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Chapter 1

Introduction

In this chapter we briefly introduce the application which motivates the research docu-
mented in this thesis. In particular we describe the fabrication of electronic chips. Then,
in the context of inspection and qualification of the quality of printed integrated circuits,
a related forward and inverse problem are formulated. We define the objective and list
the main results of this thesis. The last section gives a detailed outline of the following
chapters.

1.1 Lithography

Popular electronic devices of our days (computers, smartphones, TVs, etc.) all share a
common ingredient: an electronic chip or integrated circuit. It is in fact the ingredient.
Because the chip essentially operates at the electrical level by either permitting or denying
the flow of current through certain connections, it is able to perform considerably faster
than any mechanical device (consisting of moving parts). This electronic switching is
realized at the lowest level by transistors. At a higher level transistors are used to
implement the basic logical operations: not, and, or, xor, etc. At even a higher level
the more complex arithmetic operations can then be performed by a sequence of logical
operations. In this manner any programmable algorithm can be reduced to a set of basic
operations. The most important property of a chip is that it must be able to regulate
its own electrical properties in order to permit or deny the flow of electrical current
depending on circumstances. For this reason, it must be made from a semiconducting
matertal, such as silicon.

The stages of a lithographic process are shown in Figure 1.1. It starts with a pure silicon
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Figure 1.1: Lithographic process.

ingot, which is cut into thin wafers. Each wafer is then polished and chemically washed
to remove scratches and impurities on the surface. To form a thin layer of silicon dioxide
on the surface of the wafer (1), the wafer is baked in an oven at 800-1200 °C. Depending
upon which process is preferable, a layer of silicon dioxide can also be deposited onto
the surface of the wafer using chemical vapor deposition (gas is used to deposit a thin
layer of silicon dioxide). Next a coat of photoresist, a light sensitive material, is placed
onto the wafer by a process known as spin coating (2). As the photoresist is being
placed onto the wafer, the wafer is rotated to create a thin, uniform layer of photoresist.
In step (3) ultraviolet light is then shone onto the photoresist-coated wafer through a
patterned mask. Masks are larger than the size of the die (the area occupied by a single
chip on the wafer). For instance, for 157 nm technology the mask is four times the
size of the die [38]. If a positive photoresist is used, the photoresist subjected to the
light becomes more soluble in the developer solution and is washed away using a solvent,
as shown in step (4) of Figure 1.1. On the other hand, if a negative photoresist is
used, the photoresist hardens and adheres to the layer of silicon dioxide beneath. When
exposed to the developer solution, the unexposed photoresist is washed away, forming a
negative image of the mask. The exposed silicon oxide is removed by a chemical etching
process (5) while the remaining photoresist protects the unexposed areas with the silicon
oxide underneath. Finally the remaining photoresist is removed (6), leaving the intended
pattern on the wafer. This process is repeated to form the desired product layer by layer.

The critical step (3) depicted in Figure 1.1 and consisting of alignment and exposure to
UV-light is performed by complex lithography systems. Figure 1.2 shows such a litho-
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Figure 1.2: An ASML lithography machine.

graphy machine designed and built by ASML'. Some of the challenges of step (3) are
discussed in the next section.

1.2 Problem description

The product of a lithographic process is a wafer consisting of an array of electronic chips
(Figure 1.3). Figure 1.3 also reveals the presence of gratings in the scribe lane (the
lane between the chips). Unlike electronic chips, gratings have a very regular periodic
structure and are much smaller than a chip. Gratings function as metrology targets or
markers and serve two purposes: (1) high-precision alignment of consecutively printed
layers on the wafer and (2) quality inspection. We explain the quality inspection in more
detail. Because of the high complexity, several things can go wrong during a lithographic
process: the wafer might be out of focus, the photoresist could be over- or underexposed
to UV-light, etc. All these factors influence the quality of the integrated circuit and
implicitly the shape of the grating printed in the scribe lane during the same process.
Figure 1.4 shows the effect of focus on the shape of the grating lines. The exact grating
shape contains information about the quality of the process. The approach of using
optical microscopy to determine the shape would fail due to the fact that the size of
the grating features (of the order of 100 nm) is smaller than the wavelength of visible

'ASML is a company located in Veldhoven, The Netherlands. It is the largest supplier in the world
of photolithography systems for the semiconductor industry. The company manufactures machines for
the production of integrated circuits, such as RAM and flash memory chips and CPUs.
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Figure 1.3: The wafer (left) with a zoom-in of the structure of its elements: chip (top
right) and grating (bottom right).

light (400...700 nm) and thus beyond the diffraction limit. In this range of feature
dimensions electron microscopy can be applied. However it has its own weak points:
it is slow, expensive and possibly destructive. Particularly, inspection with a scanning
electron microscope (SEM) leads to a shrinkage of the grating lines. In order to avoid the
drawbacks of a direct measurement (with electron microscopy), an indirect measurement
(based on optical metrology) is used. For this purpose, light is shed on the grating,
and the intensity of the scattered light is measured by the CCD (charge-coupled device)
camera. Figure 1.5 demonstrates the set up for such a measurement. Let p represent
the set of parameters describing the shape of the grating. Two problems can now be
formulated.

Figure 1.4: FElectron microscope image of three gratings. The grating in the middle
has been produced when the wafer was in focus. The other two gratings result from a
lithographic process with the wafer being out of focus.
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Forward problem (scattering simulation): Given the grating shape pa-
rameters p, compute the corresponding light intensity I(p).

Inverse problem (profile reconstruction): Given the measured light in-
tensity Iocp, determine the set of grating shape parameters p that minimizes

||ICCD—I(p)H-

Since light is an electromagnetic wave, a rigorous model of the forward problem is given
by the Maxwell equations (see Chapter 2). The inverse problem is also referred to as
the reconstruction problem since it is concerned with the reconstruction of the grating
shape from the measured light intensity. Often to solve the inverse problem the solution
of the forward problem is required. Both problems are non-trivial and extensive research
has been done on them. In [88] and [86] the forward and inverse problem respectively
are studied in the context of the application addressed in this thesis. An important
assumption is made in these studies: the grating is modeled as an infinitely periodic
structure. This assumption is accurate enough for gratings which are considerably
larger than the size of the illumination spot. However, gratings occupy precious space
on the wafer, which could be used for the end product: the electronic chips. Therefore
it is desirable to make these structures as small as possible (but large enough to be able
to perform reconstruction on them). Another reason for making the gratings smaller
is in-die metrology, that is metrology on targets placed inside the die (chip area). For
small gratings the periodicity assumption introduces a considerable modeling error. This
motivates the focus of this thesis: solving the forward problem for finite gratings.

1.3 Objectives and main results

Our objective is to extend the area of application of the Fourier modal method (used
in [88] and [86]) from infinitely periodic to finite structures.  The first step in this
direction was made by Lalanne and co-workers for waveguide problems [36, 79, 26] where
only normal incidence is considered. We build up on this work by applying the Fourier
modal method (FMM) to gratings illuminated at arbitrary angles of incidence. Besides
the extension of the FMM to finite structures, we are also concerned with reduction of
computational costs in terms of time and memory. The main results of this thesis are:

e A novel method for simulating scattering from finite structures is formulated: the
aperiodic Fourier modal method in contrast field formulation (AFMM-CFF). It in-
herits the advantages of the standard FMM: simplicity and robustness. In the same
time the method is versatile in the sense that it allows an easy switch from periodic
boundary conditions to aperiodic ones. In this respect, the AFMM-CFF stands
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Figure 1.5: Indirect measurement of the grating profile.

now in one line with popular numerical methods such as the finite element method
(FEM) and the finite-difference time-domain method (FDTD) where both bound-
ary conditions are easily implemented. In comparison to the supercell2 FMM, the
AFMM-CFF achieves the same accuracy with a much smaller number of harmonics.
This implies a considerable reduction of time and memory requirements.

e Based on the AFMM-CFF, we develop a method (AFMM-CFF with alternative
discretization) which is even faster and uses even less memory. This is achieved by
exchanging the discretization directions in the AFMM-CFF, as well as exploiting
the local periodicity (locally repeating structure) of a finite grating. It is shown in
Chapter 6, that the substantial reduction of memory requirements (which can reach
factors of 100) is crucial for large-scale problems. We demonstrate that scattering
from a large grating with 1024 lines can be relatively easily simulated with the new
approach. This is a difficult task for other methods (such as FEM and FDTD),
which are generally unable to take advantage of the local periodicity.

1.4 Outline of the thesis

Chapter 2 gives the mathematical description of the physical problem of scattering.
The mathematical model consists of the Maxwell equations and constitutive material
relations that describe the propagation of electromagnetic waves, as well as conditions
that have to be satisfied by the field at material interfaces and domain boundaries. We
formulate the equations in time domain and in frequency domain. The description is

In the supercell approach the finite structure is simulated with the standard (periodic) FMM by
placing the structure of interest in a large computational domain (or computational cell) such that the
interaction with the neighboring cells is minimized.
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completed by a definition of an incident field. In the last section of the chapter several
popular methods for solving Maxwell’s equations are reviewed.

In Chapter 3 a simple scattering problem is considered: scattering of a TE-polarized
plane-wave from a single rectangular line. The principle of the aperiodic FMM in
contrast-field formulation (AFMM-CFF) is demonstrated on this "model problem®. Af-
ter the standard FMM is formulated, the idea of artificial periodization with perfectly
matched layers (PMLs) is explained. Because the incident field is affected by the PMLs,
the problem is reformulated in terms of a contrast field. In this way the incident field
is replaced by a virtual source. Results of numerical studies performed with the newly
proposed method are presented at the end of the chapter.

The AFMM-CFF is generalized to arbitrary shapes and non-planar illumination in Chap-
ter 4. Here both the classical FMM and the AFMM-CFF are presented in their most
general formulation. The discretization is formulated in a more elegant manner with the
Galerkin approach that is directly applied to the first-order time-harmonic Maxwell equa-
tions. The Li rules are applied in the discretization process. The governing equations
for the three fundamental cases (TE, TM, conical) are then derived from the discretized
equations.

Chapter 5 focuses on solution strategies for the set of recursive linear systems resulting
from the discretization with AFMM-CFF. It is first explained that a straightforward
solution approach, the T-matrix algorithm, might encounter instabilities. Then, the
homogeneous S-matrix algorithm, used in the classical FMM, is modified and adapted
for use with recursive linear systems having non-homogeneous structure. At the end
of the chapter, numerical evidence is provided on the stability of the non-homogeneous
S-matrix algorithm. For this purpose the problem of scattering by a dielectric cylinder
is used, of which a semi-analytical solution is available.

In Chapter 6 we describe an exchange of spectral and spatial discretization directions
in the AFMM-CFF leading to a reduction of computational costs. We start with the
observation that computational costs scale cubically with the number of harmonics and
linearly with number of slices used in the discretization. This statement suggests that
harmonics (being more “expensive”) should be used in the shorter direction, while slices
(which are "cheaper®) can be used in the longer direction. The required modifications of
the method are clearly addressed. First the background field is projected on the new basis
introduced by the new discretization. Then, an additional reduction of computational
costs is obtained by exploiting the local periodicity of the finite grating. The speed-
up and memory saving factors are predicted by theoretical estimates and verified by
numerical experiments.

Finally, conclusions and suggestions for future investigations are presented in Chapter
7.






Chapter 2

Mathematical modeling

In this chapter we present the mathematical description of the physical problem of scat-
tering. We first discuss the Maxwell equations and constitutive material relations, which
describe the propagation of electromagnetic waves. Next, conditions that have to be
satisfied by the field at material interfaces are derived. The mathematical model is
completed by a definition of an incident field and a discussion of boundary conditions.

2.1 Maxwell equations

Visible light has the physical interpretation of electromagnetic waves with a wavelength
between approximately 400 nm and 700 nm. A rigorous model for scattering of light is
thus given by the Maxwell equations. In our presentation we follow the classical refer-
ence [27]. The macroscopic electromagnetic quantities are related by the time-dependent
Mazwell equations in differential form:

V x E(x,t) + %B(x7 t) =0, (Faraday’s law) (2.1a)
V x H(x,t) — %’D(x7 H=J, (Ampere’s law) (2.1b)
V- -D(x,t) = o(x,1), (Gauss’s law for electric fields) (2.1c)

V- B(x,t) =0, (Gauss’s law for magnetic fields) (2.1d)

where £ is the electric field, B is the magnetic induction, H is the magnetic field, D is
the electric displacement. Furthermore, J denotes the electric current density, and p is
the electric charge density. The vector x € R? contains the space variables and t € R
is the time variable. Faraday’s law gives the effect of a changing magnetic field on the
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electric field. Similarly, Ampére’s law gives the effect of a current and a changing electric
field on the magnetic field. Gauss’s law for electric fields gives the relationship between
the electric displacement and the charge density. Finally, Gauss’s law for magnetic fields
expresses the fact that the magnetic field is solenoidal. Implicit in the Maxwell equations
is the continuity equation for charge density and current density

0
V- -TJx,t) = ——o(x,1), (2.2)
ot
which follows from combining the divergence of (2.1b) with the time derivative of (2.1c)
and making use of the vector calculus identity (A.1). Table 2.1 summarizes the quantities
in the Maxwell equations and lists their SI-units.

Symbol  Name ST units
£ electric field Volt per meter % = 1;5—';;‘
H magnetic field Ampere per meter %
D electric displacement Coulomb per square meter % = m—gs
B magnetic induction Tesla T = Ak_ifz
J electric current density ~Ampere per square meter %
0 electric charge density =~ Coulomb per cubic meter % = %

Table 2.1: The electromagnetic quantities from Mazwell’s equations with their units.

Maxwell’s equations cannot be solved without additional relations which incorporate the
material properties. For linear time-invariant media the following constitutive relations

hold:

D(x,t) = é(x)E(x,1), (2.3a)
B(x,t) = p(x)H(x,1t), (2.3b)
T (x,t) = 6(x)E(x,t) + T (x,1), (2.3¢)

where €(x) is the electric permittivity, fi(x) is the magnetic permeability, o is the con-
ductivity and J*(x,t) denotes the external current. Table 2.2 summarizes the material
properties in the constitutive relations and lists their SI units. In the most general case
of anisotropic materials, these quantities are 3 x 3 positive definite tensors. In this thesis
we restrict ourselves to isotropic materials, such that the permittivity and permeability
are scalar functions of position. They are often expressed in terms of relative quantities:
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Symbol  Name ST units
~ e . P _ A2 s
€ permittivity ~ Farad per meter T igm
fi permeability Henry per meter H_ ;%:i
3
& conductivity ~Siemens per meter S = ‘fgmg
°S

Table 2.2: The material properties from the constitutive relations with their units.

