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Collision local time of transient random walks and

intermediate phases in interacting stochastic systems∗

Matthias Birkner 1, Andreas Greven 2, Frank den Hollander 3 4

Abstract

In a companion paper [6], a quenched large deviation principle (LDP) has been established for

the empirical process of words obtained by cutting an i.i.d. sequence of letters into words ac-

cording to a renewal process. We apply this LDP to prove that the radius of convergence of the

generating function of the collision local time of two independent copies of a symmetric and

strongly transient random walk on Z
d , d ≥ 1, both starting from the origin, strictly increases

when we condition on one of the random walks, both in discrete time and in continuous time.

We conjecture that the same holds when the random walk is transient but not strongly transient.

The presence of these gaps implies the existence of an intermediate phase for the long-time be-

haviour of a class of coupled branching processes, interacting diffusions, respectively, directed

polymers in random environments .
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1 Introduction and main results

In this paper, we derive variational representations for the radius of convergence of the generating

functions of the collision local time of two independent copies of a symmetric and transient random

walk, both starting at the origin and running in discrete or in continuous time, when the average is

taken w.r.t. one, respectively, two random walks. These variational representations are subsequently

used to establish the existence of an intermediate phase for the long-time behaviour of a class of

interacting stochastic systems.

1.1 Collision local time of random walks

1.1.1 Discrete time

Let S = (Sk)
∞
k=0

and S′ = (S′
k
)∞

k=0
be two independent random walks on Z

d , d ≥ 1, both starting at

the origin, with an irreducible, symmetric and transient transition kernel p(·, ·). Write pn for the n-th

convolution power of p, and abbreviate pn(x) := pn(0, x), x ∈ Zd . Suppose that

lim
n→∞

log p2n(0)

log n
=:−α, α ∈ [1,∞). (1.1)

Write P to denote the joint law of S,S′. Let

V = V (S,S′) :=

∞∑

k=1

1{Sk=S′
k
} (1.2)

be the collision local time of S,S′, which satisfies P(V <∞) = 1 by transience, and define

z1 := sup
¦

z ≥ 1: E

�
zV | S

�
<∞ S-a.s.

©
, (1.3)

z2 := sup
¦

z ≥ 1: E

�
zV
�
<∞

©
. (1.4)

The lower indices indicate the number of random walks being averaged over. Note that, by the tail

triviality of S, the range of z’s for which E[ zV | S ] converges is S-a.s. constant. 1

Let E := Z
d , let eE = ∪n∈NEn be the set of finite words drawn from E, and let P inv(eEN) denote

the shift-invariant probability measures on eEN, the set of infinite sentences drawn from eE. Define

f : eE→ [0,∞) via

f ((x1, . . . , xn)) =
pn(x1+ · · ·+ xn)

p2⌊n/2⌋(0)
[2Ḡ(0)− 1], n ∈N, x1, . . . , xn ∈ E, (1.5)

where Ḡ(0) =
∑∞

n=0 p2n(0) is the Green function at the origin associated with p2(·, ·), which is the

transition matrix of S−S′, and p2⌊n/2⌋(0)> 0 for all n ∈N by the symmetry of p(·, ·). The following

variational representations hold for z1 and z2.

1Note that P(V =∞) = 1 for a symmetric and recurrent random walk, in which case trivially z1 = z2 = 1.
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Theorem 1.1. Assume (1.1). Then z1 = 1+ exp[−r1], z2 = 1+ exp[−r2] with

r1 ≤ sup
Q∈P inv(eEN)

¨∫

eE
(π1Q)(d y) log f (y)− Ique(Q)

«
, (1.6)

r2 = sup
Q∈P inv(eEN)

¨∫

eE
(π1Q)(d y) log f (y)− Iann(Q)

«
, (1.7)

where π1Q is the projection of Q onto eE, while Ique and Iann are the rate functions in the quenched,

respectively, annealed large deviation principle that is given in Theorem 2.2, respectively, 2.1 below with

(see (2.4), (2.7) and (2.13–2.14))

E = Z
d , ν(x) = p(x), x ∈ E, ρ(n) = p2⌊n/2⌋(0)/[2Ḡ(0)− 1], n ∈N. (1.8)

Let

P erg,fin(eEN) = {Q ∈ P inv(eEN): Q is shift-ergodic, mQ <∞}, (1.9)

where mQ is the average word length under Q, i.e., mQ =
∫
eE(π1Q)(y)τ(y) with τ(y) the length

of the word y . Theorem 1.1 can be improved under additional assumptions on the random walk,

namely, 2

∑
x∈Zd

‖x‖δ p(x)<∞ for some δ > 0, (1.10)

lim inf
n→∞

log[ pn(Sn)/p2⌊n/2⌋(0) ]
log n

≥ 0 S − a.s., (1.11)

inf
n∈N

E
�

log[ pn(Sn)/p2⌊n/2⌋(0) ]
�
>−∞. (1.12)

Theorem 1.2. Assume (1.1) and (1.10–1.12). Then equality holds in (1.6), and

r1 = sup
Q∈P erg,fin(eEN)

¨∫

eE
(π1Q)(d y) log f (y)− Ique(Q)

«
∈R, (1.13)

r2 = sup
Q∈P erg,fin(eEN)

¨∫

eE
(π1Q)(d y) log f (y)− Iann(Q)

«
∈R. (1.14)

In Section 6 we will exhibit classes of random walks for which (1.10–1.12) hold. We believe that

(1.11–1.12) actually hold in great generality.

Because Ique ≥ Iann, we have r1 ≤ r2, and hence z2 ≤ z1 (as is also obvious from the definitions of z1

and z2). We prove that strict inequality holds under the stronger assumption that p(·, ·) is strongly

transient, i.e.,
∑∞

n=1 npn(0)<∞. This excludes α ∈ (1,2) and part of α= 2 in (1.1).

Theorem 1.3. Assume (1.1). If p(·, ·) is strongly transient, then 1< z2 < z1 ≤∞.

2By the symmetry of p(·, ·), we have supx∈Zd pn(x) ≤ p2⌊n/2⌋(0) (see (3.15)), which implies that supn∈N supx∈Zd

log[pn(x)/p2⌊n/2⌋(0)]≤ 0.
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Since P(V = k) = (1− F̄)F̄ k, k ∈ N ∪ {0}, with F̄ := P
�
∃ k ∈ N: Sk = S′

k

�
, an easy computation

gives z2 = 1/F̄ . But F̄ = 1− [1/Ḡ(0)] (see Spitzer [27], Section 1), and hence

z2 = Ḡ(0)/[Ḡ(0)− 1]. (1.15)

Unlike (1.15), no closed form expression is known for z1. By evaluating the function inside the

supremum in (1.13) at a well-chosen Q, we obtain the following upper bound.

Theorem 1.4. Assume (1.1) and (1.10–1.12). Then

z1 ≤ 1+

 ∑

n∈N
e−h(pn)

!−1

<∞, (1.16)

where h(pn) =−
∑

x∈Zd pn(x) log pn(x) is the entropy of pn(·).

There are symmetric transient random walks for which (1.1) holds with α = 1. Examples are any

transient random walk on Z in the domain of attraction of the symmetric stable law of index 1 on

R, or any transient random walk on Z
2 in the domain of (non-normal) attraction of the normal law

on R
2. If in this situation (1.10–1.12) hold, then the two threshold values in (1.3–1.4) agree.

Theorem 1.5. If p(·, ·) satisfies (1.1) with α= 1 and (1.10–1.12), then z1 = z2.

1.1.2 Continuous time

Next, we turn the discrete-time random walks S and S′ into continuous-time random walks eS =
(St)t≥0 and eS′ = (eS′t)t≥0 by allowing them to make steps at rate 1, keeping the same p(·, ·). Then

the collision local time becomes

eV :=

∫ ∞

0

1{eSt=eS′t} d t. (1.17)

For the analogous quantities ez1 and ez2, we have the following. 3

Theorem 1.6. Assume (1.1). If p(·, ·) is strongly transient, then 1< ez2 < ez1 ≤∞.

An easy computation gives

logez2 = 2/G(0), (1.18)

where G(0) =
∑∞

n=0 pn(0) is the Green function at the origin associated with p(·, ·). There is again

no simple expression for ez1.

Remark 1.7. An upper bound similar to (1.16) holds for ez1 as well. It is straightforward to show that

z1 <∞ and ez1 <∞ as soon as p(·) has finite entropy.

3For a symmetric and recurrent random walk again trivially ez1 = ez2 = 1.
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1.1.3 Discussion

Our proofs of Theorems 1.3–1.6 will be based on the variational representations in Theorem 1.1–1.2.

Additional technical difficulties arise in the situation where the maximiser in (1.7) has infinite mean

word length, which happens precisely when p(·, ·) is transient but not strongly transient. Random

walks with zero mean and finite variance are transient for d ≥ 3 and strongly transient for d ≥ 5

(Spitzer [27], Section 1).

Conjecture 1.8. The gaps in Theorems 1.3 and 1.6 are present also when p(·, ·) is transient but not

strongly transient provided α > 1.

In a 2008 preprint by the authors (arXiv:0807.2611v1), the results in [6] and the present paper were

announced, including Conjecture 1.8. Since then, partial progress has been made towards settling

this conjecture. In Birkner and Sun [7], the gap in Theorem 1.3 is proved for simple random walk

on Z
d , d ≥ 4, and it is argued that the proof is in principle extendable to a symmetric random walk

with finite variance. In Birkner and Sun [8], the gap in Theorem 1.6 is proved for a symmetric

random walk on Z
3 with finite variance in continuous time, while in Berger and Toninelli [1] the

gap in Theorem 1.3 is proved for a symmetric random walk on Z
3 in discrete time under a fourth

moment condition.

The role of the variational representation for r2 is not to identify its value, which is achieved in

(1.15), but rather to allow for a comparison with r1, for which no explicit expression is available. It

is an open problem to prove (1.11–1.12) under mild regularity conditions on S. Note that the gaps

in Theorems 1.3–1.6 do not require (1.10–1.12).

1.2 The gaps settle three conjectures

In this section we use Theorems 1.3 and 1.6 to prove the existence of an intermediate phase for

three classes of interacting particle systems where the interaction is controlled by a symmetric and

transient random walk transition kernel. 4

1.2.1 Coupled branching processes

A. Theorem 1.6 proves a conjecture put forward in Greven [17], [18]. Consider a spatial population

model, defined as the Markov process (ηt)t≥0, with η(t) = {ηx(t): x ∈ Z
d} where ηx(t) is the

number of individuals at site x at time t, evolving as follows:

(1) Each individual migrates at rate 1 according to a(·, ·).

(2) Each individual gives birth to a new individual at the same site at rate b.

(3) Each individual dies at rate (1− p)b.

(4) All individuals at the same site die simultaneously at rate pb.

4In each of these systems the case of a symmetric and recurrent random walk is trivial and no intermediate phase is

present.
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Here, a(·, ·) is an irreducible random walk transition kernel on Z
d ×Z

d , b ∈ (0,∞) is a birth-death

rate, p ∈ [0,1] is a coupling parameter, while (1)–(4) occur independently at every x ∈ Z
d . The

case p = 0 corresponds to a critical branching random walk, for which the average number of

individuals per site is preserved. The case p > 0 is challenging because the individuals descending

from different ancestors are no longer independent.

A critical branching random walk satisfies the following dichotomy (where for simplicity we restrict

to the case where a(·, ·) is symmetric): if the initial configuration η0 is drawn from a shift-invariant

and shift-ergodic probability distribution with a positive and finite mean, then ηt as t →∞ locally

dies out (“extinction”) when a(·, ·) is recurrent, but converges to a non-trivial equilibrium (“sur-

vival”) when a(·, ·) is transient, both irrespective of the value of b. In the latter case, the equilibrium

has the same mean as the initial distribution and has all moments finite.

