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Chapter 1

Introduction

In this chapter we briefly introduce the application which motivates the research docu-
mented in this thesis. In particular we describe the fabrication of electronic chips. Then,
in the context of inspection and qualification of the quality of printed integrated circuits,
a related forward and inverse problem are formulated. We define the objective and list
the main results of this thesis. The last section gives a detailed outline of the following
chapters.

1.1 Lithography

Popular electronic devices of our days (computers, smartphones, TVs, etc.) all share a
common ingredient: an electronic chip or integrated circuit . It is in fact the ingredient.
Because the chip essentially operates at the electrical level by either permitting or denying
the flow of current through certain connections, it is able to perform considerably faster
than any mechanical device (consisting of moving parts). This electronic switching is
realized at the lowest level by transistors. At a higher level transistors are used to
implement the basic logical operations: not, and, or, xor, etc. At even a higher level
the more complex arithmetic operations can then be performed by a sequence of logical
operations. In this manner any programmable algorithm can be reduced to a set of basic
operations. The most important property of a chip is that it must be able to regulate
its own electrical properties in order to permit or deny the flow of electrical current
depending on circumstances. For this reason, it must be made from a semiconducting
material , such as silicon.

The stages of a lithographic process are shown in Figure 1.1. It starts with a pure silicon
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(1) deposit oxide on silicon substrate

(2) coat with photoresist

(3) align and expose to UV light

(4) develop, rinse with solvents

(5) etch with acid

(6) remove photoresist

Figure 1.1: Lithographic process.

ingot, which is cut into thin wafers. Each wafer is then polished and chemically washed
to remove scratches and impurities on the surface. To form a thin layer of silicon dioxide
on the surface of the wafer (1), the wafer is baked in an oven at 800-1200 oC. Depending
upon which process is preferable, a layer of silicon dioxide can also be deposited onto
the surface of the wafer using chemical vapor deposition (gas is used to deposit a thin
layer of silicon dioxide). Next a coat of photoresist, a light sensitive material, is placed
onto the wafer by a process known as spin coating (2). As the photoresist is being
placed onto the wafer, the wafer is rotated to create a thin, uniform layer of photoresist.
In step (3) ultraviolet light is then shone onto the photoresist-coated wafer through a
patterned mask. Masks are larger than the size of the die (the area occupied by a single
chip on the wafer). For instance, for 157 nm technology the mask is four times the
size of the die [38]. If a positive photoresist is used, the photoresist subjected to the
light becomes more soluble in the developer solution and is washed away using a solvent,
as shown in step (4) of Figure 1.1. On the other hand, if a negative photoresist is
used, the photoresist hardens and adheres to the layer of silicon dioxide beneath. When
exposed to the developer solution, the unexposed photoresist is washed away, forming a
negative image of the mask. The exposed silicon oxide is removed by a chemical etching
process (5) while the remaining photoresist protects the unexposed areas with the silicon
oxide underneath. Finally the remaining photoresist is removed (6), leaving the intended
pattern on the wafer. This process is repeated to form the desired product layer by layer.

The critical step (3) depicted in Figure 1.1 and consisting of alignment and exposure to
UV-light is performed by complex lithography systems. Figure 1.2 shows such a litho-
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Figure 1.2: An ASML lithography machine.

graphy machine designed and built by ASML1. Some of the challenges of step (3) are
discussed in the next section.

1.2 Problem description

The product of a lithographic process is a wafer consisting of an array of electronic chips
(Figure 1.3). Figure 1.3 also reveals the presence of gratings in the scribe lane (the
lane between the chips). Unlike electronic chips, gratings have a very regular periodic
structure and are much smaller than a chip. Gratings function as metrology targets or
markers and serve two purposes: (1) high-precision alignment of consecutively printed
layers on the wafer and (2) quality inspection. We explain the quality inspection in more
detail. Because of the high complexity, several things can go wrong during a lithographic
process: the wafer might be out of focus, the photoresist could be over- or underexposed
to UV-light, etc. All these factors influence the quality of the integrated circuit and
implicitly the shape of the grating printed in the scribe lane during the same process.
Figure 1.4 shows the effect of focus on the shape of the grating lines. The exact grating
shape contains information about the quality of the process. The approach of using
optical microscopy to determine the shape would fail due to the fact that the size of
the grating features (of the order of 100 nm) is smaller than the wavelength of visible

1
ASML is a company located in Veldhoven, The Netherlands. It is the largest supplier in the world

of photolithography systems for the semiconductor industry. The company manufactures machines for
the production of integrated circuits, such as RAM and flash memory chips and CPUs.
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Figure 1.3: The wafer (left) with a zoom-in of the structure of its elements: chip (top
right) and grating (bottom right).

light (400...700 nm) and thus beyond the diffraction limit . In this range of feature
dimensions electron microscopy can be applied. However it has its own weak points:
it is slow, expensive and possibly destructive. Particularly, inspection with a scanning
electron microscope (SEM) leads to a shrinkage of the grating lines. In order to avoid the
drawbacks of a direct measurement (with electron microscopy), an indirect measurement
(based on optical metrology) is used. For this purpose, light is shed on the grating,
and the intensity of the scattered light is measured by the CCD (charge-coupled device)
camera. Figure 1.5 demonstrates the set up for such a measurement. Let p represent
the set of parameters describing the shape of the grating. Two problems can now be
formulated.

Figure 1.4: Electron microscope image of three gratings. The grating in the middle
has been produced when the wafer was in focus. The other two gratings result from a
lithographic process with the wafer being out of focus.
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Forward problem (scattering simulation): Given the grating shape pa-
rameters p, compute the corresponding light intensity I(p).

Inverse problem (profile reconstruction): Given the measured light in-
tensity ICCD, determine the set of grating shape parameters p that minimizes
||ICCD − I(p)||.

Since light is an electromagnetic wave, a rigorous model of the forward problem is given
by the Maxwell equations (see Chapter 2). The inverse problem is also referred to as
the reconstruction problem since it is concerned with the reconstruction of the grating
shape from the measured light intensity. Often to solve the inverse problem the solution
of the forward problem is required. Both problems are non-trivial and extensive research
has been done on them. In [88] and [86] the forward and inverse problem respectively
are studied in the context of the application addressed in this thesis. An important
assumption is made in these studies: the grating is modeled as an infinitely periodic
structure. This assumption is accurate enough for gratings which are considerably
larger than the size of the illumination spot. However, gratings occupy precious space
on the wafer, which could be used for the end product: the electronic chips. Therefore
it is desirable to make these structures as small as possible (but large enough to be able
to perform reconstruction on them). Another reason for making the gratings smaller
is in-die metrology , that is metrology on targets placed inside the die (chip area). For
small gratings the periodicity assumption introduces a considerable modeling error. This
motivates the focus of this thesis: solving the forward problem for finite gratings.

1.3 Objectives and main results

Our objective is to extend the area of application of the Fourier modal method (used
in [88] and [86]) from infinitely periodic to finite structures. The first step in this
direction was made by Lalanne and co-workers for waveguide problems [36, 79, 26] where
only normal incidence is considered. We build up on this work by applying the Fourier
modal method (FMM) to gratings illuminated at arbitrary angles of incidence. Besides
the extension of the FMM to finite structures, we are also concerned with reduction of
computational costs in terms of time and memory. The main results of this thesis are:

• A novel method for simulating scattering from finite structures is formulated: the
aperiodic Fourier modal method in contrast field formulation (AFMM-CFF). It in-
herits the advantages of the standard FMM: simplicity and robustness. In the same
time the method is versatile in the sense that it allows an easy switch from periodic
boundary conditions to aperiodic ones. In this respect, the AFMM-CFF stands
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CCD

Light source

Wafer

Optical

Filter

system

Figure 1.5: Indirect measurement of the grating profile.

now in one line with popular numerical methods such as the finite element method
(FEM) and the finite-difference time-domain method (FDTD) where both bound-
ary conditions are easily implemented. In comparison to the supercell2 FMM, the
AFMM-CFF achieves the same accuracy with a much smaller number of harmonics.
This implies a considerable reduction of time and memory requirements.

• Based on the AFMM-CFF, we develop a method (AFMM-CFF with alternative
discretization) which is even faster and uses even less memory. This is achieved by
exchanging the discretization directions in the AFMM-CFF, as well as exploiting
the local periodicity (locally repeating structure) of a finite grating. It is shown in
Chapter 6, that the substantial reduction of memory requirements (which can reach
factors of 100) is crucial for large-scale problems. We demonstrate that scattering
from a large grating with 1024 lines can be relatively easily simulated with the new
approach. This is a difficult task for other methods (such as FEM and FDTD),
which are generally unable to take advantage of the local periodicity.

1.4 Outline of the thesis

Chapter 2 gives the mathematical description of the physical problem of scattering.
The mathematical model consists of the Maxwell equations and constitutive material
relations that describe the propagation of electromagnetic waves, as well as conditions
that have to be satisfied by the field at material interfaces and domain boundaries. We
formulate the equations in time domain and in frequency domain. The description is

2
In the supercell approach the finite structure is simulated with the standard (periodic) FMM by

placing the structure of interest in a large computational domain (or computational cell) such that the
interaction with the neighboring cells is minimized.
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completed by a definition of an incident field. In the last section of the chapter several
popular methods for solving Maxwell’s equations are reviewed.

In Chapter 3 a simple scattering problem is considered: scattering of a TE-polarized
plane-wave from a single rectangular line. The principle of the aperiodic FMM in
contrast-field formulation (AFMM-CFF) is demonstrated on this ”model problem“. Af-
ter the standard FMM is formulated, the idea of artificial periodization with perfectly
matched layers (PMLs) is explained. Because the incident field is affected by the PMLs,
the problem is reformulated in terms of a contrast field. In this way the incident field
is replaced by a virtual source. Results of numerical studies performed with the newly
proposed method are presented at the end of the chapter.

The AFMM-CFF is generalized to arbitrary shapes and non-planar illumination inChap-
ter 4. Here both the classical FMM and the AFMM-CFF are presented in their most
general formulation. The discretization is formulated in a more elegant manner with the
Galerkin approach that is directly applied to the first-order time-harmonic Maxwell equa-
tions. The Li rules are applied in the discretization process. The governing equations
for the three fundamental cases (TE, TM, conical) are then derived from the discretized
equations.

Chapter 5 focuses on solution strategies for the set of recursive linear systems resulting
from the discretization with AFMM-CFF. It is first explained that a straightforward
solution approach, the T-matrix algorithm, might encounter instabilities. Then, the
homogeneous S-matrix algorithm, used in the classical FMM, is modified and adapted
for use with recursive linear systems having non-homogeneous structure. At the end
of the chapter, numerical evidence is provided on the stability of the non-homogeneous
S-matrix algorithm. For this purpose the problem of scattering by a dielectric cylinder
is used, of which a semi-analytical solution is available.

In Chapter 6 we describe an exchange of spectral and spatial discretization directions
in the AFMM-CFF leading to a reduction of computational costs. We start with the
observation that computational costs scale cubically with the number of harmonics and
linearly with number of slices used in the discretization. This statement suggests that
harmonics (being more ”expensive“) should be used in the shorter direction, while slices
(which are ”cheaper“) can be used in the longer direction. The required modifications of
the method are clearly addressed. First the background field is projected on the new basis
introduced by the new discretization. Then, an additional reduction of computational
costs is obtained by exploiting the local periodicity of the finite grating. The speed-
up and memory saving factors are predicted by theoretical estimates and verified by
numerical experiments.

Finally, conclusions and suggestions for future investigations are presented in Chapter
7.





Chapter 2

Mathematical modeling

In this chapter we present the mathematical description of the physical problem of scat-
tering. We first discuss the Maxwell equations and constitutive material relations, which
describe the propagation of electromagnetic waves. Next, conditions that have to be
satisfied by the field at material interfaces are derived. The mathematical model is
completed by a definition of an incident field and a discussion of boundary conditions.

2.1 Maxwell equations

Visible light has the physical interpretation of electromagnetic waves with a wavelength
between approximately 400 nm and 700 nm. A rigorous model for scattering of light is
thus given by the Maxwell equations. In our presentation we follow the classical refer-
ence [27]. The macroscopic electromagnetic quantities are related by the time-dependent
Maxwell equations in differential form:

∇× E(x, t) +
∂

∂t
B(x, t) = 0, (Faraday’s law) (2.1a)

∇×H(x, t)− ∂

∂t
D(x, t) = J , (Ampère’s law) (2.1b)

∇ ·D(x, t) = %(x, t), (Gauss’s law for electric fields) (2.1c)

∇ ·B(x, t) = 0, (Gauss’s law for magnetic fields) (2.1d)

where E is the electric field , B is the magnetic induction, H is the magnetic field , D is
the electric displacement . Furthermore, J denotes the electric current density , and % is
the electric charge density . The vector x ∈ R3 contains the space variables and t ∈ R
is the time variable. Faraday’s law gives the effect of a changing magnetic field on the



10 Mathematical modeling

electric field. Similarly, Ampère’s law gives the effect of a current and a changing electric
field on the magnetic field. Gauss’s law for electric fields gives the relationship between
the electric displacement and the charge density. Finally, Gauss’s law for magnetic fields
expresses the fact that the magnetic field is solenoidal. Implicit in the Maxwell equations
is the continuity equation for charge density and current density

∇ ·J (x, t) = − ∂

∂t
%(x, t), (2.2)

which follows from combining the divergence of (2.1b) with the time derivative of (2.1c)

and making use of the vector calculus identity (A.1). Table 2.1 summarizes the quantities
in the Maxwell equations and lists their SI-units.

Symbol Name SI units

E electric field Volt per meter V
m = kg·m

A·s3

H magnetic field Ampère per meter A
m

D electric displacement Coulomb per square meter C

m
2 = A·s

m
2

B magnetic induction Tesla T = kg

A·s2

J electric current density Ampère per square meter A

m
2

% electric charge density Coulomb per cubic meter C

m
3 = A·s

m
3

Table 2.1: The electromagnetic quantities from Maxwell’s equations with their units.

Maxwell’s equations cannot be solved without additional relations which incorporate the
material properties. For linear time-invariant media the following constitutive relations
hold:

D(x, t) = ε̃(x)E(x, t), (2.3a)

B(x, t) = µ̃(x)H(x, t), (2.3b)

J (x, t) = σ̃(x)E(x, t) + J ext(x, t), (2.3c)

where ε̃(x) is the electric permittivity , µ̃(x) is the magnetic permeability , σ is the con-
ductivity and J ext(x, t) denotes the external current . Table 2.2 summarizes the material
properties in the constitutive relations and lists their SI units. In the most general case
of anisotropic materials, these quantities are 3×3 positive definite tensors. In this thesis
we restrict ourselves to isotropic materials, such that the permittivity and permeability
are scalar functions of position. They are often expressed in terms of relative quantities:
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Symbol Name SI units

ε̃ permittivity Farad per meter F
m = A

2·s4

kg·m3

µ̃ permeability Henry per meter H
m = kg·m

A
2·s2

σ̃ conductivity Siemens per meter S
m = kg·m3

A
2·s3

Table 2.2: The material properties from the constitutive relations with their units.

ε̃(x) = ε0ε
r(x), ε0 ≈ 8.854× 10−12 F/m, (2.4a)

µ̃(x) = µ0µ
r(x), µ0 = 4π × 10−7 H/m, (2.4b)

where ε0 and µ0 represent respectively the free space permittivity and permeability.

2.2 Interface conditions

In order to derive the conditions on the fields at interfaces between two materials we need
to write the Maxwell equations in integral form. Let V be a closed volume in space, S
the closed surface bounding it, da an element of area on the surface and n a unit normal
to the surface at da pointing outward from the enclosed volume. The divergence theorem
applied to (2.1c) and (2.1d) yields∮

S

D · n da =

∫
V

% d3x, (2.5a)∮
S

B · n da = 0. (2.5b)

Similarly, let C be a closed contour in space, S′ the open surface spanning it, dl a line
element on the contour, da an element of area on S′, and n a unit normal at da. The
Stokes theorem applied to (2.1a) and (2.1b) yields∮

C

E · dl = −
∫
S
′

∂B
∂t
· n da, (2.5c)∮

C

H · dl =

∫
S
′

(
∂D
∂t

+ J
)
· n da. (2.5d)

Equations (2.5) constitute the time-dependent Maxwell equations in integral form. We
use these to derive the interface conditions. Figure 2.1 depicts the geometrical arrange-
ment used in the derivation. An infinitesimal volume V in a shape of a pillar box is
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Medium 1

Medium 2

n

C

t

V

̺s,J s

Figure 2.1: Boundary surface between two media.

placed at the boundary surface between two media. Let A denote the surface on the
interface that also belongs to the volume V . The integral statements (2.5a) and (2.5b)

are applied to the pillar box V with a fixed area A a vanishing height ∆h→ 0.∫
A

(D2 −D1) · n da =

∫
A

%s da, (2.6a)∫
A

(B2 −B1) · n da = 0. (2.6b)

If the charge density % is singular at the interface such that it determines an idealized
surface charge density %s, then the integral in the right-hand side of (2.6a) is∫

V

% d3x =

∫
A

%s da. (2.7)

Because the above relations hold for any area A on the interface (in other words, the
limits of integration along the surface are arbitrary) we have

(D2 −D1) · n = %s, (2.8a)

(B2 −B1) · n = 0. (2.8b)

Equations (2.8) state that the normal component of the magnetic displacement must be
continuous across an interface and the jump in the normal component of the electric
displacement is determined by the surface charge density. Now we take an infinitesimal
contour C with a fixed length ∆l along the surface and a height ∆h → 0. The surface
S′ spanning C is oriented so that the normal t to S′ is tangent to the interface surface.
The integral statements (2.5c) and (2.5d) applied to the contour C yield

n× (E2 − E1) = 0, (2.9a)

n× (H2 −H1) = J s. (2.9b)

Equations (2.9) state that the tangential component of the electric field must be con-
tinuous across an interface and the jump in the tangential component of the magnetic
field is determined by the surface charge density. The terms ∂B

∂t ,
∂D
∂t on the right-hand
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side of (2.5c) and (2.5d) vanish because the both are finite at the surface and the area
of the loop is zero as the height goes to zero. The idealized surface current density J s

corresponds to a current flowing exactly on the interface surface.∫
∆l

J s · t dl =

∫
S
′
J · t da. (2.10)

In most applications the surface current and the surface charge vanish, i.e. %s = 0,
J s = 0.

2.3 Time-harmonic Maxwell equations

The time-dependent problem (2.1) can be reduced to the time-harmonic Maxwell sys-
tem by either using the Fourier transform in time, or by considering propagation of
electromagnetic fields with a single frequency. If the electromagnetic waves have an
angular temporal frequency ω (in rad/s), then the electromagnetic quantities are called
time-harmonic provided they have the following form

E(x, t) = <(eiωte(x)), (2.11a)

H(x, t) = <(eiωth(x)), (2.11b)

D(x, t) = <(eiωtd(x)), (2.11c)

B(x, t) = <(eiωtb(x)), (2.11d)

J (x, t) = <(eiωtj(x)), (2.11e)

%(x, t) = <(eiωtρ(x)). (2.11f)

Here i =
√
−1 and <(.) denotes the real part of the expression in parentheses. We use

(2.11) in (2.1) to obtain the time-harmonic Maxwell equations in differential form

∇× e(x) = −iωb(x), (2.12a)

∇× h(x) = iωd(x) + j(x), (2.12b)

∇ · d(x) = ρ(x), (2.12c)

∇ · b(x) = 0. (2.12d)

The equations are dependent. This can be seen by taking the divergence of (2.12a)

and (2.12b) (making use of (A.1)) to obtain the equations (2.12d) and (2.12c) respec-
tively. The constitutive relations (2.3) do not suffer modifications when written for
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time-harmonic quantities:

d(x) = ε̃(x)e(x), (2.13a)

b(x) = µ̃(x)h(x), (2.13b)

j(x) = σ̃(x)e(x) + jext(x). (2.13c)

Substituting the constitutive relations for time-harmonic quantities (2.13) in the time-
harmonic Maxwell equations (2.12) yields

∇× e(x) = −iωµ0µ
rh(x), (2.14a)

∇× h(x) = (σ + iωε0ε
r)e(x) + jext(x). (2.14b)

We introduce the complex-valued relative permittivity ε = εr − iσ/(ε0ω) and assume
source-free (jext = 0) and non-magnetic materials (µr = 1),

∇× e(x) = −iωµ0h(x), (2.15a)

∇× h(x) = iωε0εe(x). (2.15b)

In optics it is customary to use the refractive index n to characterize the material. It is
related to the permittivity ε through

n =
√
ε = n′ − in′′, (2.16)

where n′, n′′ ∈ R+. Note that the sign of the imaginary part of the refractive index
depends on the convention used in the time-harmonic assumption (2.11) (the imaginary
part is negative for the eiωt convention and positive for the e−iωt convention). In order
to arrive at the final form of the equations, as used in this thesis, the magnetic field is
scaled by −i

√
ε0/µ0 and the vacuum wavenumber k0 = ω

√
ε0µ0 is introduced.

∇× e(x) = −k0h(x), (2.17a)

∇× h(x) = −k0εe(x). (2.17b)

We list the equations in expanded form for future reference:

∂

∂y
ez −

∂

∂z
ey = −k0hx, (2.18a)

∂

∂z
ex −

∂

∂x
ez = −k0hy, (2.18b)

∂

∂x
ey −

∂

∂y
ex = −k0hz, (2.18c)
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∂

∂y
hz −

∂

∂z
hy = −k0εex, (2.18d)

∂

∂z
hx −

∂

∂x
hz = −k0εey, (2.18e)

∂

∂x
hy −

∂

∂y
hx = −k0εez. (2.18f)

2.4 Problem geometry and incident field

The permittivity ε in the time-harmonic Maxwell equations (2.18) defines the geometry
of the problem. We will consider two-dimensional scatterers, which implies that the
permittivity is a function of only two space variables

ε = ε(x, z). (2.19)

Figure 2.2 shows an example of a grating that is y-invariant. The grating is supported
by a substrate which consists of one or more homogeneous layers. Besides the metrology
application described in Section 1.2, this geometry is encountered in many important
applications. Examples include broad scientific areas such as submarine detection, geo-
physical exploration, optical microscopy [42]. In this thesis we consider the general case
of a bounded scatterer placed in a stratified medium, also referred to as background
multilayer . The following decomposition can be used for the permittivity

ε(x, z) = εb(z) + εc(x, z), (2.20)

where εb is the background permittivity of the stratified medium and εc is the contrast
permittivity which vanishes outside the bounded scatterer.

