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Abstract

Purpose – Imperfactions in manufacturing processes may cause unwanted connec-
tions (faults) that are added to the nominal, "golden", design of an electronic circuit.
By fault simulation one simulates all situations. Normally this leads to a large list
of simulations in which for each defect a steady-state (DC) solution is determined
followed by a transient simulation. We improve the robustness and the effciency of
these simulations.
Design/methodology/approach – Determining the DC solution can be very
hard. For this we present an adaptive time domain source stepping procedure that
can deal with controlled sources. The method can easily be combined with existing
pseudo-transient procedures. The method is robust and efficient.
In the subsequent transient simulation the solution of a fault is compared to a
golden, fault-free, solution. A strategy is developed to efficiently simulate the faulty
solutions until their moment of detection.
Finding – We fully exploit the hierarchical structure the circuit in the simulation
process to bypass parts of the circuit that appear to be unaffected by the fault.
Accurate prediction and efficient solution procedures lead to fast fault simulation.
Originality/value – Our fast fault simulation helps to store a database with de-
tectable deviations for each fault. If such a detectable output "matches" a result of
a product that has been returned because of malfunctioning it helps to identify the
subcircuit that may contain the real fault. One aims to detect as much as possible
candidate faults. Because of the many options the simulations must be very efficient.
Keywords Source stepping, Pseudo transient, Fast fault simulation, Low-rank ap-
proximations, Hierarchical simulation, Bypassing, Sensitivity analysis
Paper type Research paper
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1 Introduction

Imperfactions in manufacturing processes may cause unwanted connections (faults) that
are added to the nominal, "golden", design. Here we only consider bridges, linear resistors,
as faults. There can be a large variation in location and in resistor value. For each faulty
circuit (each with only one fault) one wants to determine if its solution differs from the
golden solution. Then the fault is detectable. To reduce the overal time-domain simulation
we are interested in fast fault simulation.
The electronic circuit equations can be written as [6, 14]

d

dt
q(x) + j(x) = s(t,x). (1)

Here s(t,x) represents the specifications of the sources. The unknown x = x(t) consists
of nodal voltages and of currents through voltage defined elements. We assume that
q(0) = 0, and j(0) = 0.
The steady-state solution, which is called DC-solution (Direct Current solution), xDC,
satisfies

j(xDC) = s(0,xDC). (2)

Usually the DC-solution provides the initial value for the transient problem (1). The
importance of the DC-problem lies in the fact that the DC-solution is crucial as starting
solution for a number of next analyses (transient analysis, AC analysis, Harmonic Balance
analysis, Periodic Steady-State analysis). In general, the problem (2) is non-linear and
in several cases it is hard to solve. How to solve this problem will be described in Section
2.
In general, (1) forms a system of Differential-Algebraic Equations (DAEs). We assume
that the DAE has at most differentiability-index 1 [6].
In [5, 6] methods for the time integration of the circuit equations (1) are discussed. In
Section 3 we will give some more details. However, our paper will restrict mostly to
Euler-Backward time integration.
In Section 3 we will consider the problem how to efficiently perform time integration
of (1) when we add a resistors between nodes that may be chosen randomly. For each
resistor value several values may be taken. Also we may encounter a large sequence of
resistors. For each occurring resistor value we have to determine if the corresponding
solution defers from the faulty-less solution. That being the case means that the fault
is detectable. If such a detectable output "matches" a result of a product that has been
returned because of malfunctioning it helps to identify the subcircuit that may contain
the real fault. One aims to detect as much as possible candidate faults. Because of the
many options the simulations also must be very efficient.

