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Abstract

We prove existence of classical solutions to the so-called diffusive Vesicle Supply
Centre (VSC) model describing the growth of fungal hyphae. It is supposed
in this model that the local expansion of the cell wall is caused by a flux of
vesicles into the wall and that the cell wall particles move orthogonally to the
cell surface. The vesicles are assumed to emerge from a single point inside the
cell (the VSC) and to move by diffusion.

For this model, we derive a non-linear, non-local evolution equation and
show the existence of solutions relevant to our application context, namely,
axially symmetric surfaces of fixed shape, travelling along with the VSC at
constant speed. Technically, the proof is based on the Schauder fixed point
theorem applied to Hölder spaces of functions. The necessary estimates rely on
comparison and regularity arguments from elliptic PDE theory.

1 Introduction

Describing the growth behavior of living cells is a challenging pursuit, both
from the point of view of biological modelling and from the point of view of the
mathematical treatment of the resulting models. Since growth of a cell proceeds
primarily by incorporating new material into the cell wall and membrane, models
for cell growth have to describe how the shape of a cell changes as a result of
this process. In geometric models, the cell wall and the membrane are treated as
a single surface without thickness. This allows one to mathematically describe
the cell wall as an embedded two-dimensional manifold. In this case, the well-
known “first variation of area formula” relates the local growth of cell surface
area to the velocity of its particles, more precisely, to their normal velocity and
the divergence of their tangential velocity.

Extreme growth behavior can be observed in fungal hyphae cells, i.e. very
long, hair-shaped cells that form the mycelium of fungi. Accordingly, modelling
their growth has attracted particular interest, with an emphasis on solutions
given by a fixed, travelling profile. In most models for these cells, it is assumed
that cell wall particles move in a direction orthogonal to the cell surface. (An
exception to this is the isometric model described by Tindemans [11].) This
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assumption of orthogonal growth is mostly justified by observations, with turgor
pressure given as a possible physical mechanism. It will also be adopted in the
present paper. Moreover, conservation of mass dictates that the surface area
growth equals the local flux F of material into the cell boundary. In Section 2
we show that these assumptions determine the normal velocity as vn = −F/H
where H is the mean curvature of the manifold.

Some models express this flux solely as a function of the local geometry
of the cell wall. For example, Goriely et al. [7] define the flux as a function
of the curvature. The Vesicle Supply Centre (VSC) models, first proposed by
Bartnicki-Garcia et al. [1], assume that material is transported towards the wall
in so-called vesicles, i.e. small “sacks” bounded by a membrane. These vesicles
are created at the Golgi apparatus, and transported via the cytoskeleton to the
VSC, from which they are released and transported to the cell wall. On arrival at
the cell wall the contents of the vesicles are used to make cell wall material while
the vesicle membrane merges with the cell membrane. For modeling purposes
it is not important whether the VSC acts as a distribution centre for vesicles
created elsewhere, or whether it produces them itself; in both cases it can be
treated as a source of vesicles. In models for tip growth, the location of the VSC
often coincides with an organelle called the Spitzenkörper.

The VSC models are divided in two classes, depending on how vesicles move
from the VSC to the cell wall. In the so-called ballistic model, vesicles travel in
straight lines towards the cell wall. The model by Bartnicki-Garcia et al. [1] is
of this kind, with vesicles sent in every direction isotropically. The advantage
of ballistic models lies in their mathematical simplicity: The flux of vesicles
arriving at a point on the cell wall can be calculated directly from its distance
to the VSC and the slope of the wall. A travelling wave ansatz then yields
an ordinary differential equation for the shape of the hypha. In a previous
article [8] we used this to show that this model has unique, stable, travelling
solutions. These solutions are tubular elongating cells growing mostly at the tip,
as observed in fungal hyphae. Possible variations of the ballistic model involve
including a directional preference to the release of vesicles so that more of them
are focussed on the tip, or having multiple sources.

One criticism of the ballistic model, given e.g. by Koch [10], is that inside
a living cell, it is highly unlikely that a vesicle will travel in a straight line to
its destination. Instead it will perform a random walk and will be absorbed
when it hits the cell boundary. Accordingly, the concentration of vesicles obeys
a Poisson equation with a point source at the VSC and homogeneous Dirichlet
boundary conditions.

Numerical calculations on this model were done by Tindemans et al. [12].
Possible variations of the diffusive model include further physical properties of
the cell wall, e.g. elasticity or reduced absorption due to ageing [4]. A very
good overview of many of the models available is given by De Keijzer et al [9].

The aim of all these models is to find a travelling solution corresponding to
a fungal hypha. These are solutions which are stationary in a frame of reference
travelling along with the VSC (or at some fixed velocity if no VSC is present in
the models). As usual, we introduce the assumption of cylindrical symmetry,
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i.e. the surface can then be expressed as a curve rotated around the z axis. We
seek solutions which asymptotically approximate a cylinder as z → −∞.

We want to stress that the diffusive VSC models are essentailly nonlocal. In
fact, the equations for the tip shape involve an unknown flux function which it-
self depends on the tip shape. Therefore this shape is determined by a condition
which cannot be formulated as an ordinary differential equation.

So far, most research has focussed on numerically approximating the tip
shape for these models. In this article we provide a theoretical foundation for the
simplest of them by rigorously proving the existence of these travelling solutions
using a Schauder fixed point argument. However, the methods described in
this article should work as well for certain related models involving orthogonal
growth and a flux dependent on the cell shape; on this, see also the Conclusions
section.

1.1 Notation and conventions

In this article we will often make use of the following notation: Ω is an open
subset of R3, not necessarily compact, rotationally symmetric around the z axis
with boundary ∂Ω. Since we are working in this axially symmetric case, we
will use a cylindrical coordinate system (r, z, θ)T in R3. The transformation
to Euclidian coordinates is given by (x1, x2, x3)T = (r cos θ, r sin θ, z)T . Often
we will not mention the coordinate θ in our calculations. The rotationally
symmetric surface ∂Ω will be parametrized by two functions s 7→ r(s) and s 7→
z(s). The surface implied is the curve parametrized by these two functions at
some fixed value of θ, rotated around the z axis. When we refer to a point on the
surface at pathlength s or the point (r(s), z(s)) , we mean a point (r(s), z(s), θ) ∈
∂Ω at some arbitrary, but fixed value of θ.

For the (scalar) mean curvature H we use the conventions as found in [5].
The mean curvature is the sum (and thus not the true mean) of the principal
curvatures with respect to an outward pointing normal n̂. For example, the
sphere of radius R has mean curvature − 2

R at every point.
When u is a (harmonic) function defined on Ω, the flux Fu of u will always be

the negative normal derivative of u on ∂Ω. Often u will depend on a parameter ξ,
we will denote this as uξ. If it is clear the flux mentioned is the flux of u we will
write Fξ to denote the flux at parameter value ξ.

The proof in this article relies heavily on the use of Hölder spaces. For these
spaces and their norms we will use the notation as found in [6], with ‖·‖k,α;X

denoting the Ck,α norm on the domain of definition X. The space of continuous
functions from X to Y with bounded Hölder norm is denoted as Ck,α(X;Y ).
The domain X or codomain Y will be omitted if they are clear from the context.
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2 The diffusive VSC model

2.1 The diffusive flux

In the diffusive VSC model, we assume the VSC is a source of vesicles which dif-
fuse outwards toward the cell wall, where they are completely absorbed, causing
growth. Each vesicle is a membrane sack containing the materials to build new
cell wall. Upon absorption, the membrane of the vesicle merges with the cell
membrane, while the contents build new cell wall. In the VSC model, the mem-
brane and cell wall are treated as a single manifold, and each vesicles contributes
a fixed amount of surface area to this manifold. The total amount of surface
area produced by the VSC per unit of time is denoted by P . The VSC is moving
in the positive z direction at speed c. We assume the motion of the cell wall is
slow on the diffusion time scale of the vesicles, and so the density of vesicles is
always in equilibrium. As such, it can be found by solving a Poisson equation.
The assumption that vesicles are completely absorbed at the boundary yields a
homogeneous Dirichlet boundary condition. Furthermore, we assume that the
motion of the cell wall is slow on the diffusion time scale of the vesicles.

If at time t = 0 the tip of the cell wall is at the origin, and the VSC is at
distance ξ from the tip, then the density uξ of vesicles can be found by solving

∆uξ = −Pδ(r, z + ξ − ct) in Ω,

uξ = 0 on ∂Ω.
(2.1)

The flux of material arriving at a point is now given by Fξ = −∂uξ

∂n̂ where n̂
is the outward pointing normal of ∂Ω. This flux gives the rate per unit of area
at which the surface area increases.

2.2 Mass balance

If one takes an arbitrary bounded region A ⊂ ∂Ω of the surface of the cell,
with surface area ‖A‖ and boundary curve ∂A, then the total flux of material
absorbed in A is given by

d ‖A‖
dt

=
∫
A

Fξ dS. (2.2)

If one assumes A is transported by a velocity field v, then Gauss’ formula for
the first variation of area states that

d ‖A‖
dt

= −
∫
A

H(n̂ · v)dS +
∮

∂A

(m̂ · v)dl (2.3)

where m̂ is the outward pointing normal to ∂A tangent to ∂Ω and H is the
(scalar) mean curvature. By assumption, the surface of the cell moves orthog-
onally to the cell surface, so v = vnn̂ and the integral over ∂A vanishes. As A
was chosen arbitrarily, we get from (2.2) and (2.3) that

vn = −Fξ

H
. (2.4)
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2.3 Scaling

We define the typical length scale X and time-scale T of the model as follows,

X =
P

4πc
T =

P

4πc2
. (2.5)

Rescaling our spacial coordinates by x = Xx̃ and t = T t̃ we denote the rescaled
domain as Ω̃. It is now natural to rescale the dependant variables and constants
as

uξ =
X

T
ũξ̃, Fξ =

1
T

F̃ξ̃, H =
1
X

H̃, vn =
X

T
ṽn,

ξ = Xξ̃, c̃ = 1, P̃ = 4π.

