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Chapter 1

Introduction

1.1 Non-parametric Bayesian inference

In mathematical statistics, observations in statistical experiments are usually

assumed to be realizations of random variables X1, . . . , Xn with a certain

probability distribution P. This probability distribution is often assumed to be in

some collection P of known probability distributions, called the statistical model.

We say that the statistical model is indexed by a parameter θ from a parameter

space Θ if we can write the model as P = {P (n)
θ : θ ∈ Θ}. We usually assume

that the distributions Pθ in the statistical model have probability densities pθ with

respect to some σ-finite measure µ on the sample space X of the observations.

In parametric statistics, the parameters θ are real numbers or finite

vectors of real numbers. Statistical models can however also be indexed by

parameters from infinite-dimensional parameter spaces. Statistical inference is then

called non-parametric inference. An infinite-dimensional parameter is typically a

function, such as a probability density or a regression function.

There are several possible ways of making inference about unknown parameters.

We distinguish the frequentist and Bayesian paradigms. Frequentist statisticians

assume that the distribution P is given by some fixed and unknown parameter

θ0 in the parameter space Θ. Bayesian statisticians in contrast assume that the

uncertainty about the distribution P is described by a probability distribution on

the parameter space Θ.

The Bayesian approach to statistical inference involves the choice by the

Bayesian statistician of a probability distribution Π on the parameter space Θ.

This so-called prior distribution represents the Bayesian statistician’s belief about

P before taking any observations into account. The Bayesian statistician then

addresses the question how this belief should be updated once the observations are

available. This updated belief is again given by a probability distribution on Θ. The

1
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2 Non-parametric Bayesian inference

updated probability distribution is called the posterior distribution. More precisely,

in the Bayesian setup, the law P
(n)
θ is viewed as the conditional distribution of

X = (X1, . . . , Xn) given that the prior Π has selected the parameter θ. Under

regularity conditions, the pair (θ,X) then has a joint probability distribution

P(θ ∈ A,X ∈ B) =

∫
A

P
(n)
θ (B) dΠ(θ).

The marginal distribution of X is then given by P(X ∈ B) =
∫

Θ
P

(n)
θ (B) dΠ(θ).

The conditional distribution of θ given X is found from Bayes’ formula

P(θ ∈ A|X ∈ B) =
P(θ ∈ A,X ∈ B)

P(X ∈ B)
=

∫
A
P

(n)
θ (B) dΠ(θ)∫

Θ
P

(n)
θ (B) dΠ(θ)

.

Let p
(n)
θ be the probability density of P

(n)
θ with respect to the measure µ on

X . The preceding implies that the conditional probability Π(·|X), the posterior

distribution, is given by

A 7→ Π(A|X) =

∫
A
p

(n)
θ (X) dΠ(θ)∫

Θ
p

(n)
θ (X) dΠ(θ)

.

The posterior distribution can then be used to construct for instance estimators,

credible sets and hypothesis tests for the parameter θ.

Asymptotic statistics deals with the behavior of statistical procedures as the

number of observations n grows arbitrarily large. An asymptotic analysis of

Bayesian procedures is possible in the frequentist’s setup. This requires some

notions to express the quality of a posterior distribution for making inference about

the true parameter. A first important concept is that of posterior consistency. A

sequence of posterior distributions Π(·|X1, . . . , Xn) is said to be consistent with

respect to some metric d on the parameter space, if any fixed neighborhood

Uδ = {θ ∈ Θ : d(θ, θ0) ≤ δ} around the true parameter receives a posterior

probability arbitrarily close to one as the number of observations tends to infinity.

By this we mean that for any δ > 0

Π(Uδ|X1, . . . , Xn)→ 1 as n→∞

either in P0-probability or P0-almost surely. Given posterior consistency, the

next important concept is that of posterior contraction. The rate of posterior

contraction is the smallest radius εn ↓ 0 for which shrinking balls Uεn = {θ ∈ Θ :

d(θ, θ0) ≤ εn} still capture a posterior mass that converges to one as n→∞. By

this we mean that

Π(Uεn |X1, . . . , Xn)→ 1 as n→∞

either in P0-probability or P0-almost surely.
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We consider in this work the asymptotic behavior of certain Bayesian

non-parametric inference procedures based on an increasing number of

observations. This is motivated by the use in practice of Bayesian procedures

in non-parametric models. The Bayesian approach is a popular tool in applied

statistics. Bayesian procedures can often be implemented using simulation methods

such as the Markov Chain Monte Carlo methods. The conclusions of an applied

Bayesian statistician make sense to a frequentist only if the results of such an

approach are adequately justified by frequentistic performance guarantees, such

as posterior consistency and rate of contraction results. For Bayesian inference

procedures in finite-dimensional models, posterior consistency is typically not a

problem. The Bernstein-von Mises theorem (see for instance van der Vaart [49])

implies that reasonable parametric prior distributions typically yield posteriors

that contract around the correct finite-dimensional parameter at an optimal rate.

This is however not true in the infinite-dimensional case. Prior distributions that

look reasonable at first sight might exhibit posterior inconsistency. The posteriors

of such priors might not even concentrate around a parameter at all. Examples of

non-parametric priors that exhibit posterior inconsistency are given in e.g. Diaconis

and Freedman [12, 13]. Even if a procedure is consistent, contraction rates may be

sub-optimal, see [9].

These negative results have not limited the application of Bayesian procedures

in non-parametric models with all kinds of non-parametric priors. The lack of

theoretical justification of such methods does not necessarily mean that the

conclusions are wrong, or even that non-parametric Bayesian procedures are

impossible per se. Indeed, posterior consistency results for non-parametric priors

have been obtained at least since Doob [15] and later by Schwartz [43], but the

general understanding of the behavior of posterior distributions of non-parametric

priors is still comparatively small. The use of non-parametric Bayesian procedures

poses challenges for the mathematical statistician. It is necessary to study the

performance of Bayes procedures that are used in practice and, if possible, to

exhibit priors that are optimal in an appropriate sense.

In the present work we make a number of contributions in this respect. We

obtain posterior rate of contraction results for two families of non-parametric priors

that are applicable in a range of statistical problems, and we obtain a result about

the posterior limiting distribution in a specific statistical setting. In particular, we

exhibit priors that are optimal from the point of view of contraction rates and

adaptation.

1.2 Bayesian asymptotics

Doob’s consistency theorem [15] is the first well-known result about posterior

consistency that applies to prior distributions on infinite-dimensional models.
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This theorem says that the sequence of posterior distributions is consistent for

every possible true parameter not contained in some null-set of the prior. If a

prior is chosen for which the null-set contains the true parameter, then posterior

consistency is not guaranteed nor excluded by Doob’s result. A drawback of Doob’s

result is that it does not provide a means to check whether or not a parameter is

contained in the prior-dependent exceptional set.

Examples of non-parametric prior distributions that exhibit posterior

inconsistency have been obtained by for instance [11–14]. These counterexamples

stress that using Bayesian inference procedures for non-parametric estimation

problems is a delicate affair.

A first general posterior consistency result for non-parametric models was

obtained by Schwartz [43]. This result asserts posterior consistency under two

conditions on the prior and the model. The first condition is that the prior

assigns sufficiently large probabilities to neighborhoods of the true parameter.

We call this condition the prior mass condition. The second condition requires

the existence of tests for testing the true parameter against the complements of

neighborhoods around the true parameter. These conditions of Schwartz remain

important conditions in many later general posterior contraction results. The more

recent paper by Barron et al. [3] about posterior contraction in non-parametric

models notes that the counterexample by Diaconis and Freedman [12] in fact fails

to satisfy Schwartz’ prior mass condition.

The existence of suitable tests to obtain posterior contraction are often found

using a metric entropy condition on the model, which characterizes the size of

the model by imposing that the model can be covered by a finite number of balls

with any fixed radius. Posterior contraction results that impose a metric entropy

condition on the model are for instance given by Ghosal et al. [21]. The latter paper

does not merely establish posterior consistency, but actually concerns the rate

of posterior contraction for general non-parametric priors. Other similar results

include [20, 22] for general prior distributions and [17–19] for certain specific priors

distributions.

Many recent results in Bayesian non-parametrics are concerned with posterior

contraction rates of specific prior distributions and the question whether or not

an optimal rate of posterior contraction can be achieved for the estimation of

functions in a certain class of smooth functions.

Posterior distributions on non-parametric models give rise to function

estimators. The possible rates of non-parametric estimation therefore put lower

bounds on the posterior contraction rates that prior distributions are able to

achieve. The optimal rate of posterior contraction therefore depends on the class

of functions in which we assume the true parameter is contained. Consider for

example the estimation of a smooth function in the sense of Hölder. This class of

functions is specified by a smoothness level α. The minimax rate of estimation is
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the optimal rate in some sense at which a function in this class can be estimated.

The minimax rate of estimation by α-smooth functions of d variables is

εn = n−
α

d+2α

if n denotes the number of observations. This rate is also a lower bound on the

posterior contraction rates of prior distributions defined on a statistical model

given by such functions. The optimal rate of posterior contraction thus depends

on the smoothness level of the class in which we assume the true function is

contained.

To obtain the correct rate of estimation, the smoothness level of the prior

should typically be chosen in accordance with the smoothness level of the true

function. Because the true function is assumed to be unknown, it is desirable that

the prior distribution does not to depend on the true smoothness level. A prior is

called rate-adaptive if for every possible smoothness level of the true function, the

posterior achieves the correct rate of contraction even though the prior itself does

not depend on the true level.

There are some results in the literature that obtain adaptation of

non-parametric Bayesian procedures, see for instance [4, 22, 23, 25, 33, 41, 51],

but the number of results is limited. This thesis contributes to the area of

non-parametric Bayesian adaptation. The two families of non-parametric prior

distributions that we consider in this work are shown to be adaptive and

near-optimal for the estimation of Hölder-smooth functions. The construction

of these prior distributions starts with the definition of certain families of

non-adaptive Gaussian process priors. In the following section we explain how

an adaptive prior can be constructed from these families of Gaussian priors.

1.3 Gaussian process priors and beyond

A stochastic process can be viewed as a random element in a space of functions

via its sample paths. The probability distribution of such a random element can

be used as a prior distributions on functions, and hence as a prior distribution

in non-parametric Bayesian inference. Important examples of such priors are the

Gaussian process priors. The general posterior contraction rate results [21] were

used by van der Vaart and van Zanten [50] to characterize the posterior contraction

rates of Gaussian processes priors by a single condition on the concentration of

the prior distribution.

The particular prior distributions that we consider in this work are built

from Gaussian prior distributions. This allows us to use the machinery for

Gaussian process priors reviewed in Section 2.5. The priors that we consider in

Section 3.3 and Section 4.3 are in fact Gaussian process priors themselves. We first

consider these Gaussian priors and determine the corresponding rates of posterior
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contraction that follows from the results in [50]. We then turn to the definitive

non-parametric prior distributions of interest in Section 3.5 and Section 4.5.

It turns out that the Gaussian priors under consideration achieve near optimal

rates of posterior contraction for the class of functions on which they are defined.

These priors however depend on the smoothness level of this class of functions. As

such, they are not rate-adaptive. We would like to obtain rate-adaptive priors and

this is the reason to look beyond the Gaussian priors.

Prior distributions in general may have tuning parameters. To distinguish them

from the parameters of the statistical model, parameters of the prior are usually

called hyper-parameters. Different values for the hyper-parameters correspond to

different instances of the prior distribution, or, in other words, to different priors

in the same family of prior distributions. We pursue rate-adaptive procedures by

mixing different instances of the Gaussian priors. This is achieved by choosing a

probability distribution on the tuning parameters. The prior distributions defined

as such are referred to as conditionally Gaussian priors because the stochastic

processes that define these priors are only Gaussian conditional on the values of

the hyper-parameters.

A prior distribution constructed by mixing different instances of the same prior

with respect to some probability distribution on the hyper-parameter is called

a hierarchical prior. The conditionally Gaussian priors that we consider in this

work are examples of hierarchical priors. A draw from a hierarchical prior can be

obtained by first drawing a realization of the hyper-parameter and then drawing

from the prior distribution that matches that particular hyper-parameter. The

hierarchical prior is named after these consecutive steps in this procedure.

We thus construct hierarchical priors from our non-adaptive Gaussian priors.

We show that the hierarchical priors are indeed rate-adaptive for suitable prior

distributions on the hyper-parameters of the Gaussian prior distributions. In the

following section we describe in more detail the specific contribution of each of the

following chapters in this thesis.

1.4 Overview of this work

In Chapter 2 we review a number of results from the literature that will be of

use in the subsequent chapters. In particular, we review a number of results that

establish posterior contraction rates for general non-parametric prior distributions.

These results can be applied to various statistical problems. We consider three

statistical settings in particular. We then turn to prior distributions defined by

stochastic processes. For each of the three statistical settings, we will reformulate

the posterior contraction conditions for general priors into conditions for stochastic

process priors. In the case of a Gaussian process prior, these conditions can be

simplified into a single condition on the concentration of the Gaussian process.



Bibliotheek TU/e

Introduction 7

We also review this result from the literature, as well as the Gaussian process

machinery behind it. The latter will be of use for the conditional Gaussian process

priors in the following chapters.

1.4.1 Chapter 3

In Chapter 3 we consider a family of process priors constructed using piecewise

polynomial functions on the real line or some multi-dimensional Euclidean space.

It is known that these so-called spline functions provide good approximations for

Hölder-smooth functions. Splines can therefore be a useful tool for constructing

prior distributions on smooth functions.

For an introduction to the splines that we use to construct our family of priors,

we refer to Section 3.2. We build our priors from random tensor-product splines

with independent Gaussian B-spline coefficients. We keep the order of the splines

fixed and treat the number of knots as a hyper-parameter. The latter will at first

be deterministic and later be endowed with a second, independent prior. As a

result, the priors will be conditionally Gaussian process priors. We prove that

a rate-optimal adaptive procedure for the inference about smooth multivariate

functions is obtained in this way.

Ghosal et al. [21] obtain a rate-optimal procedure in the density estimation

setting using a prior distribution on a log-spline model. If a sample is observed

from an unknown density f on an interval, this result says that if log f is

r-times continuously differentiable and uniformly bounded by a known constant,

then posterior contraction of the order n−r/(1+2r) is achieved. This procedure is

non-adaptive because it depends on knowledge of the smoothness level r of the

unknown density f. Rate-adaptive results for spline priors have been obtained by

Ghosal et al. [22] and Huang [25] in the density estimation case, using hierarchical

priors that endow the dimension of the spline model with an additional prior, again

assuming a uniform bound on f. The result in [25] for the density estimation case is

accompanied by a similar result in a non-parametric regression context. The prior

weights are chosen separately for each case, so the two settings are not treated in

a unified manner. A joint feature of the approaches in [22] and [25] is that both

the order and the knots of the splines are different among the finite dimensional

models. This makes the priors rather involved.

Our approach and the results that we derive in Chapter 3 complement and

extend the existing literature in a number of directions. Firstly, we do not fix

a specific setting like density estimation to obtain results. Instead, we present

general theorems about random spline processes that, in combination with existing

general rate of posterior contraction results for specific settings, lead to concrete

posterior contraction results in for instance density estimation, classification and

regression. Secondly, we do not merely consider inference about functions of a
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single variable, but also about functions of several variables. We show that suitable

prior distributions on smooth multivariate functions can be constructed using

tensor-product splines. Thirdly, we do not assume a known bound on the unknown

function of interest. In our approach, we do not need to assume any uniform bound.

This is a consequence of the fact that we use unbounded (namely Gaussian) prior

weights on the B-spline coefficients. Lastly, we keep the order of the splines in the

construction of our prior fixed at a certain value. Only the number of knots of the

splines involved is viewed as a hyper-parameter. As a result our priors are simpler

and conceivably also computationally more attractive.

Chapter 3 is based on the paper [28].

1.4.2 Chapter 4

In Chapter 4 we consider prior distributions on functions of one or more variables

that are constructed using location-scale kernel mixtures. A discrete location-scale

mixture of a fixed probability density p on Rd can be expressed as

x 7→
m∑
j=1

wj
1

σd
p
(x− xj

σ

)
, (1.1)

where m ∈ N is called the grid size, the points x1, . . . , xm ∈ Rd are called the

grid locations and σ > 0 is called the bandwidth. The numbers w1, . . . , wm ≥ 0

are called the mixing weights, and typically satisfy
∑
wj = 1. The use of such

mixtures of kernels is well established for the construction of non-parametric priors

on probability densities. When p satisfies some regularity conditions, a wide class

of probability densities can be well approximated by mixtures of the form (1.1).

Obviously, a much wider class of functions is well approximated if we lift the

restriction that the weights wj should be nonnegative and sum up to 1. This

suggests that location-scale mixtures might be attractive priors not just in the

setting of density estimation, but for instance also in non-parametric regression.

The priors that we consider in Chapter 4 are constructed by choosing Gaussian

priors on the mixing weights in the expression (1.1). We obtain general results for

such priors, which can be used in a variety of statistical settings. To illustrate

this we present rate of contraction results not just for non-parametric regression,

but also for density estimation and classification settings. We will show that if

the kernel and the priors on locations and scales are appropriately chosen, kernel

mixture priors yield posteriors with good asymptotic properties. It is well known

that for the estimation of an α-regular function of d variables, the best possible

rate of convergence is of the order n−α/(d+2α) if n is the number of observations.

We will prove that up to a logarithmic factor this optimal rate can be attained as

the posterior contraction rate of location-scale mixture priors. More importantly,

the near optimal rate can be achieved by a prior that does not depend on the
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unknown smoothness level α of the regression function. In other words, we can

obtain a fully rate-adaptive procedure. The bounds for the convergence rates that

we will obtain depend crucially on the smoothness of the kernel p that is used.

For kernels with only a finite degree of regularity, we get sub-optimal rates. We

only obtain the correct near-optimal rate for kernels that are infinitely smooth, in

the sense that they admit an analytic extension to a strip in complex space. The

standard normal kernel is an example of an optimal choice in this respect. We also

have to put mild conditions on the priors on the grid size m and the scale σ. In

particular, the popular inverse gamma choice for the scale is included in our setup.

To prove adaptation to all smoothness levels, we use an idea of Rousseau

[41] who establishes adaptation of an appropriate mixture of beta densities to

all smoothness levels of a densities on the unit interval. The paper Kruijer et al.

[31] employs the same idea to prove adaptation for kernel mixture priors for density

estimation. We extend the technique to a multivariate setting. The paper Jonge

and van Zanten [26] on which parts of Chapter 4 are based, was written at the

same time and independently of the paper [31].

1.4.3 Chapter 5

In Chapter 5 we study the asymptotic behavior of the marginal posterior

distribution of the error standard deviation in a non-parametric fixed design

regression model with Gaussian errors. So we suppose we have observations

Y1, . . . , Yn satisfying

Yi = f0(xi) + σ0Zi, i = 1, . . . , n,

where x1, . . . , xn are known elements of a general design space X and Z1, . . . , Zn
are independent standard normal random variables. The variance of the

observations σ0 > 0 and the regression function f0 : X → R are assumed

to be unknown. We can make Bayesian inference about the parameters f and

σ by endowing them with independent priors πf and πσ, respectively, and

computing the resulting posterior distribution Π(· |Y1, . . . , Yn). Although in most

applied problems the main interest is in the regression function f , we are in

Chapter 5 primarily interested in the asymptotic behavior of the marginal posterior

distribution of the parameter σ.

In case the regression function f0 is known and σ is the only unknown parameter

in the problem, the classical Bernstein-von Mises (BvM) theorem asserts that

under minimal regularity conditions, the posterior distribution of σ contracts

around the true value σ0 at the rate n−1/2. See Section 5.2.1 for a precise statement.

In Chapter 5 we investigate if and how this changes if the regression function f is in

fact unknown. Roughly speaking, we show that if the rate of posterior contraction

around the infinite-dimensional parameter f is fast enough, then the marginal



Bibliotheek TU/e

10 Overview of this work

posterior distribution of σ has the same asymptotic behavior as in the case that

f is known.

Our result can be viewed as a semiparametric Bernstein-von Mises theorem.

In general, semiparametric BvM theorems deal with the asymptotic behavior

of posterior distributions of finite-dimensional parameters in the presence of an

infinite-dimensional nuisance parameter. Theorems of this type have recently been

established by several authors, see for instance [5, 8, 10, 40, 44]. Our problem in

fact fits into the general framework of Castillo [10] (up to minor adaptations) and

we will use his results to derive our BvM theorem for the error standard deviation.

As is explained in the cited papers, an important aspect of BvM results is that they

allow to conclude that credible sets for the finite-dimensional parameter of interest,

i.e. sets that receive a fixed amount α of posterior mass, are also asymptotic

α-confidence sets in the frequentist sense. In other words, if a BvM theorem holds,

then the posterior distribution correctly quantifies the uncertainty about the true

value of the parameter.

This chapter is based on the paper [27].
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Chapter 2

Rates in Bayesian

non-parametrics

2.1 Introduction

In this chapter we consider the results that we use to obtain posterior contraction

for the non-parametric prior distributions given in Chapter 3 and Chapter 4.

These prior distributions are defined as the probability distributions of certain

(conditionally) Gaussian processes with continuous sample paths. These sample

paths can be used to parametrize the statistical models for the non-parametric

density estimation, classification and fixed design regression settings as described

in Section 2.2, and the probability distribution of the process seen as a random

element in a function space thus defines a non-parametric prior on these models.

These priors are examples of stochastic process priors. In this chapter we obtain

for such a process prior, a single set of conditions that implies posterior contraction

in each of the three given settings simultaneously, by linking these conditions for

each of the given settings to the conditions of certain general posterior contraction

theorems already available in the literature.

For Gaussian stochastic process priors, such a unified approach has already

been obtained in van der Vaart and van Zanten [50]. It was shown that this

approach is possible for any mean-zero Gaussian process that takes values in a

separable Banach space of functions. We include this result in this chapter, and

use it in Section 3.4 and Section 4.4 to obtain posterior contraction rates for the

specific Gaussian process priors defined in respectively Section 3.3 and Section 4.3.

We also review the Gaussian process machinery behind this result, because it will

be used to show posterior contraction rates for the conditional Gaussian process

priors in Section 3.5 and Section 4.5. These rates are obtained by verifying the

11
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conditions for posterior contraction of stochastic process priors introduced in this

chapter.

The first condition for posterior contraction is called the prior mass condition.

This condition requires that the prior distribution assigns enough probability mass

to small neighborhoods of the truth. In the general posterior contraction theorems

of Section 2.3, these neighborhoods are determined by the Kullback-Leibler

numbers. In the process prior theorems, these neighborhoods are determined by

the norm of the Banach space in which the process takes its values. The other

conditions for posterior contraction require that the prior puts nearly all its mass

on subsets of the model which are not too large in the sense that they can be

covered by a finite number of balls of any fixed radius. These conditions are called

the remaining mass condition and the metric entropy condition.

The concept of metric entropy is defined using the notion of covering numbers

of sets in a metric space. The covering number of a set quantifies the size of this

set in terms of the smallest number of balls of any fixed radius needed to cover

the set.

Suppose A is a nonempty set in a metric space R with distance d. For any

a0 ∈ A and r > 0, let B(a0, r) be the set of all a ∈ A such that d(a, a0) < r. Thus

B(a0, r) is the ball of radius r around a0. An ε-covering of A is a collection B of

balls B(·, ε) of radius ε such that A ⊂ ∪{B : B ∈ B}. The ε-covering number of A

is the number of sets in a minimal ε-covering of A. This definition only makes sense

if there exists such a finite covering of A. A set A is called totally bounded if it

can be covered by finitely many balls of any fixed radius. The ε-covering numbers

depend on the distance d, but they do not depend on the choice of the containing

space R any further.

We can thus consider covering numbers for any combination of a fixed ε > 0, a

distance d and a set A which is totally bounded with respect to d. Let N(ε,A, d)

be the ε-covering number of A with respect to the distance d as given above.

The metric entropy of a set A is defined as H(ε,A, d) = logN(ε,A, d). We use

the natural logarithm to define metric entropy, instead of the base-2 logarithm as

used in for instance Kolmogorov and Tihomirov [29]. Obviously, both definitions

of metric entropy are the same up to some constant factor.

In the general posterior contraction theorems, the radii of covering balls in the

metric entropy condition are measured with respect to a distance appropriate to

the model, for instance the Hellinger distance between probability densities. In

the process prior theorems, this is again the distance induced by the Banach space

norm.

The chapter is organized as follows. We first describe the three non-parametric

statistical problems of interest in Section 2.2. We consider general rate of posterior

contraction results from the literature in Section 2.3. Then, in Section 2.4, we turn

to stochastic process priors. We give conditions that establish posterior contraction
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of such priors in each of the three given statistical problem. In Section 2.5 we

consider the Gaussian process machinery that will be useful to obtain posterior

contraction rates for priors build from Gaussian process priors. In Section 2.6 we

review the result that yields posterior rates of contraction for Gaussian process

priors themselves.

2.2 Statistical models

We prove that our approach yields a posterior contraction rate in three particular

statistical problems, namely non-parametric density estimation, classification and

fixed design regression problems.

In the density estimation case, the goal of statistical inference is to determine

the true probability density from a number of independent and identically

distributed observations.

In the classification (or binary regression) problem, independent observations

are considered that give a binary expression (e.g. ‘true’ or ‘false’) for a number

of different covariate values. The binary regression function is the function that

assigns to every possible covariate the probability of ‘true’. The goal is to determine

this function from the independent observations.

In a fixed design regression problem, the statistician observes the values of some

function at a number of points in its domain, but the observations are perturbed

with random measurement errors. The goal of the statistician is to determine the

true regression function from the observations.

2.2.1 Density estimation

Consider independent and identically distributed random variables X1, . . . , Xn

taking values in a sample space X . Assume that the probability distribution P0 of

such a variable Xi has a density p0 with respect to some σ-finite measure µ on X .
The goal is to determine the unknown probability density function p0.

In parametric statistics, we assume that P0 is contained in some known family

P = {pθ : θ ∈ Θ} of probability densities pθ indexed by a parameter from a

parameter space Θ ⊂ Rk. The goal is to determine the correct parameter θ0 using

the available observations X1, . . . , X1. A possible approach could for instance be

to estimate θ0 by the maximum likelihood estimator θ̂n = θ̂(X1, . . . , Xn). The

parameter θ̂(x1, . . . , xn) is defined as a location at which θ 7→ pθ(x1) · · · pθ(xn) is

maximal.

