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Chapter 1 

Motivation, objectives and outline of 
the present study 

1.1 Introduction and objectives 

In the design of process equipment the prediction of liquid flow and gas-liquid interface behaviour is 
of great importance. Most predictive tools are nowadays based on numerical algorithms to solve the 
governing equations. In the bulk liquid, the governing equations account for the external forces, such 
as gravity, and shear forces due to the viscosity of the liquid. These are the well-known Navier-Stokes 
equations. At gas-liquid interfaces other forces are active. Stresses related to surface tension act in 
a direction normal to the interface; these stresses cause bubbles to have a (nearly) spherical shape. 
Stresses caused by a gradient of the surface tension, however, act parallel to the gas-liquid inter­
face. The flow caused by this tangential stress at the gas-liquid interface is referred to as Marangoni 
convection 1. A gradient in the surface tension at a gas-liquid interface can be caused by: 

• a temperature gradient, it causes the so-called thermocapillary effect [1][2][3][4][5][6][7][8][9][10]. 

• a concentration gradient, it causes the so-called destillocapillary effect. A concentration gradient 
is caused by: 

- a solvent inhomogeneously evaporating from the liquid [11] 

- a solvent inhomogeneously dissolved in the liquid [12] 

- a concentration gradient of soluble surfactants at the surface [13][14][15][16], 

• an electrical potential [17J. 

The objectives of this study are: 

• to develop an algorithm to facilitate the prediction of Marangoni convection, 

• to perform experiments to quantify the Marangoni forces in some practical applications where 
a temperature gradient causes a surface tension gradient. 

In section 1.2 some practical applications of Marangoni convection are described. In section 1.3 
existing numerical tools are described and compared. In section 1.4 a new computational method is 
proposed and motivated. In section 1.5 the experiments are outlined and motivated. 

1Na.med after the Italian Physicist Carlo Marangoni (1840-1925). 
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Chapter 1. Motivation, objectives and outline of the present study 

1.2 On the importance of Marangoni convection; the applicability 
of this study 

Marangoni convection is of great interest for the industry. It is applied, for instance, to the drying 
of hydrophilic surfaces 1121. Silicon wafers are hydrophilic surfaces which are used for the production 
of integrated circuits. Vapour of a water-soluble organic liquid is inhomogeneously absorbed into 
the water meniscus on a partially immersed solid substrate. Due to differences in absorption along 
the meniscus interface, see Fig. 1.1, a surface tension gradient is induced. The gradient causes the 
meniscus to contract through a Marangoni flow which dries the substrate and causes the water-vapour 
interface to flatten, as desired. Residual film thickness with this type of drying is more than one order 
of magnitude smaller than with conventional (spin) drying. 

silicon""' ! I 
· ~ vapour 

11~ 
' ~ - - - --- -

i • • • • • 

! • 
• • 

• water • 

• • • 
• • 

Figure ~.1: Marangoni drying of hydrophilic surface. 

A second example is heat recovery and cleaning of exhaust gases with the aid of plastic compact 
heat exchangers. In such applications, heat is transferred from an air/steam-mixture to cooling water. 
On the plastic condenser plates the condensation occurs dropwise. Along the interface of the drops 
a temperature gradient is induced which causes thermocapillary Marangoni convection, see Fig. 1.2. 
These Marangoni flows may increase the net heat transfer rates [1]. 

Yet another example is cooling equipment in space. A liquid is externally heated and bubbles are 
formed at a wall. If some air is still present to allow for a varying partial vapour pressure at the 
inside of the bubble, bubbles attached to the wall have a varying surface tension due to a temperature 
gradient in the boundary layer of the liquid along the wall. The resulting thermocapilla.ry motion 
dominates buoyancy in microgravity conditions and hence influences bubble growth and detachment 
[18]. 

Ma.rangoni convection also plays an important role in thin layers of paint, coatings, glues [15], 
welding, metallurgy, printing ink on solid walls and in floating zones in crystals growth in space 
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1.3. Existing numerical tools 

cooling 
water 

Figure 1.2: Marangoni convection in droplets. 

[2][9][10] or material processing applications !51. 
In this thesis, a predictive tool of Marangoni convection and related interfacial behaviour is pre­

sented. The geometries studied have been chosen such that they are generic for realistic situations. 
This work aims at facilitating the simulation of Marangoni flows in, for example, the applications 
described above. 

1.3 Existing numerical tools 

Several tools nowadays exist for numerically solving the governing equations of Marangoni flows 
{19][20][21). They are surveyed below in order to facilitate the introduction of a new computational 
method in section 1.4 and in order to sketch the capabilities of current predictive tools. It is em­
phasized that this survey may be far from complete from a numerical point of view. It is, however, 
intended as a general guide and introduction to the mechanical engineer who usually merely applies 
the methods developed by others. 

Main categories in which the numerical tools can be divided are: 

1. the Finite Difference Method (FDM), 

2. the Boundary Element Method (BEM), 

3. the Finite Element Method (FEM), 

4. the Collocation Method (CM). 

A common drawback of these techniques is that usually problems arise with the accuracy, reliability 
and calculation time when free boundaries with dynamic conditions have to be taken into account. 

3 



Chapter 1. Motivation, objectives and outline of the present study 

Since the problem addressed in this thesis involves free boundaries with special stress conditions these 
are relevant drawbacks that have to be fully assessed and, if possible, solved adequately. 

The calculation time of FDM, see appendix A, is large when the governing equations have the 
complexity that is common in dynamic interface simulations. Another disadvantage is that if the 
boundaries are curved the formulation of FDM is more difficult. A solution is interpolation, but 
this makes the problem more complex especially when complicated boundary conditions have to be 
imposed. Also local grid refining near the boundaries is hard to apply, which makes FDM less flexible 
than other methods as FEM. A transformation from the physical space to a computational space could 
in principle solve problems with curved boundaries, but this too is complex in many applications. In 
addition, artificial oscillations may occur if due to the boundary condition the solution near the 
boundary fluctuates strongly. These features of FDM are discussed in more detail in appendix A. 

The application of BEM, see appendix A, has been merely successful for solving linear homogeneous 
differential equations and gets complicated for other equations, e.g. the full Navier-Stokes equations. 
Extra source terms must then be taken into account that render the numerical treatment with BEM 
complex. Some features of BEM are discussed in appendix A. 

In FEM a solution is constructed by minimisation (e.g. Ritz-method) or by weighted residuals 
(e.g. Galerkin method). ·In the former method a matrix is generated that in general is dense. Its 
condition number is bad and, when many elementary functions are used, rounding-off errors may be 
hard to control. The Galerkin method is more general in use and more direct. A disadvantage of 
both methods is that numerical problems occur in the velocity-pressure formulation for the pressure 
p since the continuity equation does not contain the pressure. This makes the handling of problems 
with stress conditions at an interface involving the pressure cumbersome. Several ways are nowadays 
known to address this coupling problem. Advantages and drawbacks of these tools are described in 
appendix A. 

The fourth method, the collocation method (CM), is a special form of FEM with the weight 
function chosen as the Dirac Delta-function centred at the collocation points: 

with: 

and 

</>;=6(x-x;) i=l, .. ,N 

6(x) = lim 
Ll.-o 

0 

1 
6 

0 

A 
x<;_2 

A 6 
<x< 2 

6 
x> 2 

1 A{x- x;) dx = 1 

In the present study this method is applied as further discussed in section 1.4. 

(1.1) 

{1.2) 

(1.3) 

In combination with FEM or CM spectral methods can be used. Spectral methods in an orthogonal 
system encompass a linear transformation between the (exact) solution and a sequence of expansion 
coefficients. This is usually called the finite transform between the physical space and a transformed 
space. An example is the approximation of periodic functions by a Fourier-series. Functions can be 
described both through their values in physical space and through their coefficients in transformed 
space. Spectral methods are based on weighted residual techniques, see appendix A. Exponential 

4 



1.4. Outline of the new algorithm 

convergence 2 (or spectral accuracy) is obtained if the exact solution is known to be a series of special 
expansion functions. 

Spectral accuracy is guaranteed, see Canuto et al. 1221, if orthogonal systems are used as basic 
functions with suitable interpolation points. 

In this thesis spectral techniques are applied in the numerical method to be presented. 

All the techniques described above have been applied for solving the partial differential equations, 
PDEs, that govern liquid motion with stress conditions at free interfaces, see section 1.1. Some 
examples are given below to show that this was not without problems for difficult situations !231!241!251. 

Strani et al. [24) used a computational method for thermocapillary convection in a rectangular 
cavity based on finite differences in curvilinear coordinates with the surface deformation of the interface 
neglected. Although the results look reliable, they did not represent solutions for free interfaces. 

Lu 1231 u~ed BEM to analyze thermocapillary convection near a free surface in a rectangular cavity 
with heated isothermal side walls in microgravity. He found reliable results when the interface was 
immobile and straight. He found a large deformation of the interface when the interface was mobile, 
which was not verified by other researchers. 

Shopov et al. [25] used FEM to model the transient behaviour of deformable liquid interfaces with 
surface tension effects. The method works good for relatively large deformations of the free surface 
but is not robust in the case of small deformations. 

It is concluded that good solutions have been obtained, with existing techniques, for problems 
with fixed interfaces, but that with a free interface with the stress conditions that govern Marangoni 
flows, no fully reliable methods were reported. The main problems seem to be difficulties in adapting 
the grid to a moving, free interface, the number of iterations necessary at each timestep, numerical 
diffusion, the velocity-pressure coupling and the form of the stress conditions at the free interface. 
In this thesis a new method is presented to describe thermocapillary convection of deformable gas­
liquid interfaces with interfacial stress conditions. This method is outlined in section 1.4. Some of 
the problems mentioned above will be seen to be solved. The solution obtained is, for example, fully 
closed. No iterations are necessary at a timestep. 

1.4 Outline of the new algorithm 

In the method presented in this study, the Navier-Stokes equations, subject to the appropriate bound­
ary conditions, are solved numerically to determine the flow field of the Marangoni driven convection. 
The method predicts the evolution in time of the velocity in a thin liquid layer and the corresponding 
free interface motion. The gradient in the tangential surface tension at the free interface is prescribed, 
e.g. obtained from experimental observations to be described below. The pressure is eliminated by 
integrating the Navier-Stokes equations along closed contours intersecting the free surface while using 
the normal stress condition at the interface. The contour integrals result in expressions which are lin­
ear in the unknown coefficients of the expansion used for the velocity field. The algorithm, based on 
a spectral collocation method with a self-adapting grid of collocation points, simultaneously satisfies 
the contour-integrated Navier-Stokes equations as well as the tangential stress condition at the points 
of the free interface. Advantages of the method used are: 

• the simplicity to accommodate physical symmetries via the basis functions [26), 

• its potential for rapid grid convergence 

2 Exponential convergence means that the approximation converges exponentially to the exact solution when increasing 
the number of test functions. 
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Chapter 1. Motivation, objectives and outline of the present study 

• the possibility to determine derivatives of the solution analytically. 

For the computation of the nonlinear terms the fast Fourier technique cannot be used. An adapted 
Singular-Value-Decomposition (SVD) method is applied which weights the contour-integrated Navier­
Stokes equations and the tangential stress condition and achieves spectral accuracy. The precise 
location of the collocation points is not crucial since in the SVD method much more computational 
points are used than necessary. Since the tangential stress condition is driving the flow it is central in 
and even guide the solution procedure. 

The coupling of the velocity field and the interface motion, as prescribed by the kinematic bound­
ary condition, is achieved in a direct manner utilizing a series of orthogonal functions for both the 
velocity field and the position of the interfacial contour combined with an Adams-Bashford integration 
technique. Since the solution of the velocity field. and the interface position are based on truncated 
expansions the accuracy of the solution is directly controlled. An explicit time integration is used, so 
that the solution at the next time level is obtained directly without iteration. 

Without loss of generality, a single velocity expansion is used for the entire computational domain, 
i.e. only one "finite" element is exploited. In this way, coupling-problems at element boundaries are 
avoided and the main emphasis is on satisfying the boundary conditions at the dynamic free interface. 
If more complex geometries are examined, more elements can in principle be used with the elements 
not in close proximity to the interface described by e.g. FEM type methods. All additional elements 
are then stationary while the interface is moving. The method presented in this thesis could be used 
for the elements near the interface for accurately and conveniently imposing the interfacial stresses. 

Since no iteration is used, and since the driving forces are transparently accounted for via the 
contour integrals and the tangential stress condition, the present method is believed to facilitate the 
understanding of the effects of the Marangoni force on the flow. 

1.5 Outline of the new experiments 

The main reason for performing new experiments is to accurately measure the temperature gradient 
along the interface while simultaneously visualizing the Marangoni flow. In the literature, several ex­
periments on Maran:ftjmi convection are reported. Destillocapillary convection has been investigated 
often, [11][12][13][14][ U16J, but these experiments lack information on the driving surface tension gra­
dient at the interface since the concentration gradient along an interface is difficult to measure. In 
the case of thermocapillary convection some attempts were made to measure the established temper­
ature gradient. However, the temperature gradient was mostly not really quantified [27)[28] or was 
measured at a solid-liquid interface and not at the free liquid-gas interface. Some investigators used 
thermocouples to measure the temperature gradient along the gas-liquid interface [2][7J. However, the 
thermocouples disturb the interface and results are not reliable. In the experimental approach utilized 
in this thesis the temperature gradient along the gas-liquid interface is measured accurately using a 
non-intrusive thermovision system. This system detects the infrared light emitted from positions at 
the interface as a measure for the local temperature. The interface is not disturbed. The dependence 
of the surface tension a on the temperature T is derived prior to the experiment. For the liquids used 
in this thesis the gradient da/dT is negative, which means that the driving force generates motion 
from warm to cold areas along the interface, see [291. Flows are visualized and measured from aside 
by a video-recording system. 

The temperature at various positions of the interface and velocity field in the liquid are measured 
simultaneously to ensure that the driving condition is known and that the corresponding flow pattern 
is observed. 

6 



1.6. Contents of the thesis 

The experiments are performed for two configurations: 

• A thin layer heated from above using a straight radiating canthal wire 

• A hemispherical droplet cooled from below by means of a Peltier-element. 

Many experiments described in the literature have been performed under microgravity conditions, 
this to avoid the influence of gravity [2H4H5H7Jil0)[11)[28]. Flexibility in performing experiments in 
microgravity is not high due to lack of space and time. For space-lab missions voluminous equipment 
cannot be used, since often experiments are piggy-back experiments. Furthermore, in drop towers 
[4][28] the observation time at microgravity conditions is limited, apart from the difficulty to build up 
a suitable set-up. Experiments on earth do not have these drawbacks. The equipment used for the 
experiments described in this thesis are easily adapted and directly controllable. Also conditions of 
the air (e.g. temperature and humidity) or main process and equipment parameters (e.g. temperature 
of the liquid and the thickness of the liquid layer) are readily varied. By cooling from outside the 
surface tension gradient in the vessel is regulated and a nearly stationary situation is feasible. 

In the experiments at 1-g conditions described in this thesis buoyancy effects are minimal since the 
hotter liquid lies on top. The liquid composition is varied to investigate the effect of different liquid 
properties on the thickness of the layer where, near the interface, Marangoni convection is observed. 

1.6 Contents of the thesis 

In this thesis a model is presented based on a new method to describe thermocapillary convection for 
free gas-liquid interfaces with interfacial stress conditions. The method is introduced, and first applied 
to a thin liquid layer in a rectangular cavity in chapter 2. It is applied to a small droplet on a flat 
plate in chapter 5. Alternative expansions for the velocity field in and the interface of the thin liquid 
layer are discussed in chapter 3. The measurements performed to produce data for the validation of 
the numerical simulation of the flow in a liquid layer are described in chapter 4, and those for the 
droplet in chapter 6. Numerical simulation of these two cases is presented in chapter 7. Concluding 
remarks and suggestions for future research are given in chapter 8. 
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Chapter 2 

A spectral collocation method for a 
dynamically changing interface and 
Marangoni convection in a liquid layer 

2.1 Introduction 

The algorithm described in this chapter is based on a method in which the pressure is eliminated by 
using contour integrals of the momentum equations. In this chapter this new numerical method will 
be applied to a thin liquid layer in a cavity with a free interface, see also [30]. 

This geometry is chosen to enable the prediction of flows for several applications. For example, for 
the drying of silicon wafers, see section 1.2, a thin layer of water is contracted through a Marangoni 
flow. Furthermore, this geometry can be used for studying the spreading effect of surfactants on a thin 
liquid film as occurs in the pulmonary airways and alveoli. Here surfactants are of great importance in 
the functioning of the lung system [l3][16][14J. The liquid :film serves as a barrier between the air and 
the wall of the airways and as protection against airborne particles or aerosols. Diseases like asthma, 
pulmonary infections and hyaline membrane disease occurring in premature neonates can be treated 
by inhaling an aerosol spray which thins the layer by local reduction of the surface tension. 

In section 2.2 the cavity problem is introduced. First the problem statement is described in 
section 2.2.1, then the physical model is introduced in section 2.2.2 and this section ends with the 
governing equations in section 2.2.3. The numerical method is described in section 2.3. The expan­
sions of the velocity and the interface height are presented in section 2.3.1, the contour integrals in 
section 2.3.2, the tangential stress condition in section 2.3.3, the adapted SVD method used to satisfy 
the equations resulting from the contour integrals and the tangential stress condition in section 2.3.4 
and the computation of the interface deformation in section 2.3.5. Section 2.4 discusses the results of a 
number of applications. A constructed test case with analytical solution is considered in section 2.4.1. 
Flows due to prescribed surface tension histories are described in section 2.4.2. 

2.2 The cavity problem 

2.2.1 Problem statement 

The geometry considered is a cross-section of a rectangular cavity with a liquid layer at the bottom. A 
surface tension gradient at the interface can be established, for example, by a wire radiating heat from 
above on the layer, see chapter 4. Applications of this geometry are given in chapter 1 and section 2.1. 
The half length of the cavity, L, is typically 40 mm, whereas the initially constant thickness of the 
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Chapter 2. A spectral collocation method ... 

liquid layer, h0, is typically 0.5 mm. In this chapter, for the coordinates x and y, the height of the 
interface h*, the velocity in x-direction u, the velocity in y-direction v, the timet, the pressure p and 
the gravity g the starred quantities are dimensional and plain ones are dimensionless. The length of 
the cavity L, the viscosity J.t, the mass density p and surface tension u are only used in dimensional 
form and are written without star. 

2.2.2 Physical model 

It is assumed that the flow is two-dimensional in the (x,y)-plane, see Fig. 2.1. Because of symmetry, 

«=0 x=l 
~X 

Figure 2.1: Schematic of the configuration. 

only the right half of the cavity has to be considered. 
At the bottom (y = 0) and at the right wall (x = 1) the conditions of no-slip (u = 0 at y = 0 and 

v 0 at x = 1) and no-penetration ( v 0 at y 0 and u 0 at x 1) are satisfied. This implies 
that h = 1 at x 1. The assumptions of the physical model are: 

1. The :!low is two-dimensional, effects due to turbulence are neglected; 

2. The surface tension gradient is known at all times and positions along the interface; 

3. Matter at the interface has the same properties as matter in the liquid; 

4. The liquid has constant physical properties, i.e. the mass density p and the dynamic viscosity 
J.tli are constant; 

5. The liquid is incompressible and Newtonian; 

6. The dynamic viscosity, J.tg, of the gas-phase is negligible compared to the dynamic viscosity J.tli 
of the liquid-phase. 

2.2.3 Governing equations 

The continuity equation for an incompressible :lluid is: 

8u* 8v* -+- = 0 
8x* 8y* 

(2.1) 

The Navier-Stokes equations describe the diffusion of velocity in the liquid layer. The components of 
the Navier-Stokes equation in x-direction and y-direction can be arranged as: 

8p* _ (fPu* 8
2
u*) _ (8u* u*au• v*8u*) 

8x* - J.t 8x*2 + 8y*2 p 8t* + 8x* + 8y* 
(2.2) 
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2.2. The cavity problem 

(2.3) 

The tangential stress condition at the interface is a balance between the viscous shear and the surface 
tension gradient and reads: 

( (
{}h*)

2
)({}u* 8v*) {}h*{}v* ( ({}h*)2)

1
1

2 ({}q) J-l 1- - -+- +4J-t--= 1+ - -{}x* {}y• ox* {}x* {}y• ox* ox• 
(2.4) 

The tangential stress condition is the driving force of the Marangoni convection. This equation 
therefore plays a dominant role in the present study. The normal stress condition at the interface, 
(y = h), is a relation for the pressure drop over the interface: 

p* * 2 (1- (~)2 ) {}u* 2 · ~ ({}u* {}v*) 
Po - J-l 1 + ( ~ )2 ox* - J-ll + ( ~ )2 ay* + ox* 

-u ( (1+ (;l')''') (2.5) 

with p* the pressure in the liquid and p0 the pressure of the air. Eq. (2.5) is reduced by substituting 
(8u*j{}y* + {)v*j{}x*) obtained from Eq. (2.4) in Eq. (2.5), resulting in: 

• * 2 ( 1 + : )2) {}u* 2 ( ~ ) {}q 
p =po- J-l 1 (a.,:)2 ox*- (1-(~;:)2)(1+(~;:)2r/2 ox* 

-u ( (I+(;)')''') 
The time evolution of the interface is obtained by using the kinematic boundary condition: 

{}h* * * {}h* 0 
-v+u-

0 
= 

x* 

(2.6) 

(2.7) 

where u* and v* are to be evaluated at the free interface. This boundary condition states that the 
normal component of the velocity of the liquid at the interface has to be equal to the normal component 
of the velocity of the interface, this because of the absence of mass transport through the interface. 

Since the surface tension gradient is prescribed as a function of position and time the energy 
equation nor diffusion of concentration are considered. 

The governing equations are made dimensionless so that all important qu~tities can be taken 
into account without loss of accuracy. The dimensionless coordinates in x- and y-direction are defined 
as x = x* / L and y = y* / h0, respectively. In case v* is small and the interface remains almost 
planar ( {}h* I {}x* ~ 0) the tangential stress condition can be approximated by J-lOU* I {}y* = {}u I ox* + 
h.o.t .. It then follows that the characteristic velocity in x-direction is ~u h0/ (L J-l). Here ~u is the 
characteristic spreading parameter, analogously defined as by Gaver et al. [13]. For destillocapillary 
flows ~u is typically the difference in surface tension between water and ethanol at 20°C ( ~u = 
Uwater,air - Uethanol,air = 49.5 X w-3 N /m). The dynamic viscosity of the liquid /-lli 1, is taken to be 
that of water (1.002 x w-3 Pas). From Eq. (2.1) with x = x*/L and y = y*/h0 it follows that 

v v* J-l L 2 / ( ~u h02). The characteristic time is t* = Lju*, with u* the velocity due to tangential 

1 P.li is in other parts of this thesis abbreviated a.s I'· 
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surface tension gradient at the interface, sot = t* D.u h0/ (p, L2). The pressure has order of magnitude 

D.u/h0, sop p* h0/D.u. The gravity is made dimensionless as g = g* p,2 L4/ ((D.u)2 h03
). The 

Reynolds number, Re, based on the horizontal velocity component and h0, is defined with the aspect 
ratio A= h'Q/L (1/80 typically) and p the mass density of water (998 kg/m3 ) by Re= D.u A h0 pfp,2

• 

Typical values are Re 300 3000. Sx and S9r are dimensionless quantities related to the surface 
tension gradient and the surface tension, respectively, which follow from Eqs. 2.4 and 2.5. In Eq. (2.8) 
the relations are given. 

u = ii!/t V = 
0 

h(/pg• t*ll.oh• 
(2.8) = ~ p g ll.o 

Re = ll.oA
2
h0p 

S:x Sgr ~ 
I' ll.n 

The Navier-Stokes equations used in the present method have the following dimensionless form: 

(ou ou ou) 
ReA -+u-+v­ot ox ov 

3 (ov ov ov) ReA -+u-+v­ot &x {}y 
The dimensionless form of the tangential stress condition is: 

(1- D 2) ({}u + A2 &v) + 4AD lJv 
{}y ox &y 

where: 

D = A {}h 
- {}x 

(2.9) 

(2.10) 

(2.11) 

{2.12) 

In approximate form (A....,. 0) this relation reads lJuflJy = ((1 + D2)/(1- D2 )) S.,, so diffusion of the 
velocity component in x·direction depends on the gradient of the surface tension. 

The normal stress condition in dimensionless form is: 

Do = -A2 gr"§XI 1• 8x ~ (s <Ph 2 "28u 2S 8h) 

p N 3 + 1 - DZ + 1 - D2 (2.13) 

where: !::.p = p- Po and 

N =: (1 + Dz)l/2 (2.14) 

The first term on the right· hand side of Eq. (2.13) contains the curvature of the interface. The surface 
tension S9r dampens interfacial deformation, the gradient in the surface tension S., sets the liquid into 
motion. 

The kinematic boundary condition in dimensionless form is: 

&h 
{}t 

{}h 
= v-u-

{}x 
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2.3. Numerical method 

2.3 Numerical method 

The algorithm is based on a spectral point collocation method. In this method, the solution u, is 
approximated by a truncated finite sum of functions, see section 2.3.1. The velocity component u is 
determined by the set of equations imp~sed at a set of collocation points. In y-direction a moving 
grid of collocation points is given by c; = y;/ h"( x, t) for i = 1. .. n~<;, with h*( x, t) the height at the 
interface at different times, see Fig. 2.1. In section 2.3.1 also the expansion of the free interface is 
given. Contour integrals, introduced in section 2.3.2, together with the tangential stress condition at 
the interface, as described in section 2.3.3, yield the system of equations of the numerical method. 
These equations are weighted and solved by an adapted SVD method, described in section 2.3.4. A 
closed solution is obtained. The computation of the interface deformation is described in section 2.3.5. 

2.3.1 Expansions 

In this section the expansions used for the cavity problem are described. Alternative expansions for 
this problem are considered in chapter 3. For other applications, for example a droplet condensing on 
a plate, different expansion are needed, see chapter 6. 