é(x) = ege” (x), € ~ 8.854 x 107 ? F/m, (2.4a)
ji(x) = pop” (%), po = 4w x 1077 H/m, (2.4b)

where €, and g represent respectively the free space permittivity and permeability.

2.2 Interface conditions

In order to derive the conditions on the fields at interfaces between two materials we need
to write the Maxwell equations in integral form. Let V be a closed volume in space, S
the closed surface bounding it, da an element of area on the surface and n a unit normal
to the surface at da pointing outward from the enclosed volume. The divergence theorem
applied to (2.1c) and (2.1d) yields

% D -nda= / od’z, (2.5a)

s v

}{ B-nda=0. (2.5b)
s

Similarly, let C be a closed contour in space, S’ the open surface spanning it, dl a line
element on the contour, da an element of area on S’, and n a unit normal at da. The
Stokes theorem applied to (2.1a) and (2.1b) yields

oB
E-dl=— — -n da, 2.5¢
¢ T (250

7(7—1~d1:/ (m’+3)-nda. (2.5d)
C s’ Bt

Equations (2.5) constitute the time-dependent Mazwell equations in integral form. We
use these to derive the interface conditions. Figure 2.1 depicts the geometrical arrange-
ment used in the derivation. An infinitesimal volume V in a shape of a pillar box is
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Medium 1
n
/gﬁ QS7 js R‘z
v C
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Figure 2.1: Boundary surface between two media.

placed at the boundary surface between two media. Let A denote the surface on the
interface that also belongs to the volume V. The integral statements (2.5a) and (2.5b)
are applied to the pillar box V with a fixed area A a vanishing height Ah — 0.

/A('Dz —D,) -nda= /AQS da, (2.6a)
/ (By—B;) -nda=0. (2.6b)
A

If the charge density ¢ is singular at the interface such that it determines an idealized
surface charge density ¢°, then the integral in the right-hand side of (2.6a) is

/gd?’x:/ o’ da. (2.7)
v A

Because the above relations hold for any area A on the interface (in other words, the
limits of integration along the surface are arbitrary) we have

(Dy —D,) n=7", (2.8a)
(B, —B;) -n=0. (2.8b)

Equations (2.8) state that the normal component of the magnetic displacement must be
continuous across an interface and the jump in the normal component of the electric
displacement is determined by the surface charge density. Now we take an infinitesimal
contour C with a fixed length Al along the surface and a height Ah — 0. The surface
S’ spanning C is oriented so that the normal t to S’ is tangent to the interface surface.
The integral statements (2.5¢) and (2.5d) applied to the contour C yield

nx(E,—&;)=0, (2.9a)
nx (Hy—H) =T (2.9D)

Equations (2.9) state that the tangential component of the electric field must be con-
tinuous across an interface and the jump in the tangential component of the magnetic

field is determined by the surface charge density. The terms %, %—? on the right-hand
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side of (2.5¢) and (2.5d) vanish because the both are finite at the surface and the area
of the loop is zero as the height goes to zero. The idealized surface current density J°
corresponds to a current flowing exactly on the interface surface.

T’ -tdl:/ J -t da. (2.10)
S/

Al

In most applications the surface current and the surface charge vanish, i.e. o° = 0,

J*=0.

2.3 Time-harmonic Maxwell equations

The time-dependent problem (2.1) can be reduced to the time-harmonic Maxwell sys-
tem by either using the Fourier transform in time, or by considering propagation of
electromagnetic fields with a single frequency. If the electromagnetic waves have an
angular temporal frequency w (in rad/s), then the electromagnetic quantities are called
time-harmonic provided they have the following form

E(x,t) = R(e“"e(x)), (2.11a)
H(x,t) = R(e“'h(x)), (2.11b)
D(x,t) = R(“'d(x)), (2.11c)
B(x,t) = R("“'b(x)), (2.11d)
T (x,t) = R(e™*§(x)), (2.11e)
o(x,t) = R(e" p(x)). (2.11f)

Here i = /—1 and R(.) denotes the real part of the expression in parentheses. We use
(2.11) in (2.1) to obtain the time-harmonic Mazwell equations in differential form

V x e(x) = —iwb(x), (2.12a)
V x h(x) = iwd(x) + j(x), (2.12b)
d(x) = ( ), (2.12¢)
b(x) = (2.12d)

The equations are dependent. This can be seen by taking the divergence of (2.12a)
and (2.12b) (making use of (A.1)) to obtain the equations (2.12d) and (2.12c) respec-
tively. The constitutive relations (2.3) do not suffer modifications when written for
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time-harmonic quantities:

d(x) = é(x)e(x), (2.13a)
b(x) = a(x)h(x), (2.13b)
i) = Gx)e(x) + 57 (x). (2.130)

Substituting the constitutive relations for time-harmonic quantities (2.13) in the time-
harmonic Maxwell equations (2.12) yields

V x e(x) = —iwpgu h(x), (2.14a)
V x h(x) = (0 + iweye e(x) + j(x). (2.14b)

We introduce the complex-valued relative permittivity € = € — io/(egw) and assume
source-free (j** = 0) and non-magnetic materials (4" = 1),

V X e(x) = —iwpgh(x), (2.15a)
V x h(x) = iwegee(x). (2.15b)

In optics it is customary to use the refractive index n to characterize the material. It is
related to the permittivity € through

n=+ve=n'—in", (2.16)

where n',n” € R,. Note that the sign of the imaginary part of the refractive index
depends on the convention used in the time-harmonic assumption (2.11) (the imaginary
part is negative for the "’ convention and positive for the e~ ™" convention). In order
to arrive at the final form of the equations, as used in this thesis, the magnetic field is
scaled by —i\/€y/po and the vacuum wavenumber kg = w, /€y is introduced.

V X e(x) = —koh(x), (2.17a)
V x h(x) = —kqee(x). (2.17b)

We list the equations in expanded form for future reference:

0

87y6Z — gey = _kOhQM (2183)
%em — %ez = —koh,, (2.18b)
0 0]

aey — @ex = —kohz, (218C)
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0 0
iyhz — &hy = 7k066m, (218d)
0 0
ahw — %h’z = 7k0€6y, (2186)
%hy — gth — kyee.. (2.18f)

2.4 Problem geometry and incident field

The permittivity € in the time-harmonic Maxwell equations (2.18) defines the geometry
of the problem. We will consider two-dimensional scatterers, which implies that the
permittivity is a function of only two space variables

e =¢(xz, 2). (2.19)

Figure 2.2 shows an example of a grating that is y-invariant. The grating is supported
by a substrate which consists of one or more homogeneous layers. Besides the metrology
application described in Section 1.2, this geometry is encountered in many important
applications. Examples include broad scientific areas such as submarine detection, geo-
physical exploration, optical microscopy [42]. In this thesis we consider the general case
of a bounded scatterer placed in a stratified medium, also referred to as background
multilayer. The following decomposition can be used for the permittivity

e(z,2) = (2) + €(x, 2), (2.20)

where € is the background permittivity of the stratified medium and €° is the contrast
permittivity which vanishes outside the bounded scatterer.

The field satisfying the time-harmonic Maxwell equations (2.18) is excited by an incident
field. The latter can be a focused beam or uniform illumination. Since any illumination
profile can be represented as a superposition of plane waves, we consider the fundamental
case of plane wave illumination. It is also assumed that the incident field is time-harmonic
and linearly polarizedl. The orientation of the electromagnetic plane wave with respect
to the grating can be defined by three angles: the polar angle 6, the azimuthal angle ¢,
and the polarization angle . These angles are defined in Figure 2.2. Then, the incident
electric field is given by

e = aeefikm'x, (2.21)

"Linear polarization is a confinement of the electric field vector or magnetic field vector to a given
plane along the direction of propagation.
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Figure 2.2: Angles describing the orientation of wave vector (red) and the amplitude
vector (green) of the incident electric field with respect to the grating.

with the wave vector

' sin @ cos ¢
k™ = kgn, |sinfsing |, (2.22)
cosf

and amplitude vector

Ry Ry Ry

[ cosyp  siny O cosf 0 siné cos¢ sing 0] [1

a“= |—siny cosy 0 0 1 0 —sing cos¢ 0Of |0
0 0 1] |—sind 0 cos# 0 0 1] [0
[cos 1) cos B cos ¢ — sin 1) sin ¢
= |costcosfsing +sinycoso| . (2.23)
L —cossinf

The refractive index n; corresponds to the material through which the incident wave is
propagating (usually air, n,;,, = 1). The wavelength of the incident plane wave is given
by Ao = 27/(n1ky). The matrices Ry, Ry, R, are rotation matrices in the direction
of the corresponding angles. Because of the linearity of Maxwell equations, the incident
field (being part of the total field) has to satisfy the Maxwell equations in homogeneous
space. Equations (2.12¢) (without charges, p = 0) and (2.13a) together with the vector
identity (A.2) yield the following constraint on the amplitude vector and the wave vector,

a® - k" =0. (2.24)

Tt is easy to check that the vectors defined in (2.22) and (2.23) satisfy this requirement.
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The (scaled) incident magnetic field can be derived from the incident electric field using
(2.17a)

inc (A_3)

—1 —.kinc' o —1q i —.kinc' _,kin(‘,.
h —ky Ve F X xa® = (iky 'K x a%)e K X =aleh X (2.25)

with

— cos Y sin ¢ — sin ) cos ¢ cos 0
a" = iny | costcosg —sinysingcostd | . (2.26)
sin 1) cos ¢ sin O(cos ¢ + sin @)

Let us define the plane of incidence as the plane spanned by the wave vector k™ and
the z-axis. In the case of normal incidence (§ = 0) we choose the plane of incidence to

coincide with the xz-plane. We distinguish the following fundamental cases:

e Planar incidence corresponds to an azimuthal angle ¢ = 0 so that the plane of
incidence coincides with the xz-plane. This case can be further divided into two
basic subcases, which can be combined using the superposition principle in order
to represent any arbitrary polarization within the planar incidence case.

— TE (transverse electric) polarization corresponds to ¢ = 7, which means that
the incident electric field is perpendicular to the plane of incidence and parallel
to the y-axis. Substitution of ¢ = 0, ¢ = T in (2.22), (2.23), (2.26) shows
that the incident fields have the following form

einC = [O, G;Jnca O]T7 hinc = [hirnc707 hian]T' <227)

This determines a corresponding form of the resulting fields

e=[0,e,0", h=[h,,0h]". (2.28)
Because of this form, the Maxwell equations (2.18) can be reduced to a single
equation for the y-component of the electric field, e,. Then it is sufficient to
impose the incident field by
e;nc _ e*ikonl (z sin 0+z cos 0). (229)
— TM (transverse magnetic) polarization corresponds to ¢y = 0 which means
that the incident electric field lies in the plane of incidence. In this case the
corresponding incident magnetic field is perpendicular to the plane of incidence
and parallel to the grating lines in the y-direction.

e = [el,0,el]", h™ = [0, hy,0]". (2.30)
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This determines a corresponding form of the resulting fields
e= [eazvoaez]Ta h = [07hy70}T' (2.31)

Similarly to the TE case, the Maxwell equations (2.18) can now be reduced
to a single equation for the y-component of the magnetic field, h,. Then it is
sufficient to impose the incident field by

hlync _ Z,nle_y,konl(acsm@+zcos€). (2.32)

e Conical incidence corresponds to an azimuthal angle ¢ # 0. This case is more gen-
eral as it allows for arbitrary angles of incidence and incorporates planar incidence
as a special case. Unlike in the planar case, the incident and total fields do not
have vanishing components and are respectively of the form

einc _ [eiznc) e;nc7 eLIm]T7 hinc _ [himnc7 hiync’ hiZIlC}T7 (233)

and

e=legeye], h=[h,h,h)". (2.34)

2.5 Boundary conditions

The Maxwell equations admit infinitely many solutions. In order to restrict the space
of solutions and ensure well-posedness of the problem, boundary conditions need to be
used. We discuss the pseudo-periodic boundary condition and the radiation condition.

2.5.1 Pseudo-periodic boundary condition

The pseudo-periodic boundary condition arises from the assumption on infinite periodicity
of a structure under consideration. For instance, if we want to simulate scattering from
a grating, and the grating is "large enough, we may assume

ez +nh, z) =¢€(x,z), n€Z. (2.35)
where A is the period of the grating. Periodicity of the permittivity determines the
following form of the solution of Maxwell’s equations (2.18) [56, p. §],

e(z,y,2) = e TP (1,1, 2), (2.36a)

h(z,y,2) = e " (2,y, 2), (2.36b)
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where the quantities e”®", h"*

have the same periodicity as e. The scalar k, in (2.36)
is determined by the requirement that the incoming field (2.21) can also be written in
form (2.36). This implies k, = kj . Then the pseudo-periodic boundary condition (also

known as Floquet condition or Bloch condition) is given by

e(x+ A, y,2) = efik;mAe(z, Y, ), (2.37a)

h(z + Ay, 2) = e * “h(z,y, 2). (2.37b)

When the assumption (2.35) on infinite periodicity is valid, this condition allows us to
restrict the computational domain to one period only. Note that the use of the pseudo-
periodic boundary condition introduces a limitation: because the incident plane wave
determines the phase shift we cannot impose an incident field consisting of a superposition
of two or more plane waves which do not simultaneously satisfy (2.37).

2.5.2 Radiation boundary condition

Physically, a radiation condition ensures that the scattered field f is propagating away
from the obstacle. For a bounded scatterer in homogeneous medium the radiation con-
dition has been formulated mathematically by Sommerfeld [77]. It requires that

lim |x| 2 —|—ik‘>f:0, 2.38
|| o0 ‘ | (8|X| 0 ( )
uniformly in all directions. In (2.38) n is the number of spatial dimensions and f is a
scalar field. The Sommerfeld radiation condition can be extended to vector fields. In

electromagnetics this extension is known as the Silver-Miiller radiation condition.

None of the above conditions is suited for scattering from infinitely long interfaces (such as
the interfaces in the multilayer stack below the grating). The simple example of scattering
from a straight interface where the incident field is a downward propagating plane wave
shows that the Sommerfeld radiation condition is not appropriate for such problems: in
this case, f is simply some reflected plane wave and hence satisfies Sommerfeld’s radiation
condition only in the propagation direction, but no other direction. A natural approach
to impose a radiation condition, often used in applications, is to consider the field f on
the truncation boundary and to compute its plane wave expansion. In this expansion we
can clearly separate incoming and outgoing waves (the direction of a plane wave is given
by its wave vector) and write the field as

f:fi11+fOUt, (239)

where f™ and f°" represent the fields consisting of incoming and outgoing plane waves
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FDTD
[

FMM BEM VIM

Figure 2.3: The rectangular grid of the FDTD method with sub-pizel smoothing to
approzimate the cylinder. The triangular grid of the FEM that conforms to the surface
of the cylinder. The discrete layers of the FMM, with the permittivity described by a few
Fourier modes per layer. The source contributions of the surface elements for the BEM
and the polarization densities in the cylinder for the VIM. Image reproduced from [28]
with permission.

respectively. Since the radiation condition admits only outgoing waves we require
™ =o. (2.40)

In the FMM and its extensions described in this thesis, the discretization of the Maxwell
equations leads to a plane wave expansion. The radiation condition is then easily imposed
on the discrete level by requiring that the coefficients (amplitudes) corresponding to the
incoming plane waves vanish.