In non-parametric statistics, the true density p0 itself is being estimated, for

instance using a kernel estimator

p̂n(x) =

n∑
i=1

1

nσ
p
(x−Xi

σ

)
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with p some probability density on X and σ > 0 a bandwidth. The statistical

model is much larger than in the parametric density estimation problem. The

parameter of the statistical model is now itself a probability density function.

In this work, we consider non-parametric Bayesian procedures. Let Π be a prior

distribution on the set P of densities on X . Given the observations X1, . . . , Xn

mentioned before, the posterior distribution Π(·|X1, . . . , Xn) on P is defined by

Π(A|X1, . . . , Xn) =

∫
A

∏n
i=1 p(Xi) dΠ(p)∫

P
∏n
i=1 p(Xi) dΠ(p)

, A ⊂ P.

For some appropriate distance d on the statistical model P, we are interested in

the posterior mass of sets An = {p : d(p, p0) ≤ εn} with εn → 0. In the next

section, we see that posterior contraction can be obtained with d for instance the

Hellinger distance. The Hellinger distance h(p, q) between two densities p and q is

defined by

h2(p, q) =

∫
X

(
√
p(x)−√q(x))2 dµ(x).

It is the distance between the square roots of p and q in L2-sense.

In the next subsections, we introduce the classification and fixed design

regression problems, and show what the distances are for which we obtain posterior

contraction.

2.2.2 Classification

Let X be a random variable in X with a probability distribution G that has a

density g relative to some σ-finite measure µ. Let Y be a random variable that

takes values in {0, 1}. Assume that Y |X = x has a Bernoulli distribution with

probability of success

r0(x) = P(Y = 1|X = x), x ∈ X .

In other words, with pr0(x, y)g(x) = r0(x)y(1 − r0(x))1−yg(x) the probability

density of the joint distribution of the pair (X,Y ), the marginal probability

distribution of Y is given by

P(Y = y) =

∫
X
p0(x, y) dG(x), y ∈ {0, 1}.

We assume that the distribution G of the covariates is known. The goal is to

determine the binary regression function r0 or equivalently, the joint density p0,

from independent and identically distributed observations (X1, Y1), . . . , (Xn, Yn)

with the same distribution as (X,Y ).

The distance between two densities pr and ps is measured using the L2-distance

‖pr − ps‖22,G =
∑

y∈{0,1}

∫
X

(pr(x, y)− ps(x, y))2g(x) dµ(x).
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The distance between the two corresponding binary regression functions r and s

is measured using the L2-distance

‖r − s‖22,G =

∫
X

(r(x)− s(x))2g(x) dµ(x).

These distances are actually equivalent. Because ps(x, 0)−pr(x, 0) = r(x)−s(x) =

pr(x, 1)− ps(x, 1), we in fact have

‖pr − ps‖22,G = 2‖r − s‖22,G.

2.2.3 Fixed design regression

Suppose that Y1, . . . , Yn are independent random variables such that Yi =

w0(xi) + ei for some unknown function w0 : X → R, fixed and known elements

x1, . . . , xn ∈ X and unobservable independent random variables ei. The goal in

a non-parametric fixed design regression problem is to determine the function

w0 : X → R by observing the tuple (Y1, . . . , Yn). We think of this problem as

observing a function w0 at a number of given locations, where the observations

have been contaminated with measurement errors. The measurement errors are

not specific to the location of the measurement, and the goal is to remove all

measurement errors using the various observations at the different locations.

We only consider Gaussian regression. In a Gaussian regression problem, the

error variables ei have a non-degenerate zero-mean Gaussian distribution with a

known or unknown variance. As a consequence, the observation Yi is a Gaussian

random variable with mean w0(xi) and some variance σ2
0 > 0. In particular, the

random variables Yi are independent, not identically distributed.

We distinguish between the cases in which σ0 is known and unknown. First

suppose that σ0 is known. For a function w : X → R from some collection

C of such functions, let p
(n)
w be the probability density of the distribution of

(Y1, . . . , Yn) under the regression relation Yi = w(xi) + ei with w as the regression

function. The model P(n) consists of all densities p
(n)
w with w ∈ C. This is

non-parametric description of a finite-dimensional model. Indeed, two regression

functions v, w : X → R that coincide on all design points give rise to the same

probability distribution of (Y1, . . . , Yn), that is to say, we have p
(n)
w = p

(n)
v for

all v, w : X → R such that v(xi) = w(xi) for all i = 1, . . . , n. The dimension

of the finite-dimensional model however changes with the number of available

observations. The non-parametric interpretation is an obvious formulation if we

want to let the sample size n tend to infinity. The distance ‖v−w‖n between two

regression functions v, w : X → R is given by the n-norm distance

‖v − w‖2n =
1

n

n∑
i=1

(v(xi)− w(xi))
2.
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This distance only takes the values of v and w at the fixed design points x1, . . . , xn
into account. Every n-norm is bounded from above by the supremum norm.

If the error variance σ2
0 is unknown, then the setup is slightly different. We

add a variable σ > 0 to the parameter of the statistical model, which represents

the standard deviation of the errors in the regression relation. The parameter of

the statistical model takes the form η = (w, σ) with w : X → R some regression

function in C and σ some positive real number. For η = (w, σ), let p
(n)
η be the

probability density of the distribution of (Y1, . . . , Yn) under the regression relation

Yi = w(xi) + σZi in which the variables Zi are independent standard Gaussians.

The distance ‖η − η0‖ between the parameters η = (w, σ) and η0 = (w0, σ0) is

measured by

‖η − η0‖ = ‖w − w0‖n + |σ − σ0|

with ‖ · ‖n the n-norm as defined above.

2.3 Posterior contraction

Theorem 2.1 of Ghosal et al. [21] (see Theorem 2.1 below) gives general conditions

for the posterior contraction at a certain rate around the truth of a prior

distribution on a non-parametric statistical model in the case of independent

and identically distributed observations. This result has been extended in various

directions. Theorem 2.4 in the same paper specializes the theorem to a result that

establishes parametric contraction rates n−1/2 if the theorem is in fact applied to

finite-dimensional models. In Theorem 2.1 of Ghosal and van der Vaart [19], the

conditions of Theorem 2.1 in [21] are relaxed in the sense that they are formulated

using two different rates εn and ε̃n, which makes the conditions easier to verify.

The posterior contraction rate is then the slower of the two rates. Ghosal and

van der Vaart [20] generalize Theorem 2.4 in [21] to a result that also holds

for non-i.i.d. observations, and in particular to independent but not identically

distributed observations in Theorem 4 of [20].

The conditions for the finite dimensional result are more involved than the

results that only apply to non-parametric models. Because we only consider

non-parametric estimation, we will not consider the finite-dimensional result

any further, because this would make the assumptions more complicated than

needed. We consider independent observations, but the observations are not always

identically distributed.

Let us now consider the posterior contraction statements. Let P be a collection

of probability distributions with densities p relative to some measure on the sample

space. Suppose that Πn is a sequence of prior distributions on the collection P and

that we observe an independent random sample X1, . . . , Xn from some probability

distribution P0 ∈ P with density p0. Denote by E0 the expectation with respect
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to the underlying probability measure P0 (the probability measure P0 such that

P0 = P0 ◦X−1
1 ) and consider the Kullback-Leibler type set

KL(P, ε) = {P : K(p, p0) ≤ ε2, V (p, p0) ≤ ε2}.

with K(p, p0) and V (p, p0) respectively the Kullback-Leibler divergence and the

second moment

K(p, p0) = −E0 log p
p0

(Xi) and V (p, p0) = E0(log p
p0

(Xi))
2. (2.1)

We write logN(ε,Pn, d) for the metric entropy of a subset Pn ⊂ P with respect to

ε and distance d. In the following, this distance d is either the Hellinger distance

or the L2 distance between densities.

Theorem 2.1 of Ghosal et al. [21], copied below as Theorem 2.1, asserts that

under certain conditions on the model and the prior sequence, the sequence of

posteriors contracts at a certain rate around the truth with respect to the Hellinger

distance. As mentioned in [21], if the densities in the model are uniformly bounded,

then the Hellinger distance can be replaced throughout the proof by the L2

distance. Because the L2 distance is in that case bounded from above by a multiple

of the Hellinger distance, the conditions are less restrictive, but the assertion is

weaker. So the theorem with the L2 distance is really a different result. Both results

are formulated by the following statement by allowing d to be either the Hellinger

distance or the L2-distance.

Theorem 2.1. Suppose that for a sequence εn with εn → 0 and nε2
n → ∞ there

exist sets Pn ⊂ P such that

Πn(KL(P0, εn)) ≥ exp(−nε2
n) (2.2)

Πn(P\Pn) ≤ exp(−5nε2
n) (2.3)

logN(εn,Pn, d) ≤ nε2
n. (2.4)

Then for any sufficiently large constant L,

Πn(P : d(P, P0) ≥ Lεn|X1, . . . , Xn)
Pn0−→ 0.

This theorem can be used to obtain posterior contraction rates of sequences of

Gaussian priors in non-parametric density estimation and classification problems

via the general result in Theorem 2.18 of Section 2.6.

This result was extended in Theorem 2.1 of Ghosal and van der Vaart [19] to

allow two rates in the conditions of the theorem. This result is as follows. Let d

again be either the Hellinger distance or the L2-distance.
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Theorem 2.2. Suppose that for a two positive sequence ε̃n, ε̄n → 0 with nε2
n →∞

and nε̄2
n →∞ there exist sets Pn ⊂ P such that

Πn(KL(P0, ε̃n)) ≥ exp(−nε̃2
n) (2.5)

Πn(P\Pn) ≤ exp(−5nε̃2
n) (2.6)

logN(ε̄n,Pn, d) ≤ nε̄2
n. (2.7)

Then for εn = ε̃n ∨ ε̄n and any sufficiently large constant L,

Πn(P : d(P, P0) ≥ Lεn|X1, . . . , Xn)
Pn0−→ 0.

This result will be used to obtain posterior contraction rates for

the conditionally Gaussian priors in non-parametric density estimation and

classification problems via respectively Theorem 2.5 and Theorem 2.7 in

Section 2.4.

To obtain a rate for the fixed design regression setting, we use the following

posterior contraction result for independent but not identically distributed data.

This result, given in Theorem 2.3 below, is a special case of Theorem 4 in [20].

LetX1, . . . , Xn be a sequence of independent random variables and assume that

Xi has a probability distribution P0,i ∈ P with density p0,i. The joint distribution

of the observations is given by a product measure P0 ∈ P(n). Define

d2
n(P, P0) =

1

n

n∑
i=1

∫
(
√
pi(xi)−

√
p0,i(xi))

2 dxi (2.8)

as the average of the squared Hellinger distances (assuming densities are given

relative to the Lebesgue measure as reference measure on the data) and the average

Kullback-Leibler type set

KL∗n(P0, ε) = {P ∈ P(n) :
1

n

n∑
i=1

K(pi, p0,i) ≤ ε2,
1

n

n∑
i=1

V0(pi, p0,i) ≤ ε2} (2.9)

with

K(pi, p0,i) = −E0 log p
p0

(X) (2.10)

V0(pi, p0,i) = E0

(
log p

p0
(X)− E0 log p

p0
(X)

)2
. (2.11)

Theorem 2.3. Suppose that for a sequence of εn → 0 such that nε2
n →∞, there

exist sets P(n)
n ⊂ P(n) such that

Πn(KL∗n(P0, εn)) ≥ exp(−nε2
n/4) (2.12)

Πn(P(n)\P(n)
n ) ≤ exp(−3nε2

n) (2.13)

logN(εn,P(n)
n , dn) ≤ nε2

n. (2.14)
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Then

Πn(P : dn(P, P0) ≥ Lnεn|X1, . . . , Xn)
P0−→ 0

for every sequence Ln →∞.

As mentioned in [20], the average-like Hellinger distance dn is bounded from

above by the n-norm distance on the corresponding regression functions. It thus

suffices to check the conditions with respect to ‖ · ‖n in order to show posterior

contraction with respect to dn. The average-like Hellinger distance is however

not equivalent with the n-norm distance unless the regression functions are

uniformly bounded. So, we cannot obtain contraction with respect to the n-norm

distance from this result without an unattractive extra condition on the regression

functions. However, in the fixed design regression setting, the average-like Hellinger

distance dn can be replaced throughout the proof by the n-norm distance, see

Section 7.7 in [20], so this extra condition can actually be avoided.

This theorem can be used to obtain posterior contraction rates of Gaussian

priors in (both cases of) the non-parametric fixed design regression setting in

Section 2.2.3 via the general result in Theorem 2.18 of Section 2.6, cf. Theorem

3.3 in [50].

To obtain posterior contraction rates for the conditionally Gaussian priors, the

result above is too strict for our purpose. We again want to relax the conditions to

allow two different rates. We use the following theorem in the case of fixed design

regression. We can again replace dn throughout by the distance induced by the

n-norm on the regression functions.

Theorem 2.4. Suppose that for sequences ε̃n, ε̄n → 0 such that n(ε̃n∧ ε̄n)2 →∞,
there exist sets P(n)

n ⊂ P(n) such that

Πn(KL∗n(P0, ε̃n)) ≥ exp(−nε̃2
n/4) (2.15)

Πn(P(n)\P(n)
n ) ≤ exp(−3nε̃2

n) (2.16)

logN(ε̄n,P(n)
n , dn) ≤ nε̄2

n. (2.17)

Then

Πn(P : dn(P, P0) ≥ Ln(ε̃n ∨ ε̄n)|X1, . . . , Xn)
P0−→ 0

for every sequence Ln →∞.

2.4 Posterior contraction for stochastic process

priors

Non-parametric estimation often means the estimation of a function. Because a

stochastic process can be seen as a random element in a space of functions, and
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hence as a prior distribution on this collection of functions, it is natural to consider

stochastic process priors for Bayesian non-parametric inference. The two families

of non-parametric prior distributions that we consider in the following chapters of

this work are based on stochastic processes.

We write W for some stochastic process (or random field) with realizations in

some Banach space of functions. Also, we view this process as a random element

in this Banach space. If we refer to the process as a prior distribution, then we

mean the probability distribution Π of the process seen as a random element in

the Banach space. By the support of W we mean the support of this probability

distribution, i.e. the smallest closed subset B of the Banach space which receives

probability one under the probability distribution of the random element W.

The general posterior contraction results in Section 2.3 can be reformulated for

stochastic process priors in terms of the Banach space in which the prior takes its

values. These conditions are more or less the same for each of the three statistical

problems mentioned in Section 2.2. This in fact also allows us to give a single set

of conditions that we can use to obtain a posterior rate of contraction result in

each of the three statistical problems.

The metric entropy conditions turn into metric entropy conditions on subsets

of the Banach space with respect to the Banach space norm. The new remaining

mass conditions are also formulated using subsets of the Banach space. For the

prior mass conditions, the probability of a Kullback-Leibler type neighborhood

around the truth is replaced by the probability of a small ball around the truth in

the Banach space.

Given an arbitrary element w in the Banach space, we can consider the

probability P(‖W − w‖ ≤ ε) that a realization of the prior belongs to an ε-ball

around w with respect to the Banach space norm ‖ · ‖. For small ε > 0 such a

probability is called a small ball probability of W. We assume that W has zero

mean, and we thus refer to this probability with w = 0 as the centered small ball

probability of W, and for any non-zero w we refer to it as a non-centered small

ball probability.

The following results assume that the prior Π is obtained from a single

stochastic process W. However, the results also hold if Π is replaced by a sequence

Πn of prior distributions corresponding to processes Wn. We always assume that

W is a Borel measurable zero-mean random element in C([0, 1]d) equipped with

the supremum norm.

2.4.1 Density estimation

Let B be the Banach space C([0, 1]d) of continuous functions on [0, 1]d equipped

with the supremum norm ‖ · ‖∞. Consider P = {pw : w ∈ B} for probability



Bibliotheek TU/e

Rates in Bayesian non-parametrics 21

densities pw defined by

pw(x) =
ew(x)∫

[0,1]d
ew(x) dx

, x ∈ [0, 1]d. (2.18)

Suppose that W is a random element of B. The probability distribution of W

defines a prior distribution Π on P via the random variable pW that takes values

pw ∈ P for realizations w of W.

Now suppose that we observe independent and identically distributed

X1, . . . , Xn from a positive density p0. To estimate it, we put the prior Π on

p and consider the corresponding posterior.

The following result gives conditions for the contraction of the posterior in

terms of the Banach space in which the prior W takes its values. The theorem is

established by linking the three conditions to the three conditions of Theorem 2.2,

which then asserts the required posterior contraction statement. To link the

conditions, we need a comparison of the Hellinger distance and Kullback-Leibler

numbers with the supremum norm. This comparison is provided by Lemma 2.6

ahead.

Theorem 2.5. Let Π be the distribution of pW and let w0 = log p0. If there exist

sequences εn → 0 and ε̄n → 0 with n(ε2
n ∧ ε̄2

n) → ∞ and, for every large enough

constant C, measurable subsets Bn ⊂ B and a constant D > 0 such that

logN(ε̄n, Bn, ‖ · ‖∞) ≤ Dnε̄2
n, (2.19)

P(W 6∈ Bn) ≤ exp(−Cnε2
n), (2.20)

P(‖W (x)− w0(x)‖∞ ≤ 2εn) ≥ exp(−nε2
n), (2.21)

then, with h the Hellinger distance,

Π(p : h(p, p0) ≥ L(εn ∨ ε̄n)|X1, . . . , Xn)
Pn0−→ 0

as n→∞, for every sufficiently large constant L.

Proof. We show that the three conditions imply the conditions (2.5)–(2.7), so that

the required posterior contraction follows from Theorem 2.2.

The link between the prior mass conditions is based on the comparison of the

Kullback-Leibler numbers (2.1) and supremum norm ‖·‖∞ in Lemma 2.6. It follows

that for sufficiently large n, there exists a constant A ≥ 1 such that both

K(pw, p0) ≤ ε̃2
n and V (pw, p0) ≤ ε̃2

n

are satisfied if ‖w − w0‖∞ ≤ ε̃n/A. The probability that W maps into {w ∈ B :

‖w−w0‖∞ ≤ ε̃n/A} is thus bounded by the probability that pW is in KL(p0, ε̃n).

Thus, with ε̃n = 2Aεn, according to (2.21),

Π(KL(p0, ε̃n)) ≥ P(‖W − w0‖∞ ≤ 2εn) ≥ exp(−nε2
n) ≥ exp(−nε̃2

n).
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For Bn the given sieves, simply define the sets Pn = {pw ∈ P : w ∈ Bn} so that

P(W 6∈ Bn) = Π(P\Pn). It now follows from (2.20) that Π(P\Pn) ≤ exp(−5nε̃n)

by choosing C large enough.

The link between the metric entropy conditions on the sieves follows from the

relation between the Hellinger distance and the supremum norm ‖ · ‖∞. It follows

from Lemma 2.6 that, for sufficiently large n, one has h(pv, pw) ≤ 4ε̄n for any

v, w ∈ B such that ‖v − w‖∞ ≤ 2ε̄n. From a minimal covering of Bn using balls

of radius 2ε̄n with respect to the supremum norm, one can thus find a covering of

Pn using balls of radius 4ε̄n with respect to the Hellinger distance. We thus find

that

N(4ε̄n,Pn, h) ≤ N(2ε̄n, Bn, ‖ · ‖∞)

and hence, using (2.19), it follows that (2.7) is satisfied with some multiple of the

present ε̄n.

The proof is based on a comparison of the Hellinger distance and

Kullback-Leibler numbers with the supremum norm. We use the following result,

given as Lemma 3.1 in van der Vaart and van Zanten [50].

Lemma 2.6. There exist constants C,D ≥ 0 such that

h(pv, pw) ≤ ‖v − w‖∞e‖v−w‖∞/2

K(pv, pw) ≤ C‖v − w‖2∞e‖v−w‖∞(1 + ‖v − w‖∞)

V (pv, pw) ≤ D‖v − w‖2∞e‖v−w‖∞(1 + ‖v − w‖∞)2.

2.4.2 Classification

Suppose that we observe independent and identically distributed pairs of

observations (X1, Y1), . . . , (Xn, Yn) with values in X × {0, 1} such that P(Y1 =

1|Xi = x) = r0(x) for some binary regression function r0 : X → [0, 1].

Let B be the Banach space C([0, 1]d) of continuous functions on [0, 1]d equipped

with the supremum norm ‖ · ‖∞. For Ψ the distribution function of the standard

logistic distribution and for w realizations of a random element W in B, we define

functions rw : [0, 1]d 7→ (0, 1) by rw(x) = Ψ(wx). Then the law of Ψ(W ) defines a

prior Π on the model

P = {pw(x, y) = rw(x)y(1− rw(x))1−y : x ∈ [0, 1]d, y ∈ {0, 1}}.

Remember that p0(x, y) = r0(x)y(1 − r0(x))1−y is the true density of a pair of

observations (Xi, Yi) in the classification problem as described in Section 2.2.2

(relative to the probability distribution G on [0, 1]d).

The following result gives conditions for the contraction of the posterior in

terms of the Banach space in which the prior W takes its values. The theorem is
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established by linking the three conditions to the three conditions of Theorem 2.2,

which then asserts the required posterior contraction statement. To link the

conditions, we need a comparison of the Hellinger distance and Kullback-Leibler

numbers with the L2(G)-distance. Remember that the L2(G) distance between pv
and pw is defined by

‖pv − pw‖22,G =
∑

y∈{0,1}

∫
X

(pv(x, y)− pw(x, y))2 dG(x).

Note that ‖pv − pw‖22,G = 2‖rv − rw‖22,G, so the posterior contraction statement

can also be formulated with respect to the binary regression function r0 instead

of the true probability density p0 of the pairs of observations.

Theorem 2.7. Let Π be the distribution of Ψ(W ) and let w0 = Ψ−1(r0). If there

exist sequences εn → 0 and ε̄n → 0 with n(ε2
n ∧ ε̄2

n) → ∞ and, for every large

enough constant C, measurable subsets Bn ⊂ B and a constant D > 0 such that

logN(ε̄n, Bn, ‖ · ‖2,G) ≤ Dnε̄2
n, (2.22)

P(W 6∈ Bn) ≤ exp(−Cnε2
n), (2.23)

P(‖W (x)− w0(x)‖2,G ≤ 2εn) ≥ exp(−nε2
n), (2.24)

then

Π(r : ‖r − r0‖2,G ≥ L(εn ∨ ε̄n)|X1, Y1 . . . , Xn, Yn)
Pn0−→ 0

as n→∞, for every sufficiently large constant L.

Proof. Let Π be the distribution of pW . We show that

Π(p : ‖p− p0‖2,G ≥ L(εn ∨ ε̄n)|X1, Y1 . . . , Xn, Yn)
Pn0−→ 0

by verifying the conditions of Theorem 2.2.

It follows from Lemma 2.8 that we have K(pw, p0) ≤ ε̃2
n and V (pw, p0) ≤ ε̃2

n if

‖w − w0‖2,G ≤ ε̃n/A for some sufficiently large constant A ≥ 1. Using (2.24), we

conclude that for ε̃n = 2Aεn,

Π(KL(p0, ε̃n)) ≥ P(‖W − w0‖2,G ≤ 2εn) ≥ exp(−nε̃2
n).

This verifies (2.5).

We again let Pn = {pw : w ∈ Bn} so that P(W 6∈ Bn) = Π(P\Pn). For ε̃n as

above, condition (2.6) now follows from (2.23) by choosing C large enough.

The L2(G)-distance between different pw in the model can be bounded from

above by some large enough multiple of the L2(G)-distance of the corresponding

indices w according to Lemma 2.8. As a consequence,

logN(ε̄n,Pn, ‖ · ‖2,G) ≤ logN(ε̄n, Bn, ‖ · ‖2,G).

It now follows from (2.22) that (2.7) is satisfied for a sufficiently large multiple of

the present ε̄n.
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We again linked to the corresponding conditions of Theorem 2.2. The distance

d is not the Helling distance as in the previous case, but the L2(G)-distance. We

need the following results, obtained as a special case of Lemma 3.2 in [50].

Lemma 2.8. There exists constants C,D,E > 0 such that

‖pv − pw‖2,G ≤ C‖v − w‖2,G
K(pv, pw) ≤ D‖v − w‖22,G
V (pv, pw) ≤ E‖v − w‖22,G.

Instead of the standard logistic distribution function, we can also use the

standard normal distribution function as link function Ψ. We then require that

the conditions of Theorem 2.7 hold with the supremum norm ‖ · ‖∞ instead of the

L2(G)-norm. We actually turn to the supremum norm altogether in Section 2.4.4

ahead. The posterior contraction statement however remains in terms of the

L2(G)-distance on the densities. It follows from Lemma 3.2 in [50] that, in the

case of a standard normal link function, both K(pv, pw) and V (pv, pw) are bounded

from above by a multiple of ‖v − w‖∞.

2.4.3 Fixed design regression

Let (Y1, . . . , Yn) be observations in the fixed design regression problem as described

in Section 2.2.3, with design points x1, . . . , xn ∈ [0, 1]d. First assume that the error

standard deviation σ0 is known.

Suppose that W is a random element in the Banach space C([0, 1]d) equipped

with the supremum norm. Given the covariates x1, . . . , xn ∈ [0, 1]d, we consider

the n-norm of a realization w of W

‖w‖2n =
1

n

n∑
i=1

w(xi)
2.

For each n, the process W defines a prior distribution Π on the model

P(n) =
{
p(n)
w (y) =

n∏
i=1

pw,i(yi)
}

with pw,i the probability densities of observations Yi that satisfy the regression

relation with the regression function w, that is to say the probability density of

a Gaussian distribution with mean w(xi) and variance σ2
0 . Alternatively, we can

say that the process W defines a prior on the regression functions w : X → R
itself. Remember that w0 is the true regression function, and that σ0 is the true

standard deviation of the error variables. The norm for which we obtain posterior

contraction is the n-norm.
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The following result gives conditions for the contraction of the posterior in

terms of the Banach space in which the prior W takes its values. The theorem is

established by linking the three conditions to the three conditions of Theorem 2.4,

which then asserts the required posterior contraction statement. To link the

conditions, we use a comparison of the Kullback-Leibler numbers and the distance

induced by the n-norm in Lemma 2.10. The n-norm quantifies the distances

between densities via the corresponding regression functions w : X → R. The

posterior contraction statement below is formulated with Π the distribution of W

itself.

