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The mapping method is an efficient tool to investigate distributive mixing induced by
periodic flows. Computed only once, the mapping matrix can be applied a number of
times to determine the distribution of concentration inside the flow domain. Spectral
analysis of the mapping matrix reveals detailed properties of the distributive mixing
as all relevant information is stored in its eigenmodes. Any vector that describes a
distribution of concentration can be expanded in the complete system of linearly in-
dependent eigenvectors of the mapping matrix. The rapid decay of the contribution of
each mode in the eigenmode decomposition allows for a truncation of the eigenmode
expansion from the whole spectrum to only the dominant eigenmodes (characterized
by a decay rate significantly lower than the duration of the mixing process). This trun-
cated decomposition adequately represents the distribution of concentration inside
the flow domain already after a low number of periods, because contributions of all
non-dominant eigenmodes rapidly become insignificant. The truncation is determined
independently of the initial distribution of concentration and based on the decay rates
of the eigenmodes, which are inversely proportional to the corresponding eigenval-
ues. Only modes with eigenvalues above a certain threshold are retained. The key
advantage of the proposed compact eigenmode representation of the mapping method
is that it includes practically relevant transient states and not just the asymptotic one.
As such the method enables an eigenmode analysis of realistic problems yet with a
substantial reduction in computational effort compared to the conventional approach.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712133]

I. INTRODUCTION

Fluid mixing is central to many natural and engineered processes at both large and small scales.
The prediction and analysis of mixing and transport patterns is not only relevant in industrial mixers
and microfluidic systems, but also in geophysical, oceanographic, and atmospheric flows. Further
examples include population genetics, distribution of nutrients, oil spills and the prediction of the
weather.1–6 Spectral analysis has become popular for the investigation of scalar transport in such
flows, as the governing advection-diffusion equation is linear and thus amenable to characterization
in terms of the eigenvalues and eigenvectors of the evolution operator.7 Analysis of its spectral
structure has been performed in Cerbelli et al.8 and revealed an exponential decay of the scalar
field towards a homogeneous asymptotic state. Here the spatial structure of the decaying scalar field
rapidly becomes dominated by the slowest-decaying eigenmode, termed “strange eigenmode” by
Pierrehumbert,9 to which many studies have been dedicated to date.10–16 Strange eigenmodes are
in literature commonly associated with chaotic advection. In the present context we adopt the more
generic term “dominant eigenmodes” for slowest-decaying eigenmodes. Such modes can during
transient mixing, namely, be distinguished for both islands and chaotic seas.

In the present work only advective transport of material is considered and described by means
of the mapping method. Eigenmode decompositions of the mapping matrix reveal important insight
into the generic transport properties of mixing flows. Singh et al.17 presented a first analysis of the
eigenmode decomposition of the mapping matrix and connected its spectral properties with mixing
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characteristic and coherent structures in the Lagrangian flow structure (i.e., islands and chaotic
regions). For mixing simulations in realistic industrial devices, the mapping matrix is sparse and
of a huge size, which makes calculation of the whole spectrum computationally very expensive
and in many cases even impossible. Thus an alternative, more efficient way is required to perform
eigenmode analyses in such configurations.

In practice, mixing processes are generally determined by the transient evolution of concentra-
tion distributions, meaning that asymptotic mixing states, the focus of typical eigenmode analyses,
are in general less relevant in such applications. For example, in microfluidic mixers usually mixing
takes place within a limited span of no more than ten spatial periods. Hence, an efficient method for
eigenmode analysis of realistic mixing flows must be developed specifically for transient mixing.
Essential to transient mixing is that its evolution depends not only on the dominant eigenmodes, but
also on the specific contribution of eigenmodes with decay rate significantly lower than the duration
of the mixing process (“transient eigenmodes”). The relevance of multiple eigenmodes during the
transient means that it, in contrast with the dependence of the asymptotic state solely on the dominant
eigenmode, depends essentially on the initial state. Thus, determining said specific contribution is
essential to eigenmode analyses of transient mixing. However, in the standard mapping method, this,
first, requires a full eigenmode decomposition of the mapping matrix and, second, a full evaluation
of the expansion coefficients of all eigenmodes for given initial conditions. These are generally com-
putationally very expensive manipulations and therefore not an option for typical practical mixing
studies.