2.6 Numerical methods for Maxwell equations

The number of situations where an analytical solution of Maxwell’s equations can be
found is very limited. Reference [8] gives a thorough overview of such very special cases.
In all other cases numerical methods must be used to get an approximate solution.
During the last decades many numerical methods for solving Maxwell equations have been
developed. We will discuss several of them: the finite-difference time-domain method
(FDTD) [91, 69, 83|, the finite-element method (FEM) [50, 93, 51|, the Fourier modal
method (FMM) [31, 47] and the integral equation methods (IEM), which include the
boundary element method (BEM) [68, 42] and the volume integral method (VIM) [7]. A
comparison of these methods applied to a particular problem of light diffraction is given
in [34].

Figure 2.3 shows the discretization used by the discussed numerical methods for a problem
of scattering from a dielectric cylinder. Each of the methods is applied to the Maxwell
equations formulated either in time domain (2.1) or frequency domain (2.17).
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2.6.1 Finite-difference time-domain method

A classical reference on the finite-difference time-domain (FDTD) method is [83]. The
basic FDTD space grid and time-stepping algorithm trace back to a seminal 1966 paper by
Kane Yee [91]. The FDTD method (as the name states) is suitable for solving the Maxwell
equations in the time-domain. Spatial discretization uses a structured Cartesian grid
(see Figure 2.3). The smooth boundary of the scatterer is approximated by a staircase
imposed by the grid. The negative effect of staircasing is sometimes attenuated using
subpixel smoothing [16]. The time-dependent equations are discretized using central-
difference approximations to the space and time partial derivatives. The resulting finite-
difference equations are solved in a leapfrog manner: the electric field vector components
in a volume of space are solved at a given instant in time, then the magnetic field vector
components in the same spatial volume are solved at the next instant in time. The
process is usually repeated until a steady-state is reached.

We demonstrate an FDTD scheme for the case of planar incidence and TE polarization
(&, =&, =H, =0). The Maxwell equations (2.1) and the constitutive relations (2.3)
reduce to

9 )

aiHe =156, (2.41a)
0 1 0
EHZ = M 1%5:‘}, (2.41b)
0 1 (0 0
The Yee scheme using a staggered mesh for (2.41) is given by
n+i n—1
H1|Z‘,j ? - Hz'i,j 2 - 1 5y|2j+% - gylzj—% 2.42
At T Az ’ (2420)
+3 -3 n n
Holig? = Heliy® 18N — &Ly, 2.42b
At T Az ’ (2425)
n+1 n nt3 _ n+g nt3 _ nt3
it &Mty 1 (Heligy —Heliyy  Halify —Haliity (2.42¢)
At € Az Az ’ ’

where Az, Az are the mesh sizes and At the time step. For a quantity F the subscripts
indicate the position in the spatial grid and the superscripts indicate the time step,

Flitj = F(iAz, jAz, nAt).
Given the magnetic field at step n — % and the electric field at step n, the magnetic
field at n + 3 is computed from the update relations (2.42a) and (2.42b). Subsequently
the electric field at time step n + 1 can be computed from (2.42c). Because explicit
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time-stepping is used in FDTD methods, no linear systems have to be solved. In order
to guarantee stability of the computations a limit is imposed on the maximum allowed
time step. This requirement is known as the Courant-Friedrichs-Lewy condition or CFL
condition [14].

2.6.2 Finite element method

The application of finite element methods (FEM) in electromagnetics has been thoroughly
described in [51, 80]. A less mathematical description with focus on implementation issues
is given in [29]. FEM is applied to Maxwell equations in frequency domain. Typically
the following equation is solved:

V X V x e(x) — kje(x)e(x) = 0. (2.43)

This equation is referred to as the double-curl equation and is obtained by eliminating
the magnetic field h from (2.17b) using (2.17a). Triangular meshes are used for spatial
discretization. They give a better approximation of the smooth shapes than the Cartesian
grid of FDTD (see Figure 2.3). The electric field is approximated by a sum of local
basis functions. In 1980 Nedelec [53] introduced the vector-valued shape functions called
edge elements. Contrary to the classical, continuous approximation, the edge elements
enforce only the continuity of the tangential component of the electric field. Since the
normal component of the electric field is indeed discontinuous at material interfaces, these
elements are well-suited for the discretization of the Maxwell equations. Discretization
of (2.43) leads to a linear system of the form Ax = b, where A is a sparse square matrix.
The unknown vector x is determined by solving the system using direct [15] or iterative
[72] methods.

We have applied FEM to simulate scattering from an infinitely periodic grating. The
pseudo-periodicity of the field (Section 2.5.1) implies that a single period of the grating
can be considered. Figure 2.4 (a) shows the geometry of the problem with different colors
corresponding to different materials. A sample solution for a specific angle of incidence
and wavelength is depicted in Figure 2.4 (b).

FEM is a very general numerical method which can be applied to a wide set of partial
differential equations (modeling problems in fluid dynamics, solid mechanics, elasticity,
acoustics, etc.). The generality of the method makes it also versatile. Techniques such
as adaptive meshing [23], multigrid solution |25, 4], domain decomposition [94] have been
successfully used when solving electromagnetics problems with FEM.
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Figure 2.4: Simulation of scattering from an infinitely periodic grating with the FEM:
(a) geometry of a single period of the grating (different colors correspond to different
materials) and (b) magnitude of the electric field. Both plots show the triangular mesh
used for discretization.

2.6.3 Fourier modal method

The Fourier modal method (FMM) is a numerical solution method of time-harmonic
(frequency domain) Maxwell equations for periodic structures. It has originated in the
diffractive optics community more than 30 years ago [31]. During this time the method
has matured due to improvements to its stability [48, 40] and convergence [41]. Other
important contributions to the evolution of the method are the techniques of adaptive
spatial resolution [22] and normal vector fields (65, 66, 78]. Ref. [24] gives a mathematical
perspective of the challenges that have been overcome in the FMM and of the open
problems still to be addressed.

The discretization used by the FMM is depicted in Figure 2.3. In the vertical direction the
domain is divided into layers or slices in which the permittivity is assumed to depend only
on the horizontal direction. This introduces a staircase approximation of the geometry,
similarly to the Cartesian grid in FDTD. In the horizontal direction Fourier harmonics
are used to approximate the fields and the permittivity in each layer. Resulting from
the discretization is a set of coupled linear systems which are solved either recursively
[48, 40] or are first assembled into a single large linear system of the form Ax = b and
then solved with standard routines [52, 46]. Typically the former approach is faster.

The Fourier harmonics constitute a natural basis for wave-like solutions, which makes the
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FMM a very popular choice for simulating scattering from infinitely periodic structures.
We show in this thesis that if the structure of interest is finite the FMM can be adapted
to the new boundary conditions, while keeping the advantages of the periodic FMM.

2.6.4 Integral equation methods

The methods described up to now (FDTD, FEM and FMM) use a differential equation
and the associated boundary conditions as a starting point for the discretization. A
fundamentally different approach is used by the integral equation methods (IEM) [43,
74]. The differential equation and the boundary conditions are replaced by an integral
equation.

We demonstrate the principle of the IEM on a simple example: scattering of TE-polarized
light from a two-dimensional object (such as an infinitely long cylinder) placed in homo-
geneous medium. The y-component of the electric field satisfies the equation:

Aey(x,z) + e(x, z)e, (z,2) = 0. (2.44)

The incident field satisfies a similar equation in homogeneous medium with permittivity
b
€:

Ae;nc(x, z) + ebe;nc(:c, z) =0. (2.45)

inc

Let e = e, — e, Subtracting (2.45) from (2.44) gives an equation for the scattered

field

Y

At (z, 2) + ebeZCt(m, 2) = —(e(x,2) — eb)ey(m, 2). (2.46)

Y

The solution of (2.46) can be written as

et (z,2) = /G(ac —a' 2 =) (e, ) — e, (2!, ') da'd?, (2.47)
v

where G is the Green’s function and satisfies
AG(z,2) + €G(x, 2) = —d(x, 2). (2.48)
For the Helmholtz equation in two dimensions the Green’s function is given by
i
G(z,2) = ZHSD ( (2* +22)> .

inc sc

Here Hél) is a Hankel function. Finally, the decomposition e, = e, + ¢, * and relation
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(2.47) yield the integral equation
ey(r,2) = e;nc(x, z) + /G(x —2' 2 =2 (e(a!, ) — eb)ey(x/, 2 dx'd? (2.49)
v

where the unknown e, appears both inside and outside the integral.

In general integral equations arising in electromagnetics are of the form

e(x) = f(x)+ /\/K(x, x')e(x')dx'. (2.50)
v

This is a Fredholm equation of the second kind. The function K(x,x’) is referred to
as kernel and f(x) is a source term. For given K(x,x’), f(x) and )\, Equation (2.50)
is solved for the unknown e(x). Unlike differential equations, integral equations do not
require additional (interface or boundary) conditions in order to obtain a unique solution.
In fact the interface and boundary conditions are part of the kernel function. A particular
kernel is related to a particular geometry and boundary conditions and is not universally
valid. The process of solving electromagnetic problems by means of integral equations
consists of two steps: {1} formulating the kernel and {2} solving the integral equation.

Methods solving (2.50) are known as volume integral methods (VIM). If the volume
integral in (2.50) is replaced by a surface integral then we speak of surface integral
methods (SIM) or boundary element methods (BEM). In BEM, instead of the volume of
the scatterer, one only has to discretize the surface of the scatterer. If the surface-to-
volume ratio is small, then BEM can be considerably more efficient than VIM.






Chapter 3

Extension of the Fourier modal
method for a model problem

In this chapter we extend the area of application of the Fourier modal method (FMM)
from periodic structures to aperiodic ones. This is achieved by placing perfectly matched
layers at the lateral sides of the computational domain and reformulating the govern-
ing equations in terms of a contrast field which does not contain the incoming field.
Due to the reformulation, the homogeneous system of second-order ordinary differential
equations from the original FMM becomes non-homogeneous. Its solution is derived ana-
lytically and used in the established FMM framework. The technique is demonstrated
on an aperiodic model problem of planar scattering of TE-polarized light by a single
rectangular line.

3.1 Introduction

The Fourier modal method (FMM), also referred to as Rigorous Coupled-Wave Analysis
(RCWA), has a well established position in the field of rigorous diffraction modeling. It
was first formulated by Moharam and Gaylord in 1981 [45]. Being based on Fourier-mode
expansions, the method is inherently suited for (and restricted to) periodic structures
such as diffraction gratings. Because harmonic functions constitute a natural basis for
representing wave-like solutions few such functions are required to approximate the exact
solution with a reasonable accuracy.

The stability and efficiency of the FMM was improved especially due to the enhanced
transmittance matriz approach for solving the recursive matrix equations [47, 48]. The
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convergence problems observed for incident waves with TM-polarization have been over-
come by reconsidering the Laurent’s rule for the product of truncated Fourier series
[35, 21]. Shortly after, these rules have been given a sound mathematical background
by Li [41], and usually are referred to as the Li rules. The Li rules can be easily ap-
plied to 2D-periodic structures with rectangular shapes. For non-rectangular shapes a
staircase approximation of the profile in the plane of periodicity had to be used. This
inconvenience has been removed by considering separately the tangential and normal
components of the field at the interface [65, 66, 78, 70]. Another important improvement
was the introduction of the technique of adaptive spatial resolution [22]. Due to this
technique a faster convergence is achieved by increasing the resolution in space around
the material interfaces.

As a consequence of the improvements over the last two decades, nowadays the FMM
is a well established method. It is robust and efficient, especially for two-dimensional
problems. A recent paper [34] benchmarks the performance of state-of-the-art methods in
rigorous diffraction modeling, including the FMM, the finite element method (FEM), the
finite difference time-domain method (FDTD) and the volume integral method (VIM).

One important limitation of the FMM is given by the fact that it can only be used
for computational problems defined for periodic structures (such as diffraction gratings).
This is because the modes used to represent the field are themselves periodic. A straight-
forward workaround for this limitation is the supercell approach: the aperiodic structure
is still assumed to be periodic but with a large enough period so that the interaction of
neighboring structures is negligible [73].

Lalanne and his co-workers [36, 79, 26] have applied the FMM to waveguide problems.
The aperiodicity of the waveguide was dealt with by placing perfectly matched layers
(PMLs) [5] on the lateral sides of the computational domain. PMLs are introduced
in the domain using the mathematical operations of analytic continuation and coordi-
nate transformation. Physically, PMLs represent fictitious absorbing and non-reflecting
materials. In this way, artificial periodization is achieved, i.e. the structure of inter-
est is repeated in space, but there is no electromagnetic coupling between neighboring
cells. The concepts of perfectly matched layers and artificial periodization are carefully
explained in Section 3.3.

The above approach, combining standard FMM with PMLs, is applicable only for the
case of normal incidence of the incoming field, which is sufficient for waveguide problems.
In this chapter we show that for oblique incidence we need to reformulate the standard
FMM such that the incident field is not part of the computed solution. We propose a
decomposition of the total field into a background field (containing the incident field) and
a contrast field. The problem is reformulated with the contrast field as the new unknown.
The background field solves a corresponding background problem which has a standard
analytical solution. The main effect of the reformulation is that the homogeneous system
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Figure 3.1: Geometry of the periodic model problem and division into layers.

of second-order ordinary differential equations becomes non-homogeneous. The solution
of this equation is derived in closed form, as required for the FMM algorithm.

The ideas conveyed in this chapter are demonstrated on two model problems: diffraction
of TE-polarized light from a binary one-dimensional grating (periodic model problem)
and from a single line (aperiodic model problem). The remainder of the chapter is struc-
tured as follows. Section 3.2 briefly describes the standard FMM applied to the periodic
model problem. Next, in Section 3.3, the idea of artificial periodization with PMLs is
described as a means of solving the aperiodic model problem for normal incidence of the
incoming field. Section 3.4 constitutes the core of this chapter and demonstrates the
derivation of the contrast-field formulation for the FMM. The new formulation allows for
arbitrary angles of incidence in combination with the PMLs. Finally, numerical results
are presented in the last section.