The dimensionless component of the velocity in x-direction is expressed as 2 : 

n;c-1 nkc-1 ( ) i+l 
u(x,y,t) = L L d;,ksin(Jr(k + 1)x) * 

•=0 k=O 

(2.16) 

with nkc the highest mode of the Fourier-expansion and n;c the highest power of the polynomial­
expansion. For constant relative height c = y / h, a Fourier-series is selected since roll-cells like those 
occurring in Benard-cells [31][32) are expected to develop. For they-direction a polynomial is chosen in 
order to increase the convergence speed and since the motion is not restricted to small areas near the 
interface. The d;,k-coefficients are taken time-dependent to enable the prediction of the time evolution 
of the Marangoni flow. The choice of the velocity expansion satisfies the condition of symmetry 
with respect to the line x = 0, the no-slip condition at the bottom y = 0, and the no-penetration 
condition at x 1. The dimensionless velocity in y-direction, v, is derived from the continuity equation 
upon substitution of Eq. (2.16) and subsequent integration from y = 0 where v 0 (no-penetration 
condition) to y: 

v(x,y,t) = 
n;c-1 nkc-1 . • + 1 8h ( )i+2 L L d;,ksin(1r(k+ l)x)-~ --

8 
_hy 

i=O k=O Z + 2 X 

(2.17) 

n;c-1 nkc-1 (k + 1) ( ) i+2 
~ {; d;,k cos(Jr(k + l)x) 1r i + 2 h ~ (2.18) 

To satisfy also the no-slip condition v = 0 at x = 1 it follows that: 

(2.19) 

i.e., the last coefficient, d;,nkc-1 is determined once the others have been calculated. (2.19) is added 
to the set of equations resulting from the discretization of the governing equations and is solved 
simultaneously. 

For the position of the free interface, h, the following expansion is employed: 
nb 

h(x,t) = 1 + L bmcos(Jrmx) (2.20) 
m=1 

with nb the number of time-dependent bm -coefficients. 

t) and h( x, t) are in ot.her parts of this thesis abbreviated as u.. v and h respectively. 
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2.3.2 Contour integrals. 

The spatial discretization of the flow field is chosen equidistant in x and c-direction, so that the 
resolution is everywhere the same. The grid points are the collocation points, see Fig. 2.2. The 
division in the y-direction adapts automatically to the time-dependent position of the interface since 
constant values of c = y / h are used. In x-direction there are nk collocation points, in c-direction n; 
collocation points are chosen. 

For each collocation point a contour integral of the pressure is calculated. A contour starts at a 
collocation point, first moves to the right to the nearest collocation point, then proceeds at constant 
x-value to the interface, then crosses the interface into the gas, turns left to a position above the 
collocation point where the contour was started, again crosses the interface into the fluid and finally 
closes at the collocation point where is started, see Fig. 2.2. The pressure drop over a closed contour 

:X=O collocation point 

Figure 2.2: Schematic of closed contour integral. 

is zero, so: 

(Po- pi)+ (Pl - P2) + (P2 - P3) + (P3 - P4) + (P4 - Po) = 0 (2.21) 

For (Pl --P2), (P2 - p~) and (p3- P4) the following expressions are used: 

(Pl- P2) = {y=h ({)p) dy 
- }y=c;h oy x=x; 

(2.22) 

1x=x; (op oh op) 
(P2-P3)= -+c;-- -dx 

x=Xi+I ox OX oy y=c;h 
(2.23) 

l y=c;h (Op) 
(P3 - P4) = - dy 

y=h Oy X=Xi+I 
(2.24) 

The term opfox + Cj oh/ox opfoy is the variation of the pressure along the grid line y = c;h. 
components of the pressure gradients, opf8x and 8pfoy, follow from Eqs. (2.9) and (2.10) as: 

The 

op o2u o2u 
ox = oy2 + A2 8x2 -Re A ( 

ou ou 8u) -+u-+v­
{)t ox oy 
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2.3. Numerical metlwd 

(2.26) 

The normal stress condition, Eq. (2.13), is used for (po- PI) and (p4 - Po)· Rewriting this equation 
for P4 - Po yields: 

A2 gr~ a;; xa;; (s &
2
k 2N2au 2s ak ) 

P4- Po = - ~ + 1152 + 1152 (2.27) 

The pressure contour integrals consist of among other things the velocity terms 8uf8t and 8vf8t, 
which upon discretization contain the time-derivatives of the d;,k·Coefficients, the so-called e;,k·coeffi­
cients. These coefficients describe the evolution of the velocity field. 3 

A matrix equation is formed by the many (10,000 typically) contour integrals using Eq. (2.21) with 
thee-vector consisting of the e;,~c-coeflicients: 

(2.28) 

For clarity, in this and next sections the matrices are denoted by _ and the vectors have subscript _ . 
The vectors, d and e, do not have a subscript. -

2.3.3 Tangential stress condition 

The tangential stress condition at the interface is given by Eq. (2.11), i.e.: 

(1-D2)(:;+A2 ::)+4AD:; = (l+D
2
)Sx (2.29) 

This condition is the driving force for the Marangoni flows, therefore this equation has to be considered 
with care. The right-hand side vector contains the prescribed gradient Sx which at the interface creates 
a velocity component in tangential direction. The velocity in lower layers is established due to viscous 
effects. This condition applied at the collocation points on the interface (typically 100) results in a 
set of equations in terms of the d;,k·coefficients, given in matrix form: 

(2.30) 

2.3.4 Singular Value Decomposition 

There are two sets of equations which have to be solved simultaneously, namely the equations formed 
by the contour integrals, Eq. (2.28), and the equations derived from the tangential stress condition 
at the interface, Eq. (2.30). The former consists of typically 10,000 equations for 300 unknown d;,k­

coeflicients, the latter consist of typically 100 equations for the 300 unknown ei,k·coeflicients. These 
sets of equations are ill-conditioned, and therefore an adapted SVD technique is used to solve these 
sets of equations. 

First the SVD technique is described and then its application in the present method is explained. 
More details are described in (33]. · 

A SVD of an overdetermined matrix flmxn with m > n is a decomposition of D into three matrices 

If:mxm'~l<n and bnxn such that 

(2.31) 

d;,k·coefficients are the elements of a (nkc x n;c)-matrix with columns d,,o, di,t, ...• dt.»•c-1· Vector d is defined 
as d = (d;,0T,d;,1T, ••• ,d,,,.,,_1T)T. A simila.r definition is used for thee-vector. 
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The first n columns of It, are the columns of matrix 
columns of matrix U2 , i.e.: 

and the last m - n columns of It, are the 

!l,=(Ut;Qi) Ut=(ub·",Un) u2 (un+l•'",Um) 
= (vb·-:-:-,vn) 

= Im J;;:TJ;;:= In 
(2.32) 

,g = diag( 111, • • ·, 11n) 

with 111 ~ • • • ~ Un ~ 0. 
The columns of Il are called the left singular vectors of D, the columns of V are the right singular 

vectors of D and thediagonal elements of~ are the singular values of matrix D-: The singular values of 
Dare the square roots of the eigenvalues ~ DT D. Consider an arbitrary system of equations Dx = fl.. 
A total least-squares solution of this equation i;;-obtained by calculating the SVD of (D; fl.) 4 ii: 

(2.33) 

Define E.. ~f ( D; Q.). If the singular values of E.. are <11, 112, • •• , Un, Un+l with cr1 ~ .. • ~ Un+l ~ 0 
then th;-condition-number of the matrix E.. is defined as u1 /un+I and is oo if Un+l = 0. To obtain 
a well conditioned problem of Eq. (2.33) the smallest singular values are set equal to zero. If the 
smallest i-singular values are set to zero then SVD determines the best rank ( n + 1- i)-approximation 

';b;) of E..= (D;fl.) in the Frobenius norm, i.e. II(E..- E.)IIF ·~ liE..- (D/;b/)IIF for all possible 
matrkes f::. ;ith dimensions m x (n + 1). The Frobeclus -;;-orm of the matrix-~xn is defined by 

ll~xn11F = j"Lj;1 "£/::1 dJ,1. The matrix equation (D/; !!j)(xT; -l)T = 0 is solved using the normal 
method. It uses the following properties of the SVD: The left singular vectors are the eigenvectors of 
the matrix EET, and the right singular vectors are the eigenvectors of the matrix E..T E_. 

How th;-8VD technique is applied in the numerical method of this thesis i;-d;-cribed in the 
following. The first step in solving the two sets of matrix equations, Eqs. (2.28) and (2.30), simulta­
neously is the reduction of the number of unknowns. The e;,k·coefficients are expressed in terms of 
the d;,k·coefficients using a second-order Adams-Bashford integration technique: 

1 
d;k,t+At = 2 (3 e;k,t €ik,t-At) !l.t + d;k,t (2.34) 

e;k,t-At are the coefficients of thee-vector of previous step. Rewriting Eq. (2.34) yields: 

e;k,t = j ( ~t ( d;k,t+At - d;k.,t) + e;k,t-At) (2.35) 

Substitution of Eq. (2.35) in Eq. (2.28) results in matrix equation: 

B d = 6 or (fl; !.)( dT; -1 )T 0 (2.36) 

Now the number of unknowns is halved. 
The number of rows of matrix ll.. is equal to the number of collocation points in the fluid. In 

tests described later on, 10,000 collocation points ( = nk x n;) are used for solving 300 ( = nkc x n;c) 
coefficients. So a matrix ll.. is formed with dimensions 10,000 x 300. 

Matrix equation (2.30), containing the discretized tangential stress condition at the interface, has 
100 ( = nk) rows and 300 d;,k·coefficients. The adapted SVD calculates for this matrix equation the 
singular values in the same manner as for the system of equations resulting from the discretized contour 
integrals. 

4 A block-matrix is formed: vector I! is added as column to the right of matrix g. 
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2.3. Numerical method 

The singular values oft_ d;j (Q.; q) and il_ (J1.; ;:_} show a characteristic pattern, see for example 
Fig. 2.3 and 2.4. There is-;;;: sharp transitio-;; from -;ignificant singular values to noise related singular 
values. r is the number of significant singular values associated with the matrix equation of the 
tangential stress condition, Q, and j is the number of significant singular values associated with the 
matrix equation of the cont~r integrals, /l. For more details, see appendix B and [33J. Let C' be 

Figure 2.3: Singular values of the matrix equation from the tangential stress condition. Values used 
are nk = n; = 15, nkc = 6, n;c = 3 and nb = 6. 

the SVD approximation of~ of rank r and B' the SVD approximation of il_ of rank n~cc X n;c- r. 

The tangential stress condition is the driving force for Marangoni convection, so these equations are 
solved as accurate as possible. 

Now is formed: 

(2.37) 

with of rank r and B' of rank ( nkc X n;c r ). Let C* be the matrix formed by the first nkc X n;c 
columns of C1 and B* the matrix formed by the first nkc x n;c columns of B'. Thus, C1 = (C*; q*) and 

= ( B*; z*). Then, the rank of ( ~: ) is nkc x n;c or less. In practic~he rank -:ill b-:-n~ X n;c 

and ( ) will have full rank. Now: 

(2.38) 
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Figure 2.4: Singular values of the matrix equation resulting from the contour integrals. Values used 
are nk = n; = 15, nkc = 6, n;c = 3 and nb := 6. 

Eq. (2.38) has an exact solution d which is the solution of the normal equation: 

(C*fC*d+(B*fB*d = (C*fq*+(B*)Tp* (2.39) 

Eq. (2.39) can be solved using the LU-decomposition. The advantage of this approach with known full 
rank matrices is that the d;,k-values computed in this way meet almost exactly the tangential stress 
condition at the cost of a minimum of accuracy in the equations resulting from the contour integrals. 
Furthermore, the dimensions of the matrices ( C*)T C* and ( B* f B* are small in comparison with the 
dimensions of the matrix !1: and the calculation time is relatively short. 

The solution vector contains the calculated d;,k-coefficients. Then the velocity is known everywhere 
in the liquid layer at time t. The time-evolution of the velocity field is described by solving the 
governing equations as described above with the adapted SVD method for each time t. From the 
d;,k-coefficient the bm-coefficients are calculated, using Eq. (2.40), so the dynamic deformation of the 
interface is then also known. 

2.3.5 Computation of interface deformation 

Making use of the kinematic boundary condition, Eq. (2.15), either one of two methods for the 
description of the interface can be selected: 

1. An analytical relation is found between the time derivative of the bm-coefficients, dbmfdt, and the 
d;,k-coefficients of the velocity expansion. This analytical relation gives dbmfdt-values dependent 
of an infinite orthogonal series of bm-coefficients and a finite orthogonal series of d;,k-coefficients: 

db m 
dt 

nkc nkc-1 nic-1 nkc-l d 
"" "" b "" "" i,nkc+i L...J L...J k+l + 1 L...J L...J --:--+ 2 
1=1 k=O i=O j=O z 
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nkc nkc-1 nic-1 nkc-l d, . nke l-1 n.:c-1 nkc-1 d· . -t; k~l bk-1+1 t; t; :·~c;J -t; E bt-k-1 t; t; :·~c;J 
oo nnc-1 n;c-1 nkc-1 d 

+ I: I: <h+l+l - bz-k-1 l I: I: i~c;i ;1 (2.4o) 
i=nkc+I k=O •=0 J=O 

Eq. (2.40) is an exact relation so it is given with an infinite number of bm·coefficients. The infinite 
series is truncated at 3nb terms to render it finite. Further dbmf dt-coefficients are usually too 
small to be significant. The corresponding 3nb bm·coefficients at the next time level are calculated 
with an Adams-Bashford integration method: 

! (3 dbm,t _ dbm,t-L:.t) D.t b 
2 dt dt + m,t (2.41) 

In the subsequent calculations, only nb bm·coefficients are used, since the interfacial height 
expansion uses this number of coefficients and it is accurate enough to describe the interfacial 
motion.· 

2. Using a continuous least-square fit by minimisation of g with g = J0

1 (!- f) 2 
dx and f being 

the known position of the interface and j being the interface expansion, given in Eq. (2.20). 
f is determined using the kinematic boundary condition, Eq. (2.15), and an .Adams-Bashford 
integration. Differentiating g with respect to x yields a system of linear equations for the 
unknown bm·coefficients. 

The deformation of the interface is determined by the set of coefficients bm. In most test cases described 
in section 2.4 the second method is used. 

The time evolution of the velocity field and the position of the interface are predicted by calculating 
the d;,k·coefficients as described in section 2.3.4 and by calculating the bm·coefficients for the next time 
level as described above. 

2.4 Results 

2.4.1 A test case with an analytical solution 

Only very few analytical solutions of Marangoni convection problems can be found in the literature. 
In this section a special test case is constructed based on a Landau and Lifshitz !341 solution. 

A heated thin liquid layer with steady motion. 

A thin liquid layer is considered that rests on a horizontal plane solid surface that is non-uniformly 
heated. The temperature is a given function of the horizontal coordinate x. Because the layer is 
thin, its temperature is supposed to be independent of the vertical coordinate y, perpendicular to 
coordinate x. The spatially non-uniform. but timewise steady constant temperature field, corresponds 
to a surface tension gradient along the interface. A steady flow is then established. 

The assumptions that are made to solve the analytical solution with the governing equations 
are given below, where differences with the assumptions underlying the computational method are 
indicated. 

• Variation of pressure due to cun-ature of the surface is neglected. For the numerical solution 
this implies a simplification of each contour integral. 
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• Only the horizontal velocity component. u, and its derivatives are significant; the vertical velocity 
component. v, is negligible as compared to u. In the numerical solution, on the contrary, both 
components are included. 

• The mass density, p, depends on x, but not on y. The dependence of p on xis prescribed and 
given below. 

• The :flow is steady. The numerical method computes time-dependent :flows only and so a steady­
flow solution should he obtained as time tends to infinity. 

• At x = 0 symmetry is taken into account hut at x = 1 the no-slip condition is not applied. 

• u = 0 at y 0, the no-slip condition along the bottom of the layer. The expansion of Eq. (2.16) 
automatically satisfies this constraint. 

• At the interface, y = h, fl {)uj {)y = fJu / fJx, which implies a simplification of the tangential stress 
condition compared to the full one employed in the numerical method. 

Mass density p* is made dimensionless by division by p0, sop = p* / p0. The gravitational constant 
g* is 9.81 m/s2 • In the numerical method gravity must therefore be taken into account in the contour 
integrals. The Reynolds number, Re = p0 u* h0/ p, based on the initial layer thickness, h0, amounts 
typically to Re= 3700. With the above assumptions, the dimensionless interfacial height, h = h* fh0, 
with h* the layer thickness, is. governed by: 

f!. fJh2 + h2 fJp b.u S 
3 fJx 4 8x Po g* h(/ x 

(2.42) 

as was analytically demonstrated by Landau and Lifshitz [34]. The constant b.u is a typical surface 
tension difference due to temperature differences (49.5 X w-3 N/m) and the constant Po is the mass 
density of water a.t 293 K (998 kg/m3 ). The value of b.u is chosen similar as in section 2.2. 

Because his expanded in a Fourier series in the numerical method, see Eq. (2.20), IJhfiJx is easily 
derived. It is convenient to expand both r.and Sx in a similar fashion to be able to satisfy Eq. (2.42) 
exactly. The following expansions are selected: 

p = 
1 

Po g* h02 I:~~\ 1r k bk sin( 1l'kx) 
6 D.u• I:~} b1 cos(1l'lx) 

It is easily seen that with these choices of h, p, and S.,, Eq. (2.42) is satisfied exactly. 

(2.43) 

(2.44) 

The dimensionless velocity component. u, as a function of h, p, and S., follows analytically [34] 
from: 

( ) - r'O u· h'02 [(~ z- h) D(p h) (~ hz 1 3) Dr] (2.45) 
u x' y - b.u 2 y y fJx + 2 y 6 y IJx + y Sx 

By the choice of p(x) and Sx(x), i.e. Eqs. (2.43) and (2.44), Eq. (2.45) is satisfied for arbitrary 
nkc by selecting: 

u(x, y) = - p'Qg*h'Ozn~l~ () 
L.. ,. (k + 1) bk+l sin(1r (k + 1) x) _hy 

6 b.u k=O 

(2.46) 
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Note that this velocity field is in the form of the expansion used in the numerical method, Eq. (2.16). 
For each value of nkc a representation of the exact solution is therefore feasible. The analytical solution 
for the d;,,.-coefficients is easily found by equating Eq. (2.16) to Eq. {2.46). This yields for n;0 = 3: 

-2b2 . ·.·) 6bz ... 
-4b2 ... 

(2.47) 

The number of rows is n;c artd the number of columns is nb = nkc, with nb an arbitrary integer. 
The b;-coefficients are the interface coefficients of Eq. (2.20) and are analytically calculated from the 
d;,,-coefficient using Eq. (2.40). 

Numerical values of d;,k have been obtained for nk n; = 100, nkc = nb = 5, and n;0 = 3. The 
computed values of the ratios d;,nkc+k/di+t,nkc+k are exactly the values predicted by Eq. (2.47). The 
computed flow field is steady, as it should. 

In Fig. 2.5 three plots are given of the computed velocity field for nb = 5. Plot 1 gives the 
dimensionless and plot 2 the dimensional velocities in the scaled geometry. Plot 3 gives the dimensional 
velocities in a non-scaled geometry. A strong roll-cell is established in the dimensionless plot which 
suggests a large vertical velocity component. In the dimensional plot it is shown that there is only a 
small vertical velocity component. This is in agreement with the assumption that the vertical velocity 
component is relatively small compared to the horizontal velocity component. The interface is hardly 
deformed, as is assumed in the analytical solution. 

The calculations are always performed in dimensionless coordinates (see plot 1) to maintain the 
accuracy. 

2.4.2 Flow caused by prescribed surface tension histories 

A geometry as described in section 2.2 is considered with initially the interface and liquid at rest. 
The following velocity expansion is selected: 

(2.48) 

with>.; given positive constants. The exponential terms are introduced in order to satisfy the tangential 
stress condition in early stages when the flow is limited to a small region in the vicinity of the interface. 
Usually n1 = 1 or 2 suffices to describe this flow feature. Note that u( x, 0, t) = 0 for all values of n1, 
nkc and nic· The interface is described with Eq. (2.20). Two surface tension distribution histories are 
prescribed: 

1. The distribution shown in Fig. 2.6. This case represents the case that ethanol is absorbed in the 
water near x = 0 for some finite time. 

2. This test case is a sudden increase of the surface tension gradient at a number of places along 
the interface. 

The details are given in appendix C. 
Table 2.1 lists the basic parameters used for the calculations. In all other tests to be described 

these parameters are the same unless noted otherwise. The first test case to be considered has been 
performed with the parameters of table 2.1 in a shallow cavity with h0 = 0.5 mm. The surface tension 
gradient of profile 1 is prescribed with Sx constant from t = 0.35 on, when the maximum of Sx is 
reached. In Fig. 2.7 plots are shown of the solutions at times t = 0.05,0.10,0.20, and 0.30. When 
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c=~-~·==========~--~·--~ 

L 
x'"'=O 

Figure 2.5: The dimensionless (plot 1) and dimensional (plot 2) velocity field in the heated thin water 
layer with steady motion governed by Eq. (2.46); g* = 9.81 mjs2• The reference arrow of the velocity 
component in x-direction has the value 1.85 x 10-4 m/sin plots 1 and 2, the reference arrow of the 
velocity component in y-direction has the value 1.40 x w-s mjs. The reference arrow of the velocity 
component in x-direction of plot 3 has the value 1.23 x w-3 m/s, the one in y-direction has the value 
9.33 X w-s m/s. The geometry in plot 3 is not scaled. 

time increases the velocity increases and a larger part of the layer is set into motion. The tangential 
stress at the interface due to the gradient in the surface tension is the forcing term which through the 
momentum equation determines the flow field evolution. Momentum is generated at the interface and 
forced onto the lower layers. Liquid is being transported from left to right, so the interface near x = 0 
sinks while near x 0.2 it rises, as is shown in Fig. 2.11. This figure is discussed more fully below. 

The d;,k·coefficients corresponding to sin(1r x), sin(2 1r x) and sin(3 1r x) largely determine the 
flow field. In an early stage, e.g. at t ::::: 0.20, the d;,2·terms are largest, e.g. d3,2 2.7 x 10-4• A 
shift is seen at later times, e.g. at t = 0.60, when the d;,o-terms become largest. The contribution 
of the higher harmonics is then less important, f.e. d3,8 = 6.4 X w-5 (relatively 24% of d3.2)· H the 
exponentials, the A-terms, were omitted from the velocity expansion Eq. (2.48), accurate results could 
not be produced and the tangential stress condition is not well satisfied. The exponential functions 
describe the sharp gradient near the interface very well and account for the initial forcing of the liquid 
by the tangential stress induced by the gradient in the surface tension. For example, if the exponential 
function corresponding with >.0 has a contribution in the component of the velocity in x-direction of 

22 



2.4. Results 

o.ou: 1.t6 

o.o1« 1.U 

l,U 
o.ou ... 
0.01 ... \ 38 

o.ooa ... .. 
1.36 

o.ooe: t.:u 
0.00< 

I 

1.32L/ 
0.002 1.3 

(i .. ::t • .. 0.8 --'l'IIX 
Figure 2.6: Sx and S9 ,. versus coordina.te x at times t = 0.10 (line), t = 0.35 (dot-dashed) and t = 0.60 
(dotted). 

Table 2.1: Value of parameter set for test case 1. # means gradient profile history. 

order 1 at the interface then the velocity at c = 0.9 is of order 10-4 • The gradient for the exponential 
function with >. 2 and >.3 is less sharp: the velocity at c = 0.9 is of order 0.37 and 0.74, respectively. 
Unless the somewhat low value for the do.z-coefficient, e.g. do.2 = 7.5 X 10-5 (relatively 28% of d3,2 ), 

compared with those corresponding to the other exponentials, e.g. d1,2 = 8.8 x w-5 (relatively 31% of 
d3,2) and d2,2 = 1. 7 x 10-4 (relatively 63% of d3,2 ). only the harmonics corresponding to the >.0-term 
have an essential contribution to the predicted flow field. The exponential terms corresponding to >.1 

and >.2 have only a small contribution to the flow field. If >. 1 and >.2 are chosen differently: >.0 = 100, 
>. 1 = 62 and >.2 = 34, the same results as before are obtained. These tesults show also that the larger 
the power of the polynomial function y / h, the smaller the value of the corresponding d;,k-coefficient, 
e.g. ds,2 = 1.3 X 10-4 (relatively 48% of d3,2 ). The expansion converges quite rapidly, as it should. 

time iz.u 
f.l ay Sx 

0.01 8.0 X 10 .:; 3.1 x w-a 
0.02 .5.9 X 10-4 8.7 X 10 -'1 

0.05 6.3 X 10 -;s 9.5 X 10 -;s 

0.10 2.0 x w-~ 1.0 x w-:t 

Table 2.2: The leading term of the tangential stress compared with the prescribed surface tension 
gradient, Sx, at the interface at various times t. 

To show the evolution of thP velocity in time better, Fig. 2.8 presents the dimensionless velocity 
components u and v as a function of the vertical distance of the liquid for test case 1 at x = 2/26 for 
various times t. Fig. 2.9 shows the dimensional velocity field for test case 1 at t 0.10 and t = 0.40. 
These plots show that the actual horizontal VE'locity component is larger than the vertical velocity 

23 



Chapter 2. A spectral collocation method ... 

standard t. ""' -----·--------------------------------------------
standard 
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t. 
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Figure 2.7: The velocity field for test case 1 (see table 2.1) at various times. Reference arrow of 
the velocity component in x-direction corresponds to 1.03 mmls. Reference arrow of the velocity 
component in y-direction corresponds to 0.017 mmls. 

component, u* = 0.618 u mls while v* = 7.72 X 10-3 v mls. To get a view on the flow inside the thin 
layer, Fig. 2.10 shows the dimensional velocity in the vessel in the physical domain. This plot shows 
that mainly flow in x-direction is established in a thin liquid layer next to the free surface. 

Quantitatively, table 2.2 shows the relation between the leading term of the tangential stress, i.e. 
T ji, &ul{)y, and the prescribed surface tension gradient, Sx, at the interface at x = 1126 for small 
times t. It shows that the order of magnitude is correct although the absolute values differ. The reason 
is obvious. The diffusion term {)ul {)y is directly proportional to the driving force Sx. The difference 
in absolute value is caused since {)vI {)x and {)vI {)y are shown in Fig. 2. 7 to be in play in the tangential 
stress condition Eq. (2.11). 

