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On simple ruin expressions in dependent Sparre Andersen risk models

Hansjörg Albrecher∗, Onno J. Boxma† and Jevgenijs Ivanovs∗,‡

Abstract

In this note we provide a simple alternative derivation of an explicit formula of Kwan and Yang
[14] for the probability of ruin in a risk model with a certain dependence between general claim
inter-occurrence times and subsequent claim sizes of conditionally exponential type. The approach
puts the type of formula in a general context, illustrating the potential for similar simple ruin
probability expressions in more general risk models with dependence.

Keywords: Sparre Andersen risk model, Ruin probability, Markov Additive Process
2010 Mathematics Subject Classification: 91B30, 97M30, 60K20

1 Introduction

Consider a renewal process Nt with inter-epoch times Ak, and let

Yt = x+ ct−
Nt∑
k=1

Bk

be the surplus process of an insurance portfolio with initial capital x ≥ 0, premium intensity c ≥ 0
and claims Bk. The study of the ruin probability ψ(x) = Px(T <∞), with T = inf{t ≥ 0 : Yt < 0}, is
a classical topic in risk theory. Whereas the usual assumption is that the i.i.d. sequences of random
variables (Ak)k≥1 and (Bk)k≥1 are independent (in which case the model is referred to as the Sparre-
Andersen model), in recent years there has been increased interest in models with certain types of
dependence. In that context, [3] considered a model in which Ak+1 depends on the previous claim size
Bk and derived some explicit expressions for the probability of ruin in this setting. In [4] this analysis
was extended to a semi-Markovian risk model (see also [2]). Due to a sample path duality (see e.g.
[7, Ch.III.2]), risk processes of that type have a counterpart in workload models of queueing theory,
and a similar semi-Markovian structure was considered in [1] in a queueing context.
In [5] it was proposed to assume that (Ak, Bk) are i.i.d. pairs of positive random variables, but for each
k, Ak and Bk may be dependent. Under this assumption the random walk structure of the process
(when observed immediately after the claim occurrences only) is still preserved and allows for some
explicit analysis (this model is also referred to as the dependent Sparre Andersen model, cf. [10]). In [8]
an explicit expression for ψ(x) could be obtained for a particular type of dependence between Ak and
Bk. In [14], another explicit dependence structure in the framework of [5] was considered: if Ak < a,
then Bk is distributed according to B(1), otherwise according to B(2), where a is a fixed threshold.
It could be shown in [14] that the ruin probability for this model has a remarkably simple form
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if the inter-occurrence times are exponentially distributed and also B(1) and B(2) are exponentially
distributed (with rates µ1 and µ2 respectively). In particular, in that case

ψ(x) = c1e
−θ1x + c2e

−θ2x, (1)

where c1, c2 ∈ R and θ1, θ2 are positive roots of a certain characteristic equation. This result was
proven in [14] with quite some effort by deriving an integro-differential equation for the ruin probability
and reformulating it into a delay differential equation of a particular, tractable, type. In this note
we provide a quick alternative derivation of formula (1) for general inter-occurrence times (not just
exponentially distributed), which can be easily extended to the case of multiple thresholds and phase-
type distributed claims.

2 A short proof of (1) for general inter-occurrence times

The idea is to view this problem as the problem of a continuous first passage downwards for a related
spectrally-positive Markov Additive Process (MAP) [6, Ch. XI] on two states. In fact, only some very
basic observations are required to establish that the ruin probability is given by a sum of exponential
terms. Some deeper theory is needed to identify the constants.

Let us interchange jumps and inter-occurrence times, so that cAk becomes a jump and Bk becomes
the subsequent inter-occurrence time during which the process decreases linearly with slope −1; the
initial position of this auxiliary process is given by x + cA1. Note that the events of ruin for both
processes coincide. This auxiliary process X(t) is a MAP with only positive jumps, for which the ruin
probability is known. In fact, it is a Markov-modulated linear drift model on two states with jumps
at switching times.

Let J(t) ∈ {1, 2} denote the state. According to our construction, J stays in state 1 for an Exp(µ1)
time, and moves to the states 1 or 2 with probabilities p and 1− p respectively, where p = P(A1 < a).
Similarly, it stays in state 2 for an Exp(µ2) time, and moves to the states 1 or 2 with probabilities
p and 1 − p. The moves of J into state 1 (irrespective of the previous state) cause a jump of X(t)
distributed as cA1 given A1 < a, and the moves into state 2 cause a jump of X(t) distributed as cA1

given A1 ≥ a (this is the analogous interpretation to the one in [4] for a risk model with dependence
between claims and subsequent inter-occurrence times). Let A(1) and A(2) denote random variables
distributed as cA1 given A1 < a and A1 ≥ a, respectively. Finally, in between the moves of the J
process, X decreases linearly with slope −1. For a certain initial distribution of (X,J), to be specified
later, we need to determine P(τ−0 <∞), where for y ≥ 0 we define τ−y = inf{t ≥ 0 : X(t) < −y}.