For the coupled branching process with p > 0 there is a dichotomy too, but it is controlled by a

subtle interplay of a(·, ·), b and p: extinction holds when a(·, ·) is recurrent, but also when a(·, ·) is

transient and p is sufficiently large. Indeed, it is shown in Greven [18] that if a(·, ·) is transient, then

there is a unique p∗ ∈ (0,1] such that survival holds for p < p∗ and extinction holds for p > p∗.

Recall the critical values ez1,ez2 introduced in Section 1.1.2. Then survival holds if E(exp[bpeV ] | eS)<
∞ eS-a.s., i.e., if p < p1 with

p1 = 1∧ (b−1 logez1). (1.19)

This can be shown by a size-biasing of the population in the spirit of Kallenberg [23]. On the other

hand, survival with a finite second moment holds if and only if E(exp[bpeV ])<∞, i.e., if and only if

p < p2 with

p2 = 1∧ (b−1 logez2). (1.20)

Clearly, p∗ ≥ p1 ≥ p2. Theorem 1.6 shows that if a(·, ·) satisfies (1.1) and is strongly transient, then

p1 > p2, implying that there is an intermediate phase of survival with an infinite second moment.

B. Theorem 1.3 corrects an error in Birkner [3], Theorem 6. Here, a system of individuals living

on Z
d is considered subject to migration and branching. Each individual independently migrates

at rate 1 according to a transient random walk transition kernel a(·, ·), and branches at a rate that

depends on the number of individuals present at the same location. It is argued that this system has

an intermediate phase in which the numbers of individuals at different sites tend to an equilibrium

with a finite first moment but an infinite second moment. The proof was, however, based on a

wrong rate function. The rate function claimed in Birkner [3], Theorem 6, must be replaced by that

in [6], Corollary 1.5, after which the intermediate phase persists, at least in the case where a(·, ·)
satisfies (1.1) and is strongly transient. This also affects [3], Theorem 5, which uses [3], Theorem

6, to compute z1 in Section 1.1 and finds an incorrect formula. Theorem 1.4 shows that this formula

actually is an upper bound for z1.

1.2.2 Interacting diffusions

Theorem 1.6 proves a conjecture put forward in Greven and den Hollander [19]. Consider the

system X = (X (t))t≥0, with X (t) = {X x(t): x ∈ Z
d}, of interacting diffusions taking values in

[0,∞) defined by the following collection of coupled stochastic differential equations:

dX x(t) =
∑

y∈Zd

a(x , y)[X y(t)− X x(t)] d t +
p

bX x(t)
2 dWx(t), x ∈ Zd , t ≥ 0. (1.21)
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Here, a(·, ·) is an irreducible random walk transition kernel on Z
d ×Z

d , b ∈ (0,∞) is a diffusion

constant, and (W (t))t≥0 with W (t) = {Wx(t): x ∈ Z
d} is a collection of independent standard

Brownian motions on R. The initial condition is chosen such that X (0) is a shift-invariant and shift-

ergodic random field with a positive and finite mean (the evolution preserves the mean). Note that,

even though X a.s. has non-negative paths when starting from a non-negative initial condition X (0),

we prefer to write X x(t) as
p

X x(t)
2 in order to highlight the fact that the system in (1.21) belongs

to a more general family of interacting diffusions with Hölder-1

2
diffusion coefficients, see e.g. [19],

Section 1, for a discussion and references.

It was shown in [19], Theorems 1.4–1.6, that if a(·, ·) is symmetric and transient, then there exist 0<

b2 ≤ b∗ such that the system in (1.21) locally dies out when b > b∗, but converges to an equilibrium

when 0 < b < b∗, and this equilibrium has a finite second moment when 0 < b < b2 and an infinite

second moment when b2 ≤ b < b∗. It was shown in [19], Lemma 4.6, that b∗ ≥ b∗∗ = logez1, and

it was conjectured in [19], Conjecture 1.8, that b∗ > b2. Thus, as explained in [19], Section 4.2, if

a(·, ·) satisfies (1.1) and is strongly transient, then this conjecture is correct with

b∗ ≥ logez1 > b2 = logez2. (1.22)

Analogously, by Theorem 1.1 in [8] and by Theorem 1.2 in [7], the conjecture is settled for a class

of random walks in dimensions d = 3,4 including symmetric simple random walk (which in d = 3,4

is transient but not strongly transient).

1.2.3 Directed polymers in random environments

Theorem 1.3 disproves a conjecture put forward in Monthus and Garel [25]. Let a(·, ·) be a symmet-

ric and irreducible random walk transition kernel on Z
d ×Zd , let S = (Sk)

∞
k=0

be the corresponding

random walk, and let ξ = {ξ(x , n): x ∈ Z
d , n ∈ N} be i.i.d. R-valued non-degenerate random

variables satisfying

λ(β) := logE
�

exp[βξ(x , n)]
�
∈R ∀β ∈R. (1.23)

Put

en(ξ,S) := exp




n∑

k=1

�
βξ(Sk, k)−λ(β)

	

 , (1.24)

and set

Zn(ξ) := E[en(ξ,S)] =
∑

s1,...,sn∈Zd




n∏

k=1

p(sk−1, sk)


 en(ξ, s), s = (sk)

∞
k=0, s0 = 0, (1.25)

i.e., Zn(ξ) is the normalising constant in the probability distribution of the random walk S whose

paths are reweighted by en(ξ,S), which is referred to as the “polymer measure”. The ξ(x , n)’s

describe a random space-time medium with which S is interacting, with β playing the role of the

interaction strength or inverse temperature.

It is well known that Z = (Zn)n∈N is a non-negative martingale with respect to the family of sigma-

algebras Fn := σ(ξ(x , k), x ∈ Zd , 1≤ k ≤ n), n ∈N. Hence

lim
n→∞

Zn = Z∞ ≥ 0 ξ− a.s., (1.26)
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with the event {Z∞ = 0} being ξ-trivial. One speaks of weak disorder if Z∞ > 0 ξ-a.s. and of

strong disorder otherwise. As shown in Comets and Yoshida [12], there is a unique critical value

β∗ ∈ [0,∞] such that weak disorder holds for 0 ≤ β < β∗ and strong disorder holds for β > β∗.
Moreover, in the weak disorder region the paths have a Gaussian scaling limit under the polymer

measure, while this is not the case in the strong disorder region. In the strong disorder region the

paths are confined to a narrow space-time tube.

Recall the critical values z1, z2 defined in Section 1.1. Bolthausen [9] observed that

E

�
Z2

n

�
= E

h
exp
�
{λ(2β)− 2λ(β)}Vn

�i
, with Vn :=

n∑

k=1

1{Sk=S′
k
}, (1.27)

where S and S′ are two independent random walks with transition kernel p(·, ·), and concluded that

Z is L2-bounded if and only if β < β2 with β2 ∈ (0,∞] the unique solution of

λ(2β2)− 2λ(β2) = log z2. (1.28)

Since P(Z∞ > 0) ≥ E[Z∞]
2/E[Z2

∞] and E[Z∞] = Z0 = 1 for an L2-bounded martingale, it follows

that β < β2 implies weak disorder, i.e., β∗ ≥ β2. By a stochastic representation of the size-biased

law of Zn, it was shown in Birkner [4], Proposition 1, that in fact weak disorder holds if β < β1 with

β1 ∈ (0,∞] the unique solution of

λ(2β1)− 2λ(β1) = log z1, (1.29)

i.e., β∗ ≥ β1. Since β 7→ λ(2β)− 2λ(β) is strictly increasing for any non-trivial law for the disorder

satisfying (1.23), it follows from (1.28–1.29) and Theorem 1.3 that β1 > β2 when a(·, ·) satisfies

(1.1) and is strongly transient and when ξ is such that β2 < ∞. In that case the weak disorder

region contains a subregion for which Z is not L2-bounded. This disproves a conjecture of Monthus

and Garel [25], who argued that β2 = β∗.

Camanes and Carmona [10] consider the same problem for simple random walk and specific choices

of disorder. With the help of fractional moment estimates of Evans and Derrida [16], combined with

numerical computation, they show that β∗ > β2 for Gaussian disorder in d ≥ 5, for Binomial disorder

with small mean in d ≥ 4, and for Poisson disorder with small mean in d ≥ 3.

See den Hollander [21], Chapter 12, for an overview.

Outline

Theorems 1.1, 1.3 and 1.6 are proved in Section 3. The proofs need only assumption (1.1). Theo-

rem 1.2 is proved in Section 4, Theorems 1.4 and 1.5 in Section 5. The proofs need both assumptions

(1.1) and (1.10–1.12)

In Section 2 we recall the LDP’s in [6], which are needed for the proof of Theorems 1.1–1.2 and

their counterparts for continuous-time random walk. This section recalls the minimum from [6]

that is needed for the present paper. Only in Section 4 will we need some of the techniques that

were used in [6].
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2 Word sequences and annealed and quenched LDP

Notation. We recall the problem setting in [6]. Let E be a finite or countable set of letters. Let
eE = ∪n∈NEn be the set of finite words drawn from E. Both E and eE are Polish spaces under the

discrete topology. Let P (EN) and P (eEN) denote the set of probability measures on sequences

drawn from E, respectively, eE, equipped with the topology of weak convergence. Write θ and eθ for

the left-shift acting on EN, respectively, eEN. Write P inv(EN),P erg(EN) and P inv(eEN),P erg(eEN) for

the set of probability measures that are invariant and ergodic under θ , respectively, eθ .

For ν ∈ P (E), let X = (X i)i∈N be i.i.d. with law ν . For ρ ∈ P (N), let τ = (τi)i∈N be i.i.d. with law

ρ having infinite support and satisfying the algebraic tail property

lim
n→∞
ρ(n)>0

logρ(n)

log n
=:−α, α ∈ [1,∞). (2.1)

(No regularity assumption is imposed on supp(ρ).) Assume that X and τ are independent and write

P to denote their joint law. Cut words out of X according to τ, i.e., put (see Fig. 1)

T0 := 0 and Ti := Ti−1+τi, i ∈N, (2.2)

and let

Y (i) :=
�
XTi−1+1, XTi−1+2, . . . , XTi

�
, i ∈N. (2.3)

Then, under the law P, Y = (Y (i))i∈N is an i.i.d. sequence of words with marginal law qρ,ν on eE
given by

qρ,ν

�
(x1, . . . , xn)

�
:= P

�
Y (1) = (x1, . . . , xn)

�
= ρ(n)ν(x1) · · ·ν(xn), n ∈N, x1, . . . , xn ∈ E.

(2.4)

τ1

τ2
τ3

τ4

τ5

T1 T2 T3 T4 T5

Y (1) Y (2) Y (3) Y (4) Y (5)
X

Figure 1: Cutting words from a letter sequence according to a renewal process.

Annealed LDP. For N ∈ N, let (Y (1), . . . , Y (N))per be the periodic extension of (Y (1), . . . , Y (N)) to an

element of eEN, and define

RN :=
1

N

N−1∑

i=0

δeθ i(Y (1),...,Y (N))per ∈ P inv(eEN), (2.5)

the empirical process of N-tuples of words. The following large deviation principle (LDP) is standard

(see e.g. Dembo and Zeitouni [14], Corollaries 6.5.15 and 6.5.17). Let

H(Q | q⊗Nρ,ν ) := lim
N→∞

1

N
h

�
Q|FN

��� (q⊗Nρ,ν )|FN

�
∈ [0,∞] (2.6)
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be the specific relative entropy of Q w.r.t. q⊗Nρ,ν , where FN = σ(Y
(1), . . . , Y (N)) is the sigma-algebra

generated by the first N words, Q|FN
is the restriction of Q to FN , and h( · | · ) denotes relative

entropy (defined for probability measures ϕ,ψ on a measurable space F as h(ϕ |ψ) =
∫

F
log

dϕ

dψ
dϕ

if the density
dϕ

dψ
exists and as∞ otherwise).