The present study offers a way for efficient eigenmode analysis of transient mixing. The basic
course of action is as follows. First, systematic isolation of the compact eigenmode basis (defined
by the set of transient eigenmodes including the dominant eigenmode) that contains all “essential”
information. Second, efficient evaluation of the specific contribution of the relevant eigenmodes
based on orthogonalization of the compact basis. This admits a case-specific eigenmode analysis
and isolation of possible modes within the compact basis that dominate the transient in a similar
way as the dominant eigenmode at some point overrules all other modes. Such “dominant transient
eigenmodes,” the excitation of which depends essentially on the initial state, may play a role of equal
– if not higher – significance than the dominant eigenmode in realistic mixing processes. This may
deepen understanding of mixing processes and may also facilitate further reduction of the compact
eigenmode basis for the benefit of computational efficiency.

The paper is organized as follows. Section II briefly reviews the mapping method and eigenmode
decomposition of the mapping matrix including an illustrative example. Section III introduces the
compact mapping method, based on the truncated eigenmode decomposition of the mapping matrix,
and the orthogonalization procedure for efficient evaluation of the expansion coefficients for the
compact basis in case of arbitrary initial conditions. The compact mapping method is demonstrated
and its performance evaluated by way of comparison with the conventional mapping method in
Sec. IV. Conclusions are drawn in Sec. V.

II. THE MAPPING METHOD FOR DISTRIBUTIVE MIXING

A. The mapping matrix and its construction

The mapping method was originally proposed by Spencer and Wiley18 and has proven its
worth for the simulation and analysis of laminar mixing.19–23 This ansatz describes mixing by the
redistribution of material over a grid of discrete cells via the so-called mapping matrix, the entries of
which represent the fractions of material exchanged between cells. A computationally efficient way
to determine these fractions is by representation of the continuous material within cells by discrete
markers, as shown schematically in Figure 1.24 The domain is subdivided into N cells that each hold
Mj markers, which are advected by the flow during the time interval t0 ≤ t ≤ t0 + �t. Entries of the
mapping matrix then are defined by

�i j = Mi j

M j
, (1)
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FIG. 1. Illustration of the computation of the entries �i j of the mapping matrix �. The cell �j at t = t0 is covered with a
number of markers that are tracked during flow in �t to arrive at the final cross section t = t0 + �t. The ratio of the number

of markers received by the recipient cell �i to the initial number of markers in �j is determined. In this case �i j = 3

16
.

with Mij the number of markers – and �i j the corresponding fraction – fraction of the Mj markers
in donor cell �j at t = t0 ending up in the recipient cell �i at t = t0 + �t. The constructed mapping
matrix allows to compute the redistribution of any arbitrary initial concentration C0 ∈ RN×1 of
material over the N cells during the above time interval via

C1 = �C0, (2)

with C1 ∈ RN×1 the new concentration.
The present study is restricted to time-periodic flows u(x, t) = u(x, t + T ), with period time T.

Constructing the mapping matrix for time interval 0 ≤ t ≤ T then admits computation of period-wise
redistribution of material by repetitive mapping following

Cn = (�(�(...(�︸ ︷︷ ︸
n times

C0)...))) = �n C0, (3)

with Cn the resulting concentration after n periods. Details of the method, with validation and
comparisons with other methods, are found in Kruijt et al.19 and Singh et al.24

B. Eigenmode decomposition of the mapping matrix

The concentration according to Eq. (3) admits the eigenmode decomposition

Cn =
N∑

k=1

C0
k λ

n
kvk, (4)

with {λk, vk} the corresponding eigenvalue-eigenvector pairs of the mapping matrix � and C0
k the

expansion coefficients.17 These eigenmodes constitute the “fingerprint” of the mapping matrix and
contain all information about the transport properties. Both the mapping matrix and the concen-
tration vectors are real. This has a number of essential ramifications. First, eigenmodes are either
real or emerge as complex conjugate pairs {λk, λk+1} = {λk, λ

∗
k} and {vk, vk+1} = {vk, v

∗
k}. Sec-

ond, expansion coefficients associated with such pairs must also form complex-conjugate pairs:
{C0

k , C0
k+1} = {C0

k , C0,∗
k }. Thus, the initial concentration can be expressed as

C0 = · · · + C0
pv p + · · · + 2Re(C0

k )Re(vk) − 2Im(C0
k )Im(vk) + · · · (5)

with the leading term representing real eigenmodes and the remaining terms representing complex-
conjugate pairs. The corresponding concentration after n periods according to Eq. (4) thus in effect
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reads

Cn = · · · + C0
pλ

n
kv p + · · · + 2Re(C0

k )|λn
k |

⎡
⎢⎣

Vk,0 cos (αk,0 + nφk)
...

Vk,N cos (αk,N + nφk)

⎤
⎥⎦

−2Im(C0
k )|λn

k |

⎡
⎢⎣

Vk,0 sin (αk,0 + nφk)
...