3.2 Standard Fourier modal method

The structure considered in the periodic model problem is an infinitely periodic binary
grating with a period A illuminated by a TE-polarized plane wave given by (2.29). The
permittivity profile e(x, z) is invariant in the y-direction and is shown in Figure 3.1.
The solution of the periodic model problem satisfies the Maxwell equations (2.18), which
for TE-polarization can be reduced to a single second-order partial differential equation
(PDE) for the y component of the electric field,

0 0
ﬁey(x,z) + Qey(az, 2) + koe(x, z)e,(x,z) = 0. (3.1)

The incident field is given by (2.29) and satisfies the pseudo-periodic boundary condition
(2.37).

The first step in the FMM is to divide the computational domain into layers such that
the permittivity e(z, z) is z-independent in each particular layer. For our periodic model
problem this division generates three layers as shown in Figure 3.1. Then the field in
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layer I (I = 1,2, 3) satisfies
o° o
@6%1(% z) + ﬁeyﬁl(a@,z) +e(z)ey (z,2) = 0. (3.2)

Note that ¢, (I = 1,3) is constant in layers 1 and 3. In this case the solution of (3.2)
may be represented by a Rayleigh expansion [56, p. 9]. However, when PMLs are added
the Rayleigh expansion is not applicable. For generality we treat these layers in the same
way as the middle layer.

The second step in the FMM is to expand the z-dependent quantities into Fourier modes

ey,l(xvz) = Z Sn,l(z)eiikmzv (3.3a)
qle)= 3 & ET, (3.3b)
n=-—00
where )
kyn = konysind — n%, n € 7.

Note that the modes e~ Fen® satisfy the condition of pseudo-periodicity. Thus, the solu-
tion obtained by superposition will necessarily be pseudo-periodic. By substituting the
expansions (3.3) in (3.2) and retaining only 2N 4 1 harmonics in the expansion of the
field, we get

N ‘ N2 ‘
- Z kinsn,z(z)eﬂk”er Z ﬁsn,l(z)eﬂk“z (3.4)
n=—N n=—N dz

N N .
D Y bmusma(z)e T =0,

n=—N m=—N

ik,

The derivation of the third term is detailed in Appendix B.1. Since the functions e
form a basis, the coefficients must vanish.

2 N

d
— kinsn,l(’z) + 7287%1(2) + Z gn—m,lsm.l(z) = O, n = —]\/v7 ey N, (35)
dz e N ’
or in matrix form )
d
PSZ(Z) = kSAlSl(Z), with Al = Ki — El7 (36)
z

where K, is a diagonal matrix with the values k,,,/ky on its diagonal and E; is a Toeplitz
matrix with the (n, m)-entry equal to €,_,, ; for n,m = -N,..., N.
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Equation (3.6) is a homogeneous second-order ordinary differential equation whose gen-
eral solution is given by

s1(2) =87 (2) +87 (2) = Wy (e U mnlef y eQlmh ey, (3.7)

where h; is the z-coordinate of the top interface of layer | (we take hy = hy), W, is
the matrix of eigenvectors of A; and Q; is a diagonal matrix with square roots of the
corresponding eigenvalues on its diagonal.

The general solution (3.7) consists of waves traveling upward, s; (z), and downward,
s;(2). In the top and bottom layer the radiation condition is imposed by requiring that
there is no incoming field except for the prescribed incident plane wave

st (hy) = dge™ =", (3.8a)
53 (hy) = 0. (3.8b)

The vector d,, € R2V 1 in (3.8a) is an all-zero vector except for entry N +1 which is equal
to 1. Conditions (3.8) determine the vectors ¢/ and c3. The remaining vectors ¢;” and
c; are unknown, and can be determined from the interface conditions between the layers
[47]. In the case of the standard FMM the top and bottom layers are homogeneous
and Rayleigh expansions of the field can be used. It means that the eigenvalues and
eigenvectors for these layers are known in advance.

3.3 Artificial periodization with PMLs

The goal of this section is to integrate our aperiodic model problem (planar TE diffraction
from one line) into the framework of the FMM. To this end we will use the technique
of perfectly matched layers which act as absorbing layers and annihilate the effect of
the pseudo-periodic boundary conditions. The section starts with a description of the
concepts and ideas behind PMLs and ends by explaining the necessity of reformulating
the problem in order to allow for arbitrary angles of incidence.

PMLs were first suggested by Berenger [5] as a method of imposing the radiation con-
dition [81] on the boundary of the computational domain in FDTD. According to the
formalism proposed by Chew [11, 10], PMLs can be obtained by an analytic continuation
of the solution of (3.1) (defined in real coordinates) to a complex contour

z=z+iB(x), r € R (3.9)

The function S(z) is continuous and has a non-zero value only inside the PMLs. For
faster convergence also the continuity of higher order derivatives is desirable. Figure
3.2 shows an example of such a function when the PMLs are placed in the domains
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Figure 3.2: The imaginary part 5(x) of the transformation (3.9).

[0,2;] and [z,,A]. The analytic continuation (3.9) transforms propagating waves into
evanescent waves. We may observe the damping effect by evaluating a plane wave on the

contour
e—’i(kzoi‘f‘kzoz) — e—i(kzox"rkzoz)ekzoﬁ(x). (310)

It is seen that this right-propagating wave (assume k,, > 0) is attenuated exponentially
in the right PML, where 8(z) < 0. The left PML would have the same effect on a left-
propagating wave. Since kg is in the argument of the real (decaying) exponential, the
attenuation in the PML is angle dependent.

The procedure of obtaining a PML requires an analytic continuation from R to C followed
by a coordinate transformation back to R. The operations are formally represented by
U} 2 2 £ . -
E(z) = E(@Z) = E(x), withz eR,z € C. (3.11)
Operation {1} does not formally change the equation but changes its solution by mod-

ifying the domain of the space variable z. Operation {2} is required in order to avoid
working in complex coordinates. It is defined as a coordinate transformation

i=flz) =z +iB(x), (3.12)

applied to the equation in #. This coordinate transformation eliminates the derivatives
with respect to complex variables

0 dx 0 1 0
A A - (3.13)
0r drdxz  f'(z)0x

From the above discussion, we conclude that PMLs modify the underlying equations
at the continuous level, therefore they can be used in combination with virtually any
discretization technique. For the FMM, PMLs are used to make the solution of an
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Figure 3.3: Problems P; (top) and P, (bottom) have equal solutions on € (for an ideal
non-reflecting PML).

aperiodic problem coincide with the solution of a periodic problem on a subdomain, as
explained next.

Suppose we want to solve the aperiodic model problem with normal incidence, that is we
want to compute the field scattered by a simple aperiodic structure shown on top of Figure
3.3 (a single rectangular groove infinitely long in the y direction) when illuminated by a
perpendicular plane wave. For this problem, let us refer to it as P;, the FMM cannot be
used since both the permittivity and field are required to be (pseudo-)periodic functions
in order to be represented in terms of Fourier series as in (3.3). However, we can define
an equivalent problem P, which is artificially periodized with the help of PMLs as shown
in Figure 3.3. The problems P; and P, are equivalent in the sense that (for an ideal
PML) their solutions on the domain € coincide. Problem P, fits well in the framework
of FMM, due to its periodicity.

To solve P,, PMLs have to be added. As explained above, PMLs are implemented

by {1} an analytic continuation of the solution to a complex contour and {2} a back

transformation to the real coordinates. The first step is a formal one as it consists

of writing the same partial differential equation in the new variable T instead of x.

The second step involves the coordinate transformation from # back to x. Under this
transformation, described by (3.12) and (3.13), Equation (3.2) becomes

1 9 /(1 9. ’ W2 ms B u

7(2) 0z (m%%,l(%z)) + Qey,z(%z) + koer(w)é, i (x, z) = 0. (3.14)

Note that the permittivity is constant in the PML and is not affected by the transfor-

mation. By replacing the field and the permittivity with their corresponding truncated
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3

Figure 3.4: Plot of %(e,) for the radiating line problem solved using various approaches:
(a) supercell FMM, A = 10, (b) supercell FMM, A = 20, (¢) exact solution, (d) FMM
with PMLs.

Fourier series (as in Section 3.2) the equation can be written in matrix form

a - <

282 = kAS(2), A= (FK,)" —E, (3.15)
where F is the Toeplitz matrix associated with the Fourier coefficients of 1/f'(x). Com-
pared to (3.6), the modification introduced by the PML is minor: a "stretching matrix*
F appears in the computations.

We demonstrate the efficiency of PMLs by considering the problem of a radiating in-
finitely long line in free space. In a two-dimensional setting the infinitely long line is
modeled as a point source. For a source term with vanishing z- and z-components, the
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following equation holds,
Aey(x,z) + ebey(a:, z) = —0(z, 2). (3.16)

As explained in Section 2.6.4, the solution of the above equation is called a Green’s
function and is given by

ey(r,2) = %H(()l) ( eb(x2 + 22)) ) (3.17)
The solution of (3.16) can also be computed numerically using either the supercell ap-
proach or PMLs. The plots (a) and (b) in Figure 3.4 show the supercell solution for
domain widths A = 10 and A = 20 respectively. Interference caused by the periodic
boundary condition decreases for larger sizes of the computational domain. We note
that larger computational domains require more harmonics and imply higher computa-
tional costs. However, even for A = 20 the supercell solution is still far from the exact one
given by (3.17) and plotted in Figure 3.4 (c). On the other hand, the PML solution shown
in Figure 3.4 (d) does not require large computational domains and closely resembles the
exact solution in the area between the PMLs. In this example we considered a localized
source which is zero in the PMLs. In this case PMLs introduce no complications. For
non-localized sources, such as incident fields modeled by plane waves of infinite extent,
a reformulation is required. This is explained next.

Since the FMM uses an expansion in pseudo-periodic modes the resulting solution has
to be pseudo-periodic. We show that the pseudo-periodicity requirement is only satisfied
for normally incident plane waves. We write the total field as a sum of the incident and
the scattered field

~ _  ~inc ~sct

€y =¢€, +e€, .
The scattered field (it is an outgoing field) is damped exponentially to "almost zero* at
z =0 and x = A. The original incoming field is given by

6;10(;67 z) = e Hkzoztho02) (3.18)

For normal incidence k,y = 0, so it is independent of the stretched coordinate = and is
not affected by the PML. Thus, the total field is pseudo-periodic. However, for oblique
incidence k.5 # 0 and the incoming field will be affected by the analytic continuation.
We evaluate the incident field on the complex contour Z,

é;nc(i, z) = e kaoltko02) _ —i(kpot+ke02) JkuoB(e) (3.19)

The incident field on the complex contour for z = 0 is plotted in Figure 3.5. Thus,
although the scattered field is still damped exponentially to zero at = 0 and z = A
and satisfies the pseudo-periodic boundary condition, the incoming field on the complex
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Figure 3.5: The incident field on the complex contour x for z = 0.

contour violates the pseudo-periodicity

éinc(f(A), Z) éinc(f(()), Z)efikon. (320)

Yy Yy

Consequently, also the total field violates this condition and cannot be represented by
a superposition of the modes in (3.3a). Therefore, in the next section we remove the
part which does not exhibit pseudo-periodicity from the total field and reformulate the
problem such that its solution is pseudo-periodic.

3.4 The contrast-field formulation of the FMM

3.4.1 Contrast/background decomposition

As shown in the previous section, the presence of PMLs leads to the following form of
the governing equation

1 9 (1 0. 0% ~

The total field is decomposed into a contrast field and a background field (this can also
be viewed as a decomposition into a periodic part and a non-periodic part)

&, =5 +éy, (3.22)
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Figure 3.6: Permittivities involved in the source term of (3.24).

where & is chosen to be the field formed in materials defined by e T,z
y
1 0 1 0 4 9 2 b b
—_— — + —é, + k , =0. 3.23
fl(gj) ox <f/(x) 8xey) 92> “ o€ (CE Z)ey ( )

Subtracting (3.23) from (3.21) yields

19/ 1 9.\, 0. . ]
(z) 0 <f/(x)3xéy) T2t koe(a, 2)e5 = —kj(e(x, 2) — €' (x,2))en.  (3.24)

We can still choose €. However, it should be chosen in such a way that the solution
of (3.23) can be computed analytically. Moreover, we want to choose ¢’ such that the
right-hand side of (3.24) vanishes in the PML. This is required in order to avoid having a
non-periodic source in the PML. If ¢” is chosen such that it represents the background of
€, i.e. € without the scatterer (rectangular line), then the above mentioned requirements
are satisfied; the right-hand side vanishes in the PML, and the background field &’ can
be expressed analytically inside the scatterer. Figure 3.6 shows the permittivities e, eb,
¢ — €", corresponding to the equations for total field (3.21), background field (3.23) and
contrast field (3.24).

3.4.2 Background field solution

The background field appears on the right-hand side of (3.24). Therefore, before solving
(3.24), the solution of (3.23) needs to be found. Since the background field is not pseudo-
periodic, we attempt to obtain it analytically and not with the help of FMM. Let us
consider the background problem without PMLs
s 0
—262 + pez + k%eb(m, z)eb
z

o b=0. (3.25)

Z and ez of respectively (3.23) and (3.25) coincide in the physical domain
(physical domain = domain - PML region). Since on the right-hand side of (3.24),
¢ — € = 0 in the PMLs, we need not know the background field in the PML region in

The solutions €
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Figure 3.7: The background problem.

order to solve (3.24).

To solve (3.25), we use knowledge about angles of reflection and refraction. Figure 3.7
shows the representation of the solution in terms of plane waves. We assume h; = 0 and
hy = h. In layer 2 (0 < z < h, see Figure 3.7) the field is written as

62’2 = e;!nc + e, = e 27T ol | o127 ka0 (3.26)
In layer 3 (z > h)
6273 =, = te~98(2=h) gmikeot (3.27)

where q; = 1/ k2o — ki ef’, I =2,3. The amplitudes r and ¢ corresponding to the reflected
and transmitted wave respectively are unknown. They can be determined from the
interface conditions, i.e. by matching the fields and their normal derivatives at the
interface hy = h,

ey(z, h) + e (a, h) = e}, (x,h), (3.28a)
0 inc 0 T 72 t
P (x,h) + aZey(:c,h) = aZey(z,h). (3.28b)

Using the relations (3.26), (3.27) and setting b = e~ %"

equations for r and ¢

, we obtain a linear system of

bt 4+ b=t, (3.29a)
rgeb !t — gob = —tgs. (3.29b)
This system has the solution
r=2" B (3.30a)
92t g3
2
t=—"%2 4 (3.30b)
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Figure 3.8: The source term in the contrast-field equation.