Theorem 2.1. [Annealed LDP] The family of probability distributions P(RN ∈ · ), N ∈ N, satisfies

the LDP on P inv(eEN) with rate N and with rate function Iann : P inv(eEN)→ [0,∞] given by

Iann(Q) = H(Q | q⊗Nρ,ν ). (2.7)

The rate function Iann is lower semi-continuous, has compact level sets, has a unique zero at Q = q⊗Nρ,ν ,

and is affine.

Quenched LDP. To formulate the quenched analogue of Theorem 2.1, we need some further nota-

tion. Let κ: eEN→ EN denote the concatenation map that glues a sequence of words into a sequence

of letters. For Q ∈ P inv(eEN) such that mQ := EQ[τ1] <∞ (recall that τ1 is the length of the first

word), define ΨQ ∈ P inv(EN) as

ΨQ(·) :=
1

mQ

EQ



τ1−1∑

k=0

δθ kκ(Y )(·)

 . (2.8)

Think of ΨQ as the shift-invariant version of the concatenation of Y under the law Q obtained after

randomising the location of the origin.

For tr ∈N, let [·]tr : eE→ [eE]tr := ∪tr
n=1En denote the word length truncation map defined by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈N, x1, . . . , xn ∈ E. (2.9)

Extend this to a map from eEN to [eE]Ntr via

�
(y(1), y(2), . . . )

�
tr :=

�
[y(1)]tr, [y

(2)]tr, . . .
�
, (2.10)

and to a map from P inv(eEN) to P inv([eE]Ntr ) via

[Q]tr(A) :=Q({z ∈ eEN : [z]tr ∈ A}), A⊂ [eE]Ntr measurable. (2.11)

Note that if Q ∈ P inv(eEN), then [Q]tr is an element of the set

P inv,fin(eEN) = {Q ∈ P inv(eEN): mQ <∞}. (2.12)

Theorem 2.2. [Quenched LDP, see [6], Theorem 1.2 and Corollary 1.6] (a) Assume (2.1). Then,

for ν⊗N–a.s. all X , the family of (regular) conditional probability distributions P(RN ∈ · | X ), N ∈ N,

satisfies the LDP on P inv(eEN) with rate N and with deterministic rate function Ique : P inv(eEN) →
[0,∞] given by

Ique(Q) :=





I fin(Q), if Q ∈ P inv,fin(eEN),

lim
tr→∞

I fin
�
[Q]tr

�
, otherwise,

(2.13)
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where

I fin(Q) := H(Q | q⊗Nρ,ν ) + (α− 1)mQ H(ΨQ | ν⊗N). (2.14)

The rate function Ique is lower semi-continuous, has compact level sets, has a unique zero at Q = q⊗Nρ,ν ,

and is affine. Moreover, it is equal to the lower semi-continuous extension of I fin from P inv,fin(eEN) to

P inv(eEN).

(b) In particular, if (2.1) holds with α = 1, then for ν⊗N–a.s. all X , the family P(RN ∈ · | X ) satisfies

the LDP with rate function Iann given by (2.7).

Note that the quenched rate function (2.14) equals the annealed rate function (2.7) plus an addi-

tional term that quantifies the deviation of ΨQ from the reference law ν⊗N on the letter sequence.

This term is explicit when mQ <∞, but requires a truncation approximation when mQ =∞.

We close this section with the following observation. Let

Rν :=

�
Q ∈ P inv(eEN): w−lim

L→∞

1

L

L−1∑

k=0

δθ kκ(Y ) = ν
⊗N Q− a.s.

�
. (2.15)

be the set of Q’s for which the concatenation of words has the same statistical properties as the letter

sequence X . Then, for Q ∈ P inv,fin(eEN), we have (see [6], Equation (1.22))

ΨQ = ν
⊗N ⇐⇒ Ique(Q) = Iann(Q) ⇐⇒ Q ∈ Rν . (2.16)

3 Proof of Theorems 1.1, 1.3 and 1.6

3.1 Proof of Theorem 1.1

The idea is to put the problem into the framework of (2.1–2.5) and then apply Theorem 2.2. To that

end, we pick

E := Z
d , eE =ÝZd := ∪n∈N(Z

d)n, (3.1)

and choose

ν(u) := p(u), u ∈ Zd , ρ(n) :=
p2⌊n/2⌋(0)

2Ḡ(0)− 1
, n ∈N, (3.2)

where

p(u) = p(0,u), u ∈ Zd , pn(v − u) = pn(u, v), u, v ∈ Zd , Ḡ(0) =

∞∑

n=0

p2n(0), (3.3)

the latter being the Green function of S − S′ at the origin.

Recalling (1.2), and writing

zV =
�
(z− 1) + 1

�V
= 1+

V∑

N=1

(z− 1)N
�

V

N

�
(3.4)

with �
V

N

�
=

∑

0< j1<···< jN<∞
1{S j1

=S′
j1

,...,S jN
=S′

jN
}, (3.5)
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we have

E

�
zV | S

�
= 1+

∞∑

N=1

(z − 1)N F
(1)
N (X ), E

�
zV
�
= 1+

∞∑

N=1

(z − 1)N F
(2)
N , (3.6)

with

F
(1)
N (X ) :=

∑

0< j1<···< jN<∞
P
�
S j1
= S′j1 , . . . ,S jN

= S′jN | X
�
, F

(2)
N := E

�
F
(1)
N (X )

�
, (3.7)

where X = (Xk)k∈N denotes the sequence of increments of S. (The upper indices 1 and 2 indicate

the number of random walks being averaged over.)

The notation in (3.1–3.2) allows us to rewrite the first formula in (3.7) as

F
(1)
N (X ) =

∑

0< j1<···< jN<∞

N∏

i=1

p ji− ji−1




ji− ji−1∑

k=1

X ji−1+k




=
∑

0< j1<···< jN<∞

N∏

i=1

ρ( ji − ji−1) exp




N∑

i=1

log


 p ji− ji−1(

∑ ji− ji−1

k=1
X ji−1+k)

ρ( ji − ji−1)




 .

(3.8)

Let Y (i) = (X ji−1+1, · · · , X ji
). Recall the definition of f : ÝZd → [0,∞) in (1.5),

f ((x1, . . . , xn)) =
pn(x1+ · · ·+ xn)

p2⌊n/2⌋(0)
[2Ḡ(0)− 1], n ∈N, x1, . . . , xn ∈ Zd . (3.9)

Note that, since ÝZd carries the discrete topology, f is trivially continuous.

Let RN ∈ P inv((ÝZd)N) be the empirical process of words defined in (2.5), and π1RN ∈ P (ÝZd) the

projection of RN onto the first coordinate. Then we have

F
(1)
N (X ) = E


exp

 
N∑

i=1

log f (Y (i))

!�����X

 = E


exp

�
N

∫

Ý
Zd

(π1RN )(d y) log f (y)

������X

 , (3.10)

where P is the joint law of X and τ (recall (2.2–2.3)). By averaging (3.10) over X we obtain (recall

the definition of F
(2)
N from (3.7))

F
(2)
N = E

�
exp

�
N

∫

Ý
Zd

(π1RN )(d y) log f (y)

��
. (3.11)

Without conditioning on X , the sequence (Y (i))i∈N is i.i.d. with law (recall (2.4))

q⊗Nρ,ν with qρ,ν(x1, . . . , xn) =
p2⌊n/2⌋(0)

2Ḡ(0)− 1

n∏

k=1

p(xk), n ∈N, x1, . . . , xn ∈ Zd . (3.12)

Next we note that

f in (3.9) is bounded from above. (3.13)

563



Indeed, the Fourier representation of pn(x , y) reads

pn(x) =
1

(2π)d

∫

[−π,π)d
dk e−i(k·x) bp(k)n (3.14)

with bp(k) =
∑

x∈Zd ei(k·x)p(0, x). Because p(·, ·) is symmetric, we have bp(k) ∈ [−1,1], and it follows

that

max
x∈Zd

p2n(x) = p2n(0), max
x∈Zd

p2n+1(x)≤ p2n(0), ∀n ∈N. (3.15)

Consequently, f ((x1, . . . , xn)) ≤ [2Ḡ(0) − 1] is bounded from above. Therefore, by applying the

annealed LDP in Theorem 2.1 to (3.11), in combination with Varadhan’s lemma (see Dembo and

Zeitouni [14], Lemma 4.3.6), we get z2 = 1+ exp[−r2] with

r2 := lim
N→∞

1

N
log F

(2)
N ≤ sup

Q∈P inv((ÝZd )N)

¨∫

Ý
Zd

(π1Q)(d y) log f (y)− Iann(Q)

«

= sup

q∈P (ÝZd )

¨∫

Ý
Zd

q(d y) log f (y)− h(q | qρ,ν)

« (3.16)

(recall (1.3–1.4) and (3.6)). The second equality in (3.16) stems from the fact that, on the set of

Q’s with a given marginal π1Q = q, the function Q 7→ Iann(Q) = H(Q | q⊗Nρ,ν ) has a unique minimiser

Q = q⊗N (due to convexity of relative entropy). We will see in a moment that the inequality in

(3.16) actually is an equality.

In order to carry out the second supremum in (3.16), we use the following.

Lemma 3.1. Let Z :=
∑

y∈ÝZd f (y)qρ,ν(y). Then

∫

Ý
Zd

q(d y) log f (y)− h(q | qρ,ν) = log Z − h(q | q∗) ∀q ∈ P (ÝZd), (3.17)

where q∗(y) := f (y)qρ,ν(y)/Z, y ∈ÝZd .

Proof. This follows from a straightforward computation.

Inserting (3.17) into (3.16), we see that the suprema are uniquely attained at q = q∗ and Q = Q∗ =
(q∗)⊗N, and that r2 ≤ log Z . From (3.9) and (3.12), we have

Z =
∑

n∈N

∑

x1,...,xn∈Zd

pn(x1+ · · ·+ xn)

n∏

k=1

p(xk) =
∑

n∈N
p2n(0) = Ḡ(0)− 1, (3.18)

where we use that
∑

v∈Zd pm(u + v)p(v) = pm+1(u), u ∈ Z
d , m ∈ N, and recall that Ḡ(0) is the

Green function at the origin associated with p2(·, ·). Hence q∗ is given by

q∗(x1, . . . , xn) =
pn(x1+ · · ·+ xn)

Ḡ(0)− 1

n∏

k=1

p(xk), n ∈N, x1, . . . , xn ∈ Zd . (3.19)
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Moreover, since z2 = Ḡ(0)/[Ḡ(0)− 1], as noted in (1.15), we see that z2 = 1+ exp[− log Z], i.e.,

r2 = log Z , and so indeed equality holds in (3.16).

The quenched LDP in Theorem 2.2, together with Varadhan’s lemma applied to (3.8), gives z1 =

1+ exp[−r1] with

r1 := lim
N→∞

1

N
log F

(1)
N (X )≤ sup

Q∈P inv((ÝZd )N)

¨∫

Ý
Zd

(π1Q)(d y) log f (y)− Ique(Q)

«
X − a.s., (3.20)

where Ique(Q) is given by (2.13–2.14). Without further assumptions, we are not able to reverse

the inequality in (3.20). This point will be addressed in Section 4 and will require assumptions

(1.10–1.12).

3.2 Proof of Theorem 1.3

To compare (3.20) with (3.16), we need the following lemma, the proof of which is deferred.

Lemma 3.2. Assume (1.1). Let Q∗ = (q∗)⊗N with q∗ as in (3.19). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).

