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USING ORDER ROUTING SPECIFIC FLOW TIME AND WORKLOAD
INFORMATION TO IMPROVE LEAD TIME AND DUE DATE PERFORMANCE IN

JOB SHOPS

Abstract

Research on due date setting in job shop production systems has revealed a number of factors that,
when taken into account in order due date setting, lead to better due date performance. These factors
are the processing times of the order, the number of operations of the order, and the workload in the
shop at the arrival time of the order. In this paper we investigate further refinements of the way in
which these factors are taken into account when setting due dates. In particular we investigate the use
of complete information about the order flow time probability density function and the workload on
the routing ofan order.

1. Introduction

In view of the management literature, which reports the strategic importance of short and reliable lead
times (see e.g. Stalk and Rout [1990]), it is plausible to assume that Sales Departments operate in a
reward and penalty structure. On the one hand a cost penalty might be incurred as a function of the
length of the quoted job lead-time and, on the other hand, a cost penalty might be incurred as a
function of the tardiness of the job. So the firm, in some way or another, is penalized for assigning
long order lead times. This penalty decreases by assigning short lead times. Also it is assumed that the
firm is penalized for late deliveries.
In this paper we study a job shop where customer orders arrive dynamically over time, each order is
assigned a due date upon arrival, the order is immediately released to the shop floor and processed
according to its production routing after which the order is completed. The job shop consists of a
number of functionally organized work centers where the orders compete for capacity. We assume that
the job shop operates in a market that penalizes both long quoted lead times and late deliveries.
The due date performance of a job shop is influenced both by the shop floor control system, in
particular the priority rules used at the work centers, and by the due date assignment system. There is a
long history of research in both areas (for an overview see Cheng and Gupta [1989]) and also the
interaction between the shop floor control system and the due date assignment system has been studied
extensively (see e.g. Conway et al. [1967], Eilon and Chowdhurry [1976], Baker and Bertrand [1981],
Bertrand [1983], Baker [1984], Cheng [1988], Salegna [1990] Enns [1994,1995] and Van Ooijen and
Bertrand [2001]). This research has shown that the due date performance is improved if due dates are
based on information about order processing times, order routing, and workload in the shop.

In this paper we build on the results of this previous research and investigate whether the due date
performance can be further improved by using detailed routing and workload related information
about the order. We start with investigating the relationship between the order flow time and the total
workload in the shop, and the relationship between the order flow time and the workload at the work
centers visited by the order, at the arrival time of the order. Then we develop customer order due date
assignment policies that take into account knowledge about the order flow time probability density
function as a function of the number of work center visits and the workload in the work centers
visited. The due date performance that can be obtained with these policies is investigated with
systematic computer simulation of a job shop model. As performance measures we use the quoted lead
times, the costs and the average tardiness of the orders. The investigations are carried out for three
different shop floor priority rules. The results show that, depending on the shop floor priority rule
used, the new policies can improve the due date performance of a shop.
The rest of this paper is organized as follows. In Section 2 we give a short overview of recent related
literature, showing what due date assignment policies have been investigated. In Section 3 we present
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the new customer due date assignment policy, using order flow time p.d.f.'s and workload information
if the First-Come-First-Served sequencing rule is used 0 the shop floor. Section 4 presents the
experimental design and the results of the simulation study. Since in many production environments
other sequencing rules are used, the sensitivity of the performance of our policy is investigated in
Section 5. Finally, in Section 6, the conclusions are given.