The field satisfying the time-harmonic Maxwell equations (2.18) is excited by an incident
field. The latter can be a focused beam or uniform illumination. Since any illumination
profile can be represented as a superposition of plane waves, we consider the fundamental
case of plane wave illumination. It is also assumed that the incident field is time-harmonic
and linearly polarized1. The orientation of the electromagnetic plane wave with respect
to the grating can be defined by three angles: the polar angle θ, the azimuthal angle φ,
and the polarization angle ψ. These angles are defined in Figure 2.2. Then, the incident
electric field is given by

einc = aee−ik
inc·x, (2.21)

1
Linear polarization is a confinement of the electric field vector or magnetic field vector to a given

plane along the direction of propagation.
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Figure 2.2: Angles describing the orientation of wave vector (red) and the amplitude
vector (green) of the incident electric field with respect to the grating.

with the wave vector

kinc = k0n1

sin θ cosφ

sin θ sinφ

cos θ

 , (2.22)

and amplitude vector

ae =

Rψ︷ ︸︸ ︷ cosψ sinψ 0

− sinψ cosψ 0

0 0 1


Rθ︷ ︸︸ ︷ cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


Rφ︷ ︸︸ ︷ cosφ sinφ 0

− sinφ cosφ 0

0 0 1

1

0

0


=

cosψ cos θ cosφ− sinψ sinφ

cosψ cos θ sinφ+ sinψ cosφ

− cosψ sin θ

 . (2.23)

The refractive index n1 corresponds to the material through which the incident wave is
propagating (usually air, nair = 1). The wavelength of the incident plane wave is given
by λ0 = 2π/(n1k0). The matrices Rψ, Rθ, Rφ are rotation matrices in the direction
of the corresponding angles. Because of the linearity of Maxwell equations, the incident
field (being part of the total field) has to satisfy the Maxwell equations in homogeneous
space. Equations (2.12c) (without charges, ρ = 0) and (2.13a) together with the vector
identity (A.2) yield the following constraint on the amplitude vector and the wave vector,

ae · kinc = 0. (2.24)

It is easy to check that the vectors defined in (2.22) and (2.23) satisfy this requirement.
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The (scaled) incident magnetic field can be derived from the incident electric field using
(2.17a)

hinc (A.3)
= −k−1

0 ∇e−ik
inc·x × ae = (ik−1

0 kinc × ae)e−ik
inc·x = ahe−ik

inc·x, (2.25)

with

ah = in1

− cosψ sinφ− sinψ cosφ cos θ

cosψ cosφ− sinψ sinφ cos θ

sinψ cosφ sin θ(cosφ+ sinφ)

 . (2.26)

Let us define the plane of incidence as the plane spanned by the wave vector kinc and
the z-axis. In the case of normal incidence (θ = 0) we choose the plane of incidence to
coincide with the xz-plane. We distinguish the following fundamental cases:

• Planar incidence corresponds to an azimuthal angle φ = 0 so that the plane of
incidence coincides with the xz-plane. This case can be further divided into two
basic subcases, which can be combined using the superposition principle in order
to represent any arbitrary polarization within the planar incidence case.

– TE (transverse electric) polarization corresponds to ψ = π
2 , which means that

the incident electric field is perpendicular to the plane of incidence and parallel
to the y-axis. Substitution of φ = 0, ψ = π

2 in (2.22), (2.23), (2.26) shows
that the incident fields have the following form

einc = [0, einc
y , 0]T , hinc = [hinc

x , 0, hinc
z ]T . (2.27)

This determines a corresponding form of the resulting fields

e = [0, ey, 0]T , h = [hx, 0, hz]
T . (2.28)

Because of this form, the Maxwell equations (2.18) can be reduced to a single
equation for the y-component of the electric field, ey. Then it is sufficient to
impose the incident field by

einc
y = e−ik0n1(x sin θ+z cos θ). (2.29)

– TM (transverse magnetic) polarization corresponds to ψ = 0 which means
that the incident electric field lies in the plane of incidence. In this case the
corresponding incident magnetic field is perpendicular to the plane of incidence
and parallel to the grating lines in the y-direction.

einc = [einc
x , 0, einc

z ]T , hinc = [0, hinc
y , 0]T . (2.30)
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This determines a corresponding form of the resulting fields

e = [ex, 0, ez]
T , h = [0, hy, 0]T . (2.31)

Similarly to the TE case, the Maxwell equations (2.18) can now be reduced
to a single equation for the y-component of the magnetic field, hy. Then it is
sufficient to impose the incident field by

hinc
y = in1e

−ik0n1(x sin θ+z cos θ). (2.32)

• Conical incidence corresponds to an azimuthal angle φ 6= 0. This case is more gen-
eral as it allows for arbitrary angles of incidence and incorporates planar incidence
as a special case. Unlike in the planar case, the incident and total fields do not
have vanishing components and are respectively of the form

einc = [einc
x , einc

y , einc
z ]T , hinc = [hinc

x , hinc
y , hinc

z ]T , (2.33)

and

e = [ex, ey, ez]
T , h = [hx, hy, hz]

T . (2.34)

2.5 Boundary conditions

The Maxwell equations admit infinitely many solutions. In order to restrict the space
of solutions and ensure well-posedness of the problem, boundary conditions need to be
used. We discuss the pseudo-periodic boundary condition and the radiation condition.

2.5.1 Pseudo-periodic boundary condition

The pseudo-periodic boundary condition arises from the assumption on infinite periodicity
of a structure under consideration. For instance, if we want to simulate scattering from
a grating, and the grating is ”large enough“, we may assume

ε(x+ nΛ, z) = ε(x, z), n ∈ Z. (2.35)

where Λ is the period of the grating. Periodicity of the permittivity determines the
following form of the solution of Maxwell’s equations (2.18) [56, p. 8],

e(x, y, z) = e−ikxxeper(x, y, z), (2.36a)

h(x, y, z) = e−ikxxhper(x, y, z), (2.36b)
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where the quantities eper, hper have the same periodicity as ε. The scalar kx in (2.36)

is determined by the requirement that the incoming field (2.21) can also be written in
form (2.36). This implies kx = kinc

x . Then the pseudo-periodic boundary condition (also
known as Floquet condition or Bloch condition) is given by

e(x+ Λ, y, z) = e−ik
inc
x Λe(x, y, z), (2.37a)

h(x+ Λ, y, z) = e−ik
inc
x Λh(x, y, z). (2.37b)

When the assumption (2.35) on infinite periodicity is valid, this condition allows us to
restrict the computational domain to one period only. Note that the use of the pseudo-
periodic boundary condition introduces a limitation: because the incident plane wave
determines the phase shift we cannot impose an incident field consisting of a superposition
of two or more plane waves which do not simultaneously satisfy (2.37).

2.5.2 Radiation boundary condition

Physically, a radiation condition ensures that the scattered field f is propagating away
from the obstacle. For a bounded scatterer in homogeneous medium the radiation con-
dition has been formulated mathematically by Sommerfeld [77]. It requires that

lim
|x|→∞

|x|
n−1

2

(
∂

∂|x| + ik0

)
f = 0, (2.38)

uniformly in all directions. In (2.38) n is the number of spatial dimensions and f is a
scalar field. The Sommerfeld radiation condition can be extended to vector fields. In
electromagnetics this extension is known as the Silver-Müller radiation condition.

None of the above conditions is suited for scattering from infinitely long interfaces (such as
the interfaces in the multilayer stack below the grating). The simple example of scattering
from a straight interface where the incident field is a downward propagating plane wave
shows that the Sommerfeld radiation condition is not appropriate for such problems: in
this case, f is simply some reflected plane wave and hence satisfies Sommerfeld’s radiation
condition only in the propagation direction, but no other direction. A natural approach
to impose a radiation condition, often used in applications, is to consider the field f on
the truncation boundary and to compute its plane wave expansion. In this expansion we
can clearly separate incoming and outgoing waves (the direction of a plane wave is given
by its wave vector) and write the field as

f = f in + fout, (2.39)

where f in and fout represent the fields consisting of incoming and outgoing plane waves



20 Mathematical modeling

FDTD FEM FMM BEM VIM

Figure 2.3: The rectangular grid of the FDTD method with sub-pixel smoothing to
approximate the cylinder. The triangular grid of the FEM that conforms to the surface
of the cylinder. The discrete layers of the FMM, with the permittivity described by a few
Fourier modes per layer. The source contributions of the surface elements for the BEM
and the polarization densities in the cylinder for the VIM. Image reproduced from [28]
with permission.

respectively. Since the radiation condition admits only outgoing waves we require

f in = 0. (2.40)

In the FMM and its extensions described in this thesis, the discretization of the Maxwell
equations leads to a plane wave expansion. The radiation condition is then easily imposed
on the discrete level by requiring that the coefficients (amplitudes) corresponding to the
incoming plane waves vanish.

2.6 Numerical methods for Maxwell equations

The number of situations where an analytical solution of Maxwell’s equations can be
found is very limited. Reference [8] gives a thorough overview of such very special cases.
In all other cases numerical methods must be used to get an approximate solution.
During the last decades many numerical methods for solving Maxwell equations have been
developed. We will discuss several of them: the finite-difference time-domain method
(FDTD) [91, 69, 83], the finite-element method (FEM) [50, 93, 51], the Fourier modal
method (FMM) [31, 47] and the integral equation methods (IEM), which include the
boundary element method (BEM) [68, 42] and the volume integral method (VIM) [7]. A
comparison of these methods applied to a particular problem of light diffraction is given
in [34].

Figure 2.3 shows the discretization used by the discussed numerical methods for a problem
of scattering from a dielectric cylinder. Each of the methods is applied to the Maxwell
equations formulated either in time domain (2.1) or frequency domain (2.17).
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2.6.1 Finite-difference time-domain method

A classical reference on the finite-difference time-domain (FDTD) method is [83]. The
basic FDTD space grid and time-stepping algorithm trace back to a seminal 1966 paper by
Kane Yee [91]. The FDTDmethod (as the name states) is suitable for solving the Maxwell
equations in the time-domain. Spatial discretization uses a structured Cartesian grid
(see Figure 2.3). The smooth boundary of the scatterer is approximated by a staircase
imposed by the grid. The negative effect of staircasing is sometimes attenuated using
subpixel smoothing [16]. The time-dependent equations are discretized using central-
difference approximations to the space and time partial derivatives. The resulting finite-
difference equations are solved in a leapfrog manner: the electric field vector components
in a volume of space are solved at a given instant in time, then the magnetic field vector
components in the same spatial volume are solved at the next instant in time. The
process is usually repeated until a steady-state is reached.

We demonstrate an FDTD scheme for the case of planar incidence and TE polarization
(Ex = Ez = Hy = 0). The Maxwell equations (2.1) and the constitutive relations (2.3)

reduce to

∂

∂t
Hx = −µ−1 ∂

∂z
Ey, (2.41a)

∂

∂t
Hz = µ−1 ∂

∂x
Ey, (2.41b)

∂

∂t
Ey = ε−1

(
∂

∂x
Hz −

∂

∂z
Hx
)
. (2.41c)

The Yee scheme using a staggered mesh for (2.41) is given by

Hx|
n+ 1

2
i,j −Hx|

n− 1
2

i,j

∆t
=− 1

µ

Ey|ni,j+ 1
2
− Ey|ni,j− 1

2

∆z
, (2.42a)

Hz|
n+ 1

2
i,j −Hz|

n− 1
2

i,j

∆t
=

1

µ

Ey|ni+ 1
2 ,j
− Ey|ni− 1

2 ,j

∆x
, (2.42b)

Ey|n+1
i,j − Ey|ni,j

∆t
=

1

ε

Hz|n+ 1
2

i+ 1
2 ,j
−Hz|

n+ 1
2

i− 1
2 ,j

∆x
−
Hx|

n+ 1
2

i,j+ 1
2

−Hx|
n+ 1

2

i,j− 1
2

∆z

 , (2.42c)

where ∆x, ∆z are the mesh sizes and ∆t the time step. For a quantity F the subscripts
indicate the position in the spatial grid and the superscripts indicate the time step,

F|ni,j = F(i∆x, j∆z, n∆t).

Given the magnetic field at step n − 1
2 and the electric field at step n, the magnetic

field at n+ 1
2 is computed from the update relations (2.42a) and (2.42b). Subsequently

the electric field at time step n + 1 can be computed from (2.42c). Because explicit
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time-stepping is used in FDTD methods, no linear systems have to be solved. In order
to guarantee stability of the computations a limit is imposed on the maximum allowed
time step. This requirement is known as the Courant-Friedrichs-Lewy condition or CFL
condition [14].

2.6.2 Finite element method

The application of finite element methods (FEM) in electromagnetics has been thoroughly
described in [51, 80]. A less mathematical description with focus on implementation issues
is given in [29]. FEM is applied to Maxwell equations in frequency domain. Typically
the following equation is solved:

∇×∇× e(x)− k2
0ε(x)e(x) = 0. (2.43)

This equation is referred to as the double-curl equation and is obtained by eliminating
the magnetic field h from (2.17b) using (2.17a). Triangular meshes are used for spatial
discretization. They give a better approximation of the smooth shapes than the Cartesian
grid of FDTD (see Figure 2.3). The electric field is approximated by a sum of local
basis functions. In 1980 Nedelec [53] introduced the vector-valued shape functions called
edge elements. Contrary to the classical, continuous approximation, the edge elements
enforce only the continuity of the tangential component of the electric field. Since the
normal component of the electric field is indeed discontinuous at material interfaces, these
elements are well-suited for the discretization of the Maxwell equations. Discretization
of (2.43) leads to a linear system of the form Ax = b, where A is a sparse square matrix.
The unknown vector x is determined by solving the system using direct [15] or iterative
[72] methods.

We have applied FEM to simulate scattering from an infinitely periodic grating. The
pseudo-periodicity of the field (Section 2.5.1) implies that a single period of the grating
can be considered. Figure 2.4 (a) shows the geometry of the problem with different colors
corresponding to different materials. A sample solution for a specific angle of incidence
and wavelength is depicted in Figure 2.4 (b).

FEM is a very general numerical method which can be applied to a wide set of partial
differential equations (modeling problems in fluid dynamics, solid mechanics, elasticity,
acoustics, etc.). The generality of the method makes it also versatile. Techniques such
as adaptive meshing [23], multigrid solution [25, 4], domain decomposition [94] have been
successfully used when solving electromagnetics problems with FEM.
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(a) (b)

Figure 2.4: Simulation of scattering from an infinitely periodic grating with the FEM:
(a) geometry of a single period of the grating (different colors correspond to different
materials) and (b) magnitude of the electric field. Both plots show the triangular mesh
used for discretization.

2.6.3 Fourier modal method

The Fourier modal method (FMM) is a numerical solution method of time-harmonic
(frequency domain) Maxwell equations for periodic structures. It has originated in the
diffractive optics community more than 30 years ago [31]. During this time the method
has matured due to improvements to its stability [48, 40] and convergence [41]. Other
important contributions to the evolution of the method are the techniques of adaptive
spatial resolution [22] and normal vector fields [65, 66, 78]. Ref. [24] gives a mathematical
perspective of the challenges that have been overcome in the FMM and of the open
problems still to be addressed.

The discretization used by the FMM is depicted in Figure 2.3. In the vertical direction the
domain is divided into layers or slices in which the permittivity is assumed to depend only
on the horizontal direction. This introduces a staircase approximation of the geometry,
similarly to the Cartesian grid in FDTD. In the horizontal direction Fourier harmonics
are used to approximate the fields and the permittivity in each layer. Resulting from
the discretization is a set of coupled linear systems which are solved either recursively
[48, 40] or are first assembled into a single large linear system of the form Ax = b and
then solved with standard routines [52, 46]. Typically the former approach is faster.

The Fourier harmonics constitute a natural basis for wave-like solutions, which makes the
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FMM a very popular choice for simulating scattering from infinitely periodic structures.
We show in this thesis that if the structure of interest is finite the FMM can be adapted
to the new boundary conditions, while keeping the advantages of the periodic FMM.

2.6.4 Integral equation methods

The methods described up to now (FDTD, FEM and FMM) use a differential equation
and the associated boundary conditions as a starting point for the discretization. A
fundamentally different approach is used by the integral equation methods (IEM) [43,
74]. The differential equation and the boundary conditions are replaced by an integral
equation.

We demonstrate the principle of the IEM on a simple example: scattering of TE-polarized
light from a two-dimensional object (such as an infinitely long cylinder) placed in homo-
geneous medium. The y-component of the electric field satisfies the equation:

∆ey(x, z) + ε(x, z)ey(x, z) = 0. (2.44)

The incident field satisfies a similar equation in homogeneous medium with permittivity
εb:

∆einc
y (x, z) + εbeinc

y (x, z) = 0. (2.45)

Let escty = ey − einc
y . Subtracting (2.45) from (2.44) gives an equation for the scattered

field
∆escty (x, z) + εbescty (x, z) = −(ε(x, z)− εb)ey(x, z). (2.46)

The solution of (2.46) can be written as

escty (x, z) =

∫
V

G(x− x′, z − z′) (ε(x′, z′)− εb)ey(x′, z′) dx′dz′, (2.47)

where G is the Green’s function and satisfies

∆G(x, z) + εbG(x, z) = −δ(x, z). (2.48)

For the Helmholtz equation in two dimensions the Green’s function is given by

G(x, z) =
i

4
H

(1)
0

(√
εb(x2 + z2)

)
.

Here H(1)
0 is a Hankel function. Finally, the decomposition ey = einc

y + escty and relation



2.6 Numerical methods for Maxwell equations 25

(2.47) yield the integral equation

ey(x, z) = einc
y (x, z) +

∫
V

G(x− x′, z − z′) (ε(x′, z′)− εb)ey(x′, z′) dx′dz′, (2.49)

where the unknown ey appears both inside and outside the integral.

In general integral equations arising in electromagnetics are of the form

e(x) = f(x) + λ

∫
V

K(x,x′) e(x′) dx′. (2.50)

This is a Fredholm equation of the second kind . The function K(x,x′) is referred to
as kernel and f(x) is a source term. For given K(x,x′), f(x) and λ, Equation (2.50)

is solved for the unknown e(x). Unlike differential equations, integral equations do not
require additional (interface or boundary) conditions in order to obtain a unique solution.
In fact the interface and boundary conditions are part of the kernel function. A particular
kernel is related to a particular geometry and boundary conditions and is not universally
valid. The process of solving electromagnetic problems by means of integral equations
consists of two steps: {1} formulating the kernel and {2} solving the integral equation.

Methods solving (2.50) are known as volume integral methods (VIM). If the volume
integral in (2.50) is replaced by a surface integral then we speak of surface integral
methods (SIM) or boundary element methods (BEM). In BEM, instead of the volume of
the scatterer, one only has to discretize the surface of the scatterer. If the surface-to-
volume ratio is small, then BEM can be considerably more efficient than VIM.





Chapter 3

Extension of the Fourier modal

method for a model problem

In this chapter we extend the area of application of the Fourier modal method (FMM)
from periodic structures to aperiodic ones. This is achieved by placing perfectly matched
layers at the lateral sides of the computational domain and reformulating the govern-
ing equations in terms of a contrast field which does not contain the incoming field.
Due to the reformulation, the homogeneous system of second-order ordinary differential
equations from the original FMM becomes non-homogeneous. Its solution is derived ana-
lytically and used in the established FMM framework. The technique is demonstrated
on an aperiodic model problem of planar scattering of TE-polarized light by a single
rectangular line.

3.1 Introduction

The Fourier modal method (FMM), also referred to as Rigorous Coupled-Wave Analysis
(RCWA), has a well established position in the field of rigorous diffraction modeling. It
was first formulated by Moharam and Gaylord in 1981 [45]. Being based on Fourier-mode
expansions, the method is inherently suited for (and restricted to) periodic structures
such as diffraction gratings. Because harmonic functions constitute a natural basis for
representing wave-like solutions few such functions are required to approximate the exact
solution with a reasonable accuracy.

The stability and efficiency of the FMM was improved especially due to the enhanced
transmittance matrix approach for solving the recursive matrix equations [47, 48]. The
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convergence problems observed for incident waves with TM-polarization have been over-
come by reconsidering the Laurent’s rule for the product of truncated Fourier series
[35, 21]. Shortly after, these rules have been given a sound mathematical background
by Li [41], and usually are referred to as the Li rules. The Li rules can be easily ap-
plied to 2D-periodic structures with rectangular shapes. For non-rectangular shapes a
staircase approximation of the profile in the plane of periodicity had to be used. This
inconvenience has been removed by considering separately the tangential and normal
components of the field at the interface [65, 66, 78, 70]. Another important improvement
was the introduction of the technique of adaptive spatial resolution [22]. Due to this
technique a faster convergence is achieved by increasing the resolution in space around
the material interfaces.

As a consequence of the improvements over the last two decades, nowadays the FMM
is a well established method. It is robust and efficient, especially for two-dimensional
problems. A recent paper [34] benchmarks the performance of state-of-the-art methods in
rigorous diffraction modeling, including the FMM, the finite element method (FEM), the
finite difference time-domain method (FDTD) and the volume integral method (VIM).

One important limitation of the FMM is given by the fact that it can only be used
for computational problems defined for periodic structures (such as diffraction gratings).
This is because the modes used to represent the field are themselves periodic. A straight-
forward workaround for this limitation is the supercell approach: the aperiodic structure
is still assumed to be periodic but with a large enough period so that the interaction of
neighboring structures is negligible [73].

Lalanne and his co-workers [36, 79, 26] have applied the FMM to waveguide problems.
The aperiodicity of the waveguide was dealt with by placing perfectly matched layers
(PMLs) [5] on the lateral sides of the computational domain. PMLs are introduced
in the domain using the mathematical operations of analytic continuation and coordi-
nate transformation. Physically, PMLs represent fictitious absorbing and non-reflecting
materials. In this way, artificial periodization is achieved, i.e. the structure of inter-
est is repeated in space, but there is no electromagnetic coupling between neighboring
cells. The concepts of perfectly matched layers and artificial periodization are carefully
explained in Section 3.3.

The above approach, combining standard FMM with PMLs, is applicable only for the
case of normal incidence of the incoming field, which is sufficient for waveguide problems.
In this chapter we show that for oblique incidence we need to reformulate the standard
FMM such that the incident field is not part of the computed solution. We propose a
decomposition of the total field into a background field (containing the incident field) and
a contrast field . The problem is reformulated with the contrast field as the new unknown.
The background field solves a corresponding background problem which has a standard
analytical solution. The main effect of the reformulation is that the homogeneous system
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Figure 3.1: Geometry of the periodic model problem and division into layers.

of second-order ordinary differential equations becomes non-homogeneous. The solution
of this equation is derived in closed form, as required for the FMM algorithm.

The ideas conveyed in this chapter are demonstrated on two model problems: diffraction
of TE-polarized light from a binary one-dimensional grating (periodic model problem)
and from a single line (aperiodic model problem). The remainder of the chapter is struc-
tured as follows. Section 3.2 briefly describes the standard FMM applied to the periodic
model problem. Next, in Section 3.3, the idea of artificial periodization with PMLs is
described as a means of solving the aperiodic model problem for normal incidence of the
incoming field. Section 3.4 constitutes the core of this chapter and demonstrates the
derivation of the contrast-field formulation for the FMM. The new formulation allows for
arbitrary angles of incidence in combination with the PMLs. Finally, numerical results
are presented in the last section.

3.2 Standard Fourier modal method

The structure considered in the periodic model problem is an infinitely periodic binary
grating with a period Λ illuminated by a TE-polarized plane wave given by (2.29). The
permittivity profile ε(x, z) is invariant in the y-direction and is shown in Figure 3.1.
The solution of the periodic model problem satisfies the Maxwell equations (2.18), which
for TE-polarization can be reduced to a single second-order partial differential equation
(PDE) for the y component of the electric field,

∂2

∂x2 ey(x, z) +
∂2

∂z2 ey(x, z) + k2
0ε(x, z)ey(x, z) = 0. (3.1)

The incident field is given by (2.29) and satisfies the pseudo-periodic boundary condition
(2.37).