With the help of Lemma 3.2 we complete the proof of the existence of the gap as follows. Since

log f is bounded from above, the function

Q 7→
∫

Ý
Zd

(π1Q)(d y) log f (y)− Ique(Q) (3.21)

is upper semicontinuous. Therefore, by compactness of the level sets of Ique(Q), the function in

(3.21) achieves its maximum at some Q∗∗ that satisfies

r1 =

∫

Ý
Zd

(π1Q∗∗)(d y) log f (y)− Ique(Q∗∗)≤
∫

Ý
Zd

(π1Q∗∗)(d y) log f (y)− Iann(Q∗∗)≤ r2. (3.22)

If r1 = r2, then Q∗∗ =Q∗, because the function

Q 7→
∫

Ý
Zd

(π1Q)(d y) log f (y)− Iann(Q) (3.23)

has Q∗ as its unique maximiser (recall the discussion immediately after Lemma 3.1). But Ique(Q∗)>
Iann(Q∗) by Lemma 3.2, and so we have a contradiction in (3.22), thus arriving at r1 < r2.

In the remainder of this section we prove Lemma 3.2.

Proof. Note that

q∗((Zd)n) =
∑

x1,...,xn∈Zd

pn(x1+ · · ·+ xn)

Ḡ(0)− 1

n∏

k=1

p(xk) =
p2n(0)

Ḡ(0)− 1
, n ∈N, (3.24)

and hence, by assumption (1.2),

lim
n→∞

log q∗((Zd)n)

log n
= −α (3.25)
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and

mQ∗ =

∞∑

n=1

nq∗((Zd)n) =

∞∑

n=1

np2n(0)

Ḡ(0)− 1
. (3.26)

The latter formula shows that mQ∗ <∞ if and only if p(·, ·) is strongly transient. We will show that

mQ∗ <∞ =⇒ Q∗ = (q∗)⊗N 6∈ Rν , (3.27)

the set defined in (2.15). This implies ΨQ∗ 6= ν⊗N (recall (2.16)), and hence H(ΨQ∗ |ν⊗N) > 0,

implying the claim because α ∈ (1,∞) (recall (2.14)).

In order to verify (3.27), we compute the first two marginals of ΨQ∗ . Using the symmetry of p(·, ·),
we have

ΨQ∗(a) =
1

mQ∗

∞∑

n=1

n∑

j=1

∑

x1,...,xn∈Zd

x j=a

pn(x1+ · · ·+ xn)

Ḡ(0)− 1

n∏

k=1

p(xk) = p(a)

∑∞
n=1 np2n−1(a)∑∞

n=1 np2n(0)
. (3.28)

Hence, ΨQ∗(a) = p(a) for all a ∈ Zd with p(a)> 0 if and only if

a 7→
∞∑

n=1

n p2n−1(a) is constant on the support of p(·). (3.29)

There are many p(·, ·)’s for which (3.29) fails, and for these (3.27) holds. However, for simple

random walk (3.29) does not fail, because a 7→ p2n−1(a) is constant on the 2d neighbours of the

origin, and so we have to look at the two-dimensional marginal.

Observe that q∗(x1, . . . , xn) = q∗(xσ(1), . . . xσ(n)) for any permutation σ of {1, . . . , n}. For a, b ∈ Zd ,

we have

mQ∗ΨQ∗(a, b) = EQ∗



τ1∑

k=1

1κ(Y )k=a,κ(Y )k+1=b




=

∞∑

n=1

∞∑

n′=1

∑

x1,...,xn+n′

q∗(x1, . . . , xn) q∗(xn+1, . . . , xn+n′)

n∑

k=1

1(a,b)(xk, xk+1)

= q∗(x1 = a)q∗(x1 = b) +

∞∑

n=2

(n− 1)q∗
�
{(a, b)} × (Zd)n−2

�
.

(3.30)

Since

q∗(x1 = a) =
p(a)2

Ḡ(0)− 1
+

∞∑

n=2

∑

x2,...,xn∈Zd

pn(a+ x2+ · · ·+ xn)

Ḡ(0)− 1
p(a)

n∏

k=2

p(xk)

=
p(a)

Ḡ(0)− 1

∞∑

n=1

p2n−1(a)

(3.31)
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and

q∗
�
{(a, b)} × (Zd)n−2

�
= 1n=2

p(a)p(b)

Ḡ(0)− 1
p2(a+ b)

+ 1n≥3

p(a)p(b)

Ḡ(0)− 1

∑

x3,...,xn∈Zd

pn(a+ b+ x3+ · · ·+ xn)

n∏

k=3

p(xk)

=
p(a)p(b)

Ḡ(0)− 1
p2n−2(a+ b),

(3.32)

we find (recall that Ḡ(0)− 1=
∑∞

n=1 p2n(0))

ΨQ∗(a, b) =
p(a)p(b)

h ∞∑
n=1

p2n(0)
ih ∞∑

n=1

np2n(0)
i
�� ∞∑

n=1

p2n−1(a)

�� ∞∑

n=1

p2n−1(b)

�

+

� ∞∑

n=1

p2n(0)

�� ∞∑

n=2

(n− 1)p2n−2(a+ b)

��
.

(3.33)

Pick b =−a with p(a)> 0. Then, shifting n to n− 1 in the last sum, we get

ΨQ∗(a,−a)

p(a)2
− 1=

�
∞∑

n=1

p2n−1(a)

�2

h ∞∑
n=1

p2n(0)
ih ∞∑

n=1

np2n(0)
i > 0. (3.34)

This shows that consecutive letters are not uncorrelated under ΨQ∗ , and implies that (3.27) holds as

claimed.

3.3 Proof of Theorem 1.6

The proof follows the line of argument in Section 3.2. The analogues of (3.4–3.7) are

z
eV =

∞∑

N=0

(log z)N
eV N

N !
, (3.35)

with
eV N

N !
=

∫ ∞

0

d t1 · · ·
∫ ∞

tN−1

d tN 1{eSt1
=eS′t1 ,...,eStN

=eS′tN }
, (3.36)

and

E

h
z
eV | eS

i
=

∞∑

N=0

(log z)N F
(1)
N (
eS), E

h
z
eV
i
=

∞∑

N=0

(log z)N F
(2)
N , (3.37)

with

F
(1)
N (
eS) :=

∫ ∞

0

d t1 · · ·
∫ ∞

tN−1

d tN P

�
eSt1
= eS′t1

, . . . , eStN
= eS′tN

| eS
�

, F
(2)
N := E

�
F
(1)
N (
eS)�, (3.38)
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where the conditioning in the first expression in (3.37) is on the full continuous-time path eS =
(eSt)t≥0. Our task is to compute

er1 := lim
N→∞

1

N
log F

(1)
N (
eS) eS − a.s., er2 := lim

N→∞

1

N
log F

(2)
N , (3.39)

and show that er1 < er2.

In order to do so, we write eSt = X
♮
Jt

, where X ♮ is the discrete-time random walk with transition

kernel p(·, ·) and (Jt)t≥0 is the rate-1 Poisson process on [0,∞), and then average over the jump

times of (Jt)t≥0 while keeping the jumps of X ♮ fixed. In this way we reduce the problem to the one

for the discrete-time random walk treated in the proof of Theorem 1.6. For the first expression in

(3.38) this partial annealing gives an upper bound, while for the second expression it is simply part

of the averaging over eS.

Define

F
(1)
N (X

♮) :=

∫ ∞

0

d t1 · · ·
∫ ∞

tN−1

d tN P(eSt1
= eS′t1

, . . . , eStN
= eS′tN

| X ♮), F
(2)
N := E

�
F
(1)
N (X

♮)
�

,

(3.40)

together with the critical values

r
♮
1 := lim

N→∞

1

N
log F

(1)
N (X

♮) (X ♮− a.s.), r
♮
2 := lim

N→∞

1

N
log F

(2)
N . (3.41)

Clearly,

er1 ≤ r
♮
1 and er2 = r

♮
2, (3.42)

which can be viewed as a result of “partial annealing”, and so it suffices to show that r
♮
1 < r

♮
2.

To this end write out

P(eSt1
= eS′t1

, . . . , eStN
= eS′tN

| X ♮)

=
∑

0≤ j1≤···≤ jN<∞

 
N∏

i=1

e−(t i−t i−1)
(t i − t i−1)

ji− ji−1

( ji − ji−1)!

!

∑

0≤ j′
1
≤···≤ j′N<∞

 
N∏

i=1

e−(t i−t i−1)
(t i − t i−1)

j′
i
− j′

i−1

( j′
i
− j′

i−1
)!

! 


N∏

i=1

p j′
i
− j′

i−1




ji− ji−1∑

k=1

X
♮

ji−1+k




 .

(3.43)

Integrating over 0≤ t1 ≤ · · · ≤ tN <∞, we obtain

F
(1)
N (X

♮) =
∑

0≤ j1≤···≤ jN<∞

∑

0≤ j′
1
≤···≤ j′N<∞

N∏

i=1


2−( ji− ji−1)−( j′i− j′

i−1)−1
[( ji − ji−1) + ( j

′
i − j′i−1)]!

( ji − ji−1)!( j
′
i
− j′

i−1
)!

p j′
i
− j′

i−1




ji− ji−1∑

k=1

X
♮

ji−1+k




 .

(3.44)

Abbreviating

Θn(u) =

∞∑

m=0

pm(u)2−n−m−1

�
n+m

m

�
, n ∈N∪ {0}, u ∈ Zd , (3.45)
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we may rewrite (3.44) as

F
(1)
N (X

♮) =
∑

0≤ j1≤···≤ jN<∞

N∏

i=1

Θ ji− ji−1




ji− ji−1∑

k=1

X
♮

ji−1+k


 . (3.46)

This expression is similar in form as the first line of (3.8), except that the order of the ji ’s is not

strict. However, defining

bF (1)N (X
♮) =

∑

0< j1<···< jN<∞

N∏

i=1

Θ ji− ji−1




ji− ji−1∑

k=1

X
♮

ji−1+k


 , (3.47)

we have

F
(1)
N (X

♮) =

N∑

M=0

�
N

M

�
[Θ0(0)]

M bF (1)N−M (X
♮), (3.48)

with the convention bF (1)0 (X
♮)≡ 1. Letting

r
♮
1 = lim

N→∞

1

N
log bF (1)N (X

♮), X ♮− a.s., (3.49)

and recalling (3.41), we therefore have the relation

r
♮
1 = log

h
Θ0(0) + ebr

♮
1

i
, (3.50)

and so it suffices to compute br♮1.

Write

F
(1)
N (X

♮) = E


exp

�
N

∫

Ý
Zd

(π1RN )(d y) log f ♮(y)

������X
♮


 , (3.51)

where f ♮ : ÝZd → [0,∞) is defined by

f ♮((x1, . . . , xn)) =
Θn(x1+ · · ·+ xn)

p2⌊n/2⌋(0)
[2Ḡ(0)− 1], n ∈N, x1, . . . , xn ∈ Zd . (3.52)

Equations (3.51–3.52) replace (3.8–3.9). We can now repeat the same argument as in (3.16–

3.22), with the sole difference that f in (3.9) is replaced by f ♮ in (3.52), and this, combined with

Lemma 3.3 below, yields the gap r
♮
1 < r

♮
2.

We first check that f ♮ is bounded from above, which is necessary for the application of Varadhan’s

lemma. To that end, we insert the Fourier representation (3.14) into (3.45) to obtain

Θn(u) =
1

(2π)d

∫

[−π,π)d
dk e−i(k·u) [2− bp(k)]−n−1, u ∈ Zd , (3.53)

from which we see that Θn(u)≤ Θn(0), u ∈ Zd . Consequently,

f ♮n ((x1, · · · , xn))≤
Θn(0)

p2⌊n/2⌋(0)
[2Ḡ(0)− 1], n ∈N, x1, . . . , xn ∈ Zd . (3.54)
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Next we note that

lim
n→∞

1

n
log

�
2−(a+b)n−1

�
(a+ b)n

an

�� ¨
= 0, if a = b,

< 0, if a 6= b.
(3.55)

From (1.1), (3.45) and (3.55) it follows that Θn(0)/p2⌊n/2⌋(0) ≤ C < ∞ for all n ∈ N, so that f ♮

indeed is bounded from above.