2 Solving the DC-problem

To solve the equations (2) Newton’s method, or variants, may be applied [3,6,14], which
can be combined with gmin-stepping, in which linear conductors g are placed parallel
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to the non-linear part inside each transistor (device). Iteratively g ↓ gmin, after which
the Newton iteration counter is increased. Another approach is Pseudo-Transient [2]. In
Pseudo-Transient (PT) one can use relaxed tolerances for the Newton process and for
the time step control procedure. Also this can be combined with gmin-stepping during
each time step. In PT one has to provide a nontrivial initial solution. This has led to
a strategy "A → B → C → D", to sequentially try a new method when the previous
process was not successful. Here the methods are A : Newton without gmin-stepping; B :
Newton with gmin-stepping; C : PT without gmin-stepping; D : PT with gmin-stepping.
In general the next process is more robust than the previous one, but it also needs more
cpu.
A new procedure, Source Stepping by Pseudo Transient (SSPT), is decribed in the next
section 2.1. It modifies existing Pseudo Transient methods [2], [3, Section 6.4] in the
case of controlled elements. Other methods are: temperature stepping, source stepping
(SS, the sources are iteratively increased to their final value), homotopy methods, or
optimization [1,4,8,13,14]. In [13] a good example is shown for a simple circuit in which
default homotopy fails.

2.1 Time-domain Source Stepping

Usually, in Source Stepping (SS) one introduces a parameter λ and considers the problem

j(x(λ)) + λs(0,x(λ)) = 0. (3)

In this case it is assumed that for λ = 0 the problem (3) is easily solved so that in the
end the original problem is solved. The same parameter λ is applied to all sources s
in the circuit. In general, for each value of λ a nonlinear problem has to be solved. In
principle one can offer a sequence of problems to the simulator to mimic this process. The
method is indicated in Fig. 1 (left). One sequentially solves the problem for λ = j/N ,
j = 0, 1, . . . , N , continuing from the solution of the previous step.
We introduce a time-domain variant (SSPT, Source Stepping by Pseudo Transient) that
offers an automatic continuation process, based on PT and adapting the transient stepsize
and the λ stepsize at the same time. We define a time t = T at which we want to have
solved the original DC-problem. We also introduce a time Tα = αT (by default α = 0.5)
at which ordinary PT will start simulation using the sources as in the original DC-
problem, i.e., using λ = 1 and where PT integrates from Tα to T ′, where T ′ ≤ T is the
point where all transient effects have become negligible (see also Fig. 1, right).
On the interval [0, Tα], a special PT integration is performed with the function λ(t) =
t/Tα. Hence, at each time step, also the actual applied source values change. The interval
[0, Tα] is the switch-on interval, the interval [Tα, T ] is the interval to damp-out transient
effects. On both intervals PT uses an automatic time step determination procedure. On
the interval [Tα, T ] an ordinary PT procedure is executed. Hence, if, at some time point,
the Newton iterative process does not converge, a re-integration will be done with a
smaller stepsize.

Recursion in controlled sources asks for a modification in (3), because in (3), λ may

3



E

λE

λ=1/Ν λ=2/Ν λ=3/Ν

Figure 1: Left: Source Stepping (SS): One sequentially solves the problem for λ = j/N
(j = 0, . . . , N), continuing from the final solution of the previous step. Right:
Source Stepping by Pseudo Transiient (SSPT). On [0, Tα] a time-dependent
voltage source λ(t)E is used where λ(t) = t/Tα. On [Tα, T ] we have λ ≡ 1.
Here for controlled sources we propose the modification (5)-(6).

affect the Newton-Raphson matrix when solving the non-linear systems. To derive a
better suited method we write the expression for an applied source value V (E1) (say) as

V (E1) = ψ(ev1, ev2, . . . , evn). (4)

As value during the source stepping at time t on [0, Tα] we propose to take

V (E1) = ψ̃(ev1, . . . , evn, t), where (5)
ψ̃(ev1, . . . , evn, t) = ψ(ev1, . . . , evn) + (λ(t)− 1)ψ(0, . . . , 0). (6)

Note that ψ(0, . . . , 0) has to be calculated once. Now λ will not show up in the matrix,
also in case of recursive ψ definitions. Clearly, for λ = 0 the applied voltage is zero (i.e.,
assuming starting from the zero solution, which implies that all ev’s are zero), which
makes the zero solution the exact solution. When λ = 1 the original voltage expression
is used. Since our equations (1) are DAEs we remark that for all t the generated solution
is consistent for the problem at hand. Because of the switch-on and the damp-out phase
the whole process mimics a real physical process. For an impression of the test results we
refer to Section 4.1. As will be shown there, the SSPT is robust, but also quite efficient.