The first step in the FMM is to divide the computational domain into layers such that
the permittivity ε(x, z) is z-independent in each particular layer. For our periodic model
problem this division generates three layers as shown in Figure 3.1. Then the field in
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layer l (l = 1, 2, 3) satisfies

∂2

∂x2 ey,l(x, z) +
∂2

∂z2 ey,l(x, z) + εl(x)ey,l(x, z) = 0. (3.2)

Note that εl, (l = 1, 3) is constant in layers 1 and 3. In this case the solution of (3.2)

may be represented by a Rayleigh expansion [56, p. 9]. However, when PMLs are added
the Rayleigh expansion is not applicable. For generality we treat these layers in the same
way as the middle layer.

The second step in the FMM is to expand the x-dependent quantities into Fourier modes

ey,l(x, z) =

∞∑
n=−∞

sn,l(z)e
−ikxnx, (3.3a)

εl(x) =

∞∑
n=−∞

ε̂n,le
in 2π

Λ x, (3.3b)

where
kxn = k0n1 sin θ − n2π

Λ
, n ∈ Z.

Note that the modes e−ikxnx satisfy the condition of pseudo-periodicity. Thus, the solu-
tion obtained by superposition will necessarily be pseudo-periodic. By substituting the
expansions (3.3) in (3.2) and retaining only 2N + 1 harmonics in the expansion of the
field, we get

−
N∑

n=−N
k2
xnsn,l(z)e

−ikxnx +

N∑
n=−N

d2

dz2 sn,l(z)e
−ikxnx (3.4)

+

N∑
n=−N

N∑
m=−N

ε̂n−m,lsm,l(z)e
−ikxnx = 0.

The derivation of the third term is detailed in Appendix B.1. Since the functions e−ikxnx

form a basis, the coefficients must vanish.

− k2
xnsn,l(z) +

d2

dz2 sn,l(z) +

N∑
m=−N

ε̂n−m,lsm,l(z) = 0, n = −N, . . . , N, (3.5)

or in matrix form
d2

dz2 sl(z) = k2
0Alsl(z), with Al = K2

x −El, (3.6)

where Kx is a diagonal matrix with the values kxn/k0 on its diagonal and El is a Toeplitz
matrix with the (n,m)-entry equal to εn−m,l for n,m = −N, . . . , N .
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Equation (3.6) is a homogeneous second-order ordinary differential equation whose gen-
eral solution is given by

sl(z) = s+
l (z) + s−l (z) = Wl(e

−Ql(z−hl−1)c+
l + eQl(z−hl)c−l ), (3.7)

where hl is the z-coordinate of the top interface of layer l (we take h0 = h1), Wl is
the matrix of eigenvectors of Al and Ql is a diagonal matrix with square roots of the
corresponding eigenvalues on its diagonal.

The general solution (3.7) consists of waves traveling upward, s−l (z), and downward,
s+
l (z). In the top and bottom layer the radiation condition is imposed by requiring that
there is no incoming field except for the prescribed incident plane wave

s+
1 (h1) = d0e

−ikz0h1 , (3.8a)

s−3 (h2) = 0. (3.8b)

The vector d0 ∈ R2N+1 in (3.8a) is an all-zero vector except for entry N+1 which is equal
to 1. Conditions (3.8) determine the vectors c+

1 and c−3 . The remaining vectors c+
l and

c−l are unknown, and can be determined from the interface conditions between the layers
[47]. In the case of the standard FMM the top and bottom layers are homogeneous
and Rayleigh expansions of the field can be used. It means that the eigenvalues and
eigenvectors for these layers are known in advance.

3.3 Artificial periodization with PMLs

The goal of this section is to integrate our aperiodic model problem (planar TE diffraction
from one line) into the framework of the FMM. To this end we will use the technique
of perfectly matched layers which act as absorbing layers and annihilate the effect of
the pseudo-periodic boundary conditions. The section starts with a description of the
concepts and ideas behind PMLs and ends by explaining the necessity of reformulating
the problem in order to allow for arbitrary angles of incidence.

PMLs were first suggested by Berenger [5] as a method of imposing the radiation con-
dition [81] on the boundary of the computational domain in FDTD. According to the
formalism proposed by Chew [11, 10], PMLs can be obtained by an analytic continuation
of the solution of (3.1) (defined in real coordinates) to a complex contour

x̃ = x+ iβ(x), x ∈ R. (3.9)

The function β(x) is continuous and has a non-zero value only inside the PMLs. For
faster convergence also the continuity of higher order derivatives is desirable. Figure
3.2 shows an example of such a function when the PMLs are placed in the domains
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Figure 3.2: The imaginary part β(x) of the transformation (3.9).

[0, xl] and [xr,Λ]. The analytic continuation (3.9) transforms propagating waves into
evanescent waves. We may observe the damping effect by evaluating a plane wave on the
contour x̃

e−i(kx0x̃+kz0z) = e−i(kx0x+kz0z)ekx0β(x). (3.10)

It is seen that this right-propagating wave (assume kx0 > 0) is attenuated exponentially
in the right PML, where β(x) < 0. The left PML would have the same effect on a left-
propagating wave. Since kx0 is in the argument of the real (decaying) exponential, the
attenuation in the PML is angle dependent.

The procedure of obtaining a PML requires an analytic continuation from R to C followed
by a coordinate transformation back to R. The operations are formally represented by

E(x)
{1}→ Ẽ(x̃)

{2}→ Ẽ(x), with x ∈ R, x̃ ∈ C. (3.11)

Operation {1} does not formally change the equation but changes its solution by mod-
ifying the domain of the space variable x. Operation {2} is required in order to avoid
working in complex coordinates. It is defined as a coordinate transformation

x̃ = f(x) = x+ iβ(x), (3.12)

applied to the equation in x̃. This coordinate transformation eliminates the derivatives
with respect to complex variables

∂

∂x̃
=
dx

dx̃

∂

∂x
=

1

f ′(x)

∂

∂x
. (3.13)

From the above discussion, we conclude that PMLs modify the underlying equations
at the continuous level, therefore they can be used in combination with virtually any
discretization technique. For the FMM, PMLs are used to make the solution of an
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Figure 3.3: Problems P1 (top) and P2 (bottom) have equal solutions on Ω0 (for an ideal
non-reflecting PML).

aperiodic problem coincide with the solution of a periodic problem on a subdomain, as
explained next.

Suppose we want to solve the aperiodic model problem with normal incidence, that is we
want to compute the field scattered by a simple aperiodic structure shown on top of Figure
3.3 (a single rectangular groove infinitely long in the y direction) when illuminated by a
perpendicular plane wave. For this problem, let us refer to it as P1, the FMM cannot be
used since both the permittivity and field are required to be (pseudo-)periodic functions
in order to be represented in terms of Fourier series as in (3.3). However, we can define
an equivalent problem P2 which is artificially periodized with the help of PMLs as shown
in Figure 3.3. The problems P1 and P2 are equivalent in the sense that (for an ideal
PML) their solutions on the domain Ω0 coincide. Problem P2 fits well in the framework
of FMM, due to its periodicity.

To solve P2, PMLs have to be added. As explained above, PMLs are implemented
by {1} an analytic continuation of the solution to a complex contour and {2} a back
transformation to the real coordinates. The first step is a formal one as it consists
of writing the same partial differential equation in the new variable x̃ instead of x.
The second step involves the coordinate transformation from x̃ back to x. Under this
transformation, described by (3.12) and (3.13), Equation (3.2) becomes

1

f ′(x)

∂

∂x

(
1

f ′(x)

∂

∂x
ẽy,l(x, z)

)
+

∂2

∂z2 ẽy,l(x, z) + k2
0εl(x)ẽy,l(x, z) = 0. (3.14)

Note that the permittivity is constant in the PML and is not affected by the transfor-
mation. By replacing the field and the permittivity with their corresponding truncated
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Figure 3.4: Plot of <(ey) for the radiating line problem solved using various approaches:
(a) supercell FMM, Λ = 10, (b) supercell FMM, Λ = 20, (c) exact solution, (d) FMM
with PMLs.

Fourier series (as in Section 3.2) the equation can be written in matrix form

d2

dz2 s̃l(z) = k2
0Ãls̃l(z), Ãl = (FKx)2 −El, (3.15)

where F is the Toeplitz matrix associated with the Fourier coefficients of 1/f ′(x). Com-
pared to (3.6), the modification introduced by the PML is minor: a ”stretching matrix“
F appears in the computations.

We demonstrate the efficiency of PMLs by considering the problem of a radiating in-
finitely long line in free space. In a two-dimensional setting the infinitely long line is
modeled as a point source. For a source term with vanishing x- and z-components, the
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following equation holds,

∆ey(x, z) + εbey(x, z) = −δ(x, z). (3.16)

As explained in Section 2.6.4, the solution of the above equation is called a Green’s
function and is given by

ey(x, z) =
i

4
H

(1)
0

(√
εb(x2 + z2)

)
. (3.17)

The solution of (3.16) can also be computed numerically using either the supercell ap-
proach or PMLs. The plots (a) and (b) in Figure 3.4 show the supercell solution for
domain widths Λ = 10 and Λ = 20 respectively. Interference caused by the periodic
boundary condition decreases for larger sizes of the computational domain. We note
that larger computational domains require more harmonics and imply higher computa-
tional costs. However, even for Λ = 20 the supercell solution is still far from the exact one
given by (3.17) and plotted in Figure 3.4 (c). On the other hand, the PML solution shown
in Figure 3.4 (d) does not require large computational domains and closely resembles the
exact solution in the area between the PMLs. In this example we considered a localized
source which is zero in the PMLs. In this case PMLs introduce no complications. For
non-localized sources, such as incident fields modeled by plane waves of infinite extent,
a reformulation is required. This is explained next.

Since the FMM uses an expansion in pseudo-periodic modes the resulting solution has
to be pseudo-periodic. We show that the pseudo-periodicity requirement is only satisfied
for normally incident plane waves. We write the total field as a sum of the incident and
the scattered field

ẽy = ẽinc
y + ẽscty .

The scattered field (it is an outgoing field) is damped exponentially to ”almost zero“ at
x = 0 and x = Λ. The original incoming field is given by

einc
y (x, z) = e−i(kx0x+kz0z). (3.18)

For normal incidence kx0 = 0, so it is independent of the stretched coordinate x and is
not affected by the PML. Thus, the total field is pseudo-periodic. However, for oblique
incidence kx0 6= 0 and the incoming field will be affected by the analytic continuation.
We evaluate the incident field on the complex contour x̃,

ẽinc
y (x̃, z) = e−i(kx0x̃+kz0z) = e−i(kx0x+kz0z)ekx0β(x). (3.19)

The incident field on the complex contour for z = 0 is plotted in Figure 3.5. Thus,
although the scattered field is still damped exponentially to zero at x = 0 and x = Λ

and satisfies the pseudo-periodic boundary condition, the incoming field on the complex
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Figure 3.5: The incident field on the complex contour x̃ for z = 0.

contour violates the pseudo-periodicity

ẽinc
y (f(Λ), z) 6= ẽinc

y (f(0), z)e−ikx0Λ. (3.20)

Consequently, also the total field violates this condition and cannot be represented by
a superposition of the modes in (3.3a). Therefore, in the next section we remove the
part which does not exhibit pseudo-periodicity from the total field and reformulate the
problem such that its solution is pseudo-periodic.

3.4 The contrast-field formulation of the FMM

3.4.1 Contrast/background decomposition

As shown in the previous section, the presence of PMLs leads to the following form of
the governing equation

1

f ′(x)

∂

∂x

(
1

f ′(x)

∂

∂x
ẽy

)
+

∂2

∂z2 ẽy + k2
0ε(x, z)ẽy = 0. (3.21)

The total field is decomposed into a contrast field and a background field (this can also
be viewed as a decomposition into a periodic part and a non-periodic part)

ẽy = ẽcy + ẽby, (3.22)
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ǫbǫ ǫ− ǫb

Figure 3.6: Permittivities involved in the source term of (3.24).

where ẽby is chosen to be the field formed in materials defined by εb(x, z)

1

f ′(x)

∂

∂x

(
1

f ′(x)

∂

∂x
ẽby

)
+

∂2

∂z2 ẽ
b
y + k2

0ε
b(x, z)ẽby = 0. (3.23)

Subtracting (3.23) from (3.21) yields

1

f ′(x)

∂

∂x

(
1

f ′(x)

∂

∂x
ẽcy

)
+

∂2

∂z2 ẽ
c
y + k2

0ε(x, z)ẽ
c
y = −k2

0(ε(x, z)− εb(x, z))ẽby. (3.24)

We can still choose εb. However, it should be chosen in such a way that the solution
of (3.23) can be computed analytically. Moreover, we want to choose εb such that the
right-hand side of (3.24) vanishes in the PML. This is required in order to avoid having a
non-periodic source in the PML. If εb is chosen such that it represents the background of
ε, i.e. ε without the scatterer (rectangular line), then the above mentioned requirements
are satisfied; the right-hand side vanishes in the PML, and the background field ẽb can
be expressed analytically inside the scatterer. Figure 3.6 shows the permittivities ε, εb,
ε− εb, corresponding to the equations for total field (3.21), background field (3.23) and
contrast field (3.24).

3.4.2 Background field solution

The background field appears on the right-hand side of (3.24). Therefore, before solving
(3.24), the solution of (3.23) needs to be found. Since the background field is not pseudo-
periodic, we attempt to obtain it analytically and not with the help of FMM. Let us
consider the background problem without PMLs

∂2

∂x2 e
b
y +

∂2

∂z2 e
b
y + k2

0ε
b(x, z)eby = 0. (3.25)

The solutions ẽby and eby of respectively (3.23) and (3.25) coincide in the physical domain
(physical domain = domain - PML region). Since on the right-hand side of (3.24),
ε − εb = 0 in the PMLs, we need not know the background field in the PML region in
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Figure 3.7: The background problem.

order to solve (3.24).

To solve (3.25), we use knowledge about angles of reflection and refraction. Figure 3.7
shows the representation of the solution in terms of plane waves. We assume h1 = 0 and
h2 = h. In layer 2 (0 ≤ z ≤ h, see Figure 3.7) the field is written as

eby,2 = einc
y + ery = e−q2ze−ikx0x + req2ze−ikx0x. (3.26)

In layer 3 (z ≥ h)
eby,3 = ety = te−q3(z−h)e−ikx0x, (3.27)

where ql =

√
k2
x0 − k2

0ε
b
l , l = 2, 3. The amplitudes r and t corresponding to the reflected

and transmitted wave respectively are unknown. They can be determined from the
interface conditions, i.e. by matching the fields and their normal derivatives at the
interface h2 = h,

einc
y (x, h) + ery(x, h) = ety(x, h), (3.28a)

∂

∂z
einc
y (x, h) +

∂

∂z
ery(x, h) =

∂

∂z
ety(x, h). (3.28b)

Using the relations (3.26), (3.27) and setting b = e−q2h, we obtain a linear system of
equations for r and t

rb−1 + b = t, (3.29a)

rq2b
−1 − q2b = −tq3. (3.29b)

This system has the solution

r =
q2 − q3

q2 + q3

b2, (3.30a)

t =
2q2

q2 + q3

b. (3.30b)
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Figure 3.8: The source term in the contrast-field equation.

3.4.3 Contrast field solution

The contrast field satisfies Equation (3.24). In layers 1 and 3 the right-hand side vanishes
(see Figure 3.8) and the equations are similar to the ones encountered in the standard
FMM

1

f ′(x)

∂

∂x

(
1

f ′(x)

∂

∂x
ẽcy,l

)
+

∂2

∂z2 ẽ
c
y,l + k2

0εl(x)ẽcy,l = 0, l = 1, 3. (3.31)

Fourier expansion and truncation yield the system of second-order ordinary differential
equations

d2

dz2 s̃
c
l (z) = k2

0Ãls̃
c
l (z), l = 1, 3. (3.32)

The general solution of this system is given by (3.7). In layer 2 the following equation is
solved

1

f ′(x)

∂

∂x

(
1

f ′(x)

∂

∂x
ẽcy,2

)
+

∂2

∂z2 ẽ
c
y,2 + k2

0ε2(x)ẽcy,2 = −k2
0(ε2(x)− εb2)eby,2. (3.33)

This equation is non-homogeneous. The following steps are presented in detail since
FMM has not been applied to such equations before. We proceed in the usual way by
expanding the x-dependent quantities (consisting of the field and permittivity function)
in Fourier modes

ẽcy,2(x, z) =

∞∑
n=−∞

s̃c2,n(z)e−ikxnx, (3.34a)

eby,2(x, z) = e−q2ze−ikx0x + req2ze−ikx0x, (3.34b)

ε2(x) =

∞∑
n=−∞

ε̂2,ne
i 2πn

Λ x, (3.34c)

1

f ′(x)
=

∞∑
n=−∞

f̂ne
i 2πn

Λ x. (3.34d)
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Substituting (3.34) in (3.33) and truncating the infinite series by keeping the harmonics
n = −N, . . . , N yields

−
N∑

n=−N

N∑
m=−N

(
f̂n−mkxm

N∑
r=−N

f̂m−rkxr s̃
c
2,r(z)e

−ikxnx

)

+

N∑
n=−N

d2

dz2 s̃
c
2,n(z)e−ikxnx + k2

0

N∑
n=−N

N∑
m=−N

ε̂2,n−ms̃
c
2,m(z)e−ikxnx

= −k2
0

N∑
n=−N

N∑
m=−N

(ε̂2,n−m − εb2δn−m)(e−q2z + req2z)δne
−ikxnx,

where δn is the Kronecker delta (δ0 = 1, δn = 0, n ∈ Z\{0}).

Since the functions e−ikxnx form a basis, their coefficients must satisfy

−
N∑

m=−N

(
f̂n−mkxm

N∑
r=−N

f̂m−rkxr s̃
c
2,r(z)

)
+

d2

dz2 s̃
c
2.n(z) + k2

0

N∑
m=−N

ε̂2,n−ms̃
c
2,m(z)

= −k2
0

N∑
m=−N

(ε̂2,n−m − εb2δn−m)δn(e−q2z + req2z), n = −N, . . . , N. (3.35)

In matrix form this system of equations can be written as

d2

dz2 s̃
c
2(z) = k2

0Ã2s̃
c
2(z) + k2

0(εb2I−E2)d0(e−q2z + req2z), (3.36)

with
Ã2 = (FKx)2 −E2.

We recall that the vector d0 ∈ R2N+1 in (3.36) is an all-zero vector except for entry
N + 1 which is equal to 1. Equation (3.36) is a system of non-homogeneous second order
ordinary differential equations (ODEs). The solution vector is of the form

s̃c2 = s̃c2,hom + s̃c2,part. (3.37)

To find the particular solution we use the method of undetermined coefficients applied
to systems of equations [82, p. 241]. If the non-homogeneous term contains functions
with a finite family of derivatives (e.g. polynomial and trigonometric functions) then the
solution may be assumed to be a linear combination of those functions. In our case the
particular solution is of the form

s̃c2,part(z) = p(e−q2z + req2z), (3.38)

where p ∈ R(2N+1) is a vector of coefficients to be determined. We substitute the ansatz
(3.38) in Equation (3.36) and get in the end the following linear system which can be
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solved for p

(k2
0Ã2 − q2

2I)p = −k2
0(εb2I−E2)d0. (3.39)

Note that in case there is no PML, we have F = I and p = −d0. The general solution
of (3.36) can now be written using (3.37) and (3.38)

s̃c2(z) = W2(e−k0Q2zc+
2 + ek0Q2(z−h)c−2 ) + p(e−q2z + req2z). (3.40)

The conditions at the layer interface are

s̃c1(0) = s̃c2(0), (3.41a)

1

k0

d

dz
s̃c1(0) =

1

k0

d

dz
s̃c2(0), (3.41b)

s̃c2(h) = s̃c3(h), (3.41c)

1

k0

d

dz
s̃c2(h) =

1

k0

d

dz
s̃c3(h). (3.41d)

Since there is no incident field in the contrast problem, the radiation condition implies

s̃c,+1 (0) = 0, (3.42a)

s̃c,−3 (h) = 0, (3.42b)

where s̃c,+1 and s̃c,−3 represent the fields consisting of respectively downwards and upwards
traveling waves (see Equation (3.7)). We set Vl = −WlQl, and X2 = e−Q2h. By
substituting the general solution (3.40) into (3.41), relations for the unknown coefficients
three layers are obtained[

W1

−V1

]
c−1 =

[
W2 W2X2

V2 −V2X2

] [
c+

2

c−2

]
+

[
s̃c2,part(0)

k−1
0

d
dz s̃

c
2,part(0)

]
, (3.43)

[
W2X2 W2

V2X2 −V2

] [
c+

2

c−2

]
+

[
s̃c2,part(h)

k−1
0

d
dz s̃

c
2,part(h)

]
=

[
W3

V3

]
c+

3 , (3.44)

where

s̃c2,part(z) = p(e−q2z + req2z), (3.45)

d

dz
s̃c2,part(z) = p(−q2e

−q2z + rq2e
q2z). (3.46)

The equations (3.43), (3.44) can be solved for c−1 , c
−
2 , c

+
2 , c

+
3 . Note that the inversion of

matrix X2 implies growing exponentials and a loss of accuracy due to round-off. This is
a general problem encountered by modal methods. Many solutions have been proposed
such as the enhanced transmittance matrix approach [48], the S-matrix and R-matrix
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Figure 3.9: The contrast field computed with AFMM-CFF.

algorithms [40]. However, due to the non-homogeneous part, our system has a different
structure than in standard FMM and the above algorithms cannot be applied without
modifications. We use a full-matrix approach [52, 46] in order to guarantee stability.

3.5 Numerical results

We consider the aperiodic model problem of scattering from an isolated resist line in
air with a width of 100 nm and a height of 20 nm illuminated by a plane wave with a
wavelength λ = 628 nm incident at an angle θ = π/6. The computational domain has a
width Λ = 500 nm and the lateral PMLs have a width of 100 nm. The geometry of the
problem can be seen in Figure 3.9. The refractive index of air and resist are given by
n1 = 1, n3 = 1.5.

The contrast-field formulation of the FMM with PMLs is used to solve the problem. We
refer to this method as the aperiodic Fourier modal method in contrast-field formulation
(AFMM-CFF). For the implementation of the PMLs we need to define the coordinate
transformation function which is chosen to be a polynomial of degree p,

x̃ = f(x) =


x+ iσ0|x− xl|(p+1)/(p+ 1), 0 ≤ x ≤ xl,
x, xl < x < xr,

x− iσ0|x− xr|(p+1)/(p+ 1), xr ≤ x ≤ Λ,

(3.47)

where xl is the endpoint of the left PML, xr is the start-point of right PML, σ0 is the
damping strength. We chose a quadratic PML (p = 2) with a damping strength σ0 = 10.
In the computations also the derivative of the coordinate transformation function is
required,

d

dx
f(x) =


1 + iσ0|x− xl|p, 0 ≤ x ≤ xl,
1, xl < x < xr,

1− iσ0|x− xr|p, xr ≤ x ≤ Λ.

(3.48)
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Figure 3.10: Logarithmic plots log10 E1 (left) and log10 E2 (right) of the errors defined
in (3.49).

We will first confirm that the PML acts as an absorbing layer. Figure 3.9 shows the
contrast field computed with AFMM-CFF. We observe a decay of the field in the PML
to ”almost zero“ at the lateral boundaries, which implies that the effect of the pseudo-
periodic boundary condition is negligible. It is clear that the amplitude of the field near
the lateral boundary could be used as an indication on the performance of the PML and
consequently the accuracy of the numerical solution. However, this approach will only
estimate the error due to reflections from the outer boundary and not from the inner
boundary of the PML. Note that the solution in the PML is not physically relevant. In
order to obtain the solution outside the physical domain, a Green’s functions approach
may be taken [44].

