ A . So !!· or a proper prefix of m. belongs to

A. Also, Q € Aint. and with (VII-3) we find

P{Q} ~ P{m).

which contradicts (VII-6) and (VII-5). thus EL = EL'. This proves the final

part.

Appendix VIII.

The region of optimality for Tunstall codes.

We demonstrate the following two related results for the algorithm for

discrete memoryless sources.

r1) Given a (proper and complete) segment set A. we find the subset of

DMS for which A is maximal.

r2) Given a Tunstall segment set Jt· satisfying an extra constraint

stated below. we show that a segment set A(n), as dffined in

(2-28), exists such that A(n) = Jt·
First we introduce some notations.

- 119-

The ~ of a stringy € •* is defined as the 1•1 dimensional vector

with

u € •.

Given a set A. denote by ~(A) the set of types of all segments in A. These

sets can easily he visualized as a set of gridpoints in the space (m~)l•l.
i.e., every coordinate xu. u € •· is non-negative.

Let W he a plane in this space. We say that W agrees with a segment set

A if all points of ~(Atnt) lie inside, or on the boundary of the subspace

enclosed by W and the planes x = 0, u € •· and the points of ~(A) lie out­
u

side this subspace or on I. We give an example.

Example: Let • = {0, 1} and W: (-1~0.7}x0 + (-log20.3)x1 = 3.6. See

Figure VIII-1. From this figure we see that W agrees with the following

segment set A:

.II = {0000000. 0000001. 000001, 00001. 00010. 00011 • 00100.

00101,

10001,

0011. 01000, 01001.

1001, 101. 110,

0101, 011, 10000,

111} (VIII-1).

So, ~(A)= { (7,0), (6,1), (5,1), (4.1), (3,2). (2,2), (1,2), (0,3)}. and

is indicated by the crosses in Figure VIII-1.

Define for a probability vector P on •· the planes Wp(O) as follows:

Wp(O}: l {- lna-P(u))x = 0
u€• - ... ~ u

-lW

0 1 2 3 4 5 6 7 8

Figure VIII-1.

Now we can reformulate the testlemma.

If a segment set ~ is optimal for a probability vector P then~ agrees

with Wp(O} for some 0 € ~ and vice versa.

In the example of this appendix the plane W is Wp(3.6) for P = {Ol7, 0.3}.

So~. (VIII-1), is maximal for this P.

Given a set ~. define the plane set W(~) as follows:

W(~) ~ {WIW agrees with ~}

Now the first claim {r1) follows from the fact that W(~) can be descri-

bed by a finite set of 'extreme' planes, and these define the range of pro-

bability vectors for which A is maximal. We clarify this, continuing our

example.

Let ~ be defined by {VIII-1} then, see Figure VIII-2, W(~) is bounded

by:

- 121 -

Using the definition of Wp• we see that

2 5 and r is the solution of: r + r = 1, so r = 0.8087.

2 7
w2 = wp (02). p2 = (s • s). 02 = -12log2s.

2

and s is the solution of: s2 + s7 = l, so s = 0.8398.

So~ is optimal if and only if 0.6540 ~ P(O) ~ 0.7053.

We show that a Tunstall set JT can be generated by the algorithm if 1 t

satisfies the following (weak) extra condition:

Jt satisfies the testlemmawithout equality. i.e.,

int v y €,.. y € AT P(y) < P(y). (VIII-2)

This implies that no point from ~(~int) is on the plane Wp. Now, the algo­

rithm generates sets ~(n) with planes W(n): ~ V(u)x = n.
u€• u

xl

3

2

1

0

wt w2

0 1 2 3 4 5 6 7 8 9 xo

Figure VIII-2.

If JT satisfies (VIII-2) and a W(n} exists such that W(n) € W(Jt). then

- 122-

.M(n) = "r· Now this is always possible since W("r) contains planes descri­

bed with rational w(u) and 0 and due to {VIII-2) these planes do1 not con­

tain points from ~(.Mint). Thus proving claim (r2).

Appendix IX.

The proof of the global tests.

In this appendix we will give the proof of the global tests (3-35) and

(3-36).

Proof of Lemma 3-3: We only have to show that, if

i then, for all local positions S(y), {3-31} holds.

Note:
i .

s(uly) only depends on P(ulyt). not on the local position, i.e.

if the source is memoryless then s{ulyi} = s{u}.

From {3-22}: A[S(y1)] l a•X-8(yi)

From (3-22}: ~ A[S(yi) + s(ulyi)] ~ ~·X-S(yi} ~ A-s(ulyi~
u€• u€•

Together with (3-35) we obtain

i ! -S(u1} a i ~ A[S(y) + s(uJy)] ~ ~·X - ·~ ~ A(S(y)]
uev

Q.E.D.

- 123 -

The proof of Lemma 3-4 is a bit more involved, since we must also con­

sider the stepsums T(ulyi). We take the following approach. First fix the
. i

stepvalues s(uly~}. Then try to select stepsums T(uly) such that decodabi-

lity is guarantied. Now, what bounds on s(ulyi) follow?

If (IX-1)

then the local condition (3-32} at S(y1
) is satisfied for all S(y1

). The

proof of this involves only the application of (3-22) as before.

If (IX-2)

then (IX-1) is also true.

This implies that we can find stepsums such that both (3-32} holds and

(IX-3)

Observe the encoding formula (3-25) and conclude that for the symbol

ui+l = 0 we do not have to add anything to B(y1). We may set

(IX-4)

Using (IX-3) and (IX-4) we can prove by induction on u that

(IX-5}

Now we know that for given stepvalues we can find, by (IX-2), stepsums,

- 124 -

such that (3-32) is satisfied. If (3-33) also holds then decodability is

guarantied. So, suppose that the global Q-test holds, then by (IX-5)

1 ~ I (~)c-u.X-s(ulyi) > X-T{~lly1)
u€11 a

so {3-33) holds and the code is decodable.