(2.6)

We now see that the rescaled model satisfies

ṽn = −
F̃ξ̃

H̃
, (2.7)

where F̃ξ̃ = −∂ũξ̃

∂n̂ and ũξ̃ satisfies

∆ũξ̃ = −4πδ(r̃, z̃ + ξ̃ − t) in Ω̃,

ũξ̃ = 0 on ∂Ω̃.
(2.8)

For the remainder of this article we will drop the tildes and work with this
rescaled model.

2.4 The unbounded travelling wave problem

We wish to find a surface satisfying the evolution equation (2.4) which moves
along with the VSC, see for example Figure 1. In other words, in a coordinate
system moving along with the VSC, ∂Ω appears stationary. In this coordinate
system, Gauss’ formula for the variation of area on an arbitrary subsurface A
states that: ∫

A

FξdS = −
∫
A

H(n̂ · (v − êz))dS +
∮

∂A

(m̂ · (v − êz))dl (2.9)

For a stationary solution, v− êz must lie tangent to ∂Ω and the integral over A
vanishes. By assumption, v is perpendicular to m̂ and so

−
∮

∂A

m̂ · êzdl =
∫
A

FξdS. (2.10)

We now choose A to be the region from the tip up to the plane located at
z = z(s), then m̂ · êz is constant over ∂A. We choose cylindrical coordinates r
and z, and describe ∂Ω as the curve (r(s), z(s)) rotated around the z axis. We
parametrize such that s is the pathlength over ∂Ω from the tip.
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z

r

ξVSC

s

Figure 1: Travelling wave profile with model definitions. The solid curve, rotated
around the z axis, is the cell boundary ∂Ω. The arrows indicate the normal
velocity and the dotted lines are the particle trajectories. The dashed curve
indicates the location of the cell boundary at some later time.

In these coordinates m̂ = r′(s)êr + z′(s)êz, and (2.10) simplifies to

z′(s) = −Gξ(s)
r(s)

, r′(s) =

√
1−

(
Gξ(s)
r(s)

)2

, (2.11)

where
Gξ(s) =

1
2π

∫
A

FξdS =
∫ s

0

Fξ(σ)r(σ)dσ, (2.12)

and Fξ(σ) is the flux passing through the point on the boundary at pathlength σ.
We wish to find functions r(s), z(s) and a number ξ∗ such that when (2.1)

is solved on the domain defined by the functions, the corresponding cumulative
flux Gξ∗ and the functions r and z satisfy (2.11) with boundary conditions
r(0) = z(0) = 0, r′(0) = 1. We wish r(s) to remain bounded. Since by the
divergence theorem Gξ(s) → 2, this can only be accomplished if r(s) → 2 as
s →∞. In the rest of the article we will refer to this as the unbounded travelling
wave problem.

2.5 The bounded travelling wave problem

The fact that the domain of the functions r and z is infinite, and therefore
that the domain Ω is unbounded makes analysis difficult. In order to handle
these difficulties, we first restrict ourselves to bounded domains with a no flux
condition at z = z(smax) for some sufficiently large smax. We apply the method
of reflection and define the following problem: given functions r(s) and z(s) on
(0, smax) we define ∂Ω to be the curve (r(s), z(s)) rotated around the z axis and

6



reflected at the plane z = z(smax). If the VSC is located at a distance ξ from
the tip, the density of vesicles uξ(r, z) is found by solving

∆uξ = −4πδ(r, z + ξ)− 4πδ(r, z + η) in Ω,

uξ = 0 on ∂Ω.
(2.13)

where η = −2z(smax) − ξ is the distance from the reflected VSC to the tip
at z = 0. The functions Fξ and Gξ are still defined as above. Note that by
symmetry and the divergence theorem, Gξ(smax) = 2.

Given smax we wish to find functions r(s), z(s) and a number ξ∗, such that
when (2.13) is solved on the domain defined by these functions, the correspond-
ing cumulative flux Gξ∗ and the functions r and z satisfy (5.2) with boundary
conditions r(0) = z(0) = 0, r′(0) = 1, and r(smax) = 2. We will refer to this
problem as the bounded travelling wave problem. In Section 7 we take the limit
as smax → ∞ to show the existence of a solution for the unbounded travelling
wave problem described in the previous section.
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3 The Schauder map

Our approach to solve this problem re-

r
′ 2

+ z
′ 2

= 1

r
′ 2

+ z
′ 2

=
1

2

r
′

z
′

r
′
− z

′
= 1

Figure 2: Convex bounds on r′

and z′.

lies on a Schauder fixed point argument on a
subset of the product space C1,α ×C0,α con-
taining Hölder continuous functions s 7→ r(s)
and s 7→ z′(s), for some α ≤ 1

2 . We equip
this space with the C1,β × C0,β topology for
some β < α. Defining z(s) =

∫ s

0
z′(σ)dσ, the

functions r(s) and z(s) describe a boundary
∂Ω with certain properties. (Note that since
z → −∞ if smax →∞, we cannot claim that
z ∈ C1,α is bounded uniformly in smax, in-
stead we demand this only of its derivative
z′.) Since the Schauder fixed point theorem
requires that we work on a closed convex subset of this product space, we cannot
require that ∂Ω is parametrized by pathlength (r′2 + z′2 = 1 is not a convex
requirement.) Instead we require that r′2 +z′2 ≤ 1 and r′−z′ ≥ 1, see Figure 2.
Note, however, that the image of the Schauder map does satisfy the pathlength
requirement r′2 + z′2 = 1.
3.1 The domain of the Schauder map

Given a sufficiently large smax we define the domain of the Schauder map
Ξ(M,A,C; smax) as the subset of C1,α([0, smax]; R) × C0,α([0, smax]; R) con-
taining functions r and z′ satisfying the following convex properties:

‖r‖1,α ≤ M, ‖z′‖0,α ≤ M, (3.1)

r′(s)2 + z′(s)2 ≤ 1, r′(s)− z′(s) ≥ 1, (3.2)
r(smax) = 2, r′(smax) = 0, (3.3)

r′(s2)− r′(s1)
s2 − s1

≤ A,
z′(s2)− z′(s1)

s2 − s1
≤ A, for s1 < s2, (3.4)

s− 1
9
C2s3 ≤ r(s) ≤ 2 for 0 ≤ s ≤ C−1, . (3.5)

In Section 4 we will show that one can solve the Dirichlet problem (2.13) for ev-
ery ξ, ξmin ≤ ξ ≤ ξmax, with ξmin and ξmax to be determined later, and obtain a
family Gξ of cumulative fluxes, parametrized by ξ, with certain properties. This
defines a map Ψ1 : Ξ(M,A,C; smax) → C1([ξmin, ξmax];C1,α([0, smax]; R)).
Given Gξ ∈ Im(Ψ1) and a value of the parameter ξ, (2.11) can be seen as
an ordinary differential equation, which can be solved to obtain functions rξ(s)
and zξ(s). In Section 5 we will show that one can find a unique value ξ∗ such
that rξ∗(smax) = 2. This defines a map Ψ2 : Im(Ψ1) → Ξ(M̃, Ã, C̃). In Section
6 we will choose M , A and C such that the composition Ψ = Ψ2 ◦ Ψ1 maps
from Ξ(M,A,C; smax) to itself. We then use Schauder’s fixed point theorem to
show that the map Ψ, which we will refer to as the Schauder map, has a fixed
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point. Since solutions to (2.11) satisfy r′2 + z′2 = 1, this fixed point describes
a surface parametrized by pathlength and solves the bounded travelling wave
problem defined in Section 2.5.

Lemma 3.1 The set Ξ(M,A,C; smax) is closed in the C1,β × C0,β topology.

Proof Let (rn, z′n) be a sequence in Ξ(M,A,C; smax) which converges to (r, z′)
in C1,β × C0,β . We need to prove that (r, z′) satisfies (3.1) to (3.5). We
can clearly take the limit to see that (r, z) satisfies (3.2) to (3.5) so we need
only concern ourselves with the Hölder norm established in (3.1). Now since
rn is bounded in the C1,α norm it has a convergent subsequence in the C1,β

norm, clearly the limit of this subsequence is r and thus ‖r‖1,α ≤ M . Similarly
‖z′‖0.α ≤ M .

3.2 Estimates on r(s), z(s) and distances

The definition of the set Ξ(M,A,C; smax) yields several estimates on r(s), z(s)
and distances between points on the boundary that will be used throughout this
article.

First of all, (3.2) gives 0 ≤ r′ ≤ 1, −1 ≤ z′ ≤ 0, r′2 + z′2 ≥ 1
2 , r(0) = 0,

r′(0) = 1 and z′(0) = 0. The estimate given by (3.5) gives an asymptotic
approximation for r(s) in the tip, at small s. The monotonicity of r then gives
a lower bound away from the tip,

8
9
C−1 ≤ r(s) ≤ 2 for C−1 ≤ s ≤ smax. (3.6)

Using this we can establish an asymptotic estimate for z(s) at small s,

z(s) ≥ −
√

s2 − r(s)2 ≥ −1
2
Cs2 for 0 ≤ s ≤ C−1. (3.7)

while the requirement that r′ − z′ ≥ 1 implies that

−s ≤ z(s) ≤ 2− s. (3.8)

for all s.
The choice of parametrization of the curve s 7→ (r(s), z(s)) yield various

useful bounds on the distances between points on the curve.

Lemma 3.2 The distance between points (r(s2), z(s2)) and (r(s1), z(s1)) is bounded
from above and below by the difference in parameter values s2 − s1.

