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Abstract

The Business Process Model and Notation (BPMN) standard version 2.0
informally defines a precise execution semantics. This paper defines that ex-
ecution semantics formally, by defining the execution rules as graph rewrite
rules. The paper shows that the formal definition of execution rules in this
manner is intuitive and simple, in particular because they can be speci-
fied graphically, using the BPMN symbols, while maintaining mathematical
rigour. Using graph rewriting tools, the resulting formal execution seman-
tics can be used to directly execute models that are created in the BPMN.
Therefore, it can be used as a reference implementation of the execution se-
mantics and to test BPMN 2.0 engines, in combination with a set of BPMN
test models that we also provide.

Key words: BPMN, Business Process Modeling, Formal Semantics

1. Introduction

The Business Process Model and Notation version 2.0 [20] is a standard
notation for business process modeling. It presents a set of concepts and no-
tational elements for business process modeling. It also presents an execution
semantics that defines precisely how models in the BPMN notation should
behave when executed in a tool, such as a workflow engine. The execution
semantics is defined informally using natural language.
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There exist various initiatives to define a formal execution semantics in
addition to the informal one [35, 36, 6, 23, 24, 7, 31]. These formal se-
mantics are defined for a wide variety of reasons, including: enabling formal
reasoning about the correctness of BPMN 2.0 process models, enabling sim-
ulation of those models and reasoning about the correctness of the BPMN
2.0 specification itself.

This paper presents a formalization of the BPMN 2.0 execution semantics,
using graph rewrite rules. Defining the execution semantics in this way has
two important benefits.

Firstly, there is a direct traceability between the informal execution se-
mantics rules in the BPMN 2.0 specification and their formal counterparts
in a graph rewriting language. This facilitates easy verification of the cor-
rectness of each of the formal rules and simplifies their definition, as each
execution semantics rule can be considered in isolation. The traceability
between formal and informal rules exists, because:

1. each execution semantics rule can be represented separately as a graph
rewrite rule, thus providing a one-to-one correspondence between in-
formal and formal rules; and

2. the graph rewrite rules can be defined by using the BPMN 2.0 nota-
tion itself, thus showing a clear graphical relation between BPMN 2.0
notational elements and the formal execution semantics rules.

Secondly, using graph rewrite rules allows the semantics to be (relatively)
complete. Theoretically, it is possible to develop a complete execution se-
mantics of BPMN 2.0 in terms of graph rewrite rules, because graph rewrite
rules are Turing complete [13]. This as opposed to, for example, classical
Petri nets, in terms of which some constructs are notoriously hard to repre-
sent [6]. In addition to that, we show that our execution semantics covers
more rules from the BPMN 2.0 specification than any other formal semantics
so far.

In addition to that, there exist a wide variety of graph rewriting tools
that can execute graph rewrite rules. This enables the rewrite rules defined
in this paper to be executed in such a tool, making the execution semantics
in terms of graph rewrite rules directly executable.

A formalization in terms of graph rewrite rules can be developed, because:

1. a BPMN 2.0 model can be interpreted as a typed, attributed graph on
which the graph rewrite rules can be defined; and
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2. the structure of a graph rewrite rule matches that of an execution
semantics rule.

The second point holds, because the execution semantics is defined in terms
of a token-game. It consists of rules that specify when a certain notational
element can execute and what happens when it does. In this way, each rule
in the execution semantics corresponds to a graph rewrite rule, which always
have a “match” part and a “rewrite” part. The match part can be used to
specify when a certain notational element can execute and the rewrite part
can be used to specify what happens when it does.

The remainder of this paper is structured as follows. Section 2 provides an
introduction to graph rewriting and BPMN 2.0 and it defines precisely how
BPMN 2.0 process models can be interpreted as attributed graphs. Section 3
defines the BPMN 2.0 execution semantics formally, using graph rewrite
rules. Section 4 explains how we implemented those rules in GrGen.NET.
Section 5 presents related work on defining the BPMN 2.0 semantics formally
and section 6 concludes.

2. Preliminaries

To define the BPMN 2.0 execution semantics in terms of graph rewrite
rules, we must first show how a BPMN 2.0 model can be interpreted as
a typed attributed graph, because graph rewrite rules are defined in that
context. To this end Subsection 2.1 presents an introduction to typed at-
tributed graphs and graph rewriting, Subsection 2.2 presents an introduction
to BPMN 2.0 and Subsection 2.3 shows how a BPMN 2.0 model can be in-
terpreted as a typed, attributed graph.

2.1. Typed Attributed Graphs and Graph Rewriting

This paper applies the paradigm of attributed graph rewriting with node
type inheritance [5]. This paradigm is based on theoretical foundations that
emerged in the 1970ies [11]. The language constructs that we apply to for-
malize the BPMN operational semantics have been formalized using Cate-
gory Theory. Therefore, we can rely safely on high level abstractions without
introducing ambiguity. Complementary to our contribution, others are lever-
aging the theoretical foundations of graph rewriting to build analysis tools.
Section 4 illustrates how our BPMN formalization can benefit specifically
from such tools.
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Definition 1 (Attributed Graph). An Attributed Graph G = ((NG, NA),
(EG, EA), (sourceG, sourceA), (targetG, targetA)) consists of the sets:

• N , which is the set of nodes that is partitioned into the set NG of graph
nodes and NA of attribute nodes;

• E, which is the set of edges that is partitioned into the set EG of graph
edges and EA of attribute edges;

and functions:

• source, which indicates the source of each edge and can be partitioned
into sourceG : EG → NG and sourceA : EA → NG; and

• target, which indicates the target of each edge and can be partitioned
into targetG : EG → NG and targetA : EA → NA.

Our definition of attributed graphs is based on that of E-graphs [9]. E-
graphs however also support edge attributes, which are not used by this paper
and hence omitted for the sake of simplicity.

Definition 2 (Typed, Attributed Graph). Let TN and TE be sets of node
and edge types respectively. A Typed, Attributed Graph is a tuple (G, type)
with:

• G = ((NG, NA), (EG, EA), (sourceG, sourceA), (targetG, targetA)) an
attributed graph,

• type : (N → TN) ∪ (E → TE) a function which assigns a type to each
node and edge.

A graph rewrite rule defines how a typed, attributed graph can be rewrit-
ten into another typed attributed graph as follows.

Definition 3 (Graph Rewrite Rule). A graph rewrite rule p = (GLHS,
GRHS) consist of two Typed, Attributed Graphs which are called the left-hand
side (LHS) and right-hand side (RHS) of p. For the application of a graph
rewrite rule to a host graph Ghost the following simplified algorithm can be
used:
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gw: Gatewaysf: SequenceFlow

to:To

:Token

gwsf

to

:Token

gwt:GatewayType

t:GatewayType
value=exclusive

gwt

t

:Tokens :Tokens

Figure 1: Graphical representation of a graph rewrite rule (flat graph syntax)

1. Identify GLHS within Ghost . This involves finding a total graph mor-
phism m : GLHS → Ghost that matches the left-hand side in the host
graph. Unless specified otherwise, the morphism should be isomorphic,
which means that each element from GLHS should be mapped to at most
one element in Ghost (i.e., the mapping should be injective.

2. Delete all corresponding graph elements from Ghost, w.r.t. m, that are
part of GLHS but not part of GRHS.

3. Create a corresponding element in Ghost for each element in GRHS that
is not in GLHS.

4. Evaluate attribute updates that are defined on elements in p to their
corresponding elements in Ghost.

Using this definition, graph rewrite rules can easily be graphically repre-
sented, by drawing the left and right-hand side graphs of the rule, including
the types of the nodes and edges involved. To be able to identify nodes and
edges that are the same in the left and right-hand side of the rule, nodes
and edges can be given identifiers in the context of the rule. For example,
Figure 1 illustrates a rule that searches for a pattern of three graph nodes
with two graph edges between them. One of these graph nodes has an at-
tribute edge t to an attribute node gwt. (Attribute elements are graphically
represented with a dashed line.) Attribute node gwt from GLHS should be
mapped to an attribute node of type GatewayType with value exclusive from
Ghost.

The rule rewrites each occurrence of this pattern by deleting the edge of
type Tokens and its attached node of type Token, because these elements
appear in the left-hand side but not in the right-hand side. The rule adds
another node of type Token as well as a new edge of type Tokens, because
these elements appear in the right-hand side, but not in the left-hand side.
Remark that the new edge originates from gw instead of from sf. For sim-
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gw: Gatewaysf: SequenceFlow

to:To

:Token

gwsf

to

:Token

:Tokens :Tokens

[gw.GatewayType=exclusive]

Figure 2: Graphical representation of a graph rewrite rule (attributed graph syntax)

plicity, attribute nodes and attribute edges are graphically embedded in their
graph nodes in the remainder of this paper. Figure 2 follows this style to
represent the same rule as that from figure 1.

There exist various extensions to the basic mechanisms of graph rewriting.
Habel et al. [15] formalize so-called Negative Application Conditions (NACs).
Such NACs enable the specification of GLHS patterns that should not occur
in Ghost when checking the applicability of a rule. Interestingly, NACs were
already introduced in 1996 [14] and they are of high practical relevance but
only recent formal results have made analysis of rules with NACs feasible. We
represent a NAC as a rounded rectangle around the part of the left-hand side
that should not be part of the graph. We give this special type of rectangle a
dashed border and annotate it with the label NAC. Figure 3 illustrates this.
The figure shows a rule whose left-hand side consists of a particular graph
node gw (a node of type Gateway with an attribute GatewayType set to
parallel) that has no sequence flow pointing to it, on which there is no token.
This double negation is formalized as a NAC that is nested within another
NAC and also means that all incoming sequenceflows of gw should have at
least one token. Remark that whenever NACs are not embedded in other
NACs, one can use color (more specifically: red) to indicate which elements
are in a negative pattern. In this paper, we once show how this shortcut
notation can improve the readability of rules (cfr., Figures 15 and 16), but
in general refrain from using this syntax, to avoid problems with grayscale
printouts.

Most practical graph rewriting languages also include a set of control flow
constructs [29, 16]. GrGen.NET provides a rule application control language
with variables and logical as well as iterative control flow. This language can
be used to control rules externally (e.g., for testing and debugging) as well as
for internal control (to realize delegation). Other extensions of relevance to
this paper are the arbitrary nesting of positive and negative patterns as well
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gw:Gatewaysf:SequenceFlow

:To

:Tokens

:Token

gw

:Tokens

:Token

NAC
NAC

[gw.GatewayType=parallel]

Figure 3: Graphical representation of a rule with a negative application condition

as subpatterns with a cardinality greater than one [26]. The latter extension
involves GLHS fragments that match to an a priori unknown number of sub-
graphs in Ghost. In this paper, we represent such subpatterns again using a
rounded rectangle with a dashed border and, unlike for NACs, we annotate
it with the label ITERATED (cfr., Figure 10). Other language constructs
are described upon first usage throughout this paper.

For a formal description of rule applications in terms of Category Theory,
we refer to the handbook of graph grammars [10], where the foundations of
the so-called single pushout (SPO) approach is reviewed.

2.2. BPMN 2.0

BPMN 2.0 can be used to create models of an organization’s business
processes. To this end, it defines a large number of notational elements,
the meaning of those elements and an execution semantics that defines how
certain combinations of elements should behave.