3 Fast Fault Simulation

For time integration in circuit simulation one usually applies the Backward-Differen-
tiation Formulas (BDF) methods, or the Trapezodial Rule (TR), or a combination of
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BDF2 and TR. For a discussion on additional method see [5]. Here, for simplicity, we
just apply BDF1, being Euler Backward. We introduce some notation and recall some
general approaches in solving and stepsize control. Assuming time points tk+1 = tk + hk
(k ≥ 0) with stepsizes hk and approximation xn at tn, BDF1 calculates xn+1 by

qn+1 − qn

hn
+ jn+1 = sn+1. (7)

Here qk = q(xk, tk), jk = q(jk, tk), for k = n, n + 1. The source we simplified to
sn+1 = s(tn+1). The system is solved by a Newton-Raphson procedure. A fixed Jacobian
can reduce the number of LU-decompositions, but may increase the number of iterations
and thus the number of (costly) evaluations. In these cases the assembly of the matrices
is not much more effort. Here one may prefer to make a new LU-decomposition and (in
case of an hierarchical linear solver) to profit from hierarchical bypassing [5], which will
be exploited in Section 3.
Improvements in the time-domain integrations, after starting with a proper xDC, have
been tuned to fault analysis. To improve the analog and mixed-signal test development
defect-oriented testing has been introduced [7,12,16,17]. It consists of three major activi-
ties: fault extraction from the layout, transistor-level fault simulation and test generation.
We are concerned with the second part. Here we concentrate on linear bridges: resistors
that bring in new connections. The list of possible bridges is large. In addition, the resis-
tor values may be taken from a series of values. For the reference fault simulator, called
DOTSS (Defect-Oriented Test Simulation System) [16], existing circuit simulators are
used. Here every fault is simulated independently without taking advantage of the simi-
larities between faulty and fault-free circuits. Also the entire time interval is simulated for
each each fault. As a consequence, analog fault simulation of large mixed-signal circuits
is a major bottleneck in analog and mixed-signal testing. At specific measurement time
points the outcomes are stored in a database that can be used to determine the fault
coverage of the test set. Several researchers have proposed time-efficient fault simulation
methods. The work reported in [9] reduces the order of the fault matrix and improves
the state prediction for the faults. This is also what we aim for, but the methods we use
are very different.

3.1 Simultaneous Fault Simulation

The standard way of performing the Fault Simulation (until now) is performing a series
of sequential transient simulation runs. The runs are unrelated, i.e. every fault transient
run simulates the entire time interval without any reuse of the knowledge obtained from
the golden and previous fault runs. The main idea of the Fast Fault Simulation is the
reuse of the already obtained simulation data, especially from the golden run. Topological
differences between a fault and the golden circuit description are minor and local (one
resistor of difference only). Moreover, there are no additional unknowns introduced (new
nodes, currents, etc.), which makes matrix dimensions unchanged. Hence, in the Fault
Simulation it is reasonable to assume that most of the signals in the majority of runs,
during most of the time interval, are approximately the same. This can be exploited
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numerically to reduce the most expensive (in time) procedures for obtaining the solution.
To achieve this, we propose a parallel run, i.e. a transient simulation in which large
number of fault transient runs (including the golden one) are performed simultaneously,
using the same time step mechanism. This would allow us to reuse most of the results
and data structures (obtained for the golden run) and significantly improve the overall
simulation time. At a particular time point we can reuse generated matrices and even

Figure 2: Left: Standard sequential approach for the reference fault simulator DOTSS
(Defect-Oriented Test Simulation System). Right: Parallel approach with reuse
of computed data for fast fault simulation.

their decomposed versions for all circuit models which signals do not differ much from
the golden run. We can apply the Sherman-Morrison-Woodbury formula [10] to update
the inverse matrix, which improves the efficiency of the solver. Ideally, if a particular
fault result is almost the same as the golden run, we could obtain the solution almost
instantly (almost no additional efforts required). In situations where a fault result differs
significantly from the golden one, they can be computed separately, simply removing that
particular run from the group computed in parallel. The ingredients we exploit are:
• The submodel that contains a bridge is known.
• An extra port for submodels makes it possible to include bridges between submodels.
• Detection of an error is only done at special time points.
• All simulations use the same maximum time step thats was used by the golden solution.
•We extensively apply hierarchical localization of changes in order to exploit bypassing.
• We re-use the golden solution to provide predictions.
• We apply the Sherman-Morrison-Woodbury formula [10] (in an hierarchical form) to
efficiently solve the systems for each faulty solution.
• We abandon a fault simulation when we have detected a significant deviaton from the
golden solution.
• We improve the predictions by applying sensitivity techniques.
Here we will only describe the hierarchical steps and the sensitivity in some details.