1
2
(s2 − s1)2 ≤ (r(s2)− r(s1))2 + (z(s2)− z(s1))2 ≤ (s2 − s1)2. (3.9)
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Proof Let d(s) be the distance from (r(s), z(s)) to r(s1), z(s1),

d(s) =
√

(r(s)− r(s1))2 + (z(s)− z(s1))2. (3.10)

By the Cauchy-Schwarz inequality,(
d
ds

d(s)
)2

=
(

r(s)− r(s1)
d(s)

r′(s) +
z(s)− z(s1)

d(s)
z′(s)

)2

≤ r′(s)2 + z′(s)2 ≤ 1
(3.11)

so d(s2) ≤ (s2 − s1). For the lower bound we see that

d(s2)2 =
1
2

((r(s2)− r(s1))− (z(s2)− z(s1)))
2 +

1
2
((r(s2)− r(s1)) + (z(s2)− z(s1)))2

≥ 1
2
(s2 − s1)2,

(3.12)
since r′(s)− z′(s) ≥ 1.

Geometrically, the upper bound is achieved when the path between the
points at pathlength s1 and s2 consists of a straight line. The lower bound
is achieved when the path consists solely of vertical and horizontal segments.

Furthermore, the estimates for r(s) and z(s) established in the previous
section allow us to calculate a lower bound for the distance between the VSC
and the boundary of the cell, an important ingredient for bounding the flux.

Lemma 3.3 If 1
2C−1 < ξmin ≤ ξ then the distance dξ(s) from the point

(r(s), z(s)) to the VSC is bounded from below by a nonzero constant dmin de-
pending only on C and ξmin.

Proof Using the asymptotics for r and z at small s, (3.5) and (3.7),

dξ(s) =
√

r(s)2 + (ξ + z(s))2 ≥ ξ + z(s) ≥ ξmin −
1
2
C−1 for 0 ≤ s ≤ C−1,

while for large s,

dξ(s) ≥ r(s) ≥ 8
9
C−1 for C−1 ≤ s ≤ smax,

by (3.6). The minimum of these two estimates gives a lower bound for the
distance.

3.3 Exterior spheres

For bounds on the flux in the next section we require that it is possible to be
able to touch a sphere of fixed radius to every point of the boundary, in such a
way that the interior of the sphere does not intersect Ω. If the second derivatives
of r and z were bounded from above, this would be a relatively straightforward
task involving the calculation of the first principle curvature. The upper bound
on the difference quotient given by (3.4) is in fact sufficient for this task.
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Lemma 3.4 Let BR be a ball of radius R ≤ 1
4A touching ∂Ω at the point

(r(s1)z(s1)). Then the distance from any point (r(s2), z(s2)) ∈ ∂Ω to the centre
(rc, zc) of BR is always greater than R.

Proof Let 1
2π ≤ θ ≤ π be such that

cos θ =
z′(s1)√

r′(s1)2 + z′(s1)2
, sin θ =

r′(s1)√
r′(s1)2 + z′(s1)2

. (3.13)

The centre of the ball BR is then given by

rc = r(s1)−R cos θ, zc = z(s1) + R sin θ. (3.14)

The distance dc between the point (r(s2), z(s2)) and the centre of this sphere is
given by

d2
c = (r(s2)− r(s1))2 + (z(s2)− z(s1))2 + R2

+ 2R ((r(s2)− r(s1)) cos θ − (z(s2)− z(s1)) sin θ) .
(3.15)

Integrating the difference quotients (3.4) we can estimate

r(s2)− r(s1) ≤ r′(s1)(s2 − s1) +
1
2
A(s2 − s1)2,

z(s2)− z(s1) ≤ z′(s1)(s2 − s1) +
1
2
A(s2 − s1)2.

(3.16)

Substituting this, the linear terms in (s2 − s1) drop out and

d2
c ≥ (r(s2)−r(s1))2+(z(s2)−z(s1))2+R2+AR(s2−s1)2(cos θ−sin θ). (3.17)

The distance between points at parameter values s2 and s1 can be estimated
using Lemma (3.2) and so,

d2
c ≥

1
2
(s2 − s1)2 + R2 − 2AR(s2 − s1)2, (3.18)

and so if we choose R ≤ 1
4A this distance will always be greater than R.

4 The Dirichlet problem

Given a domain Ω given by the functions r(s) and z(s) as described in the
previous section, we wish to find a solution uξ to (2.13). We then wish to find
various estimates for the flux Fξ(s) passing through the point (r(s), z(s)) and
the cumulative flux Gξ(s), defined as

Gξ(s) =
∫ s

0

Fξ(σ)r(σ)
√

r′(σ)2 + z′(σ)2dσ. (4.1)

Note that if ∂Ω is parametrized by pathlength, which for example is the case in
the fixed point of the Schauder map, then this definition is equivalent to (2.12).

11



4.1 The domain Ω

Lemma 4.1 If the boundary ∂Ω is given by C1,α Hölder continuous functions
r(s) and z(s) as described previously, then the enclosed domain Ω is of class
C1,α.

Proof For the purposes of this proof, we extend the functions r and z to the
interval [0, 2smax] by reflection, so for s > smax, r(s) = r(2smax − s) and
z(s) = 2z(smax) − z(2smax − s). Now r′(smax) = 0 and z′(smax) = −1 so the
derivatives are continuous. For s1 < smax < s2,

|r′(s2)− r′(s1)| ≤ |r′(s2)− r′(smax)|+ |r′(smax)− r′(s1)|
≤ ‖r‖1,α |s2 − smax|α + ‖r‖1,α |smax − s1|α

≤ 2 ‖r‖1,α |s2 − s1|α ,

(4.2)

and similar for the Hölder quotient of z′, therefore these functions are Hölder
continuous. We now need to prove that each point of ∂Ω has a neighbourhood
which can be described as the graph of a C1,α function. We examine the point
x∗ at pathlength s∗ and angle θ∗. Without loss of generality we can assume
that θ∗ = 0 due to the rotational symmetry. A point x given by the parameters
s and θ in the neighbourhood of x∗ has Euclidian coordinates (x1, x2, x3)T =
(r(s) cos θ, r(s) sin θ, z(s))T . We now introduce new coordinates ξ such that the
origin lies on x∗, rotated such that the direction ξ1 lies tangent to the curve
r(s), z(s) and the direction ξ2 lies in the direction of rotation by θ. Thenξ1

ξ2

ξ3

 =

−z′(s∗) 0 r′(s∗)
0 1 0

−r′(s∗) 0 −z′(s∗)

r(s) cos θ − r(s∗)
r(s) sin θ

z(s)

 . (4.3)

Now at (s, θ) = (s∗, 0) we have ∂ξ
∂s = (0, 0,−1)T and ∂ξ

∂θ = (0, r(s∗), 0)T . There-
for, if s∗ 6= 0 then r(s∗) 6= 0 and by the implicit function theorem, there is
a neighbourhood around x∗ where we can write ξ3 (and s and θ) as a C1,α

function of ξ1 and ξ2.
If, on the other hand, s∗ = 0 then since r′(0) = 1, r(s) is invertible in a

neighbourhood of zero, and its inverse is C1,α. The tip can now be described as
the graph x3 = z(r−1(

√
x2

1 + x2
2)).

This lemma implies that the domain Ω is of class C1,α, this ensures us (see
for example [6] Theorem 8.34) that there is a unique solution to the Dirichlet
problem (2.13) which is C1,α. Since ∂Ω is not C2, it does not satisfy an interior
sphere condition everywhere, and we cannot use the boundary point lemma to
conclude that Fξ > 0 everywhere. This motivates the following Lemma for less
smooth domains.

Lemma 4.2 Let Ω be a (not necessarily rotationally symmetric) domain suffi-
ciently smooth that the maximum principle and divergence theorem hold and a

12



normal direction n̂ to the boundary can be defined almost everywhere. Let u > 0
be a weak solution of

∆u = f(x) in Ω,

u = 0 on ∂Ω,
(4.4)

where f has compact support away from the boundary. Then Fu = − ∂u
∂n̂ > 0

almost everywhere on ∂Ω.

Proof Assume there is an area A ⊂ ∂Ω of positive measure such that Fu = 0 on
A. Let BR be a ball of radius R centred on a point in the interior of A. Then R
can be chosen sufficiently small such that (∂Ω∩BR) ⊂ A and BR ∩ supp f = ∅.
Let v solve

∆v = 0 in BR,

v = u on ∂BR ∩ Ω,

v = 0 on ∂BR \ Ω,

(4.5)

then by the maximum principle v > 0 on BR and u ≤ v on BR ∩Ω. Since u = v
on ∂BR ∩Ω, Fu ≤ Fv on ∂BR ∩Ω. The ball BR satisfies an interior sphere con-
dition, so by the boundary point lemma, Fv > 0 on ∂BR \Ω. By the divergence
theorem, the total flux of v over ∂BR must be zero, so

∫
∂BR∩Ω

FvdS < 0. This
implies that

∫
∂BR∩Ω

FudS < 0. By the divergence theorem, the total flux of u

over ∂(BR ∩ Ω) must be zero, so
∫

∂Ω∩BR
FudS > 0. This is in contradiction

with our assumption that Fu = 0 on A.

This Lemma implies that Gξ(s) is strictly monotone in s, even though its
derivative might occasionally be zero.

4.2 Bounds on Fξ(s)

The uniform upper bound on the curvature allows us to touch a sphere of radius
R = 1

4A to any point on ∂Ω such that this sphere lies outside of Ω. This together
with the bounds for the distances to the VSC allows us to establish an uniform
upper bound for the flux.

Lemma 4.3 For sufficiently large smax, the flux Fξ(s) = − ∂u
∂n̂ passing through

the point (r(s), z(s)) on the boundary is bounded,

Fξ(s) ≤ Fmax(ξmin, ξmax, A, C). (4.6)

This implies that we can estimate G′
ξ(s) ≤ Fmaxs and G′

ξ(s) ≤ 2Fmax.

