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Abstract

In this paper, we present a robust and accurate multiple ship detection system for

port surveillance. First, water region is detected using a region-based technique.

Second, ships are located by a cabin detector for the same port surveillance se-

quences. Third, a verification process is performed to remove the false detections

of ships using the detected water region as contextual cues. We have analyzed

our water region detection algorithm by experimenting on 5 sequences and we

have found that it achieves an average pixel classification precision of 96.9% and

a recall of 91.8%. The multiple ship detection system is tested on 3 different

surveillance sequences. We successfully detect 133 ships out of 150 ships with a

precision of 87.5% and a recall of 88.7%.

1 Introduction

Automatic port surveillance is an emerging area for monitoring ship traffic, autonomous
ship identification and traffic control for port security systems. Radar technology is
commonly used in such systems to detect and track large ships coming from or leaving
for the sea. Although radar technology gives accurate detection results, echoes returned
from other targets such as the buildings, harbor infrastructure or other ships lead to
difficulties for reliable ship detection. Furthermore, small and non-metal ships cannot
be detected by a radar system, which causes potential threats to the traffic control and
security. In this paper, we develop a multiple ship detection system based on video
cameras as a complementary tool for port security systems.

Multiple ship detection is a complex and challenging problem. Techniques devel-
oped for road traffic surveillance [5] are not applicable, due to the various environ-
mental influences such as weather conditions and the high variability of the types of
ships passing by. Figure 1 shows some examples of the large variation of ships in port
surveillance videos. Recently, several algorithms are developed for ship detection [1][3].
Fefilatyev et al. combine the segmentation and image registration technique to detect
ships. However, the algorithm is largely based on a specific horizon line detection [3]
and limited to the surveillance videos captured from a camera mounted on a untethered
buoy at open sea. A more general approach is developed based on background reg-
istration and morphological operations in [1]. Their approach has no assumptions on
the geometric structure of the surveillance video sequences, however, it cannot perform
robust detections when there are sudden changes in the background, such as severe
illumination changes and disturbances of the water surface.

In our ship detection system, we make use of the fact that ships always travel within
the water area in a port surveillance scenario. It is expected that false detections of



Figure 1: Examples of ships with different appearances in surveillance videos.

Figure 2: Flowchart of our multiple ship detection system.

ships can be significantly reduced if the water region is a-priori known and provided as
contextual information. For this reason, our detection system consists of two specific
detectors: (1) region-based water area detector, and (2) Histogram Oriented Gradients
(HOG) based cabin detector [2][7]. The water region detector explores the appearance
model of water at a region level, using RGB color features and generates a binary water
map for a single surveillance frame, based on machine learning. For the same frame, a
cabin detector is applied to detect the possible regions containing ship cabins. Then, a
verification process is performed to remove the false detections produced by the cabin
detector, using the pre-detected water region as contextual information. The whole
process is illustrated in Figure 2.

The paper is organized as follows. Section 2 presents the main techniques used in
the water region and multiple ship detection system. Section 3 presents the results for
both water and ship detection. Section 4 draws conclusions and discusses future work.

2 Water Region and Multiple Ship Detection

In this section, we discuss the three main steps in our ship detection system: (1)
creating a binary map indicating the water region, based on a two-step water detection
algorithm; (2) detecting the ship cabins using an offline-trained cabin detector; (3)
verifying the cabin detection results by removing the false detections based on the
binary map obtained in (1). The details of the techniques in each step will be explored
in the following subsections.

2.1 Water Region Detector

Considering that the appearance of water varies significantly in different situations, we
design a region-based water detector, instead of labeling the water directly at pixel



Figure 3: Flowchart of our water region detection algorithm.

level. The algorithm combines a graph-based segmentation with a sampling-based
Support Vector Machine (SVM) classification, and involves two stages. First, a graph-
based segmentation is applied to segment the surveillance images into perceptually
meaningful segments. Second, random sampling is performed to select a certain amount
of pixels from each segment. The sampled pixels are classified as water or non-water
using an off-line trained SVM. If most of the sampled pixels inside a segment are labeled
as water, then the complete segment is labeled as water. The algorithm stops when all
segments are processed. The flowchart of the algorithm is depicted in Figure 3.