Theorem 2.9. Let Π be the distribution of W. If there exist sequences εn → 0 and

ε̄n → 0 with n(ε2
n ∧ ε̄2

n)→∞ and, for every large enough constant C, measurable

subsets Bn ⊂ B and a constant D > 0 such that

logN(ε̄n, Bn, ‖ · ‖n) ≤ Dnε̄2
n, (2.25)

P(W 6∈ Bn) ≤ exp(−Cnε2
n), (2.26)

P(‖W (x)− w0(x)‖n ≤ 2εn) ≥ exp(−nε2
n), (2.27)

then

Π(w : ‖w − w0‖n ≥ Ln(εn ∨ ε̄n)|Y1, . . . , Yn)
P

(n)
0−→ 0

as n→∞, for every sequence Ln →∞.

Proof. Let Π be the distribution of p
(n)
W . We show that

Π(p(n)
w : ‖w − w0‖n ≥ Ln(εn ∨ ε̄n)|Y1, . . . , Yn)

P
(n)
0−→ 0

by verifying the conditions of Theorem 2.4.

It is immediately clear from Lemma 2.10 that the average Kullback-Leibler

numbers in the definition of the Kullback-Leibler type neighborhood (2.9) are

multiples of the squared n-norm distances between the indices. We have

1

n

n∑
i=1

K(pw,i, p0,i) =
1

2σ2
0

‖w − w0‖2n and
1

n

n∑
i=1

V0(pw,i, p0,i) =
1

σ2
0

‖w − w0‖2n

and thus

Π(KL∗n(P0, ε̃n)) ≥ P(‖W − w0‖n ≤ σ0ε̃n).

For ε̃n a sufficiently large multiple of εn, this is again bounded from below by

P(‖W − w0‖n ≤ 2εn) ≥ exp(−nε2
n) ≥ exp(−nε̃2

n/4)

according to (2.27). This shows (2.15).

Define the sets P(n)
n = {pw ∈ P(n) : w ∈ Bn}. As we have seen before, for this

choice of sieve the link between the remaining mass conditions (2.26) and (2.16)

follows by choosing the constant C large enough.



Bibliotheek TU/e

26 Posterior contraction for stochastic process priors

The average-like Hellinger distance dn given in (2.8) satisfies dn(pv, pw) ≤
‖v − w‖n. From this it follows that assumption (2.25) implies condition (2.17) of

Theorem 2.4 with a sufficiently large multiple of the present ε̃n.

We now obtain posterior contraction with respect to dn. However, the assertion

still holds if the distance dn is replaced in the posterior contraction statement by

the n-norm. Indeed, the distance dn can be replaced by ‖ ·‖n throughout the proof

of Theorem 2.4, as is the case for Theorem 2.3, as mentioned in [20]. So we obtain

posterior contraction with respect to the n-norm.

The Kullback-Leibler divergence (2.10) and the Kullback-Leibler variance

(2.11) are given in the following lemma.

Lemma 2.10.

K(pw,i, p0,i) =
1

2σ2
0

(
w0(xi)− w(xi)

)2
V0(pw,i, p0,i) =

1

σ2
0

(
w0(xi)− w(xi)

)2
Proof. Because pw,i(yi) is proportional to exp(− 1

2σ2
0
(yi − w(xi))

2),

− log
pw,i
p0,i

(Yi) = 1
2σ2

0
w(xi)

2 − 1
2σ2

0
w2

0 + 1
σ2
0
w0(xi)Yi − 1

σ2
0
w(xi)Yi.

Taking the expectation with respect to p0,i substitutes w0(xi) for Yi. Completing

the square gives the desired expression for K(pw,i, p0,i). For the Kullback-Leibler

variance, note that

log
pw,i
p0,i

(Yi) +K(pw,i, p0,i) = 1
σ2
0
(w0(xi)− w(xi))(w(xi)− Yi)

and that V0(pw,i, p0,i) is the expectation of its square. Because E0(w(xi)−Yi)2 = σ2
0

the result follows.

If the error variance is unknown, then we also endow σ with a prior distribution.

We assume that the prior on σ is supported on a given compact subinterval of

(0,∞) that contains the true σ0, and that this prior distribution has a Lebesgue

density which is bounded away from zero. Together with the prior on w, this

defines a total prior on the pair η = (σ,w). We now denote by Π this total prior

on the pair of parameters.

According to Theorem 3.3 in van der Vaart and van Zanten [50], under these

assumptions on the prior for σ, the posterior distribution of the total prior contracts

around the truth (σ0, w0) in the following sense under the same conditions as in

the case in which the error variance was known.

Theorem 2.11. Under the conditions of Theorem 2.9,

Π((σ,w) : ‖w − w0‖n + |σ − σ0| ≥ Ln(εn ∨ ε̄n)|Y1, . . . , Yn)
P

(n)
0−→ 0

as n→∞ for every sequence Ln →∞.
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2.4.4 Unified approach

Suppose that W is a Borel measurable zero-mean random element in C([0, 1]d)

equipped with the supremum norm ‖ · ‖∞ over [0, 1]d. The probability distribution

of W can be used as a prior distribution in each of the preceding settings.

The uniform norm ‖·‖∞ is stronger than both ‖·‖2,G and ‖·‖n. The conditions of

Theorem 2.7 and Theorem 2.9 can therefore be verified using the supremum norm

to reach the same conclusions. The set of conditions thus becomes

logN(2ε̄n, Bn, ‖ · ‖∞) ≤ Dnε̄2
n, (2.28)

P(W 6∈ Bn) ≤ exp(−Cnε2
n), (2.29)

P(‖W (x)− w0(x)‖∞ ≤ 2εn) ≥ exp(−nε2
n). (2.30)

Although these conditions are stronger than the conditions of the preceding

theorems, they might actually be easier to verify. Furthermore, we see that a

posterior contraction result can actually be obtained in three different statistical

problems simultaneously under the same conditions.

2.5 Gaussian process priors

In the previous section we have seen under which conditions on a stochastic process

prior, we obtain posterior contraction around the truth for various statistical

models simultaneously. In particular these results hold for Gaussian process priors.

It turns out that in order to obtain posterior contraction in the case of Gaussian

process priors, it suffices to have conditions with a single rate. In fact, the

conditions obtained in Theorem 2.18 in Section 2.6.1 link to the general posterior

contraction conditions of Theorem 2.1 for the density estimation and classification

problems, and from Theorem 2.3 for the fixed design regression setting. This has

been shown in van der Vaart and van Zanten [50].

Theorem 2.18 thus asserts the conditions for posterior contraction in terms

of a Gaussian process and the separable Banach space in which it, seen as

a random element in a space of functions, takes its values. This theorem

replaces the posterior contraction conditions with another condition, the so-called

concentration inequality. In Section 3.4 and Section 4.4 we obtain rates of posterior

contraction for two families of Gaussian priors by verifying the concentration

inequality.

In this section, we introduce the concepts and results needed to formulate

and prove Theorem 2.18. We recall the concept of the reproducing kernel Hilbert

space of a Gaussian process and show how it is related to the non-centered small

ball probabilities of the prior. In this work, we do not consider the proof of

Theorem 2.18 (a verification of a set of three conditions (2.34)–(2.36) similar

to those seen in Section 2.4), but we want to introduce the Gaussian process
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machinery behind this result in order to verify the conditions (2.28)–(2.30) for the

non-Gaussian hierarchical priors in Section 3.5 and Section 4.5, which are in fact

built from Gaussian process priors.

2.5.1 The reproducing kernel Hilbert space

We first recall the definition of the reproducing kernel Hilbert space attached to a

zero-mean Gaussian process W with index set T. The reproducing kernel Hilbert

space H is defined as the completion of the linear space of functions t 7→ EW (t)H

relative to the inner product

〈EW (·)H1,EW (·)H2〉H = EH1H2,

where H,H1 and H2 are finite linear combinations of the form
∑
i aiW (si)

with ai ∈ R and si ∈ T. Elements h of the reproducing kernel Hilbert space

can be identified with functions h(t) on T through the reproducing formula

h(s) = 〈h,EW (·)W (s)〉H, with EW (·)W (s) = K(s, ·) for K the covariance function

of W.

We now consider the reproducing kernel Hilbert space of a finite sum Gaussian

process. Let B be a Banach space of functions and let b1, . . . , bJ be elements of B.
Let Z1, . . . , ZJ be independent standard normal random variables. The process

W (x) =

J∑
j=1

Zjbj(x) (2.31)

is a random element in the Banach space B. For any k ∈ N and constants

a1, . . . , ak ∈ R and any choice of k locations x1, . . . , xk, the linear combination

k∑
i=1

aiW (xi) =

J∑
j=1

( k∑
i=1

aibj(xi)
)
Zj

is Gaussian. So W is a zero mean Gaussian process. The covariance function

K(x, y) = EW (x)W (y) of such a Gaussian process is

K(x, y) =

J∑
j=1

bi(x)bj(y).

The RKHS in this case can be found as in Section 4 of the paper [54] by van der

Vaart and van Zanten.

Lemma 2.12. The reproducing kernel Hilbert space H of the process W in (2.31)

consists of all functions x 7→
∑J
j=1 wjbj(x) with wj ∈ R. The RKHS-norm of an

element h ∈ H is given by ‖h‖2H = infw
∑J
j=1 w

2
j , where the infimum is taken over

all w ∈ RJ for which the representation h =
∑J
j=1 wjbj holds true.
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If b1, . . . , bJ are linearly independent, then each h ∈ H has a unique

representation. The infimum can then be removed from the expression for the

RKHS-norm.

2.5.2 Small ball probabilities

Suppose that W is a zero-mean Gaussian random element in the Banach space B
with norm ‖ · ‖. We consider the centered small ball probability P(‖W‖ ≤ ε) and

define

ϕ0(ε) = − logP(‖W‖ ≤ ε) (2.32)

as minus the exponent of the centered small ball probability.

We now consider the small ball probability P(‖W − w‖ ≤ ε) around w ∈ B. It

is known that w 7→ P(‖W − w‖ ≤ ε) is maximal at w = 0 for any fixed ε > 0. If

w ∈ B is contained in the reproducing kernel Hilbert space of W, then even more

is known. According to (4.16) of Kuelbs, Li and Linde [32]

P(‖W − h‖ ≤ ε) ≥ exp(−‖h‖2H/2)P(‖W‖ ≤ ε)

or equivalently,

− logP(‖W − h‖ ≤ ε) ≤ 1

2
‖h‖2H + ϕ0(ε).

The following lemma, given as Lemma 5.3 in [54], extends this result to w

contained in the support of W. For W in a separable Banach space B, the support

of W is equal to the closure of H ⊂ B in the Banach space B. We can thus think

of a realization of W as a limit in B of a sequence of elements in the reproducing

kernel Hilbert space. Consider the infimum

ϕinf(ε) = inf
h∈H:‖w−h‖≤ε

1
2‖h‖

2
H

for w in the support of W, and let

ϕw(ε) = ϕinf(ε) + ϕ0(ε). (2.33)

Lemma 2.13. For any w in the support of W and every ε > 0,

ϕw(2ε) ≤ − logP(‖W − w‖ ≤ 2ε) ≤ ϕw(ε).

2.5.3 Centered small ball probabilities via metric entropy

In the previous section we considered the centered small ball probabilities of a

Gaussian process. In this section, we see that these probabilities can be studied

via the metric entropy of the unit ball of the reproducing kernel Hilbert space.

Remember that the covering number N(ε,A, d) of a set A in a metric space with
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distance d is the minimum number of balls of radius ε needed to cover A. The

metric entropy of A is defined as logN(ε,A, d).

Let H1 be the unit ball in the reproducing kernel Hilbert space of some

zero-mean Gaussian random element W in a separable Banach space. We now

consider the metric entropy of H1 with respect to the Banach space norm. The

following lemma gives us a bound on the exponent ϕ0(ε) of the centered small ball

probability of W in (2.32) if the metric entropy of H1 is suitably bounded from

above. This result is an easy consequence of Theorem 1.2 in Li and Linde [34].

Lemma 2.14. Suppose that for some 0 < α < 2 and some constant K > 0,

logN(ε,H1, ‖ · ‖) ≤ Kε−α

for any sufficiently small ε > 0. Then there exists some constant C such that

ϕ0(ε) ≤ Cε−
2α

2−α

for any sufficiently small ε > 0.

The following lemma gives a similar result, only with different upper bounds.

This result has been obtained in Corollary 2.4 of Aurzada et al. [1].

Lemma 2.15. Suppose that for some γ > 0 and some constant K,

logN(ε,H1, ‖ · ‖) ≤ K(log 1/ε)γ

for any ε ≤ 1. Then there exists some constant C such that for any ε ≤ 1,

ϕ0(ε) ≤ C(log 1/ε)γ .

2.5.4 Borell’s inequality

Suppose that W is a zero-mean Gaussian random element in the separable Banach

space B. We considered the probability P(‖W −w‖ ≤ ε) that W maps into a small

ball around some w in the support of W. The following result by Borell [7] deals

with the probability that W maps into a ball around some h ∈ H, for any h in the

reproducing kernel Hilbert space for which the reproducing kernel Hilbert space

norm is bounded by a constant L.

Let H1 be the unit ball in the reproducing kernel Hilbert space of W and let

B1 be the unit ball in the Banach space. Let Φ be the cumulative distribution

function of the standard Gaussian distribution.

Theorem 2.16. For any ε > 0 and L ≥ 0,

P(W ∈ LH1 + εB1) ≥ Φ(Φ−1(P(‖W‖ ≤ ε)) + L)
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This result in the present form is given by Theorem 5.1 of [54]. The following

variant of Borell’s inequality is given in Proposition A.2.1 of van der Vaart and

Wellner [53].

Theorem 2.17. For any x > 0,

P(‖W‖ ≥ x) ≤ 2 exp
(
− x2

8E‖W‖2
)
.

This result is used in the proof of Theorem 5.3 for a process with values in the

space Cα([0, 1]d) of Hölder functions, equipped with the Hölder norm ‖ · ‖α.

2.6 Posterior contraction for Gaussian priors

2.6.1 General result

In the previous section, we considered the reproducing kernel Hilbert space

of a zero mean Gaussian process and showed that the non-centered small

ball probabilities around w0 can be calculated using the centered small ball

probabilities and the RKHS norm of an approximation of w0 by elements in the

reproducing kernel Hilbert space. Moreover, the centered small ball probabilities

can be calculated via the metric entropy of the reproducing kernel Hilbert space

unit ball.

In the following theorem it is shown that in the case of a Gaussian prior,

the conditions for posterior contraction around w0 can be captured into a single

condition which is basically the prior mass condition that we have seen before.

This condition uses the non-centered small ball probability around w0 to express

that the prior should put at least a minimal amount of probability mass on small

neighborhoods around the truth. In this case, we use the concentration function

introduced in the previous section to impose this condition, and refer to this

single condition as the concentration inequality. This result has been obtained

in Theorem 2.1 of van der Vaart and van Zanten [50].

Theorem 2.18. Let W be a Borel measurable zero-mean Gaussian random

element in a separable Banach space B with norm ‖ · ‖. For any sequence εn that

satisfies the concentration inequality ϕw0
(εn) ≤ nε2

n and any large enough contant

C, there exists a measurable set Bn ⊂ B such that

P(‖W − w0‖ ≤ εn) ≥ exp(−nε2
n) (2.34)

P(W 6∈ Bn) ≤ exp(−Cnε2
n) (2.35)

logN(εn, Bn, ‖ · ‖) ≤ 6Cnε2
n (2.36)
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The condition that C is large enough in this statement means that C > 1 and

e−Cnε
2
n < 1/2. Note that for a sequence εn such that nε2

n →∞ the latter condition

is automatically satisfied for any large enough n.

The assertion of Theorem 2.18 can be linked to the three conditions for

posterior contraction in the statistical models described in Section 2.2. For the

density estimation and classification settings, these conditions are linked to the

conditions Theorem 2.1 because the observations in these settings are independent

and identically distributed. For the fixed design regression setting, they are linked

to Theorem 2.3 because the observations are independent, but not identically

distributed.

Although Theorem 2.18 will be used as an asymptotic result as n→∞, it is in

fact a statement for every fixed n. The process W is therefore allowed to depend

on n. The corresponding RKHS and concentration function then also depend on

n.

2.6.2 Specific statistical settings

Let B be a separable Banach space that consists of functions on X . Let ‖ · ‖ be the

Banach space norm. The Banach space might for instance be the space C([0, 1])d

of continuous functions on X = [0, 1]d equipped with the supremum norm. Assume

that W is a zero-mean Gaussian random element in B and that w0 : X → R is in

the support of W. Let ϕw0
be the concentration function of W.

We have seen how the prior distributions on the statistical models can

be defined in the various statistical settings via the law of W. The posterior

contraction results for the various settings in Theorems 2.19, 2.20 and 2.21 ahead

can be summarized by saying that the posterior contracts at a rate εn around the

true function w0 if εn satisfies the concentration inequality ϕw0
(εn) ≤ nε2

n.

We now explain for each of the statistical settings what is exactly meant by

the statement that the posterior contracts around the truth at a certain rate.

2.6.2.1 Density estimation

We consider a sample X1, . . . , Xn from a probability density p0 on the sample

space X . To make inference about the true p0, we define a prior distribution Π on

probability densities p and consider the posterior.

Let P = {pw : w ∈ B} for probability densities pw defined by

pw(x) =
ew(x)∫

X e
w(x) dx

, x ∈ X . (2.37)

Suppose that W is a Gaussian random element of B. The distribution of W

defines a prior distribution Π on P via the random variable pW that takes

values pw ∈ P for realizations w of W. Let h be the Hellinger distance between
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probability densities. The following theorem explains for the density estimation

setting described in Section 2.2.1 what is meant by the posterior contraction that

follows from Theorem 2.18.

Theorem 2.19. Under the conditions of Theorem 2.18,

Π(p : h(p, p0) ≥ Lεn|X1, . . . , Xn)
Pn0−→ 0

as n→∞ for any sufficiently large constant L.

2.6.2.2 Classification

We consider i.i.d. observations (X1, Y1), . . . , (Xn, Yn), where Xi takes values in a

sample space X and Yi takes values in the set {0, 1}. The statistical problem is to

determine the binary regression function r0(x) = P(Yi = 1 |Xi = x).

For Ψ the standard logistic or the standard normal distribution function, we

define by rw(x) = Ψ(wx) a function rw : X 7→ (0, 1) for each realization w of W.

This defines a prior on P = {pw(x, y) = rw(x)y(1− rw(x))1−y : x ∈ X , y ∈ {0, 1}}.
Let Π now be the prior distribution on binary regression functions given by the

distribution of Ψ(W ).

The following theorem explains for the classification setting in Section 2.2.2

what is meant by the posterior contraction that follows from Theorem 2.18.

Theorem 2.20. Under the conditions of Theorem 2.18,

Π(r : ‖r − r0‖2,G ≥ Lεn|X1, Y1, . . . , Xn, Yn)
Pn0−→ 0

as n→∞ for any sufficiently large constant L.

2.6.2.3 Fixed design regression

Suppose that we observe independent pairs (x1, Y1), . . . , (xn, Yn), where the xi
are known elements of a sample space X and the Yi satisfy the regression relation

Yi = w0(xi)+ei, for independent N(0, σ2
0)-distributed error variables ei. The aim is

to estimate the regression function w0. This is the fixed design regression problem

as described in Section 2.2.3. In this setting, the process W itself defines a prior

Π on the regression functions w : X → R.
First assume that the variance σ2

0 of the error variables is known. The following

theorem explains what is meant by the posterior contraction that follows from

Theorem 2.18.

Theorem 2.21. Under the conditions of Theorem 2.18,

Π(w : ‖w − w0‖n ≥ Lεn|Y1, . . . , Yn)
P

(n)
0−→ 0

as n→∞ for any sufficiently large constant L.
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If the error variance is unknown, then we also endow σ with a prior distribution

as before. We assume that the prior on σ is supported on a given compact

subinterval of (0,∞) that contains the true σ0, and that this prior distribution

has a Lebesgue density which is bounded away from zero. Together with the prior

on w, this defines a total prior on the pair (σ,w). We now let Π be the total prior

on the pair of parameters. The posterior contraction statement that follows from

Theorem 2.18 is as follows.

Theorem 2.22. Under the conditions of Theorem 2.18,

Π((σ,w) : ‖w − w0‖n + |σ − σ0| ≥ Lεn|Y1, . . . , Yn)
P

(n)
0−→ 0

as n→∞ for any sufficiently large constant L.
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Chapter 3

Posterior contraction for

tensor-product spline priors

3.1 Introduction

In this chapter we consider prior distributions on functions of one or more variables

that are constructed using so-called splines. A spline function is a piecewise

polynomial function on either an interval of the real line or some multi-dimensional

Euclidean space. Spline functions provide good approximations for Hölder smooth

functions, see for instance De Boor [6] or Schumaker [42]. Therefore, splines can

be a useful tool for constructing prior distributions on smooth functions.

There are a number of papers in the literature that obtain rates of estimation

for smooth functions using splines, in particular ones using parametric log spline

models in a density estimation setting. It was shown for instance by Stone [46]

that a smooth probability density can be estimated at the minimax rate in a log

spline model of growing dimension using a maximum likelihood estimator (MLE).

This result was extended in [47] to the multivariate case. A Bayesian version of

the former result was obtained by Ghosal, Ghosh and Van der Vaart [21]. They

consider priors on densities that are constructed by postulating the same log spline

model for the density as in Stone and putting an appropriate prior distribution

on the coefficients in the so-called B-spline expansion. Ghosal, Ghosh and Van

der Vaart [21] show that it is possible to attain the minimax rate as the posterior

contraction rate if the log-density is bounded (by a known constant) and satisfies a

smoothness condition. Specifically, the results state that in the case that a sample

from an unknown univariate density f on an interval is observed, then if log f is

uniformly bounded by a known constant and is r times continuously differentiable,

a rate of convergence relative to the Hellinger metric (for the MLE in the case of

35
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Stone [46] and for the posterior in the case of Ghosal, Ghosh and Van der Vaart

[21]) of the optimal order n−r/(1+2r) can be attained. Stone [47] also obtains the

optimal rate n−r/(d+2r) in the case that f is a d-variate density. The procedures

in the cited papers are non-adaptive, in the sense that they rely on knowledge of

the smoothness level r of the unknown density.

Rate-adaptive results for spline priors have been obtained by Huang [25] and

by Ghosal, Lember and Van der Vaart [23]. The paper [23] deals with univariate

density estimation again. Instead of letting the dimension J of the log-spline

expansion tend to infinity with sample size in a deterministic manner, the “model

index” J is viewed as a hyper-parameter and is endowed with an additional prior.

Put differently, the density estimation problem is viewed as a model selection

problem: a sequence of finite-dimensional log-spline models for the density is

considered, each with their own (finite-dimensional) prior. Then appropriate prior

weights are assigned to each of the models to obtain an overall prior for f . The

resulting hierarchical prior does not depend on the regularity r of the density f

and is rate-adaptive: it yields a posterior contraction rate of the order n−r/(1+2r)

if log f is r times continuously differentiable. Huang [25] presents a very similar

result, but with more complicated prior weights on the finite-dimensional models.

This is accompanied by a similar result in a univariate nonparametric regression

context. The two settings in [25] are not treated in a unified approach however.

Priors weights for the models are chosen separately for each case.

A joint feature of the approaches of [25] and [23] is that both the order and

the knots of the splines (see the next section for definitions of these notions) are

changing between models. In view of the approximation properties of splines (see

Section 3.2), allowing the orders of the splines to become arbitrarily large is indeed

necessary when adaption to arbitrarily large smoothness levels is desired. On the

other hand, it makes the priors rather involved and possibly less attractive from

the computational perspective.

Our approach and the results we derive complement and extend the existing

literature in a number of directions. First of all, we do not study specific settings

like density estimation separately. Instead, we present general theorems about

random spline processes (Theorems 3.6 and 3.10) that, in combination with

existing general rate of contraction results for specific statistical settings (cf.

Chapter 2) lead to concrete results for, for instance, density estimation, regression,

or classification. As an illustration we work out the details for these three particular

setting, but results for other nonparametric problems could be derived as well. In

combination with the general theory in [36] for instance, results for nonparametric

estimation problems in diffusion models could be obtained.

Secondly, we consider multivariate function estimation problems. Similar to

what Stone [47] did for the frequentist approach, we show that sensible priors

on multivariate functions can be constructed using tensor-product splines. We
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prove that adaptive, rate-optimal procedures for multivariate function estimation

problems can be obtained in this way.

Another difference concerns the fact the existing approaches in [21], [25] and

[23] assume known uniform bounds on the log-density or the regression function

that is being estimated, allowing the use of bounded priors on the B-spline

coefficients. As is indicated in [23] this restriction could be removed by adding

another hierarchical layer, treating the bound as an additional hyper-parameter.

In our approach this is not necessary however and we do not need to assume any

uniform bounds. This is a consequence of the fact that we use unbounded, namely

Gaussian prior weights on the B-spline coefficients. In our rates we get additional

logarithmic factors, which might in part be due to this issue.

Finally, we keep the order of the splines that we use fixed in the construction

of the prior. Only the number of knots is viewed as a hyper-parameter, which we

either send to infinity with sample size or endow with a prior. As a result our

priors are simpler and conceivably also computationally more attractive. On the

down side, with this approach we can not obtain adaption up to arbitrary high

smoothness levels, but only up to the order of the splines that are used. Since we

can freely choose this order however, we feel this is not a serious restriction.

As mentioned already, we build our spline priors from random splines with

independent, Gaussian B-spline coefficients. We keep the order of the splines

fixed and treat the number of knots as a hyper-parameter. The latter will be

either deterministic, or endowed with a second, independent prior. As a result, the

priors we construct will be (transformations of) Gaussian of conditionally Gaussian

process priors. This allows us to use the rich machinery described in Chapter 2 for

their analysis.

The remainder of this chapter is organized as follows. In Section 3.2 we review

the notions of spline functions and B-splines, and formulate a result that gives a

bound on the uniform distance between splines and a given smooth function. In

Section 3.3 we define our spline prior with Gaussian coefficients. The connected

reproducing kernel Hilbert space turns out to be the whole spline space, and the

approximation result from Section 3.2 helps us to determine the concentration

function. This allows us to obtain posterior contraction rates for the Gaussian

random spline priors. In Section 3.4 we show that optimal posterior rates (up to

logarithmic factors) can be achieved by letting the number of knots tend to infinity

with the sample size in an appropriate way. In Section 3.5 we present a hierarchical

procedure by choosing a prior distribution on the partition size hyper-parameter.

We show that this hierarchical procedure also achieves a near-optimal rate of

posterior contraction and adapts to the smoothness of the truth.
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3.2 Preliminaries

We first introduce the concept of spline functions. We follow the definitions given

by Schumaker [42]. We only consider a special setting in this chapter and refer to

the book by Schumaker for an exhaustive treatment of the subject.