Summarizing: If the stepvalues are selected such that (3-36) is satisfied,

then by (IX-2) stepsums can be found such that the resulting code is deco­

dable independent of S(yt).

Appendix X.

The decodabilitv of Design 2.

Here we want to show that the global method in Design 2 generates a

decodahle code. First we show that the selection

satisfies the global Q-test.

Proof: By {3-38): ~-s(ujyi) 5: a c-u I i
" (1\13) •P(u !!)

So
c-u I i I (~} ·X-s{u!!)

u€11 a

~ I P(uJyt) = 1
u€11

(3-38)

(X-1)

Q.E.D.

As shown in Appendix IX we know that there exist stepsums in accordance

with the steps found, but the question remains whether (3-39} is a good

-~-

choice. We proceed to prove that this is the case:

First from (3-39}

we find

(X-2)

We verify (3-33):

So T{~tlyt) 2 0 in accordance with (3-33}.

Now it remains to check (3-32). In Appendix IX we stated that if (IX-1)

holds then (3-32} holds for all local positions. We proceed:

I t (a} u+l-c .
X-T(u+l y) > x-1(~} [Q(ulyt) + P(ulyt)]

u-c u-c
= ~·(~) Q(ulyt) + ~(~) P(ulyt)

(~) ~A-T{ulyt) + ~A-s(uly1)
- a a

Here (a) follows from (X-2) and (b) from (X-1) and (X-2). So (IX-1) holds

and thus (3-32) and (3-33) hold.

Remark: By using (3-33) and (IX-1) in the proof we eliminated the need

to know the local position S(yt) in the table. In this way we again obtain

a global result.

- 126-

Appendix XI.

The decodabilitv of Design 6.

This appendix contains the proof that the global Q-design 6 is decoda-

ble. From (3-61) - (3-66) we find that:

(I) /\2fl u-c
~ 1\-s u ~ ~ (3) •P(ul~l

a
T(I) /\2{33 u-c

~ 1\- u ~ ~ (3) •Q(ul~) (XI-1)
a

We verify (3-33) using (XI-1):

(XI-2)

Now, from Appendix IX we know that if (IX-1) is satisfied then (3-32)

holds. So:

1\-T(u + ll~} ~ (/\2g3)u-c·~[Q(ul~) + P(ul~)]
a

~ ~[/\-T(ul~} + 1\-s(ul~)],

and this, with (XI-2), proves that the local Q-test, Lemma 3-2, holds for

all positions S(~). so the code is decodable.

- 127 -

Appendix XII.

Simulation results.

This appendix contains the results of the simulations done with the

eight designs. The binary codes were designed using a table A as given in

Example 2. so A[t] ~ d-k·rdk·d-t/Nl. 0 ~ t < N; k and N are positive inte-

gers.

The storage complexity for these codes is N•k binary digits. We desig-

ned tables with N•k ~ 1000 and N•k ~ 10000, and k several values in the

range from 10 to 20. We selected values that should be representative for

the algorithms. For instance, the minimum of log ~under the restriction
a

that N•k = C occurs at kopt = 1 + logd C-1. For C = 1000 this gives kopt ~

11 and if C = 10000 then k t ~ 14. Since the local designs generally per­op

formed best with rather precise tables, i.e. large k. we also selected

values in that range.

In Table 1 we list the global P-method redundancy bounds. The first

data column states the lowerbound result, (3-54), the second column gives

the upperbound for Design 1, (3-49), and the last column tabulates the

upperbound {3-60) for Design 5.

We select the following memoryless sources:

Source B1: c = 2; P(O) = 0.75, P{1) = 0.25: H{P(U)) = 0.8113 bits.

u = 0.25.

Source B2: c = 2; P(O) = 0.999139, P{1) = 0.000861: H(P(U)) = 0.0100

u = 0.0009.

Source B3: c = S; P(t} = A•(t + l}-o· 73 , 0 ~ i < c; H(P(U)) = 2.8012

u = 2.3623.

A normalizes the probabilities.

- 128-

Source B4: c = 8; P(t) = A•(t + 1)-6· 45• 0 s t < c; H(P(U)) = 0.1016

u = 0.01354.

A normalizes the probabilities.

Source B5: c = 16; P(i) = A•(t + 1)-1·29• 0 s t < c; H(P{U)) = 3.0023
I

u = 2.7438.

A normalizes the probabilities.

Source 86: c = 16; P(t) = A•(t + 1}-6· 46 • 0 s t < c: H(P(U)) = 0.1010

u = 0.01345.

A normalizes the probabilities.

So for each of the three cardinalities, c = 2, 8, 16, we select a high- and

a low entropy source. Because the Q-design is sensitive to u we reorder the

probabilities in the six sources such that u is maximal. So we define:

Source Bl': c = 2; P(O) = 0.25. P(1) = 0.75; H(P(U)) = 0.8113 bits.

u = 0.75.

Source B2': c = 2; P(O) = 0.000861, P(1) = 0.999139; H(P(O)) = 0.0100

u = 0.9991.

Source B3': c = 8: P(i) = A•(c- t}-0 ·73 • 0 s i < c; H(P(U)) = 2.8012

u = 4.6377.

A normalizes the probabilities.