To compare the results of test case 1 quantitatively with those from the literature, typical values of 
the driving forces for Marangoni convection and the induced maximum velocity, un:ag;, are shown in ta­
ble 2.3. Its values are based on numerical results [9], but mainly on experiments [12][2 J[3.5][36][37][38][39). 
It appears that the order of magnitude of the generated velocity of test case 1 is in agreement with those 
found in the literature for corresponding driving forces. Moreover, for the numerical results of Lan and 
Sindu Kou [9] and the one of this chapter the ratio of ( Umax)Lan and Sindu I<.oul( Umax)this chapter is ap­
proximately in agreement with the ratio of the driving forces({)(}" I 8s )Lan and Sindu K oul( (}(}"I as )this chapter· 

Small differences exist since different liquids are involved. Comparison of results from the experiments 
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· Figure 2.8: The velocities u and v as a function of the vertical distance of the liquid for test case 1 
(see table 2.1) at x = 2/26 for various times t. · 

ref. ~ (°C/m] ~ [N/m2
] Uma:c [mm/s] fluid p, [Pas] 

[9] * 580 0.58 X 10 "2 6.35 NaN03 2.82 X 10 -a 

this .eh. * 134 1.98 X 10 ·:t. 13.2 water 1.002 X 10 -" 
[12] O.OlM. sol. - 12 aqueous sol. CoCl2 ±1.002 X 10 "" 
[29) n - 3.0 aqueous sol. n-hept. ±1.002 X 10 "6 

[35] - 2.0 n-heptanol 7.0 X 10 -.:> 

[38] Ho - 0.145 aqueous soL 87% glyc. ±1.002 X 10 -6 

eh. 4 & [39] 1.7x 10 -~ 1.76 n-par. Cw- C13 1.43 x to-3 

eh. 7 * 160 1.6 x w-~ ~2.0 n-par. Cw- C13 1.43 X 10 "6 

Table 2.3: Survey of typical Marangoni convection results from the literature. * = numerical result, 
M. sol = molar solution and eh= chapter. 

as described in chapter 4 with results of dedicated numerical simulations, see chapter 7, show good 
agreement. Therefore it can be concluded that realistic results are obtained with the present compu­
tational method. 

Parameter variation 

The distribution of the collocation points 

The number of collocation points determines the number of contour integrals of the method. An 
optimum must be found so that enough points are used to get accurate results while simultaneously 
the calculation time is acceptable. In test case 2 the number of collocation points is halved in both 
directions nk = n; 50. Similar result were found as for test case 1. An appropriate number of 
collocation points is taken to be nk = n; 100, since computation time is acceptable, approximately 
one hour per timestep of approximately 10800 [Mflop] on a SGI INDY MIPS R4400 processor at 200 
[Mhz] with 3 [Mftops], and since the other parameters of table 2.1 can be varied without necessitating 
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standard standard 
..... ~---------------------------------------------

x'1>40lmml x'=O!mrnl 

Figure 2.9: The dimensional velocity field for test case 1 (see table 2.1) with scaled configuration at 
timet= 0.10 and timet= 0.40 (velocities multiplied by factor 0.1). 

an adaptation of nk and n;. Calculations are done using double-precision arithmetic according IEEE-
754 standard. 

The number of coefficients in the expansion of the velocity 

An exact solution would in principle be possible if the number of orthogonal functions could be 
taken infinite and if the numerical error per coefficient would not depend on this number. In the method 
nkc• n;c and nb have been varied to examine tht> dependence of the solution on these parameters. 

Fig. 2.12 shows results for similar situation as test case 1 (n;c = 30, see Fig. 2.7), but with n;c = 10 
(test case 3) and nic = 1.') (test case 4. see table 2.6). The flow pattern is similar in all three situations 
considered. The velocity at the interface increases with increasing nic· The increase of n;c from 15 
to 30 has hardly any effect and increasing n;,- above 30 is not necessary. The choice of n;c = 30 is 
therefore appropriate. 

For nkc it suffices to choose 10 for a description of the velocity field, since at nkc = 12 (test case 5 
see table 2.6) similar results are obtained, see Fig. 2.13. 

It is seen that the interface behaves according to the highest harmonics of the velocity expansion 
since the bm-coefficients of the interface are analytically coupled to the d;,k-coefficients, see Eq. (2.40). 
With nkc = 10 tlte mode of periodicity is 5, see Fig. 2.11, at nkc = 12 the mode is 6. see Fig. 2.14. 
This is easily explained. since the number nb is directly coupled to nkc via the kinematic boundary 
condition, Eq. (2.15 ). For nb > nkc only nkc·terms of the interface are effectively used and similar 
results as for ni:c = nb are obtained, see table 2.4, in which the nb·coefficients are given for case 1 
and 6, with nkc = 10 and nb 12 and 15, respectively. Comparison shows that increasing nb above 
nkc = 10 is of no use since the coefficientR with index exceeding nkc are very small compared to the 
first nkc-coefficient. If nb < 11kc the interface behaves according to the value of nb. The best choice is 
nb 2 nkc· 

Aspect ratio variation 

The aspect ratio, A hij/ L. is varied from 1/RO (standard. test case 1. with h0 0.5 mm). 3/80 (test 
case 7, witb h0 1..5 mm) a.nd :Jj40 (test case 8. with h0 = 3.0 mm). L = 0.04 m and also the driving 
force is equal in all three casf's. The other parameters art> given in table 2.1. Fort= 0.40 results are 
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standard standard 

b -··· ~ 
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Figure 2.10: The configuration in the physical domain with the dimensional velocity field for (0 $ 
x $ 0.25) for test case 1, see table 2.6 at timet= 0.10 (velocities multiplied by factor 0.25) and time 
t 0.40 (velocities multiplied by factor 0.025). 

test no nt n2 n9 n10 nu n12 .,. w ... case xlo-s xlo-• xto-• xto-• xlo-7 xlo-7 xl~-7 x1o-7 xl~-7 

1 1.00 -3.94 -1.28 -2.74 -2.02 3.29 3.37 
6 1.00 -3.94 -1.28 -2.74 -2.02 3.29 3.37 3.11 2.6s 1 2.18 

Table 2.4: the nb·coefficients for test cases 1 and 6, with nb = 12 and nb = 15, respectively and 
n~oc = 10. 

compared with each other in Fig. 2.15. Since t* ex: 1/ h0, u* ex: h0 and v* ex: h02 for thicker layers in 
the dimensionless plots, the lower layers have a lower x-component of the velocity and the velocity 
component in y-direction is smaller. Fig. 2.16 gives for comparison at the same dimensional time 
t* = 0.013 s the dimensional velocities in the scaled cavity. The second column shows the dimensional 
velocities at the same time in physical space. Spreading of momentum into the lower liquid layers 
is the same in all cases. The driving forces at the interface are the same which means that velocity 
gradients fJuj fJy in the liquid layers are about equal, as indicated by the tangential stress condition 
Eq. (2.11 ). Small differences in these cases are due to the influence of the no-slip condition at the 
bottom wall. Its effect is more pronounced for more shallow layers. 

It is interesting to observe the velocity field and interface deformation at later times, e.g. t = 4.9 
as shown in Fig. 2.17. A roll-cell has been developed at the same position underneath the surface. 
This is in agreement with results from literature where roll-cells are often predicted [11][24][31)[32] for 
low-viscosity liquids in thin layers. For test case 1, h0 0.5 mm, the layer is too thin for a roll-cell to 
develop. Note also in Fig. 2.17 that the interface deformation for h0 = 1.5 mm decreases near x = 0 
and increases near x 0.4. 
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time 

Figure 2.11: The interfacial height computed for test case 1 (see table 2.1) at t = 0, 0.10, 0.20, 0.30, 
0.40, 0.50 and 0.60. 
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Figure 2.12: The velocity field for n;c = 10, above (test case 3), and 15, below (test case 4, see 
table 2.6), at times t = 0.10 and 0.20. Reference arrow of the velocity. component in x-direction 
corresponds to 1.03 mmfs. Reference arrow of the velocity component in y-direction correspoJ}ds to 
0.017 mmfs. 
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Figure 2.13: The velocity field for nkc = 12 and n;c = 30 (test case 5, see table 2.6) at times 
t = 0.10 and 0.20. Reference arrow of the velocity component in x-direction corresponds to 1.03 
mmjs. Reference arrow of the velocity component in y-direction corresponds to 0.017 mmjs. 
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Figure 2.14: The interfacial height computed for test case 5 (see table 2.6) at t = 0, 0.10, 0.20 and 
0.30. 
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Figure 2.15: The velocity field for test cases 1, 7 and 8 (see table 2.6) at timet = 0.40. Reference 
arrow of the velocity component in x-direction corresponds to 1.03 mm/s. Reference arrow of the 
velocity component in y-direction corresponds to 0.017 mm/s. 
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Figure 2.16: The dimensional velocity field in the scaled configuration (0 ~ x ~ 1.0, velocities not 
multiplied) and in configuration in physical space (0 ~ x ~ 0.25, velocities multiplied with factor 0.2) 
for test cases 1, 7 and 8, at the same dimensional time t* :::: 0.013 s. 
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Figure 2.17: The velocity field with interfaces of the test cases 7 and 8 (see table 2.6) of Fig. 2.15 
and Fig. 2.16 at timet= 4.9 in dimensionless presentation and in physical domain. Reference arrow 
of the velocity component in x-direction corresponds to 1.03 mmfs. Reference arrow of the velocity 
component in y-direction corresponds to 0.017 mmfs. The configuration in physical domain is for 
h0 = 1.5 mm shown for 0 ~· x ~ 0.50, velocities are multiplied with a factor 0.5, for h0 = 3.0 mm it 
is shown for the whole cavity without multiplication. For clarity, the velocities near the interface are 
not shown in the plots in the physical domain. 

Viscosity variation 

The test cases in this section have been for low-viscosity liquids (water). Now a 85% (weight percent­
ages) glycerol in water solution is considered. The viscosity at 20°C is p, ::::: 0.1002 Pas [401. In this 
test only one damping coefficient ( ..\0 = 100) and three terms of the polynomial expansion appeared 
to be necessary. This is because for the same driving force the diffusion of momentum to deeper 
layers results in smaller velocity gradients for the more viscous fluids. Dimensionless plots of results 
of test case 9, see table 2.6 are shown in Fig. 2.18 at dimensionless times t = 0.05, 0.10, 0.35 and 
10.0. Viscous damping is larger in the layer with high viscosity, so diffusion into the layer is not as 
deep. Comparison with Fig. 2. 7 confirms this since diffusion takes more time and the dimensionless 
velocities are much smaller than in test case 1. With increasing time the energy dissipated in the fluid 
increases and the contour integrals become relatively more important. Since u* oc 1/ p, and v* oc 1/ p,, 
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the dimensional velocities become even smaller at higher viscosity than at lower values. This result 
shows that liquids with higher viscosity are harder to set into motion than those with smaller viscosity. 

In Fig. 2.19 plots for the same situation but with the surface tension profile 2, test case 10, see 
table 2.6, are shown for times t = 0.01, 0.02, 0.05 and 0.10. The profile stays at its maximum from 
t = 0.20 on. The difference between the surface tension profiles is that in the latter case more energy 
is put into the fluid per time interval, which results in a larger velocity near the interface and in a 
larger diffusion of momentum into the layer. 

Dimensional result, see Fig. 2.20, at t = 0.1 for the test cases with higher viscosity and with 
different surface tension profiles, test case 9 and 10 (see table 2.6) respectively, show that the velocity 
is primarily in x-direction and the component of the velocity in y-direction is very small. 

11=0.1002 Pas 11 = 0.1002 Pas 
1.. 

..... ---·-------------------------------------------- 1.. 

y-h -~._,....."""'-------------------------------------------..... . 

e~ o.os 
t.t.e 0.1 

,..., ,., ~~~~---------------------------~-", 

11 = 0.1002 Pas 11 = 0.1 002 Pas 
1.. ..... -~~·-......, ..................... ..._. _____________________ _ 7__....._, ............. ..._.__. ______________________ _ 

t.iae 0.35 tiM 10 

,., ,..., ,., 

Figure 2.18: The velocity field for liquids with higher viscosity (test case 9 see table 2.6) at times 
t = 0.05, 0.10, 0.35 and 10.0. Reference arrow of the velocity component in x-direction corresponds to 
6.15 x 10-2 mm/s. Reference arrow of the velocity component in y-direction corresponds to 6.15 x w-3 

mm/s. 
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Figure 2.19: The velocity field for liquids with higher viscosity with surface tension profile 2 (test 
case 10 see table 2.6 ) at times t = 0.01, 0.02, 0.05 and 0.10. The reference arrow of the velocity 
component in x-direction corresponds to 6.15 x w-2 mm/s and the reference arrow of the velocity 
component in y-direction corresponds to 6.15 x 10-3 mm/s. 

Damping 

The viscous damping of the motion is tested with surface tension distribution 1, viscosity p, = 0.1002 
Pas, A = 3/40, nk = n; = 100, nkc = 10, n;c = 4 and nb = 12, see test case 11 of table 2.6. One 
damping coefficient (.>.0 = 100) and three terms of the polynomial expansion are used. The surface 
tension increases until t = 0.35 and subsequently decreases from then on to zero at t = 0.72 and 
remains zero afterwards. Results are shown in Fig. 2.21 at times t = 0.35, 0.50, 0. 70 and t = 1.0. At 
t = 0.35 the maximum velocity is reached. After that time velocities in the fluid and at the interface 
vanish due to viscous damping in the fluid, as expected. 

The effect of viscous damping has also been analyzed in absence of interfacial stresses. The 
configuration used is again the one of Fig. 2.1, with aspect ratio A= 3/40, viscosity p, = 1.002 x 10-3 

Pas, g = 0, nk = n; = 50, nkc = 6, n;c = 3, nb = 20, and the dimensionless timestep !:it = 0.1, 
which corresponds to 0.108 x w- 2 s, see test case 12 of table 2.6. Only a small number of coefficients 
suffices. Exponentials are not used since a boundary layer does not develop in this case. The height 
is kept constant, i.e. h = 1.0 at all times, i.e. ~~ = 0 ; ~:~ = 0 ; ~~ = 0. The kinematic boundary 
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Figure 2.20: Velocity field in the physical domain for test cases with higher viscosity and with different 
surface tension profiles, test case 9 and 10 (see table 2.6) respectively, for 0 $ x $ 0.25 at timet= 0.10. 
For test case 9 the velocities are amplified 4x, for test case 10, 0.8x. 

condition, Eq. (2.15) yields v = 0 at the interface. Only the d0 ,0-coefficient at t = 0 is given a value: 
0.05. In Fig. 2.22 plots of dimensionless velocities are shown. The ·initial liquid motion is seen to 
subdue in time due to viscous damping. The evolution of the kinetic energy, Ekin, defined as the sum 
of u2 + v2 at all collocation points, is presented in table 2.5. It is concluded that the method takes 
viscous damping well into account. 

timet kinetic energy 
Ekin 

0.1 2.38 X 10 -• 
0.5 1.76 X 10 -::! 

1.0 6.39 X 10 5 

2.0 8.87 X 10 -8 

4.0 1.97 X 10 ·lJ 

50.0 5.59 X 10-68 

Table 2.5: Kinetic energy at time t with excited velocity at t = 0.0, realized by giving d0 ,0-coefficient 
the value 0.05, nk = n; = 50, nkc = 8, n;c = 5, nb = 20, and b..t = 0.1. 
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IJ.= 0.1002 Pas !!= 0.1002 Pas 
... ~~-.,_.-+-i,_._,_,_ _____________ .,. ______ ... _,.._ 
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~~-----------------------------~~. ~~--------------------------~ 
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IJ.= 0.1002 Pas !!= 0.1002 Pas 
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y..h -·------....... ---------------------.--- .... ------------------------------------------------
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~L-~------------------------~,~.1 ""'~--------------------------~ 
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Figure 2.21: The velocity field of test case with surface tension profile 1 which decreases from t = 0.35 
to zero at t = 0.72 and stays zero afterwards and viscosity 1-1 = 0.1002 Pas, (see test case 11 of 
table 2.6) at times t = 0.35, 0.40, 0.50, and 0.70. Reference arrow of the velocity component in x­
direction corresponds to 6.15 x w-2 mm/s. Reference arrow of the velocity component in y-direction 
corresponds to 6.15 x w-3 mm/s. 
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L 

Figure 2.22: Time evolution of liquid motion due to viscous damping, with h is kept 1.0 and g = 0 
(test case 12 of table 2.6). The reference arrow of the velocity component in x-direction has value 
1.9 X 10-2 mfs, the reference arrow of the velocity component in y-direction has value 1.4 X 10-3 m/s. 

2.5 Conclusions 

In this chapter a computational method for two-dimensional flow is described which predicts the time 
evolution of the velocity field and the interfacial motion in a thin liquid layer. The method is based 
on the spectral collocation technique with a grid adapting to the moving free interface. Explicit time 
integration is used and iterations are not employed. The algorithm takes special care of the interface 
tangential stress condition, which is solved simultaneously with the contour-integrated Navier-Stokes 
equations. An adapted SVD-treatment is employed in the approach which balances the weight of the 
contour integrals and the tangential stress condition. One "spectral element" is used with a single 
velocity expansion so that coupling problems at element boundaries are avoided and the main emphasis 
is on satisfying the bound.ary conditions at the interface. In future the method can be extended with 
a segmentation of the physical domain with for each sub-segment a suitable expansion (26J. The 
kinematic boundary condition couples the evolution of the velocity field to the interface behaviour 
using series of orthogonal functions and an Adams-Bashford integration technique. Since the solution 
is based on truncated expansions, the accuracy of the solution is directly controlled. 

The method is applied on two test cases: an analytical test case and a constructed one. The 
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case nk n; nb nkc nic ho A >. Jl # 
2 50 50 
3 12 10 10 
4 12 10 15 
5 12 12 30 
6 15 10 30 
7 1.5 3/80 
8 3.0 3/40 
9 12 10 4 3.0 3/40 100 0.1002 
10 12 10 4 3.0 3/40 - 0.1002 2 
11 12 10 4 3.0 3/40 100 with damping 
12 50 50 20 6 3 3.0 3/40 - with damping 

Table 2.6: Parameter changes of test cases 2 through 12. See table 2.1 for the other parameters. Only 
variations with respect to table 2.1 are indicated. # meaus gradient profile history. 

analytical one is a stationary, heated thin layer in steady motion, for which analytical solutions are 
availa,ble. The computational method eau generate these solutions aud is found to precisely predict 
the expansion coefficients. The other test case consists of prescribed surface tension histories which 
are analytically derived. 

From these test cases it is concluded that the velocity expansion converges quite rapidly aud that 
the tangential stress condition at the interface is well satisfied. In the physical domain, large velocities 
in horizontal direction are established and the vertical velocity component seems to be negligible. 

Several tests are performed. 

• Variation of the discretization parameters has been investigated. In general an equidistant 
100 x 100 collocation point distribution, with 10 coefficients in x-direction, 30 coefficients in y­
direction for the velocity expansion aud 12 coefficients for the interface expansion are adequate 
to obtain reliable results. For some specific test cases other values eau be used. 

• Variation of the viscosity shows that liquids with higher viscosity are more difficult to set into 
motion that those with lower viscosity. 

• Viscous damping test cases show that, when the driving force decreases or is absent, the velocity 
in the liquid subdues quickly. 

• The aspect ratio has been varied in order to investigate the propagation of momentum into the 
bulk of the liquid and to obtain results for layers of practical interest. 

The results of various test cases showed that the present computational method produces results 
comparable to results from similar investigations in the literature, both numerically aud experimen­
tally. 

It is concluded that the new method accurately predicts thermocapillary two-dimensional Maran­
goni convection in cavities. 
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Chapter 3 

Alternative expansions 

3.1 Introduction 

The method of chapter 2 can be used in combination with various boundary conditions. Various 
boundary conditions can be satisfied employing an alternative velocity expansion that is tailored to 
these conditions. The main objectives of this chapter are: 

• To examine the robustness of the solution algorithm. In particular, whether it may accommodate 
different functions in the expansion for the velocity field and the one for the interface. 

• To compare predictions for various boundary conditions and experiments. 

The initial test configuration is the one of Fig. 2.1, i.e. a cross-section of a rectangular cavity with 
a liquid layer at the bottom. The velocity field in general form is expressed as: 

u(x,y,t) = t n~l d;,k(t)fk(x)h(yx)e.\'(hfu-l) + nEl n~l d;,k(t)fk(x) (h(~))i+l (3.1) 
t=O k=O t=nt+l k=O 

with>., non-negative constants. Choosing /J.(x) = sin{'ll" (k + 1) x) and h(x, t) = 1+2:;~=l bm cos(1rmx) 
results in the functions of chapter 2. The functions in expansion 3.1 span the whole domain, i.e. only 
one single element in each direction represents the entire flow area. 

In section 3.2 three alternative expansions fk( x) are presented, each tailored to satisfy specific 
boundary conditions. More details about these expansions are described by Pijnappel et al. [33] 
Tests and results are evaluated in section 3.3. In section 3.4 concluding remarks are presented. 

3.2 Alternative expansions 

3.2.1 Extra linear term 

In the method of chapter 2 emphasis was on the requirement v = 0 at x = 1 which is not automatically 
satisfied by the choice of the functions in the expansion alone. Discarding the solid boundary at x = 1 
enables to have u :f: 0 there. An extra term in the x-dependent part of the velocity expansion accounts 
for this situation: 

u(x, y, t) ~ CE2 

d;,k(t) sin ( 7r (k + 1) x) + d;,nkc-I(t)x) hlx) e.\;(iifu-l) 

+nE I ("'r:2 

d;,k(t) sin (7r ( k + l) x) + d;,nkc_t(t)x) (hlx)) i+l 
•=n1+l k=O 

(3.2) 
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A suitable expansion for the position of the interface which satisfies symmetry at x = 0 and matches 
the right-hand side and left-hand side of the kinematic boundary condition Eq. ( 2.15 ), see appendix D, 
is: 

with 

00 00 

h(x, t) = L L Tl,mx
1sn(l, m) 

1=1 m=O 

sn(l, m)= cos (1rmx) if l is even 

sn(l, m)= sin ( 1rmx) if I is odd 

3.2.2 Chebyshev polynomials 

Consider the following set of boundary conditions: 

(3.3) 

(3.4) 

1. The fl.ow is symmetrical about x = 0, i.e. the x-component of the velocity is anti-symmetrical 
so that u( -x, y, t) = -u( x, y, t) 

2. No-slip at the bottom, i.e. u(x,y,t) 0, v(x,y,t) = 0 at y = 0 

Odd Chebyshev polynomials: 

T2k+t(x) (kEN) (3.5) 

satisfy these conditions so they could be used instead of fk( x) in Eq. (3,1). In Fig. 3.1 the first 
6 Chebyshev polynomials are shown. They are defined by Tk(x) = cos(k arccosx) in the domain 

Figure 3.1: Chebyshev polynomials Tk( x) cos( k arccos x) on the domain -1 :$ x :$ 1. 

-1 :$ x :$ 1. T0(x) = 1, T1(x) x and T2(x) = 2x2 1. The recursion relation used to calculate 
Tk(x) fork;?: 2, is: Tn+t(x) = 2xTn(x)- Tn-l(x). 
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All zeros of a Chebyshev polynomial and all its extremes are in the interval of interest, -1 :::; x :::; 1, 
and all extremes are equal to 1 or -1. This oscillation between extreme values of equal magnitude is 
known as the equal-ripple property which ensures that the interpolation error is evenly spread over 
the entire intervaL 

For the interface description only symmetry at x == 0 has to be satisfied. To match the right-hand 
side and left-hand side of the kinematic boundary condition, Eq. (2.15), the appropriate choice in 
terms of Chebyshev polynomials, Tm(x), is: 

nb 

h(x, t):::: L bmT2m(x) 
m=O 

3.2.3 "Chaudrasekhar" polynomials 

Consider the following boundary conditions: 

1. Symmetry around x = 0, i.e. u( -x,y,t) -u(x,y,t) 

2. No-slip at the bottom, i.e. u( x, 0, t) = 0, ·v(x, 0, t) = 0 at y = 0 

3. No-slip at x 1, i.e. u(Ly,t) = 0, v(1,y,t) 0 at x = 1 

For the function j,,( x) this yields: 

(3.6) 

for x E [0, 1] 

1. fk( -x) = - fk( x ), derived from anti-symmetry of the x-component of the velocity at x = 0 

2. fk(l) = 0, derived from u(1, y, t) = 0 at x = 1 

3. 8fk/8x(1) = 0, derived from v(1,y,t) = 0 at x = 1 

To obtain symmetry at x = 0 for the interface h, so h(-x) = h(x), the d;,k·coeffi.cients of Eq. (3.2) can 
be chosen do.k 1 and d;,k = 0 for i ::f 0 or k ::f l. This gives a basic function set for l $ 0 and for 
i:::; 0. 

The reverse is also true: if a function /k( x) satisfies the above mentioned three conditions, then 
u is odd in x and u satisfies the no-slip condition at x = 1. For· the construction of such a function 
fk( x) the solution of the following characteristic value problem is used: 

d4y- 4 
dx4- ay (3.7) 

Here a4 is used rather than a which will be shown to be more suitable for the present purpose. The 
boundary conditions are: 

y(-1) = 0; y(1) 0 ; ddy ( -1) = 0 ; ddy ( 1) = 0 
X X 

(3.8) 

and y is an odd function of x. Let ak denote a characteristic value and let Yk ( = /k( x)) be the proper 
solution belonging to it. Then, multiplying Eq. (3.7) for 1/k by Yn (belonging to an) and integrating 
over the range of x, one obtains: 

4 !1 !I d4yk 
ak YkYndx = Yn-d 4 dx 

-1 -1 X 

Integrating twice by parts, turns the right-hand side of Eq. (3.9) into: 

Jl d2 yn d2 yk 
----dx 

-1 dx2 dx 2 
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The boundary ten11 vanishes (both times) due to the boundary conditions on Yn· From the symmetry 
inn and k of the integral on the right-hand side of Eq. (3.10). it follows that: 

(a1-a!)1
1 

YkYndx = 0 
-1 

Hence, for k =/= n 

(3.11) 

(3.12) 

The solutions Yk· therefore, form an orthogonal set. It can be shown that this set is complete, i.e. 
every continuous function in the interval 1) and its first derivative with respect to x vanishing at 
the endpoints of the interval, is an infinite linear combination of the elements of the set {yn, n > 0}. 
The solution of Eq. (3.7): 

f { ) = sinh(akx) _ sin(akx) 
k x sinh(ak) sin(a~;:) (3.13) 

which satisfies condition 1 and 2. Condition 3 is fulfilled by the choice that each ak, k E N, is a root 
of the characteristic eql1ation. derived from d/J,) dx( 1) 0: 

coth{ak)- cot(ak) = 0 (3.14) 

The asymptotic formula 

1 
frk "" ( k + 4 )11", k > 4 (3.15) 

gives the roots, a1 = 3.92660231, 0'2 = 7.06858274, 0'3 10.21017612 and a 4 = 13.35176878. Note 
that if in Eq. 3.7 0' was used instead of a 4 that in Eq. 3.13 ak114 would appear. 