Next, the convergence behavior of AFMM-CFF and supercell FMM (standard FMM
with a large period Λ) is investigated. For this purpose we define

E1(N,Λ) = ||ec,N,Λy − ec,refy ||2, on Ωs, (3.49a)

E2(N, σ0) = ||ẽc,N,σ0
y − ec,refy ||2, on Ωs, (3.49b)

where ẽc,N,σ0
y is the numerical solution obtained with AFMM-CFF for 2N + 1 harmonics

and a damping strength σ0, while e
c,N,Λ
y is the numerical solution obtained with supercell

FMM for 2N+1 harmonics and a period Λ. The reference solution is computed using the
supercell FMM with N = 800 and Λ = 15000, ec,refy = ec,800,15000

y . The Euclidean norm
|| · ||2 is computed on a rectangular domain enclosing the scatterer, Ωs = [100, 400] ×
[−20, 40]. Figure 3.10 displays the logarithmic plots of the absolute error for the two
methods. Note that since the amplitude of the total field is close to unity, the relative
and absolute errors have the same order.
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The convergence plots demonstrate that the AFMM-CFF solution converges to the super-
cell solution. The error of AFMM-CFF has a globally monotonic behavior with respect
to N and σ0. In other words, increasing either N or σ0 will not worsen the accuracy of
the solution. The supercell FMM has a non-monotonic behavior with respect to Λ. In
order to obtain a better solution, increasing Λ would require also taking more harmonics.
This behavior is clearly undesirable from the computational point of view.

Also quantitative statements may be made based on Figure 3.10. It indicates that the
AFMM-CFF exhibits faster convergence. For instance, an absolute error in the range
10−2.7 . . . 10−3, is attained by the supercell FMM for N around 80, and by the AFMM-
CFF for N ≈ 10 (the plots have different color scales). Since the methods have cubical
complexity with respect to the number of harmonics a speed-up by a factor 83 ≈ 500 can
be reached.



Chapter 4

Generalization to arbitrary

shapes and illumination

In this chapter we generalize the formulation of the FMM and AFMM-CFF to arbitrary
shapes. This implies that, unlike for binary shapes, more than three slices are required in
the spatial discretization of the permittivity. We also formulate the spectral discretization
in a more elegant way using a Galerkin approach. The cases TE, TM and conical defined
in Section 2.4 are discussed.

4.1 Standard Fourier modal method

We start the discretization of the time-harmonic Maxwell equations (2.18) by dividing
the computational domain vertically into M slices such that the permittivity may be
considered z-independent in each separate slice. The terminology of ”slice“ is preferred
here to ”layer“, as the latter is reserved to physical layers in the multilayer stack. As
illustrated in Figure 4.1, the upper and lower interface of slice l are located at hl−1 and
hl respectively. Since z ∈ R, we take h0 = −∞, hM = +∞. The permittivities in each
slice are given by

εl(x) = ε(x, zl), with zl ∈ [hl−1, hl). (4.1)

Thus, the profile of the scatterer is approximated by a staircase as in Figure 4.1. The
electric and magnetic fields on the computational domain now consist of fields in separate
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Figure 4.1: Sliced geometry. The dashed line represents the smooth profile being ap-
proximated.

slices

el(x, y, z) = e(x, y, z), z ∈ [hl−1, hl), (4.2)

hl(x, y, z) = h(x, y, z), z ∈ [hl−1, hl). (4.3)

The time-harmonic Maxwell equations for a slice l read

∂

∂y
ez,l −

∂

∂z
ey,l = −k0hx,l, (4.4a)

∂

∂z
ex,l −

∂

∂x
ez,l = −k0hy,l, (4.4b)

∂

∂x
ey,l −

∂

∂y
ex,l = −k0hz,l, (4.4c)

1

εl(x)

∂

∂y
hz,l −

1

εl(x)

∂

∂z
hy,l = −k0ex,l, (4.4d)

∂

∂z
hx,l −

∂

∂x
hz,l = −k0εl(x)ey,l, (4.4e)

∂

∂x
hy,l −

∂

∂y
hx,l = −k0εl(x)ez,l, (4.4f)

for (x, z) ∈ [0,Λ]× [hi−1, hi). Equation (4.4d) has been divided by εl(x) in order to avoid
products of functions with concurrent (in the same point) jump discontinuities on the
right-hand side. As shown in [41], discretization of the original equation would lead to
slower convergence. To discretize in the x and y directions we use a Galerkin approach



4.1 Standard Fourier modal method 47

with ”shifted“ Fourier harmonics as basis functions and test functions,

φn(x, y) = e−i(kxnx+kyy), (4.5)

where
kxn = kinc

x − n
2π

Λ
, ky = kinc

y , for n = −N...+N.

In each slice l the fields are expanded as

eα,l(x, y, z) =

N∑
n=−N

sα,l,n(z)φn(x, y) = (sα,l(z))
T · φ(x, y), (4.6a)

hα,l(x, y, z) =

N∑
n=−N

uα,l,n(z)φn(x, y) = (uα,l(z))
T · φ(x, y). (4.6b)

The α symbol stands for the x-, y-, or z-component of the field. We apply the Galerkin
method with a standard inner product on the interval [0,Λ] to the total field equations
(2.18) (see Section B.2 in the Appendix for a detailed derivation). We obtain the dis-
cretized equations for the electric and magnetic field,

−iKysz,l(z)− k−1
0

d

dz
sy,l(z) = −ux,l(z), (4.7a)

k−1
0

d

dz
sx,l(z) + iKxsz,l(z) = −uy,l(z), (4.7b)

−iKxsy,l(z) + iKysx,l(z) = −uz,l(z), (4.7c)

−iKyuz,l(z)− k−1
0

d

dz
ucy,l(z) = −P−1

l sx,l(z), (4.7d)

k−1
0

d

dz
ux,l(z) + iKxuz,l(z) = −Elsy,l(z), (4.7e)

−iKxuy,l(z) + iKyux,l(z) = −Elsz,l(z). (4.7f)

Introducing the notation for Fourier coefficients ξ̂n of a function ξ(x) on the interval
x ∈ [0,Λ),

ξ̂n =

∫ Λ

0

ξ(x)ein
2π
Λ x dx,

the matrices in the expressions above are defined as follows,

(Kx)mn = (kxn/k0)δmn, (4.8a)

(Ky)mn = (ky/k0)δmn, (4.8b)

(El)mn = ε̂l,n−m, (4.8c)

(Pl)mn = p̂l,n−m, (4.8d)
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for m,n = −N...+N . Here δmn is the Kronecker delta and

pl(x) = 1/εl(x). (4.9a)

The Li rules [41] have been applied in (4.7d). The incident electric and magnetic fields
are also represented in terms of the basis functions φn,

einc
α (x, y, z) =

N∑
n=−N

sinc
α,n(z)φn(x, y) = (sinc

α (z))T · φ(x, y), (4.10a)

hinc
α (x, y, z) =

N∑
n=−N

uinc
α,n(z)φn(x, y) = (uinc

α (z))T · φ(x, y). (4.10b)

It follows from (2.21) and (2.25) that

sinc
α (z) = aeαd0e

−ikinc
z z, (4.11a)

uinc
α (z) = ahαd0e

−ikinc
z z. (4.11b)

4.1.1 TE-polarization

In the case of planar incidence and TE-polarization we have ex = ez = hy = 0, which
implies that sx = sz = uy = 0. The discretized Maxwell equations (4.7) reduce to

−k−1
0

d

dz
sy,l(z) = −ux,l(z), (4.12a)

−iKxsy,l(z) = −uz,l(z), (4.12b)

k−1
0

d

dz
ux,l(z) + iKxuz,l(z) = −Elsy,l(z). (4.12c)

After elimination of ux and uz we are left with an equation for sy

d2

dz2 sy,l(z) = k2
0Alsy,l(z), (4.13)

where Al = K2
x−El. Equation (4.13) is a system of homogeneous second-order ordinary

differential equations. Its general solution is given by

sy,l(z) = Wl(e
−k0Ql(z−hl−1)c+

l + ek0Ql(z−hl)c−l ) = s+
y,l(z) + s−y,l(z), (4.14)

where Wl is the matrix of eigenvectors of Al, and Ql is a diagonal matrix with square
roots of the corresponding eigenvalues on its diagonal. The quantities with + superscript
correspond to waves traveling in the positive z-direction (downward), and quantities with
− superscript correspond to waves traveling in the negative z-direction (upward).
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At the interface, continuity of the tangential components of the fields is required,

sy,l(hl) = sy,l+1(hl), (4.15a)

ux,l(hl) = ux,l+1(hl). (4.15b)

These conditions hold for the contrast field as a result of the continuity of tangential
components of the total and background fields. Using (4.12a) yields

sy,l(hl) = sy,l+1(hl), (4.16a)

k−1
0

d

dz
sy,l(hl) = k−1

0

d

dz
sy,l+1(hl). (4.16b)

We define Xl = e−k0Ql(hl−hl−1) and Vl = −WlQl. Then, from (4.16) and (4.14) we
have for each slice[

WlXl Wl

VlXl −Vl

] [
c+
l

c−l

]
=

[
Wl+1 Wl+1Xl+1

Vl+1 −Vl+1Xl+1

] [
c+
l+1

c−l+1

]
. (4.17)

The radiation condition needs to be applied in the top and bottom slices. Because the
only incoming field in slice 1 is the incident field (illumination), we impose a restriction
on the term representing the downward traveling waves in this slice (see the general
solution (4.14))

s+
y,1 = sinc

y . (4.18)

From (2.29) we determine sinc
y = d0e

−ikinc
z z. In the linear system (4.17) (which results

from the interface conditions (4.15)) we have[
W1X1

V1X1

]
c+

1 =

[
d0

−ik−1
0 kinc

z d0

]
e−ik

inc
z h1 . (4.19)

In slice M there is no incoming field:

s−y,M = 0. (4.20)

Thus in the linear system (4.17) we have[
WM

VM

]
c−M = 0. (4.21)
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4.1.2 TM-polarization

In the case of planar incidence and TM-polarization we have ey = hx = hz = 0, which
implies that sy = ux = uz = 0. The Maxwell equations (4.7) reduce to

k−1
0

d

dz
sx,l(z) + iKxsz,l(z) = −uy,l(z), (4.22a)

−k−1
0 Pl

d

dz
uy,l(z) = −sx,l(z), (4.22b)

−iKxuy,l(z) = −Elsz,l(z). (4.22c)

After elimination of sx and sz we are left with an equation for uy

d2

dz2uy,l = P−1
l Bluy,l, (4.23)

where Bl = (KxE
−1
l Kx − I). Similarly to the TE-polarization case, the general solution

is given by

uy,l(z) = Wl(e
−k0Ql(z−hl−1)c+

l + ek0Ql(z−hl)c−l ), (4.24)

where Wl and Ql are respectively the matrix of eigenvectors and diagonal matrix with
square roots of eigenvalues of P−1

l Bl on the diagonal. At the interface, continuity of the
tangential components of the fields is required,

uy,l(hl) = uy,l+1(hl), (4.25a)

sx,l(hl) = sx,l+1(hl). (4.25b)

Using (4.22b) yields

uy,l(hl) = uy,l+1(hl), (4.26a)

k−1
0 Pl

d

dz
uy,l(hl) = k−1

0 Pl+1

d

dz
uy,l+1(hl).

We define Vl = −PlWlQl (keeping the old definition of Xl). Then, from (4.26) and
(4.24) we have for each slice[

WlXl Wl

VlXl −Vl

] [
c+
l

c−l

]
=

[
Wl+1 Wl+1Xl+1

Vl+1 −Vl+1Xl+1

] [
c+
l+1

c−l+1

]
. (4.27)

We apply the radiation conditions in the top and bottom slices in a similar fashion to
the TE-case. In slice 1, we require that

u+
y,1 = uinc

y . (4.28)
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From (2.32) we determine uinc
y = in1d0e

−ikinc
z z. In the linear system (4.27) we have

[
W1X1

V1X1

]
c+

1 =

[
in1d0

k−1
0 kinc

z d0

]
e−ik

inc
z h1 . (4.29)

In slice M there is no incoming field:

u−y,M = 0. (4.30)

Thus in the linear system (4.17) we have[
WMXM

−VMXM

]
c−M = 0. (4.31)

4.1.3 Conical incidence

The case of conical incidence is the most general as it allows all the components of the
fields to be non-zero. The discretized Maxwell equations (4.7) can be reduced to two
second-order ordinary differential equations for sx,l and ux,l. We briefly describe the
derivation of the equation for the latter.

Using (4.7f) and (4.7e) in (4.7a) yields

KyE
−1
l Kxuy,l −K2

yE
−1
l ux,l + k−2

0 E−1
l

d2

dz2ux,l + ik−1
0 E−1

l Kx

d

dz
uz,l = −ux,l. (4.32)

The first and last terms in the left-hand side are expressed from (4.7b) and (4.7c) respec-
tively

E−1
l Kx(Kyuy,l + ik−1

0

d

dz
uz,l)

= E−1
l Kx(−k−1

0 Ky

d

dz
sx,l − iKyKxsx,l − k−1

0 Kx

d

dz
sy,l + k−1

0 Ky

d

dz
sx,l)

= E−1
l K2

x(−iKysx,l − k−1
0

d

dz
sy,l)

= −E−1
l K2

xux,l, (4.33)

where in the last step Equation (4.7a) was used. Substitution of (4.33) in (4.32) gives

−E−1
l K2

xux,l −K2
yE
−1
l ux,l + k−1

0 E−1
l

d2

dz2ux,l = −ux,l. (4.34)
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Finally we arrive at a homogeneous second-order ODE:

d2

dz2ux,l = (K2
x + K2

y −El)ux,l. (4.35)

The second-order equation for sx,l is derived in a similar manner, so that we obtain

d2

dz2 sx,l(z) = k2
0Clsx,l(z), (4.36a)

d2

dz2ux,l(z) = k2
0Dlux,l(z), (4.36b)

where

Cl = K2
y + (KxE

−1
l Kx − I)P−1

l = K2
y + BlP

−1
l , (4.37)

Dl = K2
y + K2

x −El = K2
y + Al. (4.38)

The general solution of (4.36) is given by

sx,l(z) = Ws,l(e
−k0Qs,l(z−hl−1)c+

s,l + ek0Qs,l(z−hl)c−s,l), (4.39a)

ux,l(z) = Wu,l(e
−k0Qu,l(z−hl−1)c+

u,l + ek0Qu,l(z−hl)c−u,l), (4.39b)

where the pairs Ws,l, Qs,l and Wu,l, Qu,l contain the matrix of eigenvectors and the
diagonal matrix with square roots of eigenvalues of, respectively, Cl and Dl on the
diagonal.

At the interface, continuity of the tangential components of the fields is required

sx,l(hl) = sx,l+1(hl), (4.40a)

sy,l(hl) = sy,l+1(hl), (4.40b)

ux,l(hl) = ux,l+1(hl), (4.40c)

uy,l(hl) = uy,l+1(hl). (4.40d)

Using (4.7c) in (4.7e) and (4.7f) in (4.7b), the y-components of the fields are expressed
in terms of x-components,

(K2
x −El)sy,l =KxKysx,l + k−1

0

d

dz
ux,l, (4.41a)

(KxE
−1
l Kx − I)uy,l =KxE

−1Kyux,l + k−1
0

d

dz
sx,l. (4.41b)
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Finally we obtain

sy,l =A−1
l

(
KxKysx,l + k−1

0

d

dz
ux,l

)
, (4.42a)

uy,l =B−1
l

(
KxE

−1Kyux,l + k−1
0

d

dz
sx,l

)
. (4.42b)

We define

Wl =

[
0 Ws,l

A−1
l Wu,lQu,l A−1

l KxKyWs,l

]
, (4.43)

Vl = −
[

Wu,l 0

B−1
l KxE

−1
l KyWu,l B−1

l Ws,lQs,l

]
, (4.44)

and

c+
l =

[−c+
u,l

c+
s,l

]
, c−l =

[
c−u,l
c−s,l

]
. (4.45)

Then, from (4.40) and (4.39) we have for each slice[
WlXl Wl

VlXl −Vl

] [
c+
l

c−l

]
=

[
Wl+1 Wl+1Xl+1

Vl+1 −Vl+1Xl+1

] [
c+
l+1

c−l+1

]
. (4.46)

In order to apply the radiation condition in slice 1, we require that
s+
x,1(z)

s+
y,1(z)

u+
x,1(z)

u+
y,1(z)

 =


sinc
x (z)

sinc
y (z)

uinc
x (z)

uinc
y (z)

 (4.11)
=


aexd0

aeyd0

ahxd0

ahyd0

 e−ikinc
z z. (4.47)

In the linear system (4.46) we have

[
W1X1

V1X1

]
c+

1 =


aexd0

aeyd0

ahxd0

ahyd0

 e−ikinc
z h1 . (4.48)

In slice M there is no incoming field:
s−x,M
s−y,M
u−x,M
u−y,M

 = 0. (4.49)
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Thus in the linear system (4.46) we have[
WMXM

−VMXM

]
c−M = 0. (4.50)

4.2 Aperiodic Fourier modal method

In the AFMM-CFF we use PMLs [5] in order to impose the radiation condition at
the lateral boundaries. The radiation condition however imposes a restriction on the
problems which can be solved: no incident field is allowed. Therefore, the Maxwell
equations need to be reformulated such that the incident field is replaced by a virtual
source. To this end, an associated background problem is defined,

∇× eb(x) = −k0h
b(x), (4.51a)

∇× hb(x) = −k0ε
b(x, z)eb(x), (4.51b)

with

eb,inc(x) = ae−ik
inc·x. (4.51c)

This problem is chosen such that it admits an analytical solution and the function ε− εb
has compact support. As explained in Chapter 3 (see also [59, 60, 61]), the compact sup-
port condition is required in order to avoid non-zero source terms in the PML. Typically
εb represents the permittivity of the background multilayer which supports the scatterer.
Subtraction of (4.51) from (2.17) yields the contrast-field formulation

∇× ec(x) = −k0h
c(x), (4.52a)

∇× hc(x) = −k0ε(x, z)e
c(x)− k0(ε(x, z)− εb(x, z))eb(x), (4.52b)

with

ec,inc(x) = 0. (4.52c)

The PMLs can be viewed as an analytical continuation of the solution into the complex
plane [11, 13]. For PMLs placed in the x-direction, this implies a change of the x-
derivative in the differential equations (4.52):

∂

∂x
→ 1

f ′(x)

∂

∂x
, with f(x) = x+ iβ(x). (4.53)

The function β is continuous and non-zero only in the PMLs, which are placed in the
stripes x ∈ [0, xl] and x ∈ [xr,Λ]. In Chapter 3 the tilde (~) notation was used for
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quantities related to the aperiodic problem to achieve clear distinction from the periodic
problem. For convenience this notation is abandoned in this and following chapters. We
mention that although PMLs are originally designed for hyperbolic equations, they have
also been recently successfully applied to the heat equation [37]. Lalanne and co-workers
[36] were the first to use PMLs with Fourier modal methods. They chose trigonometric
stretching functions whose Fourier coefficients can be computed analytically. Many other
forms for f (and implicitly for β) have been suggested [6, 12, 57]. Typically, a polynomial
or geometric variation of f in the PML is used. We adopt the first form. An example of
such a function was shown in Figure 3.2.

In this chapter we introduce a slightly different PML than the one defined by (3.47) in
Chapter 3. It is given by the coordinate transformation

f(x) =


x+ ikp0(β0|x− xl|)p+1, 0 ≤ x ≤ xl,
x, xl < x < xr,

x− ikp0(β0|x− xr|)p+1, xr ≤ x ≤ Λ,

(4.54)

where xl is the right end of the left PML, xr is the left end of the right PML, and β0

is the damping strength. To the authors’ knowledge, no study exists on the choice of
p for PMLs in the aperiodic Fourier modal methods. For instance, for FDTD methods
nearly optimal results have been obtained for p ∈ [3, 4] [6, 90]. In our computations we
set p = 1.

We look at the amplitude of a plane wave with unit amplitude after passing through the
PML. Let x ∈ [xr,Λ) be a point in the PML and ∆x = x− xr. We have

|e−ik0f(x)| = |e−ik0x||e−(k0β0∆x)
p+1

| = e−(k0β0∆x)
p+1

.

Now, we determine the distance over which the amplitude decays from 1 to e−1,

−(k0β0∆x)p+1 = −1 ⇒ k0∆x =
1

β0

.

This relation provides an intuitive meaning for β0 - it determines the inverse decay length.
Since k0 = 2π/λ0, the length is scaled by the wavelength of the incident field.

Similarly to the discretization in the standard FMM, we divide the domain into M slices
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slice 2

slice 4

slice 3

slice 1

slice M − 2

slice M − 1

slice M

x

z

h1

Λ

h2

h3

h4

...

hM−2

hM−1

...

Figure 4.2: Sliced geometry. The dashed line represents the smooth profile being ap-
proximated. The hatched areas indicate PMLs.

(see Figure 4.2). Then Maxwell equations (4.52) for the contrast field in slice l read

∂

∂y
ecz,l −

∂

∂z
ecy,l = −k0h

c
x,l, (4.55a)

∂

∂z
ecx,l −

1

f ′(x)

∂

∂x
ecz,l = −k0h

c
y,l, (4.55b)

1

f ′(x)

∂

∂x
ecy,l −

∂

∂y
ecx,l = −k0h

c
z,l, (4.55c)

1

εl(x)

∂

∂y
hcz,l −

1

εl(x)

∂

∂z
hcy,l = −k0e

c
x,l − k0(1− 1

εl(x)
εbl )e

b
x,l, (4.55d)

∂

∂z
hcx,l −

1

f ′(x)

∂

∂x
hcz,l = −k0εl(x)ecy,l − k0(εl(x)− εbl )eby,l, (4.55e)

1

f ′(x)

∂

∂x
hcy,l −

∂

∂y
hcx,l = −k0εl(x)ecz,l − k0(εl(x)− εbl )ebz,l, (4.55f)

for (x, z) ∈ [0,Λ] × [hl−1, hl). As it was done in Equation (4.4d), Equation (4.55d) has
been divided by εl(x) in order to avoid products of functions with concurrent (in the
same point) jump discontinuities on the right-hand side.

In the x-direction we use a Galerkin approach with ”shifted“ Fourier harmonics (4.5) as
basis functions and test functions. In each slice l the contrast (electric and magnetic)
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fields are expanded as

ec,Nα,l (x, y, z) =

N∑
n=−N

scα,l,n(z)φn(x, y) = (scα,l(z))
T · φ(x, y), (4.56a)

hc,Nα,l (x, y, z) =

N∑
n=−N

ucα,l,n(z)φn(x, y) = (ucα,l(z))
T · φ(x, y). (4.56b)

Again, the α symbol stands for the x-, y-, or z-component of the field. The background
fields, which are known in advance, have to be represented in the same basis as the
contrast field, i.e.

eb,Nα,l (x, y, z) =

N∑
n=−N

sbα,l,n(z)φn(x, y) = (sbα,l(z))
T · φ(x, y), (4.57a)

hb,Nα,l (x, y, z) =

N∑
n=−N

ubα,l,n(z)φn(x, y) = (ubα,l(z))
T · φ(x, y). (4.57b)

The background field is determined in advance by solving the Fresnel reflection-transmission
problem for a multilayer.

sbα,l(z) = d0s
b
α,l(z) = d0

(
aeα,le

−k0ql(z−hl−1) + reα,le
k0ql(z−hl)

)
, (4.58a)

ubα,l(z) = d0u
b
α,l(z) = d0

(
ahα,le

−k0ql(z−hl−1) + rhα,le
k0ql(z−hl)

)
, (4.58b)

where d0 ∈ R2N+1 is an all-zero vector except for entry N + 1 and ql is defined as

ql = i

√√√√εbl −
(
kinc
x

k0

)2

−
(
kinc
y

k0

)2

. (4.59)

The coefficients aeα,l, r
e
α,l, and a

h
α,l, r

h
α,l in (4.58) are the amplitudes of the downward and

upward traveling waves corresponding to the electric and magnetic background field.