Source B4': c = 8; P(t) = A•(c- i)-6 · 45 • 0 s i < c; H(P(U)) = 0.1016

u = 6.9865.

A normalizes the probabilities.

Source B5': c = 16; P(i} = A•(c- t)-1· 29• 0 s t < c; H(P(U}) 3.0023

ii = 12.256.

A normalizes the probabilities.

Source 86': c = 16: P(i} = A·(c- i)-6 ·46 , 0 s t < c; H(P(U)) = 0.1010

u = 14.987.

A normalizes the probabilities.

- 129-

In the Tables 2 we present the lowerbound results for global Q-designs,

(3-55), for each of the twelve sources. The Tables 3 and 4 give the upper­

bound, (3-51) resp. (3-68). for the global Q-designs, Design 2 and Design

6. The next tables list the redundancies resulting from the actual imple­

mentation of the Designs 1 to 8 for the twelve sources.

For the global designs, (1, 2. 5, and 6), the redundancy is computed by

(3-44) using the stepvalues as given by the designs. In the case of a local

design, (3, 4, 7, and 8), the stepvalues depend on the local position. In

the tables we list the redundancy computed by (3-44) using the worst set of

stepvalues. We find this set by an exhaustive search over all N local posi­

tions. So these values are upperbounds to the actual redundancies and we

may expect that in most cases the actual redundancy is even lower.

- 130-

N k lower bound upper bound upper bound
Design 1 Design 5

100 10 .00282 .0128 .0284
91 11 .00141 .0124 .0262
83 12 .000704 .0128 .0262
77 13 .000352 .0133 .0270
56 18 .0000110 .0179 .0357
53 19 .0000055 .0189 .0378

769 13 .000352 .00165 .00366
714 14 .000176 .00158 .00333
667 15 .0000881 .00159 .00326
625 16 .0000440 .00164 .00333
556 18 .0000110 .00181 .00363
500 20 .0000028 .00200 .00401

Table 1. Global P-Design upper- and lowerbounds.

N k B1 B2 B3 B4 B5 B6

100 10 .0224 .0256 .0722 .102 .170 .205
91 11 .0217 .0248 .0699 .0990 .164 .198
83 12 .0223 .0255 .0719 .102 .169 .204
77 13 .0233 .0267 .0752 .107 .177 .213
56 18 .0313 .0357 .101 .143 .237 .286
53 19 .0330 .0377 .106 .151 .250 .302

769 13 .00289 .00330 .00932 .0132 .0219 .0264
714 14 .00276 .00315 .00889 .0126 .0209 .0252
667 15 .00278 .00317 .00895 .0127 .0210 .0254
625 16 .00288 .00329 .00927 .0131 .0218 .0263
556 18 .00317 .00362 .0102 .0145 .0240 .0289
500 20 .00350 .00400 .0113 .0160 .0265 .0320

Table 2a. Global Q-design lowerbounds.

N k B1' B2' B3' B4' B5' B6'

100 10 .0160 .0128 .0431 .0130 .0480. .0130
91 11 .0155 .0124 .0417 .0126 .0464 .0126
83 12 .0159 .0128 .0429 .0129 .0477 .0129
77 13 .0167 .0134 .0448 .0135 .0499, .0135
56 18 .0223 .0179 .0601 .0181 .0669 .0181
53 19 .0236 .0189 .0635 .0191 .0706 .0191

769 13 .00207 .00165 .00556 .00167 .00619 .00167
714 14 .00197 .00158 .00530 .00160 .00590 .00160
667 15 .00198 .00159 .00534 .00161 .00594 .00161
625 16 .00206 .00165 .00553 .00167 .00616 .00167
556 18 .00226 .00181 .00608 .00183 .00677 .00183
500 20 .00250 .00200 .00673 .00203 .00750 .00203

Table 2b. Global Q-design lowerbounds.

- 131 -

N k B1 B2 B3 B4 B5 B6

100 10 .0324 .0356 .0822 .112 .180 .215
91 11 .0327 .0358 .0809 .110 .175 .209
83 12 .0344 .0375 .0839 .114 .181 .216
77 13 .0363 .0397 .0882 .120 .190 .226
56 18 .0491 .0536 .119 .161 .255 .304
53 19 .0519 .0566 .125 .170 .269 .321

769 13 .00419 .00460 .0106 .0145 .0232 .0277
714 14 .00416 .00455 .0103 .0140 .0223 .0266
667 15 .00428 .00467 .0104 .0142 .0225 .0269
625 16 .00448 .00489 .0109 .0147 .0234 .0279
556 18 .00497 .00542 .0120 .0163 .0259 .0307
500 20 .00550 .00600 .0133 .0180 .0285 .0340

Table 3a. Global Q-design upperbounds for Design 2.

N k B1' B2' B3' B4' B5' B6'

100 10 .0260 .0228 .0531 .0230 .0580 .0230
91 11 .0265 .0234 .0527 .0236 .0574 .0236
83 12 .0280 .0248 .0549 .0250 .0598 .0250
77 13 .0297 .0263 .0578 .0265 .0629 .0265
56 18 .0402 .0357 .0779 .0360 .0848 .0360
53 19 .0425 .0378 .0823 .0380 .0895 .0380

769 13 .00337 .00295 .00686 .00298 .00749 .00298
714 14 .00337 .00298 .00670 .00300 .00730 .00300
667 15 .00348 .00309 .00684 .00311 .00744 .00311
625 16 .00366 .00325 .00713 .00327 .00776 .00327
556 18 .00406 .00361 .00788 .00363 .00857 .00363
500 20 .00450 .00400 .00873 .00403 .00950 .00403

Table 3b. Global Q-design upperbounds for Design 2.