3.4.3 Contrast field solution

The contrast field satisfies Equation (3.24). In layers 1 and 3 the right-hand side vanishes
(see Figure 3.8) and the equations are similar to the ones encountered in the standard
FMM

1 9 (1 9 o 2
- | ——¢, —ér k e, =0, 1=1,3. 3.31
f/(l‘) ax (f/(g:) axey,l) + 62,'2 ey,l + Oel(x)ey,l I I ( )
Fourier expansion and truncation yield the system of second-order ordinary differential
equations
d2 ~c 23 ~cC
psl (Z) = kOAlSl (Z), | = 1, 3. (332)

The general solution of this system is given by (3.7). In layer 2 the following equation is
solved

e <1aéc ) b e R ()E s = —R(e() — )t (3.3

7(2)0x \ f'(z) Oz y,2 5.2 2 0€2 v,2 o(€2 2)€y,2- .
This equation is non-homogeneous. The following steps are presented in detail since
FMM has not been applied to such equations before. We proceed in the usual way by
expanding the z-dependent quantities (consisting of the field and permittivity function)
in Fourier modes

Ero(m,2) = D & ,(a)e " (3.34a)
ey o(w,2) = e LT 0T 4 peFem a0 (3.34b)
@)=Y Ene N7 (3.34c)

1 - pooq2mng
S e R (3.34d)

) =,
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Substituting (3.34) in (3.33) and truncating the infinite series by keeping the harmonics
n=—N,..., N yields

Z Z <fn mFem Z fm Tkm52T( Je z‘kmx>

n=—N m=—N r=—N

—ik —ik
+ § 52n26 Han 4 g § § fzn mSz,m(z)e” "

n=—N m=—

= E g —q2Zz qaz —ikynT
- _kO 62 ,n—m 62671 m)( At e )6716 )
—N m=—N

where §,, is the Kronecker delta (dy = 1,6,, = 0,n € Z\{0}).

. . —ik . . . .
Since the functions e "“*»* form a basis, their coefficients must satisfy

N &2 N
- Z <fn m xm Z fm TkQZTS2 T( )) + ngn(z) + k[z) Z éQ,nfm’g;,m(Z)
m=—N r=—N < m=—N
N
=k > (eonem — €30, )0, (e” " +7eP%), n=—N,. .. N (3.35)
m=—N
In matrix form this system of equations can be written as
d? 2, b —gaz 122
dfsz( 2) = kg Ag85(2) + kg (31 — Ep)dy(e + re®??), (3.36)
z

with
A, = (FK,)’ — E,.

We recall that the vector dy € R*M ' in (3.36) is an all-zero vector except for entry
N +1 which is equal to 1. Equation (3.36) is a system of non-homogeneous second order
ordinary differential equations (ODEs). The solution vector is of the form

~c ~c ~c
So = S2,hom + S2,part' (337)

To find the particular solution we use the method of undetermined coefficients applied
to systems of equations [82, p. 241]. If the non-homogeneous term contains functions
with a finite family of derivatives (e.g. polynomial and trigonometric functions) then the
solution may be assumed to be a linear combination of those functions. In our case the
particular solution is of the form

c

§2,part<z) = p(ei%z + Teqzz)’ (338)

2N+1) s a vector of coefficients to be determined. We substitute the ansatz

(3.38) in Equation (3.36) and get in the end the following linear system which can be

where p € R
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solved for p
(ko Ay — BI)p = —k (51 — Ey)d,. (3.39)

Note that in case there is no PML, we have F =1 and p = —d,. The general solution
of (3.36) can now be written using (3.37) and (3.38)

§5(2) = Wy(e FoQezcl 4 hoQezmhory 4 (o707 4 pete?), (3.40)

The conditions at the layer interface are

s1(0) = 85(0), (3.41a)
L _ 1dg
kfoi 1(0) = ko dZSQ(O), (3 41b)
ss(h) = s5(h), (3.41c¢)
1d., 1d._,

s77(0) =0, (3.42a)
0, (3.42b)

where §§’+ and S5 represent the fields consisting of respectively downwards and upwards
traveling waves (see Equation (3.7)). We set V; = —W,Q,, and X, = ¢ " By
substituting the general solution (3.40) into (3.41), relations for the unknown coefficients
three layers are obtained

W, } _ [ W, W)X, } { s ] [ 83 part (0) ]
c, = 2+ 1 g , 3.43
[ -V; ! Vy —VyX, Co ko 15%52,part(0) ( )

W2X2 W2 :| |: C; :| |: ég pn't(h) :| |: W3 :| +
B g e = Cs, 3.44
[ VX, -V, Ca kold%szpart(h) V3 ’ ( )

where
83.part (2) = P(e” 7 +re®?), (3.45)
d _. P z

%SZ,part(Z) :p(_q2€ o +TQ2eq2 ) (346)

The equations (3.43), (3.44) can be solved for ¢7, ¢35, ¢4, ci. Note that the inversion of
matrix X, implies growing exponentials and a loss of accuracy due to round-off. This is
a general problem encountered by modal methods. Many solutions have been proposed
such as the enhanced transmittance matrix approach [48], the S-matrix and R-matrix
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Figure 3.9: The contrast field computed with AFMM-CFF.

algorithms [40]. However, due to the non-homogeneous part, our system has a different
structure than in standard FMM and the above algorithms cannot be applied without
modifications. We use a full-matriz approach [52, 46] in order to guarantee stability.

3.5 Numerical results

We consider the aperiodic model problem of scattering from an isolated resist line in
air with a width of 100 nm and a height of 20 nm illuminated by a plane wave with a
wavelength A = 628 nm incident at an angle § = 7/6. The computational domain has a
width A = 500 nm and the lateral PMLs have a width of 100 nm. The geometry of the
problem can be seen in Figure 3.9. The refractive index of air and resist are given by
ny =1, ng = 1.5.

The contrast-field formulation of the FMM with PMLs is used to solve the problem. We
refer to this method as the aperiodic Fourier modal method in contrast-field formulation
(AFMM-CFF). For the implementation of the PMLs we need to define the coordinate
transformation function which is chosen to be a polynomial of degree p,

v +iogle — | P /(p+ 1), 0<w<a,
z=f(z)=< =, T <z <, (3.47)
x_igo‘x_mr‘(p-i_l)/(p""l)a xTSxSAv

where x; is the endpoint of the left PML, z, is the start-point of right PML, o, is the
damping strength. We chose a quadratic PML (p = 2) with a damping strength oy = 10.
In the computations also the derivative of the coordinate transformation function is
required,
d 1+ioglz — 2P, 0<z<a,
%f(x) =< 1, <z < Ty, (3.48)
1 —ioglr — 2, P, =z, <z <A.
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Figure 3.10: Logarithmic plots log,y &1 (left) and log,, &y (Tight) of the errors defined
in (3.49).

We will first confirm that the PML acts as an absorbing layer. Figure 3.9 shows the
contrast field computed with AFMM-CFF. We observe a decay of the field in the PML
to "almost zero“ at the lateral boundaries, which implies that the effect of the pseudo-
periodic boundary condition is negligible. It is clear that the amplitude of the field near
the lateral boundary could be used as an indication on the performance of the PML and
consequently the accuracy of the numerical solution. However, this approach will only
estimate the error due to reflections from the outer boundary and not from the inner
boundary of the PML. Note that the solution in the PML is not physically relevant. In
order to obtain the solution outside the physical domain, a Green’s functions approach
may be taken [44].

Next, the convergence behavior of AFMM-CFF and supercell FMM (standard FMM
with a large period A) is investigated. For this purpose we define

51 (N7 A) = ||62’N$A - e;,resz’ on st (3493)
Ey(N,aq) = [[e5™N 70 — e5™'||,, on Q, (3.49b)

where éZ’N’U" is the numerical solution obtained with AFMM-CFF for 2N + 1 harmonics
and a damping strength o, while e‘fJ’N’A is the numerical solution obtained with supercell
FMM for 2N +1 harmonics and a period A. The reference solution is computed using the
supercell FMM with N = 800 and A = 15000, ;™" = ¢;*°*'"**’. The Euclidean norm
[| - ||2 is computed on a rectangular domain enclosing the scatterer, 2, = [100,400] x
[—20,40]. Figure 3.10 displays the logarithmic plots of the absolute error for the two
methods. Note that since the amplitude of the total field is close to unity, the relative

and absolute errors have the same order.
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The convergence plots demonstrate that the AFMM-CFF solution converges to the super-
cell solution. The error of AFMM-CFF has a globally monotonic behavior with respect
to N and 0. In other words, increasing either N or o, will not worsen the accuracy of
the solution. The supercell FMM has a non-monotonic behavior with respect to A. In
order to obtain a better solution, increasing A would require also taking more harmonics.
This behavior is clearly undesirable from the computational point of view.

Also quantitative statements may be made based on Figure 3.10. It indicates that the
AFMM-CFF exhibits faster convergence. For instance, an absolute error in the range
107%7...107%, is attained by the supercell FMM for N around 80, and by the AFMM-
CFF for N = 10 (the plots have different color scales). Since the methods have cubical
complexity with respect to the number of harmonics a speed-up by a factor 8 &~ 500 can
be reached.



Chapter 4

Generalization to arbitrary
shapes and illumination

In this chapter we generalize the formulation of the FMM and AFMM-CFF to arbitrary
shapes. This implies that, unlike for binary shapes, more than three slices are required in
the spatial discretization of the permittivity. We also formulate the spectral discretization
in a more elegant way using a Galerkin approach. The cases TE, TM and conical defined
in Section 2.4 are discussed.

4.1 Standard Fourier modal method

We start the discretization of the time-harmonic Maxwell equations (2.18) by dividing
the computational domain vertically into M slices such that the permittivity may be
considered z-independent in each separate slice. The terminology of ”slice” is preferred
here to "layer®, as the latter is reserved to physical layers in the multilayer stack. As
illustrated in Figure 4.1, the upper and lower interface of slice [ are located at h;_; and
h; respectively. Since z € R, we take hy = —o0, hj; = +00. The permittivities in each
slice are given by

(x) = ez, 2), with z; € [ly_q, ly). (41)

Thus, the profile of the scatterer is approximated by a staircase as in Figure 4.1. The
electric and magnetic fields on the computational domain now consist of fields in separate
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hy slice 1
ha 4 ~ \ slice 2
hs , f . slice 3
v N :
ha , . Slice4
/ e \
/ \
haso 4, slice M — 2 \\
h ' slice M — 1 )
M—1
z

Figure 4.1: Sliced geometry. The dashed line represents the smooth profile being ap-

proximated.

slices

z,Y, Z)a S [hl—17hl>7
hl<.fL',y,Z) = h((E,y,Z% z € [hl—lah‘l)'

o
®
=
Ny
|
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The time-harmonic Maxwell equations for a slice [ read

(%Q,z — %e%l = —kohy 1,
%e%l - 8%362’l = —kohy.,
%ey’l — %em = —koh,
ez(lx) (%hz’l - ﬁghy’l ~ e
%hm,l - (%hz,l = —koer()ey,
%hy,l — (%hz’l = —koe(2)e. 1,

(4.4a)

(4.4D)

(4.4c)
(4.4d)

(4.4e)

(4.4f)

for (z,z) € [0,A] X [h;_1, h;). Equation (4.4d) has been divided by ¢ (x) in order to avoid
products of functions with concurrent (in the same point) jump discontinuities on the
right-hand side. As shown in [41], discretization of the original equation would lead to

slower convergence. To discretize in the x and y directions we use a Galerkin approach
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with “shifted Fourier harmonics as basis functions and test functions,
On(z,y) = ¢ HanHhu), (4.5)

where

2m inc
A ky =k, , forn=-N..+N.

In each slice [ the fields are expanded as

inc
kyn =k, —n

N
ea7l(x7y7 Z) = Z SaJ,n(Z)d)n(xvy) = (Sa7l(z))T ' ¢(l’,y), (463“)
n=—N
N
ha,l(xvyv Z) = Z ua,l,n(z)¢7L(xa y) = (ua,l(z))T : d)(mvy) (46b)
n=—N

The « symbol stands for the z-, y-, or z-component of the field. We apply the Galerkin
method with a standard inner product on the interval [0, A] to the total field equations
(2.18) (see Section B.2 in the Appendix for a detailed derivation). We obtain the dis-
cretized equations for the electric and magnetic field,

K S(2) K s, (2) = g (2), (1.72)
o saa(2) K50 (2) = (), (1.7)
finsyﬂl(z) + z'KysLl(z) = fuzJ(z), (4.7¢)
K (2) — kg () = Py s (2), (4.74)
B () 4 i () = s (2), (1.7¢)
—iK,u, ,(2) +iK,u, (2) = —E;s, (2). (4.7¢)

Introducing the notation for Fourier coefficients fn of a function &(z) on the interval
x € [0,A),

~ A .27
b= | e a,
0
the matrices in the expressions above are defined as follows,
) é )
) )

E)mn = €l,n—m>

(
(Pl mn — pl;ﬂ—ma (48d
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for m,n = —N...+ N. Here 6,,,, is the Kronecker delta and

pi(x) = 1/e(2). (4.92)

The Li rules [41] have been applied in (4.7d). The incident electric and magnetic fields
are also represented in terms of the basis functions ¢,,,

N

(2, 2) = Y s (2)n(n,y) = (50°(2) - e, y), (4.102)
n=—N

W (2, 2) = Yl (2)n(z,y) = (WI()" - (z,y). (4.10b)
n=—N

It follows from (2.21) and (2.25) that

sC(z) = aldge "%, (4.11a)

u’(z) = aldge "%, (4.11Db)

4.1.1 TE-polarization

In the case of planar incidence and TE-polarization we have e, = e, = h, = 0, which
implies that s, = s, = u, = 0. The discretized Maxwell equations (4.7) reduce to

. d
_kO 1£Sy,l(z) = _ux,l(z)v (4123)
_inSy,l(Z) = _uz,l(z)a (412b)

kgldilzuw,l(z) +iK,u,,(2) = —Ejs, (2). (4.12¢)

After elimination of u, and u, we are left with an equation for s,

d? )

@Sy,l(z) = kOAlSyJ(Z)a (4.13)
where A; = K2 — E,. Equation (4.13) is a system of homogeneous second-order ordinary
differential equations. Its general solution is given by

Sy,z(z) _ Wl(e—kOQl(Z—hlfl)C?' + ekon(z—hz)cl—) _ S;_,l(z) + S;,l(Z), (4.14)

where W) is the matrix of eigenvectors of A;, and Q; is a diagonal matrix with square
roots of the corresponding eigenvalues on its diagonal. The quantities with + superscript
correspond to waves traveling in the positive z-direction (downward), and quantities with
~ superscript correspond to waves traveling in the negative z-direction (upward).