3.2 Partitioning of the system

We assume that the circuit is defined in a hierarchical way.The linear solver in our
circuit simulator1 fullly exploits the hierarchical structure; for a description see [5]. A

1Pstar: inhouse analog circuit simulator of NXP Semiconductors
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graphical impression of an hierarchical organization is shown in Fig. 3 (left). At each
level the performance of a submodel Mijk depends on the terminal values provided by
its parent model Mij . It gives back its contribution to the equatons at the parent model.
Thus, normally, terminal voltages are provided and terminal currents are obtained. The
whole system is solved by a Newton solver. Hence contributions to the nonlinear residual
function as well as to its Jacobian matrix have to be assembled from each model. This
is done by a hierarchical recursion. At each model a local solution vector, and a local
right-hand side vector and a local matrix is available. These involve (block) parts for
the terminal unknowns and for the internal unknowns. Assembly of equations and of the

Figure 3: Left: Hierarchical structure of a circuit with a linear fault resistor in submodel
M11. Right: A circuit with a fault resistor bridging the two submodels M111

and M112.

Jacobian matrix is done in a bottom-up recursion (that starts from the top). For each
model, additionally, partial LU-decomposition of the matrix is done, thus eliminating the
internal unknowns from the contributions to the right-hand side vector of the equations
for the terminal unknowns at the parent model. Now the contents of the block part of the
matrix and right-hand side vector of the child model is added to the proper corresponding
places in the parent model. What is left after the full recursion is a linear system with a
coefficient matrix that has a triangle form. Starting from the terminal value at the top
circuit model (which is the ground value) a top down recursion provides a solution at
all local models. Note that the solution vectors become ’consistent’: at the terminals the
values are equal when seen from the parent models or when seen from the child model.
The right-hand side vectors are not consistent. for more details, see [5].
In Fig. 3, at the left a fault resistor in submodelM11 is shown, which gives a new, rank-one
contribution 1

R uuT , to the matrix, when compared to matrix for the fault free problem.
At the right the situation looks a bit more complicated since we now have a bridge
between two submodels that are in different sub-trees of the hierarchy. To deal with this
we extended the list of termininals with an additional unknown for communication. The
local contribution is now 1

R uvT for suitable vectors u and v. The hierarchical assembly
lifts the local contributions to the right-hand side vector to those at each higher level
until the level of the submodel where the two hierarchical sub-trees meet.
In both cases it fits the general hierarchical block structure but it may require new
local entries, also in the situation at the left in Fig. 3. For this reason we exploit the
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Sherman-Morrison-Woodbury formula.

3.3 Hierarchical bypassing

The signals corresponding to a fault are obtained by simulating the fault-injected repre-
sentation of the fault-free circuit. The fault injection can cause a faulty circuit’s operating
region to differ radically from that of a fault-free circuit. However, it often happens that
the impact of the fault is just local and large parts of the circuit stay very close to the
fault-free circuit. In this case the affected equations have to be solved, but the solution
of the other equations can simply be skipped and the golden solution of the fault-free
circuit can be reused for these equations.
If the impact of the fault is only local, then only the equations of the affected models
have to be solved and the other models can simply be bypassed. The bypassing algorithm
is described by the following steps

1. Flag the model containing the fault.

2. The unknowns of the flagged models are solved for.

3. Check the right-hand side contributions (the "terminal currents") of the flagged
models to the right-hand side vector of each one’s parent model.

4. Flag the parent model if the difference in the terminal currents between the golden
solution and those of the faulty solution is larger than a numerical error tolerance
of the simulator.

5. Check the terminal voltages of the sub-models in each flagged model.

6. Flag the sub-model if the terminal voltage difference between the golden solution
and the faulty solution is larger than a numerical error tolerance of the simulator.

7. Repeat step 2 until all terminal voltages and currents of the bypassed models have
smaller difference than the tolerance.