Figure 4 shows a simple example of a BPMN model. The model starts
with a start event, represented by a circle, that is triggered when a message,
represented by the envelope icon, arrives. The message contains an order.
After the order arrives, the organization starts to process the order in a
subprocess, represented by a rounded rectangle that contains other elements.
The subprocess contains two activities, represented by rounded rectangles,
and can be interrupted by the event of another message arriving. After either
the subprocess completes or an order cancellation is received, the alternative
paths are joined by an exclusive gateway, represented by the diamond with
the “X”. After that the process reaches the end event.

The execution semantics of BPMN 2.0 is defined in terms of a large
number of execution semantics rules. One of these rules, for example, states
that the behavior of an exclusive gateway is such that: “Each token arriving
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Process Order

Register 
Order

Order

Forward to 
Warehouse

Figure 4: Example BPMN 2.0 model

at any incoming Sequence Flows activates the gateway”. This is the same
rule that is formalized by the graph rewrite rule in Figure 1 and 2.

The remaining BPMN 2.0 notational elements and execution semantics
rules will be gradually introduced in section 3. It should be noted that BPMN
2 does not provide a standard expression language for specifying conditional
guard expression. Although some workflow product vendors provide propri-
etary solutions to fill this gap, we decide not to formalize expressions. We
believe this is quite appropriate, as BPMN is typically used for conceptual
modeling. The proposed semantics from this paper enables the execution of
BPMN models even when no guard expressions have been specified by the
business analyst: all choices can be made non-deterministically or based on
additional user input during process execution.

For precision, Appendix A presents an abstract syntax of the BPMN 2.0
notational elements in terms of mathematical sets. For example, it defines
a set of activities and a set of sequence flows, such that each sequence flow
has a relation to the activity from which it originates and a relation to the
activity to which it points. According to this definition, a BPMN 2.0 model
consists of an extension of the sets from the appendix. In the next subsection,
we use this definition to interpret a BPMN 2.0 model as a typed attributed
graph, which is necessary to define the graph rewrite rules.

The definition in the appendix includes two element types (i.e., Tok and
M) that have no corresponding metaclass in the BPMN standard. The
BPMN standard does define tokens as “a theoretical concept that is used as an
aid to define the behavior of a Process that is being performed”, but excludes
a token concept from the metamodel, since “modeling and execution tools
that implement BPMN are not required to implement any form of token”. A
marking is a related theoretical concept that denotes a distribution of tokens
over the elements of a process model. A marking represents a concrete state
of a running process model. Markings are especially relevant when analyzing
process behavior. Throughout this article, we will also rely on an equivalence
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relationship between markings. This enables the construction of a so-called
statespace as an abstract representation of all possible executions of a process
model.

2.3. Representing BPMN Models as Typed Attributed Graphs

Given the generic introduction to graph rewrite rules from Section 2.1 and
the technology-independent abstract syntax definition of BPMN models from
Section 2.2, this section proposes a graph-based representation of BPMN
models. This enables us to define the BPMN 2.0 execution semantics rules
in terms of graph rewrite rules in the next section.

The graph-based representation is constructed by defining:

1. the (attribute) node and (attribute) edge types that are used in the
typed attributed graph;

2. which BPMN 2.0 notational elements become nodes in the types at-
tributed graph, which become edges, which become attributes and
which become attribute edges; and

3. which of the nodes, edges, attributes and attribute edges have which
types.

The following (attribute) node and (attribute) edge types will be used in
the typed attributed graph.

• TNG
= {FlowElement, FlowElementsContainer, WorkflowProcess, Ac-

tivity, Task, Event, StartEvent, EndEvent, IntermediateEvent, Inter-
mediateCatchEvent, IntermediateThrowEvent, BlockActivity, Gateway,
LoopCharacteristics, SequenceFlow, Association, Marking, Token, Ex-
ception, ProcessInstance}

• TNA
= {String, TriggerType, GatewayType, Boolean, PIstate}

• TEG
= {Contains, LoopCharacteristicsOf, From, To, Melem, Mnext,

Tokens, instOf, parent2subPI, pi2mark, itokens, ExceptionsOfPI, tok2pi}

• TEA
= {EventDefinitionName, errorCode, Result, Trigger, TypeOfGW,

TypeOfExcl, Instantiate, TestBefore, StateOf }

Figures 5, 6(a) and 6(b) show a graphical representation of these types. Ele-
ments from TNG

are represented as classes, elements from TEA
are represented

as attributes, elements from TEG
are represented as associations and elements

from TNA
are represented as enumerations.
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Figure 5: Type hierarchy of BPMN activity elements

(a) Types for sequence and compensation flows (b) Types for process execution

Figure 6: Classes without a background color are also defined in figure 5.

We define the typed attributed graph by defining which of the elements
from the BPMN 2.0 abstract syntax (as defined in Appendix A) become
nodes, attributes, graph edges and attribute edges respectively. The type
function formalizes the mapping from the sets in the abstract syntax from
Appendix A to the types that are defined above. There are various options
for defining this mapping. The mapping that we propose is optimized for
pretty printing the graphs. The mapping of Sf elements to nodes may come
as a surprize in this context: sequence flow elements should represent flow
links between activities so it seems more natural to map them to graph edges.
The reason for mapping them to nodes nevertheless, is that we need to be
able to associate tokens with sequence flows too (as mandated by [20]) and
our graph representation (as formalized in Section 2.1) does not support the
linking of nodes and edges.
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Consequently, A BPMN 2.0 graph is a Typed, Attributed Graph repre-
sentation GBPMN= (G, type) of a BPMN model (Fe, Fname, Fname

e , Fcont,
F el

cont,Wproc, A, Ata, Aev, Ename, AEname
ev , Ecode, AEcode

ev , Asta, Aend, Aresult
end , Aim,

Acat, Athr, Atrigger
ev , Abl, Agw, Atype

gw , Aexcltype
gw , Ainst

gw , Lstd, Lact, Sf , Stype
f , Af ,

Sfrom
f , Sto

f ,M,Mel,→BPMN , Tok, Ftok, X , Pi, P instOf
i , Pchild

i , Pstate
i , Pmark

i ,

P tok
i , Pexc

i , T pi
ok ), where:

• G = ((NG, NA), (EG, EA), (sourceG, sourceA), (targetG, targetA)),

– NG= Fe ∪ Wproc ∪ Lstd ∪ Sf ∪ Af ∪ M ∪ Tok ∪ X ∪ Pi

– NA= Fname ∪ Ename ∪ Ecode ∪ Dgwtype ∪ Dexcltype ∪ Dtrigtype ∪
Dpistate

– EG= F el
cont ∪ Lact ∪ Sfrom

f ∪ Sto
f ∪ Mel ∪ (→BPMN) ∪ Ftok ∪

P instOf
i ∪ Pchild

i ∪ Pmark
i ∪ P tok

i ∪ Pexc
i ∪ T pi

ok

– EA= Fname
e ∪ AEname

ev ∪ AEcode
ev ∪ Atype

gw ∪ Aexcltype
gw ∪ Pstate

i

– sourceG: {((x1, x2), x1)|(x1, x2) ∈ EG},
sourceA= {((x1, x2), x1)|(x1, x2) ∈ EA}

– targetG= {((x1, x2), x2)|(x1, x2) ∈ EG},
targetA= {((x1, x2), x2)|(x1, x2) ∈ EA}

• type: (N → TN) ∪ (E → TE)=
{ (e, FlowElement) | e ∈ Fe} ∪ { (e, String) | e ∈ Fname} ∪
{ (e, Name) | e ∈ Fname

e } ∪ { (e, FlowElementsContainer) | e ∈ Fcont}
∪ { (e, Contains) | e ∈ F el

cont} ∪ { (e, WorkflowProcess) | e ∈ Wproc} ∪
{ (e, Activity) | e ∈ A} ∪ { (e, Task) | e ∈ Ata} ∪
{ (e, Event) | e ∈ Aev} ∪ { (e, String) | e ∈ Ename} ∪
{ (e, EventDefinitionName) | e ∈ AEname

ev } ∪ { (e, String) | e ∈ Ecode} ∪
{ (e, errorCode) | e ∈ AEcode

ev } ∪ { (e, StartEvent) | e ∈ Asta} ∪
{ (e, EndEvent) | e ∈ Aend} ∪ { (e, Result) | e ∈ Aresult

end } ∪
{ (e, IntermediateEvent) | e ∈ Aim} ∪ { (e, Trigger) | e ∈ Atrigger

ev } ∪
{ (e, IntermediateCatchEvent) | e ∈ Acat} ∪
{ (e, IntermediateThrowEvent) | e ∈ Athr} ∪
{ (e, BlockActivity) | e ∈ Abl} ∪ { (e, Gateway) | e ∈ Agw} ∪
{ (e, TypeOfGW) | e ∈ Atype

gw } ∪ { (e, TypeOfExcl) | e ∈ Aexcltype
gw } ∪

{ (e, Instantiate) | e ∈ Ainst
gw } ∪ { (e, LoopCharacteristics) | e ∈ Lstd}

∪ { (e, TestBefore) | e ∈ Tbefore} ∪
{ (e, LoopCharacteristicsOf) | e ∈ Lact} ∪
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{ (e, SequenceFlow) | e ∈ Sf} ∪ { (e, Association) | e ∈ Af} ∪
{ (e, From) | e ∈ Sfrom

f } ∪ { (e, To) | e ∈ Sto
f } ∪

{ (e, Marking) | e ∈ M} ∪ { (e, Melem) | e ∈ Mel} ∪
{ (e, Mnext) | e ∈ →BPMN} ∪ { (e, Token) | e ∈ Tok} ∪
{ (e, Tokens) | e ∈ Ftok} ∪ { (e, ProcessInstance) | e ∈ Pi} ∪
{ (e, state) | e ∈ Pstate

i } ∪ { (e, instOf) | e ∈ P instOf
i } ∪

{ (e, parent2subPI) | e ∈ Pchild
i } ∪ { (e, Exception) | e ∈ X} ∪

{ (e, itokens) | e ∈ P tok
i } ∪ { (e, pi2exc) | e ∈ Pexc

i } ∪
{ (e, tok2pi) | e ∈ T pi

ok } ∪ { (e, GatewayType) | e ∈ Dgwtype} ∪
{ (e, ExclusiveType) | e ∈ Dexcltype} ∪ { (e, Type) | e ∈ Dflowtype} ∪
{ (e, TriggerType) | e ∈ Dtrigtype} ∪
{ (e, ProcessInstanceState) | e ∈ Dpistate} ∪ { (e, Boolean) | e ∈ Dbool}

Although a direct visualization of this graph-based structure resembles
to a large extent a BPMN 2.0 model in the BPMN 2.0 notation, two types
of annotations need to be defined. Firstly, some elements (edges and nodes)
from a BPMN model are not visible on BPMN diagrams. Secondly, some
edges are visualized by visually embedding the target node within the source
node (typically if the edge types are marked as compositions in the type
graph). Finally, some elements are pretty printed with a particular icon,
based on their type.

More specifically, nodes of type ProcessInstance (and consequently the
related edges) are not shown on standard BPMN diagrams. Similarly, since
tokens are not formalized in the BPMN standard, they have no standard
visual representation either. Tokens do occur in BPMN related languages,
such as Petri-Nets, and in such cases they are visually embedded in their
corresponding flow element. Therefore, we embed nodes of type Token in
their corresponding FlowElement node (based on the edge of type Tokens).
Also, instead of representing the Contains edge as an arc, the target nodes
of such arcs are embedded within the source nodes.