We apply the Galerkin method with a standard inner product on the interval x ∈ [0,Λ)



58 Generalization to arbitrary shapes and illumination

to the contrast field equations (4.55)

−iKys
c
z,l(z)− k−1

0

d

dz
scy,l(z) = −ucx,l(z), (4.60a)

k−1
0

d

dz
scx,l(z) + iFKxs

c
z,l(z) = −ucy,l(z), (4.60b)

−iFKxs
c
y,l(z) + iKys

c
x,l(z) = −ucz,l(z), (4.60c)

−iKyu
c
z,l(z)− k−1

0

d

dz
ucy,l(z) = −P−1

l scx,l(z)− (P−1
l − (Pbl )

−1)sbx,l(z), (4.60d)

k−1
0

d

dz
ucx,l(z) + iFKxu

c
z,l(z) = −Elscy,l(z)− (El −Ebl )s

b
y,l(z), (4.60e)

−iFKxu
c
y,l(z) + iKyu

c
x,l(z) = −Elscz,l(z)− (El −Ebl )s

b
z,l(z). (4.60f)

The matrices in the expressions above are defined as follows,

(Kx)mn = (kxn/k0)δmn, (4.61a)

(Ky)mn = (ky/k0)δmn, (4.61b)

(El)mn = ε̂l,n−m, (4.61c)

(Pl)mn = p̂l,n−m, (4.61d)

(Ebl )mn = ε̂bl,n−m, (4.61e)

(Pbl )mn = p̂bl,n−m, (4.61f)

(F)mn = γ̂n−m, (4.61g)

for m,n = −N...+N . Here δmn is the Kronecker delta and

pl(x) = 1/εl(x), (4.62a)

pbl = 1/εbl , (4.62b)

γ(x) = 1/f ′(x). (4.62c)

The function f(x) is the complex coordinate transformation implementing the PML.
Since εbl and p

b
l are x-independent, the matrices Ebl = εbl I and Pbl = (εbl )

−1I are diagonal.

For future reference we also list the discretized Maxwell equations for the background
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field:

−iKys
b
z,l(z)− k−1

0

d

dz
sby,l(z) = −ubx,l(z), (4.63a)

k−1
0

d

dz
sbx,l(z) + iFKxs

b
z,l(z) = −uby,l(z), (4.63b)

−iFKxs
b
y,l(z) + iKys

b
x,l(z) = −ubz,l(z), (4.63c)

−iKyu
b
z,l(z)− k−1

0

d

dz
uby,l(z) = −(Pbl )

−1sbx,l(z), (4.63d)

k−1
0

d

dz
ubx,l(z) + iFKxu

b
z,l(z) = −Ebl sby,l(z), (4.63e)

−iFKxu
b
y,l(z) + iKyu

b
x,l(z) = −Ebl sbz,l(z). (4.63f)

4.2.1 TE-polarization

In the case of planar incidence and TE-polarization we have scx = scz = ucy = 0 and
sbx = sbz = uby = 0. The discretized Maxwell equations for the contrast field (4.60) and
background field (4.63) reduce respectively to

−k−1
0

d

dz
scy,l(z) = −ucx,l(z), (4.64a)

−iFKxs
c
y,l(z) = −ucz,l(z), (4.64b)

k−1
0

d

dz
ucx,l(z) + iFKxu

c
z,l(z) = −Elscy,l(z)− (El −Ebl )s

b
y,l(z), (4.64c)

and

−k−1
0

d

dz
sby,l(z) = −ubx,l(z), (4.65a)

−iFKxs
b
y,l(z) = −ubz,l(z), (4.65b)

k−1
0

d

dz
ubx,l(z) + iFKxu

b
z,l(z) = −Ebl sby,l(z). (4.65c)

Substitution of (4.64a) and (4.64b) in (4.64c) yields

d2

dz2 s
c
y,l(z) = k2

0Als
c
y,l(z)− k2

0(El −Ebl )s
b
y,l(z), (4.66)

where Al = (FKx)2−El. Equation (4.66) is a system of non-homogeneous second order
ordinary differential equations. Its solution is of the form

scy,l = scy,hom,l + scy,part,l. (4.67)
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The homogeneous solution is given by

scy,hom,l(z) = Wl(e
−k0Ql(z−hl−1)c+

l + ek0Ql(z−hl)c−l ), (4.68)

where Wl is the matrix of eigenvectors of Al, and Ql is a diagonal matrix with square
roots of the corresponding eigenvalues on its diagonal. We assume the following form for
the particular solution (method of undetermined coefficients for systems, see Chapter 3
and [59])

scy,part,l(z) = pls
b
y,l(z), (4.69)

where pl ∈ R2N+1 is a vector to be determined. Substitution of (4.69) in (4.66) yields

(Al − q2
l I)pl = (El −Ebl )d0. (4.70)

At the interface, continuity of the tangential components of the fields is required,

scy,l(hl) = scy,l+1(hl), (4.71a)

ucx,l(hl) = ucx,l+1(hl). (4.71b)

These conditions hold for the contrast field as a result of the continuity of tangential
components of the total and background fields. Using (4.64a) yields

scy,l(hl) = scy,l+1(hl), (4.72a)

k−1
0

d

dz
scy,l(hl) = k−1

0

d

dz
scy,l+1(hl). (4.72b)

We define

Xl = e−k0Ql(hl−hl−1), (4.73a)

Vl = −WlQl. (4.73b)

Then, from (4.72), (4.67), (4.68) and (4.69) we have for each slice[
WlXl Wl

VlXl −Vl

] [
c+
l

c−l

]
+ gl(hl) =

[
Wl+1 Wl+1Xl+1

Vl+1 −Vl+1Xl+1

] [
c+
l+1

c−l+1

]
+ gl+1(hl), (4.74)

where

gl(z) =

[
pls

b
y,l

plk
−1
0

d
dz s

b
y,l

]
(4.65a)

=

[
pls

b
y,l

plu
b
x,l

]
. (4.75)
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The radiation condition is imposed by requiring that coefficients of the incoming waves
in layers 1 and M vanish,

c+
1 = 0, c−M = 0. (4.76)

4.2.2 TM-polarization

In the case of planar incidence and TM-polarization we have ucx = ucz = scy = 0 and
ubx = ubz = sby = 0. The discretized Maxwell equations for the contrast field (4.60) and
background field (4.63) reduce respectively to

k−1
0

d

dz
scx,l(z) + iFKxs

c
z,l(z) = −ucy,l(z), (4.77a)

−k−1
0

d

dz
ucy,l(z) = −P−1

l scx,l(z)− (P−1
l − (Pbl )

−1)sbx,l(z), (4.77b)

−iFKxu
c
y,l(z) = −Elscz,l(z)− (El −Ebl )s

b
z,l(z), (4.77c)

and

k−1
0

d

dz
sbx,l(z) + iFKxs

b
z,l(z) = −uby,l(z), (4.78a)

−k−1
0

d

dz
uby,l(z) = −(Pbl )

−1sbx,l(z), (4.78b)

−iFKxu
b
y,l(z) = −Ebl sbz,l(z). (4.78c)

A single second-order equation is obtained by substituting (4.77b) and (4.77c) in (4.77a)

and subsequently using the Maxwell equations for the background field (4.78) to replace
sbx,l and sbz,l by uby,l,

d2

dz2u
c
y,l = P−1

l Blu
c
y,l + (P−1

l Bl − (Pbl )
−1Bb

l )u
b
y,l, (4.79)

where Bl = FKxE
−1
l FKx − I and Bb

l = FKx(Ebl )
−1FKx − I. The solution of (4.79) is

of the form

ucy,l = ucy,hom,l + ucy,part,l. (4.80)

The homogeneous solution is given by

ucy,hom,l(z) = Wl(e
−k0Ql(z−hl−1)c+

l + ek0Ql(z−hl)c−l ), (4.81)

where, as before, Wl and Ql are respectively the matrix of eigenvectors and diagonal
matrix of square roots of eigenvalues of P−1

l Bl. We assume the following form for the
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particular solution

ucy,part,l(z) = plu
b
y,l(z). (4.82)

Substitution of (4.82) in (4.79) yields

(P−1
l Bl − q2

l I)pl = ((Pbl )
−1Bb

l −P−1
l Bl)d0. (4.83)

At the interface, continuity of the tangential components of the fields is required,

ucy,l(hl) = ucy,l+1(hl), (4.84a)

scx,l(hl) = scx,l+1(hl). (4.84b)

Using (4.77b) yields

ucy,l(hl) = ucy,l+1(hl), (4.85a)

k−1
0 Pl

d

dz
ucy,l(hl)−Pl(P

−1
l − (Pbl )

−1)sbx,l(hl) =

k−1
0 Pl+1

d

dz
ucy,l+1(hl)−Pl+1(P−1

l+1 − (Pbl+1)−1)sbx,l+1(hl). (4.85b)

We define Vl = −PlWlQl (keeping the old definition of Xl). Then, from (4.85), (4.80),
(4.81) and (4.82) we have for each slice[

WlXl Wl

VlXl −Vl

] [
c+
l

c−l

]
+ gl(hl) =

[
Wl+1 Wl+1Xl+1

Vl+1 −Vl+1Xl+1

] [
c+
l+1

c−l+1

]
+ gl+1(hl), (4.86)

where

gl(z) =

[
plu

b
y,l

Plplk
−1
0

d
dzu

b
y,l −Pl(P

−1
l − (Pbl )

−1)d0s
b
x,l

]
(4.78b)

=

[
plu

b
y,l

(Pl(P
b
l )
−1pl + (Pl −Pbl )(P

b
l )
−1d0)sbx,l

]
. (4.87)

Similarly to the TE-case, the radiation condition is imposed by requiring that coefficients
of the incoming waves in layers 1 and M vanish,

c+
1 = 0, c−M = 0. (4.88)
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4.2.3 Conical incidence

In the case of conical incidence, the Maxwell equations for the contrast field (4.60) reduce
to

d2

dz2 s
c
x,l(z) = k2

0Cls
c
x,l(z) + k2

0(BlP
−1
l −Bb

l (P
b
l )
−1)sbx,l(z), (4.89a)

d2

dz2u
c
x,l(z) = k2

0Dlu
c
x,l(z)− k2

0(El −Ebl )u
b
x,l(z), (4.89b)

where Cl = K2
y + BlP

−1
l , Dl = K2

y + Al. As for the TM-polarization, in order to arrive
at (4.89) from (4.60), additionally the Maxwell equations for the background field (4.63)

need to be used. The solution vector is of the form

scx,l = scx,hom,l + scx,part,l, (4.90a)

ucx,l = ucx,hom,l + ucx,part,l. (4.90b)

The homogeneous solution is given by

scx,hom,l(z) = Ws,l(e
−k0Qs,l(z−hl−1)c+

s,l + ek0Qs,l(z−hl)c−s,l), (4.91)

ucx,hom,l(z) = Wu,l(e
−k0Qu,l(z−hl−1)c+

u,l + ek0Qu,l(z−hl)c−u,l), (4.92)

where the pairs Ws,l, Qs,l and Wu,l, Qu,l contain the matrix of eigenvectors and the
diagonal matrix of square roots of eigenvalues of, respectively, Cl and Dl. To find the
particular solution we assume the form

scx,part,l(z) = ps,ls
b
x,l(z), (4.93a)

ucx,part,l(z) = pu,lu
b
x,l(z). (4.93b)

Using this Ansatz in Equation (4.89), we obtain two linear systems that can be solved
for ps,l and pu,l

(Cl − q2
l I)ps,l = −(BlP

−1
l −Bb

l (P
b
l )
−1)d0, (4.94a)

(Dl − q2
l I)pu,l = (El −Ebl )d0. (4.94b)

At the interface, continuity of the tangential components of the fields is required

scx,l(hl) = scx,l+1(hl), (4.95a)

scy,l(hl) = scy,l+1(hl), (4.95b)

ucx,l(hl) = ucx,l+1(hl), (4.95c)

ucy,l(hl) = ucy,l+1(hl). (4.95d)
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Using (4.60c) in (4.60e) and (4.60f) in (4.60b), the y-components of the fields are ex-
pressed in terms of x-components,

scy,l =A−1
l

(
FKxKys

c
x,l + k−1

0

d

dz
ucx,l + (El −Ebl )s

b
y,l

)
, (4.96a)

ucy,l =B−1
l

(
FKxE

−1
l Kyu

c
x,l + k−1

0

d

dz
scx,l − iFKx(I−EblE

−1
l )sbz,l

)
. (4.96b)

We define

Wl =

[
0 Ws,l

A−1
l Wu,lQu,l A−1

l FKxKyWs,l

]
, (4.97a)

Vl = −
[

Wu,l 0

B−1
l FKxE

−1
l KyWu,l B−1

l Ws,lQs,l

]
, (4.97b)

and

c+
l =

[−c+
u,l

c+
s,l

]
, c−l =

[
c−u,l
c−s,l

]
. (4.97c)

Then, from (4.95), (4.90), (4.91) and (4.93) we have for each slice[
WlXl Wl

VlXl −Vl

] [
c+
l

c−l

]
+ gl(hl) =

[
Wl+1 Wl+1Xl+1

Vl+1 −Vl+1Xl+1

] [
c+
l+1

c−l+1

]
+ gl+1(hl), (4.98)

where

gl(z) =


ps,ls

b
x,l

A−1
l (FKxKyps,ls

b
x,l + k−1

0 pu,l
d
dzu

b
x,l + (El −Ebl )d0s

b
y,l)

pu,lu
b
x,l

B−1
l (FKxE

−1
l Kypu,lu

b
x,l + k−1

0 ps,l
d
dz s

b
x,l − iFKx(I−EblE

−1
l )d0s

b
z,l)

 ,
with sbz,l = i

ε
b (kx0u

b
y,l − kyubx,l). The radiation condition is imposed by requiring that

coefficients of the incoming waves in layers 1 and M vanish,

c+
1 = 0, c−M = 0. (4.99)

4.3 Final remarks

In this chapter the FMM and the AFMM-CFF have been generalized to arbitrary shapes
and illumination. It has been shown that in the FMM discretization leads to homogeneous
linear systems, while in the AFMM-CFF the source term causes the resulting linear
systems to become non-homogeneous. When the radiation conditions are used, these
systems have the same number of equations and unknowns. Due to stability issues
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special care needs to be taken when solving the coupled linear systems. This is discussed
in Chapter 5. For this reason presentation of numerical results is postponed to the next
chapter.





Chapter 5

Stable solution of the coupled

linear systems

In order to apply the FMM to non-periodic structures, perfectly matched layers need to
be placed at the periodic boundaries and the Maxwell equations have to be formulated
in terms of a contrast (scattered) field. This reformulation modifies the structure of the
resulting linear systems and makes the application of available stable recursion algorithms
impossible. We adapt the well-known S-matrix algorithm for use with the aperiodic
Fourier modal method in contrast field formulation (AFMM-CFF). To this end, stable
recursive relations are derived for linear systems with non-homogeneous structure. The
stability of the algorithm is confirmed by numerical results.

5.1 Introduction

The classical Fourier modal method (FMM) [47, 65] and the aperiodic Fourier modal
method in contrast-field formulation (AFMM-CFF) (see Chapters 3 and 4 as well as
[59, 58]) rely on two main steps: {1} discretizing the computational domain into slices
and obtaining the general solution (up to integration constants) in each slice and {2}
determining the integration constants (or modal field amplitudes) by solving a sequence
of recursive linear systems resulting from the application of the interface conditions.
The straightforward approach for solving the sequence of linear systems, the T-matrix
algorithm, is known to be numerically unstable [39]. This issue is common for various
numerical methods in optics and electromagnetics when discretizing the direction normal
to the layered media and is generally linked to the growing exponentials appearing in the
equations.
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During the past two decades many algorithms for solving the sequence of recursive linear
systems that avoid instability issues have been proposed [55, 17, 39, 9]. Many of them
are, in one way or another, connected to the S-matrix algorithm [32]. Even for the
enhanced transmittance matrix approach [48], which has a somewhat different algebraic
structure, the connection to the S-matrix algorithm has been revealed [84]. A recent
study [88] shows that the enhanced transmittance matrix approach is equivalent to a
stable condensation algorithm based on Riccati transformations. For a stability study of
the latter see [1] and references therein. We refer the reader to Ref. [40] for an account of
the S-matrix, and related R-matrix algorithms. It is worth mentioning that an efficient
parallel implementation of the S-matrix algorithm has been recently presented [30].

The S-matrix algorithm relies on the physical concept of mapping the incoming waves
on an interface to outgoing waves. This mapping is realized by a so-called S-matrix.
Therefore the S-matrix algorithm is suited for linear systems with a homogeneous struc-
ture (of the type Alxl = Al+1xl+1, as opposed to the more general non-homogeneous
case Alxl + fl = Al+1xl+1 + fl+1). In the AFMM-CFF, the modification of the interface
conditions and of the general solution leads to a non-homogeneous structure of the linear
systems. We adapt the existing S-matrix algorithm to the new structure of the equations.
The choice of the S-matrix approach over the enhanced transmittance matrix approach
as a starting point for the extension is explained by the superior flexibility and generality
of the former.

This chapter is structured as follows. In Section 5.2 we present classical T-matrix and
S-matrix algorithms for homogeneous linear systems. In Section 5.3 we demonstrate how
the classical S-matrix algorithm can be adapted to the non-homogeneous linear systems
arising in the AFMM-CFF. Section 5.4 contains numerical results confirming the stability
of the proposed method. The problem of scattering from a dielectric cylinder, which
admits a semi-analytical solution, is used for this purpose.

5.2 Homogeneous T-matrix and S-matrix algorithms

In this section we are concerned with solving the homogeneous recursive linear systems
(4.17), (4.27), (4.46) arising in the standard FMM. It has been shown in Section 4.1 that
for all cases (TE, TM and conical) these systems are of the form

Rl

[
Xl 0

0 I

] [
c+
l

c−l

]
= Rl+1

[
I 0

0 Xl+1

] [
c+
l+1

c−l+1

]
, (5.1)
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where

Rl =

[
Wl Wl

Vl Vl

]
. (5.2)

A straightforward approach of solving this system is to eliminate the coefficients in the
intermediary slices. For this purpose the interface relation (5.1) can be written as a
T-matrix interface relation: [

c+
l+1

c−l+1

]
=

[
T11
l T12

l

T21
l T22

l

] [
c+
l

c−l

]
, (5.3)

where

Tl =

[
I 0

0 Xl+1

]−1

T′l

[
Xl 0

0 I

]
, (5.4)

with

T′l = R−1
l+1Rl =

1

2

[
W−1

l+1 V−1
l+1

W−1
l+1 −V−1

l+1

] [
Wl Wl

Vl −Vl

]
. (5.5)

Elimination of the intermediary coefficients yields[
c+
M

c−M

]
=

[
T̄11
l T̄12

l

T̄21
l T̄22

l

] [
c+

1

c−1

]
, (5.6)

where

T̄M−1 =

1∏
l=M−1

Tl. (5.7)

Since the vector coefficients c−M and c−1 are known from the radiation conditions (see
Chapter 4), the system (5.6) has two vector equations with two vector unknowns and
can be easily solved. If needed, the intermediary coefficients are determined at a later
stage. Relations (5.3), (5.4), (5.6) and (5.7) define the so-called T-matrix algorithm,
which has a very simple implementation. Unfortunately this algorithm is unstable. The
reason of instability lies in the matrix

Xl+1 = e−k0Ql+1(hl+2−hl+1). (5.8)

For thick slices or a large number of harmonics some entries of Xl+1 become extremely
small. The entries of X−1

l+1 computed in (5.4) consequently become extremely large and
introduce a large round-off error when represented in floating point arithmetic.

We now discuss a stable alternative to the T-matrix algorithm: the S-matrix algorithm.
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Tl

c
+

l

c
+

l+1

c
−

l

c
−

l+1

(Sl, fl)

c
+

l

c
+

l+1
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l+1

Figure 5.1: T-matrix (left) and S-matrix (right) representation of an interface relation.
Colors represent the input-output properties of the T-matrix and S-matrix: blue waves
are mapped to red waves.

Unlike in the T-matrix representation of an interface relation, an S-matrix maps incoming
waves (on the interface) to outgoing waves (see Figure 5.1):[

c+
l+1

c−l

]
=

[
S11
l S12

l

S21
l S22

l

] [
c+
l

c−l+1

]
. (5.9)

The S-matrix Sl of an interface is related to the T-matrix Tl of the same interface by

S11
l = (T′

11
l −T′

12
l (T′

22
l )−1T′

21
l )Xl, (5.10a)

S12
l = T′

12
l (T′

22
l )−1Xl+1, (5.10b)

S21
l = −(T′

22
l )−1T′

21
l Xl, (5.10c)

S22
l = (T′

22
l )−1Xl+1. (5.10d)

The above relations are obtained by bringing (5.3) to form (5.9). Similarly to the T-
matrix algorithm, the intermediary coefficients will be eliminated such that an expression
of the following form is obtained for the coefficients in the layers 1 and M :[

c+
M

c−1

]
=

[
S̄11
M−1 S̄12

M−1

S̄21
M−1 S̄22

M−1

] [
c+

1

c−M

]
. (5.11)

As shown in [32, 40] the cumulative scattering matrix S̄M−1 can be computed recursively
in a stable manner using the update relation[

S̄11
l S̄12

l

S̄21
l S̄22

l

]
=

[
S11
l H′lS̄

11
l−1 S12

l + S11
l S̄12

l−1H
′′
l S

22
l

S̄21
l−1 + S̄22

l−1S
21
l H′lS̄

11
l−1 S̄22

l−1H
′′
l S

22
l

]
, (5.12)

with

H′l = (I− S̄12
l−1S

21
l )−1, (5.13)

H′′l = (I− S21
l S̄12

l−1)−1. (5.14)

Note that the T-matrix algorithm can also be seen as a recursive algorithm with an
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Figure 5.2: A stack of interfaces with upward- and downward-traveling waves in-
between.

update relation

T̄l = TlT̄l−1. (5.15)

5.3 Non-homogeneous S-matrix algorithm

We now proceed to adapt the standard S-matrix algorithm for use with non-homogeneous
recursive linear systems arising in the AFMM-CFF. As shown in Section 4.2, matching
of the interface conditions for the contrast field at interface l yields an equation of the
form

Rl

[
Xl 0

0 I

] [
c+
l

c−l

]
+ gl(hl+1) = Rl+1

[
I 0

0 Xl+1

] [
c+
l+1

Xl+1c
−
l+1

]
+ gl+1(hl+1). (5.16)

This is rewritten in the T-matrix formalism as[
c+
l+1

c−l+1

]
=

[
T11
l T12

l

T21
l T22

l

] [
c+
l

c−l

]
+

[
g′l

1

g′l
2

]
, (5.17)

where Tl is defined in (5.4) and

g′l = R−1
l+1(gl(hl+1)− gl+1(hl+1)). (5.18)

The S-matrix algorithm is derived from the matrix Tl and vector g′l of the T-matrix
equation (5.17). In the spirit of the S-matrix algorithm, the waves scattered at the
interface are expressed in terms of waves incident on the interface [40] (see Figure 5.2)
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[
c+
l+1

c−l

]
=

[
S11
l S12

l

S21
l S22

l

] [
c+
l

c−l+1

]
+

[
f1
l

f2
l

]
. (5.19)

The S-matrix Sl and the vector fl can be determined from the T-matrix Tl and the
vector g′l by bringing (5.17) to form (5.19).