Note that X ♮ is the discrete-time random walk with transition kernel p(·, ·). The key ingredient

behind br♮1 < br
♮
2 is the analogue of Lemma 3.2, this time with Q∗ = (q∗)⊗N and q∗ given by

q∗(x1, . . . , xn) =
Θn(x1+ · · ·+ xn)

1

2
G(0)−Θ0(0)

n∏

k=1

p(xk), (3.56)

replacing (3.19). The proof is deferred to the end.

Lemma 3.3. Assume (1.1). Let Q∗ = (q∗)⊗N with q∗ as in (3.56). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).

This shows that br♮1 < br
♮
2 via the same computation as in (3.21–3.23).

The analogue of (3.18) reads

Z ♮ =
∑

n∈N

∑

x1,...,xn∈Zd

�
Θn(x1+ · · ·+ xn)

� n∏

k=1

p (xk)

=
∑

n∈N

∞∑

m=0

¨ ∑

x1,...,xn∈Zd

pm(x1+ · · ·+ xn)

n∏

k=1

p (xk)

«
2−n−m−1

�
n+m

m

��

=−Θ0(0) +

∞∑

n,m=0

pn+m(0)2−n−m−1

�
n+m

m

�

=−Θ0(0) +
1

2

∞∑

k=0

pk(0) =−Θ0(0) +
1

2
G(0).

(3.57)

Consequently,

logez2 = e−er2 = e−r
♮
2 =

1

Θ0(0) + ebr
♮
2

=
1

Θ0(0) + Z ♮
=

2

G(0)
, (3.58)

where we use (3.37), (3.39), (3.42), (3.50) and (3.57).

We close by proving Lemma 3.3.

Proof. We must adapt the proof in Section 3.2 to the fact that q∗ has a slightly different form,

namely, pn(x1 + · · ·+ xn) is replaced by Θn(x1 + · · ·+ xn), which averages transition kernels. The

computations are straightforward and are left to the reader. The analogues of (3.24) and (3.26) are

q∗((Zd)n) =
1

1

2
G(0)−Θ0(0)

∞∑

m=0

pn+m(0)2−n−m−1

�
n+m

m

�
,

mQ∗ =
∑

n∈N
nq∗((Zd)n) =

1

4

1

1

2
G(0)−Θ0(0)

∞∑

k=0

kpk(0),

(3.59)
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while the analogues of (3.31–3.32) are

q∗(x1 = a) =
p(a)

1

2
G(0)−Θ0(0)

1

2

∞∑

k=0

pk(a)[1− 2−k−1] =
1

2
p(a)

G(a)−Θ0(a)

1

2
G(0)−Θ0(0)

,

q∗
�
{(a, b)} × (Zd)n−2

�
=

p(a)p(b)

1

2
G(0)−Θ0(0)

∞∑

m=0

pn−2+m(a+ b)2−n−m−1

�
n+m

m

�
.

(3.60)

Recalling (3.30), we find

ΨQ∗(a,−a)− p(a)2 > 0, (3.61)

implying that ΨQ∗ 6= ν⊗N (recall (3.2)), and hence H(ΨQ∗ | ν⊗N)> 0, implying the claim.

4 Proof of Theorem 1.2

This section uses techniques from [6]. The proof of Theorem 1.2 is based on two approximation

lemmas, which are stated in Section 4.1. The proof of these lemmas is given in Sections 4.2–4.3.

4.1 Two approximation lemmas

Return to the setting in Section 2. For Q ∈ P inv(eEN), let H(Q) denote the specific entropy of Q.

Write h(· | ·) and h(·) to denote relative entropy, respectively, entropy. Write, and recall from (1.9),

P erg(eEN) = {Q ∈ P inv(eEN): Q is shift-ergodic},
P erg,fin(eEN) = {Q ∈ P inv(eEN): Q is shift-ergodic, mQ <∞}.

(4.1)

Lemma 4.1. Let g : eE→R be such that

lim inf
k→∞

g
�
X |(0,k]

�

log k
≥ 0 for ν⊗N− a.s. all X with X |(0,k] := (X1, . . . , Xk). (4.2)

Let Q ∈ P erg,fin(eEN) be such that H(Q)<∞ and G(Q) :=
∫
eE(π1Q)(d y) g(y) ∈R. Then

lim inf
N→∞

1

N
logE

�
exp

�
N

∫

eE
(π1RN )(d y) g(y)

� ��� X

�
≥ G(Q)− Ique(Q) for ν⊗N–a.s. all X . (4.3)

Lemma 4.2. Let g : eE→R be such that

sup
k∈N

∫

Ek

|g
�
(x1, . . . , xk)

�
|ν⊗k(d x1, . . . , d xk)<∞. (4.4)

Let Q ∈ P erg(eEN) be such that Ique(Q) <∞ and G(Q) ∈ R. Then there exists a sequence (Qn)n∈N in

P erg,fin(eEN) such that

lim inf
n→∞

[G(Qn)− Ique(Qn)]≥ G(Q)− Ique(Q). (4.5)

Moreover, if E is countable and ν satisfies

∀µ ∈ P (E): h(µ | ν)<∞ =⇒ h(µ)<∞, (4.6)

then (Qn)n∈N can be chosen such that H(Qn)<∞ for all n ∈N.
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Lemma 4.2 immediately yields the following.

Corollary 4.3. If g satisfies (4.4) and ν satisfies (4.6), then

sup
Q∈P inv(eEN)

¨∫

eE
(π1Q)(d y) g(y)− Ique(Q)

«
= sup

Q∈P erg,fin(eEN)
H(Q)<∞

¨∫

eE
(π1Q)(d y) g(y)− Ique(Q)

«
. (4.7)

With Corollary 4.3, we can now complete the proof of Theorem 1.2.

Proof. Return to the setting in Section 3.1. In Lemma 4.1, pick g = log f with f as defined in (3.9).

Then (1.11) is the same as (4.2), and so it follows that

lim inf
N→∞

1

N
logE

�
exp

�
N

∫

Ý
Zd

(π1RN )(d y) log f (y)

� ��� X

�

≥ sup
Q∈P erg,fin((

g
Zd )N)

H(Q)<∞

¨∫

Ý
Zd

(π1Q)(d y) log f (y)− Ique(Q)

«
,

(4.8)

where the condition that the first term under the supremum be finite is redundant because g = log f

is bounded from above (recall (3.13)). Recalling (3.10) and (3.20), we thus see that

r1 ≥ sup
Q∈P erg,fin(

ß
(Zd )N)

H(Q)<∞

¨∫

Ý
Zd

(π1Q)(d y) log f (y)− Ique(Q)

«
. (4.9)

The right-hand side of (4.9) is the same as that of (1.13), except for the restriction that H(Q) <∞.

To remove this restriction, we use Corollary 4.3. First note that, by (1.12), condition (4.4) in

Lemma 4.2 is fulfilled for g = log f . Next note that, by (1.10) and Remark 4.4 below, condition

(4.6) in Lemma 4.2 is fulfilled for ν = p. Therefore Corollary 4.3 implies that r1 equals the right-

hand side of (1.13), and that the suprema in (1.13) and (1.6) agree.

Equality (1.14) follows easily from the fact that the maximiser of the right-hand side of (1.7) is

given by Q∗ = (q∗)⊗N with q∗ defined in (3.19), as discussed after Lemma 3.1: If mQ∗ <∞, then we

are done, otherwise we approximate Q∗ via truncation.

Remark 4.4. Every ν ∈ P (Zd) for which
∑

x∈Zd ‖x‖δ ν(x)<∞ for some δ > 0 satisfies (4.6).

Proof. Let µ ∈ P (Zd), and let πi , i = 1, . . . , d, be the projection onto the i-th coordinate. Since

h(πiµ | πiν) ≤ h(µ | ν) for i = 1, . . . , d and h(µ) ≤ h(π1µ) + · · ·+ h(πdµ), it suffices to check the

claim for d = 1.

Let µ ∈ P (Z) be such that h(µ | ν)<∞. Then
∑

x∈Z
µ(x) log(e+ |x |) =

∑

x∈Z
µ(x)≥(e+|x |)δ/2ν(x)

µ(x) log(e+ |x |) +
∑

x∈Z
µ(x)<(e+|x |)δ/2ν(x)

µ(x) log(e+ |x |)

≤
2

δ

∑

x∈Z
µ(x)≥ν(x)

µ(x) log

�
µ(x)

ν(x)

�
+
∑

x∈Z
ν(x) (e+ |x |)δ/2 log(e+ |x |)

≤
2

δ
h(µ | ν) + C

∑

x∈Z
ν(x) |x |δ <∞

(4.10)
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for some C ∈ (0,∞). Therefore

h(µ) =
∑

x∈Z
µ(x) log

�
1

µ(x)

�
=

∑

x∈Z
µ(x)≤(e+|x |)−2

µ(x) log

�
1

µ(x)

�
+

∑

x∈Z
µ(x)>(e+|x |)−2

µ(x) log

�
1

µ(x)

�

≤
∑

x∈Z

2 log(e+ |x |)
(e+ |x |)2 + 2

∑

x∈Z
µ(x) log(e+ |x |)<∞,

(4.11)

where the last inequality uses (4.10).

4.2 Proof of Lemma 4.1

Proof. The idea is to make the first word so long that it ends in front of the first region in X that

looks like the concatenation of N words drawn from Q, and after that cut N “Q-typical” words from

this region. Condition (4.2) ensures that the contribution of the first word to the left-hand side of

(4.3) is negligible on the exponential scale.

To formalise this idea, we borrow some techniques from [6], Section 3.1. Let H(ΨQ) denote the

specific entropy of ΨQ (defined in (2.8)), and Hτ|κ(Q) the “conditional specific entropy of word

lengths under the law Q given the concatenation” (defined in [6], Lemma 1.7). We need the relation

H(Q | q⊗Nρ,ν ) = mQH(ΨQ | ν⊗N)− Hτ|κ(Q)−EQ

�
logρ(τ1)

�
. (4.12)

First, we note that H(Q) < ∞ and mQ < ∞ imply that H(ΨQ) < ∞ and Hτ|κ(Q) < ∞ (see [6],

Lemma 1.7). Next, we fix ǫ > 0. Following the arguments in [6], Section 3.1, we see that for all N

large enough we can find a finite set A = A (Q,ǫ, N) ⊂ eEN of “Q-typical sentences” such that, for

all z = (y(1), . . . , y(N)) ∈A , the following hold:

1

N

N∑

i=1

logρ(|y i|) ∈
h
EQ

�
logρ(τ1)

�
− ǫ,

�
EQ

�
logρ(τ1)

�
+ ǫ
i

,

1

N
log
��{z′ ∈A : κ(z′) = κ(z)}

�� ∈
h

Hτ|κ(Q)− ǫ, Hτ|κ(Q) + ǫ
i

,

1

N

N∑

i=1

g(y(i)) ∈
h

G(Q)− ǫ, G(Q)− ǫ
i

.

(4.13)

Put B := κ(A ) ⊂ eE. We can choose A in such a way that the elements of B have a length in�
N(mQ − ǫ), N(mQ + ǫ)

�
. Moreover, we have

P
�
X begins with an element ofB

�
≥ exp

�
− Nχ(Q)

�
, (4.14)

where we abbreviate

χ(Q) := mQH(ΨQ | ν⊗N) + ǫ. (4.15)

Put

τN :=min
�

i ∈N: θ iX begins with an element ofB
	
. (4.16)

Then, by (4.14) and the Shannon-McMillan-Breiman theorem, we have

lim sup
N→∞

1

N
logτN ≤ χ(Q). (4.17)
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Indeed, for each N , coarse-grain X into blocks of length LN := ⌊N(mQ+ǫ)⌋. For i ∈N∪{0}, let AN ,i

be the event that θ i LN X begins with an element ofB . Then, for any δ > 0,

n
τN > exp[N(χ(Q) +δ)]

o
⊂

exp[N(χ(Q)+δ)]/LN⋂

i=1

Ac
N ,i , (4.18)

and hence

P

�
τN > exp[N(χ(Q) +δ)]

�
≤
�

1− exp[−Nχ(Q)]
�exp[N(χ(Q)+δ)]/LN

=

��
1− exp[−Nχ(Q)

��exp[Nχ(Q)
��eδN/LN

≤ exp[−eδN/LN ],

(4.19)

which is summable in N . Thus, lim supN→∞
1

N
logτN ≤ χ(Q) + δ by the first Borel-Cantelli lemma.

