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Abstract We consider the control of repairable spare parts in a network consist-
ing of a central warehouse, a central repair facility, and multiple local warehouses.
Demands for spare parts occur at the local warehouses. If a local warehouse is
out of stock, then an arriving demand is satisfied by an emergency delivery from
the central warehouse or the central repair facility. Such emergency shipments are
common practice for networks that support technical systems with high downtime
costs, and it is important to take them into account when the inventory is opti-
mized. Our main contribution consists of the development of a new approximate
evaluation method. This method gives accurate approximations for the key perfor-
mance measures, as we show via numerical analysis. The method is also fast and
thus can easily be incorporated in existing (greedy) heuristic optimization meth-
ods. Our method outperforms the approximate evaluation method of Muckstadt
and Thomas (1980), as we also show via the numerical analysis. Finally, we show
that the performance of the system is rather insensitive to the leadtime distribu-
tion of the repairs at the central repair facility, which implies that our method
works well for generally distributed repair leadtimes.
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1 Introduction

The management of spare parts becomes more and more important in the capital
goods industry. For many technical systems, downtime costs are high and thus
broken parts have to be replaced by spare parts as quickly as possible. Spare parts
may be kept on stock in networks by the user itself, or by Original Equipment
Manufacturers or third parties. Spare parts networks typically consist of local
warehouses at close distance of installed systems and one or more layers of central
and regional warehouses. In such networks different types of flexibilities have been
built in to react as quickly as possible on failures of technical systems. If a local
warehouse is out of stock at the moment that a demand arrives, then it is made
possible to sent a part from a neighboring local warehouse and/or directly from
a higher level warehouses. These options are denoted as lateral and emergency
shipments, respectively. Which options are used/possible depends on geographical
factors and on the arrangements that have been made with, e.g. with logistics
service providers and external repair centers.

We consider repairable spare parts in a two-echelon system, consisting of a
central warehouse, a central repair facility, and multiple local warehouses. The
repair facility, which is assumed to have an infinite repair capacity, supplies the
central warehouse, and the central warehouse supplies the local warehouses. We
assume a continuous review, one-for-one replenishment policy in the network (i.e.,
base stock control), which is a common policy in the spare parts literature. As
an illustration, we describe the supply chain of spare parts at Nedtrain, a train
maintenance company in the Netherlands. Nedtrain has thousands of different
repairables in its supply chain. The repairables have a wide price range; their
price can reach up to tens of thousands of euros. A failure of a critical repairable
causes downtime of the train until the broken part is replaced by a ready-for-use
part, and downtime costs per hour are very high. Thus the availability of a critical
repairable is very important to Nedtrain. When a demand for a repairable arrives
at a local warehouse, it is supplied by the local warehouse if there is on-hand stock
in the warehouse. If the demanded repairable is not available in the stock of the
local warehouse, then the central warehouse is checked and if there is on-hand stock
in there, an emergency shipment is made from the central warehouse. If even the
central warehouse does not have on-hand stock, an emergency shipment is done
from the repair facility to the local warehouse. An emergency shipment time is
shorter than a normal replenishment time, and as a result, this supply option is
costly. Managing this kind of inventory systems needs quantitative models which
take the use of emergency deliveries into account.

There are many studies on inventory control in spare parts networks. Sher-
brooke (1968) developed the METRIC (Multi-Echelon Technique for Repairable
Item Control) model for two-echelon systems, without lateral and emergency deliv-
eries. Via the METRIC approach, expected backorder levels at all local warehouses
can be computed, under base stock control and given base stock levels. In his
approach, Sherbrooke (1968) approximates the realized replenishment leadtimes
for the local warehouses by independent and deterministically distributed lead-
times. Graves (1985) developed exact and approximate evaluation procedures for
multi-echelon systems. In the approximate method, Graves (1985) fits a negative
binomial distribution at the first two moments of pipeline stocks and this ap-
proximation gives much more accurate results than the METRIC approximation.
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Rustenburg et al. (2003) generalized Graves’ exact and approximate evaluation
methods to multi-echelon, multi-indenture systems. Sherbrooke (1968) also devel-
oped a heuristic optimization method for the minimization of the total stock of
multiple items under a constraint for the total number of backorders in the whole
system. Wong et al. (2007) developed multiple heuristics for the same optimization
problem but then with a constraint per local warehouse. Basten (2010) and Basten
et al. (2009) looked at the integrated optimization of spare parts stocks and the
places where parts are repaired (‘Level Of Repair Analysis’).

Muckstadt and Thomas (1980) extended the work of Sherbrooke (1968) to
systems with emergency deliveries from the central warehouse and central repair
facility. Their focus is on the (heuristic) optimization of the base stock levels,
which builds on the approximate evaluation method introduced in their paper.
They also compare centralized and decentralized decision making. Hausman and
Erkip (1994) improved the decentralized case of Muckstadt and Thomas (1980)
and showed that the performance of the improved single-echelon model is within
3% and 5% of the multi-echelon model of Muckstadt and Thomas (1980).

Axsäter et al. (2004) considered a two-echelon inventory system in which emer-
gency deliveries are done only from the central repair facility to the local ware-
houses. They assumed that the emergency delivery time exceeds regular replenish-
ment leadtimes from the central warehouse to the local warehouses. Different from
the other studies, Axsäter et al. (2004) assumed that the central warehouse also
receives direct customer demands and this stream of demands has priority over
the replenishment orders of the local warehouses. They use critical inventory lev-
els at the central warehouse to differentiate between the demand streams. Axsäter
et al. (2004) also derived an approximate upper and lower bound for the total
system cost and developed a heuristic approach to determine the optimal policy
parameters.

Axsäter (1990) developed an approximate evaluation for two-echelon systems
with lateral shipments. Alfredsson and Verrijdt (1999) considered two-echelon sys-
tems with both lateral and emergency shipments. In case of stock-out at a local
warehouse when a demand occurs, they first check other local warehouses for a lat-
eral shipment, then they check the central warehouse for an emergency shipment,
and lastly they make an emergency shipment from the repair facility if needed.
Because of the lateral shipments, which are possible between all pairs of local
warehouses (full pooling), they can aggregate all stocks in the local warehouses
to calculate the fractions of demands satisfied by emergency shipments from the
central warehouse and repair facility. For the latter step, they make use of a two-
dimensional Markov process for the central and local stock, and its numerically
calculated steady-state distribution. As a result, their approximate method be-
comes very time-consuming for already medium high base stock levels. Alfredsson
and Verrijdt (1999) also executed a sensitivity analysis with respect to the distri-
bution of the repair leadtimes of the central repair facility and the distribution of
the transportation times between the central warehouse and the local warehouses.
They found that the performance parameters are almost 100% insensitive for these
distributions.

Grahovac and Chakravarty (2001) considered the same system as Alfredsson
and Verrijdt (1999), but then without the possibility of an emergency shipment
for the central repair facility (and thus with the possibility of backordering at
the local warehouses). A second difference is that, in case of stock-out at a local
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warehouse when a demand occurs, they first check the central warehouse for an
emergency shipment, and next they check other local warehouses for a lateral
shipment. Lastly, they considered emergency trigger inventory levels at the local
warehouses, i.e, they allow lateral shipments not only when there is a stock-out,
but at arbitrarily chosen levels of net stock. They used a similar iterative solution
methodology as Axsäter (1990). They also showed that sharing of stock (via the
emergency and lateral shipments) often, but not always, reduces overall system
costs. Moreover, the optimal emergency trigger inventory levels were −1 in most of
the cases, which implies that anticipation of future demand is often not beneficial.

Wong et al. (2005) developed a heuristic optimization method for a single-
echelon, multi-location, multi-item system with lateral shipments and under the
assumption of emergency shipments. The emergency shipments may e.g. come from
a central warehouse with practically unlimited stock. The heuristic optimization
builds on exact evaluations via Markov processes. Kranenburg and van Houtum
(2009) considered the same system as Wong but then with a form of partial pool-
ing instead of full pooling. In their system, only a limited number of main local
warehouses is allowed to provide lateral shipments. They developed an approxi-
mate evaluation method in which the demand processes for lateral shipments are
modeled as Poisson overflow processes (which fits in the line started by Axsäter
(1990)). In addition, they developed an effective and efficient greedy heuristic for
the minimization of total inventory and lateral and emergency shipment costs sub-
ject to mean waiting time constraint at the local warehouses. They showed that
using only some of the local warehouses as lateral transshipment sources is enough
to get the most of the benefits of full pooling. Their work has been implemented at
ASML, a manufacturer of lithography machines for the production of semiconduc-
tors. There are many more studies available with respect to systems with lateral
shipments; for an overview, see Paterson et al. (2011).

In some networks, the use of emergency shipments is strongly preferred above
lateral shipments Lateral shipments may be more expensive than emergency ship-
ments, e.g. because the local warehouses are geographically dispersed and/or pro-
cedures for lateral shipments are not well organized. Or, lateral shipments are even
excluded by ensuring that the repair facility can always provide an emergency de-
livery. In the situation of Nedtrain, as discussed above, lateral shipments are not
completely excluded, but they are seen as undesired exceptions, and thus they
are excluded for the inventory planning at the tactical level. Surprisingly, such
networks with emergency shipments but without lateral shipments, have hardly
been studied in the literature. Until now, only the work of Muckstadt and Thomas
(1980) is available for such networks.