Proof Let BR be a sphere of radius R = 1
4A touching ∂Ω at the point (r(s), z(s)),

we now solve

∆v = −4πδ(r, z + ξ)− 4πδ(r, z + η) outside of BR,

v = 0 on ∂BR.
(4.7)

13



Since BR lies outside of Ω, u ≤ v and the boundaries touch at (r(s), z(s)), the
flux of v at this point gives us an upper bound for Fξ(s). We can determine v
using reflection techniques. For simplicity we consider the sources at z = −ξ
and z = −η separately and write v = v1 + v2 with v1 and v2 the individual
contributions from these two sources. For 1

2π ≤ θ ≤ π let,

cos θ =
z′(s)√

r′(s)2 + z′(s)2
, sin θ =

r′(s)√
r′(s)2 + z′(s)2

. (4.8)

Let ρ be the distance from the VSC to the centre of BR,

ρ2 = dξ(s)2 + R2 + 2R((z(s) + ξ) sin θ − r(s) cos θ), (4.9)

where dξ(s) is the distance from the VSC to the point (r(s), z(s)). Let (r̃, z̃) be
the point, on the line from the VSC to the centre of BR, at a distance ρ̃ = R2

ρ
from the centre the sphere. Then

r(s)− r̃ =
R2

ρ2
r(s) + (1− R2

ρ2
)R cos θ,

z(s)− z̃ =
R2

ρ2
(z(s) + ξ)− (1− R2

ρ2
)R sin θ.

(4.10)

This point acts as a reflected source of strength −4π R
ρ . The contribution of the

source at the VSC to v is given by

v1(r, z) =
1

d1(r, z)
− R

ρ

1
d̃1(r, z)

(4.11)

where d1(r, z) is the distance from the point (r, z) to the VSC, and d̃1(r, z)
is the distance from (r, z) to the reflected point (r̃, z̃) inside BR. Note that
d1(r(s), z(s)) = dξ(s). If we denote the VSC as the point O, (r̃, z̃) as P ,
(r(s), z(s)) as X and the centre of the sphere BR as C, then the triangles
OXC and XPC are similar. Thus dξ(s)

d̃1(s)
= R

ρ̃ = ρ
R . The contribution to the flux

at (r(s), z(s)) is then given by

F1(s) =
(z(s) + ξ) sin θ − r(s) cos θ

dξ(s)3
− R

ρ

(z(s)− z̃) sin θ − (r(s)− r̃) cos θ

d̃1(r(s), z(s))3

=
ρ2 −R2

Rdξ(s)3
= 2

(z(s) + ξ) sin θ − r(s) cos θ

dξ(s)3
+

1
Rdξ(s)

≤ 2
ξmax + 2

d3
ξ

+
1

Rdξ
.

(4.12)
By Lemma 3.3 we can estimate dξ in terms of C and ξmin while R can be
expressed in terms of A. We treat the source at z = −η similarly to obtain,

v2(r, z) =
1

d2(r, z)
− R

ρ

1
d̃2(r, z)

, (4.13)
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and,

F2(s) = 2
(z(s) + η) sin θ − r(s) cos θ

dη(s)3
+

1
Rdη(s)

≤ 6
smax

dη(s)
+

1
Rdη(s)

.

(4.14)

where d2(r, z) and d̃2(r, z) are the distances from the point (r, z) to the source
at z = −η respectively the reflection of this source inside BR and dη(s) =
d2(r(s), z(s)). Note that dη(s) ≥ smax−2−ξmax. Combining these contributions
yields that Fξ(s) ≤ F1(s) + F2(s) ≤ Fmax. Since smax

dη(s) → 1 and 1
dη(s) → 0 as

smax → ∞ this term can be bounded independently of smax assuming smax is
sufficiently large. Thus Fmax depends on A, C, ξmin and ξmax.

4.3 Bounds on Gξ(s)

By using the upper bound on the flux derived in the previous section and then
integrating we can obtain estimates for the cumulative flux Gξ. However, it will
be important to have estimates on Gξ which do not depend on the parameter
A. In order to do this we will use the following comparison principle.

Theorem 4.4 Comparison principle. Let Ω and Ω̃ be domains with 0 ∈ Ω∩ Ω̃,
with boundaries sufficiently smooth that the divergence theorem and the strong
maximum principle hold. Let u and ũ solve

∆u = −δ(x) in Ω, u = 0 on ∂Ω,

∆ũ = −δ(x) in Ω̃, ũ = 0 on ∂Ω̃.

Then, ∫
∂Ω\Ω̃

FudA ≤
∫

∂Ω̃∩Ω

FũdA,

∫
∂Ω̃\Ω

FũdA ≤
∫

∂Ω∩Ω̃

FudA.

If ∂Ω and ∂Ω̃ satisfy an interior sphere condition, then the inequalities are strict.

Proof Let v solve

∆v = −δ(x) in Ω ∩ Ω̃, v = 0 on ∂(Ω ∩ Ω̃).

Then by the maximum principle, 0 ≤ v ≤ u and 0 ≤ v ≤ ũ on Ω∩ Ω̃. Moreover,
since v = u on ∂Ω ∩ Ω̃, Fv ≤ Fu on ∂Ω ∩ Ω̃. Similarly, Fv ≤ Fũ on ∂Ω̃ ∩ Ω. By
the divergence theorem,∫

∂Ω∩Ω̃

FudA +
∫

∂Ω\Ω̃

FudA =
∫

∂Ω∩Ω̃

FvdA +
∫

∂Ω̃∩Ω

FvdA.
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Substituting the inequalities for Fv yields the first inequality. The second in-
equality follows by symmetry. If the boundaries satisfy an interior sphere con-
dition, then by the boundary point lemma, Fv < Fu on ∂Ω∩ Ω̃ and Fv < Fũ on
∂Ω̃ ∩ Ω yielding strict inequalities.

Corollary 4.5 The result also holds if the source δ(x) is replaced by several
sources

∑
i wiδ(x−xi) of different positive weights wi for xi ∈ Ω∩ Ω̃. Similarly

we can replace the point source δ(x) by a positive function f(x) with compact
support within Ω ∩ Ω̃.

This Lemma allows us to compare the integrated flux on ∂Ω to that of
domains for which the solution of the Dirichlet problem is exactly known, for
example spheres and half planes. In this way we establish the following bounds
on Gξ(s).

Lemma 4.6 If ξ ≤ 3
40 then there exists a s∗ such that G(s∗) ≥ s∗.

Proof The reflected source at z = −η contributes positively to the flux. Since
we are interested in a lower bound, we can safely ignore it. For some R, ξ <
R < 2 let BR be a ball of radius R centred around the VSC. The surface of the
ball may intersect ∂Ω in multiple points, let s∗ identify the coordinate of the
point furthest from the tip where ∂Ω intersects the surface of this ball,

s∗ = max{s|(r(s), z(s)) ∈ ∂Ω ∩ ∂BR}. (4.15)

Let ∂B+
R be that part of ∂BR which lies in the positive z halfspace. Note that

since z(s) ≤ 0 and R > ξ, ∂B+
R is non empty and lies outside of Ω. The

comparison principle, Theorem 4.4, now states that

2πGξ(s∗) ≥
∫

∂Ω∩BR

FudA ≥
∫

∂BR\Ω

1
R2

dA ≥
∫

∂B+
R

1
R2

dA

≥ π
R2 − (R− ξ)2

R2
.

(4.16)

We now set R = 2ξ to obtain that G(s∗) ≥ 3
8 . The point (r(s∗), z(s∗)) lies on

∂BR, so r(s∗) ≤ 2ξ and z(s∗) ≥ −3ξ. By integrating (3.2), s∗ ≤ r(s∗)− z(s∗) ≤
5ξ and so if ξ ≤ 3

40 then s∗ ≤ 3
8 ≤ Gξ(s∗).

Lemma 4.7 If smax is chosen large enough that smax ≥ ξmax + 2 then

Gξ(s) ≤ 8
(

s

ξ

)2

for 0 ≤ s ≤ min
(
C−1,

√
ξminC−1

)
. (4.17)

Proof We wish to use the estimates at the tip derived in Section 3.2 so we
must require that s ≤ C−1. Furthermore if s ≤

√
ξminC−1, then by (3.7),

z(s) ≥ − 1
2ξ. Also, if smax ≥ ξmax + 2, then by (3.8), z(smax) ≤ −ξmax, so
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η = −2z(smax) − ξ ≥ 2ξmax − ξ. This enables us to estimate the difference in
the z coordinate between the point at pathlength s, the source at the VSC and
the reflected source:

z(s) + ξ ≥ 1
2
ξ and, z(s) + η ≥ 1

2
ξ. (4.18)

We define Ω̃ to be the half space {(r, z)|z ≤ z(s)}. Let

ũ(r, z) =
(
r2 + (z + ξ)2

)− 1
2 −

(
r2 + (z − 2z(s)− ξ)2

)− 1
2

+
(
r2 + (z + η)2

)− 1
2 −

(
r2 + (z − 2z(s)− η)2

)− 1
2 .