Now let δ ↓ 0, to get (4.17).

Next, note that

E

�
exp
�
(N + 1)

∫

eE
(π1RN+1)(d y) g(y)

� ��� X

�

=
∑

0< j1<···< jN+1

N+1∏

i=1

ρ( ji − ji−1)exp

 
N+1∑

i=1

g
�
X |( ji−1, ji]

�
!

≥ ρ(τN ) exp[g(X |(0,τN ]
)]
∑
∗

N+1∏

i=2

ρ( ji − ji−1) exp

 
N+1∑

i=2

g
�
X |( ji−1, ji]

�
!

,

(4.20)

where
∑
∗ in the last line refers to all ( j1, . . . , jN+1) such that j1 := τN < j2 < · · · < jN+1 and

(X |( j1, j2]
, . . . , X |( jN , jN+1]

) ∈A . Combining (2.1), (4.13), (4.17) and (4.20), we obtain that X -a.s.

lim inf
N→∞

1

N + 1
logE

�
exp
h
(N + 1)

∫

eE
(π1RN+1)(d y) g(y)

i ��� X

�

≥−αχ(Q) + lim inf
N→∞

g(X |(0,τN ]
)

N
+ Hτ|κ(Q) +EQ

�
logρ(τ1)

�
+ G(Q)− 3ǫ.

(4.21)

By Assumption (4.2), lim infN→∞ N−1 g(X |(0,τN ]
)≥ 0, and so (4.21) yields that X -a.s.

lim inf
N→∞

1

N
logE

�
exp
�

N

∫

eE
(π1RN )(d y) g(y)

� ��� X

�

≥ G(Q)−αmQH(ΨQ | ν⊗N) + Hτ|κ(Q) +EQ

�
logρ(τ1)

�
− (3+α)ǫ

= G(Q)− Ique(Q)− (3+α)ǫ,

(4.22)

where we use (2.13–2.14), (4.12) and (4.15). Finally, let ǫ ↓ 0 to get the claim.

4.3 Proof of Lemma 4.2

Proof. Without loss of generality we may assume that mQ =∞, for otherwise Qn ≡Q satisfies (4.5).

The idea is to use a variation on the truncation construction in [6], Section 3. For a given truncation
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level tr ∈ N, let Qνtr be the law obtained from Q by replacing all words of length ≥ tr by words of

length tr whose letters are drawn independently from ν . Formally, if Y = (Y (i))i∈N has law Q and
eY = (eY (i))i∈N has law (ν⊗tr)⊗N and is independent of Y , then Ȳ = (Ȳ (i))i∈N) defined by

Ȳ (i) :=

¨
Y (i), if |Y (i)|< tr,
eY (i), if |Y (i)| ≥ tr,

(4.23)

has law Qνtr.

Lemma 4.5. For every Q ∈ P inv,erg(eEN) such that Ique(Q)<∞ and every tr ∈N,

H(Qνtr | q
⊗N
ρ,ν )≤ H([Q]tr | q⊗Nρ,ν ),

H(ΨQνtr
| ν⊗N)≤ H(Ψ[Q]tr | ν

⊗N).
(4.24)

Proof. The intuition is that under Qνtr all words of length tr have the same content as under q⊗Nρ,ν ,

while under [Q]tr they do not. The proof is straightforward but lengthy, and is deferred to Ap-

pendix A.

Using (4.24) and noting that mQνtr
= m[Q]tr <∞, we obtain (recall (2.13–2.14))

lim sup
tr→∞

Ique(Qνtr)≤ Ique(Q). (4.25)

On the other hand, we have
∫

eE
(π1Qνtr)(d y) g(y)

=

∫

eE
(π1Q)(d y)1{|y|<tr} g(y) +Q(τ1 ≥ tr)

∫

Etr

ν⊗tr(d x1, . . . , d xtr) g((x1, . . . , xtr))

−→
tr→∞

G(Q) =

∫

eE
(π1Q)(d y) g(y),

(4.26)

where we use dominated convergence for the first summand and condition (4.4) for the second

summand. Combining (4.25–4.26), we see that we can choose tr = tr(n) such that (4.5) holds for

Qn =Qν
tr(n)

.

It remains to verify that, under condition (4.6), H(Qνtr)<∞ for all tr ∈N. Since H(Qνtr)≤ h(π1Qνtr),

it suffices to verify that h(π1Qνtr)<∞ for all tr ∈N. To prove the latter, note that (we writeLQνtr
(τ1)

to denote the law of τ1 under Qνtr, etc.)

h(π1Qνtr) = h(LQνtr
(τ1)) +

tr∑

ℓ=1

Qνtr(τ1 = ℓ)h
�
LQνtr

�
Y (1)|τ1 = ℓ

��

≤ log tr+

tr−1∑

ℓ=1

ℓ∑

k=1

h
�
LQνtr

�
Y
(1)

k
|τ1 = ℓ

��
+ tr h(ν).

(4.27)

Since h(π1Q | qρ,ν)≤ H(Q | q⊗Nρ,ν ) = Iann(Q)≤ Ique(Q)<∞, we have

h(π1Q | qρ,ν) = h(LQ(τ1) | ρ) +
∞∑

ℓ=1

Q(τ1 = ℓ)h
�
LQ

�
Y (1)|τ1 = ℓ

�
| ν⊗ℓ

�
<∞. (4.28)
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Moreover, for all ℓ < tr and k = 1, . . . ,ℓ,

h
�
LQνtr

�
Y
(1)

k
|τ1 = ℓ

�
| ν
�
≤ h
�
LQνtr

�
Y (1)|τ1 = ℓ

�
| ν⊗ℓ

�
= h
�
LQ

�
Y (1)|τ1 = ℓ

�
| ν⊗ℓ

�
. (4.29)

Combine (4.28–4.29) with (4.6) to conclude that all the summands in (4.27) are finite.

5 Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Let q ∈ P (ÝZd) be given by

q(x1, . . . , xn) := ρ̄(n)ν(x1) · · ·ν(xn), n ∈N, x1, . . . , xn ∈ Zd , (5.1)

for some ρ̄ ∈ P (N) with
∑

n∈N nρ̄(n) < ∞, and let Q = q⊗N. Then Q is ergodic, mQ < ∞, and

(recall (2.4))

Ique(Q) = H
�
q⊗N | (qρ,ν)

⊗N�= h(ρ̄ | ρ) (5.2)

because ΨQ = ν
⊗N. Now pick tr ∈N, ρ̄ = [ρ∗]tr with ρ∗ given by

ρ∗(n) :=
1

Z
exp[−h(pn)], n ∈N, Z :=

∑

n∈N
exp[−h(pn)], (5.3)

ν(·) = p(·), and compute (recall (3.2) and (3.9))

∫

Ý
Zd

(π1Q)(d y) log f (y) =

∫

Ý
Zd

q(d y) log f (y)

=
∑

n∈N

∑

x1,...,xn∈Zd

ρ̄(n) p(x1) · · · p(xn) log

�
pn(x1+ · · ·+ xn)

ρ(n)

�

=
∑

n∈N
ρ̄(n) [− logρ(n)− h(pn)]

= log Z +
∑

n∈N
ρ̄(n) log

�
ρ∗(n)

ρ(n)

�

= log Z + h
�
ρ̄ | ρ

�
− h
�
ρ̄ | ρ∗

�
.

(5.4)

Then (1.13), (5.2) and (5.4) give the lower bound

r1 ≥ log Z − h
�
ρ̄ | ρ∗

�
. (5.5)

Let tr→∞, to obtain r1 ≥ log Z , which proves the claim (recall that z1 = 1+ exp[−r1]).

It is easy to see that the choice in (5.3) is optimal in the class of q’s of the form (5.1) with ν(·) = p(·).
By using (3.15), we see that h(p2n) ≥ − log p2n(0) and h(p2n+1) ≥ − log p2n(0). Hence Z < ∞ by

the transience of p(·, ·).

Proof of Theorem 1.5. The claim follows from the representations (1.13–1.14) in Theorem 1.2, and

the fact that Ique = Iann when α= 1.
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6 Examples of random walks satisfying assumptions (1.10–1.12)

In this section we exhibit classes of random walks for which (1.10–1.12) hold.

1. Let S be an irreducible symmetric random walk on Z
d with E[‖S1‖3] < ∞. Then standard

cumulant expansion techniques taken from Bhattacharya and Ranga Rao [2] can be used to show

that for every C1 ∈ (0,∞) there is a C2 ∈ (0,∞) such that

pn(x) =
c

nd/2
exp
h
−

1

2n
(x ,Σ−1 x)

i�
1+O

�(log n)C2

n1/2

��
,

n→∞, ‖x‖ ≤
p

C1n log log n, pn(x)> 0,

(6.1)

where Σ is the covariance matrix of S1 (which is assumed to be non-degenerate), and c is a constant

that depends on p(·). The restriction pn(x) > 0 is necessary: e.g. for simple random walk x and

n in (6.1) must have the same parity. The Hartman-Wintner law of the iterated logarithm (see e.g.

Kallenberg [24], Corollary 14.8), which only requires S1 to have mean zero and finite variance, says

that

lim sup
n→∞

|(Sn)
i |p

2Σii n log log n
= 1 a.s., i = 1, . . . , d, (6.2)

where (Sn)
i is the i-th component of Sn. Using ‖Sn‖ ≤

p
d max1≤i≤d |(Sn)

i|, we obtain that there is

a C3 ∈ (0,∞) such that

lim sup
n→∞

‖Sn‖p
n log log n

≤ C3 S − a.s. (6.3)

Combining and (6.1) and (6.3), we find that there is a C4 ∈ (0,∞) such that

log[ pn(Sn)/p2⌊n/2⌋(0) ]≥−C4 ‖Sn‖2/n ∀n ∈N S − a.s. (6.4)

Combining (6.3) and (6.4), we get (1.11).

To get (1.12), we argue as follows. Note that E(S1) = 0 and E(‖S1‖2)<∞. For n ∈N, we have

∑

x∈Zd

pn(x) log[pn(x)/p2⌊n/2⌋(0)] =: Σ1(n) +Σ2(n), (6.5)

where the sums run over, respectively,

I1(n) := {x ∈ Zd : pn(x)/p2⌊n/2⌋(0)≥ exp[−n−1‖x‖2− 1]},
I2(n) := {x ∈ Zd : pn(x)/p2⌊n/2⌋(0)< exp[−n−1‖x‖2− 1]}.

(6.6)

We have

Σ1(n)≥
∑

x∈Zd

pn(x) [−n−1‖x‖2− 1] = −E(‖S1‖2)− 1. (6.7)

Since u 7→ u log u is non-increasing on the interval [0, e), we also have

Σ2(n)≥
∑

x∈Zd

{p2⌊n/2⌋(0) exp[−n−1‖x‖2− 1]} [−n−1‖x‖2− 1]≥−p2⌊n/2⌋(0)C5nd/2
(6.8)
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for some C5 ∈ (0,∞). By the local central limit theorem, we have p2⌊n/2⌋(0) ∼ C6n−d/2 as n→∞
for some C6 ∈ (0,∞). Hence Σ1(n) + Σ2(n) is bounded away from −∞ uniformly in n ∈ N, which

proves (1.12).