This paper does not discuss which icons are associated with standard
element types, since that is evident from the BPMN standard and related
textbooks [20, 30]. It is worth mentioning however, that for readability
purposes, we introduce a new icon for representing ProcessInstance nodes
(cfr., piNew in Figure 7). Nodes of type Token are represented as a black
dot (cfr., tNew in Figure 7), which is inspired by the Petri-Net syntax.
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[piNew.state==active]

c

this piNew:ProcessInstance
[this._triggeredAutonomously]

c: WorkflowProcess

this:StartEvent
[!this._triggeredAutonomously]

:itokens

c: WorkflowProcess

this:StartEvent
||( (&&

tNew:Token

Figure 7: Autonomous Instantiation: rule enterAutonomousStartEvent.

3. Execution Semantics

This section defines the execution semantics of BPMN 2.0 in terms of
graph rewrite rules. The section has the same structure as the BPMN 2.0
specification’s [20] chapter on the execution semantics, to maintain good
traceability between the execution semantics rules in the specification and
the graph rewrite rules that formalize them.

Figure 8 and 9 provide an overview of the BPMN 2.0 concepts for which
we define the execution semantics. The tables show the execution semantics
rule in the BPMN 2.0 standard that is formalized, the graphical notation
of the concept that is formalized and the names of the graph rewrite rules
that realize the formalization. For the special event types (message, error,
compensation and signal), only the specialized rules are listed. Other than
for these rules, the events behave as typical start, intermediate or end events.

3.1. Process Instantiation and Termination

Autonomous Instantiation. Figure 7 shows the instantiation rule for top-
level processes. The rule specifies that such a process can be instantiated
and started autonomously for two types of start events (normal ones and
timed ones). Remark that the rule also checks and updates an attribute
triggeredAutonomously on the start event. This attribute should not be

considered as part of what the BPMN standard prescribes. We have added
it to ensure the termination of our rule set: the check/update ensures that
this rule fires only once for each start event. This does not restrict our
solution space, since we are only interested in analyzing all different execution
scenario’s. The check/update should be removed when using the proposed
rule set for general process execution (e.g., in a production workflow engine).

Normal Termination. Figure 10 shows rule completeProcessNormal, which
ensures that a subprocess (or top-level process) is completed at the right
moment. This moment is specified by the rule’s two clauses in the left-hand
side. The first clause of the rule’s left-hand side states that the rule applies
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Activity Type

Process Instantiation / Termination

Sequence Flow Considerations

Sub processes / Call activity

Loop activity

Parallel gateway

Exclusive gateway

Inclusive gateway

Notation Rewrite Rule

enterAutonomousStartEvent
completeProcessNormal

leaveTaskOneOut

leaveTaskMoreOut

enterTask

enterSubprocess
reEnterSubprocess

leaveSubprocessNormal

reEnterLoopActivity
reEnterLoopSubprocess
skipLoopActivity

enterParallelGateway
leaveParallelGateway

enterExclusiveGateway
leaveDataExclusiveGateway

enterInclusiveGateway
leaveInclusiveGateway

completeProcessNormal

leaveImplicitInclusiveOut

leaveProcessNormal

catchImplicitlyThrownException

catchImplicitlyThrownException

catchImplicitlyThrownException

Figure 8: Overview of BPMN 2.0 concepts with execution semantics rules (1/2)
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Event Type

None Start events

Intermediate events

Intermediate boundary events

None End events

Message events

Error events

Compensation events

Signal events

Notation Rewrite Rule

enterAutonomousStartEvent,
enterSubProcess,
leaveStartEvent

enterIntermediateThrowEvent
(See Compensation, Message, Signal)

,

enterAutonomousBoundaryEvent

enterEndEvent,
completeProcessNormal

enterMessageCatchIntermediateEvent,
enterMessageCatchStartEvent

enterEndEvent,
leaveMessageThrowEvent,

enterThrowErrorEvent,
leaveThrowErrorEvent
enterCompensationEndEvent,
enterCompensationIntermediateThrowEvent,
UndoProcessInstance,

enterSignalCatchIntermediateEvent,
leaveSignalThrowEvent,

enterSignalCatchStartEvent

Terminate End events enterEndEvent,
leaveTerminateEndEvent

enterIntermediateThrowEvent,

enterEndEvent,
enterIntermediateThrowEvent,

leaveCompensationIntermediateThrowEvent
completeProcessNormal

Figure 9: overview of BPMN 2.0 concepts with execution semantics rules (2/2)
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&&

this: FlowElementsContainer

pi:ProcessInstance

io:instOf

[pi.state==active || 
 pi.state==compensated]

:ExceptionsOfPI
NAC ((

this

NAC

:Tokens

NAC

pi

[e.Result==None]
e:EndEvent

NAC
this

NAC

:Tokens

NAC

aNoOutArcs:Activity
NAC||( io

pi

io

:itokens :itokens

ITERATED

tOld:Token

:itokens&&[pi.State==completing]

pi pi pi

)
( )

Figure 10: Normal termination of a process: rule completeProcessNormal.

to situations with a process instance that is in the active or compensated1

state. The NAC in this clause states that no exceptions should have been
thrown for this process instance. The second clause (i.e., the part after &&)
states that additionally at least one of the following conditions needs to hold:
(a) the process holds an end event and the process does not hold a token that
is not in an ordinary end event, or (b) the process has no end events and
no tokens that are not in an activity without outgoing arcs. If this second
clause is satisfied too, the left-hand side matches and the right-hand side can
be applied. The implementation of the right-hand side has been extracted
to a separate rule – completeProcess RHS – since its definition turns out to
be useful elsewhere too.

3.2. Activities

Sequence Flow Considerations. Figure 11 shows the rule called leaveTaskO-
neOut. This rule formalizes the execution semantics for tasks that have one
outgoing sequence flow, sf. Remark that sf can be a regular sequence flow, a
conditional sequence flow, or a sequence flow with otherwise semantics (see
the Type attribute of SequenceFlow nodes). The negative application con-
dition (NAC) formalizes that the rule only applies in case there are not two
(or more) regular outgoing sequence flows. Notice that the relation between
sf and the elements in the NAC (sf1 and sf2 ) is implicitly homomorphic:

1Details about compensation are discussed in the context of compensation events.
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this:Task

NAC

[sf1.Type==null && 
sf2.Type==null]

:itokens

pi:ProcessInstance

this
sf:SequenceFlow

sf
1:
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lo

w
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2:

S
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nc

eF
lo

w

sf
tOld:

Token

tNew:Token

:itokens

pi

Figure 11: Regular sequence flow for task elements (1/2): rule leaveTaskOneOut.

the NAC expresses a pattern of two outgoing sequence flow (one of which is
allowed to map to the same element as sf ).

The right-hand side of rule leaveTaskOneOut is straightforward: the token
on the task node is destroyed and the outgoing sequence flow gets a new
token.

Recall from Section 2.1 that sequence flows are in fact represented as nodes
in BPMN 2.0 graphs. Therefore, the relation between the node tNew and the
node sf is realized by a graph edge of type Tokens (cfr., Figure 6(b)). Nodes
of type SequenceFlow are visualized as edges in the visual representations of
our rewrite rules, to resemble the concrete syntax of BPMN 2.0 more closely.
More specifically, Figure 11 is a complete visualization of all rule variables.
However, since, the purpose of the figures in this paper is mainly to document
the graph rewrite rules, we omit the pi node from both the left- and right-
hand side in the figure, since it is quite trivial that throughout a process
execution, the tokens remain within the same instance. All subsequent figures
will abstract from ProcessInstance nodes, unless such nodes are updated by
the rewrite rule. For example, for Figures 12 and 13, we omit the node and
edges that ensure that tOld and tNew belong to the same process instance.
In contrast, Figure 14 does show the process instance node, since this rule
updates that node’s state attribute and since non-trivial edges are connected
to the node.

Figure 12 shows rule leaveTaskMoreOut. This rule complements rule rule
leaveTaskOneOut by handling the case in which there are two (or more)
outgoing sequence flows. This case realizes the so-called AND split workflow
pattern [32], meaning that tokens must be put on all outgoing sequence flows.
Its left-hand side contains a pattern with a Task node that has at least two
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this:Task

[sf1.Type==null && sf2.Type==null]

this

sf1:SequenceFlow

sf2:SequenceFlow
tOld:

Token
this

ITERATED
[sf3.Type==null]  

sf3:SequenceFlow
&&

this

sf3

tNew:Token

Figure 12: AND split sequence flow for task elements: rule leaveTaskMoreOut.

this:Task this

sf:SequenceFlow sf

tOld:
Token

tNew:
Token

Figure 13: Regular sequence flow for task elements (2/2): rule enterTask.

outgoing sequence flows that are of type null. In the right-hand side, the
token is removed from the task. Additionally, each outgoing sequence flow
of type null gets a new token assigned to it. Obviously, all new tokens
should go to the same process instance as the one that produced the match.
Remark that variables sf1 and sf2 are allowed to be bound to the same
element as variable sf3. In graph rewrite rule jargon, for these variables we
want homomorphic matching rather than (the default) isomorphic matching.
Put differently, we allow the left-hand side patterns of both subrules to be
mapped non-injectively to nodes in the host graph.

As a symmetric counter-part of rule leaveTaskOneOut, consider rule en-
terTask, which is visualized in Figure 13. Remark that this rule also applies
to the situation where the task node has multiple incoming sequence flows.
If this is the case, extra sequence flows without a token do not prohibit the
firing of rule enterTask (there is no NAC related to incoming flows besides
sf ). Extra incoming sequence flows with a token can each produce firing of
rule enterTask and can thus result in multiple tokens on the task node.

Sub-Process/Call Activity. Figure 14 shows the rule called enterSubprocess,
which formalizes subprocess invocations. The left-hand side consists of a
pattern with BlockActivity node called this, which has an input sequence flow
sf that is enabled (i.e., sf holds a token). The pattern also contains node
pi, representing the process instance in which the token is contained. This
node is shown explicitly since subprocess invocation involves side-effects at
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this: BlockActivity

sf:SequenceFlow

pi:ProcessInstance

this
sf

pi

:itokens :itokens

newPI:ProcessInstance

:tok2pi

:instOf

:parent2subPI

&& exec(reEnterSubprocess(this, newPI))( (
Figure 14: Instantiation of subprocesses: rule enterSubprocess.

||
a:StartEvent
this

pi

:itokens

:tokens

NAC

pi

:itokens

a
this

this

se:StartEvent

NAC

ITERATED(( () ||
this this

) 
&&

a: Gateway

NAC

[a.Instantiate && 
 a.TypeOfGW==Exclusive]

a: 
Activity\Gateway

NAC

this

a

pi

:itokens )
&&

[ pi.state == active ]

pi pi

( (
( (
Figure 15: Helper reEnterSubprocess(this:BlockActivity,pi: ProcessInstance).

||
a:StartEvent
this

pi

:itokens

pi

:itokens

a
this

this

se:StartEvent

NAC

ITERATED(( ( ) ||
this this

) 
&&

a: Gateway

NAC

[a.Instantiate && 
 a.TypeOfGW==Exclusive]

a: 
Activity\Gateway

NAC

this

a

pi

:itokens )pi

&&
[ pi.state == active ]

pi pi

( (

((
Figure 16: Helper reEnterSubprocess, with the color-based NAC syntax.
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this: FlowElementsContainer

[pi.state==completing] parentPI:
ProcessInstance

this

[pi.state==completed]
pi

tOld:Token

:tok2pi

sf:SequenceFlow sftNew:
Token

pi:ProcessInstance

:itokens

parentPI:
ProcessInstance

:itokens

Figure 17: Leaving a block activity: rule leaveSubprocessNormal.

the process instance level. More specifically, in the right-hand side of the rule
from Figure 14, a new process instance node newPI is created and relations
to original process instance and the block activity are established. Finally,
enterSubprocess calls rule reEnterSubprocess and passes the block activity
(this) and process instance (pi) as arguments.