Vk,N sin (αk,N + nφk)

⎤
⎥⎦ + . . . , (6)

where Vk,i = |vk,i |, αk,i = arg(vk,i ), φk = arg(λk).
The eigenvalues are bounded by |λk| ≤ 1, meaning that eigenmodes either decay exponentially

in time (|λk| < 1) or persist indefinitely (|λ1| = 1). The persistent modes determine the asymptotic
state C∞ := limn→∞ Cn; the decaying modes determine the progression towards this state. This
progression, after a short-lived initial stage, rapidly becomes dominated by the slowest-decaying
eigenmode(s), that is, the (cluster of) eigenmode(s) with eigenvalue(s) closest to the unit circle in
the complex plane spanned by (Re(λ), Im(λ)). These modes correspond with max |λk | = λdom < 1
and are, consistent with the nomenclature introduced in Sec. I, denoted “dominant eigenmodes”
hereafter. The mapping matrix always possesses a trivial persistent eigenmode with λ1 = 1 and
vk = γ 1, where 1 is the unit vector and γ is an arbitrary constant, due to mass conservation.
Absence of other persistent modes implies a homogeneous asymptotic state and signifies chaotic
mixing. The presence of such modes implies persistent inhomogeneities and, inherently, incomplete
mixing.17 The above properties are based on the generic conjectures advanced in Singh et al.17 We
must stress that proof of these conjectures is still outstanding. However, numerical evidence so far
fully supports these conjectures.

Important to note is that purely advective mixing strictly confines the eigenvalue spectrum of
the transport operator to the unit circle.25, 26 This implies a unitary mapping matrix. However, the
mapping matrix possesses this property only in the hypothetical case of infinite spatial resolution.
Actual mapping matrices are constructed from a finite number of cells and, in consequence, suffer
from numerical diffusion. This, similar to the effect of molecular diffusion in advective-diffusive
transport, manifests itself in local smearing-out of spatial features in the mixing pattern and causes
the eigenvalue spectrum to fall within the unit circle.17 The eigenmodes of the actual mapping
matrix nonetheless are physically meaningful in that they are locally averaged representations of
the eigenmodes of the ideal unitary mapping matrix. The smearing-out becomes more profound the
finer the spatial features and shifts the eigenvalues of corresponding eigenmodes further within the
unit circle.

C. An illustrative example

The present study adopts the well-known time-periodic sine flow (TPSF) as prototype mixing
flow.8, 12, 27, 28 It consists of periodically reoriented steady sinusoidal flows inside the bi-periodic
square � = (0, 1) × (0, 1) and is given by

(ux , uy) = [sin (2πy), 0] for 0 ≤ t ≤ T

2
, (ux , uy) = [0, sin (2πx)] for

T

2
≤ t ≤ T , (7)

with T the period time. The TPSF admits an analytical expression for the period-wise mapping of
markers, reading

xi = mod[{xi−1 + 0.5T sin (2πyi−1)} , 1], yi = mod[{yi−1 + 0.5T sin (2πxi )} , 1], (8)

which enables an accurate and efficient computation of the associated mapping matrix.
The flow structure – and corresponding mixing properties – can be made visible by Poincaré

sections.29 This is demonstrated in Figure 2 for the three stirring protocols corresponding with
T = 0.56, T = 1.12, and T = 1.6, exposing the characteristic flow structure of 2D mixing flows:
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T = 0.56 T = 1.12 T = 1.6

FIG. 2. Poincaré-sections of the TPSF for different periods T.

islands and chaotic seas. The progression with growing T reveals a gradual diminution of islands in
favor of a chaotic sea until a state of global chaos sets in beyond a certain T.

The Poincaré sections visualize the asymptotic state of the system and their structure, in conse-
quence, is intimately related to the persistent and dominant eigenmodes of the mapping matrix.8, 17

Figures 3(a) and 3(b) show typical persistent modes for cases T = 0.56 and T = 1.12, respec-
tively, and reveal that their structure coincides with the islands in the associated Poincaré sections
(Figure 2). Figure 3(c) gives the isolated dominant eigenmode for T = 1.6 with corresponding eigen-
value λdom = 0.58. Non-trivial persistent modes are absent here, consistent with the state of global
chaos. The structure of the isolated dominant eigenmode defines the asymptotic mixing pattern
within the chaotic sea. Figure 3(d) gives the dominant eigenmode in the chaotic sea for T = 0.56
with corresponding eigenvalue λdom = 0.91.