The expansion for the height function, h(x,t ), has to satisfy h( -x, t) = h(x, t) and 8h/ 8x(1, t) = 0 
( v 0 at x = 1 ). Therefore the interface expansion is chosen as follows: 

hm(x) = 1 + f: bm (cosh(ttmx) _ cos(Jtmx)) 
m=l cosh(Pm) cos(pm) 

with the roots Pm, mE N, derived from 8hjflx( 1, t) == 0, of the equation: 

tanh(~tm) + tan(pm) = 0 

The asymptotic formula 

1 
Pm"-'(m-4)11", m>4 

gives the roots, Pt 2.36502037, tt2 = 5.49780392, P3 = 8.63937!183 .and P4 = 11.78097245. 

(3.16) 

(3.17) 

In appendix D analytical relations for db/ dt based on the kinematic boundary condition are pre­
sented for the expansion with the extra linear term and the one with the Chebyshev polynomials. 
The analytical relations are exact, although numerically they are evaluated with finite accuracy. The 
kinematic boundary condition cannot be solved analytically for the Chandrasekhar polynomials since 
the left-hand side and rigllt-hand side are two non-combining groups. To generalize the solution of 
the db/dt-coefficients as an alternative a least-square method is applied, as described in section 2.3.5. 
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3.3. Tests and results 

Table 3.1: Values of parameter set. #means gradient profile history. 

3.3 Tests and results 

The expansions presented in chapter 2 and the ones presented in this section are compared in a test 
with the parameter values given in table 3.1. The surface tension gradient history of Eq. (C.l) 
is prescribed. All used alternative velocity expansions contain three exponential functions to ensure 
that the noise signal as compared to the significant signal is small since there is a sharp transition 
in singular value from significant to noise related ones, see section 2.3.4. In Fig. 3.2 the velocity and 
interface are shown for the three alternative expansions, at time t = 0.10 and 0.20. For the standard 
expansions, see Fig. 2.13, chapter 2. The flow patterns are nearly the same for each of the three 
expansions, which proves that the method does not depend very much on the chosen expansions. The 
magnitude of the velocity predicted by the standard velocity expansion of chapter 2 is smaller than 
the one predicted by the other methods. The reason is obvious: too few coefficients are taken into 
account since with n;c = 30 the velocities have equal values, see Fig. 2.7. The Chebyshev polynomials 
have derivatives exceeding zero at x = 1, re~ulting in errors at that location. The "Chandrasekhar" 
expansions and the one based on the expansions with extra linear term produce nearly equal results. 
Evidently, the solid boundary at x = 1 has little influence on the selected surface tension gradient 
profile. This is easy to understand since induced velocities near x = 1 have to be small and hardly 
affect the flow field near x = 0. furthermore, expansions based on symmetrical or antisymmetrical 
elementary functions, yield identical results. 

Results of the method with the Chebyshev polynomials are compared with results of the method 
with the standard expansions for a deeper cavity, with h0 6.0 mm and L 40.0 mm (A = 0.15) 
and are presented in Fig. 3.3. Other parameters are chosen as in table 3.1. 

The error at x 1 in the method with the Chebyshev polynomials is for the deeper cavity smaller 
than for a thinner layer. The reason is the following. Velocities are less diffused by momentum 
exchange due to viscosity which is in agreement with the tests with the three aspect ratios described 
in chapter 2. Errors near x 1 are therefore smaller. The velocities in Fig.3.3 are small compared to 
the ones in Fig. 3.2. The reason is twofold. Since the absolute time is proportional to the inverse of 
the interfacial height, t* <X 1/ h0, only a short time has past for thicker layers as compared to the case 
of thinner layers and the fluid is not yet accelerated much. Furthermore, the dimensional velocity is 
proportional to h0, u* <x. h0 and v* <x. h02 , so in dimensional plots for a thick layer the velocities will 
become larger than for a thinner layer. 

Another test is carried out to investigate the difference in the solution due to imposing a condition 
at x = 1. The results of the method with the standard expansions and the results of the method with 
extra linear term are compared for a cavity with L = H = 0.5 (A = 1.0). The results are shown in 
Fig. 3.4. Although the no-slip condition v = 0 at x 1 in the standard expansions is used, small 
velocities still exist near x = 1. Apparently, the mere adding of the extra no-slip condition via extra 
equations in the solving routine (SVD) is insufficient for satisfying the no-slip condition precisely. The 
reason is the use of the SVD algorithm, see chapter 2 and appendix B. The expansions with extra 
linear term contains larger velocities near x 1 as expected because of the absence of the no-slip 
velocity at x = 1. 
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3.4 Conclusions 

The method gives similar results for the velocity field and interfacial height for versions of the method 
with different expansion functions. Each version accommodates a specific set of boundary conditions 
best. More accurate numerical predictions can therefore be done by selecting the appropriate set of 
basic expansion functions. Some specific tests have been performed to highlight the differences of the 
different expansion functions. The solution algorithm is found to be robust with respect to the choice 
of the expansion functions, i.e. it functions well for various expansions. 
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Figure 3.2: The velocity field for the "Chandrasekhar" expansions (top), Chebyshev polynomials 
(centre) and standard expansions with extra linear term (bottom) at timet = 0.10 and 0.20, with 
nkc = n;c = 10, see table 3.1. Reference arrow of the velocity component in x-direction corresponds 
to 1.03 mm/s. Reference arrow of the velocity component in y-direction corresponds to 0.017 mmfs. 
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standard Chebyshev 
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Figure 3.3: The velocity field for the standard expansions and the Chebyshev polynomials at time 
t == 0.80, with h0 = 6 mm, L = 40 mm (A 0.15), see table 3.1. Reference arrow of the velocity 
component in x-direction corresponds to 12.3 mm/s. Reference arrow of the velocity component in 
y-direction corresponds to 2.46 mm/s. 
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Figure 3.4: The velocity field for the standard expansions and expansions with extra linear term for 
the velocity at timet= 0.80, with h0 = L = 0.5 mm (A 1.0). For other parameters see table 3.1. 
Reference arrow of the velocity component in x-direction corresponds to 1.66 mm/s. Reference arrow 
of the velocity component in y-direction corresponds to 2.21 mm/s. 
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Chapter 4 

Experiments with a liquid layer 
heated from above 

4.1 Introduction 

The method of section 2 is validated by experiments. The main aims are: 

• to accurately measure the temperature gradient along the interface 

• to visualize the generated flows. 

The temperature differences along an interface are a measure for the surface tension gradient which 
is the driving force for thermocapillary convection. The same configuration as the one of section 2 is 
considered: a liquid layer in a cavity. A temperature gradient is established by radiation from a thin, 
straight canthal wire, located S!:bove the cavity, see Fig. 4.1 and [39]. In this thesis emphasis lies on 
the study of thermocapillary convection at 1-g. Buoyancy effects are minimized in the experiments by 
the way the liquid is heated and by using a set-up with relatively small dimensions and with relatively 
large gradient aa 1 as, s being the coordinate along the interface. 

Previous work 

Szymczyk et al. [41)[37] studied thermocapillary and buoyancy convection at 1-g for cases where 
they are strongly coupled. Visualisation experiments were performed in a rotatin~ cylindrical glass­
cell with a vertical fluid-gas zone heated from above and cooled from below [4 I. Two buoyancy 
related forces were established, one due to variation in density and one due to centrifugal forces; 
a thermocapillary force was caused by the non-uniform temperature field at the interface. They 
showed that the influence of the surface tension and the centrifugal forces on convection is signif­
icant, and that density differences are of minor importance. Four flow patterns were found as a 
function of the Marangoni number, M a, and the rotational speed. The Marangoni number is defined 
by M a = ( ({}a I fJT) !J.T L) I (p v K ), with L a characteristic dimension, p the mass density, !J.T a 
characteristic temperature difference, T the liquid temperature, v the kinematic viscosity and K the 
thermal diffusivity defined by K >.l(pc) with >. the heat conductivity and c the heat capacity. The 
onset of thermocapillary convection was found to be independent of the centrifugal force. In another 
experiment, consisting of a transparent cube with a cylindrical bore hole, non-horizontal isotherms in 
the fluid were measured by using liquid crystals tracers. Non-horizontal isotherms are due to lateral 
cooling and the Marangoni convection which distort the given temperature field. Therefore secondary 
buoyancy convection was caused [371. Szymczyk et al. concluded that even the smallest horizontal 
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Figure 4.1: Schematic of configuration: thin liquid layer heated from above. dimensions in mm 

temperature gradient causes buoyancy driven convection and that it is not possible to observe pure 
Marangoni convection with this set-up in the gravitational field at 1-g. 

In thin layers with heated wall( s) it is possible to observe an almost pure Marangoni convection 
in the gravitational field at 1-g. Schwabe et al. [36] observed Marangoni-Benard roll-cells in a 5.0 mm 
thick liquid layer of silicone oil under a 5.0 mm thick He-gas-gap heated from below. They found that 
at 1-g the main contribution to the onset of convection in such thin layers stems from the Marangoni 
effect. 

Zhang et al. [271 investigated thermal convection by laser shadowgraphy in minute drops on an 
inclined plate with a temperature gradient. The observation of the flow patterns in a stationary drop 
revealed the action of both surface tension and buoyancy forces that led to four distinct flow regimes 
in the drop. Droplets on a horizontal plate show different internal flow patterns: Marangoni flows 
consisting of a ring of small two-dimensional roll-cells near the foot of the droplet and larger buoyancy 
flows above this ring that transport heat from the warm to the cold side. 

Under reduced gravity, experiments were performed to investigate surface tension driven convection 
only [4][111[281. To achieve reduced gravity, many experiments were performed in drop towers [4][28] , 
during parabolic flights of aircraft and during sounding rocket flights [ll] or in space [2H5H7H10J. Some 
interesting experiments are the following. They are discussed here since comparison with our own 
experiments can be made. 

Schwabe et al. [361 performed experiments at microgravity conditions to study pure Marangoni 
convection. Ostrach et al. [281 visualized fluid motion induced by a surface tension gradient on the 
free surface of a liquid in a cylindrical container in both reduced gravity (in drop tower) and at 1-g 
conditions. They measured the temperature difference at the interface with probes. The ratio of 
surface tension gradient forces to buoyancy forces was found to be of the order of 104 at reduced 
gravity conditions and 0.13 at 1-g. Maximum velocity at the interface, Vmax, was 3.0 and 1.8 cm/sat 
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reduced and at 1-g conditions respectively, so Vmax on earth is smaller than Vmax under microgravity 
conditions. Buoyancy convection in a direction opposite to that of Marangoni induced flows could be 
realized in this experiment. 

Petri et al. [4] investigated steady and unsteady flow behaviour of thermally induced flow in a 
liquid sphere during experiments in a drop tower. 

Hoefsloot [11] performed Marangoni flow experiments during rocket flights and parabolic flights. In 
the first, the mass transfer induced destillocapillary convection around an air bubble was investigated 
in containers of a cylindrical shape, filled with a 3% acetone in water solution, see Fig. 4.2. The 

container 

Figure 4.2: Destillocapillary convection around an air bubble. 

acetone transitions from the liquid to the gas phase. To prevent the bubble from becoming saturated 
the bubble was ventilated. The experiments prove that Marangoni convection can be divided into two 
classes: 

• geometrically induced convection ( macroscale convection) if the mass transfer across the interface 
varies gradually 

• convection caused by local hydrodynamic instabilities (microscale convection), e.g. in a liquid 
with initially a uniform solvent concentration surrounding a spherical gas bubble. 

This difference is related to the onset of the convection and not to the final state. It turned out that 
the flow pattern in the liquid depends on the flow rate of the air through the bubble and the size of 
the bubble. 

In parabolic flights, experiments were carried out in several V-shaped containers to investigate the 
influence of the shape of the gas/liquid interface on the onset of Marangoni convection. It was found 
that the shape of the interface governs the type of convection. If due to the shape a concentration 
gradient is not established along the interface, small roll cells will develop, i.e. micro-convection will 
occur. If a macroscopic gradient along the interface is caused, macro-convection is established. The 
micro-convection cells did not grow whereas the macroscopic cells did. 

From this short review it can he concluded that Marangoni convection can be investigated at 1-g as 
well as at microgravity conditions, although on earth buoyancy forces can also play a role. Therefore 
an estimation of the latter in 1-g experiments must be made to show the significance of the Marangoni 
effect. 

In the present experiment the inhomogeneous irradiation establishes a temperature gradient at 
the liquid interface. This temperature gradient causes a surface tension gradient which gives rise to 
thermocapillary driven convection. The Marangoni number, as defined before, characterizes this type 
of flow. A typical value of M a in the experiment is 1.6x 105 • Here O<J f&T == 0.1 x 10-3 N /(mK), b.T = 
5 K, L = 38 X 10-3 m, p;::::: 752 kgjm3, v 1.9 X 10-6 m2 js, >. = 0.14 W /(mK), c == 2.22 X 103J /(kgK) 
and /'1, = 8 x 10-8 m2js. A density gradient, approximately perpendicular to the interface, may cause 
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gravity to he active. So-called buoyancy driven convection develops at 1-g conditions if the lowest 
temperatures occur at the highest positions. Because the layer is heated from above the hottest 
part is on top. In the liquid layer heated from above buoyancy convection can therefore only be 
realized if a horizontal temperature gradient is established in the layer below the interface. This would 
lead to so-called secondary buoyancy convection [37]. The dimensionless parameter characterizing 
the gravitational convection is the Grashof number, Gr = ((3 g b.T 13 ) I v2 , with g the gravitation 
acceleration and (3 the fluid volumetric expansion coefficient. An estimate of Gr for the conditions 
of the experiments cannot be made since the hottest fluid is on top. The relative significance of 
thermocapillary to buoyancy convection is given by the quotient: ( ( Q(J I aT) V) I (p g L2 

K, (3). This 
shows that thermocapillary driven flows can best be investigated in microgravity or on earth in small­
scale configurations, such as in capillaries, thin films [241, droplets [271 or bubbles. Large values of 
OCJ I aT promote the Marangoni effect. 1 

In section 4.2 the test rig and equipment are described. Results are presented in section 4.3. In 
section 4.3.3 the relative importance of buoyancy convection compared to Marangoni convection will 
be estimated showing the dominance of the latter. 

4.2 Test rig 

4.2.1 ·Experimental set-up 

A schematic of the test rig is shown in Fig. 4.3. The test liquid is n-paraffin Cto - Ct3 with mass 
density p 752 kg/m3 and dynamic viscosity p, 1.43 x 10-3 N sfm2 • The rectangular cavity has 
inside dimensions L x W x H, 75 x 48 x 71 mm3 . It is made out of laboratory glass and seamless. The 
test cavity is placed within a basin filled with water that serves as a heat buffer and that is heated 
to a specific initial temperature. The water can be stirred by the mixer. A ± 2 mm thick canthal 
heating wire is positioned along the symmetry-axis of the cavity perpendicular to the xy-plane shown 
in Fig. 4.3. The heating wire radiates when a voltage of the order of 6 V and a direct current of 
the order of 4 A is supplied to the wire. Perpendicular to the wire a temperature gradient along the 
interface is established which is measured with an infrared camera "AGA thermovision 680" with an 
8° camera lens (part no. 556 191 215) and a spacing ring (part no. 556 190 768), to be described in 
section 4.2.2. The total distance from camera via mirror to the interface is approximately 30 cm. The 
penetration depth of infrared light in n-paraffin is of the order of 0.92 mm, derived from [42], implying 
that effectively the temperature of the interface is being measured. To facilitate the use of the camera 
observations are made via a gold covered mirror. Gold reflects ± 97 % of the infrared radiation in 
the middle infrared spectrum which is the working domain of the detector. Radiation that would go 
directly from the canthal wire to the thermograph would blur the measurements. This radiation is 
shielded by placing a vertical metal screen close to the canthal wire (see Fig. 4.3). This does not affect 
symmetry of the temperature distribution along the interface since tests with screens on both sides of 
the heating wire yield results similar to the ones with only one screen. The infrared camera is linked 
to a computer via an analog-digital converter in order to digitize the images. 

To visualize the liquid flow, silver-coated glass microballoons with matched density are used, 
which were already applied under microgravity conditions by Hoefsloot [111. It is important that these 
particles do not sink under influence of gravity. A video camera, Canon UC2 Hi 8 mm, is used to 
trace light reflected by these particles. The camera is focussed on a single cross-section in a xy-plane. 
Via a 2 mm slit in front of the cavity, a slide projector illuminates this cross-section of the cavity. 

quotient can also be written as ((&u/81') 11) j (Bo ~e uP) in which the Bond number, defined by Bo 
(P g L 2

) fu indicates the relative importance of gravitation and surface tension. However, the quotient of thermo­
capillary to buoyancy convection is independent of the absolute value of u. 
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Figure 4.3: Schematic of test rig. 

4.2.2 Temperature profile measurements 

Measuring temperature profiles of interfaces can be performed by intruding the fluid or by optical 
methods. Examples of the first are hot wire techniques, thermocouples, thermometers and Pt-100 
elements. Disadvantages of these methods are that the measurements disturb the flow and that the 
measurements are only pointwise. Furthermore, positioning of a probe at an interface is hard. Optical 
methods do not have these disadvantages. They do not affect the flow and give information over the 
temperature field. Focussing on the surface is easy. Four classes can be distinguished for this method: 

• deflectometry 

• interferometry 

• reflectometry 

• total or spectral radiation methods 

It is beyond the scope of this thesis to describe them all in detail, so only their main characteristics 
are highlighted. 

Deflectometry is the technique in which refraction of light due to a gradient in the temperature 
field is visualized. Examples are the Schlierenmethod and Shadowgraphy. Interferometry is charac­
terized by interference of monochromatic beams which have travelled different paths. The difference 
in resulting fringes is a measure for the temperature field. Examples are Mach-Zehnder, see [18], and 
holographic interferometry. Refiectometry is based on the selective reflection property of Thermosen­
sitive Liquid Crystals (TLCs ). Properties as birefringence (or double refractive when the propagation 
velocity of light in the material is dependent on the polarization of light), optical activity (when light 
experiences a continuous rotation if it propagates along the optical axis of a material) and angle depen­
dency (when at different viewing angles the reflected light corresponds to different angles of incidence 
and thus to different wavelength) of TLCs must be considered as a light beam reaches them, see 143J. 
Total or spectral radiation methods register electromagnetic energy radiated by an object, which is 
a measure for its temperature. Examples are infrared-scanners and pyrolasers. For measuring the 
temperature at opaque surfaces these techniques are appropriate. An infrared camera is a converter 
that absorbs IR energy and converts it to a signal, usually an electrical voltage or current. There are 
two principal types: Thermal detectors and photon detectors. Thermal detectors have been conceived 
on the notion of the temperature rise produced in an absorbing receiver, such as the pyroelectric 
detector. The output signal remains practically constant over a wide range of wavelengths for these 
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detectors. A drawback is their comparatively slow response to radiation variations, due to the thermal 
processes involved. Photon detectors are more sensitive and have a much shorter response time than 
thermal detectors (shorter than a microsecond). All photon detectors are composed of semiconductor 
material, in which the release or transfer of charge carriers (e.g. electrons) is directly associated with 
photon absorption. Drawbacks are that they also have a limited spectral response and that they re­
quire cooling for optimum sensitivity. The energy of the photon E in Joules is inversely proportional 
to the wavelength .\ associated with it, i.e.: 

E 
he 
.\ 

(4.1) 

with c the light velocity, 3.0 x 108 m/sand h Planck's constant, 6.6 x 10-34 J/s. The disappearance 
of photoelectric activity of wavelength longer than the "cut-off" wavelength indicates the energy of 
the photons to be insufficient to set electrons free. That is, the photons must exceed the so-called 
"forbidden energy gap" in the semiconductor material. In general, the width of the forbidden energy 
gap decreases by cooling, so that the cut-off wavelength is decreased when the detector is cooled. 
Two types of photon detectors are of interest: photoconductive and photovoltaic detectors. In both 
detectors the gap is determined by the nature of the material itself. The effect of photon absorption 
is to increase the detector's conductivity. In photovoltaic detectors the charge carriers are swept away 
by the electric field in a p-n junction, thereby directly producing a voltage instead of a change in 
conductivity. In appendix E the infrared-camera is described in more detail since it is used in the 
experiments described in this thesis. 

Accuracy 

Prior to the experiment, the camera is focussed on the interface and distances are calibrated on 
the images. This is done using a thin metal wire in a liquid nitrogen bath. This cold wire produces 
a very sharp thermal image. The image coordinates of the edges of the cavity are then determined 
by pointing out the boundaries of the cavity with the cold wire. Once the camera has been set up 
correctly, it was not repositioned or refocused. 

The sensitivity of the camera corresponds to the full measuring interval (bandwidth). The sen­
sitivity interval is divided in 256 steps, so-called intensity-values, numbered from 0 to 255. These 
values are registered by a computer. It is obvious that measuring a small interval results in a high 
resolution since each of the 256 steps covers a larger temperature range if a larger measuring interval 
is used. The absolute position of this interval can be altered using the "Picture-Black-Level" -setting 
on the camera. This level must be exactly in the right position otherwise the measurements can only 
use a part of the total range of the intensity values from 0 or 255. Once the calibrations are made 
the PBL-setting may not be altered for the actual experiments. Each image contains 120 pixels in 
x-direction and 128 pixels in z-direction 

Calibration 

Calibration is necessary to be able to link the intensity-values to the absolute temperature. For this 
a calibrated Pt-100 temperature gauge has been placed in the liquid close to the interface. The Pt-100 
element is calibrated against a calibrated thermometer with an accuracy of 0.1 °C. The water basin 
is heated up slowly by stirring the mixer, which in turn heats up the liquid in the cavity gradually. At 
different well-established temperatures, data from both the infrared camera and the Pt-100 element 
are collected. The Pt-100 element measures locally. To increase the accuracy the infrared camera 
averages the intensity-values over a square of 8 x 8 points positioned over the part of the interface 
where the Pt-100 element where is measures the temperature. The intensity-values from the infrared 
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camera are in this way related to the actual temperature as recorded by the temperature gauge. A 
third-order polynomial is used to describe the relation between the intensity-values of the camera and 
temperature. This polynomial is used in the software to analyze the data. 

Measuring procedure 

For each experiment, the basin is filled with water. N-paraffin C10 - C13 is put in the cavity and 
the tracers are added. The infrared camera is focussed at the interface. The video camera is focused 
at a cross-section perpendicular to the z-axis in the centre of the cavity, see Fig. 4.3. The water in 
the basin is stirred by means of a mixer. An experiment is started by turning up the voltage over the 
canthal wire to the required level. At the same time the computer program is started and thermal 
images are recorded and the video camera is started. The video images contain the time during re­
cording. Since the time between two successive images of the infrared camera is known, results from 
the computer and the video are easily matched. Each measurement lasts at least three minutes. 

4.2.3 Velocity measurements 

The velocity pattern in the liquid is visualized from aside using the suspended silvercoated microbal­
loons with matched density and the video-camera, see section 4.2.1. The camera is adjusted on manual 
with shutter time 2 ms and is manually focussed on the middle section of the cavity. The velocity of 
the particles is determined from video images on a television screen and is because of the smallness 
of the tracers a direct measure of the velocity of the liquid. Only velocities near the interface are 
measured since the driving force is most active there. Velocities are determined along two x-paths 
not too close to the wire at times when at z = 60 (in midplane of cavity where the light sheet is 
present) nearly constant velocities are established, so-u = l:lx / !::.t. The time interval is determined 
with a stopwatch. This procedure is preferred above counting images to estimate the time, since the 
accuracy is similar (it is hard to detect the exact image at which particles pass a line) and it is less 
time consuming. 

4.2.4 Surface tension measurements 

Several methods are available for measuring the surface tension as a function of the temperature. In 
general they can be divided in two groups: 

• methods using the interface 

• methods using the bulk of the fluid 

Examples of the first are the Wilhelmy plate and the du Noiiy ring. These techniques are sensitive to 
contamination of the interface and adjustment at different temperatures is difficult. The maximum­
bubble-pressure method belongs to the second group. Contamination has little effect since the bulk 
is less affected by contamination and since the interface of the bubble is renewed every few seconds. 
Furthermore, the temperature of the bulk fluid is easier to control than that of the interface, so it 
is better suited for our purposes. In appendix F the Sensadyne 6000 surface tension meter which is 
based on this method and used in our experiments is described . 

The surface tension must be determined at a number of temperatures. Therefore the temperature 
of the liquid is controlled by a water bath and measured with a temperature probe with accuracy of 
0.1 °C. The apparatus is calibrated by using two standard liquids for which at a set of temperatures 
the exact values of the surface tension of the liquid/air interface are known from literature: ethanol 
and water. At this same set of temperatures the surface tension of n-paraffin C10 C1s/air is mea­
sured. The surface tension of n-paraffin C10 C13/air at an arbitrary temperature is determined 
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by linear inter/extrapolation of the measured values. The relation between the surface tension and 
the temperature for n-paraffin clO c13 measured at 7 different temperatures is given with a 95% 
accuracy interval by: u (27.1 ± 0.2)- (0.098 ± 0.005) T, with a in mN/m and Tin °C. lJuj{)T is 
negative which means that the surface driving forces generate motion from the hot to cold positions. 

4.3 Results 

The test rig described in section 4.2 is used for the experiments. For different experiments the results 
are analyzed. Specifications of each experiment are given in table 4.1. 

i exp. nr. code voltage [V] bandwidth [0 C] • initial temp [0 C] I 
I 1 0707951 40 13.2 30 

I 2 1007951 30 16.2 30 I 
! 3 1407955 40 10.4 30± 1 I 
I 4 1407956 40 10.4 30± 1 

Table 4.1: Specifications of analyzed experiments. Bandwidth is the measuring interval which can be 
detected by the camera. 

In section 4.3.1 the temperature gradient is described and in section 4.3.2 the corresponding velocity 
field is presented. These results will be analyzed in section 4.3.3 

4.3.1 Temperature gradient 

At t = 0 the fluid has a uniform temperature and the heating starts. The position of the screen is at 
x = 0, the position of the wire is at x = -8 mm and the centre of the cavity in z-direction corresponds 
with z 0. The influence of the heating wire spreads over the entire cavity as time progresses. A 
typical interface temperature profile at various z-locations of measurement 3 at t = 65 s, is shown in 
Fig. 4.4. The cavity is visible as a rectangle in the middle of Fig.4.4. The lighter the grade of grey, 
the higher the temperature. The large dark area around the cavity is the relatively cool basin with 
its surface unheated by the canthal wire. The lighter shades of grey near the bottom of the picture 
represent the screen. The canthal wire is located in the area covered by the screen. 