S11
l = (T′

11
l −T′

12
l (T′

22
l )−1T′

21
l )Xl, (5.20a)

S12
l = T′

12
l (T′

22
l )−1Xl+1, (5.20b)

S21
l = −(T′

22
l )−1T′

21
l Xl, (5.20c)

S22
l = (T′

22
l )−1Xl+1, (5.20d)

f1
l = g′l

1 −T′
12
l (T′

22
l )−1g′l

2
, (5.20e)

f2
l = −(T′

22
l )−1g′l

2
. (5.20f)

Expressions (5.19) and (5.20) describe the scattering properties of the interface l. These
properties are defined by a local scattering matrix Sl and a local source vector fl. To
simplify further presentation we denote them together as (Sl, fl). Figure 5.2 gives a
schematic representation of the interfaces and associated scattering matrix-vector pairs.

We proceed by defining a cumulative scattering matrix and a cumulative source vector
for a stack of multiple interfaces. The matrix-vector pair (S̄l, f̄l) defines the scattering
properties of the stack of interfaces 1, . . . , l (see also Figure 5.2).[

c+
l+1

c−1

]
=

[
S̄11
l S̄12

l

S̄21
l S̄22

l

] [
c+

1

c−l+1

]
+

[
f̄1
l

f̄2
l

]
. (5.21)

By assuming that the cumulative scattering matrix-vector pair for interface l−1 is known,
we will derive the cumulative matrix-vector pair for interface l using the local scattering
matrix-vector of interface l, as illustrated by the diagram

(S̄l−1, f̄l−1)
(Sl,fl)−−−−→ (S̄l, f̄l). (5.22)

This defines a recursive relation for the cumulative matrix-vector. Note that the cumula-
tive scattering matrix-vector and the local scattering matrix-vector for interface one are
equal,

(S̄1, f̄1) = (S1, f1). (5.23)

This relation is used to initialize the recursion.

We now outline the derivation of the recursion formally represented in (5.22). For con-
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venience, relation (5.21) is repeated here for interface l − 1[
c+
l

c−1

]
=

[
S̄11
l−1 S̄12

l−1

S̄21
l−1 S̄22

l−1

] [
c+

1

c−l

]
+

[
f̄1
l−1

f̄2
l−1

]
. (5.24)

The first equation of (5.24) and the second equation of (5.19) yield

c+
l = H′lS̄

11
l−1c

+
1 + S̄12

l−1H
′′
l S

22
l c−l+1 + H′lS̄

12
l−1f

2
l + H′l f̄

1
l−1, (5.25)

where

H′l = (I− S̄12
l−1S

21
l )−1, (5.26a)

H′′l = (I− S21
l S̄12

l−1)−1. (5.26b)

From the first equation of (5.19) and (5.25)

c+
l+1 =S11

l H′lS̄
11
l−1c

+
1 + (S12

l + S11
l S̄12

l−1H
′′
l S

22
l )c−l+1 (5.27)

+ S11
l (H′lS̄

12
l−1f

2
l + H′l f̄

1
l−1) + f1

l .

From the second equation of (5.24), the second equation of (5.19) and (5.25)

c−1 =(S̄21
l−1 + S̄22

l−1S
21
l H′lS̄

11
l−1)c+

1 + S̄22
l−1H

′′
l S

22
l c−l+1 (5.28)

+ S̄22
l−1S

21
l (H′lS̄

12
l−1f

2
l + H′l f̄

1
l−1) + S̄22

l−1f
2
l + f̄2

l−1.

Now (5.27) and (5.28) give the recursion relations[
S̄11
l S̄12

l

S̄21
l S̄22

l

]
=

[
S11
l H′lS̄

11
l−1 S12

l + S11
l S̄12

l−1H
′′
l S

22
l

S̄21
l−1 + S̄22

l−1S
21
l H′lS̄

11
l−1 S̄22

l−1H
′′
l S

22
l

]
, (5.29a)[

f̄1
l

f̄2
l

]
=

[
S11
l (H′lS̄

12
l−1f

2
l + H′l f̄

1
l−1) + f1

l

S̄22
l−1S

21
l (H′lS̄

12
l−1f

2
l + H′l f̄

1
l−1) + S̄22

l−1f
2
l + f̄2

l−1

]
. (5.29b)

These update relations define the non-homogeneous S-matrix algorithm. While the up-
date relation for the matrix S̄l is the same as in the classical S-matrix algorithm (see rela-
tion (5.12) in this chapter and relation (15a) in Ref. [40]), an additional update relation
appears for the vector f̄l. The above formulas are recursively used for l = 2, . . . ,M − 1,
using (5.23) for l = 1. The reflection and transmission coefficients may be computed
when the cumulative matrix-vector for all M − 1 interfaces is known[

c+
M

c−1

]
=

[
S̄11
M−1 S̄12

M−1

S̄21
M−1 S̄22

M−1

] [
c+

1

c−M

]
+

[
f̄1
M−1

f̄2
M−1

]
. (5.30)

In the contrast-field formulation of the FMM, the incoming field has been moved into a
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source term. Therefore, the coefficients corresponding to incoming fields in the super-
strate and substrate vanish, c+

1 = c−M = 0, and we have[
c+
M

c−1

]
=

[
f̄1
M−1

f̄2
M−1

]
. (5.31)

Note that for the computation of the vector f̄M−1 in (5.29b) the blocks S̄11
l−1 and S̄21

l−1

are not required.

Very often, especially for aperiodic structures, we are also interested in the near field,
i.e. the field inside and around the scatterer. For this purpose, also the intermediary
coefficients in slices 2, . . . ,M − 1 need to be computed in a stable way. This requires
the inverse of S11

l and consequently of Xl, which causes instabilities due to growing
exponentials. To avoid the direct inversion of Xl, we separate the propagation matrices
from the scattering matrix. Equation (5.19) is written as[

c+
l+1

c−l

]
=

[
S′l

11
S′l

12

S′l
21

S′l
22

] [
Xlc

+
l

Xl+1c
−
l+1

]
+

[
f1
l

f2
l

]
. (5.32)

In order to compute the intermediary coefficients a recursion from bottom to top is
employed. From the first equation of (5.32) we can compute

Xlc
+
l = (S′l

11
)−1(c+

l+1 − S′l
12
Xl+1c

−
l+1 − f1

l ), (5.33)

which may be used in the second equation of (5.32) to compute c−l

c−l = S′l
21

(S′l
11

)−1c+
l+1 + (−S′l

21
(S′l

11
)−1S′l

12
+ S′l

22
)Xl+1c

−
l+1 (5.34)

− S′l
21

(S′l
11

)−1f1
l + f2

l .

Finally, the c+
l is computed from the first equation of (5.24),

c+
l = S̄11

l−1c
+
1 + S̄12

l−1c
−
l + f̄1

l−1. (5.35)

As before, due to the absence of an incoming field in the superstrate, c+
1 = 0, and (5.35)

becomes

c+
l = S̄12

l−1c
−
l + f̄1

l−1. (5.36)

Note that also in the computation of intermediary coefficients, the blocks S̄11
l−1 and S̄21

l−1

are not required. Thus, the computation of intermediary coefficients requires an addi-
tional sweep through the slices using recursive relations (5.34) and (5.36). The procedure
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Figure 5.3: Sliced geometry of a cylinder. Different colors correspond to different
refraction indices.

is formally described by the diagram

cl+1

(Sl,fl), (S̄l−1,f̄l−1)−−−−−−−−−−−−→ cl. (5.37)

The recursion is initialized at l = M , with c−M = 0, c+
M = f̄1

M−1.

5.4 Numerical results

We consider the problem of scattering of a plane wave from a dielectric cylinder. An
important argument for this choice is the fact that a semi-analytical solution can be
found. The solution of the cylinder problem is obtained by writing the Maxwell equations
in cylindrical coordinates, expanding the fields inside and outside the cylinder in terms
of Bessel functions and finally matching the fields at the cylinder’s interface [89].

In order to solve the same problem with AFMM-CFF, we first need to approximate the
geometry by multiple rectangular slices. For a cylinder this may be done by imposing
a fixed arc length between two adjacent slices. This will ensure an adaptive, slope-
dependent staircasing of the profile. Figure 5.3 shows such a profile for a cylinder with
radius ρ = 50 nm obtained usingM = 19 slices. The incident plane wave has a wavelength
λ = 628.3 nm, travels downwards in the plane perpendicular to the cylinder and is TM-
polarized. The semi-analytical solution and the corresponding AFMM-CFF solution of
this problem are shown in Figure 5.4. The PMLs are placed in the stripes x ∈ [0, 100]

and x ∈ [400, 500] and implemented using the coordinate transformation (4.54) with the
parameters β0 = 2, p = 1. As expected, in the region between the PMLs the numerical
solution is close to the reference solution.
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Figure 5.4: Absolute values of the magnetic field: exact solution (top) and solution
computed with AFMM-CFF (bottom). Hatched areas indicate PMLs.
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Figure 5.5: Convergence of the AFMM-CFF with the non-homogeneous S-matrix and
T-matrix approaches for a cylinder with radius ρ = 50 nm approximated by M = 79
slices.
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ρ = 25 nm ρ = 50 nm ρ = 100 nm
N = 10, Non-hom. S-matrix 1.0261e+00 1.0600e+00 9.2628e-01
N = 10, Non-hom. T-matrix 1.0261e+00 1.0600e+00 9.2628e-01
N = 20, Non-hom. S-matrix 1.0264e+00 1.0602e+00 9.2614e-01
N = 20, Non-hom. T-matrix 1.0264e+00 1.0602e+00 1.2620e+00
N = 40, Non-hom. S-matrix 1.0265e+00 1.0602e+00 9.2629e-01
N = 40, Non-hom. T-matrix 1.0265e+00 1.4295e+00 6.5550e+19
N = 80, Non-hom. S-matrix 1.0266e+00 1.0602e+00 9.2636e-01
N = 80, Non-hom. T-matrix 1.0167e+00 3.6577e+19 6.1624e+61
Reference 1.0266e+00 1.0602e+00 9.2637e-01

Table 5.1: Magnitudes of the magnetic field in a fixed point above the cylinder computed
with the T-matrix and S-matrix algorithms adapted for CFF for increasing radius ρ and
truncation order N .

We now turn our attention to the issue of stability. We use the cylinder problem
to compare the performance of a non-homogeneous T-matrix algorithm and the non-
homogeneous S-matrix algorithm presented in Section 5.3. Figure 5.5 shows the conver-
gence of AFMM-CFF combined with these approaches for a cylinder with radius ρ = 50

nm approximated by M = 79 slices. The error is defined as

E = ||hc,Ny (x, z)− hc,refy (x, z)||2 on Ωs,

where hc,Ny is the numerical solution obtained with AFMM-CFF for 2N + 1 harmonics,
hc,refy is the semi-analytical solution for the cylinder problem and Ωs = [200, 300]×[0, 100]

is the smallest rectangular domain enclosing the cylinder.

For a low truncation number N , both algorithms give similar results. At N > 30 the T-
matrix algorithm becomes unstable while the S-matrix algorithm yields accurate results
for a larger number of harmonics. The truncation number for which the algorithm breaks
down depends on the slice thickness, as demonstrated in Table 5.1. It lists the magnitudes
of the magnetic field in a point (250, -100) computed with the two approaches. The
radius of the cylinder ρ and the truncation order N are varying. From the matrix
Xl = e−k0Ql(hl+1−hl) it is visible that increasing the radius of the cylinder while keeping
a fixed number of slices (thus increasing slice thickness) or increasing the number of
harmonics will lead to smaller entries in Xl and respectively larger entries in its inverse,
generating significant round-off errors. This explains the instabilities exhibited by the
extended T-matrix approach for larger values of N and ρ. On the other hand, the non-
homogeneous S-matrix algorithm is stable and gives correct results for all N and ρ. The
offset of the computed solution with respect to the reference solution visible in Table 5.1
and the plateau on Figure 5.5 (error remains constant for N > 50) are due to staircasing.
This effect is well known for the FMM [67] and can be reduced by a normal vector field
approach [78].





Chapter 6

Aperiodic Fourier modal

method with alternative

discretization

The aperiodic Fourier modal method in contrast-field formulation presented in the pre-
vious chapters uses spectral discretization (harmonics) in the finite periodic direction
and spatial discretization (slices) in the other direction. In the light of the fact that
the structures of interest have a large width-to-height ratio and that the two discretiza-
tion approaches have different computational complexities, we propose exchanging the
discretization directions. Moreover, if the scatterer has repeating patterns, exchang-
ing the discretization directions facilitates the reuse of results of previous computations.
Therefore the new method is suited for scattering from objects with a finite number of
periods, such as gratings or memory arrays. The exchange of discretization directions
requires a projection of the background field on the new basis introduced by the alter-
native discretization. Numerical experiments show that a considerable reduction of the
computational costs (in terms of time and memory) can be obtained.

6.1 Introduction

Let us compare the discretization approach used by AFMM-CFF (and FMM) to the ones
used by other popular methods such as FDTD, FEM, and integral equation methods.
Figure 6.1 shows a two-dimensional cylinder problem discretized by these numerical me-
thods. From the point of view of computational costs, the discretization process deter-
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FDTD FEM FMM/AFMM-CFF BEM VIM

-
x

?z

Figure 6.1: The rectangular grid of the FDTD method with sub-pixel smoothing to
approximate the cylinder. The triangular grid of the FEM that conforms to the surface
of the cylinder. The discrete layers of the FMM and AFMM-CFF, with the permittivity
described by a few Fourier modes per layer. The source contributions of the surface
elements for the BEM and the polarization densities in the cylinder for the VIM. Image
reproduced from [28] with permission.

mines the number of degrees of freedom (DoFs) of the discrete problem. This number in
turn determines the execution time and the memory requirements. For instance, a dis-
cretization of Maxwell equations (containing six unknowns) on a regular grid as in FDTD
yieldsNDOF = 6NM DoFs, whereN andM represent the number of discretization points
in the x- and z-direction respectively. If the system is subsequently solved by an iter-
ative method, such as Gauss-Seidel, the computational cost is O(N2

DOF) = O(N2M2).
Similar reasoning holds for the FEM and the integral equation methods, although the
grid may be irregular in this cases. The key point here is that the computational cost of
the methods mentioned above scales in the same way for all the discretization directions.

As can be seen from Figure 6.1, the FMM and AFMM-CFF make a distinction between
the directions. In the vertical direction (the z-direction) the domain is divided into M
layers in which the material properties are assumed to be z-independent. In each layer,
the horizontal direction (the x-direction) is discretized by applying the Galerkin method
with ”shifted“ Fourier harmonics as basis and test functions. This yields a system of
ordinary differential equations of a size equal to the number of basis functions, N . The
general solution (with unknown integration constants) of this system may be derived
by numerically solving a matrix diagonalization problem. The diagonalization of dense
matrices (based on QR-decomposition) has a computational complexity of O(N3) [19,
Section 5.2]. Thus, for M layers the total computational cost is O(N3M). Similarly the
memory requirements can be estimated to O(N2M).

It appears that the x-direction is ”more expensive“ both in terms of time and memory. For
rectangular scatterers/domains that are much longer in the x-direction it is reasonable
to choose an alternative discretization: make the longer direction ”cheaper“ by using
spatial discretization into layers and apply spectral discretization in the shorter direction.
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This exchange of directions turns out to be possible for the AFMM-CFF and not for the
FMM since the latter requires different boundary conditions on the vertical and horizontal
boundaries. For structures with repeating slices, the alternative discretization introduces
slicing in the direction of repetition. We exploit this fact by proposing a new recursive
algorithm which steps through the slices in a geometric progression. This further reduces
the computational costs by replacing the linear scaling with the number of slices by a
logarithmic one.

This chapter is structured as follows. In the next section we formulate a horizontal and
an equivalent vertical problem whose solutions are to be computed with the AFMM-
CFF using classical and alternative discretizations respectively. Section 6.3 discusses the
computation of the background field for the the vertical problem. The final linear systems
arising in the discretization of the vertical problem are derived in Section 6.4. In Section
6.5 we specifically consider structures with repeating patterns and present a fast recursive
algorithm for solving the final linear system exploiting this property. A summary of the
theoretical estimates of time and memory required by the AFMM-CFF is given in Section
6.6. The brief Section 6.7 contains a few remarks on the computation of the far field
for the horizontal and vertical problems. Section 6.8 presents numerical evidence on
the efficiency of the proposed approach. Practical speed-up factors are compared to the
theoretical ones.

6.2 Two equivalent problems

We are looking for the solution of the time-harmonic Maxwell equations

∇× e(x) = −k0h(x), (6.1a)

∇× h(x) = −k0ε(x, z)e(x). (6.1b)

The incident field corresponds to a general conical incidence case and is given by

einc(x) = aee−ik
inc·x. (6.1c)

The numerical solution of (6.1) is to be computed on a domain Ω = [0,Λ] × R × R
using AFMM-CFF with classical and alternative discretization. Note that alternative
discretization may be applied by a ”turn“ of the coordinate system

(x, y, z)T → (z,−y, x)T , (6.2)

such that formally the discretization directions remain unchanged, i.e. the x-direction
is discretized with harmonics and the z-direction is discretized with slices in both ap-
proaches. Figure 6.2 demonstrates the turn for a finite grating with three rectangular
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x

z

Figure 6.2: Alternative discretization by a turn of the coordinate system. Geometry of
the horizontal problem P̄ (left) and the vertical problem ¯̄P (right).

lines. Note that instead of three slices, we now have seven. From now on, we distin-
guish a horizontal problem P̄ consisting of (6.1) with a geometry ε(x, z) = ε̄(x, z) and an
incoming field einc(x) = āe−ik̄

inc·x and a vertical problem ¯̄P with ε(x, z) = ¯̄ε(x, z) and
einc(x) = ¯̄ae−i

¯̄k
inc·x. We define a transformation matrix

L =

0 0 1

0 −1 0

1 0 0

 , (6.3)

which realizes the rotation of the problem. Then the vertical problem is related to the
horizontal problem through

¯̄ε(x) = ε̄(Lx), (6.4a)

¯̄a = Lā, (6.4b)

¯̄kinc = Lk̄inc, (6.4c)

and the solutions of the two problems satisfy

ē(x) = L¯̄e(Lx), (6.5a)

h̄(x) = L¯̄h(Lx). (6.5b)

In most applications the scatterer has a width which is much larger than its height which
motivates the turn of coordinates. In the next section we describe application of the
AFMM-CFF to the horizontal and vertical problems. Where necessary we discuss the
differences and modifications required in order to solve the vertical problem ¯̄P.
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6.3 Discretization of the background field

The background field is the solution to the problem of light propagation in a multilayer
stack. In the horizontal problem (vertical problem), we assume a multilayer stack which
extends infinitely in the xy-plane (zy-plane) and is invariant in the x- and y-directions (z-
and y-directions). In each physical layer the field consists of an upward- and downward-
traveling wave. Figure 6.3 depicts the background fields for the horizontal and vertical
problems. The fundamental difference between the two cases lies in the fact that spatial
discretization (slicing) is performed in a different physical direction. For the vertical
background this new slicing introduces jumps in the permittivity functions per slice and
as a result imposes a new set of basis functions per layer. We show in this section that
the horizontal background field is represented exactly by a single basis function, while the
vertical background field has to be approximated by a linear combination of the available
basis functions.

The interfaces in the multilayer form a subset of the interfaces due to spatial discretiza-
tion. We will therefore decompose the background field depending on discretization slices
instead of physical layers,

ēb(x, y, z) = t̄s,le
−k0q̄l(z−hl)e−i(k̄

inc
x x+k̄

inc
y y) + r̄s,le

k0q̄l(z−hl)e−i(k̄
inc
x x+k̄

inc
y y), (6.6a)

h̄b(x, y, z) = t̄u,le
−k0q̄l(z−hl)e−i(k̄

inc
x x+k̄

inc
y y) + r̄u,le

k0q̄l(z−hl)e−i(k̄
inc
x x+k̄

inc
y y), (6.6b)

for z ∈ [hl−1, hl). Here

q̄l = i

√√√√εbl −
(
kinc
x

k0

)2

−
(
kinc
y

k0

)2

, (6.7)

and the amplitude vectors t and r can be determined from the interface conditions
resulting from the Maxwell equations, see [92, 76].

In the vertical problem the multilayer is invariant in the z- and y-directions. Application
of the transformation (6.5) to (6.6) yields the vertical background field

¯̄eb(x, y, z) = ¯̄ts,le
−i¯̄kinc

z ze−k0q̄l(x−hl)e−i
¯̄k
inc
y y (6.8a)

+ ¯̄rs,le
−i¯̄kinc

z zek0q̄l(x−hl)e−i
¯̄k
inc
y y, x ∈ [hl−1, hl),

¯̄hb(x, y, z) = ¯̄tu,le
−i¯̄kinc

z ze−k0q̄l(x−hl)e−i
¯̄k
inc
y y (6.8b)

+ ¯̄ru,le
−i¯̄kinc

z zek0q̄l(x−hl)e−i
¯̄k
inc
y y, x ∈ [hl−1, hl),

where ¯̄ru,l = Lr̄u,l, ¯̄rs,l = Lr̄s,l, ¯̄tu,l = Lt̄u,l, ¯̄ts,l = Lt̄s,l. We need to write the back-
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Figure 6.3: The background field consisting of transmitted and reflected waves for the
horizontal (left) and vertical (right) problem.

ground fields in a discretized form (4.57). It will be shown that the following less general
form can be used for both settings (horizontal and vertical),

ebα(x, y, z) = (sbα(z))T · φ(x, y) = (ds,αs
b
α(z))T · φ(x, y), (6.9a)

hbα(x, y, z) = (ubα(z))T · φ(x, y) = (du,αu
b
α(z))T · φ(x, y). (6.9b)

The horizontal background field can be exactly represented in this form. Since the (x, y)-
dependent part of the horizontal background field (6.6) coincides with φ0(x, y), we have
d̄s,α = d̄u,α = eN+1, where eN+1 ∈ R2N+1 is defined as (eN+1)n = δn,N+1, and

s̄bα(z) = t̄s,α,le
−k0q̄l(z−hl) + r̄s,α,le

k0q̄l(z−hl), z ∈ [hl−1, hl) (6.10a)

ūbα(z) = t̄u,α,le
−k0q̄l(z−hl) + r̄u,α,le

k0q̄l(z−hl), z ∈ [hl−1, hl) (6.10b)

On the other hand, the vertical background field can only be represented in the form
(4.57) or (6.9) through a projection. The basis function φ0(x, 0) gives the x-dependence
for all plane waves constituting the background field in Figure 6.3 (left). None of the
basis functions in the vertical problem give an exact representation of the background
field in Figure 6.3 (right). In other words, in the vertical problem the basis used for
the contrast field is not an eigenbasis for the background problem. We separate the
x-dependent part of the vertical background field (6.8),

bs,α(x) = ¯̄ts,α,le
−k0q̄l(x−hl) + ¯̄rs,α,le

k0q̄l(x−hl), x ∈ [hl−1, hl), (6.11a)

bu,α(x) = ¯̄tu,α,le
−k0q̄l(x−hl) + ¯̄ru,α,le

k0q̄l(x−hl), x ∈ [hl−1, hl), (6.11b)

and project bs/u,α(x) on the available basis φn(x, 0) = e−ikxnx,

bs/u,α(x) =

N∑
n=−N

b̂s/u,α,ne
−ikxnx. (6.12)
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Multiplying both sides by eikxnx and integrating over the interval [0,Λ], yields

b̂s/u,α,n =
1

Λ

∫ Λ

0

bs/u(x)eikxnx dx =
1

Λ

∫ Λ

0

(bs/u(x)eikx0x)e−in
2π
Λ x dx.