4.1 Standard Fourier modal method 49

At the interface, continuity of the tangential components of the fields is required,

Sy,l(hl) = Sy,1+1 (hl)a (415&)
u, (b)) = uy 41 (hy). (4.15b)

These conditions hold for the contrast field as a result of the continuity of tangential
components of the total and background fields. Using (4.12a) yields

Sy,l(hl) = sy,l-‘rl(hl)a (416&)

) 1 d
kq 1£Sy,l(hl) = kg 1£sy,l+1(hl)' (4.16b)

We define X; = ¢ FoQ=h-1) 414 vV, = “W,Q,. Then, from (4.16) and (4.14) we
have for each slice

[Wle Wz] [Cfr] _ {WlJrl Wz+1Xl+1] [Cltrl:| ] (4.17)
VX, -V, e Vigr Vi X lega

The radiation condition needs to be applied in the top and bottom slices. Because the
only incoming field in slice 1 is the incident field (illumination), we impose a restriction
on the term representing the downward traveling waves in this slice (see the general
solution (4.14))

sp1 =8 (4.18)

From (2.29) we determine S;nc = doefiklzmz. In the linear system (4.17) (which results
from the interface conditions (4.15)) we have

W Xy + dy —ik"h,
= : = . 4.19
|:V1X1:| Cy —ikalk;ncdo € ( )

In slice M there is no incoming field:
sy = 0. (4.20)
Thus in the linear system (4.17) we have

v

VM:| cy =0. (4.21)
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4.1.2 TM-polarization

In the case of planar incidence and TM-polarization we have e, = h, = h, = 0, which
implies that s, = u, = u, = 0. The Maxwell equations (4.7) reduce to

1 d
kg 1@%,1(2) + inSz,l(Z) = _uy,l(z)v (4.22a)
_ d
—Fko 1Pl£uy,l(z) = —s,.(2), (4.22b)
—iK,u, ,(2) = —E;s, (2). (4.22¢)
After elimination of s, and s, we are left with an equation for u,
d’ ;
ﬁuy’l = Pl Bluy’l, (423)

where B; = (K,E; 'K, —I). Similarly to the TE-polarization case, the general solution
is given by

uy,l(z) _ Wl(e_kOQl(z_hl’I)C?_ + ekon(Z—hl)cl—)7 (4.24)

where W, and Q; are respectively the matrix of eigenvectors and diagonal matrix with
square roots of eigenvalues of Pl_lBl on the diagonal. At the interface, continuity of the
tangential components of the fields is required,

w, (b)) =y 141 (ly), (4.25a)
Spi(hy) =84 0401()- (4.25b)

Using (4.22b) yields
u,  (hy) = w141 (), (4.26a)

_ d _ d
ko 1Pl£uy,l(hl) =k Py, %uy,l+1(hl)-

We define V; = —P;W,Q, (keeping the old definition of X;). Then, from (4.26) and
(4.24) we have for each slice

[Wle Wz] [Cfr] _ |:Wl+1 Wz+1Xz+1] |:Cltt1:| . (4.27)
VX, =V ¢ Vigr Vi Xl e

We apply the radiation conditions in the top and bottom slices in a similar fashion to
the TE-case. In slice 1, we require that

ub, =uy. (4.28)
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From (2.32) we determine u}’ = inldoefik‘zncz. In the linear system (4.27) we have

Yy
W Xy + inidg —ik™h,

= |, _1. inc = . 4.29
Vi = e, | (429)

In slice M there is no incoming field:
Thus in the linear system (4.17) we have

W X } -
c,; =0. 4.31
|:_VMXM M (4.31)

4.1.3 Conical incidence

The case of conical incidence is the most general as it allows all the components of the
fields to be non-zero. The discretized Maxwell equations (4.7) can be reduced to two
second-order ordinary differential equations for s, ; and u, ;. We briefly describe the
derivation of the equation for the latter.

Using (4.7f) and (4.7¢) in (4.7a) yields

_ _ o & i1y, d
K,E, 1Kmuy,l - KiEl 1um,l + ko B 1@%,1 +iky 'E; 1Km$“z,l =—u,;. (4.32)

The first and last terms in the left-hand side are expressed from (4.7b) and (4.7¢) respec-
tively

_ L1 d
El 1K:1:(Kyuy,l + ’LkO 1&“2,0

_ _ _ d _ d
= El IKI(—]CO 1I{ 11— iKyKIS:L’,l — ko 1K Sy,l =+ kO 1Ky£Sa:,l)

Yo T,
_ _ 1 d

=E, lKi(—ZKny,l — ko 1£Sy,l)

= _EflKium,l7 (433)

where in the last step Equation (4.7a) was used. Substitution of (4.33) in (4.32) gives

_ _ g &
—E 1Kium,l - KZEz 1%,1 + ko B, 1$uw,l = Uy (4.34)
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Finally we arrive at a homogeneous second-order ODE:
d’ 2 o2
Euz,l = (Km + Ky - El)uz,l' (435)

The second-order equation for s, ; is derived in a similar manner, so that we obtain

d2
Esz,l(z) = kgclsz,l(z)a (436&)
42 )
?uz,z(z) = koDyuy (2), (4.36b)
where
C =K, +(K,E 'K, -I)P; ' =K. + B,P; ", (4.37)
D, =K, +K.-E =K. +A, (4.38)

The general solution of (4.36) is given by

Sm,l(z) _ Ws l(efkon,L(thzfﬂczl + ekQQs,l(thz)C;l)’ (439&)

)

um,l(z) _ Wu’l(efkoQu.l(thlfﬂcil + ekoQu,l(thl)C;l), (439b)

where the pairs W, ;, Q,; and W, ;, Q,; contain the matrix of eigenvectors and the
diagonal matrix with square roots of eigenvalues of, respectively, C; and D; on the
diagonal.

At the interface, continuity of the tangential components of the fields is required

Sz,l(hl) = Sy l+1(hl)a (4.40a)
Sy,z(hz) = Sy,l+1(hl)7 (4.40b)
u, () =g 101 (hy), (4.40c)
uy (hy) =y 41 (hy). (4.40d)

Using (4.7c) in (4.7e) and (4.7f) in (4.7b), the y-components of the fields are expressed
in terms of z-components,

. d
(K2 —E)s,; =K, K,s,, +k; 1£um,l, (4.41a)

d

(K,E; 'K, —Du,, =K,E"'K,u, , + kglasm’l.

(4.41D)
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Finally we obtain
_ 1 d
Sy =4 ' (KIKny,l + ko 1dzum,l> ) (4.42a)
_ _ 1 d
u,, =B; <KLE "K,u,, + ko 1dzs°”’l> . (4.42b)
We define
0 W,
W, = _ 5 4.43
: |: Aflwu,lQu,l Al 1KwaWs,l :| ’ ( )
W, 0
VvV, =- iy _ , 4.44
l [ B 'K, B 'K,W,, B 'W,Q ] 4
and
of = ["Sm], o = [cu (4.45)
1= Cj,l A el .
Then, from (4.40) and (4.39) we have for each slice
[Wlxz Wz] [Cfr] _ |:Wl+1 Wz+1Xz+1] [th} . (4.46)
ViX; =Vi|le Vigr =V X e
In order to apply the radiation condition in slice 1, we require that
S;r,l(z) Simm(z) agdy
+ inc ed Cine
sya(e) | |8y | ) fapdy | wn
uaj_,l(z) u{r (Z) aido
uy71(2) u;nc(z) a’ydO
In the linear system (4.46) we have
agdg
W Xi| + aZdo —ik R,
= =M 4.48
{V1X1] “ a;ﬁdo ‘ ( )
aZdO
In slice M there is no incoming field:
S;,M
Su.M | . (4.49)
uz,M

Wy, M
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Thus in the linear system (4.46) we have

cy =0. 4.50
LVMXM M (4.50)

4.2 Aperiodic Fourier modal method

In the AFMM-CFF we use PMLs [5] in order to impose the radiation condition at
the lateral boundaries. The radiation condition however imposes a restriction on the
problems which can be solved: no incident field is allowed. Therefore, the Maxwell
equations need to be reformulated such that the incident field is replaced by a virtual
source. To this end, an associated background problem is defined,

V x e’(x) = —koh’(x), (4.51a)
V x h'(x) = —koe’(, 2)e"(x), (4.51D)

with
e""(x) = ek, (4.51c)

This problem is chosen such that it admits an analytical solution and the function € — e’
has compact support. As explained in Chapter 3 (see also [59, 60, 61]), the compact sup-
port condition is required in order to avoid non-zero source terms in the PML. Typically
& represents the permittivity of the background multilayer which supports the scatterer.
Subtraction of (4.51) from (2.17) yields the contrast-field formulation

V x e°(x) = —koh®(x), (4.52a)
V x he(x) = —koe(r, 2)e°(x) — ko(e(x, 2) — (z, 2))e" (%), (4.52b)

with
e“"(x) = 0. (4.52c)

The PMLs can be viewed as an analytical continuation of the solution into the complex
plane [11, 13]. For PMLs placed in the a-direction, this implies a change of the z-
derivative in the differential equations (4.52):

0 1 9

— = ————, with = i . 4.53
5 — ) os with f(z) =z +if(z) (4.53)
The function S is continuous and non-zero only in the PMLs, which are placed in the
stripes « € [0,z;] and = € [z,,A]. In Chapter 3 the tilde (7) notation was used for
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quantities related to the aperiodic problem to achieve clear distinction from the periodic
problem. For convenience this notation is abandoned in this and following chapters. We
mention that although PMLs are originally designed for hyperbolic equations, they have
also been recently successfully applied to the heat equation [37]|. Lalanne and co-workers
[36] were the first to use PMLs with Fourier modal methods. They chose trigonometric
stretching functions whose Fourier coefficients can be computed analytically. Many other
forms for f (and implicitly for 8) have been suggested [6, 12, 57]. Typically, a polynomial
or geometric variation of f in the PML is used. We adopt the first form. An example of
such a function was shown in Figure 3.2.

In this chapter we introduce a slightly different PML than the one defined by (3.47) in
Chapter 3. It is given by the coordinate transformation

x4 ik (Bolw — x )T, 0<z <y,
flz) =13 =z, T <z <Xy (4.54)
x_ikg(ﬁo‘x_xr|)p+la Xy SJZ‘SA,

where x; is the right end of the left PML, x, is the left end of the right PML, and 3,
is the damping strength. To the authors’ knowledge, no study exists on the choice of
p for PMLs in the aperiodic Fourier modal methods. For instance, for FDTD methods
nearly optimal results have been obtained for p € [3,4] [6, 90]. In our computations we
set p=1.

We look at the amplitude of a plane wave with unit amplitude after passing through the
PML. Let « € [z,,A) be a point in the PML and Az = 2 — z,.. We have

|6*ikof(ﬂﬂ)| _ ‘e*ikoine*(koﬁoﬁw)ww koﬁko)pH'

= ei(

Now, we determine the distance over which the amplitude decays from 1 to e_l,

1
—(koBoAx)PT = -1 = kyAz = —.
Bo
This relation provides an intuitive meaning for 3, - it determines the inverse decay length.
Since kg = 27/, the length is scaled by the wavelength of the incident field.

Similarly to the discretization in the standard FMM, we divide the domain into M slices
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slice 1
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‘4,\\‘ slice 2 7//

hs 7// 1 . slice 3 ///

hy /// B . slice4 ///

-7 I )} v

B //A :4, slice M — 2 \\“ 7//
7 slice M — 1 ¢

har—1

Figure 4.2: Sliced geometry. The dashed line represents the smooth profile being ap-
proximated. The hatched areas indicate PMLs.

(see Figure 4.2). Then Maxwell equations (4.52) for the contrast field in slice ! read

0 c 0 .

a_yez,l_aey,l

0 . 1 0 .

&%,l - m%%,l

1 0 . 0

1 0 . 1 0 .
9z

a(x)oy 7' q(z) oz v
Gpe L 0,4
9z x,l f,(l‘)a 2,1

L 0, 04
flz)dz vt gy !

c p—
em,l -

= —ky ;,17

= _kohgc;,lv

—ko g,z,

= —koeGy — ko(1 — ie?)ei,u
()

= _koel(m)ez,l — ko(e () — 6?)62,17

= _koel($)62,l — ko(e(x) — 6?)62,1,

(4.55a)
(4.55b)
(4.55¢)
(4.55d)
(4.55¢)

(4.55f)

for (z,z) € [0,A] x [h_1,hy). As it was done in Equation (4.4d), Equation (4.55d) has
been divided by ¢;(x) in order to avoid products of functions with concurrent (in the
same point) jump discontinuities on the right-hand side.

In the a-direction we use a Galerkin approach with “shifted“ Fourier harmonics (4.5) as
basis functions and test functions. In each slice I the contrast (electric and magnetic)
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fields are expanded as

N
e (@,y,2) = D sera(2)on(,y) = (s0u(2)" - d(x,y), (4.56a)
n=—N
N
h(;,]lv('ray7z) = Z ug,l,n(z)¢n(x7y) = (uz,l(z))T : ¢(I7y) (456b)
n=—N

Again, the « symbol stands for the x-, y-, or z-component of the field. The background
fields, which are known in advance, have to be represented in the same basis as the
contrast field, i.e.

N
GZZ,JZV(I,@/, Z) = Z S(Z;,lm(z)(rbn(xa y) = (S(l;,l(z))T : ¢($, y)v (4573)
n=—N
N
hl;,,]lv(fvya Z) = Z ufx,l,n(z)(bn(xay) = (ug,l(z))T : ¢)(£U, y) (457b)
n=—N

The background field is determined in advance by solving the Fresnel reflection-transmission
problem for a multilayer.

ng(z) = dosgvl(z) =d, (afx,le_k‘)%(z_h“l) + r(i’lek"q’(z_hl)) ) (4.58a)

ul (2) = doull y(2) = dy (ag’lefk"q’(th“l) + rf;,le’%ql(”l)) , (4.58b)

where d, € R*M*! is an all-zero vector except for entry N + 1 and ¢; is defined as

kinc 2 kinc 2
. b T Y
q =1is|€ — =1 . (4.59)

The coefficients ag, ;, Te.1, and a{;,h r}(;l in (4.58) are the amplitudes of the downward and

upward traveling waves corresponding to the electric and magnetic background field.

We apply the Galerkin method with a standard inner product on the interval z € [0, A)
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to the contrast field equations (4.55)

. > - d -
—KsL(2) ko sl = (),

d, e o -
kO 1£Sr,l(z) + ZFKmSz,l(’Z) = _u?clvl(z)’

7iFKwsgc/,l(Z) + iKyS;,l(Z) = 7112)[(2’),
d

Kl () — by ' () = —Prs() — (P - (PD)7)

— d c . c c
kO I%Um,l(z) + ZFKwu z,l(z) = 7Elsy,l(z) - (El - E?)sg,l(z)7

—iFK,u (2) +iK,ul,(2) = ~E;sS (2) — (B, — E})s? (2).