Fig. 4.5 shows typical temperature gradient histories at z = 0 for 0 < x < 38 mm. It has been found 
that during the first 90 s the temperature gradient is almost constant, implying a nearly stationary 
profile. This holds for all cross-sections perpendicular to the heating wire not in close proximity to the 
walls of the cavity, as shown clearly in Fig. 4.4. Close to the wire, a gradient is difficult to measure since 
the screen is positioned there. The wire radiates symmetrically which implies that just below the wire 
the gradient llujllx must be zero. Since Marangoni convection is dominant during the first period of 
time attention is paid to the first 90 s of the experiments. Fig. 4.6 shows temperatures profiles along 
the x-coordinate for several values of z at t = 65 s for this experiment. Fig. 4.6 gives intensity-values 
and the corresponding temperature in °C along the vertical axis. It shows that the temperature over 
the length of the cavity between x = 2 and x = 28 mm varies almost linearly. Moreover, both Figs. 4.4 
and 4.6 show that temperature profiles are the same at different z-values. Between x = 28 and x 38 
mm, the liquid is still at the initial temperature at t = 65 s, although in due time the temperat"Q.re 
will increase also there. The temperature gradient in x-direction is determined in the plane z = 0 and 
parallel to the x-coordinate, since this is the plane in which the flow pattern is visualized. 
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Figure 4.4: A typical.temperature distribution on the interface for experiment 3 at t = 65 s. 

The Pt-100 element used for the calibration has an accuracy of 0.1°C. The calibration function 
between the temperature (Tin °C) and intensity value (H) for this experiment is: 

T = 31.204 + 0.046 H- 1.087 x 10-4 H 2 + 3.476 x 10-7 H3 ( 4.2) 

The largest error made by this function is 0.15 °C. The temperature within a bandwidth of 10 oc can 
be measured with an accuracy of 10/256 = 0.04 °C. The total error in measuring the temperature is 
the sum of the three errors (0.1 + 0.15 + 0.04) and is of order 0.29 °C. The part of the cavity over which 
the temperature gradient is determined is 38 mm in size corresponding with 55 coordinate intervals in 
x-direction (105-50, see Figs. 4.6 and 4.4), so each interval measures 0.7 mm. The largest error in the 
determination of the location z is of the same order, thus 0. 7 mm. These errors are determined using 
the distance calibrations and without changing the position of the camera and without refocusing for 
the actual experiments. Using the calibration fit, Eq. ( 4.2), the temperatures at x = 2 and 28 are 
calculated as T = 38.2 and 33.8 °C, respectively, so t:..T = 4.4 ±0.29 °C. From this it follows that 
8T / 8x = 0.16 ±0.01 °C/mm at this time oft = 65 s. The error is determined from the relative errors 
in both the temperature (6.59%) and the distance (1.82%) as: /(6.59)2 + (1.82)2 ~ 7%. 

The temperature gradient is determined for all experimentsat various times and various locations 
of the interface whenever a linear gradient is established, as shown in Fig. 4.6. In appendix H these 
results are presented. The average temperature gradient measured during the first 90 s for each 
experiment is given in table 4.2. 

Differences in the experiments can be due to variations in adjusting parameters and initial condi­
tions. The former since the Picture Black Level is varied between each experiment and the wire might 
not have been positioned exactly at the same position with respect to the liquid for each experiment . 
The latter since the temperature of the liquid and the ambient temperature might be slightly different 
for each experiment. 

Thus, for all coordinates z not in close proximity of the wall (see Fig. 4.6) and for 2 < x < 28 mm 
(the linear part) the constant temperature gradient t:..Tjt:..x = 0.18 ±0.01 °C/mm during the first 90 
s of experiment 3. Only this gradient is of interest since the corresponding velocity is almost steady 
in this area. 
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Figure 4.5: Typical temperature gradient histories at z = 0 for various values of x. Errors in experi­
ments 0707951, 1407955 and 1407956 are ± 0.01 °C and in experiment 1007951: ± 0.03 °C. 

Figure 4.6: Intensity-values and temperature difference against distance x at t = 65 s for several 
cross-sections z of experiment 3 for z = -15, -7.5, 0 (centre of cavity), 7.5 and 15 mm. 

The experiments show a hardly distorted interface, thus fJr:J" I fJs ~ {)r:J" I {)x with s the coordinate 
along the interface. Therefore the surface tension gradient f)u I {)x is calculated with: 

fJu fJr:J" 8T 
= 8x 

( 4.3) 

with p the dynamic viscosity, u the velocity component in x-direction, see Fig. 4.3. From Eq. ( 4.3) 
making use of the values for 8u I fJT and f)T I 8x, 8u I 8x is found. In table 4.2 these values are given 
for the experiments. 

4.3.2 Flow fields and velocities 

The flow field consists of a horizontal flow near the interface away from the heating wire and a return 
flow in deeper layers between, approximately 4 and 8 mm below the interface. Acceleration is observed 
in the area close to the heating wire since the temperature gradient is largest there. No flow is seen 
at depths more than 8 mm below the interface. Significant roll-cells of different sizes are seen: small 
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exp. nr. !:lTj!:lx [° C/mm] !:la/ !:lx [N /m~] average velocity [mm/s] 
1 0.17(±0.01) 0.017(±0.001) 1.76(±0.22) 
2 0.20(±0.03) 0.020(±0.003) 1.72(±0.21) 
3 0.18(±0.01) 0.018(±0.001) 1.43(±0.18) 
4 0.14(±0.01) 0.014(±0.001) 1.21(±0.15) 

Table 4.2: The average temperature gradient !:lT / !:lx ° C/mm, the surface tension gradient !:la/ !:lx 
N/m2 and surface velocity at z = 0 for some experiments during the first 90s. For each experiment 
the gradient !:lT / !:lx is determined 6 or 4 times, see appendix H. 

ones near the wire, large ones over the whole cavity and those in between, see Fig. 4.7. At distances 

y 

Bmm 

--~---· 

Figure 4. 7: Roll- cells of different sizes. 

between 2 and 20 mm from the heating wire the velocity at the interface is almost constant with a 
value to be discussed below. 

In appendix G all result of the measurements are gathered. At the interface, velocities are de­
termined along two paths between two sets of vertical lines by measuring the time needed to travel 
known distances, see section 4.2.3. 38 mm of the cavity corresponds to 370 mm on the screen as 
measured with a ruler. With this scale the real distances of the two paths are determined on 8.5 and 
8.7 mm, respectively. The error due to the accuracy of the ruler and the curvature of the screen is 
estimated to be 1 mm, 11.8% and 11.5% for the two paths respectively; the error in measuring the 
time is 0.1 s for switching on and off, so 0.2 sin total in approximately 5 s, yielding 4% in total. The 
error in the velocity is determined from percentages of the error in both the time and the distance 

by: ((4.0) 2 + (11.8) 2) 1 / 2 = 12.43% and 12.17% respectively. Table 4.2 shows the time-averaged flow 
velocities determined during the first 90 s of experiments. For experiment 3 the averaged velocity 
measured between 30 < t < 70 s over path 2 < x < 10.5 and path 10.5 < x < 19.2 mm is 1.43 ± 0.18 
mm/s. 

4.3.3 Analysis 

Since the heating wire is placed above the liquid, a temperature gradient at the interface is established 
and thermocapillary convection develops. But, inevitably, the bulk of the liquid in the cavity will also 
be heated up, which results in density differences which in turn invoke buoyancy effects. Since the 
hottest liquid largely lies on top the latter effect is minimal. An estimate of the influence of buoyancy 
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convection is described below. 
When the wire heats up, liquid particles close to the wire are accelerated along the interface and are 

observed to reach a constant velocity. The temperature gradient at positions -8 < x < 2 mm cannot 
be measured because the screen is positioned there. This is the part where the strongest acceleration 
in the liquid occurs. Here measurements of the velocities are prone to large errors, since particles flow 
quickly and irregularly. Further away from the screen velocities can be determined more accurately. 
In experiment 3, for example, the velocity at positions 2 < x < 19.2 mm is 1.43 ± 0.18 mm/s for all 
z-values. Because of the relatively large magnitude of the velocity, especially near the screen, it is 
clearly a result of the thermocapillary effect. This effect is a result of a temperature gradient and is 
expected to be large near the wire and is measured to be constant at positions 2 < x < 19.2 mm, 
see Fig. 4.6. These results are very similar to those of Limbourg et al. [35] and Wozniak et al. l38J, 
see table 2.3. Differences in driving forces and resulting flows between their experiments and that of 
the present investigation are most likely due to differences in liquid and circumstances at which the 
experiments are performed. 

It has been found that a so-called "wedge-shaped" region is formed, in which all elevated tem­
peratures and all induced liquid motion occur. This region is shown in Figs. 4.9 and 4.10. After 
about three minutes the wedge-shaped region is clearly discernable from the rest of the liquid because 
of the higher temperature. However it also exists at earlier times as demonstrated by thermocouple 
measurements. Measurements are performed with thermocouples intruding the liquid to measure the 
temperature differences in the liquid. In Fig. 4.11 the position of the nine thermocouples is shown. In 
three layers (y-positions) below the surface the temperature is measured. Putting thermocouples in 
the liquid interferes with the flow. Since in the end the thermocouples are bent to different z-positions 
the flow is in z-cross sections disturbed by the thermocouples at one location only. The thermocouples 
are not irradiated by the heater because of the presence of the screen. Before the experiment starts 
the thermocouples are put into the cavity. The first temperature, Tb is registered 30 s after starting 
heating the liquid. Next, Tz and T3 etc. are measured with an interval of 5 s. Every temperature is 
measured five times and the experiment is repeated four times. Fig. 4.8 shows isotherms of a charac­
teristic measurement, nr. 3, at t = 70 s. It shows that the hottest liquid lies on top everywhere and 

x=O 
y 

"1 wire 

38 • x_J 

Figure 4.8: Temperature isotherms in liquid layer heated from above of experiment 3. 

that in the wedge-shaped region the temperature gradient in y-direction is 5 K maximum of a ±10 
mm thick layer of ±38 mm length. In appendix I tables are presented in which the temperatures are 
shown. These temperatures are interpolated at four successive instants in time using the temperature 
measurements . To investigate the influence of the position of the thermocouples on the flow pattern 
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measurements are done in the configuration of Fig. 4.12. Three groups of three thermocouples with 
each thermocouple at a different y-position are used. In this test each group of thermocouples is 
positioned at a different z-section, i.e. not each others wake and not bend at the end, see Fig. 4.12. 
In appendix I these results are also presented. The measurements for the two situations turned out 
to be independent of the configuration of the thermocouples . These measurements provide arguments 
for the following analysis. 
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Figure 4.9: Picture of observed wedge-shaped region. 
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Figure 4.10: Observed wedge-shaped region. 

If diffusion of heat from the hottest spot of the surface to other positions would be dominant, the 
heated liquid would assume a shape as shown in Fig. 4.13. This is because heat diffusion is proportional 
to the distance. However, a wedge-shaped region as shown in picture 4.9 is observed. Fig. 4.10 is a 
drawing of the observed pattern. This region with higher temperature diffuses slowly downwards, see 
appendix I. After about three minutes, the typical vertical dimension of the wedge-shaped region is of 
the order of 8 mm. Because of the difference of Fig. 4.13 and Fig. 4.10 it is concluded that convection 
is responsible for the observed shape. 

Temperature 1, 2 and 3, i.e. the temperature at the points near the interface, indicate that the 
temperature increases along the surface, as already observed with the infrared camera. This gradient 
is largest during the first 90 s. After a while, the convection homogenizes the temperature in deeper 
layers underneath the interface in a way that temperature 4- 6, see Fig. 4.11 , in horizontal direction 
differ only ± 2.0 °C over 10 mm (see appendix I). In vertical direction the hottest liquid layers are on 
top. Pure buoyancy effects are therefore negligible in the wedge-shaped region. Temperature 7 - 9, 
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Figure 4.11: Thermocouple positions (in mm) of situation 1. 

see Fig. 4.11, are lower because these measuring-points lie below the wedge-shaped region. Consider 
a horizontal line over the entire cavity from the wedge to the region below the wedge, f.e. the line 
T4 - Ts- T6 •••• Then the temperature in the wedge is nearly the same and relatively warm (f.e. 
27.3 °C, see experiment 5 at t 160 s for thermocouple 1) and below the wedge the temperature is 
nearly the same as T9 and relatively cold (f.e. 22.4 "C, the same experiment at the same time). From 
the data in appendix I it is dear that the temperature difference between the wedge and the region 
outside the wedge is initially small and that it increases with time. Since these temperature differences 
invoke mass density differences the production of circulation by gravity, the so-called baroclinic effect, 
increases in the area outside the wedge as indicated by the cross product V(l/ p) X 'ilp. This cross 
product equals zero when the vectors V(l/ p) and Vp are aligned. When this is not the case, as in the 
area outside the wedge, secondary buoyancy flows are established. Fig. 4.14 schematizes this effect 
with the corresponding flow circulation. It is concluded that the established flow in the wedge-shaped 
region during the first period oft < 90 s is dominated by the thermocapillary effect. 

Results obtained with glycerol ( C3H80 3 ) instead of n-paraffin C10-C13 confirm the above analysis. 
No liquid motion was established, so convection is absent. Only diffusion of heat can therefore take 
place. Temperature measurements, see table 1.10, show similarity to the ones with n-paraffin, see 
table 1.6 to table 1.9. isotherms similar to those shown in Fig. 4.8 and a wedge-shaped region, as 
expected for diffusion-cases, are established, see Fig. 4.13. This is easily explained as follows. The 
thermal diffusivities for n-paraflin Cw C13 and glycerol are nearly equal, so a similar wedge-pattern 
is expected. However the viscosity of glycerol is almost lOOOx larger (J.L = 1.2 X w-3 m2/s) than that 
of n-paraffin Cw C13• Therefore, a surface tension gradient hardly induces liquid motion in glycerol. 
This means that diffusion of heat into this liquid is not disturbed by thermocapillary convection. 

A second confirmation is found with water measurements. Again no liquid flow is established and 
only diffusion can take place. The measurements confirm this since the same temperature field, in 
which diffusion is the dominant factor is established, see table 1.11. In this case it is not the viscosity 
(J.L = 1.002 Pas) that inhibits the liquid flow since it is nearly the same as for n-paraflin C10 - C13• 

However, water is very susceptible to contamination, and only slight contamination inhibits Marangoni 
convection to be established. n-paraffin C10 - C13 is not susceptible to contamination and Marangoni 
convection can occur. This is a phenomena well known from literature, see [27][44). Kao et al. [441 
investigated that Marangoni convection can only be investigated when water is not contaminated. 
Nengli Zhang et al. [27] confirm this as powder contamination to visualize flows suppresses the surface 
tension :flows. The cavity always contains contamination, so in this configuration Marangoni convection 
in water can not be investigated. In chapter 6 of this thesis Marangoni flows are visualized in a small 
droplet of clean water on a dean plate. 
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Figure 4.12: Thermocouple positions (in mm) of situation 2. 

It can be concluded that the wedge-shaped region in n-paraffin Cw- C13 is due to convection. In 
the wedge-shaped region the motion is mainly due to thermocapillarity. 

4.4 Conclusions 

The temperature gradient at the interface of a layer of n-paraffin C10 - C13 heated from above is 
measured with an infrared camera. For various experiments the resulting thermocapillary flows at 
the interface are visualized and analyzed. Measurements of the surface tension of C10 - C131 air 
at various temperatures are performed resulting in a gradient of D.a I D.T = -9.8 x 10-5 N l(mK). 
During the first 90 s buoyancy effects are negligible and the thermocapillary effect dominates. Nearly 
stationary flows are established with an almost homogeneous surface tension gradient. The influence 
of the side-walls is found to be negligible and the same flows in each cross-section perpendicular to 
the wire are established. Particles assume a constant velocity at the interface after being accelerated 
away from the heating wire and return in deeper layers. A characteristic constant driving force of 
D.a I D.x = 0.018 ± 0.001 N 1m2 at the interface results in an averaged constant velocity of 1.43 ± 0.18 
mmls. These experimental data are used for the validation of the numerical method of chapter 2. 
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Figure 4.14: Baroclinic effect. 
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.Chapter 5 

Thermocapillary convection of an 
axisymmetrical droplet 

5.1 Introduction 

In chapter 2 two-dimensional Marangoni flow in a rectangular cavity has been numerically simulated 
with a new approach. The present chapter presents a computational method for numerically simulating 
Marangoni ftows in axisymmetrical droplets 1451, such as those experimentally investigated in chapter 6. 
The method is based on the same approach as described in chapter 2. 

Thermocapillary convection has been studied often, 14Jil1J[27J[46J[30][45H47J, either experimentally 
or numerically. Marangoni flows and interface motion in droplets condensing on plastic condenser 
plates are particularly interesting since they might affect the heat resistance of droplets 111, see chap­
ter 1. Thermocapillary Marangoni convection is induced when at the interface a temperature gradient 
exists [461. In the present case a temperature gradient exists because at the top of a condensing droplet 
the temperature is higher than at the bottom, see chapter 6. Petri et al. [4J numerically investigated 
Marangoni convection in wherical coordinates using the vorticity transport equation and a stream 
function. Zhang et al. [2 l and Su et al. [47] observed flow patterns in evaporating droplets with 
and without cooling at the bottom of the droplet. Hoefsloot [llJ both numerically and experimentally 
describes Marangoni convection in water in which acetone diffuses. 

To compute the flow a system of partial differential equations with initial and boundary conditions 
has to be formulated and solved. The algorithm to be described below describes the time evolution 
of thermocapillary convection induced at dynamic interfaces. It accounts for the prescribed stress 
conditions at the free boundary, solves all equations simultaneously and is based on the collocation 
method. An adapted Singular Value Decomposition is introduced to tune the significance of the 
tangential stress condition. 

In section 5.2 the problem statement, the physical model and the governing equations are described. 
The solution procedure is described in section 5.3. In chapter 7, simulation results are discussed with 
realistic profiles derived from experiments, described in chapter 6. 

5.2 The droplet problem 

In this section the droplet problem is considered. An application of this configuration is a droplet 
condensing on a plate, see section 5.1. The problem statement and physical model are described in 
section 5.2.1, the governing equations that form the basis for the numerical algorithm are given in 
section 5.2.2. 
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Chapter 5. Thermocapillary convection of an axisymmetrical droplet 

5.2.1 Problem statement and physical model 

The considered droplet has a convex axisymmetrical shape. The used coordinate system is the spherical 
( r, 8, <p) one, see Fig. 5.1. The model is based on the right half of a cross-section through half the 
droplet as depicted in Fig. 5.1. 

z 
(r,e,<t>) 

r=R(e,t) 

y 

X 

Figure 5.1: Spherical coordinate system and the cross-section used to depict the flow field. 

Assumptions of the physical model are: 

1. The flow in the droplet is incompressible and laminar with dynamic viscosity fL, which is assumed 
constant: it is assumed that evaporation can be neglected. 

2. The flow is axisymmetric, i.e. u == u(r,8,t) and the droplet is given by r == R(O,t). 

3. The free interface is allowed to deform due to stresses at the air/liquid interface. 

4. The initial shape is hemispherical. 

5. The velocity in ~;"-direction is zero, i.e. u"' 0. 

6. Symmetry exists at 0 = 0, so uu(r, 0, t) == 0 and only the right half of the hemispherical droplet 
is considered. 

1. The bottom of the droplet is assumed to rest on a flat plate and the no-slip condition, Ur = 0 
at () = 1r /2, is assumed to be valid for r :::; R( 1r /2, t). The dynamic contact angle <!>d at 8 = 1r /2 
satisfies the condition: (<!>d)' (1-Lut)/ o-, with Ut the velocity of the line of contact between the 
liquid (water), the plate and the ambient air, see [481. (fLut)/ o- is called the capillary number. 
In the simulations usually € = 2. 

8. At the plate (8 = 7r/2) is u9(r,1r/2,t) = 0. 

9. The tangential stress at the free interface is prescribed and varies in time and position on the 
interface. Since now the temperature is not needed the energy equation is decoupled and does 
not need to be solved unless one is interested in the temperature distribution within the droplet. 

10. It is assumed that the viscosity of the gas is negligible as compared to that of the liquid. 
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5.2. The droplet problem 

5.2.2 Governing equations 

The continuity equation for an incompressible flow reads 1: 

1{}(2) 1{}. 
r r Ur + sin 9 DO ( ue sm 0) = 0 

The Navier-Stokes equation in 6 and r-direction are respectively: 

Op ({}U9 {}ue U9 OUe UrUO) ("2 2 OUr U9 ) 
&8 = -rp Tt+ura;:-.+~ao+-r- +rJ.t v uo+ r28tf- r2sin29 

{}p 

8r = (
Du, {}ur ue8u, uo2

) ( 2 2 2 Due 2 ) -p -+u.-+---- +p V u.--u,.-----uecotB at Dr r (}(} r r2 r2 {}8 r2 

with: 

vz = 1 8 (:z :r) + r2 s~n fJ :8 (sin 0 :e) 
and p the mass density of the liquid. The normal stress condition at the interface reads: 

with: 

and 

-1 { ( Du.) . (~ ue Duo) Par (-Rmcos28+ 2R11 sm28 + R.) + p R- R + Tr x 

(-Rm sin 28 - 2Rp cos 28) + p (' + ~) ( Rm cos 28 - 2Rp sin 28 + Rs)} 

Rm· 

Rp 

R1 
(R2+2(~~) 2 -R~) 
Rs ( 1 + ( ?zlj) z ib) 1/2 

(Rz R?zljcot8) 

+Pti - Pg = u ( ~1 + ~J 

The tangential stress condition is given by: 

p { ( 8u,. {}ue ) . ( 8ue our ) R Ra;:-- 7fii- u,. (Rmsm28 + 2Rpcos28) + -ue + Ra;=- + 8tJ x 

(2Rpsin20 Rmcos20)} = (cosB~; sin6 ~) ( +.RcosB) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

~ and ~ are the surface tension gradients along the interface in the (J. and r-direction, respectively. 
The time evolution of the interface is computed with the aid of the kinematic boundary condition: 

8R 1 8R 
at Ur U(J R 88 (5.9) 

In the present method the equations are not made dimensionless as done in chapter 2. 
1ue(r,O,t), ur(r,ll,t) and R(ll,t) are in other parts of this thesis abbreviated as ue, ltr and R respectively. 
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Chapter 5. Thermocapillary convection of an axisymmetrical droplet 

5.3 Numerical solution 

Instead of dividing the geometry of Fig. 5.1 in elements, as done in FEM, a type of spectral collocation 
method is used with expansions containing time-dependent coefficients that contain the time evolution 
of the Marangoni flow. A mesh in 8-direction of "a cross-sectional region through the droplet" is cho­
sen at equidistant angles to weight each part of the region equally. Radial locations, r;, are chosen 
in such a way that c; = ri/ R is constant at all times. Here i numbers the discrete points in radial 
direction. nk points exist for every c; value. The points of intersection in 9- and r-direction are taken 
as the collocation points. The mesh of collocation points is shown in Fig. 5.2. 

In section 5.3.1 the velocity and interface expansions are presented. The contour integrals, see 
section 5.3.2, and the tangential stress condition at the interface, see section 5.3.3, yield the governing 
equations of the numerical method. The SVD technique to weight these equations is described in 
section 5.3.4. The computation of the interface is described in section 5.3.5. 

5.3.1 Expansions 

For the velocity in 9-direction, us, the following expansion is selected: 

n;c-1 nkc-1 ( )i+l 
ue(r, 0, t) = I: I: a;,k 9k+1 i ( 11" /2- 9)'+1 

•=0 k=O . 

(5.10) 

The a;,k·coefficients are time-dependent. A polynomial series in 0 is chosen because it is an orthonor­
mal basis. Also, in radial-direction a polynomial, in terms of rf R, is used. Because of symmetry, 
ue(r, 9, t) 0 at 9 = 0 and 9 = 1r /2 which is automatically .fulfilled by the expansion 5.10. nkc is 
the number of polynomial 8-elements for constant r, n;c gives the number of elements of the ( r J R)­
polynomial expansion for constant 0. 

·The velocity in r-direction, Un is derived by integration of the continuity equation, Eq. (5.1) from 
r 0, where ur = 0, with respect tor. This yields 

Ur(r, 0, t) (
7r ) . 1 8R (11" ) (k+1) --0 +(l+1)9-- --8-
2 R 89 2 

(5.11) 

The no-slip condition Ur = 0 at 8 = 7r/2, see section 5.2, is automatically fulfilled by Eq. (5.11). From 
these velocity expansions, all derivatives with respect to 9 and r are analytically computed and used 
in the method. For the time-dependent expansion for R use is made of the fact that the volume of 
the droplet is constant. For R a. series is selected based on cubic splines: 

m=nk+3 

R(O,t) L bmTm(O) (5.12) 
m=O 

with: 

em for m= 0, 1,2,3 
(9 9m-a)3 for 9 > Om-3 and m 4, ... , nk + 3 (5.13) 
0 for 0 < Om-3 and m 4, ... , nk + 3 

The coefficients bm are time-dependent. With Om-3 the (m- 3)th collocation point is meant. As 
upper limit nk + 3 is chosen since the interface is divided in nk + 4 collocation points. In this way 
the interfacial radial distance and first derivatives with respect to 9 of the interface description are 
continuous at all points. Symmetry at 0 = 0 is fulfilled, i.e. &R/89 = 0, since b1 = 0. 
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5.3. Numerical solution 

5.3.2 Contour integrals 

A closed contour integral of the momentum equation is evaluated for each collocation point. The 
contour starts at the collocation point P2, see Fig. 5.2, proceeds to the nearest collocation point in 
positive 9-direction along the contour at constant c;-value, P3 , from that collocation point to the 
interface keeping (} constant, position P4 , then crosses the interface into the gas, position Po, in the 
gas to a position with the same value for (} as the collocation point where the contour was started, 
crosses the interface again into the liquid, position P1, and finally into the liquid to P2 again. The 

Figure 5.2: Schematic of dosed contour integral. 

pressure drop over a closed contour is zero: 

(Po- PI)+ (Pr- P2) + (P2- P3) + (P3 P4) + (P4- Po) = 0 (5.14) 

which is used to derive equations for &ur/&t and 8uo/&t. For (Pt - P2), (P2- P3), and (P3- p4 ) the 
following expressions hold: 

l
r=R {}p 

(Pt - P2) = -{} dr 
r=ciR r 

(5.15) 

r8=8· (ap aR ap) 
(P2 - P3) = Jo=B;+l {}(} + c; {)(} or d(J (5.16) 

l
r=c;R (}p 

(p3- P4) = -
0 

dr 
r=R r 

( 5.17) 

For the terms containing 8pf89 and opf&r the Navier-Stokes equations are substituted. All integrals 
appearing in (p1 - P2), (P2- Ps), and (P3- p4) are evaluated numerically using a fourth-order Simpson­
rule, given by: 

I d~ 1:::2 

f(x)dx 

h 
~ 3 [f(xr) + 4/(xr +h)+ 2/(xt + 2h) + 4/(xt + 3h) + 2f(x1 + 4h) 

+ ... + 2f(x1 + (n 2)h) + 4/(xr + (n -l)h) + f(xl + nh)] 

= S(h) 
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Chapter 5. Thermocapillary convection of an axisymmetricaJ droplet 

with the considered interval divided in n parts of stepsize h. S( h) is called the Simpson-approximation 
for integral I. 