Rule reEnterSubprocess is shown on Figure 16. Remark that this figure
relies on the color red to represent the elements that are in a NAC. Figure 14
shows the equivalent rule in the more verbose (yet grayscale printer friendly)
conventional syntax. Since variables this and pi are passed as rule parame-
ters, they are already bound. Therefore, they do not contain their expected
type even in the left-hand side of the rule. Rule reEnterSubprocess consists
of two subrules that are matched alternatively (i.e., they are combined with
the “‖” operator).

On the left side of the “‖” operator on Figure 16, we see the first subrule.
This subrule matches if the block activity contains a start event a, which
does not yet contain a token for process instance pi (otherwise pi would be
executing already). In case this subrule matches, a token will be added to a
in the context of pi.

On the right side of the “‖” operator on Figure 16, we see the second
subrule of reEnterSubprocess. This subrule handles the situation where block
activity this does not have a start event. For such subprocesses, two types of
elements without incoming arcs will receive a token: first of all, exclusive OR
gateways (but only if their Instantiate attribute is set to true); secondly, all
other activities (so for activities of another type than Gateway the Instantiate
attribute is irrelevant).

Figure 17 shows the rule called leaveSubprocessNormal. The rule matches
when a process instance is in the completing state. Remark that rule com-
pleteProcessNormal (shown on Figure 10) rewrites process instances to that
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this: Activity\(BlockActivity)

lc: 
LoopCharacteristics

tOld:Token

lco:
LoopCharacteristicsOf

this

lc

tNew:Token

lco

Figure 18: Iterating a loop for a regular activity: rule reEnterLoopActivity.

this: BlockActivity

[piSubOld.state==completing]
piSubOld: ProcessInstance

:it
ok

en
s

lc: 
LoopCharacteristics

tOld:Token

:tok2pi

this

[piSubOld.state==completed]
piSubOld

lco

lc

[piSubNew.state==active]
piSubNew: ProcessInstance

tNew:Token

pi: ProcessInstance pi

lco:
LoopCharacteristicsOf

:itokens
:tok2pi

:InstOf

:InstOf

:parent2subPI

:parent2subPI :parent2subPI

Figure 19: Iterating a loop for subprocess activities: rule reEnterLoopSubprocess.

state. Rule leaveSubprocessNormal complements the behavior of that rule by
updating the process instance state to completed and by transferring control
(i.e., a token) to an outgoing sequence flow.

Loop Activity. Figure 18 shows rule reEnterLoopActivity. This rule applies
to all activity types but block activities (i.e., subprocesses). Since the left-
hand side specifies a situation with a token on the activity, it expresses the
situation where the loop body has just been executed. In this situation,
both a while-do loop as a repeat-until loop can enter its loop body again.
Therefore, there is no constraint on the testBefore attribute of the lc node.

Figure 19 shows the rule called reEnterLoopSubprocess. The rule realizes
loop behavior for block activities. Remark that a new process instance,
piSubNew, is spawned in the right-hand side. Also, the state attribute of the
old and new instances of the subprocess are set properly: the old instance’s
state is updated from completing to completed whereas the new instance’s
state is initialized to active. Also note that the configuration of the edges with
respective types InstOf, tok2pi and parent2subPI is rather complex. This
emphasizes the importance of specifying the operational semantics formally.

Figure 20 shows an initial version of the rule for skipping a loop activity
with test before characteristics (i.e., it is a rule for skipping a do-while loop).
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this: Activity

lc:LoopCharacteristics

tOld:Token

lco:
LoopCharacteristicsOf

this

lc

tNew:Token

lco

sfOut:SequenceFlow sfsfIn:SequenceFlow

[lc.TestBefore]

sfIn

Figure 20: Skipping a while-do loop for regular or subprocess activities: skipLoopActivity.

(
this: Activity

lc:LoopCharacteristics

tOld:Token

lco:
LoopCharacteristicsOf

this

lc

lco

sfIn:SequenceFlow

[lc.TestBefore]

sfIn
)&& EnterSF(this)

Figure 21: Corrected version of rule skipLoopActivity, fixing the error from Figure 20.

The token is transferred from an incoming sequence flow to an outgoing
sequence flow directly. Although correct by intuition, this initial version
overlooks the fact that specific activites (i.e., those of type Task can implicitly
realize the AND split pattern. Figure 21 presents the rule that corrects
this mistake: after removing the token from the incoming sequence flow,
the rule delegates to rule EnterSF. This rule reuses helper rules that also
support previously mentioned rules to realize the token transfer to the proper
sequence flow(s).

More specifically, EnterSF includes rules EnterSFone and EnterSFand-
split, which are used also by rules leaveTaskMoreOut and leaveTaskOneOut,
as discussed in the context of Figures 12 and 13. Rule EnterSF only matches
if either rule EnterSFone or rule EnterSFandsplit matches. By binding the
match of a subrule to the identifier e, rule EnterSF can trigger the side-effects
of its subrules in its own right-hand side. This is realized by the right-hand
side statement e().

As another example, consider helper rule EnterSFone on Figure 23. The

( )||e:EnterSFone(this)
e()

this ( )e:EnterSFandsplit(this)
e()

this

Figure 22: Helper rule EnterSF(this:SequenceFlow).
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Figure 23: Helper rule EnterSFone(this:Activity).

this:Task this

tOld:
Token

e:EnterSFone(this) e()

Figure 24: Rule leaveTaskOneOut, refactored version (reuse of EnterSFone(this:Activity)).

figure shows that rule EnterSFone very strongly resembles rule leaveTaskO-
neOut. Therefore, the latter rule actually also reuses EnterSFone. Figure 24
shows a refactored version of the rule: the refactored version reuses rule En-
terSFone and as a result, it only needs to take care of the removal of the
token from the input activity. The reuse is (again) realized by including in
the left-hand side the expression e:EnterSFone(this). This includes the left-
hand side of rule EnterSFone into leaveTaskOneOut, and it binds the match
of the subrule to e. The right-hand side contains the expression e(). This ex-
pression calls the right-hand side of the matched subrule while applying other
side-effects (i.e, while removing tOld). Similar reuse techniques have been
applied for eliminating code duplication between rule leaveTaskMoreOut and
rules skipLoopActivity.Without elaborating further to a detailed discussion of
these reuse mechanisms here, this illustrates that graph rewriting languages
also enable the elimination of duplicated code.

3.3. Gateways

We define the behavior of parallel, exclusive and inclusive gateways.
Two rules define the behavior of the parallel gateway as shown in Fig-

ures 25 and 26. Figure 25 shows that a parallel gateway can receive a token
in case it has no incoming control flows that do not have a token. This double
negation is equivalent to stating that all incoming control flows must have a
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gw: Gateway
gw

NAC
NAC

&&
gw gw:SequenceFlow

:Token( ) [ ]sf:
SequenceFlow

:Token

sf

Figure 25: Enter a Parallel Gateway: rule enterParallel

token. If this condition is met, (1) the gateway receives a token and (2) a to-
ken is removed from each incoming control flow. The second part is realized
by calling a subrule with maximal matching (i.e., with square brackets, “[
]”, around the call). Remark that it would be incorrect to embed the call in
an iterated block, since then all tokens would be removed from the incoming
edges (whereas just one token per incoming flow should be removed).

Remark that even with the maximal matching operator (i.e., with square
brackets), each arc/token combination will still be matched just once, since
matching is isomorphic by default. The rule as shown on Figure 25 exe-
cutes BPMN processes correctly, even if they are not one-bounded (safe [2]).
Although one could argue that in a workflow modeling context, business
analysts should model only safe nets, they may model non-safe nets uncon-
sciously, especially if they have little training in BPMN semantics. Therefore,
it is important that our formalization (and related execution engine) can deal
with non-safe nets too.

Figure 26 shows that if a parallel gateway has a token, it can put a
token on each of its outgoing control flows. This rule again consists of two
parts, one that indicates that the token on the gateway must be removed
and one that indicates that a token must be put on each outgoing control
flow. Also note that the rule is highly similar to rule leaveTaskMoreOut
(cfr., Figure 12). This similarity is leveraged to reuse rule fragments at the
implementation level (using the mechanisms described in the context of rules
leaveTaskMoreOut and rule skipLoopActivity from Figures 12 and 21). We
refrain from showing this reuse here, since it would pollute our documentation
oriented rules with technical details.

Two rules define the behavior of the exclusive gateway as shown in Fig-
ure 27 and 28. Figure 27 shows that an exclusive gateway can receive a
token when one of its incoming control flows has a token. When the gateway
receives a token, the token on the incoming control flow is removed.

Figure 28 shows what can happen when an exclusive gateway has a token:
rule leaveExclusive can match in three cases. In any case, the token can be
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gw: Gateway gw

&&
gw gw

( ) sf:
_SequenceFlow

tOld:Token
tNew:Token

sf

ITERATED

Figure 26: Leave a Parallel Gateway: rule leaveParallelGateway

tOld:
Token

gwgw: Gateway

sf:SequenceFlow sf

tNew:
Token

Figure 27: XOR-split activation: rule enterExclusiveGateway

removed from the gateway. Additionally, a token can be put on one of the
conditional outgoing control flows (case 1). If the gateway has a default flow,
a token can be put on this default flow (case 2). If the gateway does not
have a default flow, an exception can be generated (case 3). The latter case
represents the situation in which there is no default flow and none of the
conditions on the conditional outgoing flows are met.

Rule catchImplicitlyThrownException (shown on Figure 29) formalizes a
proposed extension to the BPMN 2.0 standard. Without this rule, exceptions
that are thrown by OR splits, will never be handled. We propose to support
the handling of such exceptions by means of a boundary intermediate error
event without an error-code (giving it the expected catch-all semantics). Re-
mark that the NAC avoids a conflict with rule leaveThrowErrorEvent (cfr.,
Figure 39).

Two rules define the behavior of the inclusive gateway as shown in Fig-
ure 30 and 33. Figure 30 shows when an inclusive gateway can receive a

gw: Gateway

gwgw gwgw gw

gw

&&

( )| NAC

gw :Exception
| ||

[gw.TypeOfExcl=="data"]

Figure 28: Transfer control from an XOR-split: rule leaveExclusiveGateway
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Figure 29: Handling exceptions that are thrown implicitly (i.e., not by a throw event)

gw

NAC
NAC

:HasTokenUpstream(sf, gw) gw: Gateway

sf: SequenceFlow

t:Token

sfWT:SequenceFlow

:Token

sfWT
t

&&  EnterParallel_RHS(gw)  

Figure 30: Enter an Inclusive Gateway: rule enterInclusive.

token. The right-hand side of rule enterInclusive delegates to the right-hand
side of rule enterParallel. This ensures that a token is added to gateway
gw and that a token is consumed from each incoming flow that has at least
one token. According to the specification, an inclusive gateway can receive a
token, if it has at least one incoming sequence flow with a token (i.e., sfWT
in Figure 30) and if each sequence flow that does not have a token is not
waiting for a token to arrive (i.e., such a sequence flow does not have a token
upstream).

The requirement that an empty sequence flow should not have a particular
token upstream is defined more precisely in the specification as: “There is
no directed path from an upstream token to this sequence flow, unless:

• the path visits the inclusive gateway; or

• the path visits a node that has a directed path to a non-empty incoming
sequence flow of the inclusive gateway.”