Our main contribution is as follows. We introduce a new approximate evalua-
tion method for two-echelon systems with emergency shipments but without lateral
shipments. We will show that our method performs significantly better than the
approximate evaluation of Muckstadt and Thomas (1980). Our method is accurate
and fast, and thus can well be used in greedy heuristic optimization methods for
the multi-item version of our model. Such greedy optimization methods are e.g.
used for the minimization of inventory holding and emergency and lateral shipment
costs subject to aggregate waiting time constraints per local warehouse, and they
have been shown to work very well for closely related systems; see Wong et al.
(2005), Wong et al. (2007), and Kranenburg and van Houtum (2009). Without
doubt, we can assume that they also work well for our system. In our numerical
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analysis, we also show that the performance of our system is almost 100% insensi-
tive to the distribution of the repair leadtimes at the central repair facility, which
implies that our method works well for generally distributed repair leadtimes.

Notice that exact evaluation for the system studied in this paper would be
possible via a Markov analysis, under the assumption of exponential distributions
for the repair leadtimes and the transportation times from the central warehouse
to the local warehouses. But that would require a numerical solution of multi-
dimensional Markov processes and then we would obtain long computation times
for already medium high base stock levels.

Notice also that, although we use the terminology of repairable spare parts in
this paper, our model applies more generally. Consumable spare parts fit equally
well into the same framework. The central repair facility is then replaced by an
external supplier.

The organization of this paper is as follows. In Section 2, we described our
model. In Section 3, we describe our approximate evaluation method and we sum-
marize the method of Muckstadt and Thomas (1980). Next, in section 4, we test
our method via a numerical analysis and we execute the sensitivity analysis with
respect to the repair lead time distribution. We conclude in Section 5.

2 Model Description

We consider a single-item, two-echelon inventory model with one central ware-
house, denoted by index 0, and N (≥ 0) local warehouses. Let N = {1, 2, . . . , N}
be the set of local warehouses. In addition, there is a central, external repair fa-
cility, where all failed parts are being returned and repaired.

Demands for spare parts occur at the local warehouses. We assume that de-
mands at local warehouse n arrive according to a Poisson process with a constant
rate mn (> 0). Each demand at a local warehouse n stems from a failure of a part
in a technical system. For each demand, one of the following procedures is applied
(see also Figure 1):

1. If local warehouse n has a part on stock, then it satisfies the demand itself. In
this case, there is no delay in satisfying the demand. The failed part is sent to
the repair facility (it may flow via the local and central warehouse). Further,
the local warehouse places a replenishment order for one ready-for-use part at
the central warehouse, and the central warehouse places an order for one unit
at the repair facility.

2. If local warehouse n is out of stock and there is at least one part on stock at the
central warehouse, then the demand is satisfied from the central warehouse. In
this case, the part is delivered via a fast emergency shipment, which leads to a
delay in satisfying the demand of on average tCW

n time units. The failed part
is sent to the repair facility, and at the same time the central warehouse places
an order for one ready-for-use unit at the repair facility.

3. If both local warehouse n and the central warehouse is out of stock, then a
part is delivered from the external repair facility. We assume that the repair
facility has always a possibility to provide a spare part. E.g., it may finish the
repair of one of the parts in the repair shop via an emergency procedure. This
leads to a delay of on average tRF

n time units. The failed part is sent to the
repair facility.
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Fig. 1: Demand fulfillment process

Under these procedures, the inventory position remains at a constant level at each
of the warehouses. Let Sn be the constant level for warehouse n, n ∈ N ∪ {0}.
Equivalently, we may say that the inventory is controlled by a base stock policy,
and Sn is the base stock level at warehouse n.

The replenishment leadtime for local warehouse n is deterministic and denoted
by tn. Obviously, replenishments get delayed when the central warehouse is out of
stock. The external repair facility is assumed to follow a given planned leadtime,
denoted by t0. This implies that every order for a ready-for-use part placed by the
central warehouse will be delivered after exactly t0 time units. This is equivalent
to modeling the repair facility as an ample server with deterministic service times
t0.

The main performance measures that need to be determined are directly related
to the demand streams at the local warehouse. For the demand stream at local
warehouse n ∈ N , we want to determine:

– βn: the steady-state fraction of demands that is satisfied by local warehouse n

itself. This measure is also denoted as the fill rate of local warehouse n.
– θn: the steady-state fraction of demands that is directly satisfied by the central

warehouse.
– γn: the steady-state fraction of demands that is directly satisfied by the central

repair facility.

Notice that, by definition,

βn + θn + γn = 1, ∀n ∈ N . (1)

The fractions βn, θn, and γn are visualized in Figure 1.

In the rest of this paper, we will focus on the (approximate) evaluation of the
fractions βn, θn, and γn. In optimization problems, one often minimizes relevant
costs subject to constraints that are related to downtime or availability of the
supported technical systems. E.g., one may have a constraint in terms of the mean
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expected waiting/delay time until demands at local warehouse n are fulfilled, for
which it holds that

Wn = θnt
CW
n + γnt

RF
n .

A typical total cost function would consist of inventory holding costs (for all parts
in stock and in repair or in transport from the central warehouse to a local ware-
house) and extra costs for demands fulfilled from the central warehouse and the
repair facility:

C
Total = h

N
∑

n=0

Sn +
N
∑

n=1

mn(θnC
CW
n + γnC

RF
n ),

where h represents the inventory holding cost parameter, CCW
n represents the

costs that are made for an emergency shipment from the central warehouse to
local warehouse n, and CRF

n represents the costs made for an emergency delivery
from the repair facility to local warehouse n. For both theWn and CTotal, extended
expressions are obtained when one wants to optimize over multiple items. As we
see, quantities such as the waiting times Wn and total costs CTotal are easily
obtained from the βn, θn, and γn.

3 Solution Procedures

In this part, we describe our new approximate evaluation method and we summa-
rize the approximate evaluation method of Muckstadt and Thomas (1980).

3.1 Approximate Evaluation Method

Our approximate evaluation procedure starts with an iterative solution procedure
which iteratively calculates the fill rates βn at the local warehouses and the ex-
pected delay at the central warehouse. In each iteration, first the fill rates βn are
calculated under a given delay at the central warehouse, and next the expected de-
lay at the central warehouse is calculated under given fill rates βn. Below, we first
describe these two steps per iteration. Then we summarize the iterative procedure.
Finally, we give the approximations for the fractions θn and γn.

Calculating the fill rates

The replenishment leadtime of local warehouse n is given by tn. This time may be
seen as the planned leadtime. When a replenishment order is placed at the central
warehouse, its fulfilment will be delayed, and thus the realized leadtime is longer.
Let W0 be the mean delay for an arbitrary replenishment order at the central ware-
house. Notice, that replenishment orders from different local warehouse experience
statistically the same delays. Let LTn denote the mean of realized replenishment
leadtimes for local warehouse n. Then,

LTn = tn +W0. (2)
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These realized leadtimes depend on the on-hand stock distribution at the central
warehouse. The higher the basestock level at the central warehouse, the shorter
the mean delay W0. And, higher basestock levels at the local warehouses have a
decreasing effect on the stream of requests for emergency shipments at the central
warehouse and thus also a decreasing effect on the stream of emergency deliver-
ies from the repair facility (i.e., more demand has to be satisfied by the central
warehouse), which then may lead to a slightly longer mean delay. In our analysis,
all basestock levels are given, but the basestock levels at the local warehouses are
correlated with the fill rates βn and thus W0 depends on the βn, and vice versa.
For the initial computation of the βn, we assume a zero delay, i.e., W0 = 0.

The fill rates βn are computed per local warehouse n ∈ N . We pretend that
the realized leadtimes for replenishment orders at local warehouse n are indepen-
dent and identically distributed (so, this is an approximate step). Demands arrive
according to a Poisson process with rate mn. Because of the emergency deliveries
from the central warehouse and the repair facility, there is no backordering of de-
mand. From the perspective of the local warehouse n, demand that is not satisfied
from stock, can be seen as lost demand. This implies that the local warehouse n

behaves the same as an Erlang loss system (i.e., an M |G|c|c queue). Each unit
of stock may be seen as a server that is occupied for on average LTn time units
when it servers a demand. In fact, the steady-state behavior of the number of out-
standing replenishment orders (= Sn minus the on-hand stock) is identical to the
steady-state behavior of the number of occupied servers in an Erlang loss system
with Sn servers, arrival rate mn, and mean service time LTn. As a result, the fill
rate βn may be obtained as the percentage of accepted customers in the equivalent
Erlang loss system.

For a general Erlang loss system with c servers and offered load ρ (the product
of the arrival rate and the mean service time), let L(c, ρ) denote the Erlang loss
probability (i.e., the percentage of customers that is not served). It is known that

L(c, ρ) =
ρc

c!
c
∑

x=0

ρx

x!

The fill rate at local warehouse n is then obtained by the following formula:

βn = 1− L(Sn, (mn · LTn)) (3)

Calculating the Expected Delay in the Central Warehouse

Suppose now that values for the fill rates βn are known. We now want to estimate
the mean delay W0 at the central warehouse.