Thus the coefficients b̂s/u,α,n may be computed with the help of a Fourier transform
(FFT). We denote by bs/u,α the vector formed from these coefficients. Now, the back-
ground field in the scatterer can be written in the available basis

¯̄eb,Nα (x, y, z) = e−i
¯̄k
inc
z z

N∑
n=−N

b̂s,α,nφn(x, y) = (bs,αe
−i¯̄kinc

z z)Tφ(x, y), (6.13)

¯̄hb,Nα (x, y, z) = e−i
¯̄k
inc
z z

N∑
n=−N

b̂u,α,nφn(x, y) = (bu,αe
−i¯̄kinc

z z)Tφ(x, y). (6.14)

The fields ¯̄eb,Nα , ¯̄hb,Nα approximate the exact fields ¯̄ebα, ¯̄hbα in (6.8) with 2N + 1 basis
functions. Thus in representation (6.9) we have ¯̄ds,α = bs,α, ¯̄du,α = bu,α and

¯̄sbα(z) = ¯̄ubα(z) = e−i
¯̄k
inc
z z. (6.15)

To achieve uniform notation in the horizontal and vertical settings, we denote

¯̄ql = i¯̄kinc
z . (6.16)

From (6.10) and (6.15), we note that the following differential equation is satisfied for
z ∈ [hl−1, hl)

d

dz2 s
b
α = q2

l s
b
α, (6.17a)

d

dz2u
b
α = q2

l u
b
α. (6.17b)

6.4 Recursive linear systems for the vertical problem

The discretization procedure in the AFMM-CFF applied to the vertical problem (al-
ternative discretization) is similar to the one presented in Section 4.2 (for a horizontal
problem). We list below the main differences:

(i). The matrices related to the vertical background multilayer Eb and Pb become full
(instead of diagonal matrices related to the horizontal background multilayer). The
background permittivity in each slice has at least one jump discontinuity, such that
its Fourier series requires more than one non-zero coefficient, as was the case for a
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constant background permittivity per slice in the horizontal problem.

(ii). For the horizontal problem the vector corresponding to the discretized background
field (4.58) has a single non-zero entry

sbα,l(z) = d0s̄
b
α,l(z) = d0(aeα,le

−k0q̄l(z−hl) + reα,le
k0q̄l(z−hl)), (6.18a)

ubα,l(z) = d0ū
b
α,l(z) = d0(ahα,le

−k0q̄l(z−hl) + rhα,le
k0q̄l(z−hl)). (6.18b)

In the vertical problem, as a result of a projection, the ”sparse“ vector d0 is replaced
by a ”dense vector“ bs/u,α.

sbα,l(z) = bs,α ¯̄sbα,l(z) = bs,αe
−k0

¯̄ql(z−hl), (6.19a)

ubα,l(z) = bu,α ¯̄ubα,l(z) = bu,αe
−k0

¯̄ql(z−hl). (6.19b)

The changes listed above are used in the derivations of the final linear systems for TE,
TM and conical in Section 4.2 and the non-homogeneous terms gl in (4.74), (4.86) and
(4.98) are accordingly modified. Note that the structure of the homogeneous part is not
changed. A more detailed derivation for the conical case is given in [62]. We summarize
these modifications below.

• Planar incidence, TE-polarization

The particular solution given by

scy,part,l = ple
−k0

¯̄ql(z−hl), (6.20)

where pl is computed by solving

(Al − ¯̄q2
l I)pl = (El −Ebl )bs,y. (6.21)

The above equation is obtained by substitution of (6.20) in (4.66). After using
the interface conditions (4.72) the non-homogeneous term in (4.74) becomes

gl(z) =

[
pl

pl(−¯̄ql)

]
e−k0

¯̄ql(z−hl). (6.22)

• Planar incidence, TM-polarization

The particular solution is given by

ucy,part,l = ple
−k0

¯̄ql(z−hl). (6.23)

where pl is computed by solving

(P−1
l Bl − ¯̄q2

l I)pl = (−P−1
l Bl − (Pbl )

−1Bb
l )bu,y. (6.24)
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The non-homogeneous term in (4.86) becomes

gl(z) =

[
pl

(Plpl + (Pl −Pbl )bu,y)(−¯̄ql)

]
e−k0

¯̄ql(z−hl). (6.25)

• Conical incidence

The particular solution is given by

scx,part,l(z) = ps,le
−k0

¯̄ql(z−hl), (6.26a)

ucx,part,l(z) = pu,le
−k0

¯̄ql(z−hl). (6.26b)

Substituting this Ansatz in Equation (4.89) and using property (6.17), we obtain
two linear systems which can be solved for ps,l and pu,l

(Cl − ¯̄q2
l I)ps,l = −(BlP

−1
l −Bb

l (P
b
l )
−1)bs,x, (6.27a)

(Dl − ¯̄q2
l I)pu,l = (El −Ebl )bu,x. (6.27b)

The non-homogeneous term in (4.98) becomes

gl(z) =


ps,l

A−1
l (FKxKyps,l − k−1

0 pu,l ¯̄ql + (El −Ebl )bs,y)

pu,l
B−1
l (FKxE

−1
l Kypu,l − k−1

0 ps,l ¯̄ql − iFKx(I−EblE
−1
l )bs,z)

 e−k0
¯̄ql(z−hl),

(6.28)

with

bs,z = (Ebl )
−1(iFKxbu,y − iKybu,x). (6.29)

The coupled linear systems (4.74), (4.86) and (4.98) with non-homogeneous terms (6.22),
(6.25) and (6.28) can be solved in a stable manner by using the non-homogeneous S-
matrix algorithm (see Chapter 5 and [63]) which is an adaptation of the classical (homo-
geneous) S-matrix algorithm to the contrast field formulation. However, it is shown in
the next section that a dedicated algorithm can be developed which has lower time and
memory requirements.
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6.5 Non-homogeneous S-matrix algorithm for repeat-

ing slices

In this section we develop a dedicated non-homogeneous S-matrix algorithm for the verti-
cal problem. The repeating patterns in the direction of slicing suggest that this property
can be exploited in order to achieve even higher efficiency in terms of computational
costs.

6.5.1 Redheffer notation

As explained in Chapter 5 the interface relations (4.74), (4.86) and (4.98) are unstable in
the sense that its direct use for sequential elimination of field amplitudes leads to large
round-off errors [40, 63]. To avoid instability, we use an S-matrix representation that
maps the incoming waves on an interface to outgoing waves from that interface. In this
chapter we will make use of a Redheffer star product for matrices [71] which simplifies the
formulation of the proposed algorithm and allows grouping (or merging) of interface into
one equivalent interface described by a single S-matrix. It then becomes natural to denote
the S-matrix connecting layers a and b (a < b, a, b ∈ N) by Sa,b and the corresponding
source vector by fa,b. We refer to this notation as Redheffer notation. In this section
it replaces the standard notation used in Chapter 5. Particularly, the S-matrix and T-
matrix corresponding to a single interface between layers l and l+1 are denoted by Sl,l+1

and Tl,l+1 (Redheffer notation) instead of Sl and Tl respectively (standard notation).
For convenience the S-matrix relations for a single interface presented in Section 5.3 are
listed here again using the Redheffer notation. The S-matrix relation associated with
layers l and l + 1 is (see Figure 6.4)[

c+
l+1

c−l

]
=

[
S11
l,l+1 S12

l,l+1

S21
l,l+1 S22

l,l+1

]
︸ ︷︷ ︸

Sl,l+1

[
c+
l

c−l+1

]
+

[
f1
l,l+1

f2
l,l+1

]
︸ ︷︷ ︸

fl,l+1

.

The pair (Sl,l+1, fl,l+1) describes the scattering and source properties of the interface. It
can be determined from the T-matrix Tl,l+1 and the vector g′l,l+1 using the relations

S11
l,l+1 = (T′l,l+1

11 −T′l,l+1
12

(T′l,l+1
22

)−1T′l,l+1
21

)Xl, (6.30a)

S12
l,l+1 = T′l,l+1

12
(T′l,l+1

22
)−1Xl+1, (6.30b)

S21
l,l+1 = −(T′l,l+1

22
)−1T′l,l+1

21
Xl, (6.30c)

S22
l,l+1 = (T′l,l+1

22
)−1Xl+1, (6.30d)
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and

f1
l,l+1 = g′l,l+1

1 −T′l,l+1
12

(T′l,l+1
22

)−1g′l,l+1
2
, (6.30e)

f2
l,l+1 = −(T′l,l+1

22
)−1g′l,l+1

2
. (6.30f)

Here [
T′l,l+1

11
T′l,l+1

12

T′l,l+1
21

T′l,l+1
22

]
=

1

2

[
W−1

l+1 V−1
l+1

W−1
l+1 −V−1

l+1

] [
Wl Wl

Vl −Vl

]
, (6.31a)[

g′l,l+1
1

g′l,l+1
2

]
=

1

2

[
W−1

l+1 V−1
l+1

W−1
l+1 −V−1

l+1

]
(gl(hl+1)− gl+1(hl+1)). (6.31b)

Matrices Wl and Vl are computed by eigenvalue decomposition, which is a relatively
expensive computation. The time and memory requirements are estimated by

Tdiag = O(M ′N3), (6.32a)

Mdiag = O(M ′N2). (6.32b)

Here M ′ is the number of interfaces per period.

6.5.2 Non-homogeneous Redheffer star product

We now consider the problem of replacing two neighboring interfaces by one equivalent
interface, depicted in Figure 6.5. Let the pair (Sa,b, fa,b) describe the interface(s) joining
layers a and b, and the pair (Sb,c, fb,c) describe the interface(s) joining layers b and c,
(a < b < c, a, b, c ∈ N). [

c+
b

c−a

]
=

[
S11
a,b S12

a,b

S21
a,b S22

a,b

] [
c+
a

c−b

]
+

[
f1
a,b

f2
a,b

]
, (6.33a)

[
c+
c

c−b

]
=

[
S11
b,c S12

b,c

S21
b,c S22

b,c

] [
c+
b

c−c

]
+

[
f1
b,c

f2
b,c

]
. (6.33b)

We would like to find the pair (Sa,c, fa,c) which realizes the mapping for layers a and c

[
c+
c

c−a

]
=

[
S11
a,c S12

a,c

S21
a,c S22

a,c

] [
c+
a

c−c

]
+

[
f1
a,c

f2
a,c

]
. (6.34)



90 Aperiodic Fourier modal method with alternative discretization

(Sl,l+1, fl,l+1)

c
+

l

c
+

l+1

c
−

l

c
−

l+1

Figure 6.4: Interface description.
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Figure 6.5: The problem of interface merging.

Similarly to the derivation in Section 5.3 it can be shown that (Sa,c, fa,c) is given by

Sa,c =

[
S11
b,c(I− S12

a,bS
21
b,c)
−1S11

a,b S12
b,c + S11

b,cS
12
a,b(I− S21

b,cS
12
a,b)
−1S22

b,c

S21
a,b + S22

a,bS
21
b,c(I− S12

a,bS
21
b,c)
−1S11

a,b S22
a,b(I− S21

b,cS
12
a,b)
−1S22

b,c

]
, (6.35)

fa,c =

[
S11
b,c(I− S12

a,bS
21
b,c)
−1(S12

a,bf
2
b,c + f1

a,b) + f1
b,c

S22
a,bS

21
b,c(I− S12

a,bS
21
b,c)
−1(S12

a,bf
2
b,c + f1

a,b) + S22
a,bf

2
b,c + f2

a,b

]
. (6.36)

To simplify further exposition, based on the classical Redheffer star product for matrices
[71], we define a non-homogeneous Redheffer star product for matrix-vector pairs

(Sa,b, fa,b) ∗ (Sb,c, fb,c) = (Sa,c, fa,c). (6.37)

It can be proven that this new product, just like the regular matrix product and the
Redheffer matrix product, is associative but not commutative. We will exploit the asso-
ciativity property in order to group the interfaces in a convenient way.

6.5.3 Global stack description

We can repeat the process of merging interfaces until the whole stack of interfaces is
described by one equivalent interface. The non-homogeneous S-matrix algorithm (derived
in Section 5.3) uses the iteration

(S1,l+1, f1,l+1) = (S1,l, f1,l) ∗ (Sl,l+1, fl,l+1). (6.38)
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Figure 6.6: A schematic representation of the nonhomogeneous S-matrix algorithm
applied to a grating with R = 4 periods and M ′ = 2 interfaces per period: classical linear
recursion (left side) and fast exponential recursion (right side).

The global matrix-vector pair for M − 1 interfaces (M layers) is given by

(S1,M , f1,M ) =[...[[(S1,2, f1,2) ∗ (S2,3, f2,3)] ∗ (S3,4, f3,4)] ∗ ...
∗ (SM−1,M , fM−1,M )]. (6.39)

The left side of Figure 6.6 gives a visual representation of the merging process.

We consider a structure with R repeating periods for simplicity assumed to be a power
of 2, R = 2K (the algorithm can be extended to an arbitrary number of periods), where
each period has M ′ interfaces in the discretization (M − 1 = RM ′).

The cost of computing (6.39) scales linearly with the number of periods,

TS = O(RM ′N3), (6.40a)

MS = O(RM ′N2). (6.40b)

Due to the associativity property of the non-homogeneous Redheffer product, we can
regroup the multiplication operations. This allows us to exploit the local periodicity and
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reduce the computational costs down to

TS = O((M ′ + log2(R))N3), (6.41a)

MS = O((M ′ + log2(R))N2). (6.41b)

We observe that once we have computed the matrix-vector corresponding to the stack
{1, ...,M ′ + 1}, the matrix-vector corresponding to the stack {M ′ + 1, ..., 2M ′ + 1} can
be computed with a minimal effort

(SM ′+1,2M
′
+1, fM ′+1,2M

′
+1) = (S1,M

′
+1, νf1,M ′+1), (6.42)

where ν = e
−k0q(hM′+1

−h1) is a phase factor which appears due to the scalar z-dependence
of f (see (6.22), (6.25), and (6.28)). Thus, we can directly compute the matrix-vector
corresponding to the stack {1, ..., 2M ′ + 1}

(S1,2M
′
+1, f1,2M ′+1) = (S1,M

′
+1, f1,M ′+1) ∗ (S1,M

′
+1, νf1,M ′+1). (6.43)

The iteration process is defined by

(S
1,2

k+1
M
′
+1
, f

1,2
k+1

M
′
+1

) =(S
1,2

k
M
′
+1
, f

1,2
k
M
′
+1

)

∗ (S
1,2

k
M
′
+1
, ν2

k

f
1,2

k
M
′
+1

), (6.44)

for k = 0, ...,K − 1.

Once the matrix-vector pair for the whole stack is computed, the coefficients in the upper
and lower layers are given by (

c+
M

c−1

)
=

(
f1
1,M

f2
1,M

)
. (6.45)

6.5.4 Intermediary coefficients

Relation (6.45) allows the computation of the coefficients in the first and last layers of
the stack. In order to compute the coefficients in the intermediary layers, we start with
the pair associated with the whole stack and recursively halve the stack. One iteration
of this process is explained by again considering the problem in Figure 6.5. This time
we are given the pairs (Sa,b, fa,b), (Sb,c, fb,c) and the amplitudes c+

a , c
−
c , and we need to

determine the intermediary coefficients c+
b and c−b . Substitution of the second equation

of (6.33b) in the first equation of (6.33a) yields

(I− S12
a,bS

21
b,c)c

+
b = S11

a,bc
+
a + S12

a,bS
22
b,cc
−
c + S12

a,bf
2
b,c + f1

a,b. (6.46)
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Substitution of the first equation of (6.33a) in the second equation of (6.33b) yields

(I− S21
b,cS

12
a,b)c

−
b = S21

b,cS
11
a,bc

+
a + S22

b,cc
−
c + S21

b,cf
1
a,b + f2

b,c. (6.47)

We can now write the amplitudes in layer b in terms of the amplitudes of the incoming
modes in layer a and c,(

c+
b

c−b

)
=

(
(I− S12

a,bS
21
b,c)
−1S11

a,b S12
a,b(I− S21

b,cS
12
a,b)
−1S22

b,c

S21
b,c(I− S12

a,bS
21
b,c)
−1S11

a,b (I− S21
b,cS

12
a,b)
−1S22

b,c

)(
c+
a

c−c

)

+

(
S12
a,bf

2
b,c + f1

a,b

S21
b,cf

1
a,b + f2

b,c

)
. (6.48)

The update relation (6.48) is applied recursively (by halving the stack) until the coeffi-
cients in all layers are determined. This requires RM ′ − 1 evaluations of (6.48) which,
if computed in the right order, involves only matrix-vector products. Therefore, the
computational cost of computing and storing the intermediary coefficients is given by

Tc = O(RM ′N2), (6.49a)

Mc = O(RM ′N). (6.49b)

6.6 Summary of computational costs

From the point of view of computational cost the AFMM-CFF with classical and alter-
native discretizations consists of three consecutive tasks:

(i). Matrix diagonalization (or eigenvalue decomposition);

(ii). Calculation of the global S-matrix;

(iii). Calculation of the intermediary coefficients.

The computational costs (in terms of time and memory) for each of the tasks is given
respectively by (6.32), (6.41) and (6.49), By combining these estimates we obtain the
total computational costs,

T = ((cTdiag + cTS )M ′ + cTS log2(R))N3 + cTc RM
′N2, (6.50a)

M = ((cMdiag + cMS )M ′ + cMS log2(R))N2 + cMc RM ′N. (6.50b)

We specify that R in the above expressions gives the number of repeating patterns in
the vertical direction. Thus, for horizontally repeating patterns we always have R = 1

and M ′ represents the total number of interfaces. With this convention, the estimate
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(6.50) is general and applicable for the vertical as well as the horizontal problem. For a
reasonably large N , the second term in the above expressions (being one order lower) can
be neglected. We will also assume (supported by evidence from practical experiments)
that cTdiag = cTS = cT . Then estimate (6.50) reduces to

T ≈ (2cTM ′ + cT log2(R))N3, (6.51a)

M≈ ((cMdiag + cMS )M ′ + cMS log2(R))N2. (6.51b)

6.7 Far-field recovery

In practical applications it is often needed to compute the field far above the scatterer.
The far field can be computed by a Green’s function approach [44] or by a Fourier
transformation of the field on a line above the scatterer, denoted by a dotted line in
Figure 6.2). The second approach [20, Section 3.10.2] is faster since the integrals can be
computed numerically with fast Fourier transform (FFT) routines. From Figure 6.2 it is
visible that the field on the dotted line is not available in the PMLs and beyond for the
horizontal problem. Therefore, the Fourier transformation approach can only be used in
the vertical problem.

6.8 Numerical results

We consider the problem of scattering from finite gratings. These are periodic structures
with a finite number of periods. The problem is inspired from real-life applications in
lithography, where gratings are printed on the wafer to be later used for quality control.
By measuring the light scattered from a grating, its shape can be determined and the
quality of the lithographic process can be assessed.

We first consider a small grating, infinitely long in the y-direction. The geometry of
the problem is plotted in Figure 6.7. It consists of R = 8 rectangular lines made of
resist (with a refractive nresist = 1.5), referred to as scatterer, supported by a silicon
substrate (nsilicon = 4.28−0.05i). The material above the substrate and the grating lines
is air (nair = 1.0). The refractive indices n of the material are related to the electric
permittivity through

ε(x, z) = n2(x, z). (6.52)

We obtain the numerical solution by using the classical and alternative discretization ap-
proaches for AFMM-CFF or, as explained in Section 6.2, by solving a horizontal problem
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Figure 6.7: Near field at y = 0 for a binary grating with 8 lines computed with classical
(top) and alternative discretization (bottom).

and a vertical problem. For the horizontal problem, the incident plane wave is given by
(6.1c) with

ā = (0, 1, 0)T ,

k̄inc = 10(
√

2/2, 0,
√

2/2)T ,

and the PMLs are placed in the regions x ∈ [0, 0.1] ∪ [1.8, 1.9]. The distance units are
µm. For the vertical problem, the amplitude and the wave vectors of the incident plane
wave are given by

¯̄a = (0,−1, 0)T ,

¯̄kinc = 10(
√

2/2, 0,
√

2/2)T ,

and the PMLs are placed in the regions x ∈ [0, 0.1] ∪ [0.4, 0.5]. It follows from the
wavevectors kinc that in both cases the incident plane wave is TE-polarized and has a
wavelength λ = 2π/|kinc| ≈ 0.6283. Note that the spatial discretization requires M̄ = 3

slices in the horizontal problem and ¯̄M = ¯̄R ¯̄M ′ + 1 = 17 slices in the vertical problem.

Figure 6.7 shows the solutions of the two problems. The solution of the vertical prob-
lem is plotted in rotated coordinates (z,−y, x) to make easier the comparison with the
horizontal problem. Clearly, for both problems the fields decay to zero in the PMLs.
The solution in the PML is not physically relevant and the placement of the PMLs is
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Figure 6.8: Comparison of classical and alternative discretization approaches for a
grating with 32 rectangular lines on resist substrate: (a) Convergence, (b) Complexity,
(c) Error vs. Memory, (d) Error vs. Time. Solid line (—) corresponds to the horizontal
problem (classical discretization), dashed line (- -) corresponds to the vertical problem
(alternative discretization), dotted line (· · · ) indicates theoretical cubic complexity, T =
O(N3).

different in the two problems. Therefore, the horizontal problem has a relevant solution
in the stripe (x, y, z) ∈ Ω̄r = [0.1, 1.8]×R×R, while the vertical problem has a relevant
solution on (z,−y, x) ∈ ¯̄Ωr = R× R× [0.1, 0.4]. In the light of the above discussion, the
fields should be compared only on a domain where both are relevant, that is on

Ωc = Ω̄r ∪ ¯̄Ωr = [0.1, 1.8]× R× [0.1, 0.4]. (6.53)

Thus we expect that

ēc,N (x) ≈ L¯̄ec,N (Lx) for x = (x, y, z) ∈ Ωc, (6.54)

which is confirmed by a visual inspection of the obtained solutions in Ωc. Note that N
in (6.54) may be different for the horizontal and vertical problems.
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In order to clearly assess the advantages of alternative discretization over classical dis-
cretization, we need to consider convergence and complexity of the two approaches.
Figure 6.8 (a) shows the convergence of the solution for a vertical and horizontal setup.
The error definitions are given by

ĒN = ||ēc,N (x)− ēc,ref(x)||, (6.55)

¯̄EN = ||L¯̄ec,N (Lx)− ēc,ref(x)||, (6.56)

where the norm for a vector field v is defined as

||v||2 =
∑
i

∑
j

∑
α

|vα(xi, 0, zj)|2, (6.57)

for α ∈ {x, y, z} and xi and zj sample the smallest rectangular domain enclosing the
scatterer. For scatterers invariant in the y-direction, the dependence of the field on y is
known, and only the field at y = 0 may be considered. In absence of an exact solution
for this type of problems, we choose as reference the numerical solution for the (trusted)
horizontal setup computed with a large truncation number N

ec,ref = ēc,1048.