In [9] bypassing is also used in a similar way as described in this document. The main
difference is that we use the hierarchy to reduce the faulty MNA matrix, while in [9]
the equations are projected onto a smaller subspace to reduce computation cost. As an
example consider the circuit at the left of Fig. 3 and we use the colouring. In step 2 the
unknowns of the model M11 are solved for. In step 3 the terminal current of M11 are
checked. We assume that the change of this current in step 4 is smaller than the given
tolerance, so model M1 can still be bypassed. In step 5 the terminal voltages of model
M111 and of model M112 are checked. Suppose that the terminal voltages of model M111

have changed significantly, but that the changes in the terminal voltages of model M112

are still smaller than the given tolerance. Because of this difference in terminal voltages
model M111 is flagged in step 6 to be solved. In the next iteration the unknowns of both
models M11 and M111 will be solved for. All signals at the terminals of M11 and M112

are now approximately the same as in the golden run, so the solution is accepted without
ever solving the other unknowns.
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3.4 Exploiting sensitivity analysis

In our fault analysis we consider linear bridges only, hence for each fault we have a new
contribution puvTx(t, p) as low-rank modification to the system of the golden solution;
thus j(x(t, p), p) = j0(x(t, p)) + puvTx(t, p). Here p = 1

R is just a scalar, by which the
p-sensitivity ’matrix’ x̂p(t, p) = ∂x(t,p)

∂p becomes a vector. We assume Euler Backward
time integration between time points tn and tn+1 = tn + hn ( with time steps hn). Let
xkp = xk(p) ≈ x(tk, p) be the numerical approximations for k = n, n + 1 and x̂kp be

the corresponding sensitivities. Then with Ck
p ≡

∂q(xk
p)

∂x and Gk
p ≡

∂j0(xk
p)

∂x by sensitivity
analysis [11,15] we obtain

[
1

hn
Cn+1
p + Gn+1

p ]x̂n+1
p = −uvTxn+1

p +
1

hn
Cn
p x̂

n
p . (8)

For p = 0, (8) gives the limit sensitivity x̂k = x̂k0 for the golden, fault-free, solution
xk = xk0 (k = n, n+ 1)

[
1

hn
Cn+1 + Gn+1]x̂n+1 = −uvTxn+1 +

1

hn
Cnx̂n, (9)

where Ck = Ck
0 (k = n, n+ 1) and Gn+1 = Gn+1

0 . By Taylor expansion we additionally
have

xkp = xk + p x̂k +O(p2) (k = n, n+ 1). (10)

The golden solution satisfies the linearized equations of the fault-free circuit

[
1

hn
Cn+1 + Gn+1]xn+1 = sn+1 +

1

hn
Cnxn. (11)

With (10) and (9) this gives

[
1

hn
Cn+1 + Gn+1]xn+1

p = p [
1

hn
Cn+1 + Gn+1]x̂n+1 + sn+1 +

1

hn
Cnxn +O(p2),

= −puvTxn+1 +
1

hn
Cn(p x̂n + xn) + sn+1 +O(p2),

= −puvTxn+1 + sn+1 +
1

hn
Cnxnp +O(p2),

= −puvTxn+1
p + sn+1 +

1

hn
Cnxnp +O(p2), (12)

= −puvTxn+1
p + sn+1 +

1

hn
Cnxn +O(p). (13)

We just used (13). Note that (12) may be a more accurate alternative. Hence

{[ 1

hn
Cn+1 + Gn+1] + puvT } xn+1

p = sn+1 +
1

hn
Cnxn +O(p), (14)
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which, after ignoring the O(p) term at the right-hand side, is similar to the equation
(11) for the linearized, golden, circuit equations, except for the left-hand side, which now
contains the conductance of the fault. This leads to a rank-1 update of the golden circuit
matrix for which we again apply the Sherman-Morrison-Woodbury formula.
The advantage of the right-hand side in (14) is that it is independent of the solution xkp at
the previous time steps. Of course, when followed by further Newton-Raphson iterations,
xnp is still needed. To judge the accuracy of the linear sensitivity prediction the nonlinear
solver evaluates the circuit at the sensitivity solution and updates the solution. The
difference in the initial sensitivity solution and the nonlinear update is a measure for the
truncation error.
If we just stick to the prediction, we may calculate the prediction of the fault at a few
selected time points, which significantly reduces the work load for the fault sensitivity
analysis.