This part of the rule is realized by calling a subpattern called HasViolating-
TokenUpstream. This helper pattern matches when there is a violing token
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:HasTokenUpstream(sf2,a)
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asf2: SequenceFlow asf2: SequenceFlow

gwNAC
sf3: SequenceFlow

:DirectedPathBetween(a, sf3)
:Token

&&

:Token

[a<>gw]

Figure 31: Helper pattern HasViolatingTokenUpStream(sf:SequenceFlow, gw:Gateway).

sf
a: Activity || a: Activity b: Activity :DirectedPathBetween(b, sf)

sfOther:SequenceFlow

Figure 32: Helper pattern DirectedPathBetween(a:Activity, sf:SequenceFlow).

upstream (i.e., a token that cannot flow down to non-empty incoming se-
quence flows of the gateway). By applying this helper pattern in a NAC,
rule enterInclusive ensures that there are no such violating tokens.

Helper HasViolatingTokenUpstream walks the sequence flow graph up-
stream by taking the source activity of its parameter sf. By constraining
that a is different from gw, the pattern realizes the first exception (i.e., “un-
less: ... the path visits the inclusive gateway”). Then, the pattern checks
three cases of possible violation:

• either the activity a holds a token, or

• an incoming sequence flow of a holds a token, or

• a transitive successor upstream matches this pattern.

Recall that the token should only be classified as violating if from activity
a there is no directed path to a non-empty incoming sequence flow. This
additional condition is checked by the NAC at the bottom of Figure 31. The
NAC applies a subpattern called DirectedPathBetween to match a transitive
closure of the sequence flow edges between activity a and sf3, where sf3 rep-
resents a non-empty incoming sequence flow of the gateway. Figure 32 show
the definition of subpattern DirectedPathBetween. The transitive closure of
sequence flow edges is realized by a recursive application of the subpattern.

Figure 33 shows what can happen when an inclusive gateway has a token:
rule leaveInclusive is quite similar to rule leaveExclusive (cfr., Figure 28). It
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gw )gw ||sf:
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Figure 33: Leave an Inclusive Gateway: rule leaveInclusive.

also consists of three cases, one for activating the conditional control flows,
one for activating the default control flow and one for generating an exception
in case there is no default control flow and none of the conditions on the
conditional outgoing flows are met. However, instead of only putting a token
on one conditional outgoing flow, an inclusive gateway can put a token on
any number of its conditional outgoing flows. This is represented in the rule
by the iterated block that should be executed 1 . . . RAN(n) times, which
represents that the iterated block can be executed a number of times in
between 1 and n. The value of n is set to the number of conditional outgoing
flows of the gateway (i.e. the number of times that the subpattern P can
be matched). It should be noted that aggregation features (COUNT, AVG,
etc.) are not yet widely supported by graph rewriting tools.

As indicated by Figure 8, the behavior of leaving an inclusive OR gateway
is also formalized for Task activities. More specifically, if a task has more
than one outgoing conditional sequence flow, it matches rule leaveImplicit-
InclusiveOut. The latter rule is not shown here, but is straightforward, as it
can reuse the right-hand side of rule leaveInclusive.

3.4. Events

There exist four basic types of events: start events, intermediate events,
intermediate boundary events and end events. The basic behavior of start
events is explained in the section 3.1 on instantiation. The basic behavior
of an intermediate event is the same as for a task. The basic behavior of an
intermediate boundary event is that it can fire while the activity on which’
boundary it is, is active. There exist two variants of this behavior. One
in which the boundary activity interrupts the activity and one in which the
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boundaryEvent

this:Activity this

tNew:Token

t:Token

boundaryEvent: IntermediateEvent

Figure 34: Enter an Autonomous Boundary Event: rule enterAutonomousBoundaryEvent.

this:EndEvent

sf:SequenceFlow

tOld:Token this

sf
tNew:Token

[  this.Result=="None" || this.Result=="Terminate" 
|| this.Result=="Signal" || this.Result=="Message" ]

Figure 35: Entering various types of end events: rule enterEndEvent.

activity can continue. We focus on the first case (see Figure 34). The basic
behavior of an end event is to simply receive a token (see Figure 35). Also
note that rule enterEndEvent applies not only to regualr end events (i.e.,
those of result type none), but also to message events, etc.

Events can either catch a trigger (that may be thrown by others) or throw
a result (that may be caught by others). BPMN 2.0 standardizes a number
of triggers and results. The behavior of an event may differ, depending on
the trigger that is caught or result that is thrown. We define the execution
semantics for the message, error, compensation and signal events below. In
addition to that triggers and results exist that do not receive special treat-
ment in the control flow, but that may receive special treatment, because
technical measures need to be taken to implement them. An example of this
is the “timer” event that triggers when a preset moment in time is reached.
In the control flow this does not lead to any special behavior, even though
special measures must be taken in the implementation to catch the event at
the specific moment at which the preset time is reached. Events that do not
affect the control flow in a specific manner are timer, conditional, cancel,
multiple and so-called “none” events, which, by definition, do not have a
specific semantics.

Message Events. A message event can “throw” a message that can subse-
quently be “caught” by another message event. If a message throw event
and a message catch event are connected by a message flow, the throw event
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Figure 36: Rule enterMessageCatchIntermediateEvent and enterMessageStartEvent.
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Figure 37: Throwing a message: rule leaveMessageThrowEvent.

must produce a message and the catch event must wait for that message to
be produced. The message is passed along a message flow from the throw to
the catch event. Figure 36 shows the rules for receiving messages: messages
can be received either by message intermediate catch events or by message
start events. The figure shows that such events can be entered, only if the
message flow that points towards them also has a token.

Figure 37 shows the behavior of a message throw event, which can be
either an intermediate or an end event. The figure shows that, upon leaving
such events, a token is put on the outgoing message flow. In the case of an
intermediate event, the outgoing sequence flow also receives a token.

As indicated by Figures 9 and 35, message throw events (as well as other
kinds of throw events) are activated by rule enterEndEvent. Similarly, the
rule enterIntermediateThrowEvent can activate message throw events as well
as signal throw events. This rule is not shown as a figure in this paper, since
it is so similar to rule enterTask (cfr., Figure 13).

Error Events. When an end event is reached by a token, the end event can
“throw” an error. If it does that, the process instance that causes the error,
reaches a state in which it is failed. Figure 38 shows rule enterThrowEr-
rorEvent, which formalizes the activation of an end event with result type

30



pi:ProcessInstance

:itokens

this:EndEvent

sf:SequenceFlow

tOld:Token
this

sf
tNew:
Token

:itokens

pi[pi.state==failed]

Figure 38: Throwing an error: rule enterThrowErrorEvent
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Figure 39: Handling errors: rule leaveThrowErrorEvent

error. Remark that the BPMN 2 standard does not support throwing er-
rors from intermediate throw events, so we provide no rule for activating
ThrowIntermediateEvent elements with an error trigger.

Figure 39 shows rule leaveThrowErrorEvent, which formalizes the error
handling behavior. For one, the process instance that causes the error must
be terminated. This is done by removing the token from the subprocess
in which the error is thrown (cfr., tOldParent in Figure 39), removing the
token from the error end event and removing all other tokens from the pro-
cess instance (cfr., tOld in the iterated block in Figure 39). Although not
shown on Figure 39, this can be realized by reusing the right-hand side of
rule completeProcess RHS, which has been discussed in the context of rule
completeProcessNormal (cfr., Figure 10).

In case the subprocess in which the error occurs has a catch error event
attached to it (cfr., the optional block in Figure 39), a token is put on the
activity that this event points to. The catch error event must either have
the same error code as the throw error event, or it must have no error code,
in which case it reacts to all error events. Also refer to the discussion of
Figure 29 for another case of catch-all behavior.

Compensation Events. Figures 40 and 41 show the rules for triggering a
compensation. Both rules are the same, except for the type of the event
node: besides the trivial move of the token from the input sequence flow to
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Figure 40: Initiating compensation (1/2): rule enterCompensationEndEvent.
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Figure 41: Compensation (2/2): rule enterCompensationThrowIntermediateEvent.

the event node, both rules include the subrule AddUndoTokens. That rule
has two parameters: (1) the element thrower that throws the compensation
event, and (2) the process instance pi that needs to be compensated.

AddUndoTokens recursively adds special tokens (elements of type Undo-
Token) to the activities that need to be compensated. The rule also sets
the status of the involved process instances to compensating. There are two
cases for adding UndoToken elements in rule AddUndoTokens. Both cases
are handled by subpatterns that are combined with the “‖‖” operator.

The first subpattern deals with the compensation of one specific activ-
ity. Following that BPMN standard, this corresponds to the situation where
there is a link of type activityRef between the throwing event and the to be
compensated activity. In this case, only that to be compensated activity gets
an UndoToken.

The second subpattern deals with the opposite case (i.e., the case where
no activity has been modeled for explicit compensation handling). In that
case, the BPMN 2 standard prescribes the implicit compensation of all com-
pleted activities from the current subprocess as well as from recursively
spawned child processes. This behavior is realized by the nested iterated
block in rule AddUndoTokens. The outer iterated block matches all so-called
history tokens in the context of process instance pi. As indicated by the
rewrite arrow in this block, each such match should produce an undo token
in the same activity actFromSameScope. This realizes the compensation of all
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Figure 42: Compensating a subprocess recursively: helper rule AddUndoTokens.
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Figure 43: Compensation completion: rule UndoProcessInstance.

completed activities at one process instance level. Within this iterated block,
there is a second iterated block. The latter block matches each subprocesses
subPI of the instance pi. For each such subprocess, rule AddUndoTokens is
executed recursively.

The use of HistoryToken nodes requires some further explanation, es-
pecially since they have been deliberately excluded from the metamodel in
Section 2.3. History tokens are created in all cases where a regular Token
node is deleted by our rules. More precisely, every delete operation on a
node of type Token is replaced by a node re-type operation, from type To-
ken to type HistoryToken. For all rules so far, the effect of the re-typing
is the same as the effect of a real delete operation, since the Token nodes
(1) are no longer visible in BPMN concrete syntax, and (2) will no longer
match in the left-hand sides of our the rules that have been discussed so
far. By keeping a history of tokens that were conceptually removed by these
rules, the underlying graph has a notion of which activities have been com-
pleted. Without such history information, it would be impossible to realize
compensation behavior.

Figures 43 and 44 show the rules for completing a compensation. Rule Un-
doProcessInstance matches a top-most process that contains an UndoToken.
As explained in the context of Figures 40 and 41, such tokens represent on-
going compensation for activities that had completed. Rule undoProcessIn-
stance sets the state of its matched process instance pi to compensated and
includes helper rule UndoActivitiesFromPI, which recursively updates the to-
kens in pi and its child subprocesses. Since the recursion goes top-down (i.e.,
from parent to child subprocess), the NAC of UndoActivitiesFromPI ensures

34



act:Activity 

ut::UndoToken

pi:ProcessInstance

it:itokens

OPTIONAL

act

boundaryEvent:
IntermediateEvent

compensator:
Activity

a:Association boundaryEvent

compensator

a

tNew:Token

act

act

pi

it

undone:UndoneToken<ut>

recurse:
UndoActivityFromPI(subPI)

subPI:ProcessInstance

:parent2subPI

ITERATED

recurse()&&
pi

pi pi

:itokens

ITERATED

Figure 44: Compensation completion: rule UndoActivitiesFromProcessInstance.

that no parent process of pi could produce a match as well.
Helper rule UndoActivitiesFromProcessInstance models the compensation

of each individual activity act in process instance pi. As indicated by rewrite
variables ut and undone, this involves the re-typing of a node of type Undo-
Token to a node of type emphUndoneToken. Moreover, as indicated by the
embedded optional block, this may involve the activation of a compensation
activity. Such compensation activities can be present as the targets of Associ-
ation edges that originate from a boundary intermediate compensation event
of act. Besides compensating each act in pi, rule UndoActivitiesFromPro-
cessInstance matches all subprocesses of pi and evaluates there recursively.
Remark that once a process is in the compensated state, the compensation
is complete. In that case, the activity that triggered the compensation can
be de-activated by rules leaveCompensationThrowIntermediateEvent or com-
pleteProcessNormal.