Suppose for a moment that X(0) = 0. Using the memoryless property of the exponential distri-
bution it is not difficult to see that J(τ−y ), y ≥ 0 is also a Markov chain with some transition rate
matrix Λ. It is transient if X(t) (equivalently, the original process) drifts to∞ a.s. (one can also think
of adding an additional absorbing state to the state space of this Markov chain). Observe that

P(τ−y <∞|J(0) = 1) = (1, 0)eΛy

(
1
1

)
and a similar identity is true for J(0) = 2, see e.g. [6, Cor. II.3.5]. The initial distribution of J is given
by (p, 1− p), and X(0) is distributed as x+A(i) on J(0) = i for i = 1, 2, and hence we obtain

Px(T <∞) = p(1, 0)EeΛ(x+A(1))

(
1
1

)
+ (1− p)(0, 1)EeΛ(x+A(2))

(
1
1

)
. (2)

Remark 2.1. Replacing the vectors (1, 1)T by (1, 0)T on the right hand side of (2) would lead to the
probability of ruin caused by a claim of type 1.
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It is well-known that all the eigenvalues of a transient irreducible transition rate matrix belong to
the left half of the complex plane. To see this, one can use Gershgorin’s theorem and the fact that
irreducibly diagonally dominant matrices are invertible, see e.g. [12]. Furthermore, these eigenvalues
are distinct and real for a 2×2 matrix, which is easily shown by the examination of the corresponding
characteristic equation. Let us denote the eigenvalues of Λ by −θ1 and −θ2, where θ1 6= θ2 and
θ1, θ2 > 0. Then Λ can be written as

Λ = V

(
−θ1 0

0 −θ2

)
V −1,

where the 2 × 2 matrix V is formed from the corresponding eigenvectors. Substituting this into (2)
we get the following expression for the ruin probability

Px(T <∞) = p(1, 0)V
(
e−θ1xG1(θ1) 0

0 e−θ2xG1(θ2)

)
V −1

(
1
1

)
+ (1− p)(0, 1)V

(
e−θ1xG2(θ1) 0

0 e−θ2xG2(θ2)

)
V −1

(
1
1

)
,

where Gi(θ) is the transform of A(i); e.g., G1(θ) = Ee−θA(1)
= E[e−θcA1 |A1 < a]. This shows that the

ruin probability is of the form (1). It is only left to identify the spectrum of Λ, i.e. the numbers θ1, θ2

and the matrix V .

3 Concluding comments

Identification of the matrix Λ is a well-studied problem, see [9] for an iterative procedure and [11] for
a spectral method, where the latter also contains a list of earlier works. Firstly, note that there exists
a matrix F (θ) for θ ≥ 0, which characterizes our MAP: E[e−θX(t); J(t) = j|X(0) = 0, J(0) = i] =
[eF (θ)t]ij with i, j ∈ 1, 2. For the present model this matrix is given by

F (θ) =
(
−µ1 + θ + pµ1G1(θ) (1− p)µ1G2(θ)

pµ2G1(θ) −µ2 + θ + (1− p)µ2G2(θ)

)
,

see also [6, Prop.XI.2.2]. Secondly, the spectral method of [11] states that θ1 and θ2 are the two
zeros of det(F (θ)) in the right half complex plane, which are positive in our case. Furthermore, the
corresponding eigenvectors vi, which define V = [v1,v2], are found from F (θi)vi = 0.

Example 3.1. Let us consider the particular case when Ak have an exponential distribution of rate
λ. Then

pG1(θ) = E[e−θcA1 ;A1 < a] =
∫ a

0
λe−λte−θctdt =

λ

λ+ θc
(1− e−(λ+θc)a),

(1− p)G2(θ) = E[e−θcA1 ;A1 ≥ a] =
λ

λ+ θc
e−(λ+θc)a,

which reduces the equation det(F (θ)) = 0 to

(θ − µ2)(λ+ θc− µ1c) + λ(µ2 − µ1)e−(λ+θc)a = 0,

and θ1, θ2 in (1) are the positive solutions of this equation. This result indeed coincides with the result
of [14, Eqns. 8 and 15].
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Remark 3.1. The method easily carries over to more general models. Firstly, one can have multiple
thresholds for Ak. Then for m intervals the dimension of the matrices Λ and F (θ) will be m × m.
Moreover, one can extend the model to claim sizes of phase-type with (ni)i=1,...,m phases. Then the
dimension of the matrices becomes (

∑m
i=1 ni) × (

∑m
i=1 ni). In that case the eigenvalues of Λ are not

necessarily real and distinct. Nevertheless, the spectrum of Λ can still be identified, see [11]. The
corresponding expression (1) may then include terms of the form xke−θix for certain k.

Finally, we note that the concept of killing (cf. [13]) can be used in the present context to extend
this result on the ruin probability to other ruin-related quantities, e.g. the joint transform of the time
to ruin and the deficit at ruin.
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