Efficient graph-based segmentation [4] is employed as the first step in our water
region detector to achieve two objectives: (a) distinguish the water region from other
objects (sky, vegetation, ships etc.) while preserving the water region as a complete
area without over-segmentation; (b) perform fast segmentation to support real-time
application in port surveillance systems.

Algorithm. In graph-based segmentation, a key element that defines the criterion
of segmentation is the edge weight wi,j, which measures the difference between two
neighboring pixels i and j in a specified feature space. Considering color as the most
important cue to distinguish different objects, the weight wi,j in our approach is defined
as:

wi,j =

√
(
Ri

Li

− Rj

Lj

)
2

+ (
Gi

Li

− Gj

Lj

)
2

+ (
Bi

Li

− Bj

Lj

)
2

, (1)

where Ri, Gi, Bi are the R, G, B color values of the pixel i (or j when indicated).
Likewise, Li represents the brightness of the pixel i, defined as:

Li =

(Ri +Gi +Bi)/3, if Ri +Gi +Bi ̸= 0;

1, otherwise.
(2)

In Equation (1), the RGB values are normalized by the corresponding brightness to
reduce the influence of brightness. The motivation for this normalization is that parts
of the water region with strong disturbances or reflections usually differ considerably
from other parts of the water region in terms of brightness [6]. The segmentation based
on such normalized color differences will preserve the overall nature of the water region
so that it is not over-segmented. This will not only ensure a faster classification in
the next step, but also reduce the probability of erroneous labeling of water segments
containing water pixels with high brightness values.

After the segmentation, we need to find all segments representing water. In our
algorithm, we employ a supervised learning approach to train an SVM classifier offline,



based on a set of representative surveillance images. Again, the RGB values are chosen
to construct the feature vector that can discriminate the water and non-water regions.

For each segment C of the image, we randomly select a group of pixels G(C),
according to the following criterion:

G(C) =

{randomly sampled pixels, 5% of the total}, if N(C) > 2000;

{randomly sampled set of 100 pixels}, otherwise.
(3)

In the Equation (3), N(C) is the total number of pixels in segment C. The off-line
trained SVM is then applied to each pixel in G(C) and the number of pixels labeled as
water are counted as NW (G(C)). We define the probability PW (C) that the segment
C is a part of the water region, giving:

PW (C) =
NW (G(C))

N(G(C))
. (4)

In this equation, N(G(C)) is the total number of sampled pixels in segment C. The
segment is then labeled with label L(C) as follows:

L(C) =

1, if PW (C) > 0.6;

0, otherwise.
(5)

The binary map indicating water region is generated after all segments are labeled and
can be used as contextual information supporting the verification of ship detection.

2.2 Cabin Detector

To perform the initial ship detection, the HOG-based cabin detector from [2] [7] is
applied to the images. First, the image is divided in cells of N × N pixels and an
orientation histogram is created for each cell. The gradient is calculated for each
pixel and the gradient magnitude is stored in the histogram bin corresponding to
the gradient orientation. Each histogram is then normalized to become invariant to
contrast changes. To train an ship object detector, the training images of ships and
background are first converted to HOG descriptions. Next, a classifier is learned to
distinguish ship object samples from background samples. Ship object detection is
performed by sliding a detection window over the image and classifying each image
position. To obtain invariance to the ship object size, the image is processed at several
scales. The output score of the cabin classifier is interpreted as a confidence score for
the ship detection. Since a verification will be performed in the next step, the threshold
on this confidence score is set with a low value to enable a sensitive ship detection so
as to detect as many presented ships as possible, at the cost of introducing false ship
detections.

2.3 Verification for Multiple Ship Detection

To design a reliable ship detection system, a verification is performed to remove the
false detections generated by the cabin detector. The verification process is based on
the intuitive fact that the detected ship regions should contain only a small portion of
water pixels. The binary map obtained by the water region detector is applied to the
ship detection results to count the number of water pixels NW (D) within each detected



ship region D. Then, the probability of false detection of a ship PF (D) in D, is defined
as follows:

PF (D) =
NW (D)

N(D)
, (6)

where N(D) denotes the total amount of pixels inside the detected ship region D. The
region D is recognized as a false detection if PF (D) > 0.65. The final ship detection
results are then obtained by removing all found false detections using the previous
criterion for PF (D).

(a) Original images

(b) Results of the pixel-based approach

(c) Results of our region-based detection

Figure 4: Water detection results: white color represents the water regions and black

indicates non-water regions.