N k B1 B2 B3 B4 B5 B6

100 10 .0754 .0825 .186 .253 .403 .480
91 11 .0706 .0772 .173 .234 .372 .444
83 12 .0714 .0779 .173 .235 .373 .444
77 13 .0740 .0807 .179 .243 .385 .459
56 18 .0983 .107 .237 .321 .510 .607
53 19 .104 .113 .251 .339 .538 .641

769 13 .00971 .0106 .0239 .0325 .0518 .0618
714 14 .00898 .00981 .0219 .0297 .0473 .0564
667 15 .00888 .00970 .0216 .0293 .0464 .0553
625 16 .00912 .00995 .0221 .0299 .0475 .0566
556 18 .00997 .0109 .0241 .0326 .0517 .0617
500 20 .0110 .0120 .0266 .0360 .0571 .0681

Table 4a. Global Q-design upperbound for Design 6.

- 132 -

N k B1' B2' B3' B4' B5' B6'

100 10 .0612 .0541 .121 .0545 .132 i .0545
91 11 .0575 .0510 .113 .0514 .123 .0513
83 12 .0583 .0517 .114 .0521 .124 .0521
77 13 .0605 .0537 .118 .0541 .128 .0541
56 18 .0804 .0715 .155 .0720 .170 .0720
53 19 .0849 .0755 .165 .0760 .179 .0760

769 13 .00188 .00697 .0156 .00701 .0170 .00101
714 14 .00132 .00649 .0143 .00653 .0156 .00653
667 15 .00725 .00644 .0141 .00648 .0154 .00648
625 16 .00745 .00662 .0145 .00667 .0158 .00666
556 18 .00816 .00725 .0158 .00130 .0172! .00130
500 20 .00902 .00802 .0175 .00807 .0190 .00807

Table 4b. Global Q-design upperbound for Design 6.

N k Bl=B1' B2=B2' B3=B3' B4=B4' B5=B5' B6=B6'

100 10 .00622 .00876 .00954 .0121 .00717 .0123
91 11 .00466 .00974 .00675 .00414 .00747 .00427
83 12 .00800 .0108 .00795 .00620 .00611 .00635
77 13 .00366 .0117 .00553 .00817 .00563 .00818
56 18 .0146 .0166 .00959 .0178 .00903 .000190
53 19 .00476 .0176 .00845 .00105 .00116 .00128

769 13 .00114 .00136 .00100 .000368 .00117 .000484
714 14 .00104 .00156 .00103 .000367 . ()()()!554 .000491
667 15 .000566 .000257 .000677 .000153 .000903 .000270
625 16 .00112 .000358 .000880 .00134 .00102 .00147
556 18 .000772 .000557 .000871 .000149 .000943 .000266
500 20 .00122 .000157 .00100 .000148 .000271 .000276

Table 5. The measured global P-method redundancy (Design 1).

N k B1 B2 B3 B4 B5 B6

100 10 .0312 .0287 .0788 .112 .174 .212
91 11 .0321 .0317 .0750 .103 .172 .202
83 12 .0291 .0349 .0759 .103 .175 .211
77 13 .0361 .0377 .0810 .112 .181 .216
56 18 .0459 .0523 .110 .160 .246 I .303
53 19 .0378 .0553 .115 .152 .257 .303

769 13 .00342 .00396 .00972 .0133 .0228 .0265
714 14 .00350 .00436 .00972 .0129 .0214 .0257
667 15 .00319 .00325 .00985 .0136 .0220 .0257
625 16 .00392 .00356 .0104 .0141 .0224 .0270
556 18 .00392 .00415 .0110 .0145 .0248 .0290
500 20 .00472 .00476 .0123 .0161 .0272 .0322

Table 6a. The measured global Q-method redundancy (Desigtt 2).

- 133

N k B1' B2' B3' B4' B5' B6'

100 10 .0187 .0188 .0489 .0223 .0533 .0224
91 11 .0184 .02ffl .0472 .0153 .0521 .0154
83 12 .0231 .0229 .0485 .0184 .0527 .0186
77 13 .0199 .0247 .0492 .0213 .0560 .0213
56 18 .0369 .0345 .0696 .0359 .0759 .0183
53 19 .0283 .0365 .0719 .0202 .0778 .0204

769 13 .00277 .00266 .00618 .00169 .00699 .00180
714 14 .00280 .00296 .00618 .00179 .00645 .00191
667 15 .00244 .00176 .00634 .00167 .00686 .00179
625 16 .00312 .00196 .00626 .00296 .00706 .00309
556 18 .00302 .00236 .00692 .00197 .00772 .00209
500 20 .00372 .00276 .00773 .00218 .00821 .00230

Table 6b. The measured global Q-method redundancy (Design 2).

N k B1 B2 B3 B4 B5 B6

100 10 .00372 .00645 .00200 .00156 .00146 .00157
91 11 .00191 .00714 .000665 .00114 .000172 .00116
83 12 .00197 .00804 .000977 .00132 .000525 .00135
77 13 .000410 .00886 .000405 .00163 .000167 .00167
56 18 .00122 .0133 .0000521 .0000164 .000219 .0000173
53 19 .0000426 .0143 .000537 .0000338 .000288 .0000416

769 13 .000490 .000581 .000250 .000268 .000193 .000270
714 14 .000347 .000150 .0000923 .000153 .0000990 .000155
667 15 .000191 .0000883 .0000481 .0000136 .0000638 .0000750
625 16 .000322 .0000124 .0000257 .0000884 .0000294 .0000989
556 18 .000323 .000103 .0000371 .0000100 .00000653 .0000114
500 20 .000222 .000168 .0000143 • 00000316 . 00000599 .00000481

Table r. The measured local P-method redundancy bound for Design 3.