The matrices in the expressions above are defined as follows,

for m,n = —N...4+ N. Here §,,,, is the Kronecker delta and

m(x) = 1/¢(x),
p =1/¢,
v(z) =1/f(z).

b
Sw,l

(2),

(4.62a)
(4.62b)
(4.62¢)

The function f(z) is the complex coordinate transformation implementing the PML.
Since e? and p? are z-independent, the matrices E? = e?I and P? = (e?)flI are diagonal.

For future reference we also list the discretized Maxwell equations for the background
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field:
. b —1 d b b
—iK,s:(2) — ko @Sy,l(z) = —u, (2), (4.63a)
kaldizsl;,l(z) LIFK,S(2) = —ul,(2), (4.63b)
—iFszgJ(z) + iKysZ,l(z) = —ugvl(z), (4.63c)
KU () — gl (2) = (P (), (1634)
ko_ldiiugyl(z) + iFKzubz,l(z) = —E?SZJ(Z), (4.63e)
—iFK,u) ,(2) +iK,ul,(2) = ~Es? (2). (4.63f)

4.2.1 TE-polarization

In the case of planar incidence and TE-polarization we have s; = s; = u; = 0 and
si’c = sg = ug = 0. The discretized Maxwell equations for the contrast field (4.60) and

background field (4.63) reduce respectively to

_ko_ld%sil(z) = —ug(2), (4.64a)
—iFK,s; (2) = —uj ;(2), (4.64b)
kaldizu;,l(z) +iFK U (2) = —Eist(2) — (B, — EDs® (2), (4.64c)
and
—ko 1%52,1(2) = —uy,(2), (4.65a)
—iFK, s, (2) = —uz,(2), (4.65b)
kot dizu;l(z) + 1FK1ugl(z) = —E?s;l(z). (4.65¢)

Substitution of (4.64a) and (4.64b) in (4.64c) yields

&2
@s;z(Z) = kSAlsZ,l(Z) - kg(El - E?)SZ,Z<Z)> (4.66)

where A; = (FKI)2 —E;. Equation (4.66) is a system of non-homogeneous second order
ordinary differential equations. Its solution is of the form

C C C
Syl = Sy, hom,l + Sy part,i- (467)
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The homogeneous solution is given by
Sy hom,1(2) = W(e QET )l ghoQueii ey, (4.68)

where W) is the matrix of eigenvectors of A;, and Q; is a diagonal matrix with square
roots of the corresponding eigenvalues on its diagonal. We assume the following form for
the particular solution (method of undetermined coefficients for systems, see Chapter 3
and [59])

Sy part,1(2) = PZSZ,Z(Z)7 (4.69)
where p; € R*¥ ! is a vector to be determined. Substitution of (4.69) in (4.66) yields
(A, — ¢/Dp, = (E; — E{)dy. (4.70)
At the interface, continuity of the tangential components of the fields is required,

sy () = sy 11(ly), (4.71a)
ug i (hy) = ug i (hy). (4.71Db)

These conditions hold for the contrast field as a result of the continuity of tangential
components of the total and background fields. Using (4.64a) yields

sy () = sy 111(hy), (4.72a)
ot s () = K st (). (4.720)
We define
X = e toQulhi), (4.73a)
Vi=-W,Q;. (4.73b)

Then, from (4.72), (4.67), (4.68) and (4.69) we have for each slice

W, X, Wl:|{cl+} [WM WMXZHHJH]
L 4g(hy) = T 4 g1 (hy), 4.74
[lel B R R R i | ) AN E

where

b b

P:is (4.652) | P;S

g(z)=| N | =0 (4.75)
Piko 7Sy PiUg 1
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The radiation condition is imposed by requiring that coefficients of the incoming waves
in layers 1 and M vanish,

ci =0, ¢y =0. (4.76)

4.2.2 TM-polarization

In the case of planar incidence and TM-polarization we have u; = u; = s, = 0 and

bl = sZ = 0. The discretized Maxwell equations for the contrast field (4.60) and

background field (4.63) reduce respectively to

u

— d c . c c
Fo ' s (2) +iFK,sE ) (2) = —ug(2), (4.77a)
1 d . 1. _ _
—ky 1@111,,1(2) =-P; 1Sz,l(z) - (P, t- (P?) 1)52,1(2)7 (4.77b)
—FK, UG (2) = ~BisS () - (B — B)sY (=), (4.77¢)
and
—1d , b b
ko asx,l('z) + ZFKsz,l(Z) = _uy,l(z)7 (4'783)
1 d _
—kg ' uya(2) = (P sga(2), (4.78b)
—iFK,u) () = ~EJs} (2). (4.78¢)

A single second-order equation is obtained by substituting (4.77b) and (4.77¢) in (4.77a)
and subsequently using the Maxwell equations for the background field (4.78) to replace
Sz,l and Sz,l by uz,b

d2

Euy,l = PlelUZ,l + (Plel - (P?)ilB?)ub (4.79)

Yyl

where B, = FK,E; 'FK, — I and B} = FK, (E}) "'FK, — I. The solution of (4.79) is
of the form

ugc/,l = u;,hom,l + u;,parml' (480)
The homogeneous solution is given by
Uy pom 1 (2) = W(e RoQEThimlgl y o@ilE=hi ey, (4.81)

where, as before, W; and Q; are respectively the matrix of eigenvectors and diagonal
matrix of square roots of eigenvalues of Plel. We assume the following form for the
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particular solution
Wy part,1(2) = quz,l(z)- (4.82)
Substitution of (4.82) in (4.79) yields
(P, "B, — q/T)p; = ((P}) "B} — P, 'B))dy. (4.83)

At the interface, continuity of the tangential components of the fields is required,

wy g (hy) =y g1 (By), (4.84a)
s () = sz 141 (M) (4.84b)

Using (4.77b) yields
uy (b)) =y i (), (4.85a)

_ d . - -
ko Py () = Py(Py ! — (P) s () =

_ d . _ _
ko 1Pl+1 @Uy,lﬂ(hz)*PlH(Plﬁl - (P?—&-l) l)sl;c,l—&-l(hl)' (4.85Db)

We define V; = —P;W,Q; (keeping the old definition of X;). Then, from (4.85), (4.80),
(4.81) and (4.82) we have for each slice

WX, W, Cl+ Wi WX Clt1
= + 4.
[ } [Cl_ + g (hy) - g1 (hy), (4.86)

VX, -V Viie Vi X e
where
plub l
gi(2) = - v -
P,p;kg ld%uf,,z - P)(P, T (P?) l)dosfc,z]
b
(4~;8b) pluy,l (4 87)
(Py(P)) '+ (P, — P?)(P?)ld())si,l]

Similarly to the TE-case, the radiation condition is imposed by requiring that coefficients
of the incoming waves in layers 1 and M vanish,

¢ =0,cy=0. (4.88)
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4.2.3 Conical incidence

In the case of conical incidence, the Maxwell equations for the contrast field (4.60) reduce

to
& . 2 2 —1 b by —1y b
@Sm,z(z) =koCisy 1 (2) + ko (BiP; — B/ (P)) 7)s;(2), (4.89a)
d2 c 2 c 2 by_. b
7dZ2 uw,l(z) = koDzux,z(z) — k(B — El)ux,l(z)a (4.89b)

where C; = Ki + Blel, D, = Kz + A,;. As for the TM-polarization, in order to arrive
at (4.89) from (4.60), additionally the Maxwell equations for the background field (4.63)
need to be used. The solution vector is of the form

c c
= Sz, hom,l + Sz, part,l> (490&)
c

c c
u:z:,l = uz,hom,l + u:r,part,l' (490b)

c
Sz,l

The homogeneous solution is given by

Sch,hom,l(z) = Ws,l(eikOQSJ(Zihlil)csﬁl + ekUQS'l(27h1)csil)a (491)

WS pom i (2) = W, (e F0QuiGhid e by ehoQuilzmho ey (4.92)

) s

where the pairs W, ;, Q,; and W, ;, Q,; contain the matrix of eigenvectors and the
diagonal matrix of square roots of eigenvalues of, respectively, C; and D;. To find the
particular solution we assume the form
b
Sfc,part,l(’z) = ps,lsfc,l(z)a (4933)
b
u;,part,l(z) = pml“w,l(z)' (493b)

Using this Ansatz in Equation (4.89), we obtain two linear systems that can be solved
for p,; and p,,

(C— ¢’ D)py; = —(B,P; ' — BI(P))~)d,, (4.94a)
(D, — g/ D)p,, = (B, — E))d,. (4.94b)

At the interface, continuity of the tangential components of the fields is required
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Using (4.60c) in (4.60e) and (4.60f) in (4.60b), the y-components of the fields are ex-
pressed in terms of z-components,

— C —_ d C
so, =A;" (FKzKysz,l + kg 1@%,1 + (B, — E?)sg_’l> , (4.96a)
, B _ . d N
u, =B; ! (FKmEl 'K, ul, + ko 1(755” —iFK,(I- E/E; 1)s’ l) . (4.96b)
: ~Sq, :
We define
0 W,
W, — S 4.
! [ AW, Q. A7'FK,K, W, ] / (4.972)
W, , 0
V,=—| __ w, _ 4.97h
: [ B, 'FK,E,'K,W,, B/ 'W,,Q,, ] ’ (4.97b)
and N B
+ —Cu,l - Cul
= ’ = ’ . 4.
“ { C;l ] @ |:Cs,l] (4.97¢)

Then, from (4.95), (4.90), (4.91) and (4.93) we have for each slice

[WZXZ Wchlf}+gl(hl>=[Wl+l Wl“X“lH"{“}gm(hl), (4.98)

ViX; Vi g Vigr =V X e
where
b
b ps,ls:r,l b b b
-1 -1
gl(z) _ Al (FKzKyps,lS:L’,l + kO pul,)l%uz,l + (El - El)dosy,l)
1 1 b ?u’luw’l b bp—1 b
Bl_ (FKacEl_ Kypu,luaf,l + kO_ ps,ldlzsac,l - ZFKQT(I - El El_ )dOSz,l)
with slz’l = %(kxouzl — kjyug ;). The radiation condition is imposed by requiring that
; - . :

coefficients of the incoming waves in layers 1 and M vanish,

ci =0, ¢y =0. (4.99)

4.3 Final remarks

In this chapter the FMM and the AFMM-CFF have been generalized to arbitrary shapes
and illumination. It has been shown that in the FMM discretization leads to homogeneous
linear systems, while in the AFMM-CFF the source term causes the resulting linear
systems to become non-homogeneous. When the radiation conditions are used, these
systems have the same number of equations and unknowns. Due to stability issues
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special care needs to be taken when solving the coupled linear systems. This is discussed
in Chapter 5. For this reason presentation of numerical results is postponed to the next
chapter.






Chapter 5

Stable solution of the coupled
linear systems

In order to apply the FMM to non-periodic structures, perfectly matched layers need to
be placed at the periodic boundaries and the Maxwell equations have to be formulated
in terms of a contrast (scattered) field. This reformulation modifies the structure of the
resulting linear systems and makes the application of available stable recursion algorithms
impossible. We adapt the well-known S-matrix algorithm for use with the aperiodic
Fourier modal method in contrast field formulation (AFMM-CFF). To this end, stable
recursive relations are derived for linear systems with non-homogeneous structure. The
stability of the algorithm is confirmed by numerical results.

5.1 Introduction

The classical Fourier modal method (FMM) [47, 65] and the aperiodic Fourier modal
method in contrast-field formulation (AFMM-CFF) (see Chapters 3 and 4 as well as
[59, 58]) rely on two main steps: {1} discretizing the computational domain into slices
and obtaining the general solution (up to integration constants) in each slice and {2}
determining the integration constants (or modal field amplitudes) by solving a sequence
of recursive linear systems resulting from the application of the interface conditions.
The straightforward approach for solving the sequence of linear systems, the T-matrix
algorithm, is known to be numerically unstable [39]. This issue is common for various
numerical methods in optics and electromagnetics when discretizing the direction normal
to the layered media and is generally linked to the growing exponentials appearing in the
equations.
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During the past two decades many algorithms for solving the sequence of recursive linear
systems that avoid instability issues have been proposed [55, 17, 39, 9]. Many of them
are, in one way or another, connected to the S-matriz algorithm [32]. Even for the
enhanced transmittance matriz approach [48], which has a somewhat different algebraic
structure, the connection to the S-matrix algorithm has been revealed [84]. A recent
study [88] shows that the enhanced transmittance matrix approach is equivalent to a
stable condensation algorithm based on Riccati transformations. For a stability study of
the latter see [1] and references therein. We refer the reader to Ref. [40] for an account of
the S-matrix, and related R-matriz algorithms. It is worth mentioning that an efficient
parallel implementation of the S-matrix algorithm has been recently presented [30].

The S-matrix algorithm relies on the physical concept of mapping the incoming waves
on an interface to outgoing waves. This mapping is realized by a so-called S-matrix.
Therefore the S-matrix algorithm is suited for linear systems with a homogeneous struc-
ture (of the type A;x; = A, 1%, 1, as opposed to the more general non-homogeneous
case Ajx;+ £, = Aj %41 +£41). In the AFMM-CFF, the modification of the interface
conditions and of the general solution leads to a non-homogeneous structure of the linear
systems. We adapt the existing S-matrix algorithm to the new structure of the equations.
The choice of the S-matrix approach over the enhanced transmittance matrix approach
as a starting point for the extension is explained by the superior flexibility and generality
of the former.

This chapter is structured as follows. In Section 5.2 we present classical T-matrix and
S-matrix algorithms for homogeneous linear systems. In Section 5.3 we demonstrate how
the classical S-matrix algorithm can be adapted to the non-homogeneous linear systems
arising in the AFMM-CFF. Section 5.4 contains numerical results confirming the stability
of the proposed method. The problem of scattering from a dielectric cylinder, which
admits a semi-analytical solution, is used for this purpose.

5.2 Homogeneous T-matrix and S-matrix algorithms

In this section we are concerned with solving the homogeneous recursive linear systems
(4.17), (4.27), (4.46) arising in the standard FMM. It has been shown in Section 4.1 that
for all cases (TE, TM and conical) these systems are of the form

X, 0] [¢f _ 1 0 Cl++1
wfo =l <)) o
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where

(5.2)

Rl = |:Wl Wl:| .