We model the process for the inventory level at the central warehouse as a
birth-death process, i.e., a continuous-time Markov process with states x ≤ S0.
Notice that the inventory level is equal to the on-hand stock minus the backordered
replenishment orders from the local warehouses. Per local warehouse n, there is
a demand stream of replenishment orders and a demand stream for emergency
shipments. The first demand stream has rate mnβn and is assumed to be a Poisson
process (that this process is a Poisson process is an approximation). Demands
from this stream are immediately satisfied if the central warehouse has at least
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one part on stock (i.e., a strictly positive inventory level) and otherwise they are
backordered. The second stream has rate mn(1 − βn) and is also assumed to be
a Poisson process (this is also an approximation). Demands from this stream are
immediately satisfied if the central warehouse has at least one part on stock and
otherwise they are lost (i.e., they will be satisfied by the repair facility via an
emergency delivery). All above demand streams are assumed to be independent of
each other and independent of the actual inventory level at the central warehouse.
Obviously, this is also an approximate step. As a result of the above assumptions,
the total demand stream at the central warehouse is a Poisson process with rate

∑

n∈N

(mnβn +mn(1− βn)) =
∑

n∈N

mn = m0

as long as the inventory level at the central warehouse is strictly positive, and it
is a Poisson process with rate

m
′
0 =

∑

n∈N

mnβn (4)

when the inventory level is zero or strictly negative.
A second approximate step that we make is that the deterministic leadtimes

t0 at the central warehouse are replaced by exponential leadtimes with the same
mean, i.e., by exponential times with rate µ0 = 1

t0
. It will be shown that the

steady-state behavior of the whole system is rather insensitive for the probabil-
ity distribution of these repair leadtimes; see Subsection 4.2. As stated in the
introduction, a similar insensitivity was also observed by Alfredsson and Verrijdt
(1999) for their two-echelon system with lateral and emergency shipments. Hence,
this approximation will not lead to strong deviations, and it facilitates that the
inventory level process can be modeled as a birth-death process.

A last step that we make is that we truncate the state space of the birth-death
process. Because backorders can only occur when replenishment orders are placed,
and the number of outstanding replenishment orders at local warehouse n can
never be more than Sn, the number of backorders at the central warehouse can
never be more than S̄ =

∑

n∈N
Sn. Hence, we truncate the states x with x < −S̄.

This completes the construction of the birth-death process; the resulting process
is depicted in Figure 2.

Fig. 2: Birth-death process for the inventory level at the central warehouse

The mean delay W0 now follows from the steady-state distribution of the birth-
death process. Let the steady-state distribution be denoted by {πx}. The steady-
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state probabilities satisfy the following (steady-state) equations:

πx =

{

m′

0

(S0−x)µ0

.πx+1, −S̄ ≤ x < 0
m0

(S0−x)µ0

.πx+1, 0 ≤ x < S0

(5)

By these equations, they can all be expressed as a function of πS0
and πS0

itself
follows from the normalization. Next, the mean number of backordered demands,
B0, follows from

B0 =

−1
∑

x=−S̄

(−x)πx, (6)

and, by the Little’s law, we find (notice that the rate for the total stream of
replenishment orders is m′

0)

W0 =
B0

m′
0

(7)

Iterative algorithm for the approximation method

We obtain the following iterative algorithm for the computation of the fill rates
βn, n ∈ N , and the mean delay W0:

Step 1: W0 := 0.
Step 2: Compute βn via (2) and (3), ∀n ∈ N .
Step 3: Compute W0 via (4), (5), (6), and (7).
Step 4: Repeat Step 2 and Step 3 until W0 does not change more than ε.

With respect to the convergence of this algorithm, we have no theoretical
results, but, as often with this type of algorithms, we obtained convergence for all
instances used in our numerical study. The setup of the numerical study and the
outcomes are reported in Section 4. Here, we pay attention to the convergence.
Figure 3a and 3b show convergence of W0 and βn for instance 62 of the symmetric
instances, i.e., the instance with N = 20, mn = 0.1 demands per day for all n ∈ N ,
t0 = 20 days, tn = 3 days for all n ∈ N , S0 = 40, Sn = 1 for all n ∈ N .

As we see in Figure 3a, the initial value of W0 is 0. In this case the correspond-
ing βn becomes the largest because the lower the expected delay in the central
warehouse, the lower the lead times and the higher the fill rate at each local ware-
house. In the following iteration, W0 becomes the largest, because the fill rates βn

are largest and the higher the fill rates, the higher the number of replenishment
orders from the central warehouse and the higher the delay for these orders. Af-
terwards, βn becomes the lowest as seen in iteration number 2 in Figure 3b. Then,
W0 becomes the second lowest, and so on. At each even numbered iteration, the
βn and W0 decrease, and at each odd numbered iteration, the βn and W0 increase.
At each iteration, the differences of the values for the βn and W0 with the values
of the previous iteration decrease, and we obtain convergence.

The algorithm is robust with respect to the initial value of W0. We experi-
mented with different starting values, and for all possible initial values of W0, we
obtained convergence.
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Fig. 3: Convergence of W0 and βn in the instance 62 of symmetric instances

Calculation of the θn and γn

We finally approximate the fractions of demands satisfied by an emergency delivery
from the central warehouse and the repair facility, respectively. Let ILn and IL0

be random variables which denote the inventory level in local warehouse n and
the central warehouse, respectively. Then, it holds that

θn = P(IL0 > 0, ILn = 0)

By conditioning to “IL0 > 0”, we obtain

θn = P(ILn = 0|IL0 > 0) ·P(IL0 > 0).

The probability P(IL0 > 0) may be estimated from the birth-death process to
computeW0 in the last iteration of the iterative algorithm; we estimateP(IL0 > 0)
by

∑S0

x=1 πx =: β0. For the conditional probability P(ILn = 0|IL0 > 0), we
pretend that the central warehouse has a strictly positive inventory level for a
very long time. Then the behavior of the inventory level at local warehouse n will
be conform an Erlang loss system with mean service times tn instead of LTn (see
the step to compute the fill rates βn in the iterative algorithm). This leads to the
following approximation:

P(ILn = 0|IL0 > 0) ≈ L(Sn,mntn).

For θn, we thus obtain
θn ≈ β0L(Sn,mntn). (8)

Finally, γn can be calculated by substituting βn and θn into (1).

3.2 The method of Muckstadt and Thomas (1980)

We briefly summarize the approximate evaluation method of Muckstadt and Thomas
(1980), which is a sequential solution procedure without iterations. It first approx-
imates the mean delay at the central warehouse, and after that the βn, θn, and
γn at the local warehouses are computed.
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First consider the central warehouse in isolation. They ignore the effect of
demands that are fulfilled by the repair facility via an emergency delivery. They
assume that the total demand stream is a Poisson process with rate m0 and the
number of backordered demands can grow to infinity. The steady-state behavior
is then equal to that of an M |G|∞ queue with arrival rate m0 and mean service
time t0. By Palm’s theorem, the steady-state probability for x occupied servers
within this queueing system equals

πx =
1

x!
.(m0.t0)

x
.e

−(m0.t0), x ≥ 0.

The probability distribution for the inventory level IL0 at the central warehouse
is then approximated by:

P(IL0 = y) = πS0−y, y ≤ S0.

Next, the mean on-hand stock I0, the mean number of backorders B0, and the
mean delay W0 are obtained by:

I0 =

S0
∑

y=1

yπS0−y, B0 =

−1
∑

y=−∞

−xπS0−y = I0−E(IL0) = I0−(S0−m0t0), W0 =
B0

m0
.

The second step for the computation of the βn, θn, and γn is executed as
follows. Per local warehouse n ∈ N , first the realized replenishment leadtime is
approximated by LTn = tn +W0 (as in (2) in our method). Then, the fill rate βn

is approximated by βn = 1− L(Sn, (mn · LTn)) (as in (3)). The fractions θn and
γn are approximated by

θn = β0(1− βn), (9)

γn = (1− β0)(1− βn) = 1− βn − θn, (10)

where β0 = P(IL0 > 0) =
∑S0

y=1 πS0−y.
When comparing our new approximate evaluation method to the method of

Muckstad and Thomas, we see differences at two points:

– The approximation of W0: There we use a more refined approximation, where
we take into account that unfilled requests for emergency deliveries at the
central warehouse are satisfied by the repair facility and thus they are lost for
the central warehouse itself. To incorporate this effect, we make use of the fill
rates βn, and thus we need to iterate.

– The approximation for θn: In our pproximation, we use equation (8). use equa-
tion (9), which is equivalent to approximating θn = P(IL0 > 0, ILn = 0)
by P(IL0 > 0)P(ILn = 0), i.e., by assuming that the inventory levels at the
central warehouse and local warehouse n behave independently. In our approx-
imation, we use equation (8), where we take the dependency into account in a
certain way.

4 Numerical Analysis

This section consists of two parts. We first test the accuracy of our approxima-
tion method in Subsection 4.1. After that, we investigate the sensitivity of the
performance for the repair leadtime distribution in Subsection 4.2.
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4.1 Accuracy of the Approximate Evaluation Method

In this subsection, we compare our approximation method with exact results ob-
tained by simulation and with the method of Muckstadt and Thomas (1980).

We consider 96 different instances for our numerical experiment. The input
parameters are the number of local warehouses (N), the demand rates mn, the
repair lead time t0, the planned replenishment leadtimes tn of the local warehouses,
and the base stock levels Sn at the central warehouse and all local warehouses.
Among all instances, 64 of them are symmetric, where the mn, Sn, and tn are the
same for all local warehouses, and the remaining 32 instances are asymmetric.

In both the symmetric and asymmetric instances, we take the following num-
bers for N : 2, 4, 10, 20. We choose a wide range for N , because there are companies
keeping spare parts on stock in only a couple of local warehouses as well as com-
panies with many local warehouses. In the symmetric instances, 3 different values
for mn are used: 0.01, 0.04, and 0.1 demands per day. The tn is equal to 3 days in
each instance, and two values are assumed for t0: 5 and 20 days. The base stock
levels Sn are chosen such that the performance measures of the system are within
different ranges.