(4.19)

Then ũ solves the Dirichlet problem on Ω̃ with sources at z = −ξ and z = −η.
The comparison principle for integrated fluxes now states that

2πGξ(s) =
∫

∂Ω\Ω̃

FudA ≤
∫

∂Ω̃∩Ω

FũdA (4.20)

= 4π

1−

(
1 +

(
r(s)

ξ + z(s)

)2
)− 1

2

+ 1−

(
1 +

(
r(s)

η + z(s)

)2
)− 1

2


(4.21)

now using the inequality 1 − 1/
√

1 + x ≤ 1
2x, the upper bound r(s) ≤ s, and

the estimates (4.18), we obtain

Gξ(s) ≤
(

r(s)
ξ + z(s)

)2

+
(

r(s)
η + z(s)

)2

≤ 8
(

s

ξ

)2

. (4.22)

4.4 Monotonicity of Gξ in ξ

We wish to know how the cumulative flux Gξ changes as the distance ξ between
the tip and the VSC is varied while the domain Ω remains fixed. We can write
the Dirichlet problem as follows, let ũξ(r, z) solve

∆ũξ = 0 in Ω,

ũξ = − 1
(r2 + (z + ξ)2)

1
2
− 1

(r2 + (z + η)2)
1
2

on ∂Ω
(4.23)

then

uξ(r, z) = ũξ(r, z) +
1

(r2 + (z + ξ)2)
1
2

+
1

(r2 + (z + η)2)
1
2

(4.24)

17



solves (2.13). We now differentiate with respect to ξ; note that dη
dξ = −1. Let

ṽξ(r, z) solve

∆ṽξ = 0 in Ω,

ṽξ =
z + ξ

(r2 + (z + ξ)2)
3
2
− z + η

(r2 + (z + η)2)
3
2

on ∂Ω
(4.25)

By Lemma 3.3, ṽξ is bounded on ∂Ω, and so by the maximum principle it is
bounded in Ω. We define vξ(r, z) as

vξ(r, z) = ṽξ(r, z)− z + ξ

(r2 + (z + ξ)2)
3
2

+
z + η

(r2 + (z + η)2)
3
2
, (4.26)

then vξ = ∂
∂ξ uξ, essentially vξ solves a Dirichlet problem with zero boundary

condition and two dipoles of opposite orientation at z = −ξ and z = −η as
sources. We will first show that Ω can be divided into two connected subsets,
where vξ is positive or negative. We will then show that this also divides the
boundary ∂Ω into two connected subsets, bordering the respective subsets of
Ω. Lastly we will examine the cumulative flux of vξ and prove a monotonicity
result for Gξ(s).

Near the dipole source, Ω is divided into two regions where vξ is positive or
negative with a surface separating these two. The following Lemma states this
division can be extended to the whole domain.

Lemma 4.8 Let vξ be defined as in (4.26) on a domain Ω sufficiently smooth
that the maximum principle holds and such that the points (0,−ξ) and (0,−η)
lie in the interior of Ω. Let

Ω+ = {(r, z, θ) ∈ Ω|v(r, z) > 0 and z > z(smax)} ,

Ω− = {(r, z, θ) ∈ Ω|v(r, z) < 0 and z > z(smax)} ,
(4.27)

then for sufficiently large smax, Ω− and Ω+ are connected sets.

Proof Let B be a ball centred around the point (0,−ξ), such that d = dist(∂B, ∂Ω) >
0. The boundary condition imposed on wξ is bounded and continuous, and thus
by the maximum principle, wξ is bounded in Ω. By [6] Theorem 2.10 the deriva-

tives of wξ are bounded in B, supB

∣∣∣∂wξ

∂z

∣∣∣ ≤ 3
d supΩ |w|. We now examine vξ(r, z)

on the cylinder defined by r ≤ R and |z + ξ| ≤ Z for some sufficiently small R
and Z = 1√

3
R. Since η = O(smax), the contribution of the reflected source to

vξ in this cylinder is O(s−2
max) and its contribution to ∂vξ

∂z = O(s−3
max), so we can

choose smax sufficiently large that∣∣∣∣ z + η

(r2 + (z + η)2)
3
2

∣∣∣∣ ≤ 1, and
∣∣∣∣ ∂

∂z

(
z + η

(r2 + (z + η)2)
3
2

)∣∣∣∣ ≤ 1. (4.28)
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We now estimate vξ on the caps of the cylinder,

vξ(r, Z − ξ) ≤ sup
Ω
|wξ|+ 1− Z

(R2 + Z2)
3
2

≤ sup
Ω
|wξ|+ 1− 9

8
1

R2
,

vξ(r,−Z − ξ) ≥ −(sup
Ω
|wξ|+ 1) +

Z

(R2 + Z2)
3
2

≥ −(sup
Ω
|wξ|+ 1) +

9
8

1
R2

,

(4.29)

while on the cylinder,

∂vξ

∂z
(R, z) ≤ sup

B

∣∣∣∣∂wξ

∂z

∣∣∣∣+ 1− R2 − 2Z2

(R2 + Z2)
5
2
≤ sup

B

∣∣∣∣∂wξ

∂z

∣∣∣∣+ 1− 3
√

3
32

1
R3

. (4.30)

Therefore we can choose an Rmax such that for all R < Rmax, vξ(R,Z− ξ) < 0,
vξ(R,−Z−ξ) > 0 and ∂vξ

∂z (R, z) < 0. Thus z → vξ(R, z) has a unique zero z0. In
other words, there exists a function z0(r) defined on the interval [0, Rmax] such
that |z0(r) + ξ| ≤ 1√

3
r and vξ(r, z0(r) = 0. By the implicit function theorem,

z0 is continuous and so this function defines a surface S which is part of the
interface between Ω+ and Ω−. By continuity, ∂Ω+ ∩ S and ∂Ω− ∩ S are both
non empty and both boundaries contain the dipole at z = −ξ. Let Ω1 and Ω2

be two connected components of Ω+ or Ω−. Assume (0,−ξ) /∈ ∂Ω1,2, then vξ is
harmonic in Ω1,2 (note that we excluded the singularity in (0,−η) by demanding
that z > z(smax),) and vξ = 0 on ∂Ω1,2. The maximum principle then implies
that vξ = 0 on Ω1,2 which is a contradiction. However, since all points in the
neighbourhood of (0,−ξ) for which vξ = 0 are contained in a subset A of S,
A ⊂ ∂Ω1,2 so Ω1 and Ω2 are connected and must be equal to one another.

The division of Ω into two regions of positive and negative vξ similarly divides
the boundary into two parts.

Lemma 4.9 Let Ω be a domain sufficiently smooth such that the maximum
principle holds, let Ω+, Ω− and vξ be defined as in the previous lemma. Then
∂Ω+ ∩ ∂Ω and ∂Ω− ∩ ∂Ω are closed connected sets.

Proof This is essentially a 2D argument, since we assume radial symmetry
we restrict ourselves to some plane at θ = 0. We examine the region on the
boundary with positive or negative flux. Let I± = {s ∈ [0, smax]|(r(s), z(s)) ∈
∂Ω±∩∂Ω} be the set of parameter values whose respective points on the bound-
ary border Ω+ respectively Ω−. Clearly these are closed sets. Let Rmax be as
in the proof of Lemma 4.8 and let z± = −ξ ± 1√

3
Rmax − ξ. By the arguments

of the previous Lemma, (0, z+) ∈ Ω̃− and (0, z−) ∈ Ω̃+.
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Let s− ∈ I− and s+ ∈ I+, we will first show that s− ≤ s+. Assume s− > s+,
since Ω+ and Ω− are connected, there exist paths connecting r(s−), z(s−) to
(0, z+) and (r(s+), z(s+)) to (0, z−), such that these paths lie completely inside
Ω− respectively Ω+. Since z(s+) > z(s−) by the monotonicity of z, clearly
these paths must intersect, which is a contradiction. Thus for s− ∈ I−, all
points s < s− are also in I−, similarly for s+ ∈ I+ all points s > s+ are in I+.
Thus I+ and I− are closed intervals.

We now have enough information on vξ near the boundary to prove the
following monotonicity result.

Lemma 4.10 For sufficiently large smax the cumulative flux Gξ is strictly mono-
tone and differentiable in ξ,

∂Gξ

∂ξ
(s) < 0, (4.31)

furthermore, this derivative is C1,α Hölder continuous.

Proof We wish to examine the cumulative flux Hξ(s) of vξ,

Hξ(s) =
∂

∂ξ
Gξ(s) =

∫ s

0

Fv(σ)r(σ)dσ, (4.32)

where Fv(σ) = −∂vξ

∂n̂ (r(s), z(s)). By Lemmas 4.2 and 4.9 there are two closed
intervals I+ and I− such that the flux Fv is positive, respectively negative,
everywhere on these intervals and cannot be zero on an open subinterval. If
s∗ ∈ [0, smax] \ (I+ ∪ I−) then there would exist a R > 0 such that a ball
of radius R around (r(s∗), z(s∗)) lies neither in Ω+ nor in Ω− (where Ω± is
defined as in Lemma 4.8.) This is a contradiction since vξ cannot be zero on
an open subset of Ω. Therefore the union of I+ and I− is the whole interval
[0, smax]. The flux must be zero on the intersection of these two intervals, and
so this intersection must be either empty or be equal to a singleton {s0}. It
cannot be empty since the union of two disjoint closed intervals cannot be an
interval. Therefore I− = [0, s0] and I+ = [s0, smax]. The cumulative flux Hξ(s)
is strictly decreasing for s ∈ I− and strictly increasing for s ∈ I+, by the
divergence theorem Hξ(smax) = 0 so Hξ(s) < 0 for s ∈ (0, smax).

5 The travelling wave ODE

In this section we will assume we are given a family of functions Gξ(s) parametrized
by ξ with

0 < Gξ(s) < 2 for 0 < s < smax,

Gξ(smax) = 2,

G′
ξ(s) ≥ 0,

Gξ(s) ≤
1
2
C̃(ξ)s2 for 0 ≤ s ≤ C̃(ξ)−1,

(5.1)
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where the constant C̃(ξ) is given in Lemma 4.7. Using this we will solve the
travelling wave ODE for each ξ,

r′ξ(s) =

√
1−

(
Gξ(s)
rξ(s)

)2

, rξ(0) = 0, r′ξ(0) = 1 (5.2)

and show that there exists a ξ∗ such that rξ∗(smax) = 2. Since this differential
equation is not Lipschitz, we cannot use standard arguments for existence and
uniqueness of solutions. In fact, there are many solutions satisfying rξ(0) = 0, in
subsection 5.1 we will use a contraction argument to show that there is a unique
solution rf,ξ which also satisfies r′f,ξ(0) = 1. In subsection 5.3 we then show
there is a unique solution rb,ξ satisfying rb,ξ(smax) = 2. Finally in subsection 5.4
we show that for ξ = ξ∗ these two solutions match, giving the desired solution.