The normal stress boundary condition, Eq. (5.5), is used to eliminate (Pu- pi) and {p4 - Po). In 
this way all terms in Eq. (5.14) are evaluated, which results in a matrix equation: 

fba' = §. (5.22) 

The left-hand side encompasses the fJpjfJO and fJpjfJr terms. The right-hand side contains the other 
velocity terms substituted in Eq. (5.14). The vector a' contains the time-derivatives of the a;,k­
coefficient of Eq. (5.10). 2 

5.3.3 Tangential stress condition 

Since the tangential stress condition is the driving force of the Marangoni convection, Eq. (5.8) is 
accounted for in a specific way in the numerical algorithm, i.e. by determination of the significant 
singular values of the matrix equation resulting from application of condition 5.8, see section 2.3.4 
and appendix B: 

(5.23) 

The left-hand side encompasses the velocity term and. derivatives with respect to 8 and r, the right­
hand side contains the surface tension gradient. Eq. ( 5.22) is combined with Eq. (5.23) in the numerical 
algorithm of the next section 5.3.4. 

5.3.4 Singular Value Decomposition 

Consider three time levels: the old time, index "old", the present time, index "pre" and the new 
time, without index. Two sets of equations result that have to be solved simultaneously, namely the 
(nk X n;) equations formed by the contour integrals (in matrix form fba~re =§.,see Eq. (5.22)) and 
the nk equations obtained from the tangential stress condition, Eq. (5.8), at the interface (in matrix 
form ~,a= IJ., see Eq. (5.23)). At the present time the coefficients a;,k~w ai,kotd and ai,kpre are known, 
and a; k is to be calculated. 

The number of unknowns is first reduced by expressing the coefficients a; k, in a; k and a; k 
using a second-order Adams-Bashford integration: 

' pre ' ' pre 

ai,k~re = ~ (~t ( a;,k- ai,kpre) + ai,k~td) (5.24) 

Substitution of (5.24) in fba~re =§.results in a matrix equation of the form ~a= 1!: 
The matrix-equations Aa = q and Qa = p are joined into a "grand" matrix equation Da 

r and simultaneously solv~ using a m.i:trix solver based upon Singular Value Decomposition, see 
section 2.3.4. The solution-vector contains the a;,k-coefficients at the new time level. The terms in the 
important "grand" matrix, which contains the driving force of the process, are weighted by weighting 
the singular values. This method computes the a;,k-coefficients in a way which almost exactly meets 
the tangential stress condition at minimum loss in accuracy of the equations stemming from the 
contour integrals, i.e. the (integrated) Navier-Stokes equations. 

In this way, the a;,k-coefficients for the new time level are derived. 

2The a;,k-coef!icients are the elements of a (nkc x n;c)-matrix with columns a;,o, a;,l, ... , a;,n•c-1· Vector a is defined 
as a = ( a.:,o T, Ui,l T, ... , Ui,nkc -1 T) T. 
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5.4. Conclusions 

5.3.5 Computation of interface deformation 

The bm-coefficients of expansion 5.12 are found in the following way. At the present time level, the 
velocities, the interface contour and the derivative with respect to 8 of this contour are known. The 
right-hand side of Eq. (5.9) is known, so using a second-order Adams-Bashford integration method, 
see Eq. (5.24), the bm-coefficients of the new time level and thus the new interfacial height is easily 
computed. 

The time evolution of the velocity field and interfacial height are determined by repeating the steps 
described in section 5.3.4 and above. Note that no iterations are necessary to obtain the solutions at 
each time level. 

5.4 Conclusions 

In this chapter, a numerical method for thermocapillary convection in an axisymmetrical droplet is 
presented. The method is based on a spectral collocation method and makes use of the contour 
integrated momentum equation. These integrals yield a matrix equation that is combined with the 
tangential stress condition at the interface in a SVD solution routine. The interfacial description is 
based on cubic splines. 

With the method, experiments as described in section 6 can be simulated. 
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Chapter 6 

Thermocapillary convection 
droplet cooled from below 

6.1 Introduction 

• In a 

In chapter 4, Marangoni convection was experimentally investigated in a thin liquid layer heated from 
above by a wire, which radiates symmetrically with respect to a vertical plane through the layer. In 
this chapter, a similar situation but with symmetry around an axis, namely an axisymmetrical droplet 
resting on a fiat plate, is studied. This situation occurs in dropwise condensation on plastic plates of 
a heat exchanger cooled from the inside [46]. A temperature gradient is induced along the interface of 
the droplet which causes thermocapillary convection. A set-up is used that encompasses a droplet and 
a PolyMethylMethAcrylate (PMMA) plate cooled electrically. Just as in chapter 4, buoyancy effects 
are minimal since the hottest parts in the droplet are on top and the droplet size is relatively small. 
In Fig. 6.1 a droplet is shown with typical dimensions and the definitions as used in this chapter. 

Figure 6.1: Droplet with characteristic values and names. 

In water Marangoni convection can only occur if the liquid is not contaminated [27H44l. Kao 
& Kenning [44], for example, experimentally observed that contamination, which lowers the static 
surface tension slightly, suppresses thermocapillary motion at a bubble interface. The mechanism is as 
follows. Contamination and/or surfactant are absorbed at the bubble interface to form a surface film. 
Since desorption and diffusion are slow processes, and any liquid motion near the interface causes a 
concentration variation of the surfactant with an accompanying surface tension gradient that opposes 
the motion, a boundary condition of near-zero velocity is established. During condensation, however, 
water condenses on clean, cold plates and this water does not contain contaminations. This situation 
is studied in this chapter. 

Only few visualization studies of thermocapillary fiows in droplets have been found in the literature 
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Chapter 6. Thermocapillary convection in a droplet cooled from below 

[11][27] Nengli Zhang et al. [27] used a shadowgraph method to visualize the flow pattern, which had 
better results than their alternative, using a suspension of aluminium particles, that suppressed the 
surface tension driven flow. They investigated a small droplet that was asymmetrically heated from 
below, thus invoking buoyancy effects. Nengli Zhang et al. visualized a ring of roll-cells due to 
Marangoni convection near the foot of droplets. They did not measure the temperature gradient 
along the interface of the droplet and they did not perform measurements with water droplets. Under 
microgravity conditions Hoefsloot [111 observed that vortices established near the point where the 
interface is in contact with the solid wall. 

The objectives of the present study are: 

• to measure the temperature gradient along the interface of droplets that are cooled uniformly 
from below, in order to quantify the boundary condition for the numerical simulations; 

• to visualize the flow pattern in the droplets. 

6.2 Experimental set-up 

A schematic of the test set-up is shown in Fig. 6.2. It consists of a hemispherical droplet of clean, 

Video camera 

; Infrared camera 

Orople~ 

Support, 

Figure 6.2: Schematic of test set-up. 

distilled water with a small amount ( ± 2.5 x 10-4 Vol %) of Liquid Crystals (LCs) and a PMMA plate 
of L x W x H, 70 x 70 X 8 mm3• The plate has a heat conductivity li = 0.19 W /(mK) and a specific 
heat capacity c = 1300 J/(kgK). The plate is positioned horizontally. The plate is cooled from below 
by a thermoelectric 'pump', a Peltier element type CP-l.0-127-08L of Melcor, glued onto the plate. 
This pump extracts heat from the PMMA-plate and transfers it to an aluminium plate of dimensions 
L x W x H, 24 x 10 x 1 cm3 , with a thermal conductivity of li = 164 W / ( mK) and a heat capacity of 
c = 880 J/(kgK), which functions as a heat buffer. The Peltier element is connected to a 'Delta'-power 
supply, and requires a current of 2.5 A (maximum) and a voltage of 15.4 V (maximum). Like in the 
measurements of two-dimensional motion in a liquid layer of chapter 4, a thermovision system is used 
to measure the temperature gradient along the droplet. A 'cold' lamp, Dedocool of Dedotec Munich 
Germany, is positioned at an angle of approximately 45° with the horizontal axes to illuminate the 
droplet. The lamp is a halogenlamp of 400 W. A built-in fan cools the lamp. Two video recording 
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6.3. Measurement procedure 

systems are used: one camera makes recordings vertically from above the droplet and the other along 
a line at an angle of 43° with the horizontal. The second video system gives better visualization of 
the flow pattern inside the droplet. Visualization of the flow in the droplet in horizontal planes is 
impossible, since hardly any light is reflected in the horizontal plane due to the critical angle of the 
incoming beam being exceeded, causing the inside of the droplet to be hardly illuminated. A few 
seconds before the experiment starts the lamp is switched on to ensure that the droplet is not heated 
up by the radiation. Without cooling, motion was not observed in the droplet, showing that the lamp 
on its own cannot cause thermocapillary motion. The test liquid is obtained by mixing a small amount 
(± 0.25 ml) of clean LCs into one litre of distilled water. LCs hardly have any effect on, for example, 
the surface tension of water since they are encapsulated. The mixture is homogeneous and the LCs do 
not evaporate so no concentration differences occur in the liquid. The particles also do not accumulate 
near the interface. LCs reflect the light entering from the light source. The density of LCs is equal to 
that of water, i.e. p ~ 998 kg/m3 , and their size is ±100 p.m. Distilled water is chosen since it is often 
the main condensing component in heat exchangers. The material PMMA is selected since the static 
contact angle of water on PMMA is 92° which corresponds well with the contact angle of condensed 
droplets on plastic plates used in compact heat exchangers. 

6.3 Measurement procedure 

Thermocapillary convection is established in water only if it is very clean [27][44) The following 
procedure has been applied to cleanse the plate: 

• Each element in contact with the test liquid was cleaned first with 96 % ethanol and dried in 
still air for some seconds so that virtually all ethanol was evaporated. 

• The pipet, used for creating the droplets, is washed with the test liquid. 

• The tests are performed immediately after cleaning to minimize contamination, e.g. from parti­
cles present in the environment. 

• The containers which contain the mixture are closed after use. 

At least 15 minutes before the tests, the Peltier element is supplied with 9W power, 9 V and lA, to 
cool the PMMA plate. The top of the plate attains a temperature of 288.7 ± 0.2 K, measured with 
a contact thermocouple. The ambient temperature is about 296 K. The liquid is heated in a closed 
vessel, that rests inside a larger vessel in which also a heating element is placed. The liquid is heated 
to 303 ± 1 K to ensure that the full range of the minimum temperature bandwidth of the infrared 
camera (ea. 5 K) is used 

Prior to cleansing, the thermograph and the cameras are focussed at the location where the droplet 
will be created and the data acquisition system is initialized. The temperature bandwidth of the 
thermograph is chosen 5 K, so temperature differences of 5/256 ~ 0.02 K can be distinguished. After 
cleansing, all the equipment is simultaneously activated and a droplet is positioned on the PMMA­
plate. The droplet rests exactly on top of the Peltier element and has a diameter of 1.0 to 1.5 cm. The 
height is ± 3 mm as measured with a marking gauge. Calibration of distances on the thermovision 
system is done by measuring fixed, well-known lengths of parts of equipment that have a temperature 
different from their surroundings. In the temperature range considered (15 40°C), Intensity values of 
the images correspond linearly to the temperature according to the specifications of the thermovision 
system. 
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Chapter 6. Thermocapillary convection in a droplet cooled from below 

6.4 Experiments and results 

The repeatability of the experiments turned out to be poor. Sometimes motion did not occur in 
the droplet because of impurities which hamper interfacial motion as discussed in section 6.1. If the 
equipment was not cleansed properly, or the time passed between cleansing and experiment was too 
long, contamination of vital parts troubled the experiment. The following flow patterns have been 
observed in the experiments that did yield thermocapillary motion. During the first approximately 
10 s the liquid is in motion due to injection of liquid in the droplet. When the accompanying interface 
oscillation, a kind of wobbling, subdues, tracer particles in the droplet are seen to be accelerated in 
the direction from the top to the bottom of the droplet. Roll-cells of various sizes are distinguished: 
smaller ones appear near the bottom of the droplet, larger ones appear when particles are trans~orted 
from higher positions to the bottom. Similar patterns have been found by Zhang et al. [2 1 and 
Hoefsloot [lll, see 6.1. Velocities of the order of 3- 4 mm/s are established at the interface near the 
foot of the droplet and of the order 1 1.5 mmfs near the top. At the inside, the particles turn back 
to the core region of the droplet, with velocities of 0.5 mm/s maximum. These velocity magnitudes 
are based on estimates made by estimating the distances moved by particles in time. The error in this 
observation is typically of the order of 10%. After approximately 60 s, the particles in the droplet stop 
moving since the temperature gradient at the interface has disappeared. In Fig. 6.3 some characteristic 
particle paths are presented, as seen from above and from aside. Mainly larger roll-cell are drawn. 
The onset of some smaller roll-cells near the bottom can also be observed. 

topview view from aside 
droplet 

particle path 

14mm 

Figure 6.3: Tracer trajectories in half a droplet, topview (left, visualized vertically from above the 
droplet) and view from aside (right, visualized along a line at an angle of 43° with the horizontal). 

Simultaneously with the velocity of the tracers, the evolution of the temperature at the interface 
of the droplet has been measured. In Fig. 6.4 a typical temperature history is shown. 

The position of the droplet on the cooled plate is marked by the white circle. In the first plot ( t < 0) 
of Fig. 6.4 the influence of the pipet in shaping the droplet is evident by the disturbed temperature 
profile. Let t 0 s correspond to the moment the initial wobbling motion of the droplet has vanished. 
At subsequent times, t > 0, a temperature gradient exists at the interface, see Fig. 6.4. The mean 
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6.5. Conclusions 

temperature of the droplet decreases in time due to the cooling by the Peltier element. As a result, the 
temperature gradient at the interface eventually disappears. In the next paragraph it will be shown 
that the interfacial motion and the occurrence of a temperature gradient coincide. 

Fig. 6.5 shows the temperature differences over the droplet just after injection at t 5 s and at 
t = 67 s as measured at various positions, indicated by their x- and y-coordinates. For the positions 
of the points of the grid over the droplet, see Fig. 6.4. It shows that the largest temperature difference 
is about 3.0 K, and that this is reached just after the injection. Nearly similar plots for the x- and 
y-direction are seen, proving that the droplet behaves nearly axisymmetrical, as is also shown by 
Fig. 6.4. The differences decrease in time, see Fig. 6.5, as was expected. 

The evolution of the temperature gradient in time at five points is shown in Fig. 6.7. For the 
position of the points see Fig. 6.4. Two of these points lie just outside the droplet. It is clearly 
seen that the temperature becomes constant after t = ± 200 s. The contour plots of Fig. 6.3 are 
drawn during the period that a temperature gradient at the interface exists. After this period, the 
thermocapillary convection stops, simultaneously with the disappearance of the temperature gradient 
along the interface. 

From the profiles shown in Fig. 6.5 the surface tension gradient 8a /88 can be derived from Oa / {J(J 

8a/8T 8T/08. The gradient for water/air, 8a/8T = -0.148 x 10-3 N/(mK), is obtained in a similar 
fashion as in chapter 4, using a surface tension meter, see appendix F, For values usually obtained, 
see 1491, which come close to what we measured. 8T/88 is obtained from Fig. 6.5 and increases 
parabolically with increasing (J and reaches its maximum near the foot of the droplet. Therefore here 
the largest velocities are seen. 

6.5 Conclusions 

In this chapter thermocapillary convection in a water droplet without contamination has been in­
vestigated. In the experiments special consideration must be taken to cleanse the equipment. The 
temperature gradient along the droplet interface is measured and flow patterns in the droplet are 
visualized. The temperature gradient 8T /88 increases from top to foot; the velocity increases in this 
direction as it should. In time the temperature gradient vanishes since the induced flow homogenizes 
the temperature in the droplet. The flow pattern observed in the present experiments, small roll-cells 
near the foot and larger roll-cell elsewhere, are in good agreement with results found in the literature. 

77 



Chapter 6. Th ermoca.pilla.ry convection in a. droplet cooled from below 

X 

y 

I<OS I= 15s 

18.0-18.3 
18.>. 16.8 

16.6· 18.9 
00,,. , ,0 

'"-0. , ,0 

oo.u. •. o 

LV.O · <O. 0 

21 1. 21.4 
21.4. 21.8 I no - a.-
a. - a,q 

U.4·U. 

'EL ·'E.l.U 

141TY11 

t = 41 s I= 67s 

Figure 6.4: Typical time history of surface temperatures. Times 0, 15, 41 and 67 (left to right, top to 
bottom). 
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Figure 6.5: Plots of temperature distribution over droplet in x- and y-direction at t = 5 s and t = 67 s . 
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Figure 6.6: Position of lines and points on the droplet. 
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Figure 6. 7: Temperature histories at five points near and at the droplet interface. 
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Chapter 7 

Comparison of simulations with 
experiments 

7.1 Introduction 

In this chapter comparisons of numerical simulations with experiments are presented. From the 
interface temperature measurements, see chapter 4 and 6, the surface tension gradient is derived. 
This surface tension gradient distribution is prescribed in the method. The predicted flow patterns 
are compared with the ones observed during the experiments. Both the two-dimensional method of 
chapter 2 and the a.xisymmetrica.l droplet method of chapter 5 are employed. Some of the results 
of this chapter ar!' not fully conclusive, since a number of parameters have not been varied over a 
wide range and since for some simulations the temperature field is required which would have to be 
obtained by solving of the energy equation simultaneously with the other equations. 

7.2 Liquid layer heated from above 

Numerical simulations are performed with the method described in chapter 2 to simulate the flow in the 
liquid layer heated from above as considered in the experiments described in chapter 4. Experiment 1, 
see appendix His considered at t• = 65 s since at that time a fully developed temperature gradient and 
flow pattern are established. The temperature gradient and surface tension gradient are stationary and 
constant over the entire cavity with values !::J.Tj!::J.x• = 160 K/m (see table H) and !::J.uj!::J.x• = 0.016 
N/m2 , respectively. Typical values of the surface tension are 23.67 x 10-3 N/m at x• = 5 mm and 
24.16 x 10-3 N/m at x• = 37 mm corresponding with temperatures at these positions ofT = 35 
and 30 °C, respectively. The length, L, is chosen 32 mm, the height, h0, is chosen 8 mm since the 
experiment showed that velocities and velocity gradients such as aujay near 8 mm of the interface 
are negligible small. Therefore, stresses at the bottom are minimal and are not taken into account. 
Thus A= h0/ L = 1/4. Furthermore, the resolution capacity of the grid is then utilized for the whole 
region of interest. The liquid (n-paraffin clO - c13) has p = 752 kg/m3 and 1-' = 1.43 X 10-3 Ns/m2 

which are assumed constant in the method. 
With u = 24.16 x 10-3 N /m and Eq. (2.8) the dimensionless quantities are easily calculated: 

Sx = 1.04 and Sgr = u / !::J.u = 49.3. These values are prescribed at the interface in the following way. 
The initial rise of Sx from zero at t = 0 to 1.04 at t = 125 !::J.t is accounted for by multiplying Sx with 
the smoothing function F1(t): 
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Chapter 7. Comparison of simulations with experiments 

to ensure a gradually increase of Sx in time. The surface tension profile properly fulfils the symmetry 
condition, Bx = 0 at x = 0, by multiplying Bx with the correction factor F2(x): 

1 
F2(x)= 2[cos(7r(1+10x))+1] for O:<:;x:<:;0.1 and F2(x)=l elsewhere (7.2) 

The no-slip condition, Bx = 0 at x = 1 is satisfied by multiplying Sx with F3(x): 

Fa(x) 
1 2 [cos(lO (x- 0.8) 1r) + 1] for 0.8 :<:; x :<:; 0.9 and F3(x) = 1 elsewhere (7.3) 

The prescribed surface tension gradient, Bx,corr(x, t), is given by: Bx,corr(x, t) = 1.04 Ft (t) F2( x) Fa(x) 
and is shown in Fig. 7.1 with F1(t) = 1. · 

Sx,corr 

1'so>C~,.-!---;:, -----+' , 
I _ 1"\: 

I I I I 
0 0.1 ~ 0.8 0.9 1.0 

X 

Figure 7.1: Corrected surface tension profile, Bx,corr(x, t), with Ft = 1. 

The numerical parameters used are nk = 50, n; 50, nkc = 15, n;c = 7 and nb 12. Runs are 
performed wi!h gravity since the experiments have been carried out under 1-g conditions. 

There are two time scales when gravity is involved, the one based on the tangential stress and 
the one based on the gravity force. The scaling of the velocity is based on the tangential stress, see 
Eq. (2.8), u; = h0 /::;.q / (J.l L ), with index t indicating that the velocity is related to the tangential 
stress. The velocity scale can also be based on the normal stress condition, Eq. (2.6), resulting in 
u; = p g* L h0/ J.l, with index g indicating that the velocity is related to the gravity force. /::;.q = 3. 79 
is chosen so that the timescale~, t; = u; / L and t; u;/ L are equal, to weight both the tangential 
stress and gravity force identical in the method. 

Results are shown in Fig. 7.2 in dimensionless and dimensional coordinates and in the physical 
domain. Only the result at t = 1.5 is shown since the driving force is quasi-steady. A small roll-cell 
is distinguished near x 0 similar to the one seen in the experiments. During the experiments, this 
roll-cell increased in size and extended over the entire length of the cavity. In the numerical simulation 
this is not the case, since numerical diffusion occurs. With numerical diffusion is meant that artificial 
terms, as the velocity v at the interface, increase in time. Therefore the interfacial deformation and 
the no-slip condition at x 1 are not accounted for properly and the increase of the interfacial height 
near x = 1 is artificial. If the velocity v near the interface would not increase in time and the no-slip 
condition at x = 1 would have been exactly fulfilled at each time, the increase of the interfacial height 
near x = 1 would not occur. Because of this increase, the liquid is not forced back and the second 
roll-cell near x = 1 does not merge with the one originating near x = 0. Some adaptations are required 
in the method to ensure that this numerical diffusion is reduced. Such an adaptation could be that 
the velocity v at the interface is zero, so that hardly any interface deformation is established and that 
the roll-cells merge. Quantitative results of the dimensional velocities u* and v* at various X-positions 
over the height of the liquid are given in Fig. 7.3. The dimensional velocity in x-direction at the 
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7.3. Liquid droplet on a plate cooled from below 
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Figure 7.2: The velocity field in dimensionless (plot 1), dimensional (plot 2) and in the physical domain 
(plot 3) of simulation of layer experiment. Reference arrow of the velocity component in x-direction 
corresponds to 0.14 mm/s. Reference arrow of the velocity component in y-direction corresponds to 
0.046 mm/s. 

interface is of the order 2.5 mm/s for 0.3 < x < 0.7, which compares quite well with the measured 
velocity of experiment 1 of 1.76 mm/s, see table 4.2. 

7.3 Liquid droplet on a plate cooled from below 

In this section, results of numerical simulations with the method of chapter 5 are compared with results 
of the experiments of a droplet on a cold plate, see chapter 6. In the method, an axisymmetrical water 
droplet, see Fig. 5.1, has been considered with an initial radius of R = 1.0 cm and p = 998 kg/m3

, 

1-1 = 1.002 x 10-3 Pa s and u = 72.3 x 10-3 N /m. The surface tension gradient is derived from the 
temperature profile as measured with the thermograph, see Fig. 6.5 at t = 5 s, with a temperature 
drop of 2.1 °C along the droplet interface from the top to the foot. The largest gradient occurs near 
the foot of the droplet. A temperature of 0. 7°C is assumed in the method at angles between 1r /3 and 
1r /2. For 0 ~ 8 ~ 1r /3, du /dO = 0. The measured surface tension gradient can be approximated by: 

(7.4) 
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Figure 7.3: The dimensional velocities u* and v* over the height of the liquid at various positions x. 

In Fig. 7.4 a plot is shown of the numerically prescribed gradient {)u I{)(}. Note that {)u I {)0 is positive 
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Figure 7.4: Surface tension gradient duldfJ versus fJ (in radians). 

for 1i 13 ~ (J ~ 1r 12. At 1r 13, fJu lfJfJ == 0 and at i 12, {)u lfJfJ reaches its maximum. Below the corrected 
surface tension gradient, ( {)u I {)(J)corr, is derived. 

Numerically fJul{)fJ is multiplied with a normal distribution G1(t) in time: 

Gt(t) == (t(t- {3))2 
. (7.5) 

which guarantees that the driving force increases in first instance and decays later. 
fJu I {)(J is multiplied with a correction term G2 64 to make sure that at t = {3 12 the maximum 

amplitude of fJulfJO (0.95 X 10-4) is reached. The corrected surface tension profile is (fJulfJfJ)corr= 

(:~) corr = 0.95 X 10-
4 

[sin (6 (e- ;2)) + 1} G1(t) G2 (7.6) 

The distribution, Eq. 7.6, is used in the method of chapter 5. At (J == 1i 12, the dynamic contact 
angle cf>d of the droplet on the plate is 1r 12 during the simulation. The interface is immobile in the 
simulation. Parameters used are nk == 50, n; 50, nkc 10, n;c = 5, € :;;; 1 and !::.t == 0.006 s. Note 
that duI d;p duI dr = 0 during the simulations. 

Fig. 7.5 shows the velocity profiles at times t :;;; 0.006, 0.3, 0.6 and 0.9 s. The liquid flows from 
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Figure 7.5: The simulated velocity profiles at times t = 0.006 (velocity multiplied by lOOOx ), 0.3, 0.6 
and 0.9 s. The reference arrow of the velocity has a value of 0.1 mm/s. 

(} = tr/3 to(}= 7r/2 and roll-cells (vortices) below the interface form, that are qualitatively the same 
as those observed during the experiments, see Fig. 6.3. Velocities of ea.. 0.1 mm/s are established at 
the interface at t = 0.6 s. Initially the velocity increases since the driving force increases. After some 
time the driving force decreases so the velocity decreases slightly, as seen from comparison of the plots 
at times t = 0.6 s and t = 0.9 s. Fig. 7.6 shows the velocity at(} = 1r /8, 1r /4 and 3 1r /8, to show better 
how the velocity varies with the radial distances. 

7.4 Conclusions 

Comparison of numerical simulations with results of experiments show that the present computational 
results correspond satisfactorily to the experimental results. 