The decay length in the PML is set to 1/σ0 = 1/6 . The computations are performed
using MATLAB on a Intel Core 2 Quad CPU Q6600 4x2.40GHz with 2GB of RAM.

Figure 6.8 (a) shows that for small truncation numbers such as N < 10, the error for
the vertical problem is larger. The reason for this behavior lies in the representation of
the vertical background field in the available basis. While in the horizontal problem a
single basis function is required for an exact representation, in the vertical problem the
background field eb, hb can only be approximated. Clearly, for small N the accuracy of
the approximation is unsatisfactory. The slow decrease of the error for both approaches
is explained by an insufficient resolution of the basis functions, so that the exponential
decay of the solution in the PMLs cannot be accurately resolved. For N > 10, the
error for the vertical problem ¯̄E becomes much smaller than for the horizontal one Ē .
Because the width of the computational domain for ¯̄P is smaller than the width of the
computational domain for P̄, less basis functions are needed for the former to achieve
the same accuracy. From the plot (Figure 6.8 (a)) we conclude that the same number of
harmonics determine an error for the vertical problem which is two orders of magnitude
smaller than for the horizontal problem. However this plot is not sufficient to judge the
performance of the approaches. Indeed, for a fixed number of harmonics, more work
needs to be done for the vertical problem than for the horizontal due to a larger number
of slices.

We turn to Figure 6.8 (b) which shows the execution time as a function of N for the two
problems. Since M̄ ′ = 2, R̄ = 1 and ¯̄M ′ = 2, ¯̄R = 32, using (6.51) we can estimate the
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ratio of computation times for a large (but fixed) N :

(2cT M̄ ′ + cT log2(R̄))N̄3

(2cT ¯̄M ′ + cT log2( ¯̄R)) ¯̄N3
=

4 + 0

4 + 5
=

1

2.25
.

Thus solving the vertical problem is estimated to take 2.25 times longer than the hori-
zontal problem. The distance between the two lines on the plot for N approaching 103

comes close to this value. We also note that although asymptotically we expect a cubic
complexity T = O(N3) indicated by the dotted line in the plot, it is only approached for
N > 102. This means that the real speed-up factor will be lower than the one predicted
theoretically.

A technical detail is in order. The values of the matrix Xl defined in (4.73a) can become
extremely small (for very thick layers or large number of harmonics) which leads to the
issue of underflow and subnormal numbers [54, Chapter 7]. Arithmetic operations with
subnormal numbers take up to ten times longer than with regular numbers in floating-
point representation, which would yield a supercubic behavior in Figure 6.8 (b). To avoid
the issue we flush these numbers to zero. The accuracy of the results is not influenced
and the computational time is reduced.

We combine data from Figure 6.8 (a) and (b) in order to obtain the direct dependence of
error on time displayed in Figure 6.8 (d). We conclude that for errors larger than 10−2

the vertical approach is slower. It only becomes faster for smaller errors. For instance,
an error of 10−3 can be achieved approximately 8 times faster by solving ¯̄P instead of P̄.

For large computations with AFMM-CFF, the memory requirements limit the number of
harmonics to be used. For this reason we also consider the memory required by the hor-
izontal and vertical approaches to achieve a certain error. The size of a matrix or vector
element in a double precision floating-point representation is 8 bytes. Considering that
we have four matrices per layer, the estimated memory space required for a computation
is given by (6.50b) with cMdiag = cMS = 36 and cMc = 16. Thus, the information from the
convergence plot, Figure 6.8 (a), can be used to determine the error-vs-memory behavior
displayed in Figure 6.8 (c).

We expect the gain in computational costs to change depending on the width of the
structures. For this reason we now consider three geometries with the same material
properties but having a different number of periods. Using the functions T̄ (E) and ¯̄T (E),
we define the speed-up factor for a given error

ηT (E) =
T̄ (E)
¯̄T (E)

. (6.58)
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Figure 6.9: Speed-up and memory use factors for R ∈ {16, 32, 64}, ns = 1.5.

In analogy with the speed-up factor we also define the memory use factor

ηM(E) =
M̄(E)
¯̄M(E)

. (6.59)

A plot of the speed-up and memory use factor for different values of R (R ∈ {16, 32, 64})
is shown in Figure 6.9. We observe the general trend of increasing factors for decreasing
errors. For E = 10−3 the speed-up and memory use factors are in the range 3 . . . 15

and 10 . . . 110 respectively. Unfortunately it is difficult to simulate larger gratings (R ∈
128, 256, . . .) with classical discretization (horizontal problem) due to the prohibitively
large (in terms of memory) number of harmonics. This is also the reason why the error
of 10−4 has not been reached for R = 64 (it is however easily reached in the vertical
problem, see Figure 6.8). We can extrapolate the data presented in the plot in order to
predict an approximate speed-up of 102 and a memory use factor of 103 at E = 10−3 for
a grating having 256 lines.

The convergence of the solution depends strongly on its smoothness, which in turn is
determined by the presence and the size of the jump discontinuities in the discretized
permittivity function εl(x). Clearly, these functions are different for the vertical and
horizontal problems. The jump discontinuities are material interfaces which can be due
to the scatterer and due to the background multilayer. Independent of the discretization
direction, the discontinuities introduced by the scatterer have the same effect on the
jumps in εl(x). The effect of the background multilayer however is different depending
on the discretization direction. For the horizontal problem the jumps in ε̄b(z) are not
visible in ε̄l(x) since they coincide with the interfaces of discretization slices. On the other
hand, in the vertical problem the jump discontinuities in ¯̄εb(x) are present in ¯̄εl(x) for
all layers. This might slow down the convergence when solving the vertical problem. To
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Figure 6.10: Speed-up and memory use factors for R = 32, ns ∈ {1.0, 1.5, 4.28−0.04i}.

quantify the effect, we consider a grating with R = 32 lines with three different materials
in the substrate: air (ns = 1.0), resist (ns = 1.5), silicon (ns = 4.28−0.04i). A plot of the
speed-up and memory use factor for these cases is shown in Figure 6.10. In the case of air
substrate (which is less relevant for metrology applications) the background permittivity
function εb is continuous, which determines a faster convergence of the vertical problem’s
solution. This results in large speed-up and memory use factors (up to 40 and 100
respectively). On the other hand, for silicon substrate we have a large jump discontinuity
in εb at the interface between air and silicon and much smaller gains (2 and 8 for speed
and memory respectively).

We can get a theoretical estimate of the attainable speed-up using (6.58) and (6.51)

ηT (E → 0) =
2M̄ ′ + log2(R̄)

2 ¯̄M ′ + log2( ¯̄R)

(
N̄
¯̄N

)3

. (6.60)

The argument E → 0 is used in order to stress the fact that this estimate is accurate
for large N (that is small E). We consider the case of a resist grating with 32 lines on
air substrate studied in Figure 6.10. Because the superstrate and substrate are of the
same material we have similar smoothness properties of the solution and permittivity in
both directions. Then, we may assume that in order to achieve the same accuracy, we
need to have equal resolution of the discretization. Thus, we require that the number of
harmonics per unit length is constant for both discretizations. This yields the estimate

¯̄N/N̄ = ¯̄Λ/Λ̄ = 67/5 = 13.4. (6.61)

We also have M̄ ′ = 2, R̄ = 1 and ¯̄M ′ = 2, ¯̄R = 32. Then, the speed-up factor estimated
with (6.60) is close to 1000. We stress that this is a theoretical estimation for very large
N or, equivalently, for extremely small E . The estimate is useful as an upper bound for
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a potentially attainable speed-up. In practice, the pure cubic complexity in N is hardly
reached. For the considered problem, the error of 10−3 is reached for N = 101 . . . 102.
In this range a quadratic complexity can be assumed, as confirmed by Figure 6.8 (b). In
this case our estimated speed-up factor becomes

ηT (E ≈ 10−3) =
2M̄ ′ + log2(R̄)

2 ¯̄M ′ + log2( ¯̄R)

(
N̄
¯̄N

)2

= 79.8, (6.62)

which is reasonably close to the measured ηT for ns = 1.0 shown in Figure 6.10. It is
important to stress that convergence depends on the smoothness of the permittivity. For
problems which have different smoothness properties in different directions, the require-
ment on equal resolution (harmonics per unit length) in order to achieve equal errors
(used in (6.61)) is not applicable.
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Figure 6.11: Plot of ||¯̄ec|| for an ultra-large grating with 1024 lines. Only small parts
of the field at the edges of the grating are shown.

Although the most noticeable improvement resulting from the alternative discretization
is speed-up, the memory saving might become crucial when solving large problems. Thus,
with the new approach we may easily simulate scattering from structures with repeating
patterns having a width of the order of hundreds of wavelengths. This is a difficult task
for the AFMM-CFF with classical discretization, as well as for other numerical methods
such as FDTD and FEM. Figure 6.11 shows a small part of the computed field for a
grating with 1024 lines (more than 300 wavelengths).





Chapter 7

Conclusions and suggestions

for future work

We have presented an extension of the FMM which enables simulation of scattering
from two-dimensional finite structures (invariant in the third dimension) illuminated by
plane waves at arbitrary angles of incidence. A detailed derivation has been provided for
the case of planar incidence and TE-polarization which was subsequently generalized to
planar TM and conical incidence as well as to arbitrary shapes of the scatterer requiring
more than three slices in the spatial discretization. The Galerkin approach was used for
the discretization of the first-order time-harmonic Maxwell equations. The formulation in
terms of a contrast field resembles the scattered field formulations used in the curvilinear
coordinate method [18] as well as in FEM and FDTD [83]. However, the reformulation
for the FMM is less straightforward, since it requires solutions which can be written in
analytical form. As a result of the reformulation, the FMM had to be adapted to solve
non-homogeneous equations of second order. Besides the application demonstrated in
this thesis, this allows modeling of internal sources inside the domain. We mention that
a method of solving non-homogeneous equations of first order with the FMM has been
previously demonstrated by Bai and Turunen [2]. The convergence study in Chapter 3
has shown that for the aperiodic model problem the AFMM-CFF needs less harmonics
than the supercell FMM. In view of the fact that the number of operations performed by
the eigenvalue solver (which is computationally the most demanding step in the method)
scales cubically with the number of harmonics, this results in a considerable reduction of
computational time. In our example, for an accuracy of 10−3, a speed-up by a factor of
83 can be reached.

We have shown that in the FMM discretization leads to homogeneous linear systems,
while in the AFMM-CFF the source term causes the resulting linear systems to be-
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come non-homogeneous. The existing S-matrix algorithm has been adapted for use with
non-homogeneous recursive linear systems. For this purpose, a set of recursive update
relations has been derived which give a stable algorithm for the computation of reflection
and transmission coefficients. Moreover, a backward recursion may be employed to deter-
mine the intermediary coefficients if needed. The stability of the developed method has
been qualified by comparison against a semi-analytical result obtained for the problem
of scattering of a plane wave from a dielectric cylinder.

Finally, a technique for speeding up computations with the AFMM-CFF has been pre-
sented. The speed-up is achieved by exchanging the directions of spatial and spectral
discretizations. The cheaper spatial discretization is used in the longer direction, while
the more expensive spectral discretization is applied in the shorter direction. Moreover,
periodicity in the slicing direction is exploited by using the associativity of the non-
homogeneous Redheffer star product, which further decreases the computational costs.
The exchange of discretization directions is implemented by a rotation of the coordinate
system. While the rotated scatterer can be treated automatically by the method, the
rotated background multilayer introduces a fundamental difference: the background field
cannot be exactly represented in the available basis and a projection has to be used. This
step introduces an additional approximation error, especially when few basis functions
are used. For this reason, speed-up is achieved when smaller errors are required (or equiv-
alently more basis functions are employed). Besides the imposed accuracy, the speed-up
and memory use factors obtained with alternative discretization are dependent on the
number of repeating patterns as well as the size of jump discontinuities in the background
multilayer. The numerical experiments confirm that the alternative discretization shows
larger improvements for geometries with smaller jumps at the layer interfaces and a larger
number of periods.

The research described in this thesis has highlighted several open questions related to
the standard FMM as well as opened possibilities for further extension of the newly
developed AFMM-CFF. Concerning theoretical results on the convergence of the FMM
we mention the proof of Li for the TE case [3]. No such proof exists for a more general
case. The formulation of the method using the Galerkin approach exposed in Chapter
4 gives access to mathematical tools which could be useful for a rigorous convergence
proof for the FMM. Ref. [24] discusses this and other issues related to the mathematical
foundation of the FMM.

A more practical issue is the computational cost of the method. Currently the FMM
and AFMM-CFF compute the general solution (e−

√
Az + e

√
Az) of a second-order ODE

by matrix diagonalizations. It might be possible to reduce these costs by considering
other approaches for numerical evaluation of matrix exponentials. Ref. [49] describes
nineteen different algorithms to compute the matrix exponential ranging from the Taylor
series approximation to multistep ODE solvers. At the cost of lower accuracy, iterative
approaches might prove to be faster than the explicit diagonalization approach.
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The choice of basis functions used in the discretization directly depends on the angle of
the incident plane wave and the period Λ. In the AFMM-CFF, Λ represents the period
of the artificially periodized finite structure. This value can be increased (at the cost
of larger number of harmonics and computation times) without affecting the solution.
This gives extra freedom in choosing the basis functions and can be exploited to impose
a basis which more accurately represents several incident plane-waves or the background
field in the AFMM-CFF with alternative discretization.

In this thesis we have considered two-dimensional scatterers (finite in one direction).
The presented approach can be extended to three-dimensional scatterers supported on
multilayers invariant in the x- and y-directions. This extension would allow accurate
modeling of scatterers which are finite in two directions. The double-periodic FMM is a
good starting point for the extension. In this case two pairs of PMLs have to be used
in the two finite directions. Alternative discretization (presented in Chapter 6) could
also be applied for three-dimensional geometries. In this case instead of the classical
approach (spectral discretization of x- and y- directions and spatial discretization of z)
we can choose either x or y to be spatially discretized.

Finally, we mention that the FMM and AFMM-CFF with minimal changes can be ap-
plied to problems of acoustic scattering from respectively infinitely periodic and finite
structures.





Appendix A

Vector calculus identities

∇ · (∇× v) = 0 (A.1)

∇ · (fv) = v · ∇f + f∇ · v (A.2)

∇× (fv) = f∇× v − v ×∇f (A.3)

∇ · (v1 × v2) = (∇× v1) · v2 − v1 · (∇× v2) (A.4)
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Appendix B

Derivations

B.1 Derivation of the convolution term

∞∑
n=−∞

ε̂n,le
in 2π

Λ x
∞∑

m=−∞
sm(z)e−ikxnx =

∞∑
n=−∞

∞∑
m=−∞

ε̂nsm(z)e−i(k
inc
x +(n+m) 2π

d x) = [p = n+m]

∞∑
p=−∞

∞∑
m=−∞

ε̂p−msm(z)e−i(k
inc
x +p 2π

d x) =

∞∑
p=−∞

∞∑
m=−∞

ε̂p−msm(z)e−ikxpx.

B.2 Discretization using the Galerkin approach

We demonstrate the Galerkin approach on the Equation (4.4f). Discretization of the
other Maxwell equations follows by analogy.

∂

∂x
hy,l −

∂

∂y
hx,l = −k0εl(x)ez,l. (B.1)
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The basis functions are given by

φn(x, y) = e−i(kxnx+kyy), (B.2)

where
kxn = kinc

x − n
2π

Λ
, ky = kinc

y , for n = −N . . .+N.

In each slice l the fields are expanded as

eα,l(x, y, z) =

N∑
n=−N

sα,l,n(z)φn(x, y) = (sα,l(z))
T · φ(x, y), (B.3a)

hα,l(x, y, z) =

N∑
n=−N

uα,l,n(z)φn(x, y) = (uα,l(z))
T · φ(x, y). (B.3b)

Substitute (B.3) in (B.1)

N∑
n=−N

uy,l,n(z)(−ikxn)e−i(kxnx+kyy) −
N∑

n=−N
ux,l,n(z)(−iky)e−i(kxnx+kyy)

= −k0εl(x)

N∑
n=−N

sz,l,n(z)e−i(kxnx+kyy). (B.4)

We define the inner product on [0,Λ)

〈f, g〉 =

∫ Λ

0

f(x)ḡ(x) dx, (B.5)

where ḡ denotes the complex conjugate of g. Using this inner product, Equation (B.4)

is projected on each of the basis functions e−i(kxmx+kyy).

N∑
n=−N

uy,l,n(z)(−ikxn)

∫ Λ

0

e−i(kxnx+kyy)ei(kxmx+kyy) dx

−
N∑

n=−N
ux,l,n(z)(−iky)

∫ Λ

0

e−i(kxnx+kyy)ei(kxmx+kyy) dx

= −k0

N∑
n=−N

sz,l,n(z)

∫ Λ

0

εl(x)e−i(kxnx+kyy)ei(kxmx+kyy) dx, m = −N . . .N. (B.6)



B.2 Discretization using the Galerkin approach 111

Note that the basis functions are orthogonal∫ Λ

0

e−i(kxnx+kyy)ei(kxmx+kyy) dx =

∫ Λ

0

e−i(kxn−kxm)x dx

=

∫ Λ

0

ei(n−m) 2π
Λ x dx = Λδmn, m = −N . . .N.

Equation (B.6) reduces to

uy,l,m(z)(−ikxm)− ux,l,m(z)(−iky) (B.7)

= −k0

N∑
n=−N

sz,l,n(z)

∫ Λ

0

εl(x)ei(n−m) 2π
Λ x dx, m = −N . . .N. (B.8)

We recognize the integral on the right-hand side to be the (n−m)-th Fourier coefficient
ε̂l,n−m of the permittivity function εl.

uy,l,m(z)(−ikxm)− ux,l,m(z)(−iky) (B.9)

= −k0

N∑
n=−N

sz,l,n(z)ε̂l,n−m, m = −N . . .N. (B.10)

Finally we can write the above system of equations in matrix form

−iKxuy,l(z) + iKyux,l(z) = −Elsz,l(z), (B.11)

where

(Kx)mn = (kxn/k0)δmn, (B.12a)

(Ky)mn = (ky/k0)δmn, (B.12b)

(El)mn = ε̂l,n−m. (B.12c)
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Summary

The Fourier modal method (FMM) is widely used in the diffractive optics community as
an efficient tool for simulating scattering from infinitely periodic gratings. In reality the
gratings are finite in size, and in applications such as lithography, it is desirable to make
them as small as possible. At a certain point the assumption on infinite periodicity loses
its validity. In this thesis we extend the application area of the FMM to finite structures
and address the issues of stability and efficiency of the newly developed method.

The aperiodic Fourier modal method in contrast-field formulation (AFMM-CFF) is devel-
oped by placing perfectly matched layers at the lateral sides of the computational domain
and reformulating the governing equations in terms of a contrast field which does not
contain the incoming field. Due to the reformulation, the homogeneous system of second-
order ordinary differential equations from the original FMM becomes non-homogeneous.
Its solution is derived analytically and used in the established FMM framework. The
technique is first demonstrated on a model problem (planar scattering of TE-polarized
light by a single rectangular line). Subsequently the method is generalized to arbitrary
shapes of scatterers and conical incidence.

The contrast-field formulation of the equations modifies the structure of the resulting
linear systems and makes the direct application of available stable recursion algorithms
impossible. We adapt the well-known S-matrix algorithm for use with the AFMM-CFF.
To this end stable recursive relations are derived for the new type of linear systems. The
stability of the algorithm is confirmed by numerical results.

The efficiency of the AFMM-CFF is improved by exchanging the discretization directions.
Classically, spectral discretization is used in the finite periodic direction and spatial dis-
cretization in the normal direction. In the light of the fact that the structures of interest
have a large width-to-height ratio and that the two discretization techniques have dif-
ferent computational complexities, we propose exchanging the discretization directions.
This step requires a projection of the background field on the new basis introduced by the
alternative discretization. For scatterers with locally repeating patterns, such as finite
gratings, exchanging the discretization directions facilitates the reuse of results of previ-
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ous computations, thus making the method even more efficient. As shown by numerical
experiments a considerable reduction of the computational costs can be achieved.



Samenvatting

De Fourier mode methode (FMM) wordt veel gebruikt in diffractieve optica om ver-
strooiing van oneindig periodieke rasters te simuleren. In werkelijkheid hebben rasters
een eindige afmeting en in toepassingen zoals lithografie is het zelfs wenselijk om deze
rasters zo klein mogelijk te maken. Bij een eindig raster kan daarom geen periodiciteit
meer aangenomen worden. In dit proefschrift breiden we de toepassing van de FMM uit
naar oneindige structuren en leiden we een stabiele en efficiënte oplosmethode af.

Een aperiodieke Fourier mode methode in contrastveld formulering (AFMM-CFF) kan
worden gevonden door het plaatsen van een zogenaamde perfect aangepaste laag (PML)
aan weerzijden van het rekendomein en de vergelijkingen te herformuleren in termen van
contrastveld die geen componenten van het invallende veld bevat. Door deze herformule-
ring verandert het homogene stelsel van tweede orde (gewone) differentiaalvergelijkingen
dat optreedt bij FMM in een niet-homogeen stelsel. De oplossing hiervan wordt ana-
lytisch afgeleidt en gebruikt in het bestaande FMM kader. Deze techniek wordt eerst
toegepast op een model probleem (planaire verstrooiing van TE-gepolariseerd licht aan
een enkele rechthoekige lijn). Vervolgens wordt de methode gegeneraliseerd voor wille-
keurige verstrooiende vormen en conische hoeken van inval.

De contrastveld formulering van de vergelijkingen verandert de structuur van het uitein-
delijke lineaire stelsel en maakt de directe toepassing van bestaande stabiele recursieve
algoritmen onmogelijk. In dit proefschrift wordt daarom de S-matrix algoritme aange-
past voor gebruik binnen de AFMM-CFF. Voor de hierbij optredende nieuwe type lineaire
stelsels worden stabiele recursieve relaties afgeleid. De stabiliteit van de algoritme wordt
aan de hand van numerieke resultaten gedemonstreerd.

De effciëntie van de AFMM-CFF wordt verbeterd door de discretisatierichtingen te wis-
selen. Gewoonlijk wordt een spectrale ontbinding gebruikt in de (eindige) periodieke
richting en een ruimtediscretisatie in de richting loodrecht daarop. Gezien het feit dat de
te onderzoeken structuren een grote breedte-hoogte verhouding hebben en dat de beide
discretisatietechnieken verschillende rekenkosten hebben stelen we voor de discretisatie-
richtingen te wisselen. Deze stap vereist een projectie van het achtergrondveld op de
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nieuwe basis die hoort bij de alternatieve discretisatie. Voor verstrooiers met zich her-
halende patronen zoals eindige rasters, blijkt het verwisselen van discretisatierichtingen
het hergebruik van resultaten van eerdere berekeningen op een eenvoudige manier moge-
lijk te maken waardoor de methode erg efficiënt wordt. Hiermee blijkt een aanzienlijke
reductie van rekenkosten te worden bereikt. Dit wordt gedemonstreed aan een aantal
voorbeelden.
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