5.1 The forward solution

In this section we show that, for each ξ there exists a solution starting at s = 0.
We substitute rξ(s) = s − s3x(s), a function x(s) solving the ODE must then
be a fixed point of the integral operator Φ.

Φ[x](s) =
1
s3

∫ s

0

1−

√
1−

(
Gξ(σ)

σ − σ3x(σ)

)2

dσ (5.3)

We examine Φ on the ball B of radius 1
9 C̃(ξ)2 in the space of continuous bounded

functions on the interval [0, C̃(ξ)−1] equipped with the supremum norm.

Lemma 5.1 The integral operator Φ has a unique fixed point on B.

Proof First of all Φ : B → B. To see this, assume x(s) ≤ aC̃(ξ)2 for some
value of a. If a ≤ 1

2 then for s ≤ C̃(ξ)−1, Gξ(s)
s−s3x(s) ≤

1
2

C̃(ξ)
1−a s ≤ 1

2(1−a) ≤ 1. Now

for u ≤ 1, 1 −
√

1− u ≤ u and so Φ[x](s) ≤ 1
12

C̃(ξ)2

(1−a)2 . If we set a = 1
9 then

Φ[x](s) ≤ aC̃(ξ)2.
Furthermore, Φ is a contraction on B. Let ‖·‖ be the supremum norm on

B,

‖Φ[x2]− Φ[x1]‖ ≤
1
s3

∫ s

0

∣∣∣∣∣∣ ∂

∂x

1−

√
1−

(
Gξ(σ)

σ − σ3x

)2
∣∣∣∣∣∣ · |x2(σ)− x1(σ)|dσ.

(5.4)
Now,

∂

∂x

1−

√
1−

(
Gξ(s)

s− s3x

)2
 =

Gξ(s)2

(1− s2x)3
√

1−
(

Gξ(s)
s−s3x

)2

≤ 1

4(1− a)3
√

1− 1
4(1−a)2

s2 ≤ 1
2
s2 for a =

1
9
.

(5.5)
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Therefore, ‖Φ[x2]− Φ[x1]‖ ≤ 1
6 ‖x2 − x1‖. By the Banach fixed point theorem,

Φ must have a fixed point.

We will denote this fixed point as rf,ξ.

5.2 Determination of ξmin and ξmax.

We wish to find a value ξ∗ such that rf,ξ∗ can be continued to the interval
(0, smax] with rf,ξ∗(smax) = 2. Clearly, since rf,ξ(s) ≤ s, if at some point
s∗, Gξ(s∗) ≥ s∗ then we cannot continue the solution at this value of ξ since
r′f,ξ(s

∗) would not be defined. By Lemma 4.6 such a value of s∗ exists, and so
ξ∗ ≥ ξmin = 3

40 .
If there exists an s∗ ≤ smax such that rf,ξ(s∗) ≥ 2, the solution can

be continued till infinity, however, due to the monotonicity of rf,ξ it will be
impossible to meet the requirement that rf,ξ(smax) = 2. By Lemma 5.1,
rf,ξ(C̃(ξ)−1) ≥ 8

9 C̃(ξ)−1, so if C̃(ξ) ≤ 4
9 and C̃(ξ)−1 < smax then the continua-

tion of rξ will grow too large. By Lemma 4.7, C̃(ξ) = 16
ξ2 and so ξ∗ ≤ ξmax = 6.

5.3 The backwards solution

In this section we will show that there exists a unique solution from s = smax

with rξ(smax) = 2 extending backwards till s = 0.

Lemma 5.2 Given ξ ∈ (ξmin, ξMax) and s∗ ∈ (0, smax). Then any two func-
tions r1 and r2 solving (5.2) on an interval (s0, s

∗] having equal endpoints,
r1(s∗) = r2(s∗), must be equal over the entire interval.

Proof We write the ODE as r′ = f(r(s), s) and examine the derivative to r,

∂f

∂r
=

1
f(r, s)

Gξ(s)2

r3
> 0. (5.6)

Now assume r1 and r2 are two different solutions to (5.2) on an interval I =
(s∗−δ, s∗) such that r1(s∗) = r2(s∗). We will show that there is a contradiction.
If r1 and r2 are different, there exists an s0 ∈ I such that r2(s0) 6= r1(s0).
Without loss of generality, assume that r2(s0) > r1(s0). The difference between
r2 and r1 satisfies the differential equation

d
ds

(r2(s)− r1(s)) =
∫ r2(s)

r1(s)

∂f

∂r
dr > 0. (5.7)

and so r2(s)− r1(s) > r2(s0)− r1(s0) > 0 for all s > s0, specifically at s = s∗.

Lemma 5.3 Given ξ ∈ (ξmin, ξmax) and s∗ ∈ (0, smax] then there exists a
unique solution r : (0, s∗] → [0, 2] to the differential equation (5.2) satisfying
r(s∗) = Gξ(s∗).
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Proof We examine the differential equation

r′(s) = f(s, r(s)), (5.8)

where

f(s, r) =



√
1−

(
Gξ(s)

r

)2

if r ≥ Gξ(s) and s ≤ smax,

0 if r ≤ Gξ(s) and s ≤ smax,√
1−

(
2
r

)
if r ≥ 2 and s ≥ smax,

0 if r ≤ 2 and s ≥ smax.

(5.9)

The function f is continuous, so by Peano’s existence theorem there exist so-
lutions s 7→ r(s) satisfying r(s∗) = G(s∗) defined in a neighbourhood of s∗.
Assume there is an s0 < s∗ in this neighbourhood such that r(s0) < Gξ(s0).
Let s1 = min{s ∈ (s0, s

∗]|r(s) ≥ Gξ(s)}, this definition makes sense since r and
Gξ are continuous and r(s∗) = Gξ(s∗). By the mean value theorem there exists
an s2 ∈ (s0, s1) such that

r′(s2) =
r(s1)− r(s0)

s1 − s0
>

Gξ(s1)−Gξ(s0)
s1 − s0

> 0, (5.10)

since Gξ(s) is strictly monotone. Thus by (5.8), r(s2) ≥ Gξ(s2) which is in
contradiction with our definition of s1. Therefore r(s) ≥ Gξ(s) for s ≤ s∗ and
the restriction of our solution to s ≤ smax solves (5.2), repeating this argument
enables us to extend this solution until s = 0. Uniqueness then follows from
Lemma 5.2.

Setting s∗ = smax in Lemma 5.3 we obtain a unique solution on (0, smax].

5.4 Matching

In the previous sections we have constructed solutions to the travelling wave
ODE. The forward solution, which we denote as rf,ξ, exists on an interval
[0, C̃(ξ)] while the backward solution rb,ξ, exists on the interval (0, smax]. We
will examine both solutions at the point s = C̄−1, where

C̄−1 = min
ξ∈[ξmin,ξmax]

{C̃(ξ)−1}. (5.11)

If we examine the solutions at ξ = ξmin we see that at some point s∗, rf,ξmin(s∗) =
Gξmin(s∗) ≤ rb,ξmin(s∗). Since solutions to the same ODE cannot intersect,

rf,ξmin(C̄−1) ≤ rb,ξmin(C̄−1). (5.12)

Similarly, examining the solution at ξ = ξmax we see that rf,ξmax(C̄(ξmax)−1) ≥
2 ≥ rb,ξmax

(C̄(ξmax)−1) and so

rf,ξmax
(C̄−1) ≥ rb,ξmax(C̄−1). (5.13)

23



Lemma 5.4 The forwards and backwards solutions rf,ξ and rb,ξ are strict mono-
tone in ξ for s > 0,

∂rf,ξ

∂ξ
> 0,

∂rb,ξ

∂ξ
< 0. (5.14)

Proof If we differentiate the ODE (5.2) to ξ we see that u = ∂rξ

∂ξ satisfies the
differential equation

du

ds
(s) = f(s)u(s) + g(s), (5.15)

where

f(s) =
1√

1−
(

Gξ(s)
rξ(s)

)2

Gξ(s)2

rξ(s)3
, g(s) = − 1√

1−
(

Gξ(s)
rξ(s)

)2

Gξ(s)
rξ(s)2

∂Gξ

∂ξ
.

(5.16)
Since rξ and Gξ are positive, f(s) > 0 for s > 0 and by Lemma 4.10, g(s) > 0
for s > 0.

To study the forward solution, we examine the solution of this ODE with
initial condition u(0) = 0. By (3.5) and Lemma 4.7 its clear that f and g remain
bounded as s → 0, so by the variation of constants formula

∂rf,ξ

∂ξ
(s) = e−µ(s)

∫ s

0

eµ(σ)g(σ)dσ > 0 (5.17)

where
µ(s) =

∫ s

0

f(σ)dσ. (5.18)

For the backwards solution, rb,ξ(smax) = Gξ(smax) = 2 for all ξ. So a similar
variations of constants arguments, with u(smax) = 0 yields that ∂rb,ξ

∂ξ < 0.

The inequalities for the forward and backward solutions at s = C̃−1, together
with the strict monotonicity established in the above Lemma yield that there
must exist an unique ξ∗ ∈ [ξmin, ξmax] such that

rf,ξ∗(C̃−1) = rb,ξ∗(C̃−1). (5.19)

We now define rξ∗(s) to be equal to rf,ξ∗ if s ≤ C̃−1 and equal to rb,ξ∗ otherwise.
Thus rξ∗ solves (5.2) with the desired boundary conditions at s = 0 and s =
smax.