From the simulation of the flow in the liquid layer it is concluded that the predicted velocity is 
in quantitative agreement with the measured velocity although the predicted flow pattern is not fully 
established. The predicted flow pattern in the droplet corresponds well to the flow pattern seen in the 
experiments. The following adaptations of the numerical method are proposed in order to improve 
the correlation of numerical simulations and experiments: 

• Adding of the energy equation to the system of partial differential equations to be solved. The 
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Figure 7.6: The velocity at time t = 0.9 s for fJ = 1r /8, 1r /4 and 3 1r /8. The reference arrow has a 
value of 0.1 mmfs. 

temperature distribution in the liquid is then taken into account too. 

• Ensuring that numerical diffusion subdues, so that hardly any interface deformation can establish 
and the roll-cells merge. 
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Chapter 8 

Conclusions and recommendations 

Various aspects of Marangoni convection have been studied in this thesis. In section 8.1 the main 
conclusions are summarized. Some suggestions for future research are given in section 8.2. 

8.1 Conclusions 

8.1.1 Numerical simulations 

An algorithm is presented to predict the time evolution of the velocity field and the interfacial motion 
due to the Marangoni effect. The accuracy of the numerical predictions depends on the choice of the 
basic expansion functions. One application is the simulation of the motion in a thin layer of liquid in 
a cavity, another that of axisymmetrical flow in an axisymmetric droplet on a plate. 

The main characteristics of the algorithm are: 

• It is related to the spectral collocation technique. The grid of collocation points is self-adapting 
to the motion of the liquid/ air interface and not fixed or rigid because of the application of the 
Singular Value Decomposition (SVD) technique, see below. 

• The tangential stress boundary condition at the free interface is simultaneously solved with the 
so-called contour integrals, that are derived from the Navier-Stokes equations and the normal 
stress condition. 

• An adapted SVD-treatment is employed which automatically weights the importance of the 
contour integrals and the tangential stress condition. 

• The kinematic boundary condition couples the evolution of the velocity field to the motion of 
the interface. 

• Iterations are not employed. 

• In both applications the solution is based on truncated expansions, so the accuracy of the solution 
is directly controlled through the number of terms in the expansions. 

Applications for which the two-dimensional flow method can be used are: 

• The drying of hydrophillic surfaces 

• Thin layers of paint, coatings or glues 

• Welding 
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• Metallurgical applications 

• Growth of crystals 

Thermocapillary flow in droplets, for example as exists in the droplets occurring in condensation on 
plastic heat exchangers, can be simulated with the axisymmetrical flow method. 

Liquid layer 

The approach is found to precisely reproduce an analytical solution for a heated thin liquid layer with 
steady motion. The velocity expansion converges rapidly and the tangential stress condition at the 
interface is satisfied within adequate order of magnitude. Parameter variation such as varying the 
number of collocation points and the number of expansion coefficients is performed leading to the 
choice of a suitable set of numerical parameters. 

It is concluded that liquids with larger viscosity are more difficult to set into motion than those 
with smaller viscosity. Test cases with different viscosities show that when the driving force decreases 
or is not present, the velocity in the liquid decreases. These results are similar to that of investigations 
from the literature. 

The solution algorithm has been tested with alternative expansions for the velocity and interface 
position. Each of these alternative expansions accommodates a specific set of boundary conditions 
best. For comparable test cases the results turn out to be similar, therefore the solution algorithm is 
found to be robust with respect to the choice of the expansion functions. 

From the test cases it is concluded that the method presented can accurately predict thermocap­
illary two-dimensional convection in cavities. 

Droplet 

The axisymmetrical flow method is successfully applied to an axisymmetric droplet on a plate. 

8.1.2 Experiments 

In two test configurations the temperature gradient has been measured along the interface and the 
established flow is visualized. One experimental set-up consists of a layer of n-paraffin C10 - 0 13 in a 
cavity heated from above by a wire, the other of a water droplet on a plate cooled from below by a 
Peltier element. · 

Liquid layer 

In the liquid layer experiments, buoyancy effects are negligible and the thermocapillary effect domi­
nates the flow during the first 90 s. Nearly steady :!low is then established with an almost constant 
surface tension gradient. The influence of the side-walls is negligible and the same :!low is established 
in each cross-section, i.e. in a plane normal to the straight heating wire, rendering the flow two­
dimensional. After being accelerated away from the heating wire particles assume constant velocity 
at the interface and return along deeper layers of the cavity. A characteristic constant driving force 
of au/ox = 0.018 ± 0.001 N/m2 at the interface results in an averaged surface velocity of 1.43 ± 0.18 
mm/s. 

Droplet 

The temperature gradient increases from the top to the foot of the droplet; the velocity also increases in 
this direction. In time the temperature gradient vanishes since the :!low homogenizes the temperature 
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in the droplet. The flow pattern, small roll-cells near the foot and larger roll-cells elsewhere, is in good 
agreement with results from experiments reported in the literature. 

8.1.3 Comparison of numerical simulations with experiments 

Comparison of results of the simulations with those of experiments show that, in first approximation, 
computational results correlate satisfactorily. 

From the simulation of the flow in the liquid layer it is concluded that the predicted velocity field 
is in quantitative agreement with the measured velocity field although the predicted flow pattern is 
not fully established. 

The predicted flow pattern in the droplet corresponds well to the flow pattern observed in the 
experiments. 

8.2 Recommendations 

8.2.1 Numerical simulations 

The two-dimensional flow method can be extended such that it can handle a. segmented computa­
tional domain with for each segment a suitable expansion, resulting in a multi-domain method. More 
complicated geometries can then be treated. At domain boundaries the coupling of the solution in 
the neighbouring domain must be taken care of. 

8.2.2 Experiments 

For the measurements in the layer more accurate velocity measurements can be performed using for 
example Laser Doppler Anemometry. The proper choice of suitable tracers is then relevant. 

For the measurements in the droplet more quantitative results can be found by improving the 
visualization technique. The repeatability of the experiments can be improved by performing the 
experiments under better controlled conditions. 

8.2.3 Comparison of numerical simulations with experiments 

Adaptations are required in the two-dimensional flow method to ensure that numerical diffusion leading 
to an artificial velocity normal to the interface is minimized. Parameters might be varied over a wider 
range and solving of the energy equation might be required. 
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Appendix A 

Existing numerical techniques 

In this appendix the main existing numerical methods for solving the Navier-Stokes equations are 
shortly described [19][20H21l. These methods are surveyed in section 1.3 for reasons given there. This 
appendix may help to refresh the memory of the reader who does not deal with numerical algorithms 
every day. 

A.l Finite Difference Method (FDM) 

FDM is based on the properties of Taylor series expansions around the values at grid points and on 
discretizing the derivatives of the differential equations. The grid points are located at the intersections 
of a family of rectilinear or curved contours. 

The derivative u., of a function u at point x is defined by: 

{)u = lim u(x + dx)- u(x) 
ax Ax->0 Llx 

A Taylor-series is developed of u( x + dx) to determine the order of accuracy of the scheme: 

6x2 

u(x + dx) = u(x) + dx u,(x) + -
2
- u.,.,(x) + ... 

with: u.,.,(x) = 82u(x)jax2
• 

Rewriting Eq. (A.2) yields: 

u(x + dx)- u(x) 
Ux(x) + 0(6x) 

(A.l) 

(A.2) 

(A.3) 

which means that the approximation is improved by reducing dx, but for any finite value of dx an 
truncation error CJ(L1x) must be accepted. 

With the aid of FDM the PDEs are reduced to a system of algebraic equations in matrix-form 
that can be solved efficiently numerically. For example: 

au = f 
ax 

can be rewritten as: 

Au f 

with A a positive definite matrix, which means: 

• A is symmetric, so AT = A 

(A.4) 

(A.5) 
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• Each x f. 0 yields xT A x ;::: 0 

The system of equations Eq. (A.5) can easily be solved with, for instance, a LU-decomposition. 
The used differential-schemes for first-order derivatives can be chosen as a forward difference, see 

Eq. (A.l) or Eq. (A.6), or as a backward scheme, see Eq. (A.6), (both first-order approximations) or 
as a central scheme, see Eq. (A.6) (second-order approximation): 

(u.,); 
{}u + 0(6x) = (g~)x=x; = 

(ux)i = (g~)z=x; + 0(6x) (A.6) 

(ux)i = ( {}x )z=xi 

with x; = i 6x, i = 1, .. , N and N discrete mesh points with equal spacing of 6x and u; the value of 
function u(x) at the point x;. For second-order derivatives schemes derived from the first-order ones 
are easily obtained, for example: 

{}
2u _ u(x+6x)-2u(x)+u(x-6x) ""(A 2) 

fJx2 - (6x)2 + v ux (A.7) 

with a truncation error of 0(6x2 ). Ryazantsev et al. [50] used an implicit difference scheme on a 
non-uniform grid in a stream function-vorticity formulation to calculate the nonsteady distribution of 
velocity and temperature in a liquid layer of a plane cylindrical cuvette. They found a change in the 
direction of the thermocapillary forces/flows due to increasing and decreasing temperature gradients. 

FDM was successfully applied for both ID and 2D situations. Bestehorn et al. [5l] used FDM to 
predict the transition from one roll cell to hexagon roll cells formation in different geometries. The 
transition occurred when additional thermocapillary convection was introduced by heating up the 
surface. 

FDM can have some disadvantages. More complicated governing equations require much more 
calculation time. Another disadvantage is that when the boundaries are curved the formulation of 
FDM gets more difficult. A solution is found by using interpolation, but this makes the problem more 
complex, especially if complicated boundary conditions have to be imposed. Local grid refining near 
the boundaries is difficult to apply, which makes FDM less flexible than other methods, such as FEM. 
A third option to solve problems with a curved boundary is a transformation from the physical space 
to a computational space, but this is usually hard to do. Furthermore, oscillations can occur when due 
to the boundary condition the solution near the boundary fluctuates strongly. The reason for these 
oscillations is found in the matrix A of Eq. (A.5), that loses its diagonal dominance, which means that 
the matrix is close to being singular. 

A.2 Boundary Element Method (BEM) 

BEM is an useful tool for solving linear homogeneous differential equations. In situations in which 
the governing equations have solutions in terms of Green's functions, such as the Laplace equation 
V2u 0 with u an arbitrary scalar function, BEM has been applied successfully. The imposed 
boundary conditions are satisfied by a proper distribution of elementary solutions on boundaries of 
the flow domain. 

The advantage of BEM is that only the boundary has to be discretized, not the entire flow field, 
which reduces the problem enormously. 3D-problems are in this way solved by distributions on sur­
faces, so instead of calculating with O(N3 ) elements now O(N2 ) elements are employed. A disadvan­
tage is that for the solution of inhomogeneous equations, for example the Poisson-equation V2u = q 
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with q an arbitrary scalar function, employing BEM is more troublesome. Extra terms for the dis­
cretization of the bulk of the liquid, i.e. spatial source terms, must then be introduced, which renders 
the problem much more complicated and the quasi two-dimensionality is lost. More details about 
BEM can be found in [19J. 

A.3 Finite Element Method (FEM) 

FEM is based on the construction of an approximate solution of PDEs using basic functions. It is 
known [2) that the approximation of the PDEs converges to the true solution if an increasing number 
of basic functions is used. An approximation of the solution is found if only a finite number (N) of 
basic functions is used. In FEM the flow domain is divided into elements. In lD these are intervals, 
in 2D triangles or rectangles. There is a finite number of them over the whole area and they are 
patched to each other without overlap. Consider some points on each element, the so-called basic 
points. Choose the basic functions in such a way that in one basic point its value is 1 and in the 
other(s) 0, that the desired order and type of interpolation polynomials are prescribed per element 
and such that each basic function is continuous in the whole domain. In this way an interpolation 
polynomial for the approximation is constructed for each element: 

N 

u(x,y)::::: l:u;</>i(x,y) (A.8-) 
i=l 

The coefficients of this polynomial are the unknown function values u; in the basic points. 
In FEM two methods can be used: 

• Ritz-method. 
An approximate solution is constructed of an minimization problem which is equivalent to the 
PDEs. This minimization problem can be reduced to a solvable matrix equation under the 
condition that the solution u( x, y) can be written as a linear combination of basic functions 
</>;(x, y) with coefficients u; as Eq. (A.8). 

The generated matrix is in general dense. Its condition is bad and when many basic functions 
are used, round-off errors will dominate the approximation. These round-off errors can be 
minimized when the form of the solution is known, since the selection of the basic functions then 
can conveniently be based on this solution. Remark that none of the basic functions has to fulfil 
the boundary conditions on its own, since in the limit of N - oo the approximation fulfils these 
conditions. 

• Galerkin-method. 
This method is called the method of weighted residuals and can be used when an equivalent 
minimization problem does not exist, as is the case for the convection-diffusion equation and the 
Navier-Stokes equations. Consider a PDE of the form with matrix L: 

L u(x, y) = f(x, y) (A.9) 

on domain w with u( x, y) ::::: 0 on the boundary 1 of the considered domain. The exact solution 
u of this differential equation satisfies: 

L w (L u- f) dxdy ::::: 0 (A.lO) 

for arbitrary function w(x, y). An approximate solution is constructed if N independent functions 
Wj(x,y) are selected, satisfying: 

Lwi (Lu-f)dxdy = 0 j=l, ... ,N (A.ll) 
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Appendix A. Existing numerical techniques 

When the approximate solution ofEq. (A.8) is substituted for u in Eq. (A.ll), then the original 
PDE is written as a system of N equations with N unknowns. The best choice for the basic 
functions is according to Galerkin: 

Wj(x,y) = 1/>j(X,y) (A.l2) 

The Galerkin method has a lot in common· with the llitz-method. The matrix equation and the 
treatment of the boundary conditions are the same, so the result of the approximation is also equal. 
The Galerkin method is more general to use and is more direct, since the functional for the equivalent 
minimization problem does not need to be known. 

Advantages of FEM are that no equidistant mesh is necessary, that difficult geometries are no 
problem and that it is easy to automate the computation of the same integral that has to be evalu­
ated per element for all times. A disadvantage of FEM, in the velocity-pressure formulation, is that 
numerical problems occur for the pressure p, since the continuity equation does not contain the pres­
sure. Several techniques are nowadays known to solve the Navier-Stokes equations and the continuity 
equation more accurately. These tools can be divided into two main groups: 

• Direct methods. 
The Navier-Stokes equation and the continuity equation are reduced to a system of linear equa­
tions via the Galerkin method, for more details, see [20J. An advantage is that the velocity 
components u and v and pressure p are calculated without numerical differentiation, so they 
tend to be more accurate. A disadvantage is that the system of equations becomes very large 
requiring a lot of calculation time. Furthermore, zeros appear in the main diagonal of the matrix, 
so partial pivoting is required to get accurate result. Partial pivoting increases the calculation 
time even more. It is therefore concluded that this method is direct and clear but is hardly ever 
used because of the enormous calculation time. 

• Indirect methods. 
There are two indirect manners: 

- Penalty-function method. 
The principle of the penalty-function method is the substitution of the continuity equation 
by a relation between the velocity vector u and pressure p of the form: 

!: +V· u = 0 (A.13) 
r 

with r a penalty-function parameter. The advantage of this technique is that the velocity­
and pressure determination are decoupled. This leads to a smaller system of equations with 
less unknowns. First an approximate solution is constructed of the matrix equation after 
which the pressure is calculated from Eq. (A.l3). Partial pivoting is not necessary which 
saves calculation time and memory. This method is also very useful in 3D situations. The 
parameter r must be chosen well, for otherwise accuracy problems may occur since the 
resulting matrix may become singular. 

- Methods with use of divergence-free elements. 
The basic functions <P for the velocity approximation are chosen to fulfil the integral ex­
pression for the continuity equation: 

J. 'V if> dxdy = 0 (A.14) 

with e an arbitrarily chosen element. By the proper choice of the used elements, the pressure 
terms are eliminated from the Navier-Stokes equations. Now the pressure and velocity 
are separated and the continuity equation is satisfied per element making the numerical 

94 



A.3. Finite Element Method (FEM) 

solution routine more efficient. The pressure is calculated after that the velocity has been 
determined. The matrix equation has a simple structure and calculation time and used 
memory is therefore strongly reduced. A disadvantage is that this method is only useful for 
2D situations and axisymmetrical problems due to the use of the stream function, see for 
more details !20J. Another disadvantage is that boundary conditions have to be transformed 
before they can be used to fit in the used method. The solution has to be transformed as 
well in order to be interpreted. Especially the boundary conditions for the stream function 
may cause problems upon transforming. 
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Appendix B 

Adapted Singular Value 
Decomposition 

Consider the matrix equation ofthe contour integrals, Eq. (2.36), but then written as follows: 4 d;;;: q_. 
Then 4T L1 d = .d.T q 1. More details about this appendix are described in [33J. 

Th-; ob}ectiv;-ofthis section is to obtain the total least-squares solution of this system. To that 
end the vector d is extended by an extra element, the scalar -1. Then the following block matrix 
equation is formed 

(4 i) ( !1 ) ;;;: 0 (B.l) 

I.e. 4 J ;;;: 0 with 4 = (4 i) and d ;;;: ( !1 ) 

AT A is a positive symmetric matrix and its eigenvalues are real, non-negative and there exists an 
ort~no7mal basis of eigenvectors. , 

So, when!!:. is an eigenvector of 4T 4 with norm 1 and with positive eigenvalue A2 , then 

Define 1!. = then 

2 ·T - -T 
A :!:.=4 4!!i.;;;:A4 1!. 

and 

1[==A4!!i.==A2 'J!. 

So, y is an eigenvector of matrix A AT. Since y :;;;; !!i., yT = >. - 1 !!i.T AT and A 2 yT y :::: 4 !!i. = 
A2 i! !!i.:::: A2 since!!:. has norm LHence yT ii = 1, soy has norm 1. - - -

Define n = nkcXnic being the number ~fu;:;known d~k-coefficients. Order eigenvectors !!:.t ,!!i.2 , ···,:I.,. 
and llt, l2• · · ·, 1l.n such that At ;?: >.2 ;?: · • • ;?: An. 4:::: AtJL1 !!i.? +···+An 1l.n Xn T which can be verified 
by multiplying both sides with the elements of the basis, i.e. the individual eigenvectors x1, x2, · · ·, Xn· 

The matrix A' of rank j for which the Frobenius norm of 4 is minimal is given by: 

(8.2) 

1The d;,k-coefficients a.re the elements of a (nkc x n;c)-matrix with columns d;,o, d;,l, .. ,, d;, .... -1· Vector d is defined 
as d = (d;,o T, d;,1 T, ... , d;,"••-l T)T. 
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which is a well-known property of the singular values AJ· The choice for j, the number of significant 
singular values, and the purpose of this choice is discussed in section 2.3.4. To obtain a solution of 
A' d = 0, see Eq. (B.2), the matrix A' is written as a block matrix A' (A* q*) , where q* is a vector 
of length n; x n~c, corresponding to the number of contour integrals:F'or 1 :::; i $ j let the eigenvectors 

x; be: x; = ( s; ) , with !!i the last element of vector x;, see section 2.3.4. The equation A' d = 0 

yields: 

(A* q*) ( !1 ) = 0 or A* d q* 

Eq. (B.2) yields: 

A* d = ( >.1 11..1 (xi)T + · · · + )..i 1J..j (xjf) d 

and 

q* :;::: At Yl St + . 0 0 + Aj Yi Sj 

Because of A*d = t:_ and >.11..;;:: J.x this yields: 

(,a x1(x*? + • • • + ki_(x*l) d = s1 4:£1 + • • • + Sj 4 Xj 

A*d = q* 

so: 

Substitution for A* and shows: 

~T -
Note that 4 4~ = >.2 ~· Therefore: 

(~1· ~? + · .. ~/ ~?) (>.i ~1 c~~·f + ... + >.] ~i <~i*>T) d 

= (x1* x1T +.. X·T) (st >.12 x1 + ···+ s >.~ x) - - -J - - -J J -J 

The eigenvectors ~1 , 0 
• o'~i form an orthonormal set, hence: 

( >.i ~1 * (~1 *)T + ' 0
" + AJ ~j * (~j •f) d = §.1 Af ~1· + ' 0

• + §.j )..~ ~j * 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.9) 

(B.lO) 

(B. H) 

This is the total least-squares solution of the contour integrals. In section 2.3.4 these equations are 
combined with the matrix equation obtained from the tangential stress condition, Eq. (2.30), after 
that the latter is being treated in a similar way as described above. 
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Appendix C 

Surface tension distributions 

Two surface tension distributions are tested: 

• Case 1. 
Consider a bar of cotton wool wetted in ethanol. This bar is positioned just above the water 
layer at x = 0. Surface tension gradient S, and surface tension Sgr are derived since ethanol is 
absorbed in the water just after t 0. The ethanol start to spread over the surface of the layer 
and evaporates simultaneously. At t (J all ethanol will have disappeared. This implies that at 
x = 0 a = awater,air (72.3 X 10-3) for t = 0 and t (J. For 0 < t < (J the properties are based 
on a normal distribution in time. In Fig. 2.6 plots of the surface tension gradient Sx and the 
surface tension Sgr are shown for 0 < t < (J. Fort > (J, S, = 0 while Sgr = awater,air/ t::..a, which 
implies that there is no effect of ethanol on the surface tension any more. It is assumed that the 
ethanol does not reach the right wall, so at x = 1 a = awater,air at all times t. Furthermore, at 
x = 0 and x = 1, S, 0 for all times t. Due to diffusion the gradient of the surface tension has 
a maximum moving in time from a location near x 0 to the right and it reaches its largest 
value at t = 0.35. At x = 0 S9,. then has its lowest value. Sx and Sgr for 0 < t < (J are given by: 

S., = {sin [ 1r ( 1 - ( 1 - x) f)] T ( 1 - x) f 1 ~ x ; 3 } x 

L (t (t- (3))2 

j1 +(A ~:) 2 
(C.1) 

awater,air 4 { 1 + [ = t::..a - (34 cos 1r (C.2) 

with (J v'2/2. The dimensionless surface tension Sgr equals awater,air/ !::.a at x 1. These 
distributions are analogous to the ones used in the literature for similar models [l3][14J[l6]. Gaver 
et al. [13][16] and Jensen et al. [14] consider the effect of an initially deposited surface monolayer 
of surfactants on the surface tension. They study transient effects during which surfactants 
absorb from the monolayer into the bulk. This surfactant distribution. and thus the driving 
force of the method, has a similar shape as the surface tension. The surface tension Sgr is 
similar to the spreading parameter as defined by Gaver et al. and Jensen et al. 

• Case 2. 
This test case is constructed to study exchange of momentum in the fluid layer. By choosing 
a step function for the surface tension gradient the fluid is set into motion. The viscous shear 
stress takes care of the exchange of momentum with lower layers. This case is similar to the 
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diffusion problem, first analyzed by Rayleigh: an infinite plate that is suddenly put into motion 
with velocity V. 

The governing equation is : 

with v = Jt/ p. 
Initial and boundary conditions are: 

t = 0 u(x,y,O) 0 
t>O y=O u(x,O,t)=O 

y ..... oo u(x,oo,t)-+V 

The solution of the problem is given by: 

u(x,y,t) = 1- erf('I/J) 
V 

with 1/J = y / v'4l/t and er f( 1/J) the error function 2/ y'i fo"' e-"'
2 
dx. 

For the boundary layer thickness this solution yields, according to Rayleigh: 

{j = a.vfvi 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

with v the kinematic viscosity, t the time and a. a constant depending on the configuration. 
Higher viscosities and larger times correspond to an increasing boundary-layer thickness. 

Sx and Sgr are calculated using the leading term of the tangential stress condition T = Jt 8uj8y 
and are based on the solution given in Eq. (C.5). This means that a direct coupling between the 
prescribed surface tension gradient Sx and the established velocity gradient 8uj8y is realized. 

Consider the velocity expansion of Eq. (2.16), which can be written by shifting the variable in 
x- and y-directions: 

nk<=-1 n.:c-1 

u L dk sin(7r(k+1)x) L d;(*)i+l 
k=O i=O 

(C.7) 

In x-direction a parabolic function is fitted with the d~c-coefficients to the sine-series. In y­
direction a function based on e->.(l-c) is fitted with A a time-dependent dantping coefficient. 
This function is closely related to the error function and ensures that the gradient increases 
gradually in time. It is assumed that A 60 at t = 0.01 and A = 1 at t 0.28. At y = 1 this 
power function equals 1, for y < 1 it decreases quickly. 

Multiplying the functions in x- and y-direction results in the velocity expansion in shifted vari· 
abies. 8uf8y can easily be found by differentiating the velocity u. y h is substituted in 
8uj8y, since the surface tension gradient is prescribed at the interface. Now Sx is known from 
the tangential stress condition. The corresponding S0 , is calculated by J (Sx/ L) ds, see Eq. (2.8 ). 
The integration constant is evaluated imposing the surface tension difference between water and 
alcohol at the positions x == 1 and x 0, respectively. 
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Appendix D 

Analytical derivation of 
time-dependent bm-coefficients 

More details about this appendix are described by Pijnappel et al. [33]. 