3.2.1 Spline functions on intervals

A spline function or spline is a piecewise polynomial function. Let us first consider

spline functions defined on an interval. The domain of such a spline function can be

partitioned into disjoint subintervals in such a way that the function coincides with

a polynomial on every subinterval. Spline functions that share the same partition

form a linear space. In the following we just speak of spline functions from a

linear space and it should be understood that these splines always share the same

partition.

A spline function is said to be of order q if all polynomials in its definition

are of degree at most q − 1. Without any further requirements, this set of

piecewise polynomials is a linear space of dimension qm, where m is the number

of partitioning intervals. Linear subspaces of lower dimension can be obtained by

further imposing that adjacent polynomials are tied together smoothly at the knots

of the partition.

In this chapter we use splines of order q that satisfy such a smoothness

condition. We consider a space Sm of splines of order q on the unit interval that

is partitioned into m subintervals of equal length. We first define

Pq =
{
x 7→

q−1∑
k=0

ckx
k, c0, . . . , cq−1 ∈ R

}
to be the space of polynomials of degree at most q − 1. Let yj = j/m and denote

the corresponding subintervals of [0, 1] by Ij = [yj−1, yj) for j = 1, . . . ,m− 1, and

Im = [ym−1, 1]. A function s : [0, 1]→ R is then defined to be in Sm if there exist

polynomials p1, . . . , pm in Pq such that s(x) = pj(x) for x ∈ Ij and, moreover, s

is q − 2 times continuously differentiable1. According to the terminology of [42],

Sm is the space of polynomial splines of order q with simple knots at the points

1/m, 2/m, . . . , (m− 1)/m. We will always take q ≥ 2, so that all the splines in Sm
are continuous functions.

The space Sm has dimension q +m− 1, cf. Theorem 4.4 of [42]. A convenient

basis of the space is given by the so-called B-splines. The exact definition of

these functions (see Theorem 4.9 of Schumaker [42]) is of no importance to us.

Important properties of B-splines are that they are nonnegative and supported on

1Here −1 times continuous differentiability is an empty condition and 0 times just means

continuity.
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relative small parts of the domain and that the sum of all B-splines at any given

location equals one, i.e. they form a partition of unity: if we denote the B-splines

by B1, . . . , Bq+m−1, then
q+m−1∑
j=1

Bj(x) = 1

for all x ∈ [0, 1].

3.2.2 Tensor-product splines

Spline functions can also be defined on multi-dimensional domains using

multivariate polynomials. One can construct linear spaces of such multivariate

splines by taking tensor-products of the spline spaces mentioned above. This

just means that we associate a direction with every linear space in the tensor

product, that we introduce a different variable for each direction, and that we then

multiply polynomials of a single variable defined on intervals to obtain multivariate

polynomials defined on rectangles.

The space of tensor-product splines is spanned by the tensor-product B-splines,

which are just products of the B-splines associated with the different directions.

The dimension of the tensor-product space is thus found by multiplying the

dimensions of the spline spaces from which it was constructed. The properties

of univariate B-splines carry over to similar properties for their tensor-product

analogues.

In the following we consider tensor-product splines from the d-fold tensor

product space Sm = Sm ⊗ · · · ⊗ Sm (d times), with Sm the space of univariate

splines defined above. The tensor-product splines are thus defined on the unit cube

[0, 1]d in the Euclidean space of dimension d and this unit cube is partitioned into

md equal cubes Ik1 × . . . × Ikd . On every such set the splines coincide with a

polynomial of the form

q−1∑
k1=0

. . .

q−1∑
kd=0

ck1,...,kdx
k1
1 · · ·x

kd
d . (3.1)

The space Sm is of dimension (q+m−1)d and a basis is given by the tensor-product

B-splines

Bj(x1, . . . , xd) = Bj1(x1) · · ·Bjd(xd), 1 ≤ ji ≤ q +m− 1.

From now on these multivariate B-splines are denoted by B1, . . . , BJ for J =

(q +m− 1)d. It is easy to see that we again have the partition of unity property

J∑
j=1

Bj(x) = 1 (3.2)
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for all x ∈ [0, 1]d.

The total degree of a polynomial of the form (3.1) is the maximum of k1 +

. . .+ kd over all k for which the coefficient ck is nonzero. The total degree of these

polynomials is thus at most d(q − 1), but not any polynomial of total degree at

most d(q − 1) is an element of Sm. This is only true if the degree in each single

variable x1, . . . , xd is at most q − 1. In particular the polynomials of total order

q are in Sm, i.e. the polynomials of the form (3.1) with ck = 0 if |k| > q − 1.

The approximating properties of such polynomials determine the approximating

capabilities of the tensor-product splines in Sm, see Lemma 3.1 ahead.

This approximation result is proved using a dual basis of the tensor-product

space. Given a set of linear functionals λj : Sm → R, we say that λ1, . . . , λJ is a

dual basis of Sm if

λi(Bj) = δi,j =

{
1 if i = j

0 if i 6= j

for any i, j = 1, . . . , J. For the spline s ∈ Sm given by

s =

J∑
j=1

ajBj (3.3)

we have that λj(s) = aj . Thus λj finds the coefficient belonging to the B-spline

Bj .

3.2.3 Approximation properties

The following result describes how well splines in the space Sm can approximate

functions with a smoothness level r that does not exceed the order q of the splines.

We first explain what the appropriate notion of smoothness is in this situation.

Let C([0, 1]d) be the space of continuous functions f : [0, 1]d → R and denote

the supremum norm of f over [0, 1]d by ‖f‖∞. For a multi-index α = (α1, . . . , αd),

we define |α| = α1 + . . .+ αd and the partial derivative

Dα =
∂|α|

∂xα1
1 · · · ∂x

αd
d

.

For r ∈ N, we define the Hölder space Cr([0, 1]d) of all functions f ∈ C([0, 1]d)

with partial derivatives Dαf ∈ C([0, 1]d) for any |α| ≤ r, and we equip it with the

norm

‖f‖Cr = ‖f‖∞ +
∑

α:|α|=r

‖Dαf‖∞.

The lemma below gives an upper bound on the uniform distance of a function

f ∈ Cr([0, 1]d) and some spline in Sm. The distance can be controlled by choosing

the partition size m sufficiently large. The proof of the lemma is similar to the proof
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of Theorem 12.7 in Schumaker [42]. We only need to apply the multidimensional

Taylor expansion in Theorem 13.18 of Schumaker with a total Taylor expansion

(13.33) in [42] instead of a tensor Taylor expansion (13.44), so that this expansion

produces a polynomial of total order r.

Lemma 3.1. For any m, d, q ∈ N, r ≤ q, and f ∈ Cr([0, 1]d) there exists a spline

s ∈ Sm and a constant C > 0 that only depends on d, q and r such that

‖f − s‖∞ ≤ Cm−r
∑

α:|α|=r

‖Dαf‖∞.

Proof. Let Q be the bounded linear operator in (12.29) of [42] that maps Cr([0, 1]d)

onto Sm. It is given by Qf(x) =
∑J
j=1 λj(f)Bj(x), for λj the (extensions of the)

elements of the dual space of Sm given in Theorem 12.5 of [42]. Let H be a

hypercube in the partition of [0, 1]d and let ‖ · ‖ be the supremum over H. We will

bound ‖f −Qf‖ from above. It is obvious that ‖f −Qf‖∞ is then bounded from

above by the maximum of these bounds for the various cubes in the partition.

We have ‖Qf‖ ≤ C‖f‖ for any f ∈ Cr([0, 1]d) according to (12.31) of [42].

The constant C does not depend on the cube H as can be seen from (12.25) of

[42], but it does depend on q. According to Theorem 13.18 of [42] there exists a

polynomial p = pj of total order r such that ‖f − p‖ ≤ Dm−r
∑
α:|α|=r ‖Dαf‖ for

some constant D that only depends on d, r and thus not on H. We have Qp = p (see

(12.30) in [42]) and hence ‖f −Qf‖ ≤ ‖f − p‖+ ‖Q(f − p)‖ ≤ (C+ 1)‖f − p‖.

3.2.4 The size of a spline and its coefficients

In Section 3.3 we will use the fact that a smooth function can be approximated

by a spline in Sm in the sense of Lemma 3.1. For our purposes, we do not need

to know the approximating spline or its coefficients in full detail, but rather an

expression that quantifies its size. We will use the following lemma, which states

that the uniform norm of a spline is equivalent to the maximal norm of the vector

of its B-spline coefficients.

Recall that the B-spline coefficients of a spline can be obtained from a dual

basis of Sm. We now assume that λ1, . . . , λJ is the dual basis given in Theorem 12.5

of [42]. Let ‖λj‖ be the norm of the bounded linear functional λj . That is to say,

‖λj‖ is the smallest constant K for which |λj(s)| ≤ K‖s‖∞ holds for any s ∈ Sm.
Although max1≤j≤J ‖λj‖ depends on m, it can actually be replaced by a constant

that does not depend on m, cf. Theorem 12.5 in [42].

Lemma 3.2. Let s ∈ Sm be given by (3.3). Then

‖s‖∞ ≤ max
1≤j≤J

|aj | ≤
(

max
1≤j≤J

‖λj‖
)
‖s‖∞ ≤ C‖s‖∞,

where C > 0 is a constant independent of m.
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Proof. Because the B-splines are positive, |s(x)| ≤
∑J
j=1 |aj |Bj(x). Take the

maximum of the absolute values |aj | outside the sum. The first inequality now

follows from the partition of unity property (3.2). For the second inequality, use

that |aj | ≤ ‖λj‖‖s‖∞, by definition. The third inequality follows from Theorem

12.5 in [42].

3.3 Gaussian random splines

In this section we introduce and study a class of Gaussian processes that we

will use to construct prior distributions for various statistical settings. The

corresponding posterior contraction rates will be determined in Section 3.4. We

use the tensor-product splines from the preceding section to define the stochastic

process via its sample paths.

We have seen that the space Sm of tensor-product splines depends on two

parameters q and m. The parameter q is the order of the splines and m quantifies

the partition size. We fix some natural number q ≥ 2 and from now on it will be

understood that all splines are of order q. The remaining parameter m will simply

be referred to as the partition size parameter.

Let B1, . . . , BJ be the tensor-product B-spline basis of Sm. Remember that in

this notation it is hidden that not only the number of B-splines depends on the

partition size m (we have J = (m+q−1)d), but that also the B-splines themselves

depend on this number. The sample paths of our process will be tensor-product

splines in Sm. In other words, the process can be seen as a random element in the

tensor-product spline space Sm.
For any m ∈ N we now define the Gaussian random element Wm in Sm as

follows. Let Z1, . . . , ZJ be independent, standard Gaussian random variables, and

let Wm be the random process on [0, 1]d defined by

Wm(x) =

J∑
j=1

ZjBj(x), x ∈ [0, 1]d. (3.4)

We thus let Wm be a finite sum Gaussian process as in (2.31) in Section 2.5.1.

It follows from Lemma 2.12 that the reproducing kernel Hilbert space Hm of

Wm consists of all splines of order q with respect to the given partition, and that

the RKHS-norm of a such a spline is equal to the Euclidean norm of the vector of

its B-spline coefficients. In other words, the reproducing Kernel Hilbert space of

Wm is equal to the set Sm equipped with the norm ‖ · ‖Hm given by∥∥∥ J∑
j=1

ajBj

∥∥∥2

Hm
=

J∑
j=1

a2
j . (3.5)

As we have seen in Chapter 2, the contraction rate of a posterior corresponding

to a Gaussian process prior is determined by its concentration function, i.e. its
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non-centered small ball probabilities around the truth. The concentration function

can be determined from the centered small ball probabilities of the process in

addition to a term that quantifies the size of an approximation of the truth in the

reproducing kernel Hilbert space of the process. We study these two quantities in

the next two subsections.

3.3.1 Centered small ball probabilities

The following lemma is a straightforward consequence of the definition of the

process Wm and the basic properties of the B-splines.

Lemma 3.3. For all q,m ∈ N such that m ≥ q − 1,

P(‖Wm‖∞ ≤ ε) ≥ (ε/2)2dmd

for all ε ∈ (0, 1/2).

Proof. By Lemma 3.2 and the fact that the random variables Zj are independent

and identically distributed we have

P(‖Wm‖∞ ≤ ε) ≥ P(max |Zj | ≤ ε) = (P(|Z1| ≤ ε))J .

The probability P(|Z1| ≤ ε) is bounded from below by an area of width 2ε and

height ϕ(ε), with ϕ the probability density of a standard Gaussian random variable.

Since J = (q +m− 1)d ≤ (2m)d for m ≥ q − 1, it follows that for any ε ∈ (0, 1/2)

and any q ≥ 1 and m ≥ q − 1,

(P(|Z1| ≤ ε))J ≥ (2ϕ(1/2)ε)2dmd

This proves the assertion, since 2ϕ(1/2) ≥ 1/2.

3.3.2 Non-centered small ball probabilities

Consider w0 ∈ Cr([0, 1]d). The non-centered ball probability P(‖Wm−w0‖∞ ≤ 2ε)

is the probability that a realization of Wm ends up in a uniform ball of radius 2ε

around w0. This probability can be determined using the result in Section 2.5.2.

In the following we actually derive a lower bound for the given probability using

this approach. The result is presented in the next lemma.

Lemma 3.4. Let w0 ∈ Cr([0, 1]d) for r ≤ q. There exist constants C,D > 0

independent of m, such that for any ε ∈ (0, 1/2) and any m ∈ N such that

Dm−r ≤ ε,

P(‖Wm − w0‖∞ ≤ 2ε) ≥ exp(−Cmd log(1/ε)).
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Let ϕmw0
be the concentration function of Wm around w0 as defined in (2.33).

Then by Lemma 2.13,

P(‖Wm − w0‖∞ ≤ 2ε) ≥ exp(−ϕmw0
(ε))

and a similar inequality holds for the upper bound. Now Lemma 3.4 is a

consequence of the following result.

Lemma 3.5. Let w0 ∈ Cr([0, 1]d) for r ≤ q. There exist constants C,D > 0

independent of m, such that for any ε ∈ (0, 1/2) and any m ∈ N such that

Dm−r ≤ ε,

ϕmw0
(ε) ≤ Cmd log(1/ε). (3.6)

Proof. The concentration function is given by

ϕmw0
(ε) = inf

h∈Hm:‖w0−h‖∞≤ε
‖h‖2Hm − logP(‖Wm‖∞ ≤ ε) (3.7)

in the present notation. The second term of the concentration function can be

bounded from above using Lemma 3.3. For ε ∈ (0, 1/2) we have

− logP(‖Wm‖∞ ≤ ε) ≤ 2dmd log
(2

ε

)
. (3.8)

As for the infimum part in (3.7), Lemma 3.1 shows that for every m ∈ N there

exists a spline s ∈ Sm = Hm such that ‖s−w0‖∞ ≤ Dm−r, for D > 0 a constant

that only depends on d, q, r and w0. Now fix ε ∈ (0, 1/2) and m ∈ N such that

Dm−r ≤ ε. Then with s the spline above,

inf
h∈Hm:‖w0−h‖∞≤ε

‖h‖2Hm ≤ ‖s‖2Hm .

Suppose that the spline s ∈ Sm is given by s =
∑J
j=1 ajBj . Then the squared

RKHS-norm of s is given by (3.5) and satisfies

‖s‖2Hm =

J∑
j=1

a2
j ≤ J

(
max

1≤j≤J
|aj |
)2
.

We have seen in Lemma 3.2 that the absolute maximum max1≤j≤J |aj | of the

coefficients can be bounded from above by C ′‖s‖∞ for some C ′ > 0 that does not

depend on m. Note that by the triangle inequality and the fact that Dm−r ≤ ε,

we have that ‖s‖∞ ≤ ‖w0‖∞ + ε. Since J ≤ (2m)d, we obtain an upper bound for

‖s‖2Hm that can be written as a multiple of md. This concludes the proof.
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3.4 Posterior contraction for Gaussian spline

priors

3.4.1 General result

The Gaussian spline processes Wm can be used to construct priors in various

nonparametric statistical settings. In order for the priors to have large enough

support to ensure for instance consistency, one has to either let the partition size

parameter m tend to infinity with the sample size, or view it as a hyper-parameter

that itself is estimated from the data. In this section we consider the former

construction, leading to sequences of Gaussian process priors. We give bounds

on the contraction rates of the corresponding posteriors. In the next section we

investigate the possibility of endowing m with a prior distribution.

Let mn → ∞ be a sequence of natural numbers, fix an order q ≥ 2 for the

splines and consider the corresponding sequence Wmn of Gaussian spline processes

on [0, 1]d. For a natural number r ≤ q and w0 ∈ Cr([0, 1])d, let ϕmnw0
be the sequence

of concentration functions defined by (3.7), with Hm the RKHS of the process Wm.

The general theory of Gaussian process priors says that posterior contraction rates

are obtained by solving the inequality

ϕmnw0
(εn) ≤ nε2

n, (3.9)

see Section 2.6. By Lemma 3.5 this inequality holds if

Cmd
n logmn ≤ nε2

n,

Dm−rn ≤ εn,

with C,D > 0 the constants from the statement of the lemma. The optimal solution

of these inequalities is easily found and given in the following theorem.

Theorem 3.6. In the setting described above, let mn ∼ (n/ log n)1/(d+2r). Then

inequality (3.9) holds with εn ∼ (n/ log n)−r/(d+2r).

In combination with the results given in Section 2.6 this theorem immediately

yields rate of contraction results for a number of important non-parametric

statistical problems. We give details in the next section. Generally speaking, the

results show that if the law of the Gaussian spline process Wmn is used as a prior on

an r-regular function of d variables, then with the choice mn ∼ (n/ log n)1/(d+2r)

this leads to a posterior contraction rate of the order n−r/(d+2r), up to a logarithmic

factor. This is typically the optimal rate for estimating an r-regular function of d

variables, for instance in a minimax sense. Note however that through the partition

size parameter mn, the prior depends on the unknown smoothness level of the

function of interest. Hence, the procedure is not rate-adaptive. In Section 3.5 we

construct a hierarchical, conditionally Gaussian prior that does lead to adaption.
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3.4.2 Gaussian regression

Suppose we observe independent pairs (x1, Y1), . . . , (x1, Yn), where the xi are

known elements of [0, 1]d and the Yi satisfy the regression relation Yi = w0(xi)+ei,

for independent N(0, σ2
0)-distributed error variables ei. The aim is to estimate the

regression function w0.

In this case the spline process Wmn can be used directly as a prior for w0.

If the standard deviation σ0 of the errors is unknown, we endow it with a prior

distribution as well, which we assume to be supported on a given interval [a, b] ⊂
(0,∞) that contains σ0, with a Lebesgue density that is bounded away from zero.

The total prior is denoted by Πn.

We denote the corresponding posterior distribution by Πn(· |Y1, . . . , Yn). Let

‖w‖n =
(
n−1

∑n
i=1 w

2(xi)
)1/2

be the L2-norm corresponding to the empirical

distribution of the design points. We say that the posterior contracts at rate εn in

this case if, for every sufficiently large L,

Πn

(
(w, σ) : ‖w − w0‖n + |σ − σ0| ≥ Lεn |Y1, . . . , Yn

)
P

(n)
0−→ 0 (3.10)

as n→∞.

Combining Theorems 3.6 and 2.21 yields the following result.

Theorem 3.7. If w0 ∈ Cr([0, 1]d) for r ≤ q and mn ∼ (n/ log n)1/(d+2r), then

the posterior contracts at the rate εn ∼ (n/ log n)−r/(d+2r).

3.4.3 Density estimation

After exponentiation and renormalization a Gaussian process can be used as a

prior model for probability densities as well.

We consider a sample X1, . . . , Xn from a continuous, positive density f0 on the

unit cube [0, 1]d ⊂ Rd. As a prior distribution Πn on f0 we use the distribution of

x 7→ eW
mn (x)∫

[0,1]d
eWmn (x) dx

. (3.11)

Let Πn(f ∈ · |X1 . . . , Xn) denote the posterior distribution. We say that the

posterior contracts at rate εn if, for every sufficiently large constant L, as n→∞,

Πn

(
f : h(f, f0) ≥ Lεn |X1, . . . , Xn

)
Pn0−→ 0. (3.12)

Here h is the Hellinger distance and the convergence is understood to be in

probability under the (frequentist) assumption thatX1, . . . , Xn is a random sample

from f0.

Combining Theorems 3.6 and 2.19 yields the following result.

Theorem 3.8. If log f0 ∈ Cr([0, 1]d) for r ≤ q and mn ∼ (n/ log n)1/(d+2r), then

the posterior contracts at the rate εn ∼ (n/ log n)−r/(d+2r).
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3.4.4 Classification

As a last concrete case we consider binary regression, or classification. Here we

have i.i.d. observations (X1, Y1), . . . , (Xn, Yn), where Xi takes values in the unit

cube [0, 1]d and Yi takes values in the set {0, 1}. The statistical problem is to

estimate the binary regression function r0(x) = P(Y1 = 1 |X1 = x).

As a prior Πn on r0 we use the law of the process Ψ(Wmn), where Ψ : R→ (0, 1)

is the logistic or the normal distribution function. Let Πn

(
· | (X1, Y1), . . . , (Xn, Yn)

)
denote the posterior and let ‖ · ‖L2(G) be the L2-norm relative to the marginal

distribution G of X1. We say that the posterior contracts at rate εn if, for every

sufficiently large L,

Πn(r : ‖r − r0‖L2(G) ≥ Lεn |X1, Y1, . . . , Xn, Yn)
Pn0−→ 0. (3.13)

Combining Theorems 3.6 and 2.20 yields the following result.

Theorem 3.9. If Ψ−1(r0) ∈ Cr([0, 1]d) for r ≤ q and mn ∼ (n/ log n)1/(d+2r),

then the posterior contracts at the rate εn ∼ (n/ log n)−r/(d+2r).

3.5 Adaptation using conditionally Gaussian

priors

3.5.1 General result

In the previous section we have seen, for instance in the regression setting, that

under a certain smoothness condition on the truth w0, posterior contraction can

be achieved at an optimal rate for an appropriate sequence of our Gaussian spline

priors. We assumed that w0 is contained in Cr([0, 1]d) for a given r ≤ q and used

the knowledge of the degree of regularity r to define a sequence of Gaussian priors

via the partition size parameter mn.

In practice however, the exact degree of smoothness is typically not known

a-priori. Therefore, in this section we will only assume that for q ≥ 2 fixed in

advance, w0 is contained in Cr([0, 1]d) for r some unknown smoothness level

such that r ≤ q. In other words, we only assume a known upper bound on the

smoothness. The aim now is to construct a prior independent of r such that the

posterior achieves the same optimal rate as in the preceding section (perhaps up

to a logarithmic factor) for every possible value of r. Such a procedure is said to

adapt to the regularity of the truth up to the level q.

As before we take the Gaussian spline process Wm as the starting point for the

definition of our priors. However, we now take a different approach to choosing m.

In the Bayesian paradigm it is quite common to view unknown tuning parameters

of this type as so-called hyper parameters and to endow them with a separate prior,
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leading to hierarchical priors. We adopt this approach and show that if the prior

on m is chosen carefully, we can achieve our goal of constructing a rate-adaptive

procedure in this way.

Concretely, we define a new, conditionally Gaussian spline process W by setting

W = WM , for Wm the Gaussian process defined in (3.4) and M an independent

N-valued random variable. (Note there is a slight chance of confusion here, since

the B-splines in the definition of Wm depend on m as well. In the definition of W ,

m also has to be substituted with the randomM in those places.) This construction

is hierarchical in the sense that a sample path of W is generated in two steps: first

draw a realization m of the random variable M , then given m, draw a sample path

of the Gaussian process Wm.

The hierarchical spline process can be used to construct priors for various

statistical settings again. We consider our usual examples in the next subsection.

The following general theorem about the process W will lead to the desired

adaptive rate of contraction results.

Theorem 3.10. Suppose that for every m ≥ 1,

C1 exp(−D1m
d logtm) ≤ P(M = m) ≤ C2 exp(−D2m

d logtm) (3.14)

for some constants C1, C2, D1, D2, t ≥ 0. If w0 ∈ Cr([0, 1]d) for some integer r ≤ q,
then there exists for every constant C > 0, a constant D > 0 and measurable

subsets Bn of C([0, 1]d) such that

P(‖W − w0‖∞ ≤ 2εn) ≥ exp(−nε2
n), (3.15)

P(W 6∈ Bn) ≤ exp(−Cnε2
n), (3.16)

logN(2ε̄n, Bn, ‖ · ‖∞) ≤ Dnε̄2
n, (3.17)

are satisfied for sufficiently large n, and for εn and ε̄n given by

εn = c(n/ log1∨t n)−
r

d+2r ε̄n = n−
r

d+2r (log n)
(1∨t)r
d+2r +( 1−t

2 )+ , (3.18)

for c > 0 a large enough constant.

Combined with results from Chapter 2 this general theorem will lead to various

results that state that in the different settings we consider, we will have posterior

contraction at the rate εn ∨ εn with this prior, provided that the true function has

smoothness degree r ≤ q. Hence, up to a logarithmic factor, the posteriors attain

optimal convergence rates in this case. Moreover, since the prior does not depend

on the unknown smoothness level r, we indeed obtain rate-adaptive procedures.

Note that condition (3.14) holds in particular, for t = 0, if Md has a geometric

distribution. The best rate εn ∨ εn is obtained when t is chosen equal to 1. The

resulting rate is (n/ log n)−
r

d+2r in that case, which coincides with the rate obtained

in Theorem 3.6 for the non-adaptive sequence of spline priors.
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In our approach the order q of the splines remains fixed, contrary to for instance

[25] or [23]. This keeps the priors simple and easy to deal with, but of course in

practice q has to be chosen. From the theoretical perspective q can be chosen as

large as one would like, although it might be chosen not too large for computational

reasons. In practice, cubic splines (q = 4 in our notation) are a popular choice.

3.5.2 Results for specific statistical settings

Combined with general results presented in Chapter 2, Theorem 3.10 yields rate

of contraction results for the hierarchical prior in the three different statistical

settings described also in Section 3.4: density estimation, fixed design regression

and classification. In this section we briefly state the respective results for these

cases.

Consider first the regression setting described in Section 2.2.3. As prior on

the regression function w0 we now employ the law of the conditionally Gaussian

process W , where the hyper prior on M is assumed to satisfy condition (3.14). The

total prior on the pair (w0, σ0), with σ0 the error standard deviation, is denoted

by Π. As before we say that the corresponding posterior contracts at the rate εn
if for all L large enough (3.10) holds as n→∞, with Π in the place of Πn.