Signal Events. Signal events can be thrown by signal intermediate events
or by signal end events. Subsequently, they can caught by a signal catch
intermediate event. It is important that the signal catch event is “listening”
(i.e., there should be a token on its incoming sequence flow). When no signal
catch events are listening, the signal event can be lost. Figure 45 and 46
show these two possible situations.

Rule enterSignalCatchIntermediateEvent (cfr., Figure 45) shows that an
intermediate signal catch event can be entered in case there is a corresponding
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Figure 45: Reacting to a signal: rule enterSignalCatchIntermediateEvent.

signal throw event with a token. The throw and the catch event are said to
be corresponding if both refer to the same signal definition. Remark that in
the right-hand side, the signal catch event receives a token, but the token on
the corresponding thrower is not removed. If the token would be removed,
then at most one catch event could be activated by a signal. By leaving
the token on the thrower, rule enterSignalCatchIntermediateEvent can fire
many times (i.e., once for every corresponding catch event with an enabled
input sequence flow). Also remark that such multiple firings will produce
separate markings. This reflects that our formalization does not impose that
all catch events react at the same time (i.e., responding to a common signal
does not synchronize concurrent threads). Obviously, once (and only once)
all corresponding catch events have been activated, the token on the throw
event should be removed. This is realized by rule leaveSignalThrowEvent.

Figure 46 shows that a signal can be lost in case there is a signal throw
event with a token, but there is no corresponding catch event. The rule
simply removes the token in the case of an end event as a thrower, while
in the case of an intermediate event as a thrower, the outgoing sequence
flow receives a token. Remark that leaveSignalThrowEvent can fire in two
scenario’s: first of all, the rule can fire in case the receiver side has not yet
reached the catch event for processing the signal. Secondly, the rule can fire
after one or more receivers have received the signal event. In the former
case, the signal has been lost. In the latter case, the signal has resulted in
an activation of all corresponding catch events. In summary, the proposed
rewrite rules formalize signal broadcasts that are reliable, but that will get
lost for those that are not listening to the broadcast channel.

4. Implementation

This section presents an implementation of the graph rewrite rules from
section 3. It presents an implementation of the rules in a tool called Gr-
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Figure 46: Dropping a signal: rule leaveSignalThrowEvent.

Gen.NET, an evaluation of the strengths and weaknesses of this implemen-
tation and possible alternatives to this implementation. In addition, it shows
the traceability of the informal BPMN 2.0 execution semantics rules to Gr-
Gen.NET rules and it presents a use case of the GrGen.NET implementation
as a reference implementation of the BPMN 2.0 execution semantics.

Subsections 4.1, 4.2 and 4.3 present the implementation, evaluation of the
implementation and evaluation of alternatived, respectively. Subsection 4.4
shows the traceability and Subsection 4.5 shows how the implementation
could be used as a reference implementation.

4.1. Implementation in GrGen.NET

An implementation of the rules from section 3 is made in a tool called
GrGen.NET. The implementation is accessible from a web-based front-end as
well as through various local GrGen.NET scripts2. It supports the following
user scenario’s:

Manual Execution In this scenario, the user can simulate a BPMN 2.0
model, by explicitly choosing at any time (a) which rule to evaluate,
and (b) in the case the selected rule has multiple matches: which match
to apply.

Batch Statespace Generation In this scenario, the rewrite rules are exe-
cuted non-deterministically for a given number of iterations, such that
they generate a statespace. More specifically, it collects which markings
are reachable from which other markings, by executing which rewrite
rule. The statespace can be used for various forms of statespace explo-
ration, but should be used with the caution that the statespace that is
generated is not necessarily complete.

2See http://is.tm.tue.nl/staff/rdijkman/bpmn.html.
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Interactive Statespace Generation This scenario supports the interac-
tive extension of partial statespaces. This is useful in the case that the
statespace for an input model is very large (or even infinite). Users can
then manually explore particular paths further.

The web-based front-end supports the first user scenario and is intended
for illustration purposes only. The GrGen.NET scripts support all of the
three scenarios. They are made available through an on-line virtual machine
that contains (1) the GrGen.NET implementation of the rules from Section 3,
(2) execution scripts for each of the three user scenario’s outlined above,
(3) a large collection of test models, (3) the version of GrGen.NET that
should be used with the implementation, (4) an XPDL based BPMN editor,
and (5) a tool to translate XPDL to the GrGen.NET input format. Using
this virtual machine, the interested reader can evaluate the implementation
with any model from the large collection of test models and with any other
BPMN model that is modeled in the XPDL based BPMN editor. The Gr-
Gen.NET scripts are based on the GrGen.NET debugger and therefore do
not visualize BPMN models in the BPMN standard concrete syntax. How-
ever, due to various configuration mechanisms, the graphs in the debugger
do resemble that concrete syntax to a large extent.

Figure 47 shows an application of scenario one (Manual Execution), for
the execution a process that contains an embedded subprocess activity fol-
lowed by an implicit AND split. The manual execution has reached the state
right after the termination of the subprocess. This can be seen on the visual
debugger window shown at the left of the figure, where both sequence flows
that follow the embedded subprocess have a token. The debugger terminal
on the right shows that the user can choose at this point which match of the
rule enterTask. By pressing “0”, or “1”, the user can cycle between the two
matches (i.e., he can choose between continuing execution of the process in
the left or the right branch). By pressing other keys, the user can let the
engine continue non-deterministically, or try to evaluate of a particular rule:
pressing “n” continues with a random match. Afterwards, pressing “e” will
enable the user to enter the select which rule to fire next. Pressing“o” will
fire a rule non-deterministically (and automatically ignore all rules that do
not match at this point.)

The screenshot shown on Figure 47 is the result of pressing “o” in the
state where both the sequence flows that follow the BlockActivity contain a
token. As indicated by the red markers in the right of the figure, various
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Figure 47: Screenshot of the Manual Execution mode.

rules (such as enterExclusiveGateway and leaveDataExclusiveGateway) have
failed to match. The cyan text “enterTask” indicates that rule enterTask
matches twice in the current version of the host graph. In fact, the Gr-
Gen.NET debugger has interrupted the rewriting and is prompting for user
input. This behavior is the result of the script statement $%[enterTask]: the
GrGen.NET script operator [ ] instructs the engine to look for all matches of
the rule “enterTask”. By prefixing that [ ] operator by a $ sign, the script in-
structs the engine to rewrite just one match. Finally, the % symbol (leading
to $%[ ]) instructs the engine to let the user choose which particular match
to rewrite.

Figure 48 shows an application of scenario two (Batch Statespace Gen-
eration). This example involves a very simple process, consisting of just six
activities (a start and an end event, two parallel gateways, and two tasks
that run concurrently between these gateways). The statespace for this ex-
ample contains 18 markings. The GrGen.NET script for constructing the
statespace executes about three seconds on a virtual machine with 1GB of
main memory and a mainstream CPU at the time of writing.

Figure 48 shows the result of a script that visualizes just one marking as
an overlay on the BPMN diagram. Again, the script applies an operator for
retrieving user input: the statement h1= $%(Marking) lets the user select one
node of type Marking. The script takes the selected node and then applies
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Figure 48: Screenshot of the Batch Execution mode and the (optional) marking visualizer.

some helper rules for only showing the tokens from the selected marking. In
this case, we have selected the Marking node that is pointed at as “1” in the
figure. This marking contains two tokens, both of which are pointed at as “2”
in the figure. In this specific case, the tokens reside on the two concurrent
tasks. The figure shows that the statespace branches here for one step and
then merges in a common node. This is since the order of completion of tasks
is arbitrary but after two steps, the second parallel gateway should hold a
token.

The third execution mode (Interactive Statespace Generation) looks like
a combination of Figures 48 and 47: after executing the operational seman-
tics rules for a specific number of iterations, users run the rewriting system
interactively and select a specific rewrite rule using the mechanisms shown
on Figure 47.

4.2. Evaluation of the GrGen.NET implementation

Based on our experience with the implementation of the execution seman-
tics in GrGen.NET, we identified the following strengths and weaknesses of
GrGen.NET.
The GrGen.NET tool has the following strengths:

Visual Debugger GrGen.NET includes a visual debugging tool. We have
used this tool to hunt down bugs by steping through the execution of
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complex test models. However, as illustrated in Section 4.1, we also
still use the tool to execute BPMN models now that the implementa-
tion is stable. A major advantage is that the visualization can easily
be changed to change the level of detail. For example, in order to also
visualize ProcessInstance nodes, just one configuration line needs to be
adjusted. Within the graph rewriting domain, only Fujaba has com-
parably powerful debugging support. Remark that when no dedicated
graph rewriting tool is used at all, the debugging support of a gen-
eral programming language (such as Eclipse for Java) is significantly
more low level: not only would support for visual debugging on the
BPMN model be lacking, the rule-oriented perspective is missing in
such environments.

Fast The GrGen.NET engine implements various domain-independent opti-
mizations. Although the tool was originally developed for the domain
of compiler construction, various benchmarks have illustrated excellent
performance in other domains (including for example the execution of
huge Petri-Nets [12, 4, 17]). Van Gorp and Eshuis have demonstrated
that the advantage of GrGen.NET over a general purpose programming
language is that better performance can be achieved without writing
performance related code for a specific case study [34].

Actively Maintained Since GrGen.NET is still a research prototype, it
is of uttermost importance that problems with the engine are solved
in a timely manner. For the implementation work related to this pa-
per, we have encountered several bugs as well as lacking features. Al-
though we have obviously regretted this, we want to emphasize that
all issues were resolved within some weeks after reporting them to the
GrGen.NET mailing list.

In contrast to these advantages, we have identified the following clear points
for improvement:

Statespace Generation Support The primary source of over-technical de-
tails in our GrGen.NET implementation is the tool’s lack of declarative
statespace generation support. For example, Figure 49 shows on lines
1 and 12 that rule leaveTaskMoreOut returns three parameters: (1)
a parameter representing a copy of the original marking, (2) the up-
dated marking, and (3) the BPMN element that should be shown to
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the user for characterizing a match of this rule. Also, on lines 8 and 9,
the rule explicitly creates a copy of the current marking. Finally, the
script that orchestrates the rewrite rules for realizing scenario’s two and
three from Section 4.1 (i.e., scenario Batch Statespace Generation and
Interactive Statespace Generation) contains rather complicated states-
pace construction logic. On top of the effort to write that code, there
is obviously the effort to maintain it. Worst of all, we have learned
late that the performance of the hand-written statespace generator is
unacceptably poor and this can only be improved by resorting to the
GrGen.NET C# API. Since alternative graph rewriting tools such as
Henshin [1] and GROOVE [25] provide declarative support for states-
pace generation, we have not invested effort in the C# workaround.