Key advantages of the eigenmode analysis over Poincaré sectioning are, first, that this ansatz
affords deeper (quantitative) insight into the mixing properties and, second, that it admits investiga-
tion of the transient via which the system approaches the asymptotic state. Downside is that this is

(a b)

(c

()

() d)

FIG. 3. Second-dominant eigenvectors for: (a) T = 0.56; (b) T = 1.12; (c) T = 1.6; (d) dominant eigenmode chaotic sea
for T = 0.56. Second-dominant eigenmodes are real for any T. Background shade (green) corresponds to zero values of the
eigenvector.
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computationally more intensive. An efficient way to carry out such an eigenmode analysis by way
of the mapping matrix is elaborated hereafter.

III. COMPACT MAPPING METHOD

A. Reduced eigenmode representation of the mapping method

An important consequence of the exponential decline of the decaying eigenmodes is that the
set of modes that significantly contributes to the eigenmode decomposition (4) – and thereby to the
evolution of the concentration field – decreases rapidly with increasing number of periods n. This
implies that Eq. (4), upon arranging the eigenmodes by descending order of eigenvalue magnitude,
i.e., |λN| ≤ · · · ≤ |λ1| ≤ 1, effectively reduces to the compact form,

Cn =
M∑

k=1

C0
k λ

n
kvk + εn, εn ∼ O(|λM+1|n), (9)

with k ≤ M the relevant eigenmodes upon permitting a certain truncation error εn. Its validity is
demonstrated in Sec. IV. Practical mixing analyses typically admit M 	 N at an only marginal loss
of accuracy after already a limited number of periods n. Thus, the compact representation paves the
way to eigenmode analyses of the – in practice highly relevant – transient states during mixing by
including only subspectrum k ≤ M and not the full spectrum k ≤ N; isolation of the latter is extremely
expensive and not an option in most cases. This modus operandi in essence is a generalization of
the concept of dominant and persistent eigenmode(s) for the asymptotic mixing state (Sec. II B) in
that transient mixing, within a controllable error O(εn), is described by its “dominant eigenspace”
k ≤ M. This eigenspace naturally incorporates the eigenmodes of the asymptotic state and the retained
eigenmodes of the transient (termed “transient eigenmodes” hereafter). Fundamental difference with
asymptotic analyses is that during transients the interplay of eigenmodes in this eigenspace is key
to the overall system evolution. This depends essentially on the case-specific spectrum C0

k (k ≤ M)
of the initial state C0. Efficient evaluation of this spectrum is discussed in Sec. III B.

Introducing ε as the, to be specified, tolerance via the truncation error in Eq. (9) advances

|λM+1|nε = ε (10)

as an implicit relation between the cut-off M (via eigenvalue λM+1) and the number of periods nε

after which the compact representation (9) becomes reliable. This preset tolerance ε thus enables
the determination of nε for given M or vice versa. The present study adopts the former option, which
can be done without loss of generality, and leads to the practical estimators

nε = ln ε

ln |λM+1| , n∞ = ln ε

ln |λdom| , n′ ≡ 1 − nε

n∞
= ln(|λM+1|/|λdom|)

ln |λM+1| , (11)

with nε as before, n∞ signifying the onset of the asymptotic state and n′ the relative part of the
transient that can be reliably captured by the compact representation (9). Note that the estimator n′

solely depends on the cut-off M.

B. Modal decomposition of the initial state

Isolation of the case-specific spectrum C0
k (k ≤ M) for a given initial state C0 follows from the

compact representation (9). Reformulate to this end the latter as

C̃0 =
M∑

k=1

C̃0
k vk + εn, εn ∼ O(ε), C̃0 ≡ �n C0, C̃0

k ≡ C0
k λ

n
k , (12)

with C̃0
k expansion coefficients of the scalar field (at period n) in terms of the compact eigenvector

basis and tolerance ε following Eq. (10), meaning that the truncation error εn can be made arbitrarily
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small by a sufficiently high n. This admits a very precise approximation of the spectrum C0
k . Note

that n employed here is unrelated to that used in demarcation of the dominant eigenspace of the
transient. The expansion coefficients C̃0

k can be efficiently evaluated by way of a similarity transform
of the compact eigenvector basis (v1, . . . , vM ) into an equivalent orthogonal basis (u1, . . . , uM ).

Orthogonalization requires the vectors (v1, . . . , vM ) to be real and linearly independent.30–32

Relation (6) implies that the eigenvectors of the mapping matrix can be readily transformed in
an equivalent basis consisting of real vectors (v1, . . . , vM ) by expressing complex-conjugate pairs
of complex vectors, if present, in terms of their real and imaginary parts. Moreover, provided
sufficient spatial resolution, vectors vi represent unique physical eigenmodes and thus are linearly
independent. Hence, the present system can be made to fulfill the above conditions and thus admits
orthogonalization.