Combining Theorem 3.10 and Theorem 2.11 yields the following result for fixed

design regression.

Theorem 3.11. If the prior on m satisfies (3.14) and for the true regression

function we have w0 ∈ Cr([0, 1]d) for r ≤ q, then the posterior contracts at the

rate

n−
r

d+2r (log n)
(1∨t)r
d+2r +( 1−t

2 )+ .

For density estimation we consider the setting described in Section 2.2.1 again.

As prior on the density function f0 we now employ the law Π of the random density

x 7→ eW (x)∫
[0,1]d

eW (x) dx
,

with W the conditionally Gaussian process, where the hyper prior on m is assumed

to satisfy condition (3.14). We say that the corresponding posterior contracts at

the rate εn if for all L large enough (3.12) holds as n→∞, with Π in the place of

Πn.

Combining Theorem 3.10 and Theorem 2.5 yields the following result for

density estimation.

Theorem 3.12. If the prior on m satisfies (3.14) and for the true density we

have log f0 ∈ Cr([0, 1]d) for r ≤ q, then the posterior contracts at the rate

n−
r

d+2r (log n)
(1∨t)r
d+2r +( 1−t

2 )+ .
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Finally, we consider the non-parametric classification problem described in

Section 2.2.2. As prior on the binary regression function r0 we employ the law Π of

Ψ(W ), with Ψ the logistic or normal distribution function and W the conditionally

Gaussian process, where the hyper prior on M is assumed to satisfy condition

(3.14). We say that the corresponding posterior contracts at the rate εn if for all

L large enough (3.13) holds as n→∞, with Π in the place of Πn.

Combining Theorem 3.10 and Theorem 2.7 yields the following result for

classification.

Theorem 3.13. If the prior on m satisfies (3.14) and for the true binary

regression function we have Ψ−1(r0) ∈ Cr([0, 1]d) for r ≤ q, then the posterior

contracts at the rate

n−
r

d+2r (log n)
(1∨t)r
d+2r +( 1−t

2 )+ .

3.5.3 Proof of the general Theorem 3.10

3.5.3.1 Prior mass condition (3.15)

Let εn → 0 be given. Note that the inequality

P(‖W − w0‖∞ ≤ 2εn) ≥ P(M = m)P(‖Wm − w0‖ ≤ 2εn)

holds for any m ≥ 1 by construction of W. According to Lemma 3.4 the second

factor on the right is bounded from below by exp(−Cmd
n logmn) for sufficiently

large n and mn such that εn ≥ Dm−rn . The probability P(M = mn) is bounded

from below by C1 exp(−D1m
d
n logtmn) by assumption (3.14). We conclude that

P(‖W − w0‖∞ ≤ 2εn) ≥ C1 exp(−C2m
d
n log1∨tmn)

for some constants C1, C2 > 0. The inequalities

md
n log1∨tmn . nε2

n,

m−rn . εn,

are solved by mn ∼ (n/ log1∨t n)1/(d+2r) and εn as in (3.18). Condition (3.15) thus

holds if the constant c in (3.18) is sufficiently large.

3.5.3.2 Construction of sieves Bn

Recall that Hm1 is the unit ball of the RKHS Hm of the Gaussian spline process

Wm and B1 is the unit ball in the Banach space C([0, 1]d). For m ∈ N, let Bmn =

LnHm1 + εnB1 for some kn and Ln specified below, and Bn =
⋃kn
m=1B

m
n .

In the next two subsections we show that conditions (3.16) and (3.17) are

fulfilled if Ln and kn satisfy certain inequalities. In Subsection 3.5.3.5 we show

that these inequalities can be solved.
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3.5.3.3 Remaining mass condition (3.16)

First note that the inequality

P(W 6∈ Bn) ≤
k∑

m=1

P(M = m)P(Wm 6∈ Bn) + P(M ≥ k + 1). (3.19)

holds for any k by construction of W. Now take k equal to kn as defined in the

preceding subsection. By assumption (3.14) the tail probability P(M ≥ kn + 1) is

bounded from above by a constant times the geometric series∑
m≥kn+1

(exp(−kd−1
n logt kn))m ≤ exp(−kdn logt kn).

So the tail probability is bounded by exp(−Cnε2
n)/2 for large n if kn is chosen

such that kdn logt kn > Cnε2
n, for C as in the assertion of the theorem.

We now show that

P(Wm 6∈ Bn) ≤ exp(−Cnε2
n)/2

for any m ≤ kn, so that the first term on the right of (3.19) is also bounded by

exp(−Cnε2
n)/2. It follows from the construction of the sieve Bn that

P(Wm 6∈ Bn) ≤ P(Wm 6∈ Bmn )

for any m ≤ kn. By Borell’s inequality (see Theorem 2.16),

P(Wm 6∈ Bmn ) ≤ 1− Φ(Φ−1(P(‖Wm‖∞ ≤ εn)) + Ln).

A lower bound for the centered small ball probability P(‖Wm‖∞ ≤ εn) was given

in Lemma 3.3. The lower bound provided by this lemma is a decreasing function

of m. For every m ≤ kn we thus have

P(‖Wm‖∞ ≤ εn) ≥ (ε/2)2dkdn .

For y ∈ (0, 1/2) one has Φ−1(y) ≥ −
√

(5/2) log(1/y). Apply this inequality with

y equal to (ε/2)2dkdn to find that

P(Wm 6∈ Bmn ) ≤ Φ
(√

(5/2)2dkdn log(2/εn)− Ln
)

for every m ≤ kn. Using the bound Φ(y) ≤ exp(−y2/2) we obtain

P(Wm 6∈ Bn) ≤ e−
1
2

(
Ln−
√

(5/2)2dkdn log(2/εn)
)2

(3.20)

for every m ≤ kn. Hence if Ln and kn are chosen such that

1

2

(
Ln −

√
(5/2)2dkdn log(2/εn)

)2

> Cnε2
n,

then the first term on the right of (3.19) is bounded by exp(−Cnε2
n)/2 as well.
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3.5.3.4 Proof of entropy condition (3.17)

Let ε̄n be given by (3.18). Because Bn is a union of the sets Bmn for m = 1, . . . , kn,

its 2ε̄n-covering number satisfies

N(2ε̄n, Bn, ‖ · ‖∞) ≤
kn∑
m=1

N(2ε̄n, B
m
n , ‖ · ‖∞).

If A1, . . . , AN is a minimal covering of Hm1 using balls of radius ε̄n/Ln, then the

sets LnAi + εnB1 are balls of radius ε̄n + εn ≤ 2ε̄n which cover Bmn . This shows

that

N(2ε̄n, B
m
n , ‖ · ‖∞) ≤ N(ε̄n/Ln,Hm1 , ‖ · ‖∞). (3.21)

We now identify splines in Hm with points in RJ via the B-spline coefficients.

Then Hm1 corresponds to the unit ball in RJ (see (3.5)). Moreover, for a spline

s =
∑
ajBj in Hm we have that the uniform norm ‖s‖∞ is bounded by the

Euclidean norm ‖a‖ of the vector of B-spline coefficients, by Cauchy-Schwarz and

the basic properties of the B-splines. It follows that the covering number on the

right of (3.21) is bounded by the ε̄n/Ln-covering number of the unit ball in RJ

relative to the Euclidean distance. The latter is bounded from above by (6Ln/εn)J

according to e.g. Lemma 4.1 of Pollard [38].

We thus find

N(2ε̄n, Bn, ‖ · ‖∞) ≤ kn(6Ln/ε̄n)2dkdn

and consequently, if Ln = O(np) for some p > 0, we have

logN(2ε̄n, Bn, ‖ · ‖∞) ≤ Dkdn log n

for some positive constant D. So if kn is taken such that kdn log n is bounded by a

multiple of nε̄2
n, then condition (3.17) holds.

3.5.3.5 End of the proof of Theorem 3.10

The preceding subsections show that the proof of Theorem 3.10 is complete once

we show that there exist sequences Ln and kn such that

kdn logt kn > Cnε2
n (3.22)

εn ≥ εn (3.23)

kdn log n ≤ C ′nε̄2
n (3.24)

Ln −
√

(5/2)2dkdn log(2/εn) >
√

2Cnε2
n (3.25)

Ln = O(np), (3.26)

where C is a given positive constant and p and C ′ may be chosen arbitrarily.
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We have nε2
n = c2nd/(d+2r)(log n)(2r(1∨t))/(d+2r), hence (3.22) is fulfilled if

kdn = An
d

d+2r (log n)
2r(1∨t)
d+2r −t,

with A a large enough positive constant. Conditions (3.23) and (3.24) are then

fulfilled as well if C ′ is chosen large enough, by definition of the sequence εn.

Finally, conditions (3.25) and (3.26) are then easily taken care of by taking Ln to

be a large enough power of n.
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Chapter 4

Posterior contraction for

location-scale mixture priors

4.1 Introduction

In this chapter we consider prior distributions on functions of one or more variables

that are constructed using location-scale kernel mixtures. The use of such mixtures

of kernels is well established for the construction of nonparametric priors on

probability densities. The methodology is used in a variety of practical settings,

and in recent years there has been substantial progress on the the mathematical,

asymptotic theory for kernel mixture priors as well, cf. [16, 18, 19, 31, 48, 56].

At the present time we have a well-developed understanding of important

aspects including consistency, convergence rates, rate-optimality, and adaptation

properties. A similar, parallel development has taken place in the area of beta

mixture priors, cf. [17, 30, 37, 41].

A discrete location-scale mixture of a fixed probability density p on Rd can be

expressed as

x 7→
m∑
j=1

wj
1

σd
p
(x− xj

σ

)
, (4.1)

where m ∈ N, x1, . . . , xm ∈ Rd, w1, . . . , wm ≥ 0 and
∑
wj = 1, and σ > 0. A

prior on densities is obtained by putting prior distributions on m, the locations

xj , the scale σ and the weights wj . When p satisfies some regularity conditions,

a wide class of probability densities can be well approximated by mixtures of the

form (4.1). This indicates that if the priors on the coefficients are suitably chosen,

the resulting prior and posterior on probability densities can be expected to have

good asymptotic properties. The cited papers give precise conditions under which

this is indeed the case.
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Obviously, a much wider class of functions is well approximated by mixtures of

the form (4.1) if we lift the restriction that the weights wj should be nonnegative

and sum up to 1. This suggests that location-scale mixtures might be attractive

priors not just in the setting of density estimation, but for instance also in

nonparametric regression. Although this idea has been proposed in the applied

literature, cf. e.g. [24, 45], it does not seem to have attracted a great deal of

attention. The few examples do show however that the approach can yield quite

satisfactory results.

In the paper [45], location-scale mixture priors are used in an astrophysical

setting for the analysis of data from galatic radio sources. The statistical problem

essentially boils down to a bivariate, nonparametric, fixed design regression

problem. The use of a mixture prior is natural in that particular application

because it reflects the idea that the function of interest, which describes the

strength of the magnetic field caused by our planet and its “neighborhood” in

space, is in fact an aggregate of contributions from a large number of locations,

with different weights, which can be positive or negative.

Another reason for using a location-scale mixture prior in multivariate

regression, instead of for instance the popular Gaussian squared exponential or

Matérn priors, are computational advantages. Conditional on the gridsize m the

prior only involves finitely many terms, so no artificial truncation or approximation

is necessary for computation. As argued also in [45], the mixture prior allows

to avoid the inversion or decomposition of non-trivial and often ill-behaved

n × n matrices (with n the sample size), which can become cumbersome already

for moderate sample sizes (cf. also the discussion in [2]). In the astrophysical

application of [45], the sample size is of the order 1500 and it is shown that samples

of this order can be dealt with effectively using kernel mixture priors.

On the theoretical side, little or nothing is known for kernel mixture priors in

a regression setting. In this chapter we therefore take up the study of asymptotic

properties, in order to assess the fundamental potential of the methodology and

to provide a theoretical underpinning of its use in practice. We will show that

if the kernel and the priors on locations and scales are appropriately chosen,

kernel mixture priors yield posteriors with good asymptotic properties. It is well

known that for the estimation of an α-regular function of d variables, the best

possible rate of convergence is of the order n−α/(d+2α), where n is the number of

observations available. We will prove that up to a logarithmic factor, this optimal

rate can be attained with location-scale mixture priors. More importantly, the near

optimal rate can be achieved by a prior that does not depend on the unknown

smoothness level α of the regression function. In other words, we can obtain a

fully rate-adaptive procedure.

The bounds for the convergence rates that we will obtain depend crucially on

the smoothness of the kernel p that is used. For kernels with only a finite degree
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of regularity, we get sub-optimal rates. We only obtain the optimal minimax rate

(up to a logarithmic factor) for kernels that are infinitely smooth, in the sense

that they admit an analytic extension to a strip in complex space. The standard

normal kernel is an example of an optimal choice in this respect. We also have to

put (mild) conditions on the priors on the grid size m and the scale σ. In particular,

the popular inverse gamma choice for the scale is included in our setup.

Perhaps surprising is the fact that although we use a probability density

p to construct the mixtures, we can still achieve adaptation to all smoothness

levels. Intuition from kernel estimation might suggest that when p is a centered

probability density, we have good approximation behaviour for regression functions

with regularity at most 2, and that for more regular functions we should use higher

order kernels. This turns out not to be the case however. To prove this fact we

adapt an observation of J. Rousseau, who uses a similar idea to prove that for

densities on the unit interval, using appropriate mixtures of beta densities yields

adaptation to all smoothness levels, see [41]. In the present work we extend the

technique to a multivariate setting (see Lemma 4.10 ahead). The paper [31], which

was written at the same time and independently of the paper [26] on which this

chapter is based, employs the same idea to prove adaptation for kernel mixture

priors for density estimation.

The location-scale priors that we consider are (conditionally) Gaussian since we

will put Gaussian priors on the mixing weights. This allows us to use the machinery

for Gaussian process priors developed in [50, 54] and outlined in Chapter 2. We will

obtain general results for (conditionally) Gaussian kernel mixture process prior,

which can be used in a variety of statistical settings. To illustrate this we present

rate of contraction results not just for nonparametric regression, which was our

main motivation, but also for density estimation and classification settings.

The remainder of this chapter is organized as follows. In Section 4.3 we define a

Gaussian process whose paths are location-scale kernel mixtures. We determine the

reproducing kernel Hilbert space of the process and its centered and non-centered

small ball probabilities. In Section 4.4 we determine in a unified manner the

posterior contraction rate of the corresponding posterior in a variety of statistical

settings using the general theory for Gaussian process priors. We see that it is

possible for such a procedure to obtain an optimal rate of posterior contraction if

the kernels in the mixture are chosen from a collection of infinitely regular kernels.

In Section 4.5 we see that it is possible to construct a hierarchical procedure based

on these Gaussian kernel mixtures which is also rate-optimal and adapts to the

smoothness of the truth.
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4.2 Auxiliary results

4.2.1 Definition of the spaces Cα
R(X ) and Gσ.

In Section 4.3.1 we will determine the centered small ball probabilities of

the Gaussian process (4.6) via the connection with the metric entropy of the

reproducing kernel Hilbert space unit ball (see Section 2.5.3) by embedding this

unit ball into one of the two spaces defined in this section. The metric entropy for

these spaces is considered in Section 4.2.2.

For a bounded X ⊂ Rd and α > 0, we define the space Cα(X ) following van der

Vaart and Wellner [53]. For any multi-index k = (k1, . . . , kd) consisting of integers

ki ≥ 0, we define |k| = k1 + . . . + kd and let Dk be the |k|-th order differential

operator

Dk =
∂|k|

∂xk11 · · · ∂x
kd
d

.

For r a positive integer, we say that a function f : X → R has bounded partial

derivatives up to order r if Dkf exists and is bounded for every multi-index k with

|k| ≤ r. For γ ∈ (0, 1], a function g : X → R is Lipschitz of order γ if

sup
x 6=y

|g(x)− g(y)|
‖x− y‖γ

<∞.

Let α be the largest integer strictly smaller than α. The space Cα(X ) consists of

all functions f : X → R with uniformly bounded partial derivatives up to order

α such that the highest order partial derivatives are uniformly Lipschitz of order

α− α. For f ∈ Cα(X ) we let

‖f‖α = max
|k|≤α

sup
x∈X
|Dkf(x)|+ max

|k|≤α
sup
x 6=y

|Dkf(x)−Dkf(y)|
‖x− y‖α−α

.

For R > 0, we define CαR(X ) as the space of functions f ∈ Cα(X ) with ‖f‖α ≤ R.
For constants K,σ > 0 we define the space Gσ as follows. First, we define the

strip Sσ = {z ∈ Cd : | Im zj | ≤ σ for i = 1, . . . , d}. The space Gσ consists of all

analytic functions on Sσ which are bounded by Kσ−d.

4.2.2 Metric entropy of Cγ
R([0, 1]d) and Gσ.

The following lemma gives an upper bound on the metric entropy of CγR([0, 1]d)

with respect to the supremum norm. The result is well known, see for instance

Theorem 2.7.1 of van der Vaart and Wellner [53].

Lemma 4.1. If γ <∞, then

logN(ε, Cγ
σ−(d+γ)‖p‖γ

([0, 1]d), ‖ · ‖∞) ≤ K0

( 1

εσd+γ

) d
γ

for all σ, ε > 0, with K0 a constant independent of ε and σ.
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The following lemma gives an upper bound on the metric entropy of Gσ with

respect to the supremum norm over [0, 1]d.

Lemma 4.2. There exist ε0, σ0 > 0 such that

logN(ε,Gσ, ‖ · ‖∞) ≤ K1
1

σd

(
log

K2

εσd

)1+d

for ε ∈ (0, ε0) and σ ∈ (0, σ0), with constants K1,K2 > 0 that do not depend on ε

or σ. For σ > σ0, it holds that

logN(ε,Gσ, ‖ · ‖∞) ≤ K3

(
log

1

ε

)1+d

for all ε ∈ (0, ε0), with K3 > 0 a constant independent of ε and σ.

The statement is similar to the classical result given by Theorem 23 of [29],

which gives the entropy for the class of analytic functions bounded by a constant

on a strip in complex space. However, the proof of the present statement requires

extra care to identify the role of σ, because it should not be considered as an

irrelevant constant in our framework.

Proof. We prove the first statement of the lemma. The proof of the second

statement is similar, and in fact easier. For a, b > 0, let Fa,b be the set

of functions that are analytic on the strip Sa = {(z1, . . . , zd) ∈ Cd :

| Im zi| ≤ a for i = 1, . . . , d}, and uniformly bounded by the constant b on that

set. We first derive an entropy bound for Fa,b relative to the uniform norm ‖ · ‖∞
on the unit cube [0, 1]d.

We construct a net of piecewise polynomials. Fix an r < a/2 and let R = 2r.

Let t1, . . . , tn be a minimal r-net for the cube [0, 1]d relative to the maximum norm.

For j = 1, . . . , n, let Dj = {z ∈ Cd : |<zi − (tj)i| < r, | Im zi| < r for i = 1, . . . , d}.
Observe that the sets Dj cover [0, 1]d, that Dj ⊂ Sa and that n ≤ const× (1/a)d

for a small enough.

Consider a function f ∈ Fa,b. The function is analytic on Dj and hence, by

the Cauchy formula, it holds that

f(z) =

∞∑
k=0

∑
|l|=k

cl(z − tj)l (4.2)

for z ∈ Dj , where

cl =
1

(2πi)d

∮
C1

· · ·
∮
Cd

f(z)

(z − tj)|l|+1
dz1 · · · dzd,

with Ci a circle of radius R around the ith coordinate (tj)i of tj . (The second sum

in (4.2) ranges over all l ∈ Nd0 such that |l| = l1 + · · ·+ ld = k and for x ∈ Rd and
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l ∈ Nd0 we write xl for xl11 · · ·x
ld
d .) Since the circles lie inside Sa by construction

and f is bounded by b on Sa, we have

|cl| ≤
b

R|l|
(4.3)

for every l ∈ Nd0. Consequently, we have, for a universal constant K1,

sup
x∈Dj∩[0,1]d

∣∣∣f(x)−
m∑
k=1

∑
|l|=k

cl(x− tj)l
∣∣∣ ≤ b∑

k>m

kd−1

2k
≤ bK1

(2

3

)m
.

It follows that

logN(ε,Fa,b, ‖ · ‖∞) ≤ n logN(ε,Pm, ‖ · ‖∞),

where Pm is the collection of polynomials p(x) =
∑
k≤m

∑
|l|=k ckx

k on [−r, r]d,
with m such that bK1(2/3)m ≤ ε and coefficients ck satisfying (4.3). It is well

known, and easily verified, that

logN(ε,Pm, ‖ · ‖∞) ≤ md log
(K2b

ε

)
for a universal constant K2 > 0, see for instance the proof of Lemma 4.5 of [51].

We find that there exist constants K0,K1 > 0 such that

logN(ε,Fa,b, ‖ · ‖∞) ≤ K0
1

ad

(
log

K1b

ε

)d+1

for ε, a > 0 small enough and b large enough. To complete the proof of the lemma,

substitute a = σ and b = Kσ−d.

4.2.3 Centered small ball probabilities via metric entropy

The following results are used in Section 4.3.1 with the reproducing kernel Hilbert

space unit ball Hm,σ1 embedded in respectively CγR([0, 1]d) and Gσ (for any m).

Lemma 4.3 follows from Lemma 2.14. The required upper bound on the metric

entropy has been obtained in Lemma 4.1.

Lemma 4.3. Suppose that for some γ > d/2 and some constant K,

logN(ε,Hm,σ1 , ‖ · ‖) ≤ K
( 1

εσd+γ

)−d/γ
for any sufficiently small ε > 0. Then there exists some constant C such that

− logP(‖Wm,σ‖ ≤ ε) ≤ C
( 1

εσd+γ

)− 2d
2γ−d

for any sufficiently small ε.
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Lemma 4.4 below follows by arguing as in the proof of Lemma 4.6 in van der

Vaart and van Zanten [51]. It is used for Hm,σ1 with σ sufficiently small. The

required upper bound on the metric entropy is provided by Lemma 4.2.

Lemma 4.4. Suppose that for some constant K,

logN(ε,Hm,σ1 , ‖ · ‖) ≤ K 1

σd

(
log

1

εσd

)1+d

(4.4)

for any sufficiently small ε. Then for any σ0 > 0 there exist some constants C, ε0 >

0 such that

− logP(‖Wm,σ‖ ≤ ε) ≤ C 1

σd

(
log

1

εσ1+d

)1+d

(4.5)

for any σ < σ0 and ε < ε0.

For Hσ1 with σ > σ0 we use Lemma 4.5 given below. This result follows trivially

from Lemma 2.15. The required upper bound on the metric entropy is provided

by Lemma 4.2.

Lemma 4.5. Suppose that for some constant K,

logN(ε,Hm,σ1 , ‖ · ‖) ≤ K(log 1/ε)1+d

for any sufficiently small ε. Then there exists some constant C such that for any

sufficiently small ε,

− logP(‖Wm,σ‖ ≤ ε) ≤ C(log 1/ε)1+d.

4.3 Gaussian location-scale mixtures

In this section we define the Gaussian process that we will use later to construct

prior distributions for different statistical settings. We determine the concentration

function of the process so that we can compute posterior contraction rates for the

corresponding Gaussian prior in Section 4.4. The paths of the process are given

by certain location-scale kernel mixtures. The kernels in the mixture are equipped

with an index γ which quantifies their smoothness. We will see that this quantity

influences the rate of posterior contraction that we obtain for the corresponding

mixture prior.

We first define the collection Pγ of γ-regular kernels. An integrable function p

on Rd that integrates to one and has finite moments of every order is contained in

the collection Pγ if it is uniformly Lipschitz on Rd and satisfies one of the following

conditions, depending on whether γ <∞ or γ =∞ :

• For γ <∞: p belongs to Cγ(Rd).
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• For γ =∞: p is the restriction to Rd of a function that is defined on the set

S = {(z1, . . . , zd) ∈ Cd : | Im zj | ≤ 1 for j = 1, . . . , d}, and that is bounded

and analytic on S.

Examples of kernels belonging to this collection Pγ for γ < ∞ are abundant.

Using Fourier inversion it is not difficult to see that an integrable function p belongs

to P∞ if it has a characteristic function

ψ(λ) =

∫
Rd
ei(λ,x)p(x) dx

which is infinitely often differentiable at 0, which satisfies ψ(0) = 1, and which

satisfies the exponential moment condition∫
Rd
e‖λ‖|ψ(λ)| dλ <∞.

The prime example is the standard normal density on Rd, which is easily seen to

belong to P∞. Note that we do not require that p ≥ 0 in the definition of Pγ . So

in fact, higher order kernels are allowed as well.

We now introduce the Gaussian kernel mixture process. For fixed m ∈ N and

σ > 0, we define the stochastic process Wm,σ on [0, 1]d by

Wm,σ(x) =
∑

k∈{1,...,m}d
Zk

1

md/2

1

σd
p
(x− k/m

σ

)
, (4.6)

for independent standard Gaussian random variables Zk and a function p : Rd →
R in the class of γ-regular kernels Pγ for some γ > d/2. With the restriction

γ > d/2 we accomplish that the sum in (4.6) is well-defined if the sum is taken

over all k ∈ Nd and this allows us to obtain bounds for the process Wm,σ that are

independent of m.

The following lemma describes the reproducing kernel Hilbert space of the

process Wm,σ. It is an immediate consequence of Lemma 2.12.

Lemma 4.6. The reproducing kernel Hilbert space Hm,σ of Wm,σ consists of all

the functions of the form

h(x) =
∑

k∈{1,...,m}d
wk

1

σd
p
(x− k/m

σ

)
, x ∈ [0, 1]d, (4.7)

where the weights wk range over the entire set of real numbers. The RKHS-norm

is given by

‖h‖2Hm,σ = md min
w

∑
k∈{1,...,m}d

w2
k, (4.8)

where the minimum is over all weights wk for which the representation (4.7) holds

true.
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We remark that if the functions x 7→ p((x − k/m)/σ) on [0, 1]d are linearly

independent, then the representation (4.7) of an element of the RKHS is necessarily

unique and hence the minimum in (4.8) can be removed. Although it is for our

purpose not important that these functions are independent for every fixed σ and

m, the following lemma gives a sufficient condition for the case γ =∞.

Lemma 4.7. Suppose that p ∈ P∞ and that the characteristic function of p has

no zeros in Rd. Then for every σ > 0 and m ∈ N, the functions [0, 1]d 3 x 7→
p((x− k/m)/σ), k ∈ {1, . . . ,m}d, are linearly independent.