D .1 Extra linear term 

Let O:k = Ef,::o-1 di,k/(i + 2). Let N denote the value at which truncation takes pla.ce. Since the 
kinematic boundary condition is essential in the prediction of the time evolution of the interface, 
expansion 3.3 has been selected such that the kinematic boundary condition is satisfied for N-+ oo. 
The right-hand side and left-hand side are by this choice easily combined. Substituting Eq. (3.3) in 
Eq. (2.40) gives: 

d;t = -~ [n~l {~ O:k (< -1)1+1([ + l)Tl+I,r-k + 11'TT!,r-k) 

+nE I ((l + l)rl+t,k-r + ( -ll1rrT!,k-r)} 

00 nke-1 

+E E 
r=nke k=l 

+ f: "tl { 0:~-l ( ( -1 )1( [ + 1 )Ti+I,r+k + 1!'TTI,r+k) 
r=O k=l 

+anke-t(l + l)Tt,r + O:nkc-1( -1)1
r11'Tt-l,r }] (D.l) 

D.2 Chebyshev polynomials 

If Eqs. {3.5) and (3.6) are substituted in the kinematic boundary condition, Eq. (2.40), the db/dt­
coefficient are found to be given by: 

dbo 
dt 

= 

nke-1 n 1c-l d oo 

- L L . i,k
2 
L max(2k + 1,2m)bm 

k=O i=O ~ + m=<O 

ntlntl i+
2 

{ f: (2k+2m+l)bm 
k=O i=O m=max(O,r-k) 
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+% (2k- 2m + l)b,. + m=~r+I ( -2k + 2m- l)bm} if 1' > 0 (D.2) 

L::..X(o,r-k) denotes L~=r-k if r > k, and L~=O if r < k. oo in Eq. (D.2) is truncated at N, inducing 
a negligible error. 
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AppendixE 

Thermovision system 

The thermovision system produces images of the for human eyes invisible infrared thermal radiation 
emitted by the object focussed on. It contains among other things an optical-mechanical scanning 
mechanism, infrared transparent optics (sapphire windows and collimators system) and a detector. 
The detector is an Indium Antimonide (InSb )-photovoltaic cell, sensitive in the spectral range from 2 
to 5.6 ftm, called the middle infrared wavelength band. The detector is mounted in a Dewar vessel. 
This vessel is filled with liquid nitrogen to cool the detector to a temperature of -196 °C. At this 
temperature the detector obtains a maximum sensitivity. The intensity of the emission impinging on 
the detector is a measure for the temperature. Each photon has an energy as given by Eq. (4.1), so 
the number of photons per second per square meter gives the intensity. Since the InSb-detector counts 
photons, the number of photons is a measure for the local temperature at an instance. The relation 
between intensity and temperature is derived using Planck's formula and the Stefan-Boltzmann law. 
The former gives the spectral radiation distribution of a black body within a spectral intervai of 1 ~-tm 
at wavelength A, Wb.\ in W fm2~-tm: 

2 1r h c2 _ 6 

wb.\ =As (eCM) -1) x 
10 (E.l) 

with: c the light velocity in vacuum, 3.0 x 108 m/s, h Planck's constant, 6.6.x 10-34 J fs, k Boltzmann's 
constant 1.4 x 10-23 J /K and T the absolute temperature in K. The latter results in the total radiant 
emittance (Wb) of a black body in W /m2, obtained by integration of Planck's formula from A= 0 to 
A= oo: 

(E.2) 

with (}" the Stefan-Boltzmann constant, 5.7 X w-s w /(m2K4 ). From Planck's formula for a black 
body divided by the energy per photon, see Eq. 4.1, is written: 

21rc 
(E.3) 

1\4 ( e( M) - 1) 
with Nb.\ the spectral photon emittance. Using Stefan-Boltzmann's law the total radiant emittance is 
given by: 

(E.4) 

with Nb the total photon emission counted by the detector per second and per square meter. Eq. {E.4) 
shows that the total photon emission per second and per square meter detected by the camera, and 
thus the intensity, is proportional to the third power of the absolute temperature. In practice, this 
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relation means that for temperatures outside the range of 20 to 40 °C calibration curves must be made 
and that the relation is linear for temperatures inside this range. For an opaque grey body the number 
of photons emitted at a specific temperature is Nb = f 0.37 u T3 / k, with f the emission coefficient. 

The intensity from the scanner impinging on the detector generates an electrical voltage signal. 
The amplitude of the signal varies according to the point by point temperature variation along the 
surface of the object as it is being scanned by the camera. This signal is via an AD converter translated 
into an 8-bits number (0- 255), representing the local temperature, which is transported to a 486-PC. 
Software is used written for our purposes specifically to detect these signals, to present them on a 
screen and to store them on disk. In this way postprocessing of the results enables us to interpret the 
measurements more easily. The PC is via a multilab (data acquisition system) connected to a Pt-100 
element, used for calibration purposes. Software is implemented to facilitate calibrations. 
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Sensadyne 6000 surface tension meter 

A constant volume flow of an inert gas (nitrogen) is bubbled slowly through two probes of different 
radii (r1 and r2) immersed in the test fluid. Therefore, below the tubes gas-bubbles are formed, see 
Fig. F.l. The maximum pressure is obtained when the radius of the bubble-curvature is minimum. The 

in 
=> 

liquid 

Figure F.l: Set-up of SensaDyne surface tension meter 

differential pressure signal b.P is measured by means of a differential pressure transducer, see Fig. F ,2, 
consisting of a thin stainless steel diaphragm between two cavities inside a body. The diaphragm flexes 
to one side or the other in response to the pressure of the bubbles at the two orifices. The pressure 
drop is a measure for the fluid surface tension C! through the relation: 

2C! 2C! 
b.p = P1 - P2 = (pgL +-)- (pgL +-) 

r1 r2 
(F.l) 
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Figure F.2: Principle of surface tension meter 

with L the depth in the fluid. The nitrogen expands slowly, so inertia forces are negligible. The probes 
are placed at equal depth L in the fluid, so: 

(F.2) 

Pressure variation is established since the rate of bubble formation at the small orifice is larger than 
that of the larger orifice. Therefore the pressure transducer contains cascaded pressure regulators 
to control and regulate these pressure variations. Separate metering valves at each orifice control 
the bubble time-rate frequency selection and the bubble rate ratio of the large to the small orifice. 
The differential pressure signal measured by the pressure transducer is a combination of the separate 
pressures which are measured at both orifices. Due to the differences in bubble rate frequency at 
both orifices the signal of the pressure transducer is not periodical. Therefore Eq. (F.2) is not directly 
applicable to determine the surface tension. However, the surface tension sensor package includes 
a filter circuit which separates the original pressure signal at both the orifices from the differential 
pressure signal. Next, the variation in amplitude of the pressure at the large orifice is filtered from the 
resulting signal which is a measure for l:!.p of Eq. (F.2). Now the surface tension can be determined 
from Eq. (F.2). 
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Velocity measurements 

Velocity measurements of the experiments. 

experiment time [s] dista.nce [mm] u [mm/s] u avg. [mm/s] 
1 5.5 5.2 4.8 3.8 8.5 1.55 1.63 1.77 2.18 1.76 ± 0.22 

3.9 5.2 6.8 5.0 8.7 2.23 1.67 1.28 1.74 
2 5.2 4.5 4.0 4.2 8.5 1.63 1.89 2.13 2.02 1.72 ± 0.21 

6.1 6.0 5.4 6.0 8.7 1.50 1.21 1.53 1.85 
3 5.5 6.1 5.3 5.8 8.5 1.55 1.39 1.60 1.47 1.43 ± 0.18 

6.1 6.0 5.4 6.0 8.7 1.43 1.45 1.61 1.45 
8.4 5.6 7.0 7.0 8.5 1.01 1.52 1.21 1.21; 
5.2 5.6 6.7 7.0 8.7 1.67 1.55 1.30 1.24 

4 7.2 7.5 6.4 - 8.5 1.17 1.12 1.31 - 1.21 ± 0.15 
6.7 6.7 7.8 - 8.7 1.28 1.28 1.10 -

Table G.l: Velocity measurement of the experiments. The (averaged) velocity for various particles 
are determined by measuring the time needed to travel along two paths between two sets of vertical 
lines, one 8.5 and one 8. 7 mm apart, respectively. 
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Appendix H 

Temperature gradient measurements 

The temperature gradient measurement ( D.T / D.x) of the experiments for various times are shown in 
this appendix. The temperature difference (D.T) is determined over the part of the cavity where the 
temperature varies linearly ( D.x) at z = 0 (in the middle of the cavity). 

D.x [mm D.T/D.x [K/mm] 
28.3 0.17 ± 0.01 
30.9 0.15 ± 0.01 
30.9 0.16 ± 0.01 
30.9 0.15 ± 0.01 

91 32.8 0.20 ± 0.01 
104 4.7 27.1 0.17 ± 0.01 
118 5.7 27.1 0.21 ± 0.01 

Table H.1: Temperature gradient in x-direction for experiment 1. 

Table H.2: Temperature gradient in x-direction for experiment 2. 
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time I AT Ax AT/Ax 

"'" v.J. 19.4 0.16 ± 0.02 
59 3.5 23.5 0.15 ± 0.01 
65 4.4 26.9 0.16 ± 0.01 
69 5.3 27.6 0.19 ± 0.01 
72 5.4 26.3 0.20 ± 0.01 
78 5.9 29.0 0.20 ± 0.01 
85 6.3 28.3 0.22 ± 0.01 

Table H.3: Temperature gradient in x-direction for experiment 3. 

time AT Ax AT/Ax 
78 4.3 35.3 0.12 ± 0.01 
91 4.1 25.8 0.16 ± 0.01 
104 5.3 25.8 0.20 ± 0.01 
118 7.8 25.8 0.30 ± 0.01 

Table H.4: Temperature gradient in x-direction for experiment 4. 
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Thermocouple measurements 

The results from five thermocouple measurements inn-paraffin Cto- C13 (situation 1, see Fig. 4.11) 
are tabulated in tables I.1, L2, 1.3, 1.4 and I.5. At t = 0 s the voltage over the wire is switched on. At 
t = 30 s the temperature of the first thermocouple is registered, subsequent thermocouples are read 
after each 5 s. For every experiment the interpolated values for the temperatures at four successive 
instants in time are given using the temperature measurements. 

exp. 1 Tt T2 T3 T4 Ts T6 T1 Ts T9 
t=70 23.6 25.1 26.2 24.0 23.5 24.7 21.7 21.0 21.2 
t=115 26.4 27.5 28.4 26.6 25.6 27.0 23.0 21.8 22.1 
t=160 28.5 29.3 29.8 29.0 27.4 29.0 24.3 22.8 23.1 
t=205 30.0 30.7 31.2 30.7 28.9 30.6 25.4 23.7 24.2 

Table 1.1: Thermocouple experiment 1 with n-paraffin C10 - C13 in situation 1. 

The results of the thermocouple measurements (situation 2, see Fig. 4.12) of n-paraffin C10 -C 13 are 
tabulated in table 1.6, 1.7, 1.8 and 1.9 of glycerol in table 1.10 and in water in table 1.11. At t = 0 s the 
voltage over the wire is switched on. At t 5 s the temperature of the first thermocouple is registered, 
subsequent thermocouples are read after each 5 s. For every experiment the interpolated values for 
the temperatures at four successive instants in time are given using the temperature measurements. 
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exp. 2 Tt T2 T3 T4 Ts T6 T1 Ts T9 
t=70 22.9 23.7 24.6 22.8 22.2 23.5 20.9 20.4 20.6 
t=ll5 25.8 26.7 27.2 25.4 24.1 25.6 22.0 21.2 21.3 
t-160 27.2 28.1 28.7 27.2 25.6 27.2 23.0 21.9 22.2 
t=205 28.4 28.7 29.1 28.5 26.8 28.5 24.0 22.8 23.1 

Table 1.2: Thermocouple experiment 2 with n-paraffin C10 C13 in situation 1. 

exp. 3 T1 T2 T3 T4 Ts Te T1 Ts T9 
t=70 22.5 23.6 24.3 22.3 21.7 23.0 20.5 20.2 20.3 
t=115 25.0 25.9 26.5 24.7 23.5 25.0 21.5 20.8 21.0 
t=160 26.5 27.3 28.0 26.5 25.0 26.6 22.5 21.5 21.8 
t=205 27.8 28.5 28.7 28.0 26.4 28.0 23.6 22.3 22.7 

Table 1.3: Thermocouple experiment 3 with n-para.flin C1o C13 in situation 1. 

exp. 4 T1 T2 T3 T4 Ts Ts T1 Ts T9 
t=70 22.1 23.5 24.3 22.0 21.5 22.7 20.3 19.9 20.0 
t=115 24.2 25.7 26.4 24.1 23.1 24.5 21.2 20.5 20.7 
t=160 25.8 27.0 27.6 25.8 24.5 25.9 22.1 21.2 21.5 
t=205 27.2 28.3 29.0 27.1 25.6 27.2 23.1 21.9 22.2 

Table 1.4: Thermocouple experiment 4 with n-para.flin C10 - C13 in situation 1. 

exp. 5 Tt T2 T3 T4 Ts Te T1 Ts T9 
t=70 23.5 24.9 25.9 23.2 22.5 23.8 21.1 20.7 20.9 
t=115 25.5 26.7 27.6 25.5 24.3 25.8 22.1 21.4 21.6 
t=160 27.3 28.0 28.7 27.2 25.8 27.3 23.2 22.2 22.4 
t=205 28.4 29.0 29.4 28.6 27.0 28.6 24.2 

Table 1.5: Thermocouple experiment 5 with n-para.flin C10 - C13 in situation 1. 
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exp. 6 Tt T2 T3 T4 Ts Ts T9 
t=45 23.6 25.5 26.3 23.8 24.0 22.4 23.3 
t=90 28.0 31.3 31.9 24.3 26.2 
t=135 32.4 36.0 36.4 26.1 29.0 
t=180 36.0 39.9 40.0 31.9 

Table 1.6: Thermocouple experiment 6 with n-paraffin C10 - C13 in situation 2. 

exp. 7 Tt T2 T3 T4 Ts Te T1 Ts T9 
t=45 29.4 30.8 31.1 29.1 29.1 31.0 26.6 26.5 28.4 
t=90 38.0 40.0 40.8 38.1 36.4 40.2 31.7 29.1 33.0 
t=135 45.4 47.4 48.7 46.2 42.8 47.9 35.7 32.7 38.1 
t=180 51.1 53.4 54.9 52.6 48.6 53.7 39.9 36.3 43.0 

Table 1.7: Thermocouple experiment 7 with n-paraffin C10 - C13 in situation 2. 

exp. 8 Tt T2 T3 T4 Ts Ts T9 
t=45 24.3 25.8 26.6 24.4 24.3 25.1 23.8 
t=90 28.9 31.1 31.3 28.8 28.2 30.3 27.0 
t=135 30.6 34.9 35.4 32.6 31.3 31.1 27.5 26.0 29.0 
t=180 35.9 38.1 38.9 35.7 33.9 37.0 29.4 27.7 31.2 

Table 1.8: Thermocouple experiment 8 with n-paraffin C10 - C13 in situation 2. 

T4 Ts Ts T1 Ts T9 
27.4 26.7 28.3 24.4 24.4 26.7 
34.7 32.6 35.7 28.4 26.6 30.0 
40.9 37.6 41.7 31.6 29.3 33.5 
46.4 37.5 46.5 34.9 32.1 37.3 

Table 1.9: Thermocouple experiment 9 with n-paraffin C10 - C13 in situation 2. 
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Appendix I. Thermocouple measurements 

exp. 10 Tt Tz T3 T4 Ts T6 T1 Ts T9 
t==180 - 29.2 30.3 28.7 29.2 29.6 28.9 29.3 29.4 
t==360 29.8 31.8 28.9 29.7 30.7 28.9 29.5 31.1 

I t==540 29.6 31.3 33.6 29.3 31.2 32.7 29.3 30.5 31.7 
t==720 31.0 33.0 36.0 30.6 32.8 34.7 30.3 31.8 33.2 
t==900 32.5 34.4 37.2 31.9 34.0 36.0 31.3 32.8 34.6 

Table 1.10: Thermocouple experiment 10 with glycerol in situation 2. 

exp. 11 Tt T2 T3 T4 Ts T6 T1 Ts T9 
t==45 22.6 22.0 22.9 22.0 22.2 22.4 22.0 21.9 22.0 
t=90 23.1 23.6 24.9 22.7 23.0 23.9 22.5 22.3 22.6 
t=135 24.2 25.4 25.8 24.1 24.3 25.1 23.2 22.9 23.5 
t=180 25.0 26.9 26.6 25.4 25.4 26.0 23.7 23.5 29.5 

Table 1.11: Thermocouple experiment 11 with water in situation 2. 
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List of symbols 

Symbols 
A aspect ratio, A = h'QI L [-] 
a,b,d time-dependent spectral coefficients [-] 
Eo Bond number, Eo= p g L2 lu [-] 
c dimensionless height, ylh, see chapter 2 [-] 

dimensionless radius, r I R, see chapter 5 [-] 
heat capacity, see chapter 4 and 6 [JI(kgK)] 

D D =A 8hl8x, see Eq. (2.12) [-] 
e e = 8dl8t [-] 
!k function [-] 
g gravity constant: 9.81 [mls2

] 

Gr Grashof number, Gr = (3 g b.T L3 I v2 [-] 
h interfacial height, h = h(x, t) [m] 
H cavity height [m] 
j number of significant singular values of equations 

resulting from contour integrals [-] 
L cavity length [m] 
M a Marangoni number, M a= (8ui8T) b.T Ll (p v ~~:) [-] 
N N = (1 + D2)

1
/

2
, see Eq. (2.14) [-] 

nb number of coefficients in expansion of interfacial height, 
see chapter 2 [-] 
number of coefficients in expansion of interfacial radius, 
see chapter 5 [-] 

n; number of collocation points in ycdirection, 
see chapter 2 [-] 
number of collocation points in r-direction, 
see chapter 5 [-] 

n;c highest power of polynomial-expansion in y-direction, 
see chapter 2 [-] 
highest power of polynomial-expansion in r-direction, 
see chapter 5 [-] 

nk number of collocation points in x-direction, 
see chapter 2 [-] 
number of collocation points in 8-direction, 
see chapter 5 [-] 

nkc highest mode of Fourier-expansion in x-direction, 
see chapter 2 [-] 
highest order of polynomial in 8-series, 
see chapter 5 [-] 
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nt 
p 
r 

R 
Re 
Rm,Rp,Rs 
R1,Rz 
Sgr 

S" 
t 
Tk 
u 
V 

w 
r, s, x, y, z 

Greek symbols 

p 
(J' 

T 

Subscripts 
a 
g 

i,k,m 
li 
0 

Superscripts 

T 

number of exponential functions 
pressure 
number of significant singular values of tangential stress condition 
interfacial radius of drop 
Reynolds number, Re= D.u A h~ Po/J12 , see Eq. (2.8) 
defined functions, see chapter 5 
radii of curvature 
Sgr ufl:lu 
surface tension gradient in x-direction 
time 
Chebyshev polynomial 
velocity component in x-direction, u = u(x, y, t) 
velocity component in y-direction, v = v(x,y,t) 
cavity width 
coordinates 

parameter of surface tension profile, see Eq. (C.l) 
volumetric expansion coefficient, see chapter 4 
angle 
thermal diffusivity, K, = >.f(pc) 
spreading parameter, see Eq. (C.2) 
timestep 
temperature difference 
eigenvalue 
heat conductivity 
dynamic viscosity 
kinematic viscosity 
mass density 
surface tension 
cubic spline functions, see chapter 5 

average 
gas 
integers 
liquid 
initial 

dimensional, see chapter 2 and 3 and section 7.2 
transposed 
matrix or vector with deficient rank 
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List of symbols 

[-] 
[N/m2

] 

[-] 
[mm] 
[-] 
[-] 
[mm] 
[·] 
[·] 
[s] 
[·] 
[m/s] 
[m/s] 
[m] 
[m] 

[·] 
[1/K] 
[rad] 
[m2/s] 
[N/m] 
[·] 
[K] 
[·] 
(W/(mK)J 
[Ns/m2] 

[m2/s] 
[kg/m3] 

[N/m] 
[·] 



Summary 

In the design of process equipment the prediction of fluid flow and gas-liquid interface behaviour is 
of great importance. A gradient of the surface tension along a gas-liquid interface causes forces that 
sometimes dominate the liquid flow. The resulting so-called Marangoni convection is studied both 
numerically and experimentally for two configurations: 

• A thin liquid layer in a cavity heated from above by a straight wire. 

• An axisymmetrical droplet on a plate cooled uniformly from below. 

A numerical method is presented that predicts the time evolution of the velocity field and the inter­
face deformation caused by the Marangoni effect. The algorithm simultaneously solves the tangential 
stress boundary condition at the free interface and the so-called contour integrals. These contour 
integrals combine the Navier-Stokes equations and the normal stress boundary condition. An adapted 
Singular Value Decomposition (SVD) method is employed in the approach which automatically weights 
the importance of the contour integrals and that of the tangential stress condition. 

The method is found to accurately reproduce an analytical solution for a heated thin liquid layer 
in steady motion. The velocity expansion converges rapidly and the tangential stress condition at the 
interface is satisfied within adequate order of magnitude. Variation of the parameters of the algorithm, 
such as the number of collocation points, the number of expansion coefficients, the viscosity and aspect 
ratio showed that the algorithm is robust and established some parameter limitations. Alternative 
expansions are recommended to accommodate specific sets of boundary conditions. Results of the 
numerical simulation are comparable with results of similar investigations found in the literature. 

The temperature gradient along the interface of a liquid layer is measured and the flow in the bulk 
of the liquid is visualized. A quasi-stationary flow is established during the first 90 s of heating with 
an almost constant surface tension gradient. 

In the droplet experiments, the temperature gradient increases from the top to the foot of the 
droplet. Also velocities increase in this direction. In time, the temperature gradient vanishes since 
the Marangoni flow homogenizes the temperature in the droplet. Small roll-cells near the foot of the 
droplet are observed and larger roll-cells elsewhere. 

The predicted velocities in the liquid layer are in quantitative agreement with the measured veloc­
ities. The predicted flow pattern in the droplet corresponds well to the :flow pattern observed in the 
experiments. 
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Samenvatting 

Het voorspellen van vloeistofstromingen en het gedrag van gas-vloeistof grensvlakken is voor het 
ontwerpen van proces-installaties van groot belang. Een gradient in de oppervlaktespanning aan een 
gas-vloeistof grensvlak veroorzaakt krachten die soms de stromingen in de vloeistof domineren; De 
ontstane stromingen, Marangoni convectie genoemd, worden zowel numeriek als experimenteel bestu­
deerd voor twee configuraties: 

• Een dunne vloeistoflaag in een caviteit die van bovenaf wordt opgewarmd door een rechte draad 
parallel aan het grensvlak. 

• Een axisymmetrische druppel op een p~aat die van onderaf uniform wordt gekoeld. 

Een numerieke methode wordt gepresenteerd die de tijdsevolutie van het snelheidsveld en de 
grensvlak-vervorming voorspelt die worden veroorzaakt door het Marangoni effect. Het algoritme 
voldoet aan de tangentiele spanningsvoorwaarde aan het vrije grensvlak, tegelijkertijd wordt voldaan 
aan de contourintegralen. Deze contourintegralen combineren de Navier-Stokes vergelijkingen met 
de normale spanningsvoorwaarde aan het interface. Een aangepaste singuliere waarde ontbinding 
(SVD) is toegepast die automatisch het belang van de contourintegralen en dat van de tangentiele 
spanningsvoorwaarde weegt. 

De methode reproduceert de uit de literatuur bekende analytische oplossing voor een verwarmde, 
dunne vloeistoflaag. De snelheidsexpansie convergeert snel en aan de tangentiele spanningsvoorwaarde 
aan het grensvlak wordt overal voldaan binnen een bepaalde nauwkeurigheid. Parameter-variatie zoals 
het aantal collocatiepunten, het aantal expansie-coefficH\nten, de viscositeit en de hoogtefbreedte ver­
houding tonen aan dat het algoritme robuust is en laten zien hoe het model kan worden toegepast. 
Alterna.tieve expansies zijn gevonden en gebruikt om te kunnen voldoen aan specifieke sets van rand­
voorwaarden. Simulatie-resultaten zijn vergelijkbaar met die van vergelijkbare onderzoek uit de liter­
atuur. 

De temperatuurgradient aan het grensvlak van een vloeistoflaag is gemeten en de stromingen in 
de vloeistoflaag zijn gevisualiseerd. Gedurende de eerste 90 s ontstaat een quasi-stationaire stroming 
met vrijwel constante oppervlaktespanningsgradient. 

Uit experimenten met een druppel blijkt de temperatuurgradient van top tot voet van de druppel 
toe te nemen. De snelheden nemen ook toe in deze richting. De temperatuurgradient neemt af in 
de tijd omdat de Marangoni stroming de temperatuur in de druppel homogeniseert. Kleine circulaire 
cellen bij de voet van de druppel en grotere op andere plaatsen zijn waargenomen. 

De voorspelde snelheden in de vloeistoflaag stemmen kwantitatief overeen met de gemeten snel­
heden. Het voorspelde stromingspatroon in de druppel komt goed overeen met het stromingspatroon 
zoals waargenomen in de experimenten. 
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STELLINGEN 

behorende bij het proefschrift 

Marangoni Convection: Numerical Model and Experiments 

1. De twee-dimensionale stromingsmethode, zoalS" beschreven in hoofd­
stuk 2 van dit proefschrift, kan worden aangewend in een methode 
waarbij het rekendomein wordt verdeeld in segmenten met voor elk 
segment geschikte expansies. 
Dit proefschrift, hoofdstuk 2. 

2. De numerieke methode zoals beschreven in hoofdstuk 2 is robuust in 
de zin dat voor bestudeerde test cases verschillende expansies dezelfde 
resultaten geven. 
Dit proefschrift, hoofdstuk 3. 

3. Een temperatuur distributie ontstaan ten gevolge van Marangoni con­
vectie of ten gevolge van diffusie hangt af van eigenschappen van de 
vloeistof, met name de viscositeit en de gevoeligheid van de vloeistof 
voor vervuiling. 
Dit proefschrift, hoofdstuk 4. 

4. De zogeheten destillocapillaire convectie geinduceerd in de meniscus 
van een waterlaag zich bevindend op een hydrofiel oppervlak, resul­
teert in een droger oppervlak dan bij een conventionele techniek zoals 
centrifugeren kan worden bereikt. 
J. Marra en J.A.M. Huethorst, Physical principles of Marangoni dry­
ing, Langmuir 1, pp. 2748-2755, 1991. 



5. Indien Marangoni convectie optreedt in condensdruppels op kunststof 
warmtewisselaars kan dit de warmteoverdracht naar de warmtewisse­
laar verbeteren. 
C. W.M. van der Geld en H.J.H. Brouwers, The mean condensate heat 
resistance of dropwise condensation with flowing, inert gases, lnt. J. 
Heat and Mass Transfer 30 , pp. 435-445, 1995. 

6. Het kwanti:ficeren van destillocapillaire convectie is momenteel nog 
moeilijker dan die van thermocapillaire convectie omdat technieken om 
een concentratiegradient langs een interface te meten nog niet zo goed 
zijn ontwikkeld als die voor het meten van een temperatuurgradient 
langs een interface. 

7. Het voortdurend up to date houden van software wordt door sommigen 
verheven tot doel in plaats van dat het eigenlijke gebruik ervan wordt 
gezien als hulpmiddel. 

8. Het handhaven van de internationale vrede is gebaseerd op economisch 
eigenbelang. 

9. De milieu-problematiek is door de jaren heen steeds meer een mode 
verschijnsel geworden. Het wordt tijd voor een nieuwe collectie. 

10. Het getuigt van kennis om je onwetendheid te tonen. 

11. Hoe meer kennis je vergaart, des te duidelijker wordt het dat er nog 
veel kennis te vergaren is. 

12. Tegenwoordig worden veel applicaties zoals bijvoorbeeld tekstverwer­
kers zo groot dat het werken ermee te vergelijken is met "het naar de 
bakker gaan in een Boeing 7 4 7". 
H. Blankesteijn in "Technisch Weekblad", 19-04-1995. 

Anton den Boer 
Tilburg, september 1996 