3 Implementation and Experiments

The proposed system is tested for both the performance of water region detection
and multiple ship detection. In the test, we have used 8 video sequences recorded in
the harbor of Rotterdam, the Netherlands, during daytime. The video sequences are
recorded with a PTZ camera, and the camera position and zoom-in factor differ per
sequence. The captured video sequences have a Standard-Definition (SD) resolution
of 720 × 576 pixels, and contain between 40 frames and 260 frames each. We select



Figure 5: ROC curve depicting the performance of region-based and pixel-based water

detection approaches.

60 typical frames from 3 sequences to train a two-cluster SVM classifier (water and
non-water) and 100 frames from the other 5 sequences to compose the test set.

3.1 Results of Water Region Detection

We first measure the performance of water region detection. To indicate the perfor-
mance of our region-based approach, we have also implemented a pixel-based detection
using the same offline trained SVM for comparison. This is reasonable because the
trained SVM classifier itself can perform water region detection without pre-processed
segmentation. Figure 4 shows some binary maps generated by the two approaches.

When the water region is relatively smooth, as in the left image of Figure 4(a), both
approaches can find the correct water region, although the pixel-based approach cannot
produce coherent regions. When parts of the water regions have strong disturbances
and reflections, as in the middle and right images of Figure 4(b), our region-based
algorithm is still able to label those highly disturbed and reflected parts as water. As
expected, the pixel-based detection incorrectly labels those parts as non-water. The
ROC curve in Figure 5 also illustrates and confirms the better performance of our
region-based water detection. Finally, we have measured the recall-precision perfor-
mance of our region-based water detection by calculating the pixel recall and precision
rate for 100 frames from the 5 sequences. We have found that it achieves an average
precision of 91.8% and a recall of 96.9%.

3.2 Results of Multiple Ship Detection and Verification

To measure the performance of the multiple ship detection system, we have selected
96 frames from 3 video sequences, which contain 6 different ships. The ships travel
across the water regions and appear differently in various subsets of the frames. As a
result, the test frames actually contain 150 ships in total. We test the ship detection
with only applying the sensitive cabin detector and compare it with the detection
when using the contextual water map to perform the verification. Table 1 shows the
test results with measurements of true positives, false positives, precision and recall.



(a)

(b)

Figure 6: Examples of multiple ship detection: left column contains the results gen-

erated by cabin detector, middle column - binary maps generated by water region

detection and right column - results after verification process. Bounding boxes delimit

the areas of detected ships.

Table 1: Multi-ship detection results of the algorithm “Cabin” (only cabin detector)

and algorithm “Cabin-Water” (cabin detector combined with water region detector).

Algorithm True Pos. False Pos. Precision Recall

Cabin 140 56 71.43% 93.33%

Cabin-Water 133 19 87.50% 88.67%

The results show that about 67% of the false detections are successfully removed by
employing the water map as a contextual cue. Although the recall slightly decreases
with about 5%, the precision is largely improved by nearly 17%. Some visual results
of multiple ship detection are shown in Figure 6.

4 Conclusion and Future Work

In this paper, we have presented a multiple ship detection system designed for harbor
surveillance. Our system combines water region detection with a cabin detector to
achieve robust and accurate results. The water region is detected using a technique
combining segmentation with region-based classification. Segmentation is performed
to separate water regions from other objects in the image while preserving the overall
characterization of it. Then, a random sampling is applied for each segment and
an SVM-based classification is performed to generate a binary map indicating water
regions. In our experiments, water detection at region level has proven to be robust



and accurate, with a precision of 91.8% and a recall of 96.9%.
The results of water region detection are then provided as contextual information to

a cabin detector. A verification step has been designed to reduce the false positive rate
of the cabin detector by removing the detected regions that contain mostly water pixels.
The experiments show that using detected water regions as contextual information
further improves the reliability of multiple ship detection by removing 67% of the false
detections at the cost of 5% decrease in the recall.

In the future, we will explore the fusion of multiple features for both segmentation
and SVM classification in a water region detector. Since the appearance of water
region varies significantly in different conditions, a single cue (color in our approach) is
not sufficiently robust to segment and classify the water area. It is expected that the
robustness of water detection will be increased if we apply multiple cues so that the
performance of ship detection will be improved simultaneously.
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