N k B1' B2' B3' B4' B5' B6'

100 10 .00372 .00645 .00256 .0121 .00349 .0123
91 11 .00191 .00714 .00117 .00412 .00185 .00427
83 12 .00197 .00804 .00107 .00618 .00129 .00635
77 13 .000410 .00886 .000588 .00815 .00101 .00818
56 18 .00122 .0133 .000524 .0178 .00189 .000190
53 19 .0000426 .0143 .00127 .00103 .00129 .00128

769 13 .000490 .000582 .000260 .000359 .000243 .000484
714 14 .000347 .000614 .000140 .000357 .000118 .000491
667 15 .000191 .0000883 .000106 .000146 .0000867 .000269
625 16 .000322 .0000124 .0000680 .00133 .0000625 .00146
556 18 .000323 .000103 .0000729 .000141 .0000438 .000265
500 20 .000222 .000168 .000114 .000139 .0000315 .000275

b Table 7 . The measured local P-method redundancy bound for Design 3.

- 134 -

N k B1 B2 B3 B4 B5 B6

100 10 .00372 .0154 .00836 .0796 .0322 .186
91 11 .00191 .0172 .00868 .0774 .0305 .176
83 12 .00197 .0192 .0106 .0807 .0312 .182
77 13 .000410 .0210 .00896 .0877 .0386 .192
56 18 .00122 .0303 .0153 .126 .0553 .269
53 19 .00476 .0322 .0176 .126 .0584 .277

769 13 .000490 .00133 .000828 .00901 .00121 .0220
714 14 .000347 .00149 .000874 .00833 .00123 .0209
667 15 .000191 .000693 .000746 .00893 .00118 .0209
625 16 .000322 .000795 .000927 .00959 .00137 .0224
556 18 .000323 .00104 .000799 .0101 .00127 .0244
500 20 .000222 .00131 .000938 .0113 .00165 .0273

Table Sa. The measured local Q-method redundancy bound f9r Design 4.

N k B1' B2' B3' B4' B5' .86'

100 10 .00872 .00877 .00745 .00241 .00774 .00253
91 11 .00740 .00975 .00771 .00442 .00842 .00455
83 12 .00197 .0108 .00574 .00650 .00761 .00665
77 13 .00690 .0118 .00669 .00836 .00478 .00851
56 18 .00569 .0166 .00617 .000432 .00828 .000431
53 19. .00948 .0176 .00957 .00154 .00930 .00154

769 13 .000490 .00136 .00103 .000386 .000791 .000503
714 14 .000347 .000159 .000995 .000387 .000762 .000526
667 15 .000941 .000259 .00105 .000174 .000863 .000307
625 16 .000322 .000359 .000903 .00137 .00125 .00151
556 18 .00122 .000558 .000778 .000196 .000703 .000290
500 20 .000222 .000759 .000547 .000198 .00129 .000303

Table 8b. The measured local Q-method redundancy bound for Design 4.

N k B1=.B1' B2=B2' B3=.B3' B4=.B4' B5=.B5' .86=.86'

100 10 .0137 .0188 .0195 .0122 .0172: .0123
91 11 .0129 .0207 .0177 .0151 .0185 .0153
83 12 .0170 .0229 .0200 .0182 .0182 .0184
77 13 .0134 .0247 .0185 .0212 .0186 .0212
56 18 .0280 .0345 .0274 .0180 .0269 .0180
53 19 .0189 .0365 .0273 .0199 .0260 .0201

769 13 .00212 .00266 .00208 .00165 .00244 .00178
714 14 .00210 .00156 .00243 .00177 .00182 .00189
667 15 .00169 .00176 .00218 .00165 .00240 .00177
625 16 .00232 .00196 .00248 .00294 .0026~ .00307
556 18 .00212 .00236 .00267 .00195 .00271 .00206
500 20 .00272 .00276 .00300 .00215 .00272 .00228

Table 9. The measured redundancy for Design 5.

- 135-

N k B1 B2 B3 B4 B5 B6

100 10 .0562 .0687 .176 .232 .390 .462
91 11 .0514 .0647 .161 .223 .362 .432
83 12 .0592 .0710 .163 .223 .358 .428
77 13 .0589 .0766 .165 .229 .372 .449
56 18 .0905 .106 .229 .303 .500 .589
53 19 .0849 .112 .240 .321 .526 .623

769 13 .00764 .00916 .0220 .0302 .0506 .0602
714 14 .00700 .00716 .0207 .0283 .0455 .0550
667 15 .00694 .00775 .0200 .0271 .0447 .0527
625 16 .00792 .00835 .0205 .0285 .0462 .0558
556 18 .00842 .00955 .0229 .0307 .0504 .0596
500 20 .00792 .0108 .0256 .0341 .0557 .0662

Table lOa. The measured redundancy for Design 6.

N k B1' B2' .83' B4' B5' 86'

100 10 .0412 .0388 .110 .0326 .118 .0327
91 11 .0404 .0427 .101 .0374 .111 .0375
83 12 .0472 .0470 .104 .0427 .112 .0428
77 13 .0459 .0507 .106 .0475 .117 .0475
56 18 .0727 .0702 .148 .0542 .161 .0542
53 19 .0661 .0743 .154 .0582 .167 .0584

769 13 .00569 .00526 .0136 .00431 .0154 .00444
714 14 .00560 .00436 .0130 .00461 .0136 .00473
667 15 .00544 .00476 .0126 .00469 .0141 .00481
625 16 .00632 .00516 .0132 .00619 .0147 .00631
556 18 .00662 .00596 .0148 .00559 .0162 .00571
500 20 .00772 .00676 .0165 .00620 .0177 .00633

Table lOb. The measured redundancy for Design 6.