2. Literature review

In this section we review recent research, which focuses on improving lead-time and delivery
performance in job shops with emphasis on research that uses economic performance measures.
Weeks [1978], and Seidmann and Smith [1981], present a methodology for finding the optimal
planned lead time, which is defined as that lead time which results in the minimum costs associated
with order lateness, order earliness, and order lead time length. They develop a due date assignment
policy that minimizes the expected aggregate cost per job subject to restrictive assumptions on the
priority discipline and the penalty functions. The penalty functions used are none-linear functions of
the order lead-time, the tardiness and the earliness.
Vig and Dooley [1993] develop a flow time prediction model that incorporates both static and
dynamic flow time estimates. The flow time they use is a weighted average of static and a dynamic
estimate of the flow time. Compared to existing dynamic flow time estimation models, using a
combined static and dynamic job flow time estimation method reduces average lateness and fraction
tardy jobs.
Enns [1994] gives a method for setting due dates such that the percentage of tardy jobs delivered is
controlled. It is based on a dynamic method of estimating prediction error variance. In succeeding
research, Enns [1995] presents a forecasting approach to flow time prediction in a job shop. The flow
time prediction relationship developed considers both job characteristics and shop loading
information. The estimated distribution of forecast error is used to set delivery safety allowances,
which are based on a desired level of delivery performance.
Lawrence [1995] investigated the performance of flow time estimator method that consist of two parts.

The first part estimates the average flow time, J; , of an arriving order; the second part estimates the

parameters of the distribution function of the flow time estimation error E i • Then the true flow time of

an order can be characterized at the arrival of the order as: /; = /; + Ei • The flow time estimation
error distribution function is approximated by using the Ramberg-Schmeiser distribution. For a given

way of estimating the average flow time, J; , the estimation error distribution function is fitted using
empirical data from computer simulations of a job shop model.
Bertrand and Van Ooijen [1997] and Van Ooijen and Bertrand [2001] obtained very good results with
flow time estimators based on empirically determined order flow time statistics per job category,
where jobs are categorized according to the routing length. The order flow time statistics suggest that
the shape of the flow time distribution function strongly depends on the number of operations in a job,
and on the sequencing rule used at the work centers.
In Sabuncuoglu and Comlekci [2002] a method is developed for estimating the job flow times in a
dynamic job shop environment using detailed job, shop and route information for each operation of a
job. The method considers explicitly the machine imbalance information in the estimation process.
This study shows that using regression analysis, taking into account the shop load, leads to a rather
good prediction of the flow time. The regression analysis is done on empirical data.

All research referred to above either seeks to improve the predictability of the order flow time in the
shop, or uses information about the order flow time to achieve a better performance in the market
place. The results indicate that using more information about the orders and about the shop load, may
improve the lead-time and due date performance.
In this research we again use order flow time statistics, as in Van Ooijen and Bertrand [2001], and
increase the level of detail in the order and shop information used for setting order due dates and
investigate the performance improvement obtained for various economic settings and various shop
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floor control rules. In the next section we present our customer order due date setting method in more
detail.

3. Customer order due date assignment

In this paper we focus on assigning customer order due dates for production environments that can be
characterized as job-shops. The approach taken is that we base the customer order due date on
knowledge about the order flow time statistics. As in Sabuncuoglu and Comlekci [2002] this
knowledge can be obtained from historical data or from simulation. Knowledge about the order flow
time can be available at different levels of detail. For instance, we could use an aggregate order flow
time distribution function, which represents the flow time of an arbitrary order that arrives at an
arbitrary moment. Such a distribution function could be determined by applying queueing theory to a
model of the shop and the order arrival process. However, this aggregate flow time distribution
function would neglect information about the particular characteristics of each order such as the order
routing and the order processing time, and information about the orders present in the shop that is
available at the arrival time of the order. Previous research (Conway et al. [1960], Bertrand [1983],
Enns [1990], Enns [1995]) has shown that using this information can substantially improve the due
date performance. In all this research, knowledge about the order and the shop was used to better
estimate either the expected value of the individual order lead-time or the variance in the lateness of
the individual order.

Knowledge about the order flow time can also be available in more detail, for instance, instead of an
aggregate order flow time distribution function, order flow time distribution functions might be known
for a number of categories. Previous research (Van Ooijen and Bertrand [2001]) has shown that the
order flow time statistics of orders with the same routing length contains valuable information for
assigning customer order due dates. Basing the customer order due date on these statistics
substantially improves the due date performance over that of policies that base customer order due
dates only on estimates of the mean order flow time and the variance of the lateness.