Orthogonalization aims at transformation of the present system into an equivalent system
(u1, ..., uM ) subject to the orthogonality condition

ui · u j = 0 if i �= j. (13)

This embarks on expanding each vector ui as a linear combination of vectors v j according to

u1 = v1,

u2 = v2 + a11v1,

u3 = v3 + a21v1 + a22v2,

...

uM = vM + a(M−1)1v1 + · · · + a(M−1)(M−1)vM−1,

(14)

where expansion coefficients aij are determined by condition (13).32 Condition u1 · u2 = 0 gives
a11 = − v1·v2

v1·v1
; coefficients a12 and a22 can subsequently be obtained from u3 · u1 = 0 and u3 · u2 = 0.

The remaining coefficients follow in a similar way from continuing this procedure top down towards
a(M−1)(M−1).

The orthogonality condition (13) can be recast as

ui · v j = 0, if j < i, (15)

and in this form facilitates evaluation of the sought-after expansion coefficients C̃0
k . The inner product

of expansion (12) with uM yields

C̃0 · uM =
M∑

k=1

C̃0
k vk · uM = C̃0

MvM · uM ⇒ C̃0
M = C̃0 · uM

vM · uM
, (16)

by virtue of Eq. (15). Subsequently taking the inner product with uM−1 gives

C̃0 · uM−1 = C̃0
M−1vM−1 · uM−1 + C̃0

MvM · uM−1 (17)

as expression for evaluation of C̃0
M−1. The remaining expansion coefficients (C̃0

M−2, . . . , C̃0
1 ) follow

from repeating this procedure. Back transformation via Eq. (12) yields spectrum C0
k .

IV. ANALYSIS OF THE COMPACT MAPPING METHOD

A. Generic properties of the dominant eigenspace

The properties of the dominant eigenspace are demonstrated by way of the TPSF flow for
T = 0.56 and T = 1.6. The former is characterized by the existence of elliptic islands and thus
constitutes a poor-mixing flow; the latter exhibits global chaos and thus corresponds with a good-
mixing flow (Figure 2). Here the compact basis is defined by setting the cut-off at M = 500 for
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FIG. 4. Eigenvalue spectrum in the unit circle for the first 500 dominant eigenmodes of the mapping matrix associated with
the TPSF in cases : (b) T = 0.56; (c) T = 1.6. Panel (a) corresponds to |λM| for T = 0.56 - higher line (blue) and T = 1.6 -
lower line (red line).

a full spectrum encompassing N = 10 000 modes (mapping grid consisting of 100 × 100 cells),
which is a significant reduction to a compact eigenspace that is 5% of the size of the full eigenspace.
The corresponding spectra within this range are given in Figure 4 and expose an expressive differ-
ence between cases T = 0.56 and T = 1.6. Eigenvalues associated with non-trivial eigenmodes of
the poor-mixing case T = 0.56 gradually decline from unity with increasing mode number; eigen-
values of the good-mixing case T = 1.6, in stark contrast, instantaneously drop off to λdom = 0.58
prior to such decay. This is a direct consequence of the absence of non-trivial persistent eigen-
modes in the chaotic case (Sec. II B). Hence, the (compact) eigenvalue spectra close to the unit
circle signifies poor mixing. Conversely, spectra well within the unit circle reflect the absence
of non-trivial persistent modes and, inherently, (at least in asymptotic sense) good mixing. Con-
cluded is that the compact eigenvalue spectra provides a first insight into the qualitative mixing
properties.

The primary motivation for the compact mapping method is facilitating eigenmode analysis of
transient mixing at a reasonable computational cost. Estimators (11) enable the determination of
the range of the transient that can be reliably captured this way. The present cut-off at M = 500
yields |λM+1| = 0.79 and |λM+1| = 0.31 for T = 0.56 and T = 1.6, respectively, and dominant
eigenvalues λdom are according to Sec. II C. This gives n′ = 0.5844 (T = 0.56) and n′ = 0.5362
(T = 1.6), meaning that the compact method, after reduction of the eigenspace to only 5% of its
original size, nonetheless reliably represents about 50%–60% of the transient for any given tol-
erance ε. This reflects the strength of the compact mapping method. The actual range n ∈ [nε ,
n∞] of the transient depends on the tolerance ε. For ε = 10−8 this gives n ∈ [82, 196]
(T = 0.56) and n ∈ [16, 134] (T = 1.6). However, typical engineering applications are restricted
to much lower precision, say ε = 0.1(10−2), leading to n ∈ [10, 24]([21, 49]) and n ∈ [2, 5]([4,
9]) for T = 0.56 and T = 1.6, respectively. This reveals that, in particular for the chaotic flow, the
earlier stages of the transient mixing become within the reach of the compact method. Increasing
the cut-off M substantially extends this reach. In addition, the analysis in Sec. IV B exposes this as-
sessment as rather conservative in the sense that mixing patterns are predicted better than suggested
here.