In the asymmetric cases, we determined the mn and tn for all instances by the
following formulas:

mn = mn−1 +∆m, n ≥ 2,

tn = tn−1 +∆t, n ≥ 2,

where ∆m and ∆t are chosen constants per instance. The parameters m1, t1, ∆m,
and ∆t of each instance can be seen in Table 2. We choose the base stock levels
Sn from the set {1, 2, 3}, such that they are nondecreasing in n (because of the
increasing mn). The column with “Sn = 1”, “Sn = 2” and “Sn = 3” of Table
2 shows the local warehouses with base stock level 1, 2, and 3, respectively. For
instance, the value of instance 21 at the column “Sn = 1” is “1− 3”, which means
that the base stock level is 1 for the local warehouses 1, 2, and 3.

We implemented the simulation in the Arena Simulation Software. At each
instance, we determined the warm-up period and total run time such that each
local warehouse will get at least 10.000 demands in the warm-up period and 50.000
demands in total. We made 100 replication runs at each instance.

Table 1 and Table 2 show the results of the symmetric and asymmetric in-
stances respectively. M1, M2, and M3 represent the exact results (via simula-
tion), the results of our approximation method, and the results of the approximate
method of Muckstadt and Thomas (1980), respectively. In Table 1, the exact re-
sults can be seen with their 95% confidence intervals. As one can see, the simulated
results have been determined with a high absolute precision. In Table 2, the re-
sults show the average values of the performance measures with respect to all local
warehouses. We calculated the average values for each instance by the following
formulas:

β
aver
n =

1

N

N
∑

n=1

βn , θ
aver
n =

1

N

N
∑

n=1

θn , γ
aver
n =

1

N

N
∑

n=1

γn ,
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The computation time for both method M2 and method M3 is quite short.
The average computation time per instance for the methods M2 and M3 is less
than 4 and 2 milliseconds, respectively, at an Intel Core2 Duo 3GHz computer.

The results in Tables 1 and 2, show that our method M2 clearly ourperforms
method M3 with respect to the approximation of the βn. When M3 is accurate,
M2 is also accurate. Method M3 has large deviations from the exact values in
several cases, and M2 is still quite close to the exact values in those cases. With
respect to the approximation of the θn and γn, the picture is less clear, but it is
clearer when we compute the differences for groups of instances.

In Tables 3 and 4, we see differences M2 and M1, and M3 and M1, for the
symmetric and asymmetric instances, respectively. For groups of instances with 2,
4, 10, and 20 local warehouses, we have computed the average of the difference,
the average of the absolute difference and the maximum absolute difference re-
spectively. In the asymmetric instances, we computed the average of the absolute
differences of each performance measure in the following way. We first computed
the absolute differences for each performance measure at each warehouse and in-
stance. Then we computed the average values of the absolute differences for all
warehouses at each instance, and then took the average over all instances with 2,
4, 10, 20 warehouses.

According to the results, our approximation method M2 is accurate at each of
the performance measures. The absolute differences over all instances for βn, θn,
and γn are less than 0.0067, 0.0129, and 0.0114, respectively. For βn, the absolute
differences are low for all values of N . For θn and γn, very low absolute differences
are obtained for high values of N and larger absolute differences are obtained for
low values of N . The latter is most likely due to the stronger dependence between
inventory levels at the central and local warehouse(s) when N is low.

With respect to the average difference, our method M2 gives better results
than method M3 for βn and θn. However, for γn, method M3 gives slightly better
results. With respect to average absolute and maximum absolute differences, M2

gives much better results than M3 for all performance measures. This means that
our method M2 dominates method M3.

An interesting result is that both M2 and M3 has a tendency to overestimate
θn. For the symmetric instances, M2 overestimated θn at each instance and M3

overestimated θn in 56 of the 64 instances. And similar results can be observed for
the asymmetric instances (this follows from the results in Table 4 for θavern , and
we see this also when looking at the underlying values for the θn). We can analyze
this result by considering (8) and (9). Table 5 depicts the values of β0 (i.e., the
fraction of time that the central warehouse has a strictly positive inventory level)
as obtained by M1, M2, and M3, respectively. The exact results (M1) are given
with their 95% confidence intervals. In Table 6, the average difference between
M2 and M1 with respect to β0, the average of the absolute difference, and the
maximum absolute difference are given, and similarly for the differences between
M3 and M1.
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Table 1: Results of the symmetric instances