Previous research has also shown that the total workload in the shop at the arrival time of an order is a
good predictor of the order flow time (Bertrand [1983], Enns [1994,1995], Van Ooijen and Bertrand
[2001]). However, the quality of the total workload as a predictor of the order flow time may be
different for orders with different routing length. Since the total workload is an aggregate measure we
may expect it to perform better as a predictor for orders with many operations than for orders with few
operations. For instance, for an order with only one operation, the main determinant of the flow time
will be the number oforders in the queue of the particular work center it will visit. This number is part
of the total workload, but for a five-work center shop the total workload (the number of orders in the
shop) will be only loosely related to the workload in any of the constituting work centers.
We have investigated the predictor performance of the total workload for different order routing length
by performing a regression analysis between realized order flow time and the total workload at the
arrival time of the order. For this investigation we performed a simulation study of a job-shop with the
following characteristics:

The job-shop model consists of five single machine work centers (as in many research of this
type, see Conway et al. [1967]).
Orders arrive according to a Poisson process. We assume that the delivery performance has no
influence on the arrival rate. So, customers do not have a memory with regard to the past
performance of the shop.
Order routings are determined upon arrival. The routings are generated in such a way that each
work center has an equal probability of being selected as the first work center. After the first
operation the probabilities of going to any of the other work centers are equal and depend on
the probability of leaving the shop, which in tum depends on the average routing length. We
have used an average routing length of 5, so the probability of leaving the shop after each
completed operation is 0.2, and the work center transition probabilities all equal 0.8/4=0.2.
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where J
Jj

FCFS g I 2 3 4 5 6 7 8 9 10 II 12 13 14 15
? 0.18 0.34 0.45 0.52 0.57 0.60 0.64 0.67 0.67 0.67 0.65 0.68 0.67 0.69 0.66

0 c 1.10 2.29 3.52 5.12 6.07 7.85 8.95 11.52 14.07 17.60 19.44 18.54 26.29 24.44 27.49
a 0.20 0.39 0.58 0.77 0.97 U5 1.35 1.52 1.67 1.82 2.01 2.27 2.29 2.56 2.69
, z

86 132 187 247 317 390 474 543 623 717 969 1091 1136 1401 1372°e
? 0.91 0.85 0.84 0.82 0.81 0.80 0.81 0.80 0.78 0.76 0.77 0.77 0.74 0.76 0.73

W c 0.83 2.14 4.05 5.94 7.76 9.90 11.97 14.84 17.68 20.05 22.05 24.70 29.02 31.23 29.12
a 1.00 0.99 0.95 0.93 0.93 0.92 0.91 0.90 0.88 0.89 0.89 0.89 0.86 0.86 0.88
, z

10 29 56 93 142 192 248 333 415 525 647 806 923 1094 1108°e

Table 1. Results of the regression analysis of the flow time per order category, versus the overall or
work center workload; orders are processed according to First Come First Served at each work center. 0: the
model used is: tpt = c +a*workload + error; workload is measured as the total number of orders in the shop at the
arrival time of the order. W: the model used is: tpt = c +a*workload + error; work load is measured as the
number of orders in the work centers on the routing of the order at the arrival time of the order

At each work center processing times are generated from a negative exponential probability
density function with a mean value of one time unit. Set-up times and transportation times are
considered to be zero.
The mean value of the order inter-arrival time is equal to 1019, which implies a machine
utilization rate of 90%.
First Come First Served sequencing at the work centers.

Table 1 (FCFS; 0) gives the results of a regression analysis of the average order flow time and the
work load in the shop, per categories of orders with equal routing length, g. The data in Table 1 clearly
show that the predictor performance, measured by r2 and oe2

, depends on the order routing length. For
short routings, the prediction performance is quite poor (r2 ranges from 0.18 to 0.52) whereas for large
routings the prediction performance is quite good (r up to 0.70).
These results suggest that predic tion performance can be improved by only considering the workload
in the work centers at the routing of an order (instead of the total workload). To test this idea we have
perfonned a regression analysis between average order flow time per category and the total number of
orders in the work centers on the routing of an order. The row W in Table 1 presents the results. These
results provide strong support for our conjecture. The results show that the total number of orders on
the routing of a work order is a very strong predictor of the average order flow time; in particular for
orders with a few operations r is much larger and 6e2 is much smaller than with the total aggregate
work load as a predictor; however, also for orders with many operations r is larger and oe2 is smaller.