4 Results

4.1 Results DC

We tested the SSPT on a set of problems where parameters were swept: temperature
(problems 1 and 5), and statistics (problems 2-4 and 6). The options A and B stand for
Newton-Raphson (resp., without and with gmin stepping). The options C and D stand
for Pseudo Transient (resp., without and with gmin stepping). If an option results in
convergence, the next ones are not tried anymore. In Fig. 4 the A → B → C → D
(ABCD) process is compared to Source Stepping (SS) and to Source Stepping by Pseudo
Transient (SSPT). For the first process and for SS one continues on the solution of the
previous case. SS internally uses ABCD for each step. SSPT always starts from 0. SSPT
clearly is the most robust method: it could solve all problems. Figure 4 (right) shows
the speed-up offered by SSPT when compared to the ABCD process. It was 0.9-13 times
faster, in addition to its higher robustness.

Figure 4: Left: CPU outcomes spent by the ABCD process and by SS and by SSPT,
respectively. Right: Speed-up offered by SSPT when compared to the ABCD
process.
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4.2 Results FFS with sensitivity prediction

Starting from the solution of the linear sensitivity prediction (14) the nonlinear solver
tries to find the faulty solution. Table 1 shows that for a LIN Converter IP Block this new
prediction already approximates quite well and that it can be improved by continuing
iterations. Here we see significant improvement in the accuracy, while the increase of the
CPU time is not as big. The limits used for detectability are determined from the 10σ
statistical range. The CPU time of the golden stand-alone simulation is 244s. The CPU
time of the Standard AS/DOTSS approach [16] is calculated in the usual way (#faults
* CPU time of golden = 412 * 244s = 100437s). The CPU time mostly depends on how
many measurement time points are set. This IP Block has 17 in total (divided in two
transient runs). The matching seems to converge by the increase of the number of itera-
tions, which gives us a way to judge how good is the sensitivity analysis without running
standard AS/Dotss or standard FFS to check. A second circuit that was investigated

Analysis #iter. #Faults Matching CPU Speed
(#faults 412) per ∆t Detected DOTSS [sec] up
Standard AS/DOTSS - 220 (53.4%) - 100437 1
Linear Sensitivity 0 117 (28.4%) 71.6% 458 219
Nonlinear Correction 5 207 (50.2%) 89.1% 2341 43
Nonlinear Correction 30 221 (53.6%) 93.5% 4565 22
Nonlinear Correction 100 218 (52.9%) 93.7% 7088 14

Table 1: Fault coverage results and speed up by including sensitivity prediction for the
LIN Converter IP Block.

Analysis #iter. #Faults Matching CPU Speed
(#faults 100) per ∆t Detected DOTSS [sec] bf up
Standard AS/DOTSS - 45 - 52513 1
Linear Sensitivity 0 51 88% 916 58
Nonlinear Correction 1 54 89% 4808 11
Nonlinear Correction 2 54 89% 5512 10

Table 2: Fault coverage results and speed up by sensitivity prediction for the Control
DAC.

is the Control DAC circuit (a 10-bit Digital-to-Analog Converter). The results for the
first case are listed in Table 2. The speedup is lower than in the previous case of the
LIN Converter IP Block (but still quite appreciable). This is mainly caused by the much
larger number of measurement time points that are used for the Control DAC. The linear
sensitivity shows a good fault coverage match with Standard AS/DOTSS, but this match
is not improved substantially by the nonlinear corrections.
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5 Conclusion and Outlook

We have improved robustness in solving for the DC-solution. The new method SSPT,
Source Stepping by Pseudo Transient, treats controlled sources in a novel way that guar-
antees that good properties of Jacobian matrices are maintained. The method is also
remarkably efficient.
For Fast Fault Simulation we considered the fast simulation of a large number of faulty
solutions after adding linear bridges to the golden circuit. Several options to obtain ef-
ficiency have been implemented. Here especially the power of using sensitivity analysis
was demonstrated.
Extensions are now directed to further increase the fault coverage, while maintaining
efficiency, to also include linear capacitors as fault and to apply techniques to Monte
Carlo simulations.
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