βn θn γn

Ins. N mn (t0, tn) S0 Sn M1 M2 M3 M1 M2 M3 M1 M2 M3
1 2 0.01 (5,3) 1 1 0.9696 ± 0.0002 0.9686 0.9686 0.0004 ± 0.0000 0.0264 0.0284 0.0300 ± 0.0002 0.0050 0.0030
2 (20,3) 1 1 0.9454 ± 0.0002 0.9401 0.9388 0.0003 ± 0.0000 0.0196 0.0410 0.0542 ± 0.0002 0.0403 0.0202
3 0.04 (5,3) 1 1 0.8775 ± 0.0003 0.8671 0.8657 0.0046 ± 0.0001 0.0725 0.0900 0.1179 ± 0.0003 0.0604 0.0443
4 2 1 0.8915 ± 0.0003 0.8895 0.8894 0.0813 ± 0.0002 0.1006 0.1038 0.0272 ± 0.0002 0.0098 0.0068
5 1 2 0.9893 ± 0.0001 0.9897 0.9897 0.0002 ± 0.0000 0.0043 0.0069 0.0105 ± 0.0001 0.0060 0.0034
6 (20,3) 1 1 0.7164 ± 0.0004 0.7083 0.6575 0.0022 ± 0.0000 0.0278 0.0692 0.2814 ± 0.0004 0.2639 0.2734
7 3 1 0.8704 ± 0.0003 0.8595 0.8510 0.0640 ± 0.0002 0.0855 0.1167 0.0656 ± 0.0002 0.0550 0.0323
8 2 2 0.9645 ± 0.0002 0.9707 0.9697 0.0001 ± 0.0000 0.0034 0.0159 0.0354 ± 0.0002 0.0259 0.0144
9 0.1 (5,3) 1 1 0.7141 ± 0.0004 0.6894 0.6739 0.0152 ± 0.0001 0.0952 0.1200 0.2707 ± 0.0004 0.2154 0.2061
10 2 1 0.7581 ± 0.0004 0.7445 0.7397 0.1211 ± 0.0003 0.1744 0.1915 0.1209 ± 0.0003 0.0812 0.0688
11 1 2 0.9293 ± 0.0003 0.9282 0.9269 0.0015 ± 0.0000 0.0126 0.0269 0.0692 ± 0.0002 0.0592 0.0462
12 4 2 0.9663 ± 0.0002 0.9661 0.9661 0.0284 ± 0.0002 0.0328 0.0332 0.0053 ± 0.0001 0.0010 0.0006
13 (20,3) 1 1 0.4428 ± 0.0004 0.4741 0.3560 0.0030 ± 0.0001 0.0206 0.0118 0.5542 ± 0.0004 0.5053 0.6322
14 2 1 0.5592 ± 0.0004 0.5535 0.4246 0.0174 ± 0.0001 0.0520 0.0527 0.4234 ± 0.0004 0.3945 0.5227
15 4 2 0.8964 ± 0.0003 0.8957 0.8764 0.0054 ± 0.0001 0.0159 0.0536 0.0982 ± 0.0003 0.0884 0.0701
16 4 3 0.9629 ± 0.0002 0.9741 0.9723 0.0002 ± 0.0000 0.0015 0.0120 0.0369 ± 0.0002 0.0244 0.0157
17 4 0.01 (5,3) 1 1 0.9675 ± 0.0002 0.9665 0.9665 0.0011 ± 0.0000 0.0239 0.0274 0.0314 ± 0.0002 0.0096 0.0061
18 (20,3) 1 1 0.9229 ± 0.0003 0.9170 0.9155 0.0007 ± 0.0000 0.0134 0.0380 0.0765 ± 0.0003 0.0697 0.0465
19 0.04 (5,3) 1 1 0.8567 ± 0.0003 0.8480 0.8458 0.0087 ± 0.0001 0.0500 0.0693 0.1346 ± 0.0003 0.1020 0.0849
20 3 1 0.8918 ± 0.0003 0.8908 0.8907 0.0919 ± 0.0003 0.1022 0.1041 0.0163 ± 0.0001 0.0070 0.0052
21 2 2 0.9920 ± 0.0001 0.9921 0.9921 0.0003 ± 0.0000 0.0052 0.0064 0.0077 ± 0.0001 0.0027 0.0015
22 (20,3) 1 1 0.6409 ± 0.0004 0.6369 0.5952 0.0016 ± 0.0000 0.0095 0.0165 0.3575 ± 0.0004 0.3536 0.3883
23 3 1 0.8082 ± 0.0004 0.7853 0.7587 0.0277 ± 0.0002 0.0477 0.0917 0.1641 ± 0.0004 0.1670 0.1496
24 3 2 0.9591 ± 0.0002 0.9644 0.9631 0.0005 ± 0.0000 0.0025 0.0140 0.0404 ± 0.0002 0.0332 0.0229
25 0.1 (5,3) 1 1 0.6635 ± 0.0004 0.6498 0.6314 0.0167 ± 0.0001 0.0453 0.0499 0.3198 ± 0.0004 0.3049 0.3187
26 2 1 0.7272 ± 0.0004 0.7094 0.6967 0.0634 ± 0.0002 0.1082 0.1231 0.2094 ± 0.0004 0.1825 0.1802
27 4 2 0.9636 ± 0.0002 0.9630 0.9629 0.0179 ± 0.0001 0.0288 0.0318 0.0184 ± 0.0001 0.0082 0.0053
28 4 3 0.9959 ± 0.0001 0.9961 0.9961 0.0008 ± 0.0000 0.0029 0.0034 0.0033 ± 0.0001 0.0011 0.0006
29 (20,3) 1 1 0.3778 ± 0.0003 0.4033 0.3279 0.0008 ± 0.0000 0.0043 0.0002 0.6214 ± 0.0003 0.5925 0.6719
30 2 1 0.4492 ± 0.0003 0.4597 0.3570 0.0039 ± 0.0001 0.0131 0.0019 0.5468 ± 0.0004 0.5272 0.6410
31 4 2 0.7790 ± 0.0004 0.7798 0.7281 0.0008 ± 0.0000 0.0032 0.0115 0.2201 ± 0.0004 0.2170 0.2604
32 6 3 0.9468 ± 0.0003 0.9557 0.9514 0.0002 ± 0.0000 0.0007 0.0093 0.0530 ± 0.0003 0.0436 0.0393
33 10 0.01 (5,3) 2 1 0.9696 ± 0.0002 0.9693 0.9693 0.0189 ± 0.0001 0.0265 0.0279 0.0115 ± 0.0001 0.0041 0.0028
34 (20,3) 3 1 0.9540 ± 0.0002 0.9515 0.9507 0.0131 ± 0.0001 0.0199 0.0333 0.0329 ± 0.0002 0.0286 0.0159
35 0.04 (5,3) 1 1 0.8200 ± 0.0004 0.8162 0.8107 0.0071 ± 0.0001 0.0177 0.0256 0.1729 ± 0.0004 0.1661 0.1637
36 3 1 0.8807 ± 0.0003 0.8773 0.8758 0.0545 ± 0.0002 0.0744 0.0840 0.0648 ± 0.0002 0.0483 0.0402
37 4 2 0.9928 ± 0.0001 0.9928 0.9928 0.0031 ± 0.0001 0.0055 0.0061 0.0041 ± 0.0001 0.0017 0.0010
38 (20,3) 4 1 0.7191 ± 0.0004 0.7062 0.6553 0.0063 ± 0.0001 0.0128 0.0146 0.2746 ± 0.0004 0.2810 0.3301
39 10 1 0.8751 ± 0.0003 0.8671 0.8602 0.0733 ± 0.0003 0.0807 0.1002 0.0515 ± 0.0002 0.0521 0.0396
40 6 2 0.9545 ± 0.0002 0.9584 0.9556 0.0005 ± 0.0000 0.0013 0.0085 0.0450 ± 0.0002 0.0403 0.0359
41 0.1 (5,3) 2 1 0.6563 ± 0.0004 0.6496 0.6232 0.0150 ± 0.0001 0.0243 0.0152 0.3287 ± 0.0004 0.3261 0.3616
42 5 1 0.7440 ± 0.0004 0.7345 0.7206 0.1019 ± 0.0003 0.1237 0.1231 0.1541 ± 0.0004 0.1418 0.1563
43 8 2 0.9646 ± 0.0002 0.9643 0.9642 0.0237 ± 0.0002 0.0291 0.0310 0.0117 ± 0.0001 0.0066 0.0048
44 10 3 0.9966 ± 0.0001 0.9966 0.9966 0.0027 ± 0.0001 0.0032 0.0033 0.0007 ± 0.0000 0.0002 0.0001
45 (20,3) 10 1 0.5911 ± 0.0004 0.5705 0.4346 0.0169 ± 0.0001 0.0285 0.0028 0.3921 ± 0.0004 0.4010 0.5625
46 16 1 0.7047 ± 0.0004 0.6774 0.5745 0.0828 ± 0.0003 0.0936 0.0666 0.2125 ± 0.0004 0.2290 0.3589
47 17 2 0.9079 ± 0.0003 0.9043 0.8833 0.0068 ± 0.0001 0.0100 0.0258 0.0853 ± 0.0003 0.0856 0.0909
48 25 2 0.9613 ± 0.0002 0.9608 0.9601 0.0263 ± 0.0002 0.0286 0.0337 0.0124 ± 0.0001 0.0106 0.0063
49 20 0.01 (5,3) 3 1 0.9699 ± 0.0002 0.9698 0.9698 0.0224 ± 0.0001 0.0268 0.0278 0.0077 ± 0.0001 0.0034 0.0024
50 (20,3) 3 1 0.9186 ± 0.0003 0.9155 0.9112 0.0040 ± 0.0001 0.0077 0.0211 0.0774 ± 0.0003 0.0767 0.0676
51 0.04 (5,3) 2 1 0.8263 ± 0.0003 0.8240 0.8160 0.0085 ± 0.0001 0.0139 0.0169 0.1653 ± 0.0003 0.1621 0.1672
52 5 1 0.8813 ± 0.0003 0.8789 0.8768 0.0578 ± 0.0002 0.0706 0.0775 0.0609 ± 0.0002 0.0505 0.0457
53 7 2 0.9931 ± 0.0001 0.9932 0.9932 0.0044 ± 0.0001 0.0057 0.0061 0.0025 ± 0.0001 0.0011 0.0008
54 (20,3) 10 1 0.7708 ± 0.0004 0.7598 0.7022 0.0101 ± 0.0001 0.0154 0.0129 0.2191 ± 0.0004 0.2248 0.2849
55 20 1 0.8854 ± 0.0003 0.8823 0.8784 0.0871 ± 0.0003 0.0903 0.0987 0.0275 ± 0.0002 0.0274 0.0228
56 15 2 0.9783 ± 0.0002 0.9804 0.9796 0.0016 ± 0.0000 0.0024 0.0075 0.0201 ± 0.0001 0.0171 0.0129
57 0.1 (5,3) 5 1 0.6847 ± 0.0004 0.6796 0.6443 0.0195 ± 0.0001 0.0264 0.0104 0.2958 ± 0.0004 0.2940 0.3453
58 10 1 0.7534 ± 0.0004 0.7480 0.7339 0.1227 ± 0.0003 0.1350 0.1218 0.1239 ± 0.0003 0.1170 0.1442
59 12 2 0.9620 ± 0.0002 0.9618 0.9614 0.0191 ± 0.0001 0.0238 0.0269 0.0189 ± 0.0001 0.0144 0.0117
60 15 3 0.9965 ± 0.0001 0.9965 0.9965 0.0025 ± 0.0001 0.0031 0.0032 0.0010 ± 0.0000 0.0004 0.0003
61 (20,3) 30 1 0.7053 ± 0.0004 0.6850 0.5537 0.0641 ± 0.0002 0.0718 0.0193 0.2305 ± 0.0004 0.2433 0.4270
62 40 1 0.7544 ± 0.0004 0.7457 0.7013 0.1596 ± 0.0003 0.1613 0.1431 0.0860 ± 0.0003 0.0930 0.1556
63 30 2 0.8869 ± 0.0003 0.8855 0.8475 0.0024 ± 0.0001 0.0039 0.0066 0.1107 ± 0.0003 0.1107 0.1459
64 40 2 0.9481 ± 0.0002 0.9464 0.9402 0.0160 ± 0.0001 0.0181 0.0286 0.0360 ± 0.0002 0.0355 0.0312
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Table 2: Results of the asymmetric instances