The next question is how to exploit the strong predicting power of the total number of orders on the
routing of an order for assigning customer order due dates. In a previous paper, Van Ooijen and
Bertrand [2001] corporated total workload information in empirically constructed waiting time
distribution functions per order category ofwhat they called the nonnalized waiting time:

J J
wj =ywj

J

= the long term average number of order in the shop
=the number of orders in the shop at the arrival of order j

The empirically constructed distribution functions where successfully used to assign predictable
customer order due dates per category.

In this study we incorporate routing related workload information in empirically constructed
normalized waiting time distribution functions per order category using:
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(1)

(2)

wq=-q-w.
} qj+l }

where q =the long term average number of orders at the work centers on the
routing of an order

'Ii = the actual number of orders in the work centers on the routing of
order j at the arrival time of order j

We assign customer order due dates using these empirically constructed order waiting time
distribution function.

The benefits from using routing related work load inforrmtion for customer order due date assignment
are investigated in the setting where an order incurs a lead time related cost equal to the length of the
lead time assigned to that order, and a tardiness cost equal to c times the amount of time the order is
tardy.
In the next section we present the simulation study that has been performed to investigate the effects
of using routing related work load information for customer order order due date setting under the
FCFS sequencing rule on the shop floor.

4. The experimental design and results

We assume that in the market there is an accepted order lead time m. Quoting a lead time shorter than
m does not give any benefit. Quoting a lead time longer than m results in a reduction of the order
revenue proportiona1to the lead-time minus m. We model this price component as a linear function:

p(lj) = a 0 lj m
p(lj) = a-b(lrm) ~ m
where lj : lead time of order j

p(.) : the part of the order revenue that depends on the lead-time
m : the lead-time that is generally accepted by the market
a,b : constants

If an order is completed later than its customer due date, the job is tardy and a tardiness cost c
is incurred for each unit tardy. Without loss of generality we assume that m equals O.

Using the total work load information the customer order due date for an order j of category g is
assigned as:

~ J. J<-

d j = r j +~ P ji + ; H g (a.)
I

where Hg
J (a) denotes the workload normalized waiting time distribution function of the order

category g and a. is the fraction of orders that are on time.
Using routing related work load information the customer order due date for an order of category g is
assigned as:

- ~ qj q<-
d j - rj + L.JPji +-Hg (a.)

i q
where Hgq (a) denotes the routing-workload normalized waiting time of the order category g.

As a benchmark for evaluating the performance that can be obtained from using total work load or
routing work load information, we have also established the due date performance that results from
basing customer order due dates on non-normalized empirically constructed waiting time distribution
functions per category g, Hg(.)
In this case the customer order due dates are assigned as:

d j = rj +LPji +H/"' (a.) (3)
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G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C
N 17 31 44 57 70 83 97 110 123 136 149 162 175 188 201 63

500/0 T 16 29 40 51 63 74 86 97 109 120 132 144 155 167 179 57
R 12 24 36 47 59 71 82 94 106 118 130 142 154 165 177 53
N 33 51 70 89 108 126 146 164 183 201 220 238 256 275 292 97

900/0 T 28 40 54 68 82 96 110 124 139 153 168 183 198 213 229 75
R 16 31 46 61 75 90 106 121 136 151 167 183 198 215 230 68
N 40 59 81 102 123 144 166 187 208 227 249 269 289 310 328 112

95% T 32 44 60 75 89 105 120 135 151 167 183 201 217 234 251 83
R 18 36 52 68 84 101 117 134 150 167 185 203 220 238 255 76

Table 2. The total costs, eg, for each of the three due date setting policies and three on time service
levels for the FCFS sequencing rule; N=non-normalized policy, T=total workload policy, R=routing related
workload policy; C=average cost

For all the three due date setting policies, non-normalized (N), total work load normalized (T) and
routing work load normalized (R), simulation experiments have been performed where optimal
customer order due dates have been determined for three values of the on-time service level: 0.50,
0.90 and 0.95.