The dominant eigenspace is spanned by the dominant/persistent eigenmodes of the asymptotic
state, as shown in Sec. II C, and the transient eigenmodes (Sec. III A). Figure 5 shows typical
transient eigenmodes of the poor-mixing case T = 0.56 and reveals that their spatial structure is
consistent with that of the Poincaré section (Figure 2). This has the important implication that
transient eigenmodes invariably respect the transport barriers demarcated by the flow topology.
Their zones of influence may vary greatly, however. The transient mode in panel (a) is non-zero
only within the island cores and thus contributes solely to the evolution within these regions; the
mode in panel (b) acts in both the encircling island chains and associated chaotic bands. The
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(a) (b) (c)

FIG. 5. Typical transient eigenmodes for T = 0.56.

transient mode in panel (c) covers the entire island region and even includes non-zero, albeit very
weak, non-zero regions in the chaotic sea. Previous studies found that the decay rate in the chaotic
sea is consistent with its dominant eigenmode.17 Here this implies that transient modes covering
both islands and chaotic sea must decay faster than this dominant mode. Further investigation
of this issue is beyond the present scope. Figure 6 shows typical transient eigenmodes of the
good-mixing case T = 1.6, which all are of similar structure as the corresponding dominant eigen-
mode (Figure 3(d)). Hence, the same spatial consistency as in the poor-mixing case exists between
eigenmodes.

B. Performance of the compact mapping method

The performance of the compact mapping method for prediction and analysis of transient mixing
is investigated hereafter for the above poor-mixing (T = 0.56) and good-mixing (T = 1.6) flows at
N = 10 000 and various cut-offs M. The initial state consists of a binary concentration distribution
with C = 0 and C = 1 for 0 ≤ y ≤ 1/2 and 1/2 < y ≤ 1, respectively, and its corresponding case-
specific spectrum C0

k (k ≤ M) is computed via the procedure outlined in Sec. III B using tolerance
ε = 10−11 in Eq. (12). Estimators (11) define the lower bound nε for the number of periods n required
to attain this precision at given cut-off M. The poor-mixing case employs M = [500, 1000, 2000],
yielding nε = [75, 55, 45]; the good-mixing case employs M = [100, 500, 1000], resulting in nε

= [25, 18, 15]. Compliance with condition εn ≤ ε has been verified numerically; this (i) ensures
a very accurate approximation of the spectrum C0

k (k ≤ M) and (ii) provides a first validation of
estimators (11). Modal analysis of spectrum C0

k is considered in Sec. IV C. Note that cut-offs M
are smaller for the good-mixing case on grounds of the steeper decline of the eigenvalue spectrum
(Figure 4).

Figure 7 gives the evolution of the initial state over the first 10 periods of the transient for the
poor-mixing case T = 0.56 according to the full method (panel a) in comparison to the compact
method for M/N = 20% (panel b), M/N = 10% (panel c), M/N = 5% (panel d). This exposes an overall

(a () b) (c)

FIG. 6. Typical transient eigenmodes for T = 1.6.

Downloaded 06 Jun 2012 to 131.155.128.14. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



053602-10 Gorodetskyi, Speetjens, and Anderson Phys. Fluids 24, 053602 (2012)

n = 0

n = 1

n = 2

n = 3

n = 5

n = 10

(a) Full mapping (b) M/N = 20% (c) M/N = 10% (d) M/N = 5%

FIG. 7. Evolution for poor-mixing case T = 0.56: (a) full mapping method; (b)–(d) compact method for M/N as indicated.
Color coding is identical throughout evolution; the color blue/red indicates C = 0/C = 1.

outstanding qualitative agreement between full and compact methods in that mixing patterns are
accurately demarcated by the latter throughout the entire progression. Notable qualitative departures
are restricted to localized artificial “ripples” in the concentration field that emerge during the first
two periods and become more pronounced with lower M/N. The “ripples” observed in Figure 7
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FIG. 8. Departure εc = |Cn − C̃n | (solid black line) and its prediction ε = |λM+1|n dashed line (red) according to Eq. (10)
for the poor-mixing case T = 0.56 and M/N as indicated. Bright and dark areas indicate region of applicability compact
method on basis of n following Eq. (11) for ε = 10% and ε = 1%, respectively.

originate from the approximation of the initial state. Remarkable is that, despite these “ripples,”
overall concentration levels within the patterns are still comparable. The colors on each row indicate
identical concentration. Hence the “ripples,” though strictly artifacts emanating from the truncation,
are of only minor importance in typical practical mixing analyses. This demonstrates that the compact
method facilitates reliable (qualitative) representation of transient mixing using just a fraction of the
eigenmodes.