βaver

n
θaver

n
γaver

n

Instance N m1 ∆m (t0, t1) ∆t S0 Sn = 1 Sn = 2 Sn = 3 M1 M2 M3 M1 M2 M3 M1 M2 M3
1 2 0.01 0.01 (5,3) 0 1 1-1 2-2 - 0.9831 0.9827 0.9827 0.0004 0.0133 0.0149 0.0165 0.0040 0.0024
2 0.04 0.04 (5,3) 0 2 1-1 2-2 - 0.9323 0.9301 0.9300 0.0342 0.0571 0.0615 0.0335 0.0128 0.0085
3 0.04 (20,3) 0 2 1-1 2-2 - 0.8223 0.8181 0.7886 0.0081 0.0230 0.0652 0.1696 0.1589 0.1462
4 0 (5,2) 1 3 1-1 2-2 - 0.9575 0.9573 0.9573 0.0396 0.0422 0.0424 0.0029 0.0005 0.0003
5 0.1 0.1 (5,3) 0 3 1-1 2-2 - 0.8277 0.8198 0.8180 0.1009 0.1361 0.1472 0.0714 0.0441 0.0348
6 0.1 (5,3) 0 4 1-1 2-2 - 0.8326 0.8301 0.8297 0.1410 0.1556 0.1591 0.0264 0.0143 0.0112
7 0.1 (20,3) 0 4 1-1 2-2 - 0.6722 0.6602 0.5376 0.0236 0.0490 0.0699 0.3042 0.2908 0.3925
8 0 (20,2) 1 4 1-1 2-2 - 0.8094 0.7864 0.7400 0.0339 0.0566 0.1127 0.1567 0.1570 0.1473
9 4 0.01 0.01 (5,3) 0 3 1-4 - - 0.9310 0.9307 0.9307 0.0644 0.0679 0.0683 0.0046 0.0014 0.0010
10 0.04 0.01 (5,3) 0 3 1-2 3-4 - 0.9306 0.9296 0.9295 0.0490 0.0607 0.0635 0.0205 0.0097 0.0070
11 0.01 (20,3) 0 3 1-2 3-4 - 0.8131 0.8035 0.7780 0.0079 0.0165 0.0411 0.1790 0.1800 0.1809
12 0 (5,2) 0.5 2 1-2 3-4 - 0.9500 0.9483 0.9482 0.0220 0.0365 0.0419 0.0280 0.0152 0.0099
13 0.1 0.02 (5,3) 0 2 1-1 2-4 - 0.8423 0.8363 0.8292 0.0140 0.0312 0.0457 0.1436 0.1325 0.1251
14 0.02 (5,3) 0 4 1-1 2-4 - 0.8891 0.8851 0.8838 0.0556 0.0764 0.0855 0.0553 0.0385 0.0307
15 0.02 (20,3) 0 10 1-1 2-3 4-4 0.8596 0.8478 0.8238 0.0335 0.0423 0.0720 0.1069 0.1099 0.1041
16 0 (20,2) 0.5 5 1-1 2-3 4-4 0.8009 0.7924 0.7476 0.0051 0.0103 0.0251 0.1940 0.1973 0.2272
17 10 0.01 0.01 (5,3) 0 6 1-8 9-10 - 0.9002 0.8997 0.8995 0.0875 0.0930 0.0944 0.0123 0.0073 0.0061
18 0.04 0.01 (5,3) 0 10 1-6 7-10 - 0.8857 0.8857 0.8857 0.1114 0.1127 0.1129 0.0028 0.0016 0.0014
19 0.01 (20,3) 0 20 1-4 5-10 - 0.9094 0.9058 0.9016 0.0565 0.0603 0.0724 0.0341 0.0339 0.0259
20 0 (5,2) 0.2 4 1-4 5-10 - 0.9593 0.9588 0.9587 0.0269 0.0329 0.0354 0.0138 0.0083 0.0059
21 0.1 0.01 (5,3) 0 8 1-3 4-10 - 0.8604 0.8567 0.8520 0.0635 0.0767 0.0831 0.0761 0.0666 0.0649
22 0.01 (5,3) 0 10 1-1 2-8 9-10 0.9286 0.9278 0.9272 0.0478 0.0552 0.0585 0.0236 0.0171 0.0142
23 0.01 (20,3) 0 25 1-1 2-6 7-10 0.8893 0.8839 0.8553 0.0136 0.0169 0.0295 0.0971 0.0992 0.1151
24 0 (20,2) 0.2 20 1-1 2-4 5-10 0.9522 0.9513 0.9472 0.0113 0.0133 0.0248 0.0365 0.0354 0.0279
25 20 0.01 0.005 (5,3) 0 8 1-16 17-20 - 0.8918 0.8906 0.8895 0.0747 0.0828 0.0859 0.0334 0.0267 0.0246
26 0.04 0.005 (5,3) 0 12 1-12 13-20 - 0.8791 0.8782 0.8772 0.0933 0.0996 0.1015 0.0276 0.0222 0.0213
27 0.005 (20,3) 0 45 1-10 11-20 - 0.8996 0.8992 0.8985 0.0932 0.0941 0.0956 0.0072 0.0067 0.0059
28 0 (5,2) 0.1 5 1-15 16-20 - 0.9146 0.9130 0.9117 0.0394 0.0490 0.0555 0.0459 0.0380 0.0328
29 0.1 0.005 (5,3) 0 20 1-6 7-20 - 0.8708 0.8703 0.8696 0.1116 0.1155 0.1159 0.0176 0.0142 0.0145
30 0.005 (5,3) 0 15 1-6 7-16 17-20 0.8754 0.8735 0.8688 0.0563 0.0633 0.0645 0.0683 0.0632 0.0667
31 0.005 (20,3) 0 50 1-6 7-13 14-20 0.8477 0.8404 0.7885 0.0253 0.0284 0.0223 0.1270 0.1311 0.1892
32 0 (20,2) 0.1 37 1-6 7-15 16-20 0.8969 0.8906 0.8679 0.0283 0.0307 0.0392 0.0748 0.0787 0.0930
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Table 3: Results of the symmetric instances for groups of instances

Average Difference
βn θn γn

Instances M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1
N = 2 -0.0022 -0.0242 0.0250 0.0393 -0.0228 -0.0151
N = 4 -0.0015 -0.0227 0.0140 0.0226 -0.0124 0.0001

N = 10 -0.0060 -0.0291 0.0079 0.0093 -0.0020 0.0197
N = 20 -0.0039 -0.0256 0.0046 0.0017 -0.0007 0.0239
All N -0.0034 -0.0254 0.0129 0.0182 -0.0095 0.0072

Average Absolute Difference
βn θn γn

Instances M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1
N = 2 0.0083 0.0261 0.0250 0.0393 0.0228 0.0372
N = 4 0.0079 0.0238 0.0140 0.0229 0.0128 0.0269

N = 10 0.0065 0.0292 0.0079 0.0131 0.0061 0.0319
N = 20 0.0042 0.0257 0.0046 0.0106 0.0039 0.0310
All N 0.0067 0.0262 0.0129 0.0215 0.0114 0.0317

Maximum Absolute Difference
βn θn γn

Instances M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1
N = 2 0.0313 0.1345 0.0800 0.1048 0.0575 0.0993
N = 4 0.0255 0.0922 0.0448 0.0640 0.0326 0.0942

N = 10 0.0274 0.1565 0.0218 0.0295 0.0166 0.1705
N = 20 0.0204 0.1517 0.0128 0.0448 0.0127 0.1965
All N 0.0313 0.1565 0.0800 0.1048 0.0575 0.1965

Table 4: Results of the asymmetric instances for groups of instances

Average Difference
βn θn γn

Instances M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1
N = 2 -0.0065 -0.0316 0.0189 0.0364 -0.0123 -0.0047
N = 4 -0.0054 -0.0182 0.0113 0.0239 -0.0059 -0.0057

N = 10 -0.0019 -0.0072 0.0053 0.0116 -0.0034 -0.0044
N = 20 -0.0025 -0.0131 0.0052 0.0073 -0.0026 0.0058
All N -0.0041 -0.0175 0.0102 0.0198 -0.0061 -0.0023

Average Absolute Difference
βn θn γn

Instances M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1
N = 2 0.0075 0.0317 0.0189 0.0364 0.0141 0.0268
N = 4 0.0065 0.0182 0.0113 0.0239 0.0097 0.0157

N = 10 0.0024 0.0073 0.0053 0.0116 0.0048 0.0089
N = 20 0.0026 0.0131 0.0052 0.0089 0.0049 0.0147
All N 0.0048 0.0176 0.0102 0.0202 0.0084 0.0165

Maximum Absolute Difference
βn θn γn

Instances M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1
N = 2 0.0425 0.1431 0.0381 0.1034 0.0308 0.0884
N = 4 0.0380 0.0941 0.0292 0.0524 0.0252 0.0615

N = 10 0.0233 0.0625 0.0167 0.0510 0.0163 0.0483
N = 20 0.0191 0.0870 0.0142 0.0238 0.0152 0.1108
All N 0.0425 0.1431 0.0381 0.1034 0.0308 0.1108

Firstly, we see from Table 5 that M2 underestimates β0 at all instances except
the symmetric instance 63, and M3 underestimates β0 at all 96 instances. The
explanation of this result is that the approximate method M2 is based on the
implicit assumption that the inventory levels at the local warehouses are inde-
pendent from the inventory level at the central warehouse. More precisely, when
analyzing the central warehouse behavior, we assume that, independent of the ac-



18 Erhun Özkan et al.

Table 5: Results for β0 = P (IL0 > 0)