The performance is measured as the sum of due date related costs and tardiness related costs according
to:

N

Cg = ~)b.lj,g +c'~,g)
j=1

where b = lead time costs per unit lead time
c = tardiness costs per unit tardy
Tj,g= max (0, fj,g-~,g)

fj,g = flow time of order j of category g
~,g = dj - rj = lead time of order j of category g

Like in Sabuncuoglu and Comlekci [2002], we carried out two sets of simulation experiments. With
the first set we determined the non-normalized, the total workload normalized and routing related
workload normalized order waiting time distribution functions per category. Next we performed a set
of experiments to investigate the performance of the system if the distribution functions, constructed
in the first set of experiments, are used for setting the customer order due dates. Each measurement
results from 10 simulation runs, with order streams that differ from the order streams that were used to
construct the waiting time distribution functions. The common random number technique was used to
reduce the variance between experiments with different settings.

Table 2 shows the cost performance obtained with the FCFS priority rule for the non-normalized
policy (N), the total workload normalized order waiting time policy (T) and the routing related
workload normalized waiting time policy (R). The column C gives the average (arrival rate weighted)
cost performance. For each category, each due date setting rule and each on-time service level, the
actual on-time performance was very close to the on-time target, implying a very high performance
control at the category level.
Under FCFS sequencing, the due date policies T and R outperform the policy N. The routing related
workload policy R, outperforms the total workload policy T for almost all categories. Only for on-time
targets of 0.90 or 0.95 and long routings the costs with policy R are about the same, or even a bit
higher than with the policy T.
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5. Sensitivity of the performance of the customer order due date assignment policy to the
shop floor control system

In many production situations a priority rule is used that aims at achieving short order flow times or
high due date reliability. Therefore we also investigated the situation where the Operation Start Date
rule (OSD) and the Modified Operation Due date rule (MOD) is used on the shop floor. OSD has been
shown to produce a small variance in lateness (Kanet and Hayya [1982]) and MOD effectively
combined the flow time reducing properties of Shortest Processing Time (SPT) with the lateness
reducing properties of OSD (Baker and Bertrand [1981]). These priority rules operate on internal
operation due dates.

Internal operation due dates have been set according to the following rules: For the situation where
customer order due dates are based on total workload, the internal due dates have been set as:

;

OD j.; =rj + I(pJ,k + ~j/) (4)
k=1

where ODj,i : the operation due date of operation i oforder j
rj : the arrival time of order j
pj,k : the processing time of the k-th operation in the routing of order j

and ~ j /j equal to:

J(rj).p
[ - p]

m.p
where J(rj) = the number of order in the shop at time 1]

p = average operation processing time
m = number of machines in the shop
fi = steady state utilization rate of the shop

For the situation where customer order due dates are based on routing related work load, the internal
due dates are set according to

;

OD .. =r. +"(p. k + ~. k
ri

)}.l } £..J}. }.
k=1

with ~ j /j equal to:
r.

P.qk J

where qk r
j = the number of orders waiting in the queue at the work center of the k-th operation of

order j, at the arrival time of the order.

We first we performed a regression analysis of the relationship between mean average order flow time
per category and work load for these shop floor control systems. The results of this analysis are given
in Table 3 for the OSD rule and in Table 4 for the MOD rule.

The data in Table 3 clearly show that under OSD sequencing the predicting performance of the total
workload, measured by i and 6/, depends on the order routing length. For short routings, the
prediction performance of the total workload is poor (~ ranges from 0.14 to 0.69) whereas for long
routings the prediction performance of the overall workload is quite good (~ up to 0.96). However,
with routing related workload information, the predicting performance is quite high, also for orders
with short routings; r ranges from 0.82 for orders with one operation to 0.96 for orders with 15
operations.