N k B1 B2 B3 B4 B5 B6

100 10 .00372 .00645 .00217 .00156 .00138 .00157
91 11 .00191 .00714 .000971 .00114 .000739 .00116
83 12 .00197 .00804 .000999 .00132 .000487 .00135
77 13 .000410 .00886 .000391 .00163 .000380 .00167
56 18 .00122 .0133 .00160 .0000165 .000281 .0000173
53 19 .0000426 .0143 .000490 .0000338 .000247 .0000416

769 13 .000490 .000581 .000194 .000268 .000234 .000270
714 14 .000347 .000150 .000157 .000153 .000116 .000155
667 15 .000191 .0000883 .0000444 .0000736 .0000534 .0000750
625 16 .000322 .0000724 .0000391 .0000884 .0000281 .0000989
556 18 .000323 .000103 .0000671 .0000100 .0000250 .0000114
500 20 .000222 .000168 .000108 .00000317 .0000116 .00000480

Table lla. The local P-method redundancy for Design 7.

- 136-

N k B1' B2' B3' B4' B5' B6'

100 10 .00372 .0154 .00304 .0121 .00617 .0123
91 11 .00191 .0172 .00240 .0151 .00649 .0153
83 12 .00197 .0192 .00242 .0182 .00611 .0184
77 13 .000410 .0210 .00204 .0211 .0063lj) .0212
56 18 .00122 .0303 .00366 .0180 .0110! .0180
53 19 .00476 .0322 .00338 .0199 .0103 .0201

769 13 .000490 .00133 .000262 .00164 .000363 .00178
714 14 .000347 .000614 .000208 .00175 .000189 .00189
667 15 .000191 .000693 .0000837 .00164 .000203 .00177
625 16 .000322 .000795 .000146 .00293 .000222 .00306
556 18 .000323 .00104 .0000460 .00193 .000227 .00206
500 20 .000222 .00131 .0000843 .00213 .000209 .00228

Table 11b. The local P-method redundancy for Design 7.

N k B1 B2 B3 B4 B5 B6

100 10 .00372 .0345 .0192 .193 .109 .418
91 11 .00466 .0383 .0190 .175 .0952 .384
83 12 .00499 .0424 .0189 .181 .0957 .386
77 13 .00366 .0461 .0216 .184 .101 .405
56 18 .00569 .0651 .0311 .250 .160 .535
53 19 .00476 .0691 .0392 .265 .173 .567

769 13 .000490 .00326 .000939 .0214 .00342 .0511
714 14 .000347 .00252 .00103 .0199 .00302 .0466
667 15 .000191 .00281 .000911 .0190 .00297 .0449
625 16 .000322 .00313 .00110 .0195 .00304 .0466
556 18 .000323 .00377 .000998 .0219 .00350 .0507
500 20 .000222 .00444 .00133 .0246 .00446 .0566

Table 12a. The local Q-method redundancy for Design 8.

N k B1' B2' B3' B4' B5' ~ B6'

100 10 .00372 .00878 .00949 .00267 .0101 .00280
91 11 .00191 .00977 .00884 .00469 .0113 .00470
83 12 .00499 .0108 .0109 .00668 .00836 .00682
77 13 .000410 .0118 .00885 .00868 .0143! .00884
56 18 .0102 .0167 .0131 .000893 .0194 .000886
53 19 .0142 .0177 .0206 .00202 .0159 .00202

769 13 .000816 .00136 .000959 .000419 .00107 .000537
714 14 .000697 .000162 .000951 .000421 .000811 .000546
667 15 .000191 .000261 .000857 .000212 .000785 .000345
625 16 .000722 .000362 .00101 .00141 .00112 .00155
556 18 .000323 .000562 .000728 .000222 .00114 .000336
500 20 .000722 .000762 .000687 .000250 .001~ .000354

Table 12b. The local Q-method redundancy for Design 8.

- 137 -

REFERENCES.

[1] R. G. Gallager, Information Theory and Reliable COIIII!Il..lnication.

New York: Wiley, 1968.

[2] D. A. Huffman, "A method for the construction of minimum-redundancy

codes," in Proc. IRE, vol 40, pp 1098-1101, Sept. 1952.

[3] B. P. Tunstall, "Synthesis of noiseless compression codes,"

Ph.D. dissertation, Georgia Inst. Tech., Atlanta, GA, Sept. 1967.

[4] F. Jelinek and K. S. Schneider, "On variable-length-to-block

coding," IEEE Trans. Inform. Theory, vol IT-18, pp 765-774, Nov.

1972.

[5] F. Jelinek, Probabilistic Information Theory. New York: McGraw-Hill,

1968.

[6) j. Verhoef£. "A new data compression technique," Ann. Syst. Res.,

vol 6, pp 139-148, 1977.

(7] J. P. M. Schalkwijk, F. Antonio and R. Petry, "An efficient

algorithm for data reduction," in Proc. Ha.wa.i i Int. Conf. System

Sciences, pp 498-499, 1972.

[8] J. P. M. Schalkwijk, "On Petry's extension of a source coding

algorithm," in Proc. 2nd S!JiftP. Inform. Theory Benelux, pp 99-102,

1981.

[9] J. J. Rissanen, "Generalized Kraft inequality and arithmetic

coding," IBlf]. Res. Develop., vol 20, pp 198-203, May 1976.