Symmetric Instances Asymmetric Instances

Ins. M1 M2 M3 Ins. M1 M2 M3 Ins. M1 M2 M3
1 0.9337 ± 0.0002 0.9050 0.9048 33 0.9222 ± 0.0001 0.9102 0.9098 1 0.8713 ± 0.0002 0.8608 0.8607
2 0.7133 ± 0.0003 0.6736 0.6703 34 0.7135 ± 0.0002 0.6837 0.6767 2 0.9101 ± 0.0002 0.8794 0.8781
3 0.7734 ± 0.0003 0.6769 0.6703 35 0.1963 ± 0.0001 0.1655 0.1353 3 0.4148 ± 0.0003 0.3547 0.3084
4 0.9682 ± 0.0001 0.9394 0.9384 36 0.7535 ± 0.0002 0.6942 0.6767 4 0.9953 ± 0.0001 0.9921 0.9921
5 0.6785 ± 0.0003 0.6708 0.6703 37 0.8624 ± 0.0002 0.8576 0.8571 5 0.8950 ± 0.0002 0.8203 0.8088
6 0.3422 ± 0.0003 0.2598 0.2019 38 0.1417 ± 0.0002 0.1196 0.0424 6 0.9686 ± 0.0001 0.9377 0.9344
7 0.8668 ± 0.0003 0.7980 0.7834 39 0.8164 ± 0.0003 0.7534 0.7166 7 0.3974 ± 0.0004 0.2951 0.1512
8 0.5526 ± 0.0005 0.5305 0.5249 40 0.2184 ± 0.0003 0.2103 0.1912 8 0.6234 ± 0.0005 0.5129 0.4335
9 0.5684 ± 0.0003 0.4126 0.3679 41 0.1436 ± 0.0001 0.1054 0.0404 9 0.9916 ± 0.0000 0.9858 0.9856
10 0.8744 ± 0.0003 0.7555 0.7358 42 0.6564 ± 0.0002 0.5360 0.4405 10 0.9228 ± 0.0001 0.9022 0.9004
11 0.4059 ± 0.0003 0.3778 0.3679 43 0.8863 ± 0.0002 0.8703 0.8666 11 0.2878 ± 0.0003 0.2452 0.1851
12 0.9876 ± 0.0001 0.9812 0.9810 44 0.9694 ± 0.0001 0.9682 0.9682 12 0.8382 ± 0.0003 0.8112 0.8088
13 0.1485 ± 0.0003 0.0894 0.0183 45 0.1620 ± 0.0003 0.1237 0.0050 13 0.3555 ± 0.0002 0.3068 0.2674
14 0.3518 ± 0.0005 0.2255 0.0916 46 0.5430 ± 0.0004 0.4055 0.1565 14 0.8057 ± 0.0003 0.7507 0.7360
15 0.5335 ± 0.0006 0.4741 0.4335 47 0.3315 ± 0.0005 0.3000 0.2211 15 0.5632 ± 0.0005 0.4883 0.4090
16 0.4648 ± 0.0007 0.4433 0.4335 48 0.8763 ± 0.0004 0.8536 0.8432 16 0.2061 ± 0.0004 0.1789 0.0996
17 0.8472 ± 0.0002 0.8192 0.8187 49 0.9289 ± 0.0001 0.9203 0.9197 17 0.9588 ± 0.0000 0.9423 0.9392
18 0.4973 ± 0.0002 0.4587 0.4493 50 0.2867 ± 0.0002 0.2657 0.2381 18 0.9923 ± 0.0000 0.9886 0.9880
19 0.5437 ± 0.0002 0.4663 0.4493 51 0.1505 ± 0.0001 0.1301 0.0916 19 0.8137 ± 0.0003 0.7685 0.7363
20 0.9720 ± 0.0001 0.9537 0.9526 52 0.7137 ± 0.0002 0.6586 0.6288 20 0.8753 ± 0.0002 0.8597 0.8571
21 0.8163 ± 0.0003 0.8092 0.8088 53 0.8931 ± 0.0001 0.8898 0.8893 21 0.6787 ± 0.0003 0.6131 0.5615
22 0.1158 ± 0.0002 0.0888 0.0408 54 0.1637 ± 0.0002 0.1439 0.0433 22 0.8454 ± 0.0002 0.8167 0.8043
23 0.5449 ± 0.0004 0.4456 0.3799 55 0.8825 ± 0.0002 0.8428 0.8122 23 0.3438 ± 0.0004 0.3080 0.2042
24 0.4097 ± 0.0004 0.3906 0.3799 56 0.3947 ± 0.0003 0.3827 0.3675 24 0.5431 ± 0.0006 0.5095 0.4703
25 0.2806 ± 0.0002 0.1964 0.1353 57 0.1496 ± 0.0002 0.1145 0.0293 25 0.8391 ± 0.0001 0.7987 0.7776
26 0.6079 ± 0.0003 0.4688 0.4060 58 0.6929 ± 0.0002 0.5851 0.4579 26 0.8785 ± 0.0001 0.8460 0.8266
27 0.8811 ± 0.0003 0.8595 0.8571 59 0.7326 ± 0.0003 0.7105 0.6968 27 0.9626 ± 0.0001 0.9511 0.9415
28 0.8613 ± 0.0003 0.8574 0.8571 60 0.9186 ± 0.0002 0.9169 0.9165 28 0.6912 ± 0.0002 0.6505 0.6288
29 0.0238 ± 0.0001 0.0184 0.0003 61 0.4149 ± 0.0003 0.3109 0.0432 29 0.9297 ± 0.0001 0.9055 0.8887
30 0.0813 ± 0.0002 0.0566 0.0030 62 0.8025 ± 0.0003 0.6989 0.4790 30 0.6135 ± 0.0002 0.5621 0.4915
31 0.1004 ± 0.0003 0.0962 0.0424 63 0.1115 ± 0.0003 0.1156 0.0432 31 0.3141 ± 0.0004 0.2770 0.1056
32 0.2218 ± 0.0005 0.2116 0.1912 64 0.5811 ± 0.0005 0.5395 0.4790 32 0.4820 ± 0.0004 0.4292 0.2963

Table 6: Average, average of the absolute, and maximum absolute differences for
β0

Symmetric Ins. Asymmetric Ins.
M2-M1 M3-M1 M2-M1 M3-M1

Average Diff. -0.0435 -0.0864 -0.0394 -0.0791
Absolute Diff. 0.0437 0.0864 0.0394 0.0791
Maximum Abs. Diff. 0.1559 0.3865 0.1105 0.2462

tual inventory level, there is always a Poisson demand stream with rate mnβn for
replenishment orders placed by local warehouse n and a Poisson demand stream
with rate mn(1− βn) for emergency shipment requests placed by local warehouse
n (n ∈ N ). This leads to the approximate birth-death process for the behavior of
the inventory level at the central warehouse as depicted in Figure 2. However, in
the true system, we have a positive correlation between the inventory level IL0 at
the central warehouse and the inventory levels ILn at the local warehouses n ∈ N .
Hence, in the true system, the total stream of emergency shipment requests will
have a higher rate than

∑

n∈N
mn(1 − βn) when IL0 ≤ 0, and the stream of

replenishment orders will have a lower rate than
∑

n∈N
mnβn. Hence, in Figure

2, the rate m′
0 for transitions to the left when IL0 ≤ 0 is an overestimation, and

this leads to an underestimation of β0. Notice that the bounding of the state space
(at state −S̄) reduces the effect of the overestimation of the transitions to the left
when IL0 ≤ 0.

Method M3 underestimates β0 more than our method M2, as seen in Table
5 and 6. This is explained by the fact that M3 assumes that the demand rate
coming to the central warehouse is always equal to m0. Hence, the transitions to
the left when IL0 ≤ 0 are even further overestimated. Further, no bounding of the
state space is assumed.

Although method M2 generally underestimates β0, it overestimates θn, which
is determined via equation (8). The reason is that L(Sn,mntn) generally overes-
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timates P (ILn = 0|IL0 > 0). In the true system, there is a positive correlation
between IL0 and ILn. If there is positive stock at the central warehouse, then
it is less likely to have zero stock at a local warehouse. Apparently, the relative
overestimation of P (ILn = 0|IL0 > 0) is larger than the relative underestimation
of β0. Lastly, because method M2 generally overestimates θn, it has a tendency to
underestimate γn because of (1). Similarly, although M3 underestimates β0 in all
instances, it generally overestimates θn, which is determined by (9). The reason is
that 1− βn severely overestimates P (ILn = 0|IL0 > 0). Again, this is because of
the ignored positive correlation between IL0 and ILn.

Notice that all over- and underestimations become smaller when the correla-
tions between IL0 and the ILn become less strong. This is typically so when we
have higher numbers of local warehouses.

4.2 Sensitivity Analysis

In our model, we assumed that the repair leadtime at the repair facility is deter-
ministic. This leadtime has been denoted by t0. However, this assumption may not
always hold in real-life situations. One may have some variability in this leadtime.
Therefore, in this section, we analyze the sensitivity of the system performance
with respect to the distribution of the repair leadtime. We consider four different
distributions. The first distribution is the deterministic distribution, cf. the as-
sumption in our model. As we mentioned in Section 3, we assumed an exponential
distribution for the repair leadtime in our approximate evaluation method (in the
step to determine the mean delay W0). So, the second distribution that we consider
is the exponential distribution, with mean time t0. The other two distributions are
with a coefficient of variation of 0.5 and 2, respectively. We choose an Erlang-4

distribution as the third distribution. This distribution has a coefficient of varia-
tion of 0.5; its scale parameter is chosen such that the mean is equal to t0. For
the fourth distribution, we choose a lognormal distribution, with parameters such
that the coefficient of variation is 2 and the mean equals t0. We used simulation
to get the results under each distribution, and we generated these results for the
symmetric instances with 4 and 10 local warehouse (32 instances in total). We
created 95% confidence intervals for the differences in the βn, θn, and γn between
the deterministic case and each of the remaining cases. The results are listed in
Table 7.

The differences in Table 7 are all quite small. Additional results are generated
in Tables 8 and 9. The percentages of the intervals containing 0 are depicted in
Table 8. The average difference, average absolute difference, and maximum abso-
lute difference of the deterministic case with the other distributions are depicted
in Table 9.

In Table 8, we see that the most sensitive performance measure to the repair
leadtime distribution is θn, which is also the one that our approximation method
estimates worst among the three performance measures βn, θn, and γn. In Table
8, we see that all values are very low. The average differences and average absolute
differences are all even below 0.003. Hence, we may conclude that the performance
is rather insensitive for the repair leadtime distribution. We also made some simu-
lation runs for the asymmetric instances to check the sensitivity, and we got similar
results.
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Table 7: Results of the sensitivity analysis