A quantitative comparison is carried out in terms of the departure ε∗
n = max |Cn − C∗

n|, with
Cn and C∗

n the concentrations according to full and compact methods, respectively. Figure 8 gives
the corresponding evolution (stars) in contrast with its prediction based on the truncation error εn

in Eq. (9) (circles). This exposes an excellent agreement between the actual and predicted error
and thus further substantiates the reliability of estimators (11), which has the important practical
implication that approximation errors inherent in utilization of the compact method are a priori
predictable – and thus controllable. This is demonstrated by the bright and dark areas in Figure 8,
which indicate the regimes of applicability of the compact method for tolerances ε = 10% and
ε = 1%, respectively, as predicted by Eq. (11). Moreover, note that the error decays to ε∗

n ≤ 10−11

for n ≥ nε , with nε the above lower bounds for the period employed for evaluation of spectrum C0
k

(k ≤ M).
The evolution of ε∗

n reveals that the compact method introduces substantial errors for ear-
lier parts of the evolution, thus suggesting breakdown of its validity at these stages of the tran-
sient. However, this is considerably less dramatic than it may seem. The large departures must,
namely, be on grounds of the good qualitative representation of the mixing patterns (Figure 7),
primarily attributed to the before-mentioned artificial “ripples” in the concentration field.
Hence, they reflect mainly localized effects with an only weak impact on the global mixing
behavior.

Performance of a similar analysis for the good-mixing case T = 1.6 conveys essentially the
same message: reliable prediction of the (developing) mixing patterns by the compact method
throughout the entire transient. Figure 9 supports this by way of the evolution over the first 10
periods of the transient for the full method (panel a) and the compact method for M/N = 10%
(panel b), M/N = 5% (panel c), M/N = 1% (panel d). Again a good (qualitative) agreement between
mixing patterns is attained and departures primarily consists of localized artificial “ripples” in the
concentration field reminiscent of those found in the poor-mixing case and more pronounced for
lower cut-off M and earlier stages of the progression. The corresponding error ε∗

n , given in Figure 10
(stars), together with its prediction (circles) and regimes of applicability of the compact method
for tolerances ε = 10% (bright) and ε = 1% (dark), further consolidates the good performance of
the compact method and the associated estimators. Important to note is that both poor-mixing and
good-mixing cases exhibit similar performance for other initial states. This is not elaborated for
brevity.
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n = 1

n = 2

n = 3

n = 5

n = 10

(a) Full mapping (b) M/N = 10% (c) M/N = 5% (d) M/N = 1%

FIG. 9. Evolution starting from initial state I for good-mixing case T = 1.6: (a) full mapping method; (b)–(d) compact method
for M/N as indicated. Color coding is adjusted per mapping n (rows) for enhanced contrast; the color blue/red indicates the
minimum/maximum for given n.

C. Eigenmode analysis of transient distributive mixing

In Sec. IV B the performance of the compact mapping method was demonstrated. Here, we will
investigate transient distributive mixing and show that the spectral analysis of compact eigenmodes
reveals that concentration transport typically is dominated by limited set of modes: “dominant
transient modes.” The concept is demonstrated here for the poor-mixing case via the dominant
transient modes. To this end the same flow with T = 0.56 as studied before is used (where previously
the full spectrum and compact spaces M/N was investigated).

Figure 11 shows the case-specific spectrum C0
k for the poor-mixing case T = 0.56 and M/N

= 20%. This figure exhibits peaks which thus implies so-called case-specific “dominant transient
eigenmodes.” Note that the dependence of these dominant eigenmodes on the initial state sets them
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FIG. 10. Departure εc = |Cn − C̃n | (solid black line) and its prediction ε = |λM+1|n dashed line (red) according to Eq. (10)
for the good-mixing case T = 1.6 and M/N as indicated. Bright and dark areas indicate region of applicability compact method
on basis of n following Eq. (11) for ε = 10% and ε = 1%, respectively.

essentially apart from the dominant eigenmode associated with the asymptotic state. This admits a
further reduction of the spectrum via