[10) R. C. Pasco, "Source coding algorithms for fast data compression,"

Ph.D. dissertation, Stanford Univ., CA. 1976.

[11] T. J. Lynch, "Sequence time coding for data compression," in Proc.

IEEE (Corresp.). vol 54, pp 1490-1491. Oct. 1966.

- 138-

[12] L. D. Davisson. "Cormnents on 'Sequence time coding for data

compression'," in Proc. IEEE (Corresp.), vol 54, pp 2010, Dec. 1966.

[13] j. P. M. Schalkwijk, "An algorithm for source coding," IEEE Trans.

Inform.. Theory, vol IT-18, pp 395-399, May 1972.

[14] T. Cover, "Enumerative source coding," IEEE Trans. Inform.. Theory,

vol IT-19, pp 73-76, jan. 1973.

[15] J. L. Massey. "The entropy of a rooted tree with probabilities,"

presented at IEEE Int. Symp. Inform.. Theory, St. Jovite, Canada,

Sept. 1983.

[16] F. R. Gantmacher, Application of the Theory of Matrices. New York:

[17]

Interscience, 1959. ,

C. B. Jones, "An efficient coding system for long source sjuences,"

IEEE Trans. Inform. Theory, vol IT-27, pp 280-291. May 1981.

[18] F. Rubin. "Arithmetic stream coding using fixed precision

registers," IEEE Trans. Inform.. Theory. vol IT-25, pp 672-675, Nov.

1979.

[19] M. Guazzo, "A general minimum-redundancy source-coding algorithm."

IEEE Trans. Inform. Theory, vol IT-26, pp 15-25, Jan. 1980.

[20] j. j. Rissanen and G. G. Langdon, Jr., "Arithmetic coding," IBM].

Res. Deuetop .. vol 23, pp 149-162, Mar. 1979.

[21] F. Jelinek and G. Longo, "Algorithms for source coding." in: CISM

Courses and Lectures, no 216, Ed: G. Longo, Wien-New York: Springer,

pp 293 - 330, 1975.

[22] J. Rissanen and G. G. Langdon, Jr., "Universal modeling and coding,"

IEEE Trans. Inform.. Theory, vol IT-27. pp 12-23, jan. 1981.

[23] I. Csiszar and j. 1\drner, Information Theory: Coding Theor~ms for

Discrete Memorytess Systems. Budapest: Akademiai Kiado, 1981i.

'

- 139 -

[24] J, L. Massey, "An information theoretic approach to algorithms," in

The Impact of Processing Techniques on Com.m.untca.tton, Ed: J. K.

Skwirzynski, NATO ASI Series E, Dordrecht, Boston: Nijhoff Publ.,

1985.

[25] D. C. ·van Voorhis, "Constructing codes with ordered codeword

lengths," IEEE Trans. Infona. Theory, vol IT-21. pp 105 - 106, Jan

1975.

[26] T. C. Hu and A. C. Tucker, "Optimal computer search trees and

variable length alphabetic codes," SIAlf.] . Appl. Math., vol 21.

pp 514- 532, 1971.

[27] A. M. Garsia and M. L. Wachs, "A new algorithm for minimum cost

binary trees. " SIAlf.] . Com.put. , vol 6, pp 622 - 642. Dec 1977.

[28] J, van Leeuwen, "On the construction of Huffman trees," In: Proc.

3rd Int. Cottoq. Automata, !an.gll4ges, Program.m.i.ng, Edinburgh,

pp 382 - 410, July 1976.

[29] R. G. Gallager, "Variations on a theme by Huffman," IEEE Trans

Inform.. Theory, vol IT-24, pp 668 - 674, Nov 1978.

[30] 0. Johnsen, "On the redundancy of binary Huffman codes," IEEE Trans.

Inform.. Theory, vol IT-26, pp 220 - 222, March 1980.

[31] R. M. Capocelli, R. Giancarlo. and I. J, Taneja, "Bounds on the

redundancy of Huffman codes," IEEE Trans. Inform.. Theory, vol IT-32,

pp 854 - 857. Nov 1986.

[32] G. G. Langdon, Jr. and J. Rissanen, "Compression of black-white

images with arithmetic coding," IEEE Trans. Com.m... vol CX>MM-29,

pp 858-867. June 1981 .

- 140-

EFFICII:XrE EN SNElLE DATA KOMPRESSIE KODFS VOOR

DISKRETE BRONNEN MET GEHEUGEN.

SAMENVATTING

Dit proefscbrift behandelt de kompressie van datarijen, gegenereerd

door bronnen met geheugen. Het doel van d., data kompressie is bet minimali-

seren van bet aantal kanaal symbolen dat nodig is om bet oorspronkelijke

bericbt exact te bescbrijven.

In de Informatie Theorie wordt een bron gezien als een stochastiscb

proces, meestal met diskrete tijdstappen en een eindige uitkomstenruimte.
I

Van de verschillende mogelijke vormen van de foutvrije kodes worden er bier

twee behandeld.

De eerste kode is van het variabele- naar vaste lengte type. Gebruik

makend van Schalkwijks enumeratieve kodering is een kode ontwornen voor de

klasse van Markov bronnen. Het proefscbrift bescbrijft deze kode en de ana-

lyse hiervan. Bewezen wordt de asymptotische optimaliteit van deze kode en

de robuustheid ervan. Dit laatste betekent dat de efficientie van de kode

niet snel verandert ten gevolge van variaties in de bron parameters. Ook

wordt bewezen dat voor de subklasse van de geheugenloze bronnen, d.i. pro-

cessen met identiek verdeelde, onafhankelijke diskrete stochasten, deze

kodes overgaan in de optimale Tunstall kodes. Hiermee is tevens een snelle

en laag komplexe kodeer methode gegeven voor deze Tunstall kodes.