2. Let S be a symmetric random walk on Z that is in the normal domain of attraction of a symmetric

stable law with index a ∈ (0,1) and suppose that the one-step distribution is regularly varying, i.e.,

P(S1 = x) = [1+ o(1)]C |x |−1−a, |x | →∞ for some C ∈ (0,∞). Then, as shown e.g. in Chover [13]

and Heyde [20],

|Sn| ≤ n1/a(log n)1/a+o(1) a.s. n→∞. (6.9)

p satisfies (1.1) with α = 1/a ∈ (1,∞), the standard local limit theorem gives (see e.g. Ibragimov

and Linnik [22], Theorem 4.2.1)

pn(x) = [1+ o(1)]n−1/a f (xn−1/a), |x |/n1/a = O(1), (6.10)

with f the density of the stable law. The remaining region was analysed in Doney [15], Theorem A,

namely,

pn(x) = [1+ o(1)]C n |x |−1−a, |x |/n1/a→∞. (6.11)

In fact, the proof of (6.11) shows that for K sufficiently large there exist c ∈ (0,∞) and n0 ∈N such

that

c−1 ≤
pn(x)

n |x |−1−a
≤ c, n≥ n0, |x | ≥ Kn1/a. (6.12)

Combining (6.9–6.11), we get

log[ pn(Sn)/p2⌊n/2⌋(0) ]≥ [−(1+ a)/a+ o(1)] log log n a.s., (6.13)

which proves (1.11).

To get (1.12), we argue as follows. Pick K and c such that (6.12) holds. Obviously, it suffices to

check (1.12) with the infimimum over N restricted to n ≥ n0. Because f is uniformly positive and

bounded on [−K , K], (6.11) gives

inf
n≥n0

∑

|x |≤Kn1/a

pn(x) log[ pn(x)/p2⌊n/2⌋(0) ]≥ log
�

inf
y∈[−K ,K]

f (y)/2
�
>−∞. (6.14)

Applying (6.10) to p2⌊n/2⌋(0) and (6.11) to pn(x) we obtain

∑

|x |>Kn1/a

pn(x) log[ pn(x)/p2⌊n/2⌋(0) ]≥−c1

∑

|x |>Kn1/a

1

n1/a

�
|x |/n1/a�−1−a

(1+ a) log
�
c2|x |/n1/a�

(6.15)

for some c1, c2 ∈ (0,∞). The right-hand side is an approximating Riemann sum for the integral

− 2c1(1+ a)

∫ ∞

K

d y y−1−a log(c2 y)> −∞. (6.16)

3. For an example similar to 2. leading to α= 1 in (1.1), let p be a symmetric transition probability

on Z satisfying

p(x)∼ L(|x |)|x |−2 for |x | →∞ (6.17)
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where L is a suitable slowly varying function on [0,∞). Let L̃ be a conjugate slowly varying

function of 1/L, i.e., L̃ is (up to asymptotic equivalence) determined by the requirement that

limt→∞ L(t L̃(t))/ L̃(t) = 1 (see e.g. Seneta [26], Section 1.6). Transience of a p-random walk

S = (Sn)n∈N0
is equivalent to the requirement

∑
n∈N 1/(nL̃(n)) < ∞, as can be seen from (6.20)

below. Note that in many cases, e.g. for L(x) = (log(1 ∨ x))b, x ∈ (0,∞), for some b > 1, we can

choose L̃ = L. Put bn := nL̃(n), n ∈N. Assumption (6.17) implies that

P(X1 ≥ m) = P(X1 ≤−m)∼
∞∑

k=m

L(k)

k2
∼

L(m)

m
for m→∞, (6.18)

and hence, for any x > 0, we have

nP(X1 ≥ bn x)∼ n
L
�
nx L̃(nx)

�

nx L̃(nx)
∼

1

x
for n→∞. (6.19)

Thus (see, e.g., Ibragimov and Linnik [22], Theorem 2.6.1) Sn/bn → Y in distribution as n → ∞
with Y symmetric Cauchy. The standard local limit theorem (e.g. [22], Theorem 4.2.1) gives

pn(x) = [1+ o(1)]
1

nL̃(n)
f
� x

nL̃(n)

�
, when x and n satisfy |x |/(nL̃(n)) = O(1), (6.20)

with f the density of Y , in particular, pn(0)∼ f (0)/(nL̃(n)).

We cannot literally use results from Doney [15] for an analogue of (6.11) because the case a = 1 is

excluded there, but the proof of Theorem 1 in [15] can easily be adapted to show that there exist

c, K > 0 and n0 ∈N such that

pn(x)

n|x |−2 L(|x |) ≥ c for n≥ n0, |x | ≥ KnL̃(n). (6.21)

By the form of the strong law presented in Kallenberg [24], Theorem 4.23 (and noting that p

possesses moments of any order strictly less than 1), we have for any δ > 0

lim sup
n→∞

|Sn|
n1+δ

= 0 a.s. (6.22)

Combining (6.20), (6.21) and (6.22), we obtain that almost surely

pn(Sn)

p2⌊n/2⌋(0)
≥ c′

n n−2−2δL(n1+δ)
�
nL̃(n)

�−1
= c′ n−2δ L(n1+δ) L̃(n) for n large enough, (6.23)

so in particular

lim inf
n→∞

log[ pn(Sn)/p2⌊n/2⌋(0) ]

log n
≥ −2δ S − a.s. (6.24)

Let δ ↓ 0 to conclude that (1.11) holds.

The fact that (1.12) is satisfied for this example can be checked analogously to (6.14–6.16), where

now the sum is split according to whether |x | ≤ KnL̃(n) or |x |> KnL̃(n).

4. A(n admittedly rather restricted) class of two-dimensional symmetric transient random walks

with α = 1 in (1.1) can be obtained as follows. Let q be a symmetric transition probability on Z
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such that q(x) ∼ L(|x |)|x |−3 for a suitable slowly varying function L that grows to∞, in particular,

q is in the non-normal domain of attraction of the one-dimensional normal law. Then

µq(x) :=
∑

|k|≤x

k2q(k)∼ 2

x∑

k=1

L(|k|)
k
∼ 2 log(x)L(x) for x →∞. (6.25)

Let L̃ be a conjugate of the slowly varying function 1/(2L(x1/2) log(x1/2)), i.e., L̃ is defined (up to

asymptotic equivalence) by the requirement limx→∞
�
2L
�
(x L̃(x))1/2

�
log
�
(x L̃(x))1/2

��
/ L̃(x) = 1

(again, in many examples, e.g. L(x) = log(x)c for c > 0, we can choose L̃(x) = 2L(x1/2) log(x1/2)).

Put bn := (nL̃(n))1/2. One can easily check that nb−2
n µq(bn) → 1 as n → ∞ and that

nq
�
[bn x ,∞)

�
→ 0 for any x > 0 as n → ∞. Hence (see, e.g., Ibragimov and Linnik [22], The-

orem 2.6.2 and its proof) for a q-random walk S̃ = (S̃n)n∈N0
, S̃n/(nL̃(n))1/2 → Z in distribution,

where Z is centred normal, and a local form of this limit holds as well. Analogous to (6.21), one

can show that there exist c, K > 0 and n0 ∈N such that

qn(x)

n|x |−3 L(|x |) ≥ c for n≥ n0, |x | ≥ K
p

nL̃(n), (6.26)

and the analogue of (6.22) is lim supn→∞ n−δ−1/2|S̃n| = 0 for any δ > 0, as follows again from

Kallenberg [24], Theorem 4.23. Thus, we see that lim infn→∞ log[qn(S̃n)/q
2⌊n/2⌋(0) ]/ log n ≥ 0 a.s.

by arguing as in 3. The fact that q satisfies (1.12) can be checked analogously to (6.14–6.16), this

time splitting the sum according to whether |x | is smaller or larger than K(nL̃(n))1/2.

Finally, assume that L is chosen so that
∑

n∈N 1/(nL̃(n)) < ∞. For x = (x1, x2) ∈ Z
2, put p(x) =

q(x1)q(x2). By the discussion above, the p-random walk is transient, satisfies (1.1) with α = 1 (we

have pn(0) = (qn(0))2 ∼ 1/(nL̃(n))) and (1.10–1.12) holds.

A Appendix: Proof of Lemma 4.5

For the first inequality in (4.24), apply Lemma A.1 below with F = eE, G = Etr, ν = qρ,ν , q = πn[Q]tr,

where πn denotes the projection onto the first n words. This yields

h(πnQνtr | q
⊗n
ρ,ν)≤ h(πn[Q]tr | q⊗n

ρ,ν), n ∈N, (A.1)

implying H(Qνtr | q⊗Nρ,ν )≤ H([Q]tr | q⊗Nρ,ν ).

Lemma A.1. Let F be countable, G ⊂ F, ν ∈ P (F), n ∈N, q ∈ P (F n). Define q′ ∈ P (F n) via

q′(x) = q(ξG(x))
∏

i∈IG(x)

νG(x i), x = (x1, . . . , xn) ∈ F n, (A.2)

where IG(x) = {1 ≤ i ≤ n: x i ∈ G}, ξG(x) = {y ∈ F n : yi ∈ G if i ∈ IG(x), yi = x i if i 6∈ IG(x)},
νG(·) = ν(· ∩ G)/ν(G), i.e., a q′-draw arises from a q-draw by replacing the coordinates in G by an

independent draw from ν conditioned to be in G. Then

h(q′ | ν⊗n)≤ h(q | ν⊗n). (A.3)
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Proof. For I ⊂ {1, . . . , n}, we write I c := {1, . . . , n} \ I . For y ∈ (F \ G)I
c

, z ∈ F I , we denote

by (y; z) the element of F {1,...,n} defined by (y; z)i = zi if i ∈ I , (y; z)i = yi if i ∈ I c . Put

qI ,y(z) := q(y; z)/q(ξG,I(y)), where ξG,I(y) = {(y; z′): z′ ∈ G I}, i.e., qI ,y ∈ P (G I) is the law

of the coordinates in I under q given that these take values in G and that the coordinates in I c are

equal to y .

Fix I ⊂ {1, . . . , n}, y ∈ (F \ G)I
c

. We first verify that

∑

z∈G I

q′(y; z) log

�
q′(y; z)

ν⊗n(y; z)

�
≤
∑

z∈G I

q(y; z) log

�
q(y; z)

ν⊗n(y; z)

�
. (A.4)

By definition, the left-hand side of (A.4) equals

q(ξG,I(y))
∑

z∈G I

�∏

i∈I

νG(zi)
�

log

 
q(ξG,I(y))

ν(G)|I |
∏

j∈I c ν(y j)

!
= q(ξG,I(y)) log

 
q(ξG,I(y))

ν(G)|I |
∏

j∈I c ν(y j)

!
,

(A.5)

whereas the right-hand side of (A.4) is equal to

q(ξG,I(y))
∑

z∈G I

qI ,y(z) log

 
q(ξG,I(y))qI ,y(z)∏

i∈I ν(zi)×
∏

j∈I c ν(y j)

!
. (A.6)

Thus, the right-hand side of (A.4) minus the left-hand side of (A.4) equals

q(ξG,I(y))
∑

z∈G I

qI ,y(z) log

�
qI ,y(z)∏
i∈I νG(zi)

�
= q(ξG,I(y))h

�
qI ,y(·) | ν⊗|I |G

�
≥ 0. (A.7)

The claim follows from (A.4) by observing that

h(q′ | ν⊗n) =
∑

I⊂{1,...,n}

∑

y∈(F\G)I c

∑

z∈G I

q′(y; z) log

�
q′(y; z)

ν⊗n(y; z)

�
, (A.8)

and analogously for h(q | ν⊗n).