Proof. Suppose that for real constants ck, we have

f(x) =
∑

k∈{1,...,m}d
ckp
(x− k/m

σ

)
= 0

for all x ∈ [0, 1]d. Then since p is analytic on a set containing Rd, the function f

in fact vanishes on all of Rd. Hence, for λ ∈ Cd we have

0 =

∫
Rd
ei(λ,x)f(x) dx

=
∑

k∈{1,...,m}d
ck

∫
Rd
ei(λ,x)p

(x− k/m
σ

)
dx

= σdψ(σλ)
∑

k∈{1,...,m}d
cke

i(λ,k/m),

where ψ is the characteristic function of the density p. Hence, since ψ has no

zeros on Rd by assumption and the functions λ 7→ ei(λ,k/m) on Rd are linearly

independent, it follows that ck = 0 for all k.

4.3.1 Centered small ball probabilities

We now consider the centered small ball probabilities of the process Wm,σ. The

results in Section 2.5.3 allow us to determine these probabilities via the metric

entropy of the unit ball in the reproducing kernel Hilbert space. To find an upper

bound for its metric entropy, we embed this unit ball in an appropriate space of

functions for which the metric entropy relative to the supremum norm is essentially

known. We do this separately for both γ <∞ and γ =∞.

4.3.1.1 The case γ <∞

First we consider the case γ <∞. Let h be an element of Hm,σ. By Lemma 4.6, it

admits a representation (4.7) with the weights wk such that ‖h‖2Hm,σ = md
∑
w2
k.

If p ∈ Pγ with γ <∞, we get that h ∈ Cγ([0, 1]d) and

‖h‖γ ≤ σ−(d+γ)‖p‖γ‖h‖Hm,σ . (4.9)
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Hence, we have Hm,σ1 ⊂ CγR([0, 1]d) in this case, with R = σ−(d+γ)‖p‖γ .
In Lemma 4.1 we have seen an upper bound on the metric entropy of CγR([0, 1]d)

with respect to the supremum norm. Lemma 2.14 is applicable in this case and

gives us an upper bound for the centered small ball probability, see Lemma 4.3.

Lemma 4.8. If d/2 < γ <∞,

− logP(‖Wm,σ‖∞ < ε) ≤ K0

( 1

εσd+γ

) 2d
2γ−d

for all ε, σ > 0, with K0 a constant independent of ε and σ.

4.3.1.2 The case γ =∞

For γ =∞ and h as before, it follows from the assumptions on p that the function

h is in fact well defined on Sσ = {z ∈ Cd : ∀j | Im zj | ≤ σ}, is analytic on this set,

and takes real values on Rd. By the Cauchy-Schwarz inequality, it follows that

|h(z)|2 ≤ 1

σ2d

( ∑
k∈{1,...,m}d

w2
k

)( ∑
k∈{1,...,m}d

∣∣p(z − k/m
σ

)∣∣2).
The last factor in the right-hand side is bounded from above by a multiple of md

on the set Sσ. Hence, we obtain

|h(z)| ≤ Kσ−d‖h‖Hm,σ (4.10)

for every z ∈ Sσ, where the constant K only depends on the density p. Let Gσ be

the set of all analytic functions on Sσ, uniformly bounded by Kσ−d on that set,

with K the same constant as in (4.10). The preceding shows that for the RKHS

unit ball we have Hm,σ1 ⊂ Gσ if γ =∞.
In Lemma 4.2 we have seen an upper bound on the metric entropy of Gσ with

respect to the supremum norm. Lemma 4.4 or Lemma 4.5 is applicable in this case

and gives us an upper bound for the centered small ball probability.

Lemma 4.9. If γ =∞, there exist ε0, σ0,K1 > 0, not depending on ε and σ, such

that

− logP(‖Wm,σ‖∞ < ε) ≤ K1
1

σd

(
log

1

εσ1+d

)1+d

for all ε ∈ (0, ε0) and σ ∈ (0, σ0). For σ ≥ σ0,

− logP(‖Wm,σ‖∞ < ε) ≤ K2

(
log

1

ε

)1+d

for all ε ∈ (0, ε0), where K2 > 0 is independent of ε and σ.



Bibliotheek TU/e

Posterior contraction for location-scale mixture priors 65

4.3.2 Non-centered small ball probabilities

We fix two numbers 0 < a < b < 1 from this point on and define X = [a, b]d. In

this subsection we view Wm,σ as a random element in C(X ) and investigate its

non-centered small ball probabilities around a given function w0 ∈ Cα(X ). The

reason for considering a smaller set X ⊂ [0, 1]d is that in order to obtain good

enough approximations of the given function w0 defined on X by location-scale

mixtures of the kernel p, we also need kernels centered at points just outside the

set X . Results like Lemma 4.11 below with the supremum over the entire unit cube

would only be possible under additional assumptions on the boundary behaviour

of the function w0.

According to Lemma 2.13, we have

− logP(‖Wm,σ − w0‖∞ < 2ε) ≤ ϕm,σw0
(ε), (4.11)

with the concentration function ϕm,σw0
in (2.33) given by

ϕm,σw0
(ε) = inf

h∈Hm,σ :‖h−w0‖∞≤ε
‖h‖2Hm,σ − logP(‖Wm,σ‖∞ < ε). (4.12)

The centered small ball probability in the last term of (4.12) has been dealt with

in the previous section. We now consider the question of estimating w0 ∈ Cα(X )

by elements of the reproducing kernel Hilbert space of the Gaussian process. To

obtain a suitable approximation we first need an auxiliary result concerning the

approximation of a smooth function f by convolutions.

4.3.2.1 General approximation result using convolutions

For a multi-index k ∈ Nd0 we write, as in the preceding chapter, |k| =
∑
i≤d ki and

Dk is the |k|-th order differential operator

Dk =
∂|k|

∂xk11 · · · ∂x
kd
d

.

For a function f ∈ Cα(Rd) and σ > 0 we define the transform Tα,σf of f by

Tα,σf = f −
β∑
j=1

∑
|k|=j

dkσ
j(Dkf) (4.13)

for dk the sequence defined in (4.14) below, and β the largest integer strictly

smaller than α.

Let pσ(x) = σ−dp(x/σ). The next lemma gives a uniform bound on the

difference of f and the convolution of pσ with the transform of f.

Lemma 4.10. For α, σ > 0 and f ∈ Cα(Rd) we have ‖pσ∗(Tα,σf)−f‖∞ ≤ K6σ
α,

where K6 > 0 is a constant independent of σ.
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The lemma is an extension of an idea of Rousseau [41], where a similar method

is used to approximate arbitrary smooth densities by beta mixtures. The proof

follows the same lines but is more involved in the present higher-dimensional case.

The right choice for the sequence dn is what makes the proof work, as we will

see below. To define this sequence, first let mk =
∫
ykp(y) dy for k ∈ Nd0. Next, for

n ∈ Nd0 we recursively define two collections of numbers cn and dn as follows. If

|n| = 1 we put cn = 0 and dn = −mn/n!. For |n| ≥ 2, we define

cn = −
∑
n=l+k

|l|≥1,|k|≥1

(−1)|k|

k!
mkdl and dn =

(−1)|n|mn

n!
+ cn. (4.14)

Note that the numbers cn and dn are well defined and that they only depend on

the moments of p. We can now give the proof.

Proof of Lemma 4.10. The proof is by induction on β, which is the largest integer

strictly smaller than α. If β = 0 then α ∈ (0, 1] and Tα,σf = f and the statement

of the claim is standard. To prove the induction step, suppose now that β ≥ 1. By

definition of Tα,σf we have

(pσ ∗ Tα,σf − f)(x)

=

∫
pσ(y)

(
f(x− y)− f(x)−

β∑
j=1

∑
|k|=j

dkσ
j(Dkf)(x− y)

)
dy.

By Taylor’s formula and the fact that f ∈ Cα,

f(x− y)− f(x) =

β∑
j=1

∑
|k|=j

(−y)k

k!
(Dkf)(x) +R(x, y),

where |R(x, y)| ≤ C‖y‖α. It follows that

(pσ ∗ Tα,σf − f)(x)

=

∫
pσ(y)R(x, y) dy

+

β∑
j=1

∑
|k|=j

( 1

k!
(−1)j(Dkf)(x)σjmk − dkσj

(
pσ ∗ (Dkf)

)
(x)
)
.

The first term on the right is easily seen to be bounded by a constant times σα.

To see that this holds for the second term as well we use the induction hypothesis.

By definition of the constants ck and dk (see (4.14)), the second term can be

written as

β∑
j=1

∑
|k|=j

( (−1)j

k!
σjmk

(
Dj
kf − pσ ∗ (Dkf)

)
(x)− ckσj

(
pσ ∗ (Dkf)

)
(x)
)
.
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Now for j ≤ β and |k| = j, consider the decomposition

Dkf − pσ ∗ (Dkf)

=
(
Dkf − pσ ∗ (Tα−j,σD

kf)
)

+
(
pσ ∗ (Tα−j,σD

kf)− pσ ∗ (Dkf)
)
.

Since Dkf ∈ Cα−j , the induction hypothesis implies that the first term on the

right is uniformly bounded by a constant times σα−j . Combined with the first

display of the paragraph, this shows that it suffices to show that

β∑
j=1

∑
|k|=j

( (−1)j

k!
σjmk

(
Tα−j,σD

kf −Dkf
)
− ckσj

(
Dkf

))
= 0

identically. Straightforward algebra shows that

Tα−j,σD
kf −Dkf = −

β−j∑
i=1

∑
|l|=i

dlσ
iDk+lf.

Hence,

β∑
j=1

∑
|k|=j

(−1)j

k!
σjmk

(
Tα−j,σD

kf −Dkf
)

= −
β∑
j=1

∑
|k|=j

β−j∑
i=1

∑
|l|=i

(−1)j

k!
mkdlσ

i+jDl+kf

= −
β∑
s=2

∑
|n|=s

( ∑
n=l+k

|l|≥1,|k|≥1

(−1)|k|

k!
mkdl

)
σsDnf.

By definition of the numbers cn and dn this equals

β∑
s=1

∑
|n|=s

cnσ
sDnf,

and the proof is complete.

4.3.2.2 Approximation in the RKHS

We now return to the question of approximating smooth functions w0 by elements

of the reproducing kernel Hilbert space. In the following lemma we give an

upper bound on the uniform distance between w0 and a certain element in the

reproducing kernel Hilbert space, constructed in the proof using the transform

Tα,σ introduced in (4.13).
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Lemma 4.11. For all σ > 0, m ≥ 1 and w0 ∈ Cα(X ) there exists an h ∈ Hm,σ

such that ‖h‖Hm,σ ≤ K7(1 ∨ σ) and

sup
x∈X
|h(x)− w0(x)| ≤ K8(1 ∨ σβ+1)

σ1+dmα−β +K9σ
α, (4.15)

for K7,K8,K9 > 0 constants independent of σ and m and β the largest integer

strictly smaller than α.

Proof. Since X = [a, b]d ⊂ (0, 1)d we can extend w0 to all of Rd in such a way that

the resulting function belongs to Cα(Rd) and has support strictly inside (0, 1)d.

Using the operator Tα,σ introduced in (4.13), we define

h(x) =
∑

k∈{1,...,m}d
(Tα,σw0)(k/m)

1

md

1

σd
p
(x− k/m

σ

)
for x ∈ [0, 1]d. By Lemma 4.6 it holds that h ∈ Hm,σ and

‖h‖2Hm,σ ≤
1

md

∑
k∈{1,...,m}d

(
(Tα,σw0)(k/m)

)2

≤ ‖Tα,σw0‖2∞.

It follows from the definition of Tα,σ that this is bounded by a constant times

(1 ∨ σβ)2.

We are left to show the bound for the approximation error in (4.15). By the

triangle inequality,

‖h− w0‖∞ ≤ ‖h− pσ ∗ (Tα,σw0)‖∞ + ‖pσ ∗ (Tα,σw0)− w0‖∞. (4.16)

The first term on the right is the difference between the convolution pσ ∗ Tα,σw0

and the corresponding Riemann sum. Using again the triangle inequality we get

|h(x)− (pσ ∗ Tα,σw0)(x)|
≤ sup
‖y−z‖∞≤1/m

|Tα,σw0(y)pσ(x− y)− Tα,σw0(z)pσ(x− z)|

≤ ‖Tα,σw0‖∞ sup
‖y−z‖∞≤1/m

|pσ(x− y)− pσ(x− z)|

+ ‖pσ‖∞ sup
‖y−z‖∞≤1/m

|Tα,σw0(y)− Tα,σw0(z)|.

Now use the facts that Tα,σw0 is bounded by a constant times 1∨σβ , pσ is bounded

by σ−d times a constant, p is Lipschitz and the definition of Tα,σw0 to see that

‖h− pσ ∗ Tα,σw0‖∞ ≤
C1(1 ∨ σβ)

σ1+dm
+
C2(1 ∨ σβ)

σdmα−β ≤ C3(1 ∨ σβ+1)

σ1+dmα−β ,

which covers the first term on the right of (4.16). Lemma 4.10 implies that the

second term is bounded by a constant times σα.
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4.3.2.3 Non-centered small ball probabilities

In the previous subsections we have considered the two ingredients of the

concentration function of the Gaussian process. By combining the approximation

result in Lemma 4.11 with the appropriate bounds in Lemma 4.8 and Lemma 4.9 on

the centered small ball probabilities, we obtain upper bounds of the concentration

function (4.12) for both γ < ∞ and γ = ∞. This will allow us to determine

posterior contraction rates for the corresponding Gaussian priors. As we have

seen in Lemma 2.13, the concentration function around w0 is equivalent to the

non-centered small ball probability of the process around w0. Let us therefore

only give an upper bound for the latter.

In view of (4.12) and Lemma 4.11, let us consider ε > 0 that satisfies the

condition
K3

σ1+dmα−β +K4σ
α ≤ ε < ε0 (4.17)

for certain ε0,K3,K4 > 0 that do not depend on σ and m. The small ball

probabilities around w0 are bounded as follows for γ <∞ and γ =∞.

Lemma 4.12. If d/2 < γ <∞, then there exist ε0, σ0, K1, K2, K3, K4 > 0 such

that for any m, any σ ∈ (0, σ0) and any ε that satisfies condition (4.17),

− logP
(

sup
x∈X
|Wm,σ(x)− w0(x)| < 2ε

)
≤ K1 +K2

( 1

εσd+γ

) 2d
2γ−d

.

Lemma 4.13. If γ = ∞, then there exist ε0, σ0, K1, K2, K3, K4 > 0 such that

for any m, any σ ∈ (0, σ0) and any ε that satisfies condition (4.17),

− logP
(

sup
x∈X
|Wm,σ(x)− w0(x)| < 2ε

)
≤ K1 +K2

1

σd

(
log

1

εσ1+d

)1+d

.

4.4 Posterior contraction for Gaussian kernel

mixture priors

4.4.1 General result

The Gaussian kernel mixture process Wm,σ can be used to construct priors in

various nonparametric statistical settings. In order to ensure consistency one has

to let the scale parameter σ tend to 0 and let the partition size parameter m

tend to infinity with the sample size, or estimate these hyper-parameters from

the data. In this section we consider sequences of priors constructed by letting

σ and m depend on the sample size in a deterministic manner. We give bounds

on the contraction rates of the corresponding posteriors. In the next section we

investigate the possibility of endowing m and σ with prior distributions.
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Consider a sequence of positive numbers σn → 0 and a sequence of natural

numbers mn →∞ and let Wn be the process that is obtained by substituting m

and σ by mn and σn in (4.6), hence

Wn(x) =
∑

k∈{1,...,m}d
Zk

1

m
d/2
n

1

σdn
p
(x− k/mn

σn

)
, (4.18)

with the Zk independent standard Gaussian random variables and p ∈ Pγ . For

w0 ∈ Cα(X ), α > 0, let ϕnw0
be the corresponding concentration function (4.12).

Here we view Wn as a Gaussian random element in C(X ) again, i.e.

ϕnw0
(ε) = inf

h∈Hmn,σn :supx∈X |h(x)−w0(x)|≤ε
‖h‖2Hmn,σn − logP

(
sup
x∈X
|Wmn,σn | < ε

)
.

According to the general theory of Gaussian process priors, the posterior

contraction rate for priors based on the law of the process Wn is obtained by

solving the inequality

ϕnw0
(εn) ≤ nε2

n, (4.19)

see Section 2.6. By Lemma 4.12, this inequality holds in the case d/2 < γ <∞ if

K1 +K2

( 1

εnσ
d+γ
n

) 2d
2γ−d ≤ nε2

n,

K3

σ1+d
n mα−β

n

+K4σ
α
n ≤ εn,

with K1, . . . ,K4 the constants appearing in the lemma and β the largest integer

strictly smaller than α. The optimal solution of these inequalities is easily found,

i.e. the solution yielding the smallest possible sequence εn (in order) and we obtain

the following theorem. We use the following notation:

dγ =
2d(d+ γ)

2γ − d
, δγ =

d

2γ − d
. (4.20)

Theorem 4.14. In the setting described above, suppose that d/2 < γ < ∞. Let

mα−β
n & n(1+α+d)/(dγ+2α(1+δγ)) and σn ∼ n−1/(dγ+2α(1+δγ)). Then (4.19) holds

with

εn ∼ n−α/(dγ+2α(1+δγ)).

Note that for the numbers defined in (4.20) we have dγ → d and δγ → 0 as

γ →∞ and consequently the exponent of 1/n in the expression for εn given in the

theorem tends to α/(d + 2α), which corresponds to the optimal minimax rate of

convergence for estimating an α-smooth function of d variables.

It turns out that if we use an infinitely smooth kernel, i.e. γ = ∞, we indeed

achieve the optimal rate, up to a logarithmic factor. In this case inequality (4.19)
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holds, by Lemma 4.13, if the sequences εn, mn and σn satisfy

K1 +K2
1

σdn

(
log

1

εnσ
1+d
n

)1+d

≤ nε2
n

K3

σ1+d
n mα−β

n

+K4σ
α
n ≤ εn,

with K1, . . . ,K4 the constants appearing in the lemma and β the largest integer

strictly smaller than α. Again it is straightforward to find the optimal solutions of

these inequalities and we arrive at the following result.

Theorem 4.15. In the setting described above, suppose that γ =∞. Let mα−β
n &

(n/ log1+d n)(1+α+d)/(d+2α) and σn ∼ (n/ log1+d n)−1/(d+2α). Then (4.19) holds

with

εn ∼ (n/ log1+d n)−α/(d+2α).

In combination with the results given in Section 2.6 these theorems immediately

yield rate of contraction results for various statistical settings. We give details

in the next section. In particular, Theorem 4.15 will imply that if the law of

the Gaussian kernel mixture process Wmn,σn is used as a prior on an α-regular

function of d variables, then if the kernel that is used is infinitely smooth in the

sense that it belongs to P∞, and we set mα−β
n ∼ (n/ log1+d n)(1+α+d)/(d+2α) and

σn ∼ (n/ log1+d n)−1/(d+2α), this leads to posterior contraction rates of the optimal

order n−α/(d+2α), up to a logarithmic factor.

Note however that these Gaussian process priors depend on the unknown

regularity α of the function that is being estimated through the choice of mn and

σn. In Section 4.5 we will show that if instead of choosing the hyper-parameters

m and σ deterministically, we endow them with appropriate prior distributions, it

is possible to obtain a rate-adaptive procedure.

4.4.2 Results for specific statistical settings

4.4.2.1 Gaussian regression

Consider the nonparametric regression setting described in Section 3.4.2, but now

with the design points xi all belonging to the space X = [a, b]d ⊂ [0, 1]d and

w0 : X → R. The Gaussian process Wn defined by (4.18) can be used directly

as a prior for w0 in this case. We again also endow the error standard deviation,

which we now denote by τ0 to avoid confusion, with a prior distribution which

we assume to be supported on a given compact interval in (0,∞) that contains

τ0, with a Lebesgue density that is bounded away from zero. We denote the total

prior on (w0, τ0) by Πn and write Πn(· |Y1, . . . , Yn) for the corresponding posterior

distribution. We say that the posterior contracts at rate εn if the convergence in

(3.10) holds as n → ∞ for every sufficiently large constant L (with σ replaced
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by τ). Combining the previous results of Theorem 4.14 and Theorem 4.15 with

the general result in Theorem 2.21 yields the following result in the fixed design

regression case.

Theorem 4.16. Suppose that w0 ∈ Cα(X ) for α > 0.

• If γ <∞ and

mn ∼ n
1+d+α

(dγ+2α(1+δγ ))(α−β) and σn ∼ n
− 1
dγ+2α(1+δγ ) , (4.21)

then the posterior contracts at rate

εn ∼ n
− α
dγ+2α(1+δγ ) .

• If γ =∞ and

mn ∼ (n/ log1+d n)
1+d+α

(d+2α)(α−β) and σn ∼ (n/ log1+d n)−
1

d+2α , (4.22)

then the posterior contracts at rate

εn ∼ (n/ log1+d n)−
α

d+2α .

4.4.2.2 Density estimation

Next consider the nonparametric density estimation problem described in Section

3.4.3, but with f0 a density on the space X ⊂ [0, 1]d. As prior on the density

function f0 we use the law Πn of the random density x 7→ ceW
n(x), with c

the renormalization constant c = (
∫
X e

Wn(x) dx)−1. Let Πn(· |X1 . . . , Xn) denote

the posterior distribution. We say that the posterior contracts at rate εn if the

convergence in (3.12) holds as n → ∞ for every sufficiently large constant L.

Let w0 = log f0. Then by combining the previous Theorems 4.14 and 4.15 with

Theorem 2.19, it follows that the statement of Theorem 4.16 is also true in this

case.

4.4.2.3 Classification

Finallly, consider the classification setting in Section 3.4.4, where we now assume

that the Xi take values in X and hence the binary regression function r0 is a

function on X . As a prior on r0 we use the law Πn of Ψ(Wn), with Ψ the logistic or

normal distribution function. Let Πn(· |X1, Y1, . . . , Xn, Yn) be the corresponding

posterior. We say that the posterior contracts at rate εn if the convergence in

(3.13) holds as n → ∞ for every sufficiently large L. Let w0 = Ψ−1(r0). Then by

combining the previous Theorems 4.14 and 4.15 with Theorem 2.20, it follows that

the statement of Theorem 4.16 holds true in this case as well.
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4.5 Adaptation using conditionally Gaussian

priors

4.5.1 General result

In the previous section we saw that in several statistical settings involving an

unknown smooth function w0, posterior contraction can be achieved at an optimal

rate for an appropriate sequence of Gaussian kernel mixture priors. However, we

used the knowledge of the regularity of the function w0 to construct the specific

priors.

As in the preceding chapter, our next goal is to obtain a fully rate-adaptive

procedure by viewing the tuning parameters σ and m in (4.6) as hyperparameters

and endowing them with appropriate prior distributions. Again it turns out that

using such hierarchical priors, it is indeed possible to obtain adaptive, rate-optimal

procedures in this manner.

Concretely, the hierarchical priors will be based on the conditionally Gaussian

kernel mixture process W that is defined as

W (x) = WM,Σ(x) =
∑

k∈{1,...,M}d
Zk

1

Md/2

1

Σd
p
(x− k/M

Σ

)
, x ∈ [0, 1]d, (4.23)

with independent, standard Gaussian random variables Zk, independent also of

the independent random variables M and Σ on, respectively, N and (0,∞). We

assume that Σ has a Lebesgue density g. As before p : Rd → R is a function in the

class of γ-regular kernels Pγ , for some γ ∈ (d/2,∞]. Note that by construction, we

have that conditional on M = m and Σ = σ, this is the Gaussian process Wm,σ

in (4.6).

The hierarchical kernel mixture process can be used to construct priors for

various statistical settings again. The following general theorem about the process

W will lead to the desired adaptive rate of contraction results. Recall that X =

[a, b]d, for 0 < a < b < 1.

Theorem 4.17. Suppose that for some C > 0 and s > 1,

P(M ≥ m) ≥ Cm−s (4.24)

and that g satisfies, for all σ in a neighborhood of zero,

D1σ
−qe−D2σ

−dγ (log 1
σ )r ≤ g(σ) ≤ D3σ

−qe−D4σ
−dγ (log 1

σ )r (4.25)

for some D1, D2, D3, D4 > 0 and q, r ≥ 0. Then there exists, for every constant

K > 1, measurable subsets Bn of C([0, 1]d) and a constant L > 0 such that, for
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sufficiently large n,

P(W 6∈ Bn) ≤ e−Knε
2
n (4.26)

logN(ε̄n, Bn, ‖ · ‖∞) ≤ Lnε̄2
n (4.27)

P(sup
x∈X
|W (x)− w0(x)| ≤ εn) ≥ e−nε

2
n (4.28)

for ε̄n the rate

c′n
− α(1−(dδγ )/(2γ))

(dγ+2α(1+δγ ))(1+d/(2γ)) if γ <∞, (4.29)

c′n−
α

d+2α (log n)
r∨(1+d)
2+d/α

+( 1+d−r
2 )+ if γ =∞ (4.30)

and εn the rate

cn
− α
dγ+2α(1+δγ ) if γ <∞, (4.31)

cn−
α

d+2α (log n)
r∨(1+d)
2+d/α if γ =∞, (4.32)

for c, c′ > 0 large enough constants.

As explained in more detail in the next section, this general theorem connects

to the results giving sufficient conditions for having a certain posterior contraction

rate in several statistical models, see Chapter 2. For priors based on the

conditionaly Gaussian process W we will obtain posterior rates of the order ε∨ ε̄n.

Note that we only get an actual rate in the case γ <∞ if dδγ < 2γ. It is easy

to verify that this is true if and only if γ > (1 +
√

5)d/4 ≈ (0.81)d. In this case the

exponent of 1/n in the rate tends to the optimal α/(d+ 2α) as γ →∞.
For γ =∞ we obtain the optimal rate n−α/(d+2α), up to a logarithmic factor.

Moreover, we have a rate-adaptive procedure in this case, since the process W does

not depend on the regularity of the function that is being estimated. The exponent

of the log factor in the rate for γ =∞ is minimal if r = 1 + d. The posterior rate

is then (n/ log n)−α/(d+2α). For larger or smaller values of r, the rate is slightly

worse. If Σd has an inverse gamma distribution, then condition (4.25) holds for

r = 0, leading to the rate

n
− α
d+2α log

4α+4αd+d+d2

4α+2d n.