Documentation Support GrGen.NET is based on a textual language for
encoding graph rewrite rules. Although this is adequate during pro-
gramming, a visual representation seems more appropriate for docu-
mentation purposes. There are visual graph rewriting languages (see [27]
for an overview) but most of these manipulate graphs in their ab-
stract syntax representation. To the best of our knowledge, only the
AToM3 [18] approach enables the specification of rewrite rules in their
concrete syntax form (i.e., in a form similar to the figures in sec-
tion 3) but AToM3 does not include the advanced iteration and nega-
tion operators that we have used throughout this work. Therefore,
GrGen.NETwould provide unique functionality when providing an au-
tomatic translation of its textual rewrite rules to visual representations
based on the concrete syntax of the domains under study (e.g., BPMN
concrete syntax).

4.3. Alternatives to the GrGen.NET implementation

In summary, GrGen.NET has been an adequate platform for the imple-
mentation of this work. The debugging and performance features make the
language and tool more suitable than alternatives. Considering the disadvan-
tages, the lack of declarative statespace generation support has our current
priority. More specifically, we are building a Henshin based prototype of
a second implementation of the proposed rules. Besides Henshin’s built-in
support for statespace generation, the tool provides integration with Eclipse
technologies such as EMF and GMF. These features should benefit the fur-
ther dissemination of our reference semantics into industry.
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It should be emphasized that the contribution of this paper is not specific
to the domain of graph rewriting languages and tools. Clearly, the visual rule
diagrams from Section 3 abstract from technical details, which benefits their
applicability. One can, for example, also implement these rules in a general
purpose programming language such as Java. This is important, since most
existing BPMN suites are not based on graph rewriting languages and tools.

Then again, there are various graph rewriting tools that enable the em-
bedding of graph rewriting programs within a general purpose programming
language. A notorious example is the Fujaba tool, that supports the seemless
integration of visual rewrite rules with Java statements. Various other tools
(such as MoTMoT [19], AGG [3] and Henshin [1]) have adopted this ap-
proach and each of these tools has particular strengths and limitations. For
the aforementioned reasons, we are giving Henshin an in-depth evaluation in
our ongoing work.

4.4. Traceability, Mental Mapping to Standard

We claim that the formalization of the BPMN 2.0 execution semantics
in terms of graph rewrite rules has a good traceability to the BPMN 2.0
standard. In that way, for each informal rule in the execution semantics,
the corresponding formal graph rewrite rule can easily be found and the
correctness of the graph rewrite rules can easily be checked. To an extent
this traceability also applies to the implementation of the rewrite rules in
GrGen.NET.

To illustrate the traceability of the execution semantics rules to the Gr-
Gen.NET implementation of those rules, consider the following illustrative
excerpt from the execution semantics [20]:

“An Activity MAY be a source for Sequence Flows; it can have
multiple outgoing Sequence Flows. If there are multiple outgoing
Sequence Flows, then this means that a separate parallel path is
being created for each Sequence Flow (i.e., tokens will be generated
for each outgoing Sequence Flow from the Activity).”

This semantics is formalized by rule leaveTaskMoreOut, which is discussed
in the context of Figure 12. The traceability between the informal text and
the visual rule representation is clear: the two sequence flows in the left-hand
side of the rule clearly corresponds to the text fragment “If there are multiple
outgoing Sequence Flows”, whereas the iterated block in the right-hand side
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of the rule clearly corresponds to the text fragment “tokens will be generated
for each outgoing Sequence Flow from the Activity”.

Remark that it is impossible to have a complete correspondence between
the informal text and the formal rewriting rule, since the informal text is
often incomplete (e.g., the text fragment does not mention explicitly that
a token should be removed from the activity). In fact, a complete corre-
spondence is probably not even desirable, since the text is at a different
abstraction level: on the one hand, the text often omits information, since
it is mentioned elsewhere already. On the other hand, the text sometimes
repeats information that has been stated elsewhere already. In contrast, our
implementation in the GrGen.NET language is designed to minimize code
duplication. The visual representations from this paper aim to balance be-
tween these two representations. In summary, while direct correspondence is
impossible and undesirable, the visual rule representations facilitate a good
traceabilitiy between our concise and executable implementation and the in-
formal text from the standard.

Figure 49 shows a fragment of the GrGen.NET based implementation.
The fragment contains the implementation of rule leaveTaskMoreOut (cfr.,
Figure 12) as well as various helper rules. Notice that the implementation
of the rule takes just 14 (spaciously formatted) lines of code, the other code
servers other rules too. The fragment also shows various nodes of type Pro-
cessInstance and Marking. As stated in Section 3.2, such technical nodes
are hidden in the visual rules to improve the documentation quality of these
rules. More specifically, since all rules realize a transition from one Marking
to another one, the rules in Section 3 never represent these two Marking
nodes explicitly. The fragment also contains calls to rules rInitNewMarking
and PIbackupPost that are not mentioned in Section 3. These helper rules
realize some low-level plumbing for generating a statespace of the BPMN
model. The fragment also contains some independent clauses (cfr., lines 16
and 27). These clauses ensure that the variables that are bound in the sub-
pattern do not have to be isomorphic to previously bound variables. This
pattern property is also mentioned in the text related to Figure 12 but not
shown explicitly on the figure.

In summary, the GrGen.NET code clearly contains more details than the
visual rule representations from Section 3. Also, the code is more technical,
since it is designed for maximal reuse across rules (e.g., the use of EnterS-
Fandsplit and HasMultipleNullOutFlows. Strong points of the implementa-
tion are that (1) it is also rule-based, (2) it leverages the same matching
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1 rule leaveTaskMoreOut :(Marking ,Marking ,BaseElement) {

2 pi:ProcessInstance; cm:Marking; this:Task; tok:Token;

3 :HoldsThisToken(tok ,this ,cm ,pi);

4 e:EnterSFandsplit(this ,pi);

5 modify{

6 mNew:Marking;

7 exec(

8 rInitNewMarking(cm, mNew , pi) ;>

9 PIbackupPost ;>

10 leaveParallelGateway_RHS(this ,tok ,pi ,cm)

11 );

12 return (mNew ,cm ,this);

13 }

14 }

15 pattern HoldsThisToken(tok:AbstrToken ,fe:FlowElement , m:Marking , pi:

ProcessInstance) {

16 independent {

17 pi -:itokens -> tok <-:Tokens - fe;

18 m -:Melem -> tok;

19 }

20 }

21 rule leaveParallelGateway_RHS(this:Activity ,tok:Token ,pi:ProcessInstance ,cm:

Marking) {

22 modify {

23 exec(rDelete(tok) ;> EnterSFandsplit_RHS(this ,cm,pi));

24 }

25 }

26 pattern EnterSFandsplit(this:Activity , pi:ProcessInstance) modify (cm:

Marking) {

27 independent {

28 :HasMultipleNullOutFlows(this);

29 }

30 modify{

31 exec(EnterSFandsplit_RHS(this ,cm,pi));

32 }

33 }

34
35 pattern HasMultipleNullOutFlows(this:Activity) {

36 <-sf1:SequenceFlow - this -sf2:SequenceFlow ->;

37 if { sf1.Type=="NULL"&& sf2.Type=="NULL";}

38 }

39
40 rule EnterSFandsplit_RHS(this:Activity , cm:Marking , pi:ProcessInstance) {

41 iterated {

42 this -:_From -> sf:_SequenceFlow;

43 if {sf.Type=="NULL";}

44 modify {

45 cm -:Melem -> tok:Token <-:Tokens - sf;

46 pi -:itokens -> tok;

47 }

48 }

49 modify {}

50 }

Figure 49: Code fragment of the implementation, based on GrGen.NET syntax.
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and control constructs as the visual rules and (3) all identifiers trace back
to the conceptual discussion from 3. A point for improvement is that some
details can be removed from the implementation, when using another graph
rewriting tool. Therefore, the following subsection reflects on the suitability
of GrGen.NET and describes our experience with alternatives.

4.5. Conformance Checking Architecture

For the execution semantics in terms of graph rewrite rules, we have
shown a relatively good traceability to the execution semantics in the BPMN
2.0 specification and a relatively high level of completeness. In addition
to that, we have shown above that the graph rewrite rules can be directly
executed in a tool. These properties make the execution semantics in terms
of graph rewrite rules ideal as a reference implementation of the execution
semantics. The traceability makes the graph rewrite rules relatively easy to
validate. The executability of the rules make them appropriate for comparing
their behavior to the behavior of another tool that implements the execution
semantics (e.g.: a workflow engine). The completeness makes it possible to
do that for a large set of tools and features of those tools. Therefore, we
propose to use the execution semantics by means of graph rewrite rules to
verify implementations of the BPMN 2.0 execution semantics as follows.

Figure 50 shows that we use XPDL as the interchange format between
BPMN modeling tools, workflow engines and the GrGen.NET implementa-
tion of the execution semantics. This is driven by the fact thats that (1) most
BPMN tools are based on this format [8] and (2) that there are more than
50 XPDL implementations [21]. A BPMN model in XPDL can be imported
both by various workflow engines and by our GrGen.NET implementation of
the execution semantics. Consequently, the behavior of the workflow engines
can then be compared to the behavior of the reference implementation to de-
termine which workflow implementations (do not) implement the execution
semantics correctly.

The comparison should be done by a conformance verification tool, of
which the implementation is out of the scope of this paper. The verifica-
tion tool does this by monitoring and controlling the behavior of both the
workflow engine and the execution semantics and verifying that the workflow
engine changes state in the same manner as the execution semantics. To this
end the verification tool does the following:

1. Determine the execution traces that can be performed by the execution
semantics.
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2. For each execution trace determine possible values for datafields and
in which activity they must be entered.

3. Perform each execution trace in the workflow engine and check whether
at each moment in the execution the set of activities that is allowed by
the workflow engine is identical to the set of activities that is allowed
by the execution semantics.

We have also developed a collection of BPMN models to test confor-
mance. Each of the BPMN models in this collection is developed to test
a specific execution semantics rule that is defined in the BPMN standard.
This collection of models can be used for unified testing, benchmarking and
reporting on execution semantics conformance of different workflow engines.
A conformance report can indicate specific rules that are or are not correctly
implemented by the workflow engine.

5. Related Work

The BPMN 2.0 standard specifies the complete BPMN 2.0 execution se-
mantics in natural language. The use of natural language is sufficiently pre-
cise to allow for an intuitive understanding of the execution semantics, but
it cannot be directly implemented into a tool for purposes of simulation,
verification or execution. Therefore more precise semantics for BPMN have
been defined [35, 36, 6, 23, 24, 7, 31]. These semantics differ with respect to
the means that are used to specify the semantics, the goal with which the
semantics is specified, the conceptual focus of the semantics and the BPMN
constructs that are supported. Table 1 summarizes the means, goals and
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Table 1: Means, Goals and Conceptual Focus of BPMN Semantics
Semantics Means Goals Focus

BPMN 2.0 [20] Natural language Semantics specification Complete
Wong and CSP Refinement checking Control-flow subset
Gibbons [35, 36] Property checking

Soundness checking
Dijkman et al. [6] Petri nets Semantics specification Control-flow subset

Soundness checking
Prandi et al. [23] COWS Soundness checking Control-flow subset

Quantitative simulation Data-flow subset
Raedts et al. [24] Petri nets Soundness checking Control-flow subset
Dumas et al. [7] Pseudo code Semantics specification OR-Join
Takemura [31] Petri nets Semantics specification Transactions

Soundness checking
This paper Graph rewriting Semantics specification Control-flow subset

Conformance checking

conceptual focus of the semantics and Table 2 summarizes the features that
are supported by the different semantics.