Under MOD sequencing, the dependence of prediction performance on routing length is much weaker.
The advantage of MOD sequencing of course is the decrease in mean order flow time that can be
achieved relative to FCFS or OSD sequencing. However, the data in the Table 4 show that this may go
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OSD G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r 0.14 0.37 0.56 0.69 0.78 0.82 0.87 0.90 0.91 0.92 0.92 0.94 0.95 0.94 0.96

0 C 1.64 1.87 2.59 3.31 3.00 4.03 4.16 4.57 5.86 6.41 7.60 7.40 7.19 7.70 5.91
A 0.17 0.40 0.61 0.82 1.05 1.24 1.47 1.67 1.86 2.09 2.27 2.50 2.73 2.94 3.21. ~ 82 120 130 134 138 146 150 150 157 157 191 180 163 250 167°e

r 0.82 0.83 0.87 0.89 0.91 0.92 0.94 0.94 0.95 0.95 0.96 0.96 0.96 0.97 0.96
W C 0.19 1.06 2.20 3.26 4.64 5.73 7.03 7.93 9.45 10.98 11.48 12.68 13.34 14.53 16.49

A 1.13 1.08 1.04 1.02 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97. ~ 26 42 51 59 70 74 86 93 101 101 114 124 122 145 145Oe

Table 3. Results of the regression analysis of flow time versus overall or work center workload when
the OSD sequencing rule is used; 0: the model used is: tpt = c +a*workload + error and work load is measured
as the total number of orders in the shop at the arrival time of the order and for the setting of the operation due

dates ~ j,k r
j is based on the overall workload. W: the model used is: tpt = c +a*workload + error and work load

is measured as the number of orders in the work centers on the routing of the order at the arrival of the order and

for the setting of the operation due dates Pj,k r
j is based on the order related workload.

MOD g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r 0.04 0.12 0.17 0.27 0.34 0.29 0.55 0.51 0.54 0.56 0.52 0.36 0.58 0.68 0.66

0 c 1.39 2.04 2.17 2.50 2.97 2.63 6.01 5.23 7.17 6.67 6.45 3.03 7.51 11.87 13.60
a 0.13 0.33 0.57 0.79 1.01 1.27 1.37 1.64 1.81 2.08 2.30 2.73 2.71 2.84 2.99. ~ 93 182 367 410 481 916 376 629 680 783 1161 3155 1288 963 974Oe

r 0.58 0.64 0.63 0.68 0.74 0.79 0.87 0.79 0.86 0.81 0.78 0.76 0.79 0.89 0.89
W c 0.15 0.67 1.45 2.43 3.07 4.24 6.02 7.63 8.94 9.32 8.33 9.88 11.27 14.92 16.45

a 1.01 1.01 1.02 1.01 1.01 1.01 0.99 0.98 0.98 1.00 1.02 1.02 1.00 0.98 0.97
6/ 41 64 119 145 161 168 128 259 184 316 524 726 573 373 320

Table 4. Results of the regression analysis of flow time versus overall or work center workload when
the MOD sequencing rule is used; 0: the model used is: tpt = c +a*workload + error and work load is measured
as the total number of orders in the shop at the arrival of the order and for the setting of the operation due dates

~ j,k r
j is based on the overall workload. W: the model used is: tpt = c +a*workload + error and work load is

measured as the number of orders in the work centers on the routing of the order at the arrival of the order and

for the setting of the operation due dates Pj,k r
j is based on the routing related workload.

at the cost of a decrease in the predictability of the order flow times. Nevertheless, the predicting
performance of routing related workload information is still quite good.

We next have repeated the simulation experiments with the three due date assignment policies under
OSD and MOD and measured the total costs for three on-time target service levels: 0.50, 0.90 and
0.95. Again, for each of the experiments and for each order category the realized on-time performance
was very close to the target, which demonstrates the high controllability of the performance that can
be obtained with the use ofempirically constructed flow time distribution functions.
The Tables 5 and 6 give the total costs per category, and the overall costs, for the three on-time target
service levels for each of the three policies N, T and R, under the shop floor rule OSD and MOD
respectively.
Under OSD the due date policies T and R outperform N, and the routing work load related policy R
outperforms the total workload policy T, showing that the ordering in performance obtained under
FCFS sequencing also applies under OSD sequencing.
Also under MOD the policies T and R clearly outperform policy N. However, the ordering of the
policies T and R is not so straightforward. For an on-time target service level of 0.50, the total work
load policy T outperforms the routing related work load policy R, whereas for target levels 0.90 and
0.95 R outperforms T. Apparently, the mixing of SPT and OSD sequencing under MOD creates a less
predictable order flow time, as was shown in the regression analysis. As a result the advantage of
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g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C
N 21 36 48 59 69 80 90 100 110 120 131 141 151 162 171 62