Vi Vv,

A straightforward approach of solving this system is to eliminate the coefficients in the
intermediary slices. For this purpose the interface relation (5.1) can be written as a
T-matrix interface relation:

+ Tll T12 +
ol =l 2 ] 6
where
I o] ,[X o
r-lo x) T 1 o4
with
-1 -1
vl BN e

Elimination of the intermediary coefficients yields
+ =11 2
cu| _ [T T
Cm

ol (5.6)
T121 T122 1) .

cy

where

1

TM*l == H Tl' (57)
I=M-1

Since the vector coefficients ¢;; and ¢; are known from the radiation conditions (see
Chapter 4), the system (5.6) has two vector equations with two vector unknowns and
can be easily solved. If needed, the intermediary coefficients are determined at a later
stage. Relations (5.3), (5.4), (5.6) and (5.7) define the so-called T-matriz algorithm,
which has a very simple implementation. Unfortunately this algorithm is unstable. The
reason of instability lies in the matrix

Xl+1 _ e*kon+1(hz+2*hz+1)' (5.8)

For thick slices or a large number of harmonics some entries of X;,; become extremely
small. The entries of Xl]_ll computed in (5.4) consequently become extremely large and
introduce a large round-off error when represented in floating point arithmetic.

We now discuss a stable alternative to the T-matrix algorithm: the S-matriz algorithm.
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+ - + -
o7 ’ ¢ ¢ ’ ¢

N T, N (Si, 1)
Cri1 Cri1 Cry1 Cr1

Figure 5.1: T-matriz (left) and S-matriz (right) representation of an interface relation.
Colors represent the input-output properties of the T-matrix and S-matriz: blue waves
are mapped to red waves.

Unlike in the T-matrix representation of an interface relation, an S-matrix maps incoming
waves (on the interface) to outgoing waves (see Figure 5.1):

[cﬁl}:lsl“ s’ [c? } (5.9)

- 21 22 -
C S S; Cri1

The S-matrix S; of an interface is related to the T-matrix T, of the same interface by

/11 112 122

s = (T - T AT T TIHX,, (5.10a)
S12 =T (T0") Xy, (5.10b)
s?' = —(T'?)'Tix,, (5.10¢)
SP2 = (T7") " Xyys. (5.10d)

The above relations are obtained by bringing (5.3) to form (5.9). Similarly to the T-
matrix algorithm, the intermediary coefficients will be eliminated such that an expression
of the following form is obtained for the coefficients in the layers 1 and M:

{CX[:| _ [S}\/l[1 S}v211] [CY} . (5.11)

- a2l & 22 -
C1 Sv—1 Sa-1| lem

As shown in [32, 40| the cumulative scattering matriz Sy;_; can be computed recursively
in a stable manner using the update relation

s8] s{'HIS!, Si2 + 81812, HY's? 5.12)
st sp| T |stoespisiasl, stasp O
with
H; = (1-S8728)7", (5.13)
H/ = (I-S7'S;2,)"". (5.14)

Note that the T-matrix algorithm can also be seen as a recursive algorithm with an
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Figure 5.2: A stack of interfaces with upward- and downward-traveling waves in-
between.

update relation

Tl - TlTl—l' (515)

5.3 Non-homogeneous S-matrix algorithm

We now proceed to adapt the standard S-matrix algorithm for use with non-homogeneous
recursive linear systems arising in the AFMM-CFF. As shown in Section 4.2, matching
of the interface conditions for the contrast field at interface [ yields an equation of the
form

Xl 0 C+ I 0 C+
Rl |:0 I:| |:C§_:| +gl(hl+1) = Rl+1 |: :| |:Xl+ll+cll_+1:| +gl+1(hl+1)' (516)

This is rewritten in the T-matrix formalism as

+ 11 12 + 2
| _|Ti T | g 1
] =[x o] o]+ 5] >-10
where T is defined in (5.4) and
g = Rz;l1 (&i(hig1) — g1 (higr))- (5.18)

The S-matrix algorithm is derived from the matrix T, and vector g; of the T-matrix
equation (5.17). In the spirit of the S-matrix algorithm, the waves scattered at the
interface are expressed in terms of waves incident on the interface [40] (see Figure 5.2)
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] -8 8] [
¢ Sl Sl Cl+1
The S-matrix S; and the vector f; can be determined from the T-matrix T; and the
vector g; by bringing (5.17) to form (5.19).

£

E (5.19)

sit= (T, — T (T T X, (5.20a)
12 =T (T0) Xy, (5.20D)
st' = (1) ' TX,, (5.20¢)
P = (1)) Xy, (5.20d)
£l =g —T,°(T)) e, (5.20e)
£ =—(T7") g, (5.20f)

Expressions (5.19) and (5.20) describe the scattering properties of the interface I. These
properties are defined by a local scattering matriz S; and a local source vector f;. To
simplify further presentation we denote them together as (S;,f;). Figure 5.2 gives a
schematic representation of the interfaces and associated scattering matrix-vector pairs.

We proceed by defining a cumulative scattering matriz and a cumulative source vector
for a stack of multiple interfaces. The matrix-vector pair (S;,f;) defines the scattering

properties of the stack of interfaces 1,...,1 (see also Figure 5.2).
+ all  gl2 + el
Crp1| _ §z §z C1 f, 5.91
o [sfl sl”] EAE lf? | (G20

By assuming that the cumulative scattering matrix-vector pair for interface [—1 is known,
we will derive the cumulative matrix-vector pair for interface [ using the local scattering
matrix-vector of interface [, as illustrated by the diagram

~ - (Si.f) = =
(Si—1,f_1) — (5,,5). (5.22)

This defines a recursive relation for the cumulative matrix-vector. Note that the cumula-
tive scattering matrix-vector and the local scattering matrix-vector for interface one are
equal,

(S1.£1) = (S1.f1)- (5.23)
This relation is used to initialize the recursion.

We now outline the derivation of the recursion formally represented in (5.22). For con-
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venience, relation (5.21) is repeated here for interface [ — 1
[cf—] _ slgl Sé; {CT} n I_:l;—l (5.24)
c1 SiZ1 SiZa| ler £y

The first equation of (5.24) and the second equation of (5.19) yield

cf = H;S{ el +S/2,H/S ey + HIS 7 + Hif (5.25)

where
H, = (I-S;2,87")7 ", (5.26a)
H/ = (I-S7'S;?2)". (5.26b)

From the first equation of (5.19) and (5.25)

¢y =SITHIS ef + (817 + 818/ H/SP) e, (5.27)
+ S HSE F + HIE ) + £

From the second equation of (5.24), the second equation of (5.19) and (5.25)

ci =(S7L, +S72 ST HIS L el + SP2 HYSP e, (5.28)
+ S, SH(HS2 ff + HUE ) + S + 1.

Now (5.27) and (5.28) give the recursion relations

sitosP] [ stmst,  siPesisP sy 520

st s " |stiespstust,  starse |0 ©
f|_ SiT(HIS2 f) + Hifi ) + ) (5.200)
f'12 B Slzzlslzl(HzgllzlflzJFH;fll—l)JFSlzzlflerflz—l . .

These update relations define the non-homogeneous S-matriz algorithm. While the up-
date relation for the matrix S; is the same as in the classical S-matrix algorithm (see rela-
tion (5.12) in this chapter and relation (15a) in Ref. [40]), an additional update relation
appears for the vector f;. The above formulas are recursively used for [ = 2,..., M — 1,
using (5.23) for | = 1. The reflection and transmission coefficients may be computed
when the cumulative matrix-vector for all M — 1 interfaces is known

+ all al2 + el
Cym Sm—1 Swa-1]| |1 far—1

I e ~ - — . 5.30
Ll ] lS?\/l[1 Sﬁj l:CM:| - lfﬁj ( )

In the contrast-field formulation of the FMM, the incoming field has been moved into a
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source term. Therefore, the coeflicients corresponding to incoming fields in the super-
strate and substrate vanish, ¢ = ¢y = 0, and we have

4)-fi)

Note that for the computation of the vector f;,_; in (5.29b) the blocks S;', and S},
are not required.

Very often, especially for aperiodic structures, we are also interested in the near field,
i.e. the field inside and around the scatterer. For this purpose, also the intermediary
coefficients in slices 2,...,M — 1 need to be computed in a stable way. This requires
the inverse of Slu and consequently of X;, which causes instabilities due to growing
exponentials. To avoid the direct inversion of X;, we separate the propagation matrices
from the scattering matrix. Equation (5.19) is written as

11 12 i 1
ol _ (S S Xc f; 5 39
— T e 2| x| T el (5.32)
< S; S; 1+1C 41 1
In order to compute the intermediary coefficients a recursion from bottom to top is
employed. From the first equation of (5.32) we can compute

11 12

Xie = (8] ) el — S Xipieny — £, (5.33)

which may be used in the second equation of (5.32) to compute c;

_ 21, /11, 21,11, 1 /12 22 _
¢ =S (S ) el + (=81 (S ) IS 8 )X e, (5.34)
— s (s T 4 1
Finally, the ¢;" is computed from the first equation of (5.24),
cf =Siticl +S%ie +6 . (5.35)

As before, due to the absence of an incoming field in the superstrate, ¢; = 0, and (5.35)
becomes

¢ =82 ¢ +f-,. (5.36)

Note that also in the computation of intermediary coefficients, the blocks Sllil and Sl%l
are not required. Thus, the computation of intermediary coefficients requires an addi-
tional sweep through the slices using recursive relations (5.34) and (5.36). The procedure
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Figure 5.3: Sliced geometry of a cylinder. Different colors correspond to different
refraction indices.

is formally described by the diagram

S,.5), (S;_1.5_
i (S1:£1), (Si—1.f1-1) ¢;. (5‘37)

. e e 1. . — + sl
The recursion is initialized at [ = M, with c); =0, cy; = fj,;_;.

5.4 Numerical results

We consider the problem of scattering of a plane wave from a dielectric cylinder. An
important argument for this choice is the fact that a semi-analytical solution can be
found. The solution of the cylinder problem is obtained by writing the Maxwell equations
in cylindrical coordinates, expanding the fields inside and outside the cylinder in terms
of Bessel functions and finally matching the fields at the cylinder’s interface [89].

In order to solve the same problem with AFMM-CFF, we first need to approximate the
geometry by multiple rectangular slices. For a cylinder this may be done by imposing
a fixed arc length between two adjacent slices. This will ensure an adaptive, slope-
dependent staircasing of the profile. Figure 5.3 shows such a profile for a cylinder with
radius p = 50 nm obtained using M = 19 slices. The incident plane wave has a wavelength
A = 628.3 nm, travels downwards in the plane perpendicular to the cylinder and is TM-
polarized. The semi-analytical solution and the corresponding AFMM-CFF solution of
this problem are shown in Figure 5.4. The PMLs are placed in the stripes « € [0, 100]
and z € [400,500] and implemented using the coordinate transformation (4.54) with the
parameters 3y = 2, p = 1. As expected, in the region between the PMLs the numerical
solution is close to the reference solution.
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Figure 5.4: Absolute values of the magnetic field: exact solution (top) and solution
computed with AFMM-CFF (bottom). Hatched areas indicate PMLs.
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Figure 5.5: Convergence of the AFMM-CFF with the non-homogeneous S-matriz and
T-matriz approaches for a cylinder with radius p = 50 nm approzimated by M = 79
slices.
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77

p=25nm p =50 nm p =100 nm
N =10, Non-hom. S-matrix 1.0261e+00 1.0600e4+00 9.2628e-01
N =10, Non-hom. T-matrix 1.0261e+00 1.0600e4+00 9.2628e-01
N =20, Non-hom. S-matrix 1.0264e+00 1.0602e4+00 9.2614e-01
N =20, Non-hom. T-matrix 1.0264e+00 1.0602e4+00  1.2620e+00
N = 40, Non-hom. S-matrix 1.0265e+00 1.0602e+00 9.2629e-01
N =40, Non-hom. T-matrix 1.0265e+00 1.4295e+00 6.5550e+19
N = 80, Non-hom. S-matrix 1.0266e+00 1.0602e+00 9.2636e-01
N = 80, Non-hom. T-matrix 1.0167e+00 3.6577e+19 6.162}e+61
Reference 1.0266e4+00  1.0602e+00  9.2637e-01

Table 5.1: Magnitudes of the magnetic field in a fized point above the cylinder computed
with the T-matriz and S-matriz algorithms adapted for CFF for increasing radius p and
truncation order N.

We now turn our attention to the issue of stability. We use the cylinder problem
to compare the performance of a non-homogeneous T-matrix algorithm and the non-
homogeneous S-matrix algorithm presented in Section 5.3. Figure 5.5 shows the conver-
gence of AFMM-CFF combined with these approaches for a cylinder with radius p = 50
nm approximated by M = 79 slices. The error is defined as
E=hyN (x,2) — by (2, 2)[|, on Q,

where hz’N is the numerical solution obtained with AFMM-CFF for 2N + 1 harmonics,
h;’ref is the semi-analytical solution for the cylinder problem and €, = [200, 300] x [0, 100]
is the smallest rectangular domain enclosing the cylinder.

For a low truncation number N, both algorithms give similar results. At N > 30 the T-
matrix algorithm becomes unstable while the S-matrix algorithm yields accurate results
for a larger number of harmonics. The truncation number for which the algorithm breaks
down depends on the slice thickness, as demonstrated in Table 5.1. It lists the magnitudes
of the magnetic field in a point (250, -100) computed with the two approaches. The
radius of the cylinder p and the truncation order N are varying. From the matrix
X, = e FoQi(hii=h) 3¢ is visible that increasing the radius of the cylinder while keeping
a fixed number of slices (thus increasing slice thickness) or increasing the number of
harmonics will lead to smaller entries in X; and respectively larger entries in its inverse,
generating significant round-off errors. This explains the instabilities exhibited by the
extended T-matrix approach for larger values of N and p. On the other hand, the non-
homogeneous S-matrix algorithm is stable and gives correct results for all N and p. The
offset of the computed solution with respect to the reference solution visible in Table 5.1
and the plateau on Figure 5.5 (error remains constant for N > 50) are due to staircasing.
This effect is well known for the FMM [67] and can be reduced by a normal vector field
approach [78].






Chapter 6

Aperiodic Fourier modal
method with alternative
discretization

The aperiodic Fourier modal method in contrast-field formulation presented in the pre-
vious chapters uses spectral discretization (harmonics) in the finite periodic direction
and spatial discretization (slices) in the other direction. In the light of the fact that
the structures of interest have a large width-to-height ratio and that the two discretiza-
tion approaches have different computational complexities, we propose exchanging the
discretization directions. Moreover, if the scatterer has repeating patterns, exchang-
ing the discretization directions facilitates the reuse of results of previous computations.
Therefore the new method is suited for scattering from objects with a finite number of
periods, such as gratings or memory arrays. The exchange of discretization directions
requires a projection of the background field on the new basis introduced by the alter-
native discretization. Numerical experiments show that a considerable reduction of the
computational costs (in terms of time and memory) can be obtained.

6.1 Introduction

Let us compare the discretization appro