6 Fixed point of the Schauder map

In Sections 4 and 5 we defined a map from Ξ(M,A,C; smax) to C1,α × C0,α.
In this section we will choose the constants C, A and M such that the image
of this map is a subset of the original domain. We will then show that both
domain and image are compact and the map is continuous in the C1,β topology
for any β < α, and thereby satisfies all the requirements of Schauder’s fixed
point theorem.
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6.1 Determination of C

From Lemma 4.7 we have that

Gξ∗(s) ≤
1
2
C̃s2 for 0 ≤ s ≤ C̃−1, (6.1)

where C̃ = max( 16
ξ2

min
,
√

C
ξmin

, C). From Lemma 5.1 and the monotonicity of rξ∗

we then have that

s− 1
9
C̃2s3 ≤ rξ∗(s) ≤ 2 for 0 ≤ s ≤ C̃−1,

8
9
C̃−1 ≤ rξ∗(s) ≤ 2 for C̃−1 ≤ s ≤ smax,

(6.2)

If we choose C ≥ 16
ξ2

min
= 25600

9 then C̃ = C.

6.2 Determination of A

If one were to differentiate (5.2) to s we would obtain

r′′ξ∗ =
G2

ξ∗

r3
ξ∗

− Gξ∗

r2
ξ∗

G′
ξ∗

r′ξ∗
z′′ξ∗ =

Gξ∗

r2
ξ∗

r′ξ∗ −
G′

ξ∗

rξ∗
. (6.3)

Since r′ξ∗ might be equal to zero, the negative contribution to r′′ξ∗ may be infinite
and we cannot say that r is twice differentiable. The difference quotients of the
first derivatives are however always defined, and equal to

r′ξ∗(s2)− r′ξ∗(s1) =
∫ s2

s1

G2
ξ∗

r3
ξ∗

− Gξ∗

r2
ξ∗

G′
ξ∗

r′ξ∗
ds ≤

∫ s2

s1

G2
ξ∗

r3
ξ∗

ds, (6.4)

where without loss of generality we can assume that s2 ≥ s1. Now using (6.1),
(6.2) and the fact that by the divergence theorem, Gξ∗(s) ≤ 2 one can estimate

G2
ξ∗

r3
ξ∗

≤ 1
4

C2

(1− 1
9C2s2)3

s ≤ 1
4

(
9
8

)3

C for 0 ≤ s ≤ C−1,

G2
ξ∗

r3
ξ∗

≤ 4
(

9
8

)3

C3 for C−1 ≤ s ≤ smax,

Gξ∗

r2
ξ∗

≤ 1
2

C

(1− 1
9C2s2)2

≤ 1
4

(
9
8

)2

C for 0 ≤ s ≤ C−1,

Gξ∗

r2
ξ∗

≤ 2
(

9
8

)2

C2 for C−1 ≤ s ≤ smax.

(6.5)

All four of these estimates are bounded and only depend on the constant C
determined previously, and so we can estimate

r′ξ∗(s2)− r′ξ∗(s1) ≤ A(s2 − s1). (6.6)

Similar arguments yield the estimate for the difference quotient on z′ξ∗ .
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6.3 Hölder continuity

We have now established enough bounds on rξ∗ and Gξ∗ to establish an uniform
C1,α Hölder norm. Since r′ξ∗ is the square root of a C1 function, we expect it
to be bounded for Hölder exponent α ≤ 1

2 .

Lemma 6.1 There is an M , independent of smax, such that the solutions rξ∗

and z′ξ∗ have the following Hölder norms for Hölder exponent α ≤ 1
2 :

‖rξ∗‖1,α ≤ M,∥∥z′ξ∗∥∥0,α
≤ M.

(6.7)

Proof We estimate the difference in first derivatives at points s1 and s2,

∣∣r′ξ∗(s2)− r′ξ∗(s1)
∣∣ =

∣∣∣∣∣∣
√

1−
(

Gξ∗(s2)
rξ∗(s2)

)2

−

√
1−

(
Gξ∗(s1)
rξ∗(s1)

)2
∣∣∣∣∣∣

≤

√√√√∣∣∣∣∣
(

Gξ∗(s2)
rξ∗(s2)

)2

−
(

Gξ∗(s1)
rξ∗(s1)

)2
∣∣∣∣∣

≤

∣∣∣∣∣max

(
d
ds

(
G2

ξ∗

r2
ξ∗

))∣∣∣∣∣
1
2

· |s2 − s1|
1
2 .

(6.8)

Now,
d
ds

(
Gξ∗(s)2

rξ∗(s)2

)
=

2Gξ∗G
′
ξ∗

r2
ξ∗

−
2G2

ξ∗r
′
ξ∗

r3
ξ∗

, (6.9)

and using Lemma 4.3 and estimates (6.5) we see all these terms are uniformly
bounded by constants depending only on C, A, ξmin, and ξmax. Similarly, by
(6.3) and (6.5), z′′ can be bounded from above by A, and below by a constant
depending only on C, A and Fmax, and so the Hölder norm of z′ can be bound
similarly. The constants C, A, ξmax and ξmin have been determined in the pre-
vious sections, Fmax depends only on these constants, thus M can be expressed
in terms of these known constants. Specifically, M does not depend on smax.

6.4 Continuity of (r, z) → Gξ

We wish to show that, for a sequence (rn, z′n) ∈ C1,α×C0,α uniformly, describing
boundaries ∂Ωn such that (rn, zn) → (r̄, z̄) in the C1,β topology, the associated
fluxes Fn → F̄ in the C0,β topology. In order to do this we need to create
bijections between the domains Ωn and Ω̄.

Lemma 6.2 There exist surjective mappings φn : Ω̄ → Ωn ⊂ R3 such that
φn ∈ C1,α uniformly, and φn → Id in the C1,β topology.
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Proof We first define φn on the boundary ∂Ω̄ by mapping the point at path-
length s on ∂Ω̄ to the point at the same pathlength on ∂Ωn. For x = (x1, x2, x3) =
(r̄(s) cos θ, r̄(s) sin θ, z̄(s)) ∈ ∂Ω̄,

φ(1)
n (x) = rn(s) cos θ,

φ(2)
n (x) = rn(s) sin θ,

φ(3)
n (x) = zn(s).

(6.10)

We treat these as boundary conditions and extend φ
(i)
n to the interior by solving

∆φ
(i)
n = 0 for i = 1, 2, 3. By Schauder’s boundary estimates for C1,α domains

([6], Thm 8.33)
∥∥∥φ(i)

n

∥∥∥
1,α

≤ C(‖rn‖1,α +‖zn‖1,α) where the constant C depends

only on the boundary ∂Ω̄. As such, the functions φ
(i)
n are uniformly bounded

in the C1,α Hölder norm. Furthermore, φn(Ω̄) = Ωn, if there were a point
in Ωn which was not mapped to, the image would have a different topological
class than Ω̄ which is impossible for a continuous map. If we were to apply
the same procedure to construct a map φ̄ : Ω̄ → Ω̄ then on the boundary
φ̄(1)(x)|∂Ω = r̄(s) cos θ = x1. The harmonic extension of this boundary would
be φ̄(1)(x) = x1 and similar for the x2 and x3 coordinates, so φ̄ is the identity
mapping Id. We now examine φ

(1)
n − x1, this function is harmonic and assumes

values (rn(s) − r̄(s)) cos θ on the boundary. We apply Schauder’s boundary
estimates again to see that ‖φn − Id‖1,β ≤ C(‖rn − r̄‖1,β + ‖rn − z̄‖1,β) with
the constant C depending only on ∂Ω̄. Since rn → r̄ and zn → z̄ in C1,β ,
φn → Id in C1,β .

We now examine the Dirichlet problem on Ωn and Ω̄. For simplicity we place
the source at the origin, the tip of each domain lies at (r, z) = (0, zn(0)). We
write un(x) = 1

|x| − wn, ū = 1
|x| − w̄ where wn and w̄ are the solutions of

∆wn = 0 in Ωn, wn =
1
|x|

for x ∈ ∂Ωn,

∆w̄ = 0 in Ω̄, w̄ =
1
|x|

for x ∈ ∂Ω̄.

(6.11)

Now 1
|x| is smooth away from the origin, and all it’s derivatives can be bounded

by a function of dmin, the minimal distance between ∂Ωn and the origin for all
n. So

∥∥∥ 1
|x|

∥∥∥
1,α;∂Ωn

≤ C(‖rn‖1,α + ‖zn‖1,α) where the constant C depends only

on dmin. By the boundary estimates, ‖wn‖1,α;Ωn
≤ C(

∥∥∥ 1
|x|

∥∥∥
1,α;∂Ωn

) where the

constant C depends on the C1,α norms of rn and zn. Since these are uniformly
bounded, there is a C independent of n such that ‖wn‖1,α;Ωn

≤ C. We now
examine the compositions wn ◦ φn : Ω̄ → R. Since, by the above Lemma,
the maps φn are uniformly bounded in C1,α, these compositions are uniformly
bounded in C1,α. On the boundary wnj

◦ φnj
|∂Ω̄ = 1

|φnj |
and clearly converges

to w̄|∂Ω.

27



Lemma 6.3 Let φn : Ω̄ → Ωn ⊂ R3 be a sequence of mappings, wn : Ωn → R
be a sequence of harmonic functions, and let w̄ : Ω̄ → R be a harmonic function,
such that:

• The mappings φn → Id in the C1,β(Ω̄; R3) norm.

• The compositions wn ◦ φn are uniformly bounded in the C1,α(Ω̄; R) norm.

• On the boundary, wn ◦ φn|∂Ω̄ → w̄|∂Ω̄ in the C1,β(∂Ω̄; R) norm.

Then we have convergence on the full set Ω̄, the compositions wn ◦ φn → w̄ in
the C1,β(Ω̄; R) norm.