De tweede hierin beschreven kode is van het stroom type, d.~.z. dat de

rij van kode symbolen stapsgewijs opgebouwd wordt als de opvolgende bron

symbolen "voorbij stromen". Het fundamentele algoritme is bescbreven door

Elias. Door zijn flexibiliteit is deze kode toepasbaar vo~r de gehele

klasse van de stationaire, ergodische bronnen. Het nadeel van dtt algoritme

- 141 -

is de onmogelijkheid een praktische implementatie te realiseren. Verschil­

lende auteurs hebben praktische implementaties gevonden en de bier beschre­

ven kode is daarop een voortzetting.

Het proefschrift beoogt inzicbt te geven in het Elias algoritme en de

praktische implementaties biervan. Hierbij blijkt dat bet koderings mecha­

nisme en bet ontwerpen van de kode parameters gescbeiden plaats kunnen

vinden. Er worden twee koderings mechanismen bescbreven welke in een of

meerdere opzicbten afwijken van de voorgaande oplossingen. Het meest in bet

oog springend verscbil is de eliminatie van de vermenigvuldigingen nodig in

de andere algoritmen. Ook de kode parameter ontwerp algoritmen wijken af

van de vorige algoritmen. Het blijkt mogelijk en zinvol om lokaal, d.w.z.

tijdens bet koderen van elk volgend symbool, de parameters te optimalise­

ren. De analyse van deze kodes resulteert in wederzijds afhankelijke kom­

plexiteits- en redundantie grenzen, die een keuze uit de verscbillende kode

vormen mogelijk maken, afhankelijk van de behoefte. Ook deze kodes blijken

een zelfde robuustbeid te vertonen als de in bet eerste deel bescbreven

kode.

- 142-

a:JRRIQJLUM VITAE.

Tjalling Jan Tjalkens was born in Arnhem, The Netherlands. on ~pril 4,
I

1957. He received his M.S. degree in electrical engineering from the

Eindhoven University of Technology, Eindhoven, The Netherlands. in 1983.

Currently he is working at the Department of Electrical Engineering,

Eindhoven University of Technology. His research interest is in source

coding and modelling.

bij het proefschrift van Tj.J. Tjalkens

29 september 1987. Technische Universiteit Eindhoven.

I

Met behulp van Ott's a1goritme is een asymptotisch korrekte toestandsschat­

ter voor Markovketens te maken.

G. Ott, "Compact encoding of stationary Markov sources", IEEE Trans.

Inform. Theory, IT-13,(1),1967.

II

De entropie van een bronmodel is in het algemeen geen maat voor de kompres­

sie van een aan de hand van dit model ontworpen kode. Dit geldt echter wei

voor het speciale geval van de optimale Re (k < m) orde benadering van een

me orde Markov bron.

H. Tanaka et al., "Efficient encoding of sources with memory". IEEE

Trans. Inform. Theory, IT-25,(2),1979.

J. Rissanen, "A universal data compression system", IEEE Trans. Inform.

Theory, IT-29,(5),1983.

E.N. Gilbert, "Codes based on inaccurate source probabilities", IEEE

Trans. Inform. Theory, IT-17,(3),1971.

III

Door in Van Voorhis algoritme P enkel die waarden te berekenen en op te

slaan die werkelijk nodig zijn in een gegeven kode ontwerp wordt de hoe­

veelheid werk aanzienlijk gereduceerd.

D.C. van Voorhis, "Constructing codes with bounded codeword lengths",

IEEE Trans. Inform. Theory, IT-20,(2),1974.

IV

De beste benadering, met een gegeven komplexiteit, van een m.e orde Markov

bron is niet de ke (k < m.) orde Markov bron.

I J. Rissanen, "A universal data compression system.", IEEE Tr~. Inform..

Theory, IT-29,{5),1983.

v

Universele kodes waarbij de kodewoorden direkt uit de data gegenereerd wor­

den, zijn superieur aan algoritmen welke symbool- of rijkansen schatten.

J. Ziv, A. Lempel, "Compression of individual sequences v~a variable

rate coding", IEEE Trans. Inform.. Theory, IT-24,(5),1978.

P. Elias, "Interval and recency rank source coding: two on-line adap­

tive variable-length schemes", IEEE Trans. Inform.. Theory, IT-33!(1),1987.

F.M.j. Willems, "Repetition times and universal data compres~ion", Proc

7th Symp. Inform.. Theory BeneLux. Noordwijkerhout, The Netherlan~s. 1986.

T.M. Cover. "Enumerative source encoding", IEEE Trans. Inform.. Theory,

IT-19. (1), 1973.

L.D. Davisson, "Universal noiseless coding", IEEE Trans. Inform..

Theory, IT-19,(6),1973.

VI

Door gebruik te maken van de samengestelde bron in bet ontw~rp van een

Lawrence-achtige universele bronkode is een lagere redundantie bereikbaar

dan die welke de originele kode realiseert in bet interessante gebied waar

de entropie laag is.

J .C. Lawrence, "A new universal coding scheme for the binary memory less

source", IEEETrans. Inform.. Theory. IT-23,(4),1977.

Tj.j. Tjalkens, F.M.j. Willems, ''Universal variable- to fixed length
th source coding for binary memoryless sources", Proc 8 Sym.p. Inform.. Theory

Bene lux, Deven ter, The Nether lands, 1987.