50% T 16 28 38 48 58 69 78 88 98 108 119 129 139 149 159 52
R 15 26 36 46 56 66 76 86 96 106 116 126 136 146 156 50
N 51 69 82 93 104 114 125 135 145 155 166 175 186 196 206 95

90% T 27 39 49 59 69 80 90 100 110 120 130 140 151 160 170 63
R 20 33 44 55 65 76 86 96 106 116 127 137 147 157 167 58
N 65 83 96 107 117 128 139 149 159 169 180 190 200 210 219 109

95% T 31 43 53 63 74 84 94 104 114 124 135 144 155 165 175 68
R 24 38 49 60 70 80 90 101 III 121 131 142 153 163 172 63

Table 5. The total costs, eg, for each of the three due date setting policies and three on time service
levels for the OSD sequencing rule; N=non-normalized policy, T=total workload policy, R=routing related
workload policy; C=average cost

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C
N 8 18 29 40 51 62 73 83 94 105 115 126 137 147 158 45

50% T 9 17 25 33 41 49 57 64 72 80 88 96 103 111 118 36
R 11 19 28 36 45 53 62 70 78 87 96 104 112 121 129 40
N 18 33 47 62 75 89 103 115 129 142 153 167 181 192 205 67

90% T 17 30 42 54 65 75 86 96 106 116 125 134 145 154 163 57
R 15 27 38 49 59 69 78 88 97 106 116 125 135 143 152 52
N 25 45 63 82 100 117 134 149 166 183 195 211 229 241 256 87

95% T 26 44 59 75 89 102 116 127 139 152 162 173 187 197 207 77
R 21 36 49 61 72 83 94 105 115 125 136 145 156 166 175 64

Table 6. The total costs, eg, for each of the three due date setting policies and three on time service
levels for the MOD sequencing rule; N=non-normalized policy, T=total workload policy, R=routing related
workload policy; C=average cost

having shorter average flow times is offset by a high variance in the flow time and a weaker
relationship between the flow time of an order and the workload in the shop at its arrival time. The
negative effects of this on the performance are demonstrated by the fact that for 0.95 on-time target,
the total costs under MOD (Table 6) are larger than under OSD (Table 5), if workload related due date
policies are used.

6. Conclusions

In this paper we have investigated the possible contribution to due date performance in pb shops, of
using detailed information about the workload in the work centers on the routing of an order, when
setting the customer order due date of the order. We have used computer simulation of a job shop
model to compare the order flow time prediction performance of both the total workload and the
routing related workload at the arrival time of an order. Regression analysis showed that, independent
of the number of operations of an order, the routing related workload is a better predictor of order flow
time than the total workload; in particular for short orders, that is orders with only a few operations,
the flow time predictor performance is much better. Building on this model, we have developed due
date assignment policies based on empirically constructed normalized order waiting time distribution
functions per order category. Normalization in fact uses either the total workload or the routing related
workload and orders are categorized according to the number of operations. Simulation experiments
with these policies for a five-work center job shop under First Come First Served sequencing at the
work centers shows that the due date policy that exploits information about the workload in the work
centers on the routing of an order, almost consistently outperforms the policy that uses total workload
information.
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To test the sensitivity of the results for the type of shop floor control system used. we have extended
the research to job shops with Operation Start Date sequencing and Modified Operation Due dlte
sequencing. The results show that under OSD the result is even stronger: the policy that uses routing
related workload information consistently outperforms the policy that uses total workload. Under
MOD sequencing. the results are less clear: Mod sequencing clearly distorts the regular flow of the
orders. thereby decreasing the predictability of the flow. However. for high on-time service level
targets. the policy that uses routing related workload information still outperforms the policy that uses
total workload.
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