Ĉ0
k = C0

k if |C0
k |/ max

k≤M
|C0

k | ≥ Cmin, Ĉ0
k = 0 else (18)

with Cmin some preset threshold.
Figure 12 depicts the evolution of mixing patterns for the poor-mixing case T = 0.56. Four

different cases are compared. The most left column shows the result for the full mapping method
and the other three columns for the compact method for M/N as indicated with thresholding following
Eq. (18) at Cmin = 10%. Concentrations C < Ĉ and C ≥ Ĉ have been set to C = 0 and C = 1,
respectively, with Ĉ = 1/2 the mean concentration. This creates a pattern of low-concentration
(black) and high-concentration (white) regions which is in close agreement with the large-scale
mixing patterns. Hence, this mixing pattern is determined by a restricted set of dominant transient
eigenmodes. Apparently, the compact mapping method enables the isolation of these eigenmodes and
thus offers a way to investigate the underlying fundamental mechanisms. Note that the true mixing
pattern must also, for given initial state, strictly consists of black/white patterns in the present
context of distributive mixing. The continuous transition from high (red) to low (blue) concentration
in Figure 7 is the result of numerical diffusion (colors only in online version).
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FIG. 11. Case-specific spectrum C0
k for the poor-mixing case T = 0.56 and M/N = 20%.
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(a) Full mapping (b) M/N = 20% (c) M/N = 10% (d) M/N = 5%

FIG. 12. Evolution of mixing patterns for poor-mixing case T = 0.56: (a) full mapping method; (b)–(d) compact method
for M/N as indicated with thresholding following Eq. (18) at Cmin = 10%. Black/white indicate regions with low/high
concentrations.
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The fact that very small numbers of eigenmodes describe large-scale mixing patterns well
suggests that, although this has not been investigated, the compact mapping method may be employed
for pattern prediction from experimental data sets of, e.g., geophysical flows.2, 33

V. CONCLUSIONS

The eigenmode decomposition of the mapping matrix is a powerful approach for the description
and explanation of distributive mixing. It deepens understanding of the mixing process and admits
investigation of mixing features in terms of physical eigenmodes of the system (approximated by
those of the mapping matrix). Spectral analysis thus reveals the Lagrangian structure of the flow
field and enables isolation of elliptic islands that deteriorate the quality of the mixing, corresponding
with persistent eigenmodes, and chaotic regions and their mixing patterns, determined by dominant
eigenmodes. However, for realistic mixing flows the mapping matrix is sparse and very large,
rendering a full eigenmode decomposition very expensive and in many cases even impossible. The
present study proposes an alternative, more efficient way is required to perform eigenmode analyses
in such configurations.

Practical mixing generally involves transient processes that are determined not only by the
dominant eigenmode, but also by a limited set of eigenmodes with decay rate significantly lower
than the duration of the mixing process. These modes are termed “transient eigenmodes” here and,
combined with the dominant eigenmode, defined a compact eigenmode basis that dictates a given
mixing flow. This compact basis is substantially smaller than the full eigenmode basis and thus
enables a much more efficient eigenmode analysis and, in case of many realistic flows, such an
analysis at all. The procedure is as follows. First, systematic isolation of the compact eigenmode
basis by way of truncation of the eigenvalue spectrum at a given cut-off based on a preset tolerance.
Second, efficient evaluation of the expansion coefficients of the compact representation, which
depend essentially on the initial state, via orthogonalization of the compact basis.

Eigenmode analysis of transient mixing with the proposed ansatz facilitates isolation of possible
modes, other than the dominant eigenmode, within the compact basis that dominate the transient.
Such “dominant transient eigenmodes” may play a role of equal – if not higher – significance than
the dominant eigenmode in realistic mixing processes. Fundamental difference with the latter is
that the excitation of such transient modes depends essentially on the initial state. Identification of
multiple dominant modes may deepen understanding of mixing processes and may also facilitate
further reduction of the compact eigenmode basis so as to further enhance computational efficiency.

Investigation of the compact mapping method for a number of representative case studies reveals
that it performs well. Reductions of the eigenmode basis by one to two orders of magnitude still
enable sufficiently accurate predictions of the mixing characteristics, at least for the envisioned area
of application, namely realistic mixing flows. Evolutions predicted by the compact method are in
good agreement with reference simulations by the full method. Qualitative agreement is outstanding
in that mixing patterns are accurately demarcated for the entire transient. This advances the compact
method as a reliable and efficient way for description of (larger-scale features of) transient distributive
mixing. The ability to recover such features from, in essence, very limited information suggests that
the compact mapping method may be a useful tool in a wider scope for, e.g., pattern prediction from
experimental data sets of geophysical or oceanographic flows. Moreover, this implies that mixing
processes, even in the early stages of the transient, are typically dominated by a very small – and
highly case-specific – set of eigenmodes. Hence, the concept of dominant transient eigenmodes may
have great potential for further fundamental studies as well.
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