4.5.2 Results for specific statistical settings

Combined with the general results presented in Chapter 2 , Theorem 4.17 yields

rate of contraction results for priors based on the hierarchical kernel mixture

process (4.23) in various statistical settings. In this section we briefly state the

results for density estimation, fixed design regression and classification.
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Consider first the regression setting described in Section 4.4.2.1. As prior on

the regression function w0 we now employ the law of the conditionally Gaussian

process W , where the hyper priors on M and Σ are assumed to satisfy conditions

(4.24) and (4.25), respectively. The total prior on the pair (w0, τ0), with τ0 the

error standard deviation, is denoted by Π. As before we say that the corresponding

posterior contracts at the rate εn if, for all L large enough, (3.10) holds as n→∞,

with Π in the place of Πn (and σ replaced by τ).

Combining Theorem 4.17 and Theorem 2.11 yields the following result for fixed

design regression. Recall the definitions (4.20) of dγ and δγ .

Theorem 4.18. Suppose that w0 ∈ Cα(X ).

• If γ ∈ (d/2,∞), then the posterior contracts at the rate

n
− α(1−(dδγ )/(2γ))

(dγ+2α(1+δγ ))(1+d/(2γ)) .

• If γ =∞, then the posterior contracts at the rate

n−
α

d+2α (log n)
r∨(1+d)
2+d/α

+( 1+d−r
2 )+ .

For density estimation we consider the setting of Section 4.4.2.2 again. As prior

on the density function f0 we use the law Π of the random density

x 7→ eW (x)∫
X e

W (x) dx
,

where M and σ are assumed to satisfy conditions (4.24) and (4.25), respectively.

We say that the posterior contracts at rate εn if the convergence in (3.12) holds

as n→∞ for every sufficiently large constant L, with Πn replaced by Π.

Combining Theorem 4.17 and Theorem 2.5 yields the following result for

density estimation.

Theorem 4.19. Suppose that log f0 ∈ Cα(X ).

• If γ ∈ (d/2,∞), then the posterior contracts at the rate

n
− α(1−(dδγ )/(2γ))

(dγ+2α(1+δγ ))(1+d/(2γ)) .

• If γ =∞, then the posterior contracts at the rate

n−
α

d+2α (log n)
r∨(1+d)
2+d/α

+( 1+d−r
2 )+ .

Finally, we again consider the non-parametric classification problem described

in Section 4.4.2.3. As prior on the binary regression function r0 we employ the
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law Π of Ψ(W ), with Ψ the logistic or normal distribution function and W the

conditionally Gaussian kernel mixture process, where M and σ are assumed to

satisfy conditions (4.24) and (4.25), respectively. We say that the corresponding

posterior contracts at the rate εn if for all L large enough (3.13) holds as n→∞,

with Π in place of Πn.

Combining Theorem 4.17 and Theorem 2.7 yields the following result in the

classification setting.

Theorem 4.20. Suppose that Ψ−1(r0) ∈ Cα(X ).

• If γ ∈ (d/2,∞), then the posterior contracts at the rate

n
− α(1−(dδγ )/(2γ))

(dγ+2α(1+δγ ))(1+d/(2γ)) .

• If γ =∞, then the posterior contracts at the rate

n−
α

d+2α (log n)
r∨(1+d)
2+d/α

+( 1+d−r
2 )+ .

4.5.3 Proof of Theorem 4.17

4.5.3.1 Prior mass condition (4.28)

Let λm = P(M = m). The probability P(supx∈X |W (x) − w0(x)| ≤ ε) can be

written as

∞∑
m=1

λm

∫ ∞
0

g(σ)P
(

sup
x∈X
|Wm,σ(x)− w0(x)| < ε

)
dσ, (4.33)

by conditioning on M and Σ.

First consider the case γ <∞. According to Lemma 4.12, there exist constants

ε0, C1, C2, C3, C4 > 0 independent of σ and m, such that

− logP
(

sup
x∈X
|Wm,σ(x)− w0(x)| < ε

)
≤ C3 + C4

( 1

εσd+γ

) 2d
2γ−d

for any ε < ε0 and any σ and m that satisfy

1

2
C1ε

1/α < σ < C1ε
1/α ≤ 1 and m ≥ C2ε

− 1+d+α
α(α−β) . (4.34)

For ε < ε0, the probability of interest can be bounded from below by restricting

the sum and integral in (4.33) to the m and σ that satisfy (4.34). The lower bound

on the integral becomes∫ C1ε
1/α

1
2C1ε1/α

g(σ) exp
(
− C4

( 1

εσd+γ

) 2d
2γ−d

)
dσ ≥ C5 exp(−C6ε

−α+d+γ
α

2d
2γ−d )
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by first substituting the lower bound for g(σ) in (4.25) and then bounding the

integrand using the bounds of the integration interval. We used that α+d+γ
α

2d
2γ−d >

dγ
α , which is clear from the definition of dγ in (4.20). The lower bound on the

integral does not depend on m and thus comes out of the sum. For ε < ε0 we thus

have

P(sup
x∈X
|W (x)− w0(x)| ≤ ε) ≥ P(M ≥ C2ε

− 1+d+α
α(α−β) )C5 exp(−C6ε

−α+d+γ
α

2d
2γ−d ).

The assumption (4.24) implies that the lower bound on the tail probability of M is

some positive power of ε and therefore also bounded from below by an exponential

lower bound. We thus conclude that

P(sup
x∈X
|W (x)− w0(x)| ≤ ε) ≥ C7 exp(−C8ε

−α+d+γ
α

2d
2γ−d )

for some constants C7, C8 > 0. It follows that condition (4.28) is fulfilled for εn
some large enough multiple of n

− α
dγ+2α(1+δγ ) .

The proof for γ =∞ is similar. We find that there exist constants C5, C6 > 0

such that for ε > 0 small enough,

P(sup
x∈X
|W (x)− w0(x)| ≤ ε) ≥ C5 exp(−C6ε

−d/α logr∨(1+d)(1/ε)).

It follows that condition (4.28) is satisfied in this case for εn equal to some large

enough multiple of n−
α

d+2α logt n, provided that t ≥ (r∨(1+d))/(2+d/α). Choose

t minimal.

4.5.3.2 Construction of sieves

We have seen the existence of appropriate sieves for Gaussian priors in Theorem

2.18. The proof in [50] explicitly constructs the sieves for a Gaussian prior from

both the unit ball B1 in the Banach space in which the process takes it values,

and from the unit ball H1 in the reproducing kernel Hilbert space connected to

the Gaussian process. The relevant sieves are given by LnH1 + εnB1 for some

appropriately chosen sequence Ln and with εn the posterior contraction rate.

We now construct in a similar way sieves for the present conditionally Gaussian

prior. As opposed to the constuction in the previous chapter, in the construction

of these sieves we will not be using the sieves that belong to the Gaussian process.

Instead, the sieves will be constructed using the sets in which we have before

embedded the RKHS unit ball. In both cases γ <∞ and γ =∞, this construction

involves the choice of a sequence of radii Rn and a sequence Ln. The particular

choices for these sequences are given in Subsection 4.5.3.5.

First consider the case γ < ∞. Recall from (4.9) that Hm,σ1 ⊂
Cγ
σ−(d+γ)‖p‖γ ([0, 1]d) and hence Hm,σ1 ⊂ Cγ

R−(d+γ)‖p‖γ ([0, 1]d) for any σ ≥ R. This
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motivates the choice of sieves

Bn = LnC
γ

R
−(d+γ)
n ‖p‖γ

([0, 1]d) +M1εnB1

for some sequences Ln and Rn, and a large enough constant M1. Here B1 is the

unit ball of the space C([0, 1]d) and εn is given by (4.32).

The sieves for the prior with γ =∞ are constructed using Gσ. Recall that Gσ is

the set of all analytic functions defined on the strip Sσ = {z ∈ Cd : ∀j | Im zj | ≤ σ}
that are bounded by Kpσ

−d on Sσ, where Kp is a constant that only depends on

the kernel p. We have seen that Hm,σ1 ⊂ Gσ. Note that Gσ1 ⊂ Gσ2 if σ1 ≥ σ2. We

now define the sieves similar as in the case with γ <∞. Let

Bn = LnGRn +M1εnB1

for some sequences Ln and Rn, and a sufficiently large constant M1. Here B1 is

again the unit ball of the space C([0, 1]d) and εn is in this case given by (4.32).

We will show that these sieves satisfy the properties stated in Theorem 4.17.

4.5.3.3 Remaining mass condition

We first verify the remaining mass condition (4.26) for γ < ∞. Let C > 1. By

conditioning and restricting the integral to σ ≥ Rn, we obtain

P(W 6∈ Bn) ≤
∞∑
m=1

λm

∫ ∞
Rn

g(σ)P(Wm,σ 6∈ Bn) dσ + P(Σ < Rn).

We show that the first term on the right is bounded from above by exp(−Dnε2
n)

for D a constant that we can choose as large as we like by choosing an appropriate

large multiple M1 of (4.32) for εn. For this, it suffices to show that P(Wm,σ 6∈ Bn)

is bounded from above by exp(−Dnε2
n) for σ ≥ Rn. Let Bm,σn = LnHm,σ1 + εnB1.

By construction, Bm,σn ⊂ Bn for any σ ≥ Rn and any m. Hence

P(Wm,σ 6∈ Bn) ≤ P(Wm,σ 6∈ Bm,σn ) (4.35)

for any σ ≥ Rn and any m. By Borell-Sudakov (see Theorem 2.16), with Φ the

standard normal distribution function and for σ ≥ Rn,

P(Wm,σ 6∈ Bm,σ) ≤ 1− Φ(Φ−1(P(‖Wm,σ‖∞ ≤ εn)) + Ln).

By Lemma 4.8 we have, for σ ≥ Rn and Rn ≤ 1,

P(‖Wm,σ‖∞ ≤ εn) ≥ e−K6R
−dγ ε−2d/(2γ−d)

n

for a constant K6 > 0 and ρn > 0 small enough. Since Φ−1(y) ≥ −
√

(5/2) log(1/y)

for y ∈ (0, 1/2), it follows that

P(Wm,σ 6∈ Bn) ≤ 1− Φ
(
Ln −

√
(5/2)K6R

−dγ
n ε

−2d/(2γ−d)
n

)
≤ e−

1
2 (Ln−

√
(5/2)K6R

−dγ
n ε

−2d/(2γ−d)
n )2 ,
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for σ ≥ Rn and Ln ≥
√

(5/2)K6R
−dγ
n ε

−2d/(2γ−d)
n . In Subsection 4.5.3.5 we will

show that we can choose Ln and Rn such that

(Ln −
√

(5/2)K6R
−dγ
n ρ

−2d/(2γ−d)
n )2 ≥ Dnε2

n

so that P(Wm,σ 6∈ Bn) is indeed bounded from above by exp(−Dnε2
n).

We are left to bound P(Σ < Rn). For this we use the upper bound for g(σ) in

the assumption (4.25). A substitution x = σ−1 then shows that

P(Σ < Rn) ≤ D3

∫ ∞
1/Rn

xq−2e−D4x
dγ (log x)r dx.

According to Lemma 4.9 of [51], this is further bounded by

2D3

dD4

(1/Rn)q−2−dγ+1

(log(1/Rn))r
e−D4(1/Rn)dγ (log(1/Rn))r ≤ e−

1
2D4(1/Rn)dγ (log(1/Rn))r

for Rn small enough. In Subsection 4.5.3.5 we will show that the chosen Rn satisfies

1

R
dγ
n

logr
1

Rn
≥M1nε

2
n

so that P(Σ < Rn) is bounded from above by exp(−Dnε2
n), with D as before, by

choosing M1 sufficiently large.

We thus conclude that P(W 6∈ Bn) ≤ 2 exp(−Dnε2
n). For sufficiently large

D, this is bounded from above by exp(−Cnε2
n) for the given C, which was to be

shown.

The remaining mass condition in the case γ = ∞ follows using the same

conditioning argument as in the finite regularity case above. Arguing as before, we

now get

P(Wm,σ 6∈ Bn) ≤ e−
1
2 (Ln−

√
(5/2)K6R

−d
n (log(1/(εnR

1+d
n )))1+d)2

for σ ≥ Rn and Ln ≥
√

(5/2)K6R
−d
n (log(1/(εnR

1+d
n )))1+d. In Subsection 4.5.3.5

we will show that we can choose sequences Ln and Rn such that(
Ln −

√
(5/2)K6R

−d
n (log(1/(εnR

1+d
n )))1+d

)2

≥ Dnε2
n.

Showing the bound on P(Σ < Rn) is the same as in the case with γ <∞, but now

with d instead of dγ . We show in Subsection 4.5.3.5 that the chosen Rn satisfies

1

Rdn
logr

1

Rn
≥M1nε

2
n.

This is enough to complete the proof of the remaining mass condition.
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4.5.3.4 Entropy condition

Let ε̄n given in either (4.29) or (4.30). We verify the entropy condition (4.27).

Suppose first that γ <∞. For the entropy of the sieve Bn we have in this case,

because ε̄n ≥M1εn for c′ large enough,

N(2ε̄n, Bn, ‖ · ‖∞) ≤ N(ε̄n, LnC
γ

R
−(d+γ)
n ‖p‖γ

([0, 1]d), ‖ · ‖∞).

Hence, by Lemma 4.1,

logN(ε̄n, Bn, ‖ · ‖∞) ≤ K1

( Ln

ε̄nR
d+γ
n

)d/γ
.

In Subsection 4.5.3.5 we will show that for the chosen Ln and Rn, this is bounded

from above by a constant times nε̄2
n.

Let now γ =∞. Arguing as before we have in this case by Lemma 4.2

N(2ε̄n, Bn, ‖ · ‖∞) ≤ N(ε̄n/Ln,GRn , ‖ · ‖∞) ≤ K1
1

Rdn

(
log

Ln
ε̄nRdn

)1+d

.

In Subsection 4.5.3.5 we will show that for the choices of Rn and Ln, this is

bounded from above by a constant times nε̄2
n.

4.5.3.5 End of the proof

We now finish the proof of Theorem 4.17 by choosing the appropriate sequences

Ln and Rn for both γ <∞ and γ =∞.
In the case γ <∞, we have to show we can choose Rn and Ln such that

1

R
dγ
n

logr
1

Rn
≥M1nε

2
n,

(Ln −
√

(5/2)K6R
−dγ
n ε

−2d/(2γ−d)
n )2 ≥ Dnε2

n

and also ε̄n ≥ εn and ( Ln

ε̄nR
d+γ
n

)d/γ
≤ const nε̄2

n.

Observe that if we take
1

R
dγ
n

= Mn
dγ+2αδγ

dγ+2α(1+δγ )

for a large enough constant M , then the first condition is satisfied. The second

condition is then fulfilled if we choose

L2
n = Nn

dγ+4αδγ
dγ+2α(1+δγ ) ,

for N large enough. The inequalities for ε̄n then hold as well.
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For the case γ =∞ we have to show we can choose Rn and Ln such that

1

Rdn
logr

1

Rn
≥M1nε

2
n,

(Ln −
√

(5/2)K6R
−d
n (log(1/(εnR

1+d
n )))1+d)2 ≥ Dnε2

n,

and also ε̄n ≥ εn and

1

Rdn

(
log

Ln
ε̄nRdn

)1+d

≤ const nε̄2
n.

All these requirements are met if we take

1

Rdn
= Mn

d
d+2α logv n

for a large enough constant M and

v =
2(r ∨ (1 + d))

2 + d/α
− r

and Ln a large enough power of n.
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Chapter 5

Semiparametric

Bernstein–von Mises for the

error standard deviation

5.1 Introduction

In this chapter we study the asymptotic behavior of the marginal posterior for the

error standard deviation in a non-parametric, fixed design regression model with

Gaussian errors, i.e. the setting described in Section 2.2.3. So we suppose we have

observations Y1, . . . , Yn satisfying

Yi = f0(xi) + σ0Zi, i = 1, . . . , n,

where x1, . . . , xn are known elements of a general design space X , the variables

Z1, . . . , Zn are independent, standard normal random variables and both the

regression function f0 : X → R and the error standard deviation σ0 > 0

are unknown. We can then make Bayesian inference about the parameters f

and σ by endowing them with independent priors πf and πσ, respectively, and

computing the resulting posterior distribution Π(· |Y1, . . . , Yn). Although in most

applied problems the main interest is in the regression function f , we are in this

chapter primarily interested in the asymptotic behavior of the marginal posterior

distribution of the parameter σ.

The general rate of contraction result for fixed design regression obtained by

Ghosal and Van der Vaart in [20] gives conditions under which the posterior for the

regression function f contracts around the true f0 at a certain rate εn as n→∞,

under the assumption that σ0 is known. As has been observed several times in the

literature however (see e.g. [26, 50, 51]) it is relatively straightforward to extend

83
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this result to the case that σ0 is unknown, see also Section 2.4.3. In that case one

also obtains a rate for the marginal posterior of σ. Specifically, the general results

give conditions under which, for a given sequence εn → 0, it holds that

Π
(

(f, σ) :
1

n

n∑
i=1

(f − f0)2(xi) + |σ − σ0|2 ≥M2ε2
n |Y1, . . . , Yn

)
P0→ 0 (5.1)

as n→∞, for every sufficiently large M > 0.

A result like (5.1) implies in particular that the marginal posterior for σ is

asymptotically concentrated on an interval with length of the order εn around the

true value σ0. Now note that since εn is also a bound for the rate of contraction

of the marginal posterior for f it is a “non-parametric rate” that will typically

be slower than the parametric rate n−1/2 if the space of regression functions that

are considered is truly infinite-dimensional. If f0 is for instance a general function

of d variables with Hölder regularity β, then the optimal rate for estimating it is

n−β/(d+2β). The rate bound εn for the one-dimensional parameter σ may therefore

be rather crude and it is natural to ask whether in fact the actual rate of contraction

for the marginal posterior for σ can be faster than the rate for the regression

function f .

In the case that the regression function f is known and σ is the only unknown

parameter in the problem, the classical Bernstein-von Mises (BvM) theorem asserts

that under minimal regularity conditions, the posterior distribution of σ contracts

around the true value σ0 at the rate n−1/2. Moreover, it says that the posterior

law of
√
n(σ − σ0) behaves asymptotically like a normal distribution N(∆n, I

−1
σ0

),

with ∆n a stochastically bounded sequence of random variables and Iσ0
the

Fisher information for σ0. The precise statement is recalled in the next section.

In this chapter we investigate if and how this changes if the regression function

f is in fact unknown. Roughly speaking we will show that if the rate εn for

the infinite-dimensional parameter f is fast enough, then the marginal posterior

distribution of σ has the same asymptotic behavior as in the case that f is known.

Our result can be viewed as a semiparametric Bernstein-von Mises theorem.

In general, semiparametric BvM theorems deal with the asymptotic behavior

of posterior distributions of finite-dimensional parameters in the presence of an

infinite-dimensional “nuisance parameter”. Theorems of this type have recently

been established by several authors, see for instance [5, 10, 40, 44]. Our problem

in fact fits into the general framework of Castillo [10] (up to minor adaptations)

and we will use his results to derive our BvM theorem for the error standard

deviation. As is explained in the cited papers, an important aspect of BvM results is

that they allow to conclude that credible sets for the finite-dimensional parameter

of interest, i.e. sets that receive a fixed amount α of posterior mass, are also

asymptotic α-confidence sets in the frequentist sense. In other words, if a BvM

theorem holds, the posterior distribution “correctly” quantifies the uncertainty
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about the true value of the parameter.

After recalling the parametric BvM theorem in Section 5.2.1 we present our

general semiparametric result for the error standard deviation in Section 5.2.2.

It states that if the rate εn for the regression function f is fast enough in

the sense that nε4
n → 0 and an entropy condition is satisfied for the space

of regression function under consideration, then the BvM result holds for the

marginal posterior of σ. Theorem 5.2 connects the result to the general contraction

rate theorem for non-parametric regression given in Section 2.4.3. In Section 5.3

we consider the special case that the prior on f is Gaussian. In Theorem 5.3

conditions for semiparametric BvM are given in terms of the concentration function

of the Gaussian prior, cf. Theorem 2.18 and the results of Section 2.6.2.3. We

verify the conditions for two particular examples: a Matérn process prior and

a Riemann-Liouville prior on f . The proof of our general theorem is given in

Section 5.5.

5.2 General result

5.2.1 Prelude: parametric Bernstein–von Mises

The main result of this chapter is a semiparametric Bernstein–von Mises (BvM)

theorem for the error standard deviation in a fixed design regression model. As

a prelude we first consider the parametric case in which we observe variables

Y1, . . . , Yn satisfying

Yi = f0(xi) + σZi, i = 1, . . . , n,

for known covariates xi ∈ X and independent standard normal random variables

Zi. We now assume that the regression function f0 is known, so that the error

standard deviation σ > 0 is the only unknown parameter. We denote its true

value by σ0. Observe that in this case we simply have a sample of size n from the

N(0, σ2)-distribution, given by the variables Xi = Yi − f0(xi), i = 1, . . . , n.

The BvM theorem in a smooth, parametric i.i.d. model like this one is classical.

As an illustration and to connect to the semiparametric case studied ahead we

briefly explain it. Let pσ be the marginal density of Xi, `σ(x) = log pσ(x), ˙̀
σ(x) =

∂`σ(x)/∂σ and ῭
σ(x) = ∂ ˙̀

σ(x)/∂σ. Then a Taylor expansion gives

`σ(x)− `σ0(x) ≈ (σ − σ0) ˙̀
σ0(x) +

1

2
(σ − σ0)2 ῭

σ0(x).

By the law of large numbers the average −n−1
∑n
i=1

῭
σ0(Xi) converges almost

surely to the Fisher information Iσ0 = −E0
῭
σ0(X1) = Varσ0

˙̀
σ0(X1). It follows

that for the full log-likelihood we have the so-called LAN approximation

log

n∏
i=1

pσ
pσ0

(Xi) ≈ −
1

2
Iσ0

(
n(σ − σ0)2 − 2

√
n(σ − σ0)∆n

)
,
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where

∆n = I−1
σ0

1√
n

n∑
i=1

˙̀
σ0

(Xi).

Note that by the central limit theorem, we have the weak convergence ∆n
d→

N(0, I−1
σ0

) as n→∞.

If we now assume that σ0 belongs to a compact subinterval of (0,∞) and on this

interval we put a prior with a Lebesgue density π which is positive and continuous

at θ0, then for the corresponding posterior we have, for a Borel subset B ⊂ R,

Π(
√
n(σ − σ0) ∈ B |Y1, . . . , Yn) =

∫
√
n(σ−σ0)∈B

∏n
i=1

pσ
pσ0

(Xi)π(σ) dσ∫
R+

∏n
i=1

pσ
pσ0

(Xi)π(σ) dσ
.

By the LAN approximation, the integrands are approximately equal to a constant

times

π(σ) exp
(
− 1

2
Iσ0

(
√
n(σ − σ0)−∆n)2

)
.

Making a change of variable
√
n(σ − σ0) = h we then see that the posterior

probability that
√
n(σ−σ0) falls in the set B approximately equals N(∆n, I

−1
σ0

)(B)

for large n. This somewhat loose argumentation can be made precise and it can

be shown that in probability, the total variation distance between the posterior

distribution of
√
n(σ − σ0) and the N(∆n, I

−1
σ0

)-distribution vanishes as n → ∞,

cf. e.g. [49]. It is easily seen that in this case

∆n =
σ0

2
√
n

n∑
i=1

(Z2
i − 1), Iσ0 =

2

σ2
0

. (5.2)

In the next section we state the semiparametric version of this result for the

case that the regression function f is in fact unknown. It turns out that there is no

loss of information for the error standard deviation and that under relatively mild

conditions on the prior on the nonparametric part f , the asymptotic behavior of

the marginal posterior for
√
n(σ − σ0) is the same as if f were known.

5.2.2 Semiparametric Bernstein–von Mises

Now suppose that we have observations Y1, . . . , Yn from the regression model

Yi = f(xi) + σZi, i = 1, . . . , n, (5.3)

with fixed and known design points x1, . . . , xn in the set X , an unknown regression

function f : X → R, an unknown constant σ > 0, and with Z1, . . . , Zn independent

standard Gaussian random variables. We assume that the true parameter (σ0, f0)

belongs to the set [a, b] ×F , for 0 < a < b < ∞ and F a measurable space of

functions on X . The corresponding true distribution of the data is denoted by P0.
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The log-likelihood is given by

`n(σ, f ;Y1, . . . , Yn) = −n
2

log 2πσ2 − 1

2σ2

n∑
i=1

(Yi − f(xi))
2.

We assume that for every n, the map (σ, f, y) 7→ `n(σ, f ; y1, . . . , yn) is a measurable

map on [a, b]×F ×Rn. Note that this is the case for instance if X is a topological

space and F is a measurable subset of the space of C(X ) of continuous functions

on X , endowed with its Borel sigma-field.

To make Bayesian inference about f and σ we endow the pair (σ, f) with a

product prior distribution of the form Π = πσ×πf . Here πσ is a distribution on [a, b]

with a positive and continuous Lebesgue density and πf is a distribution on F .

In view of the measurability assumptions the corresponding posterior distribution

is well defined and given by Bayes’ formula. For A and B measurable subsets of

[a, b] and F , respectively, the posterior measure of the set A × B is denoted by

Π(A×B |Y1, . . . , Yn) or by Π(σ ∈ A, f ∈ B |Y1, . . . , Yn).

The following theorem deals with the marginal posterior distribution of the

parameter σ. It gives conditions under which we have, as in the case that f is

known, that the posterior distribution of
√
n(σ − σ0) asymptotically behaves as

an N(∆n, I
−1
σ0

)-distribution, where ∆n and Iσ0
are as in (5.2). We still have the

weak convergence

∆n
d→ N(0, I−1

σ0
)

under P0, by the central limit theorem.

The existing general contraction rate theorems (or, more precisely, their proofs)

for fixed design regression give conditions under which the posterior contracts

around the true parameter (σ0, f0). More precisely, for a sequence εn such that

nε2
n → ∞ they give conditions under which there exist measurable subsets Fn

growing to the whole space F such that

Π((σ, f) ∈ [a, b]×Fn : |σ − σ0|+ ‖f − f0‖n ≤ εn |Y1, . . . , Yn)
P0→ 1 (5.4)

as n → ∞, where the norm ‖ · ‖n is the L2-norm associated with the empirical

measure on the design points, i.e. ‖g‖2n = n−1
∑
g2(xi). See Theorem 2.11 in

Chapter 2. The case that σ0 is known is covered by these general results as well.