Wong and Gibbons [35, 36] define a semantics for a subset of the BPMN
control-flow concepts in terms of the process algebra CSP [28]. This se-
mantics allows them to check the consistency of business process models
at different levels of abstraction (i.e. refinement checking). It also allows
them to specify and check certain properties that must apply to the process.
This includes domain specific properties, such as “after an order is placed,
a reponse must be sent to the client within 24 hours”, and properties that
apply to business process models in general, such as deadlock-freeness and
proper completion [33]. We refer to the latter form of property checking as
soundness checking. Dijkman et al. [6] define a semantics for a subset of
the BPMN control-flow concepts in terms of classical Petri nets. The goal
of their semantics is to define the BPMN execution semantics precisely and
to enable soundness checking. Prandi et al. [23] define a semantics in terms
of a process algebra called COWS [22]. Their semantics allows for sound-
ness checking of BPMN models and also of quantitative simulation of BPMN
models, provided that simulation information is provided with the BPMN
model. The semantics is defined for a subset of both the control-flow and
the data-flow aspect. Raedts et al. [24] define a semantics for a subset of
the BPMN control-flow concepts in terms of classical Petri nets. The goal
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of their semantics is to enable soundness checking. Dumas et al. [7] define
the execution semantics of a particular BPMN construct: the inclusive join
gateway. Their goal is to discuss the execution semantics of this particularly
complex construct in enough detail to allow animation of BPMN models that
use this construct. Takemura [31] defines a semantics for the concepts that
are related to BPMN transactions in terms of classical Petri nets. The goal
of the semantics is to define the execution semantics of BPMN transactions
precisely and to enable soundness checking.

The semantics in this paper differs from the other semantics with respect
to the means that are used for the semantics, the completeness of the seman-
tics and its prospective use. This paper uses graph rewrite rules to define the
semantics. One benefit of using graph rewrite rules is that a direct mapping
is possible from the execution semantics rules in the BPMN specification to
graph rewrite rules. This direct mapping makes the graph rewrite rules eas-
ily traceable to BPMN execution semantics rules and easily understandable.
Another benefit of using graph rewrite rules is their relative expressive power.
For example, classical Petri nets are inherently limited in the semantics that
they can represent; it is notoriously hard to represent the OR-join in classi-
cal Petri nets and data-related concepts cannot be represented in a feasible
manner in classical Petri nets. Such concepts can easily be represented in
graph rewriting systems. Table 2 supports this claim, by showing that the
formal semantics that is presented in this paper is relatively complete and
includes some notoriously hard concepts that are the sole focus of [7, 31].
These properties make our semantics particularly suited to be used for con-
formance verification. In particular it enables us to compare the execution
of a running workflow system to the execution semantics as it is executed in
a graph rewriting tool, where the execution semantics is relatively complete
and its correctness is easily traceable.

6. Conclusion

This paper proposes a formalization of the BPMN 2.0 execution seman-
tics in terms of graph rewrite rules. The paper shows that it is relatively easy
to develop a complete formalization of the execution semantics in this way.
It does that, both by showing that currently a large part of the BPMN 2.0
execution semantics rules are formalized (including some notoriously hard
to formalize concepts such as the inclusive merge gateway and process com-
pensation) and by showing that a larger part of the BPMN 2.0 execution
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semantics rules is implemented than in the formalizations in related work.
The paper also shows that such a formalization maintains good traceability
to the informal execution semantics rules from which it is derived, because:
(1) each rewrite rule can be traced back to a rule in the informal execution
semantics and vice versa; (2) the structure of the graph rewrite rules follows
the structure of the informal execution semantics; and (3) the graph rewrite
rules can be represented graphically, using the BPMN 2.0 notation.

The formalization in terms of graph rewrite rules can be implemented.
In this paper we show an implementation in the graph rewriting tool Gr-
Gen.NET. We show that this implementation can be used for various pur-
poses, including simulation of a BPMN 2.0 model and generation of the state
space of such a model with the purpose of doing (partial) state space anal-
ysis. We claim that the implementation is particularly suited as a reference
implementation of the execution semantics for the following reasons. The
traceability to the informal execution semantics makes the graph rewrite
rules relatively easy to validate. The executability of the rules make them
appropriate for comparing their behavior to the behavior of other tools (e.g.,
workflow engines). The completeness makes it possible to do that for a large
set of tools and language features.

Based on our experience with implementing the graph rewrite rules in Gr-
Gen.NET, we conclude that the benefits of this tool are that it: is fast, has
a visual debugger and is actively maintained. The drawbacks are that it nei-
ther supports the graphical style of specifying the graph transformation rules
that facilitates traceability, nor supports direct state-space generation, such
that specific graph rewrite rules need to be included to generate that state-
space. Consequently, alternatives to an implementation in GrGen.NET can
be explored. Currently, we are looking into an implementation in a compet-
ing tool called Henshin, but an implementation directly in a programming
language, such as Java, can also be envisioned.

Concluding, we claim that the formalization of an execution semantics
in general, and BPMN 2.0 in particular, in terms of graph rewrite rules
is a powerful tool for various purposes. In particular it is suited for model
simulation, model state space exploration and as a reference implementation.
However, to fully exploit the benefits, more research can be done into features
that are required of graph rewriting tools, when using them for formalization
of execution semantics. In particular state space generation features and
graphical rule representations – in the concrete syntax of the target language
(BPMN or others) – should be considered.
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Appendix A

A BPMN 2.0 model is a tuple (Fe, Fname, Fname
e , Fcont, F el

cont, Wproc, A,
Ata, Aev, Ename, AEname

ev , Ecode, AEcode
ev , Asta, Aend, Aresult

end , Aim, Acat, Athr,
Atrigger

ev , Abl, Agw, Atype
gw , Aexcltype

gw , Ainst
gw , Lstd, Lact, Sf , Stype

f , Af , Sfrom
f , Sto

f ,

M,Mel,→BPMN , Tok, Ftok, X , Pi, P instOf
i , Pchild

i , Pstate
i , Pmark

i , P tok
i , Pexc

i ,
T pi

ok ), where:

1. Fe is a finite set of flow elements,

• Fname is a finite set of flow element names,

• Fname
e : Fe → Fname maps flow elements to their name,

2. Fcont is a finite set of flow element containers,

• F el
cont: Fcont × P (Fe) (where F el

cont
−1 is a function) defines which

flow elements belong to a container,

3. Wproc is a finite set of workflow processes, with Wproc⊆ Fcont,

4. A is a finite set of activities, with A⊆ Fe,

• Ata is a finite set of tasks, with Ata⊆ A,

• Aev is a finite set of events, with Aev⊆ A,

– Ename is a finite set of event definition names, used to match
sender and receiver activities,

– AEname
ev : Aev → Ename maps event activities to the name of the

event under consideration,

– Ecode is a finite set of error codes, used to match error signallers
and handlers,

– AEcode
ev : Aev → Ecode maps error event activities to error codes,

• Asta is a finite set of start events, with Asta⊆ Aev,
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• Aend is a finite set of end events, with Aend⊆ Aev,

– Aresult
end : Aend → Dtrigtype defines the type of trigger that is

generated by an end event,

• Aim is a finite set of intermediate events, with Aim⊆ Aev,

• Acat is a finite set of intermediate catch events, with Acat⊆ Aim,

• Athr is a finite set of intermediate throw events, with Athr⊆ Aim,

– Atrigger
ev : (Asta∪ Aim) → Dtrigtype defines the type of trigger

that an event is listening for,

• Abl is a finite set of block activities, with Abl⊆ (A∩ Fcont),

• Agw is a finite set of gateways, with Agw⊆ A,

– Atype
gw : Agw → Dgwtype defines the type of a gateway element,

– Aexcltype
gw : Agw → Dexcltype is a partial function that refines the

type of exclusive gateway elements,

– Ainst
gw : Agw → Dbool is a partial function that defines whether

an event-based gateway can used to instantiate a process,

• Lstd is a finite set of elements describing loop behavior3,

– Tbefore: Lstd → Dbool is a function that define whether a loop
test is executed before or after the iteration of the activity,

• Lact: A → Lstd defines the loop behavior (if any) of an activity,

5. Sf is a finite set of sequence flows, with Sf⊆ Fe,

• Stype
f : Sf → Dflowtype defines the type of a sequence flow (condi-

tional or catch-all),

6. Af is a finite set of association flows, with Af⊆ Fe,

• Sfrom
f : A × (Sf ∪ Af ) (where Sfrom

f
−1 is a function) defines the

source of a sequence (or association) flow,

• Sto
f : (Sf ∪ Af ) × A defines the target of a sequence (or associa-

tion) flow,

7. M is a finite set of markings,

• Mel: M× Tok (whereMel
−1 is a function) indicates which tokens

belong to a specific marking,

3The loop test expression is outside the scope of this formalization.
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• →BPMN : M×M is the so-called transition relation of the BPMN
model,

• Tok is a finite set of tokens,

• Ftok: Fe × Tok (where Ftok
−1 is a function) distributes tokens

across the elements of a process model,

8. X is a finite set of exceptions,

9. Pi is a finite set of process instances,

• P instOf
i : Pi → Fcont maps a process instance to its definition,

• Pchild
i : Pi × Pi (where Pchild

i
−1 is a function) represents the paren-

t/child relationship between process instances: a process instance
is the parent of another process instance if one of its tokens has
triggered the instantiation of the child,

• Pstate
i : Pi → Dpistate maps a process instance to its state,

• Pmark
i : Pi rightarrow Mbinds a process instance to a specific

marking,

• P tok
i : Pi × Tok (where P tok

i
−1 is a function) defines which tokens

belong to a process instance,

• Pexc
i : Pi × X (where Pexc

i
−1 is a function) indicates which excep-

tions were thrown by a specific process instance,

• T pi
ok : Tok × Pi (where T pi

ok
−1 is an injective function) captures which

process instance (if any) is spawn from a token on a subprocess
activity.

This definition relies on the enumerations Dgwtype= {exclusive, inclusive,
complex, parallel, event}, Dexcltype= {data, event}, Dflowtype={null, condi-
tion, otherwise}, Dtrigtype= {None, Message, Timer, Error, Cancel, Condi-
tional, Link, Signal, Compensation, Multiple, Terminate}, Dpistate= {active,
terminated, failed, completing, completed, compensating, compensated}, and
Dbool= {true, false}.
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Table 2: Features Supported by BPMN Semantics
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Instantiation and Termination
Start event instantiation X X X X X X X X
Exclusive event-based gateway instantiation X X
Parallel event-based gateway instantiation X
Receive task instantiation X
Normal process completion X X X X X X X X
Activities

Activity X X X X X X X X
Subprocess X X X X X X
Ad-hoc subprocesses X
Loop activity X X X
Multiple instance activity X
Gateways

Parallel gateway X X X X X X X X
Exclusive gateway X X X X X X X X
Inclusive gateway (split) X X X X X X
Inclusive gateway (merge) X X X X X
Event-based gateway X
Complex Gateway X X X
Events

None events X X X X X X X X
Message events X X X X X X
Timer events X X
Escalation events X
Error events (catch) X X X X X X
Error events (throw) X X X X
Cancel events X X X
Compensation events X X X
Conditional events X
Link events X X
Signal events X X
Multiple events X
Terminate events X X
Event subprocesses X
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