For the proof of the second inequality in (4.24), i.e.,

H(ΨQνtr
| ν⊗N)≤ H(Ψ[Q]tr | ν

⊗N), (A.9)

we need some further notation. Let tr ∈ N be a given truncation level, ∗ a new symbol, ∗ 6∈ E,

E∗ := E ∪ {∗}, eE∗ := ∪∞n=0(E∗)
n, where eE0

∗ := {ǫ} with ǫ the empty word (i.e., the neutral element of

eE∗ viewed as a semigroup under concatenation). For y ∈ eE, let

eE∗ ∋ [y]tr,∗ :=

(
y, if |y |< tr,

∗tr, if |y | ≥ tr,
(A.10)

where ∗tr = ∗ · · · ∗ denotes the word in eE∗ consisting of tr times ∗, and

Etr ∪ {ǫ} ∋ [y]tr,∼ :=

(
ǫ, if |y |< tr,

[y]tr, if |y | ≥ tr.
(A.11)
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Let Q ∈ P erg(eEN) satisfy H([Q]tr)<∞. For Y = (Y (i))i∈N with law Q and N ∈N, let

K(N ,tr) := κ([Y (1)]tr, . . . , [Y (N)]tr),

K(N ,tr,∗) := κ([Y (1)]tr,∗, . . . , [Y (1)]tr,∗),

K(N ,tr,∼) := κ([Y (1)]tr,∼, . . . , [Y (1)]tr,∼).

(A.12)

Thus, K(N ,tr,∗) consists of the letters in the first N words from [Y ]tr such that letters in words of

length exactly equal to tr are masked by ∗’s, while K(N ,tr,∼) consists of the letters in words of length

tr among the first N words of [Y ]tr. Note that by construction there is a deterministic function

Ξ: eE∗ × eE → eE such that K(N ,tr) = Ξ(K(N ,tr,∗), K(N ,tr,∼)). We assume that Q(τ1 ≥ tr) > 0, otherwise

K(N ,tr,∼) is trivially equal to ǫ for all N .

Extend [·]tr,∗ and [·]tr,∼ in the obvious way to a map on eEN and P (eEN). Then [Q]tr, [Q]tr,∗,

[Q]tr,∼ ∈ P erg(eEN

∗ ), m[Q]tr = m[Q]tr,∗ ≤ tr, m[Q]tr,∼ = tr, Ψ[Q]tr ,Ψ[Q]tr,∗ ,Ψ[Q]tr,∼ ∈ P
erg(EN

∗ ). By

ergodicity of Q, we have (see [5], Section 3.1, for analogous arguments)

lim
N→∞

1

N
logQ(K(N ,tr)) = −m[Q]tr H(Ψ[Q]tr) a.s. (A.13)

lim
N→∞

1

N
logQ(K(N ,tr,∗)) =−m[Q]tr H(Ψ[Q]tr,∗) a.s. (A.14)

Since Q(K(N ,tr)) =Q(K(N ,tr,∗), K(N ,tr,∼)) =Q(K(N ,tr,∗))Q(K(N ,tr,∼)) | K(N ,tr,∗)), we see from (A.13–A.14)

that

lim
N→∞

1

N
logQ(K(N ,tr,∼))|K(N ,tr,∗)) =−m[Q]tr

�
H(Ψ[Q]tr)− H(Ψ[Q]tr,∗)

�
=:−Htr,∼|∗(Q) a.s. (A.15)

The assumption H([Q]tr) < ∞ guarantees that all the quantities appearing in (A.13–A.15) are

proper. Note that Htr,∼|∗(Q) can be interpreted as the conditional specific relative entropy of the

letters in the “long” words of [Y ]tr given the letters in the “short” words (see Lemma A.2 below).

Note that Htr,∼|∗(Q) in (A.15) is defined as a “per word” quantity. Since the fraction of long words in

[Y ]tr is Q(τ1 ≥ tr) and each of these words contains tr letters, the corresponding conditional specific

relative entropy “per letter” is Htr,∼|∗(Q)/[Q(τ1 ≥ tr) tr], as it appears in (A.22) below.

Proof of (A.9). Without loss of generality we may assume that Q(τ1 ≥ tr) ∈ (0,1). Indeed, if Q(τ1 ≥
tr) = 0, then Qνtr = [Q]tr, while if Q(τ1 ≥ tr) = 1, then ΨQνtr

= ν⊗N. In both cases (A.9) obviously

holds.

Step 1. We will first assume that |E|<∞. Then H([Q]tr)<∞ is automatic. Since ν⊗N is a product

measure, we have, for any Ψ ∈ P inv(EN),

H(Ψ | ν⊗N) =−H(Ψ)−
∑

x∈E

Ψ({x} × EN) logν(x), (A.16)

where H(Ψ) denotes the specific entropy of Ψ. We have

H(Ψ[Q]tr | ν
⊗N) =− H(Ψ[Q]tr)−

1

m[Q]tr
EQ

h τ1∧tr∑

j=1

logν(Y
(1)

j
)
i

,

H(ΨQνtr
| ν⊗N) =− H(ΨQνtr

)−
1

m[Q]tr

�
EQ

h τ1∧tr∑

j=1

logν(Y
(1)

j
);τ1 < tr

i
−Q(τ1 ≥ tr) trh(ν)

�
,

(A.17)
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where h(ν) =−
∑

x∈E ν(x) logν(x) is the entropy of ν . Hence

H(Ψ[Q]tr | ν
⊗N)− H(ΨQνtr

| ν⊗N)

=−
�

H(Ψ[Q]tr)− H(ΨQνtr
)
�
−

1

m[Q]tr
EQ

h tr∑

j=1

logν(Y
(1)

j
);τ1 ≥ tr

i
−

Q(τ1 ≥ tr)tr

m[Q]tr
h(ν).

(A.18)

By (A.15) applied to Q and to Qνtr (note that [Qνtr]tr =Qνtr), we have

H(Ψ[Q]tr) = H(Ψ[Q]tr,∗) +
1

m[Q]tr
Htr,∼|∗(Q), (A.19)

H(ΨQνtr
) = H(Ψ[Qνtr]tr,∗) +

1

m[Qνtr]tr
Htr,∼|∗(Q

ν
tr). (A.20)

By construction, m[Qνtr]tr = m[Q]tr , [Q
ν
tr]tr,∗ = [Q]tr,∗, Htr,∼|∗(Q

ν
tr) = Q(τ1 ≥ tr) trh(ν). Combining

(A.18–A.20), we obtain

H(Ψ[Q]tr | ν
⊗N)− H(ΨQνtr

| ν⊗N) =
1

m[Q]tr

�
− Htr,∼|∗(Q)−EQ

h tr∑

j=1

logν(Y
(1)

j
);τ1 ≥ tr

i�
. (A.21)

Finally, we observe that

1

Q(τ1 ≥ tr)tr

�
− Htr,∼|∗(Q)−EQ

h tr∑

j=1

logν(Y
(1)

j
);τ1 ≥ tr

i�

=
−Htr,∼|∗(Q)

Q(τ1 ≥ tr)tr
−

1

tr
EQ

h∑tr

j=1
logν(Y

(1)

j
)

���τ1 ≥ tr
i (A.22)

is the “specific relative entropy of the law of letters in the concatenation of long words given the

concatenation of short words in [Q]tr with respect to ν⊗N”, which is ≥ 0 (see Lemma A.2 below).

Step 2. We extend (A.9) to a general letter space E by using the coarse-graining construction from

[6], Section 8. Let Ac = {Ac,1, . . . ,Ac,nc
}, c ∈ N, be a sequence of nested finite partitions of E, and

let 〈·〉c : E → 〈E〉c be the coarse-graining map as defined in [6], Section 8. Since 〈E〉c is finite and

the word length truncation [·]tr and the letter coarse-graining 〈·〉c commute, we have

H(〈ΨQνtr
〉c | 〈ν⊗N〉c)≤ H(〈Ψ[Q]tr〉c | 〈ν

⊗N〉c) for all c ∈N (A.23)

by Step 1. This implies (A.9) by taking c→∞ (see the arguments in [6], Lemma 8.1 and the second

part of (8.13)).

Lemma A.2. Assume |E| < ∞. Let tr ∈ N, Q ∈ P erg(eEN) with Q(τ1 ≥ tr) > 0. For N ∈ N, put

L̃N := |K(N ,tr,∼)|. Then a.s.

0≤ lim
N→∞

1

L̃N

h
�
Q(K(N ,tr,∼) ∈ · | K(N ,tr,∗))

��ν⊗ L̃N
�

=
−Htr,∼|∗(Q)

Q(τ1 ≥ tr) tr
−

1

tr
EQ




tr∑

j=1

logν(Y
(1)

j
)

��� τ1 ≥ tr


 .
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Proof. Note that, by construction, L̃N = L̃N (K
(N ,tr,∗)) is a deterministic function of K(N ,tr,∗) (namely,

the number of ∗’s in K(N ,tr,∗)), and

lim
N→∞

L̃N/N = trQ(τ1 ≥ tr) a.s. (A.24)

by ergodicity of Q. Fix ε > 0. By ergodicity of Q, there exists a random N0 < ∞ such that for all

N ≥ N0 there is a finite (random) set BN ,ε = BN ,ε(K
(N ,tr,∗)) ⊂ E L̃N such that Q(K(N ,tr,∼) ∈ BN ,ε |

K(N ,tr,∗))≥ 1− ε,

1

N
logQ(K(N ,tr,∼) = b | K(N ,tr,∗)) ∈

�
− Htr,∼|∗(Q)− ε,−Htr,∼|∗(Q) + ε

�
(A.25)

and

1

L̃N

L̃N∑

j=1

logν(bi) ∈ [χ − ε,χ + ε] with χ =
1

tr
EQ

�∑tr

j=1 logν(Y
(1)

j
)
��τ1 ≥ tr

�
(A.26)

for all b = (b1, . . . , b L̃N
) ∈ BN ,ε. Here, (A.25) follows from (A.15), while for (A.26) we note that

lim
N→∞

N−1

|K(N ,tr)|∑

j=1

logν(K
(N ,tr)

j
) = EQ

� tr∧τ1∑

j=1

logν(Y
(1)

j
)
�

,

lim
N→∞

N−1

|K(N ,tr,∼)|∑

j=1

logν(K
(N ,tr,∼)
j

) = EQ

� tr∑

j=1

logν(Y
(1)

j
);τ1 ≥ tr

�
,

(A.27)

and recall (A.24). It follows that

1

L̃N

h
�
Q(K(N ,tr,∼) ∈ · | K(N ,tr,∗))

��ν⊗ L̃N
�

=
1

L̃N

∑

b∈E L̃N

Q(K(N ,tr,∼) = b | K(N ,tr,∗)) log




Q(K(N ,tr,∼) = b | K(N ,tr,∗))
∏ L̃N

j=1 ν(b j)


 =: Σ1+Σ2,

(A.28)

where Σ1 runs over b ∈ BN ,ε and Σ2 over b ∈ E L̃N \ BN ,ε. We have

Σ1 ∈
h
χ ′− ε′,χ ′+ ε′] with χ ′ =−

Htr,∼|∗(Q)

trQ(τ1 ≥ tr)
−

1

tr
EQ

�∑tr

j=1 logν(Y
(1)

j
)
��τ1 ≥ tr

�
(A.29)

for N ≥ N0 by (A.24–A.26), where ε′ = ε′(Q,ε) tends to zero as ε ↓ 0. Multiplying and dividing by

Q(K(N ,tr,∼) 6∈ BN ,ε | K(N ,tr,∗)), we see that

��Σ2

��≤Q(K(N ,tr,∼) 6∈ BN ,ε | K(N ,tr,∗))max
b∈E

log

�
1

ν(b)

�

−Q(K(N ,tr,∼) 6∈ BN ,ε | K(N ,tr,∗)) logQ(K(N ,tr,∼) 6∈ BN ,ε | K(N ,tr,∗))

+Q(K(N ,tr,∼) 6∈ BN ,ε | K(N ,tr,∗)) log |E|,

(A.30)

which tends to zero as ε ↓ 0 because Q(K(N ,tr,∼) 6∈ BN ,ε | K(N ,tr,∗))≤ ε.
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