Following [10], we denote the posterior distribution for f in the model that σ0 is

known by Πσ=σ0(· |Y1, . . . , Yn). In this notation, the general theory gives conditions

under which

Πσ=σ0(f ∈ Fn : ‖f − f0‖n ≤ εn |Y1, . . . , Yn)
P0→ 1 (5.5)

as n→∞. The rate εn should be viewed as the contraction rate that is achieved

for the non-parametric part of the statistical problem. The following theorem
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states that if this rate is fast enough, namely nε4
n → 0, then under a typically

mild additional entropy condition, we have the BvM result for the error standard

deviation σ.

Theorem 5.1. Consider positive numbers εn such that nε2
n → ∞ and nε4

n → 0.

If there exist measurable subsets Fn ⊂ F such that (5.4) and (5.5) hold, and such

that ∫ aεn

0

√
logN(δ,Fn, ‖ · ‖n) dδ → 0

holds for every a > 0, then, with ∆n and Iσ0 given by (5.2),

sup
B

∣∣∣∣Π(
√
n(σ − σ0) ∈ B, f ∈ F |Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣∣∣∣ P0→ 0

as n→∞, where the supremum is taken over all measurable subsets B ⊂ [a, b].

Existing general theorems as exhibited in Chapter 2 give sufficient conditions

on the prior πf for (5.4) and (5.5) to hold. Indeed, Theorem 2.11 and the preceding

result imply the following.

Theorem 5.2. Consider positive numbers ε̄n ≥ εn such that nε2
n → ∞ and

nε̄4
n → 0. Suppose that for every C1 > 1, there exist measurable subsets Fn ⊂ F

and a constant C2 > 0 such that

πf (f : ‖f − f0‖n ≤ εn) ≥ exp(−nε2
n), (5.6)

πf (F\Fn) ≤ exp(−C1nε
2
n), (5.7)

logN(ε̄n,Fn, ‖ · ‖n) ≤ C2nε̄
2
n, (5.8)

for all a > 0:

∫ aε̄n

0

√
logN(δ,Fn, ‖ · ‖n) dδ → 0. (5.9)

Then with ∆n and Iσ0 given by (5.2),

sup
B

∣∣∣∣Π(
√
n(σ − σ0) ∈ B, f ∈ F |Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣∣∣∣ P0−→ 0

as n→∞, where the supremum is taken over all measurable subsets B ⊂ [a, b].

Theorem 2.11 states that under conditions (5.6)–(5.8) we have the rate of

contraction ε̄n for the marginal posterior of the regression function f . It gives the

same rate ε̄n for the marginal posterior of the parameter σ, which is typically only

a crude result. The theorem above states that under the additional assumptions

nε̄4
n → 0 and (5.9) we in fact have a rate n−1/2 for σ and the marginal posterior

is asymptotically normal.

Conditions (5.8) and (5.9) can sometimes be verified in one go by showing that

for a constant L > 0, ∫ ε

0

√
logN(δ,Fn, ‖ · ‖n) dδ ≤ L

√
nε2. (5.10)
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for all ε > 0 small enough. The fact that (5.9) is then satisfied follows immediately

from the assumption nε̄4
n → 0. For (5.8) we note that since δ 7→ N(δ,Fn, ‖ · ‖n) is

decreasing, we have

ε̄n
√

logN(ε̄n,Fn, ‖ · ‖n) ≤
∫ ε̄

0

√
logN(δ,Fn, ‖ · ‖n) dδ.

Hence if (5.10) holds, then logN(ε̄n,Fn, ‖ · ‖n) ≤ L2nε̄2
n.

5.3 Gaussian priors on the regression function

We now specialize to the case that X = [0, 1]d for some d ∈ N. As prior πf on

the regression function f we employ the law of a Gaussian random element W in

the space C([0, 1]d) of continuous functions on [0, 1]d. We denote the reproducing

kernel Hilbert space (RKHS) of W by H. For f0 ∈ C([0, 1]d) the true regression

function, the concentration function is denoted by ϕf0 , that is to say

ϕf0(ε) = inf
h∈H:‖h−f0‖∞<ε

‖h‖2H − logP(‖W‖∞ < ε) (5.11)

See Section 2.5 for these fundamental concepts.

The general theory for Gaussian process priors says that if εn → 0 is such that

nε2
n →∞ and

ϕf0(εn) ≤ nε2
n, (5.12)

then the marginal posteriors for f and σ contract at the rate εn around their true

values, cf. Theorem 2.22. The following theorem states that if in addition the rate

εn is fast enough and the sample paths of W are regular enough, then we have the

BvM result for σ.

Recall that Cα([0, 1]d) is the space of functions f : [0, 1]d → R with uniformly

bounded partial derivatives up to order α such that the partial derivatives of order

α are uniformly Lipschitz of order α − α, where α is the largest integer strictly

smaller than α, see Section 4.2.1.

Theorem 5.3. Suppose that W almost surely takes values in Cα([0, 1]d) for

α > d/2 and that (5.12) holds for numbers εn → 0 such that nε2
n →∞, nε4

n → 0

and nε
4α/d
n → 0. Then with ∆n and Iσ0

given by (5.2),

sup
B

∣∣∣∣Π(
√
n(σ − σ0) ∈ B, f ∈ F |Y1, . . . , Yn)−N(∆n, I

−1
σ0

)(B)

∣∣∣∣ P0→ 0

as n→∞, where the supremum is taken over all measurable subsets B ⊂ [a, b].

Note that nε
4α/d
n → 0 already follows from nε4

n → 0 if α ≥ d, so it is only an

additional condition when d/2 < α < d.
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Proof. We verify the conditions of Theorem 5.2. By Theorem 2.18 and the fact

that ‖ · ‖n ≤ ‖ · ‖∞, condition (5.6) follows from (5.12). Now let C > 1 be given

and define

Fn = (K
√
nεnH1 + εnC1) ∩ L

√
nεnC

α
1

for some appropriate constants K and L which will be further specified below,

where H1 is the unit ball in the RKHS H, C1 is the unit ball in C([0, 1]d) and Cα1
is the unit ball in the Hölder space Cα([0, 1]d).

Because the sieve Fn is an intersection, one has

P(W 6∈ Fn) ≤ P(W 6∈ K
√
nεnH1 + εnC1) + P(W 6∈ L

√
nεnC

α
1 ).

By Borell’s inequality (see Theorem 2.16) and the fact that Φ−1(y) ≥
−
√

(5/2) log(1/y) for small y, the first term on the right is bounded by

exp(−(1/2)(K −
√

5/2)2nε2
n), provided that K ≥

√
5/2. Since by assumption we

can also view W as a Gaussian random element in the Hölder space Cα([0, 1]d),

we have the inequality

P(W 6∈ L
√
nεnC

α
1 ) = P(‖W‖α ≥ L

√
nεn) ≤ 2 exp

(
− L2nε2

n

8E‖W‖2α

)
for the second term, according to Theorem 2.17. If follows that by setting K and

L large enough, we can ensure that condition (5.7) holds.

For the entropy conditions we first note that Fn ⊂ K
√
nεnH1 +εnC1 and thus

we obtain (5.8) (with ε̄n = εn) in the same way as in the proof of Theorem 2.18

(see the proof of Theorem 2.1 in [50]). Because Fn ⊂ L
√
nεnC

α
1 , we have

logN(δ,Fn, ‖ · ‖∞) ≤ logN(δ/(L
√
nεn), Cα1 , ‖ · ‖∞) ≤M(L

√
nεn/δ)

d
α

for a constant M > 0, cf. Theorem 2.7.1 of [53]. Since α > d/2, it follows that for

a > 0 the entropy integral∫ aεn

0

√
logN(δ,Fn, ‖ · ‖n) dδ

is bounded by a constant time n
d
4α εn. This converges to zero by assumption, which

shows that (5.9) holds.

5.4 Examples: specific Gaussian priors

In this section we stay in the setting of the preceding one, so X = [0, 1]d for

d ∈ N and we put a Gaussian prior on the regression function f , the law of a

process W . We verify the conditions of Theorem 5.3 for two particular examples

of a Gaussian prior on f. In the first example we choose a Matérn prior on a

multivariate regression function. In the second example we consider the case d = 1

and choose a Riemann-Liouville type prior.
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5.4.1 The Matérn prior

The Matérn process (Wt : t ∈ [0, 1]d) with parameter α > 0 is the zero mean

Gaussian process with covariance function

EWsWt =

∫
Rd
eiλ

T (s−t)m(λ) dλ,

where the spectral density m is given by

m(λ) =
1

(1 + ‖λ‖2)α+d/2

with ‖λ‖ the Euclidean norm on Rd and α > 0. The Matérn process is a popular

prior in Bayesian non-parametrics, see for instance Rasmussen and Williams [39]

and the references therein. It is not difficult to see that there exists a version of

the Matérn process that takes its values in Cγ([0, 1]d) for any γ < α, see van der

Vaart and van Zanten [52].

For β > 0 a real number, the Sobolev space Hβ([0, 1]d) consists of all functions

f on [0, 1]d that can be extended to a function f on Rd with a Fourier transform

f̂ satisfying ∫
|f̂ |2(1 + ‖λ‖2)β dλ <∞.

Now suppose that for some β > 0, the true regression function is β-regular both

in Hölder and Sobolev sense, i.e. f0 ∈ Cβ([0, 1]d) ∩Hβ([0, 1]d).

It is shown in Section IV of [52] that for such f0 the inequality (5.12) holds for

εn proportional to n−(α∧β)/(d+2α).

In this situation the conditions of Theorem 5.3 are satisfied if there exists a

γ < α such that

nε2
n →∞,

nε4
n → 0,

γ > d/2,

nε4γ/d
n → 0.

The first condition is always fulfilled. A γ < α such that the third and fourth

conditions are verified exists as soon as α > d/2 and nε
4α/d
n → 0. Hence,

the conditions of Theorem 5.3 are satisfied if α > d/2 and nε
4(1∧(α/d))
n → 0.

Straightforward computations show that these requirements are fulfilled if and

only if

α

d
>

1

4
+

1

4

√
5,

β

d
>
(1

2
+

d

4α

)
∧
( α

2d
+

1

4

)
,

(5.13)
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Figure 5.1: Values for the smoothness β of the true regression function f0 and the

regularity α of the Gaussian prior for which we have shown the BvM result holds.

and hence the BvM statement of Theorem 5.3 for the marginal posterior

distribution of σ holds under these conditions.

The collection of α’s and β’s we found is sketched in Figure 5.1. The figure

makes clear that for the BvM result to hold, it is not necessary to estimate the

regression function f0 at an optimal rate. In particular, it is not necessary that the

smoothness α of the prior matches the smoothness β of the unknown regression

function exactly. An arbitrary amount of undersmoothing (β > α) is allowed and

also some degree of oversmoothing (β < α).

We note that it is not ruled out that the area for which BvM holds is actually

larger than what we found. Our general theorems seem too crude however to shed

more light on this issue. It is conceivable that more insight can be obtained by a

more detailed analysis, tailored to the particular statistical problem and prior, in

the spirit of [8].

5.4.2 A Riemann-Liouville type prior

In this subsection we consider the case d = 1, i.e. the true regression function is

an unknown element f0 ∈ C[0, 1].

For α > 0 and W a standard Brownian motion, the Riemann-Liouville process
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with parameter α is defined by

Rαt =

∫ t

0

(t− s)α−1/2 dWs.

It can be interpreted as the (α − 1/2)-fold iterated integral of Brownian motion.

The process Rα and its higher derivatives (if they exist) vanish at zero. In order to

enlarge the class of functions that are well approximated by the process we modify

it slightly, following [50]. Let α be the biggest integer strictly smaller than α, and

let Z1, . . . , Zα+1 be independent standard normal random variables, independent

of the Riemann-Liouville process Rα. Define the Riemann-Liouville-type process

X as follows:

Xt =

α+1∑
k=0

Zkt
k +Rαt .

The process (Xt : t ∈ [0, 1]) is zero-mean Gaussian and can be seen as a

random element in C[0, 1]. For integer α the Riemann-Liouville process is simply a

multiply integrated Brownian motion, which is a well-established prior in Bayesian

non-parametrics. Its use goes back at least to Wahba [55].

Since Brownian motion has “regularity” 1/2, the Riemann-Liouville process

with parameter α is expected to be “regular” of order α in an appropriate sense.

Indeed it can be shown that the process Rα, and hence also the process X, has

a version that take values in Cγ [0, 1] for all γ < α, cf. Lifshits and Simon [35].

Upper bounds for the left hand side of (5.12) in this case are given in [10], see

also [50]. If f0 is in Cβ [0, 1] for some β ≥ α, then the left hand side of (5.12)

is bounded from above by a multiple of ε
−1/α
n . For β < α, the upper bound in

[10] is ε
−(2α−2β+1)/β
n log(1/εn). It follows that condition (5.12) is satisfied for εn a

multiple of (log n/n)β/(1+2α) if β < α and for εn a multiple of n−
α

1+2α if β ≥ α.
These conditions are almost the same as in the Matérn prior case. The log factor

does not affect the pairs (α, β) for which the inequalities are true. We thus obtain

that for the Riemann-Liouville prior as well, the BvM statement of Theorem 5.3

holds if the regularity β of the truth and the regularity α of the prior are related

as in (5.13), for d = 1. Again, Figure 5.1 visualizes the set of α’s and β’s.

5.5 Proof of main result

In this section we give the proof of Theorem 5.1.

It is convenient to describe the model by the parameter (θ, f) with θ = 1/σ2.

For this parametrization the log-likelihood is given by

`n(θ, f) =
n

2
log

θ

2π
− θ

2

n∑
i=1

(Yi − f(xi))
2.



Bibliotheek TU/e

94 Proof of main result

The first step in the proof is finding an appropriate expansion for the log-likelihood

ratio Λn(θ, f) = `n(θ, f) − `n(θ0, f0). We define an inner product 〈·, ·〉L on pairs

(θ, f) of inverse variances and regression functions by

〈(θ, f), (θ′, f ′)〉L =
θθ′

2θ2
0

+
θ0

n

n∑
i=1

f(xi)f
′(xi).

The corresponding norm is denoted by ‖ · ‖L, so

‖θ, f‖2L =
θ2

2θ2
0

+ θ0‖f‖2n.

Note that although it is not made explicit in the notation, the inner product and

the norm obviously depend on the sample size n (and on the true parameter θ0).

Straightforward manipulations yield the following lemma.

Lemma 5.4. We have

Λn(θ, f) = −n
2
‖θ − θ0, f − f0‖2L +

√
nWn(θ − θ0, f − f0) +Rn(θ, f),

where

Wn(θ, f) = − θ

2θ0
√
n

n∑
i=1

(Z2
i − 1) +

√
θ0

n

n∑
i=1

f(xi)Zi,

Rn(θ, f) =
n

2

(
log θ − log θ0 −

θ − θ0

θ0
+

(θ − θ0)2

2θ2
0

)
− 1

2
n(θ − θ0)‖f − f0‖2n +

θ − θ0√
θ0

n∑
i=1

(f(xi)− f0(xi))Zi.

We are now in the situation that we can apply Theorem 1 of [10]. Strictly

speaking this theorem does not allow the dependence of the inner product 〈·, ·〉L
on n that we have, but inspection of Castillo’s proof shows that this causes no

problems. Since our LAN-norm has the property that the norm ‖·, 0‖2L on R is

independent of n, only minor adaptations of that proof are necessary. We note

that our change of variables θ = 1/σ2 helps to establish a direct connection with

the setup of [10], since the map Wn is linear in θ.

Castillo’s theorem asserts that if there exists positive numbers δn such that

nδ2
n →∞ and measurable subsets Fn ⊂ F such that

Π((θ, f) ∈ [1/b2, 1/a2]×Fn : ‖θ − θ0, f − f0‖L ≤ δn |Y1, . . . , Yn)
P0−→ 1, (5.14)

Πθ=θ0(f ∈ Fn : ‖0, f − f0‖L ≤ δn/
√

2 |Y1, . . . , Yn)
P0−→ 1, (5.15)

sup
(θ,f)∈[1/b2,1/a2]×Fn:
‖θ−θ0,f−f0‖L≤δn

|Rn(θ, f)−Rn(θ0, f)|
1 + n(θ − θ0)2

P0−→ 0, (5.16)
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then

sup
B

∣∣∣∣Π(
√
n(θ − θ0) ∈ B, f ∈ F |Y1, . . . , Yn)−N

(Wn(1, 0)

‖1, 0‖2L
,

1

‖1, 0‖2L

)
(B)

∣∣∣∣ P0→ 0.

(5.17)

The next step is to show that conditions (5.14)–(5.16) hold for δn equal to a

constant times εn under the assumptions of Theorem 5.1.

Since
√
x+ y ≤

√
x +
√
y for x, y ≥ 0, we have ‖θ − θ0, f − f0‖L ≤ C(|θ −

θ0| + ‖f‖n), for a constant C > 0 only depending on θ0. Recalling that θ = 1/σ2

and that σ belongs to the compact interval [a, b] we see that ‖θ − θ0, f − f0‖L ≤
C ′(|σ−σ0|+‖f‖n), for a constant C ′ > 0. It follows that under assumptions (5.4)

and (5.5), conditions (5.14) and (5.15) hold for δn a multiple of εn.

Next we consider (5.16). Define Vn = {(θ, f) ∈ [1/b2, 1/a2]×Fn : ‖θ − θ0, f −
f0‖L ≤ δn}. We consider the three terms in the definition of Rn in the statement

of Lemma 5.4 separately. For θ0 ∈ Vn it holds that |θ−θ0| is bounded by a multiple

of δn. By Taylor’s formula, the first term in the definition of Rn is nO(|θ−θ0|3) for

θ close to θ0, and hence the first term is bounded by a multiple of (1+n(θ−θ0)2)δn
on Vn. For the second term, note that x 7→ x/(1 + nx2) is maximal at x = n−1/2,

and equal to n−1/2/2 at that point. It follows that

sup
(θ,f)∈Vn

n|θ − θ0|‖f − f0‖2n
1 + n(θ − θ0)2

≤ 1

2

√
n sup

(θ,f)∈Vn
‖f − f0‖2n ≤

√
nδ2
n

2θ0
.

Similarly, the supremum over Vn of the third term divided by 1 + n(θ − θ0)2 is

bounded by
1

2
√
θ0

sup
f∈Fn√

θ0‖f−f0‖n≤δn

|Gnf −Gnf0|,

where Gn is the Gaussian random map defined by

Gnf =
1√
n

n∑
i=1

f(xi)Zi.

The norm ‖ · ‖n is precisely the natural semi-norm associated with the Gaussian

process Gn, in the sense that E0(Gnf − Gng)2 = ‖f − g‖2n. Therefore, the

well-known maximal inequality for sub-Gaussian processes, cf. e.g. [53], Corollary

2.2.8, implies that

E0 sup
f∈Fn√

θ0‖f−f0‖n≤δn

|Gnf −Gnf0| ≤ K
∫ δn/

√
θ0

0

√
logN(δ,Fn, ‖ · ‖n) dδ

for some constant K > 0. Altogether we conclude that the left-hand side of (5.16)

is

OP0

(
δn +

√
nδ2
n +

∫ δn/
√
θ0

0

√
logN(δ,Fn, ‖ · ‖n) dδ

)
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for n → ∞. For δn a multiple of εn this is oP0
(1) under the assumptions of the

theorem, hence (5.16) holds as well.

We have now established that (5.17) holds under the conditions of Theorem

5.1. Next, observe that ‖1, 0‖2L = 1/(2θ2
0) and

Wn(1, 0)

‖1, 0‖2L
= − θ0√

n

n∑
i=1

(Z2
i − 1)

d→ N(0, 2θ2
0)

under P0, by the central limit theorem. The statement of the theorem then follows

by an application of Lemma 5.5 below, which gives a total variation version

of the delta method, tailored to our situation. We apply the lemma with Xn

a random variable which has the posterior distribution of θ as law, x0 = θ0,

µn = Wn(1, 0)/‖1, 0‖2L, σ2 = 1/‖1, 0‖2L = 2θ2
0 and f(x) = 1/

√
x. The lemma deals

with the total variation distance between deterministic distributions. We can use

it in our stochastic setting since Wn(1, 0)/‖1, 0‖2L converges in distribution and

hence is uniformly tight.

We denote the total variation distance between two probability measure µ and

ν by dTV (µ, ν) and the law, or distribution of a random variable X by L(X).

Lemma 5.5. Let Xn be a sequence of random variables such that

dTV (L(
√
n(Xn − x0)), N(µn, σ

2))→ 0, (5.18)

for x0 ∈ R, σ2 > 0 and µn a bounded sequence. Let f : R → R be a function that

is twice continuously differentiable on a neighborhood of x0 and f ′(x0) 6= 0. Then

dTV (L(
√
n(f(Xn)− f(x0))), N(f ′(x0)µn, (σf

′(x0))2))→ 0.

Proof. We suppose for definiteness that f ′(x0) > 0. It follows from the assumptions

on f that there exist neighborhoods U and V of x0 and f(x0) such that f is an

invertible (in this case increasing) bijection between U and V . The distribution

N(x0 + µn/
√
n, σ2/n) concentrates around x0 as n → ∞. Hence, by (5.18), so

does L(Xn) and hence the law L(f(Xn)) concentrates around f(x0). Therefore,

we only need to prove that

sup
B⊂V

|P(f(Xn) ∈ B)−N(f(x0) + µnf
′(x0)/

√
n, (f ′(x0))2σ2/n)(B)| → 0,

or, equivalently,

sup
A⊂U

|P(Xn ∈ A)−N(f(x0) + µnf
′(x0)/

√
n, (f ′(x0))2σ2/n)(f(A))| → 0.

Using (5.18), a change of variables and some straightforward algebra we then see

that it suffices to show that∫
U

∣∣∣ 1

τn
ϕ
(f ′(x0)(x− x0)− δn)

τn

)
f ′(x0)− 1

τn
ϕ
(f(x)− f(x0)− δn)

τn

)
f ′(x)

∣∣∣ dx→ 0,
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where ϕ denotes the standard normal density, δn = µnf
′(x0)/

√
n and τn =

σf ′(x0)/
√
n.

Consider the shrinking sets Un = {x ∈ U : |x − x0| ≤ Knτn} for a sequence

Kn → ∞ such that K3
nτn → 0. For x ∈ U cn it holds that |f(x) − f(x0)| ≥ cKnτn

for some c > 0 and hence∫
Ucn

1

τn
ϕ
(f(x)− f(x0)− δn)

τn

)
f ′(x) dx ≤

∫
|z|>cKn

ϕ(z − µn/σ) dz → 0.

Similarly, ∫
Ucn

1

τn
ϕ
(f ′(x0)(x− x0)− δn)

τn

)
dx→ 0.

Since ϕ is Lipschitz and f is twice continuously differentiable we have

1

τn

∫
Un

∣∣∣ϕ(f ′(x0)(x− x0)− δn)

τn

)
− ϕ

(f(x)− f(x0)− δn)

τn

)∣∣∣ dx . K3
nτn → 0.

Finally, observe that by definition of Un,

1

τn

∫
Un

ϕ
(f(x)− f(x0)− δn

τn

)
|f ′(x)− f ′(x0)| dx

. Kn

∫
Un

ϕ
(f(x)− f(x0)− δn

τn

)
dx . K2

nτn → 0.

The proof is completed by combining the convergence statements derived in this

paragraph.
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Summary

Posterior contraction for conditionally Gaussian priors

The goal of statistics is to draw sensible conclusions from data. In mathematical

statistics, observed data is assumed to be generated according to some unknown

probability distribution. The aim is to find the unknown probability distribution

using the available observations. In parametric statistics this is typically done

by considering a finite-dimensional parametric family of probability distributions

and estimating a parameter using the data. On the other hand, in non-parametric

statistics one deals with infinite dimensional statistical models. The model is then

described by some non-parametric parameter such as a probability distribution

or a regression function.

In Bayesian statistics one makes inference by choosing a probability distribution

on the statistical model. We distinguish between the prior distribution and

the posterior distribution. These distributions represent the statistician’s belief

about the parameter before and after the data has become available. In the

frequentist’s setup however, the parameter is assumed to have some true value.

An asymptotic analysis is then possible by considering the posterior measure of

shrinking neighborhoods around the true parameter as the number of observations

increases. We are interested in how fast the posterior concentrates around the true

parameter.

In this thesis we consider two examples of a conditionally Gaussian process for

the construction of a prior distribution on certain statistical models indexed by a

function. The two examples that we consider are defined by choosing the paths

of the process to be either tensor-product spline functions or location-scale kernel

mixtures. The use of log-spline models and kernel mixtures to construct priors on

probability densities is well-established in Bayesian non-parametrics. The use of

Gaussian priors provides a unified approach to obtain rates of posterior contraction

in various statistical settings. We consider density estimation, classification and

fixed design regression settings.

If the true function is a function of d variables with smoothness level α in

the sense of Hölder, then the optimal rate of posterior contraction is of the order
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n−
α

d+2α if n is the number of observations. We show that it is possible to construct

Gaussian priors from either the spline functions or the kernel mixtures which

actually achieve posterior contraction at a near optimal rate. These priors will

however depend on α, an unknown characteristic of the function to be estimated.

We show that in both cases it is possible to define a new procedure, based

on these Gaussian priors, which also achieves a near optimal rate of posterior

contraction, but which itself does not depend on the level of smoothness of the

function of interest. This procedure thus adapts to the smoothness level.

In the last chapter of this thesis, we focus on posterior contraction in the setting

of fixed design regression with Gaussian errors. In this setting, the variance of the

errors is a finite dimensional nuisance parameter which we can equip with a prior

as well. The posterior contraction results imply in particular the concentration of

posterior mass around this finite dimensional parameter at a non-parametric rate.

We however know that posterior contraction in the finite-dimensional parameter

case is typically faster: the optimal rate is n−1/2. We show via a semi-parametric

Bernstein-von Mises result that it is possible to achieve posterior contraction

around the finite dimensional parameter at rate n−1/2 if we equip the infinite

dimensional parameter, the regression function f, as before with a Gaussian prior

distribution.
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René de Jonge was born in Zaandam on December 7th, 1982. After he finished

pre-university education at Het Zaanlands Lyceum in 2001, he started his studies in

Mathematics and Statistics at the University of Amsterdam. He graduated in 2007

after finishing his master’s thesis within the Stochastics group of the Mathematics

department. In September 2007 he started working as a PhD candidate under the

supervision of Harry van Zanten at the VU University in Amsterdam. He continued

his work at the Eindhoven University of Technology from May 2009 onwards. The

results of this work are presented in this dissertation.

109



Bibliotheek TU/e

ISBN 978-90-386-3192-9 Printed by Wöhrmann Print Service
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