βn θn γn
Ins. Erlang-Det. Expo.-Det. Log.-Det. Erlang-Det. Expo.-Det. Log.-Det. Erlang-Det. Expo.-Det. Log.-Det.
17 -0.0002 ± 0.0002 -0.0004 ± 0.0002 -0.0006 ± 0.0002 0.0015 ± 0.0001 0.0057 ± 0.0001 0.0078 ± 0.0001 -0.0013 ± 0.0002 -0.0053 ± 0.0002 -0.0072 ± 0.0002
18 -0.0004 ± 0.0004 -0.0006 ± 0.0004 -0.0001 ± 0.0004 0.0001 ± 0.0000 0.0010 ± 0.0000 0.0011 ± 0.0000 0.0003 ± 0.0004 -0.0004 ± 0.0004 -0.0001 ± 0.0004
19 -0.0009 ± 0.0005 -0.0022 ± 0.0005 -0.0003 ± 0.0005 0.0030 ± 0.0001 0.0103 ± 0.0002 0.0139 ± 0.0002 -0.0020 ± 0.0004 -0.0081 ± 0.0004 -0.0110 ± 0.0005
20 -0.0001 ± 0.0004 -0.0003 ± 0.0004 -0.0004 ± 0.0004 0.0002 ± 0.0004 0.0018 ± 0.0004 0.0026 ± 0.0004 0.0000 ± 0.0002 -0.0015 ± 0.0002 -0.0022 ± 0.0002
21 -0.0001 ± 0.0001 -0.0001 ± 0.0001 -0.0002 ± 0.0001 0.0004 ± 0.0000 0.0014 ± 0.0000 0.0019 ± 0.0000 -0.0003 ± 0.0001 -0.0013 ± 0.0001 -0.0017 ± 0.0001
22 -0.0004 ± 0.0006 -0.0006 ± 0.0006 -0.0011 ± 0.0007 0.0001 ± 0.0001 0.0005 ± 0.0001 0.0005 ± 0.0001 0.0004 ± 0.0006 0.0001 ± 0.0006 0.0005 ± 0.0007
23 -0.0013 ± 0.0005 -0.0021 ± 0.0005 -0.0024 ± 0.0006 0.0006 ± 0.0002 0.0019 ± 0.0002 0.0021 ± 0.0002 0.0007 ± 0.0005 0.0002 ± 0.0005 0.0003 ± 0.0006
24 -0.0001 ± 0.0003 -0.0002 ± 0.0003 -0.0002 ± 0.0003 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0002 ± 0.0000 0.0001 ± 0.0003 0.0001 ± 0.0003 0.0000 ± 0.0003
25 -0.0013 ± 0.0006 -0.0028 ± 0.0006 -0.0035 ± 0.0006 0.0022 ± 0.0002 0.0065 ± 0.0002 0.0088 ± 0.0002 -0.0009 ± 0.0005 -0.0037 ± 0.0006 -0.0053 ± 0.0006
26 -0.0024 ± 0.0006 -0.0048 ± 0.0005 -0.0006 ± 0.0006 0.0044 ± 0.0003 0.0125 ± 0.0003 0.0161 ± 0.0003 -0.002 ± 0.0005 -0.0078 ± 0.0005 -0.0100 ± 0.0006
27 -0.0002 ± 0.0003 -0.0004 ± 0.0003 -0.0005 ± 0.0003 0.0006 ± 0.0002 0.0029 ± 0.0002 0.0039 ± 0.0002 -0.0004 ± 0.0002 -0.0025 ± 0.0002 -0.0035 ± 0.0002
28 -0.0001 ± 0.0001 -0.0001 ± 0.0001 -0.0001 ± 0.0001 0.0002 ± 0.0000 0.0006 ± 0.0000 0.0009 ± 0.0001 -0.0001 ± 0.0001 -0.0006 ± 0.0001 -0.0008 ± 0.0001
29 -0.0002 ± 0.0005 -0.0004 ± 0.0005 -0.0002 ± 0.0006 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0005 0.0003 ± 0.0005 0.0000 ± 0.0006
30 -0.0003 ± 0.0005 -0.0004 ± 0.0005 -0.0006 ± 0.0006 0.0002 ± 0.0001 0.0005 ± 0.0001 0.0006 ± 0.0001 0.0001 ± 0.0005 -0.0001 ± 0.0005 0.0000 ± 0.0006
31 0.0000 ± 0.0006 -0.0005 ± 0.0006 -0.0008 ± 0.0006 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 -0.0001 ± 0.0006 0.0004 ± 0.0006 0.0007 ± 0.0006
32 0.0000 ± 0.0004 -0.0002 ± 0.0004 -0.0001 ± 0.0004 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0004 0.0002 ± 0.0004 0.0000 ± 0.0004
33 -0.0001 ± 0.0002 -0.0001 ± 0.0002 -0.0001 ± 0.0002 0.0005 ± 0.0002 0.0018 ± 0.0002 0.0025 ± 0.0002 -0.0004 ± 0.0002 -0.0017 ± 0.0001 -0.0023 ± 0.0001
34 -0.0002 ± 0.0003 -0.0003 ± 0.0003 -0.0004 ± 0.0003 0.0001 ± 0.0002 0.0005 ± 0.0002 0.0006 ± 0.0002 0.0001 ± 0.0003 -0.0002 ± 0.0003 -0.0002 ± 0.0003
35 -0.0002 ± 0.0005 -0.0004 ± 0.0005 -0.0007 ± 0.0005 0.0005 ± 0.0001 0.0019 ± 0.0001 0.0026 ± 0.0001 -0.0003 ± 0.0005 -0.0014 ± 0.0005 -0.0020 ± 0.0005
36 -0.0005 ± 0.0004 -0.0008 ± 0.0004 -0.0011 ± 0.0004 0.0013 ± 0.0003 0.0047 ± 0.0003 0.0066 ± 0.0003 -0.0008 ± 0.0003 -0.0039 ± 0.0003 -0.0054 ± 0.0004
37 0.0000 ± 0.0001 -0.0001 ± 0.0001 0.0000 ± 0.0001 0.0002 ± 0.0001 0.0007 ± 0.0001 0.0009 ± 0.0001 -0.0001 ± 0.0001 -0.0006 ± 0.0001 -0.0008 ± 0.0001
38 -0.0002 ± 0.0006 -0.0005 ± 0.0006 -0.0006 ± 0.0006 0.0001 ± 0.0001 0.0004 ± 0.0001 0.0004 ± 0.0001 0.0001 ± 0.0006 0.0001 ± 0.0006 0.0001 ± 0.0006
39 -0.0003 ± 0.0004 -0.0007 ± 0.0004 -0.0008 ± 0.0004 0.0001 ± 0.0004 0.0006 ± 0.0004 0.0007 ± 0.0004 0.0003 ± 0.0003 0.0001 ± 0.0003 0.0001 ± 0.0004
40 0.0000 ± 0.0003 -0.0001 ± 0.0003 -0.0001 ± 0.0003 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0000 ± 0.0003 0.0000 ± 0.0003 0.0001 ± 0.0003
41 -0.0002 ± 0.0005 -0.0006 ± 0.0005 -0.0007 ± 0.0006 0.0005 ± 0.0002 0.0014 ± 0.0002 0.0019 ± 0.0002 -0.0003 ± 0.0005 -0.0008 ± 0.0006 -0.0011 ± 0.0006
42 -0.0011 ± 0.0005 -0.0022 ± 0.0005 -0.0028 ± 0.0005 0.0020 ± 0.0004 0.0062 ± 0.0004 0.0081 ± 0.0004 -0.0009 ± 0.0005 -0.0040 ± 0.0005 -0.0053 ± 0.0005
43 -0.0001 ± 0.0003 -0.0002 ± 0.0003 -0.0003 ± 0.0003 0.0003 ± 0.0002 0.0015 ± 0.0002 0.0019 ± 0.0002 -0.0002 ± 0.0002 -0.0012 ± 0.0002 -0.0017 ± 0.0002
44 0.0000 ± 0.0001 0.0000 ± 0.0001 0.0000 ± 0.0001 0.0001 ± 0.0001 0.0002 ± 0.0001 0.0002 ± 0.0001 0.0000 ± 0.0000 -0.0002 ± 0.0000 -0.0002 ± 0.0000
45 -0.0006 ± 0.0006 -0.0008 ± 0.0006 -0.0001 ± 0.0006 0.0005 ± 0.0002 0.0009 ± 0.0002 0.0010 ± 0.0002 0.0001 ± 0.0006 -0.0002 ± 0.0006 0.0000 ± 0.0006
46 -0.0012 ± 0.0006 -0.0021 ± 0.0006 -0.0022 ± 0.0006 0.0009 ± 0.0004 0.0018 ± 0.0004 0.0021 ± 0.0004 0.0003 ± 0.0006 0.0003 ± 0.0006 0.0002 ± 0.0007
47 -0.0003 ± 0.0004 -0.0004 ± 0.0005 -0.0005 ± 0.0005 0.0001 ± 0.0001 0.0003 ± 0.0001 0.0003 ± 0.0001 0.0002 ± 0.0004 0.0001 ± 0.0005 0.0002 ± 0.0005
48 -0.0001 ± 0.0003 -0.0002 ± 0.0003 -0.0002 ± 0.0003 0.0000 ± 0.0002 0.0002 ± 0.0002 0.0002 ± 0.0002 0.0001 ± 0.0002 0.0000 ± 0.0002 0.0000 ± 0.0002
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Table 8: Percentage of intervals containing 0 for each performance measure

Performance Measure Erlang-Det. Expo.-Det. Log.-Det.
βn 72% 56% 38%
θn 34% 3% 3%
γn 59% 50% 47%

Table 9: Average, average absolute and maximum absolute differences between the
deterministic and the remaining ditribution cases

Average Difference Average Absolute Diff. Maximum Absolute Diff.
Case βn θn γn βn θn γn βn θn γn

Erlang-Det. -0.0004 0.0006 -0.0002 0.0004 0.0006 0.0004 0.0024 0.0044 0.0020
Expo.-Det. -0.0008 0.0022 -0.0014 0.0008 0.0022 0.0015 0.0048 0.0125 0.0081
Log.- Det. -0.0010 0.0028 -0.0018 0.0010 0.0028 0.0020 0.0060 0.0161 0.0110

The above results imply that our approximate evaluation method works also
well for systems with a generally distributed repair leadtime.

5 Conclusion

In this study, we derived an accurate and fast approximate evaluation method for
two-echelon spare parts systems with emergency shipments. We also showed that
our method outperforms the method of Muckstadt and Thomas (1980). Further, we
showed that the performance measures of our system are roughly insensitive to the
repair leadtime distribution, which increases the applicability of our approximation
method. In future research, we can consider extensions of our method to networks
with both emergency and lateral shipments and to networks with more than two
echelon levels.

References

P. Alfredsson and J. Verrijdt. Modeling emergency supply flexibility in a two
echelon inventory system. Management Science, 45:1416–1431, 1999.
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