Proof Since wn ◦ φn is uniformly bounded in C1,α it has a convergent subse-
quence in C1,β . Let us examine such a convergent subsequence, which we will
also denote as wnj ◦ φnj and let the limit be denoted as w̃. Each wnj is a weak
solution of the Dirichlet problem, so for all vnj ∈ C1

0 (Ωnj ; R)∫
Ωnj

∇wnj
· ∇vnj

dx = 0 (6.12)

Now Ωnj
= φnj

(Ω̄) and so we can perform a coordinate transform. Furthermore,
for sufficiently large n the Jacobian Dφnj

is sufficiently close to the identity
matrix that it can be inverted, and φnj is a bijection. So writing vnj = v ◦ φ−1

nj
,

the above statement holds for all v ∈ C1
0 (Ω̄; R). Now∫

φnj
(Ω̄)

∇wnj
· ∇vnj

=
∫

Ω̄

((∇wnj
) ◦ φnj

) · ((∇vnj
) ◦ φnj

)
∣∣det Dφnj

∣∣ dx

=
∫

Ω̄

(Dφnj
)−1∇(wnj

◦ φnj
) · (Dφnj

)−1∇v
∣∣det Dφnj

∣∣ dx

= 0.
(6.13)

We now take the limit as n →∞, and see that for all v∫
Ω̄

∇w̃ · ∇vdx = 0, (6.14)

and so w̃ is weakly harmonic. Since wn ◦ φn|∂Ω̄ → w̄|∂Ω̄ and there is only one
harmonic function with a given boundary value, w̃ = w̄.

Now assume that wn ◦ φn does not converge to w̄, then there exist ε and N
such that for all n ≥ N , ‖wn − w̄‖1,β ≥ ε. This is in contradiction with the fact
that there is a subsequence such that wnj

→ w̄.

We can now prove the convergence of the fluxes Fn. We consider each flux
to be a function on ∂Ω̄ parametrized by s. Then

Fn = |(∇un) ◦ φn| =
∣∣∣∣(Dφn)−1

(
∇
(

1
|φn|

)
−∇(wn ◦ φn)

)∣∣∣∣ , (6.15)
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and clearly

Fn →
∣∣∣∣∇( 1

|x|

)
−∇w̄

∣∣∣∣ = F̄ , (6.16)

in C0,β .

6.5 Continuity of Gξ → (ξ∗, rξ∗ , z
′
ξ∗)

We wish to show that for a sequence, Gn,ξ of families of cumulative fluxes
parametrized by ξ, uniformly bounded in C1,α and converging to Ḡξ in C1,β for
each value of ξ, the associated solutions (rn, z′n, ξ∗n) converge to (r̄, z̄′, ξ̄∗). Each
rn satisfies ∫ s

0

√
rn(σ)2 −Gn,ξ∗n(σ)2dσ =

1
2
rn(s)2,∫ smax

0

√
rn(σ)2 −Gn,ξ∗n(σ)2dσ = 2.

(6.17)

Since rn is uniformly bounded in C1,α and ξn ∈ [ξmin, ξmax] we examine a
subsequence of solutions rnj and ξnj , such that rnj → r̃ and ξ∗nj

→ ξ̃∗. Now∥∥∥Gnj ,ξ∗nj
− Ḡξ̃∗

∥∥∥
1,β

≤
∥∥∥Gn,ξ∗nj

−Gn,ξ̃∗

∥∥∥
1,β

+
∥∥∥Gnj ,ξ̃∗ − Ḡξ̃∗

∥∥∥
1,β

,

≤
∥∥∥∥∂Gnj ,ξ

∂ξ

∥∥∥∥
1,β

∣∣∣ξnj
− ξ̃
∣∣∣+ ∥∥∥Gnj ,ξ̃∗ − Ḡξ̃∗

∥∥∥
1,β

.
(6.18)

By Lemma 4.10 the derivative of the flux to ξ is uniformly bounded in C1,α, so
Gnj ,ξ∗nj

→ Ḡξ̃∗ in C1,β . Therefore we can pass through the limit and see that r̃,

ξ̃∗ and Ḡξ̃∗ satisfy (6.17). Since, given a family of cumulative fluxes, solutions
to the travelling wave ODE are unique, r̃ = r̄ and ξ̃∗ = ξ̄∗. Now assume that
rn and ξ∗n do not converge to r̄ and ξ̄, then there exist ε and N such that for all
n ≥ N , ‖rn − r̄‖1,β ≥ ε or

∣∣ξ∗n − ξ̄∗
∣∣ ≥ ε. This is in contradiction with the fact

that there is a subsequence such that rnj → r̄ and ξ∗nj
→ ξ̄∗.

The quotients z′n =
Gn,ξ∗n
rn,ξ∗n

are uniformly bounded in C1,α and thus have a

convergent subsequence z′nj
which converges to z̃′. Now clearly z̃′(0) = z̄′(0)

and for s > 0,

|z̃′(s)− z̄′(s)| ≤
∣∣∣z̃′(s)− z′nj

(s)
∣∣∣+ 1

rnj (s)

∣∣∣Gnj ,ξ∗nj
(s)− Ḡξ̄∗(s)

∣∣∣+ z̄′(s)
rnj (s)

∣∣r̄(s)− rnj (s)
∣∣ .

(6.19)
Since the right hand side converges to zero, z̃′(s) = z̄′(s) for all s. A similar
argument as used for the convergence of rn and ξn now yields that z′n → z̄′ in
C0,β .
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6.6 Fixed point

We now have all the ingredients to use Schauder’s fixed point theorem. The
necessary constants C, A, M ξmin and ξmax have been determined in Sections
6.1, 6.2, 6.3, and Section 5.2. Since Ξ(M,A,C; smax) is bounded in the C1,α ×
C0,α norm, its compact in the C1,β ×C0,β norm. In Sections 4 and 5 we define
a map from Ξ(M,A,C; smax) to itself, in 6.4 and 6.5 we prove this map is
continuous in the C1,β ×C0,β norm. Therefore this map has a fixed point, this
fixed point solves the bounded travelling wave problem as defined in Section
2.5.

7 The limit as smax →∞
In the previous sections we have shown that, given a sufficiently large value
of smax one can find a solution to the travelling wave problem with a bounded
domain, as described in Section 2.5. In this section we will show that as smax →
∞ the solution profiles approach a limit profile which solves the travelling wave
problem on an unbounded domain.

7.1 The limit profile r∞, z∞

We examine a sequence smax,n such that smax,n → ∞ as n → ∞ and such
that smax,n+1 − smax,n > 2. The estimates established in (3.8) then imply that
|z(smax)| increases monotonically to infinity. Previously we showed that for each
value of smax,n one can find a distance ξ∗n and two functions rn : [0, smax,n] →
[0, 2] and zn : [0, smax,n] → R− solving the travelling wave problem on a bounded
domain. Since ξ∗n ∈ [ξmin, ξmax], it is possible to choose our sequence smax,n

such that ξ∗n converges to some value ξ∗∞ in the same interval.
Since the functions rξ∗n , z′ξ∗n are uniformly bound in C1,α × C0,α, by the

Arzela-Ascoli theorem it is always possible to find a subsequence such that the
restrictions to a compact interval converge in C1,β × C0,β . We use this to
construct r∞ and z′∞.

Let n
(0)
j be the sequence 1, 2, 3, . . . . For each i ≥ 1 we define the subsequence

n
(i)
j of n

(i−1)
j such that the restrictions of r

n
(i)
j

and z′
n

(i)
j

to the interval [0, smax,i]

converge. We now examine the diagonal sequence n
(j)
j . Let I ⊂ R+ be an

arbitrary compact interval. For sufficiently large j, r
n

(j)
j

and z′
n

(j)
j

are defined

on this interval and their restrictions converge to functions r∞ and z′∞. Since I
was arbitrary, the functions r∞ and z′∞ are defined on R+. Integrating z′∞ with
respect to s yields the function z∞. To simplify notation, for the remainder of
Section 7 we will denote the sequences of functions r

n
(j)
j

and z
n

(j)
j

as rn and zn.
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7.2 The cumulative flux G∞

The functions r∞ and z∞ define a boundary ∂Ω∞ of a domain Ω∞ in the same
manner as described previously. In this case, the domain is unbounded and
there is no zero flux boundary condition at z = z(smax). We place a source at a
distance ξ∞ from the tip and solve the Dirichlet problem (2.1) to obtain a vesicle
density u∞ and the associated flux F∞ and cumulative flux G∞. By Lemma
4.1, Ω∞ is of class C1,α and so G∞ ∈ C1,α(R). By the divergence theorem,
G∞(s) → 2 as s →∞.

The curvature of the limit profile ∂Ω∞ has the same upper bound as for the
bounded profiles. This again gives an outer sphere condition which enables us
to give an upper bound for the flux F∞.

Lemma 7.1 The flux F∞ passing though the point (r∞(s), z∞(s)) on the bound-
ary is bounded,

F∞ ≤ Fmax, (7.1)

where Fmax is the same as in Lemma 4.3. This implies we can estimate G′
∞(s) ≤

sFmax and G′
∞(s) ≤ 2Fmax.

Proof The proof is essentially the same as the first part of the proof of Lemma
4.3. In that proof, the reflected source gives a positive contribution and thus
can be neglected.

The comparison principle established in Theorem 4.4 allows us to calculate
the asymptotics of G∞ as s →∞.

Lemma 7.2 The cumulative flux G∞ approaches its limit value of 2 alge-
braically. For sufficiently large s,

0 < 2−G∞(s) ≤ 4
(s− 2− ξ∞)2

. (7.2)

Proof We assume s > ξ∞+2, then z(s) < −ξ. We use similar arguments as in
Lemma 4.7 except we compare with a halfspace at the other side of the VSC.
Let Ω̃ be the halfspace {(r, z)|z ≥ z(s)}. Let

ũ(r, z) = (r2 + (z + ξ)2)−
1
2 − (r2 + (z − 2z(s)− ξ)2)−

1
2 , (7.3)

then ũ solves the Dirichlet problem on Ω̃ with a source at z = −ξ∞. The
comparison principle now states that

2π(2−G∞(s)) =
∫

∂Ω\Ω̃
FudA ≤

∫
∂Ω̃∩Ω

FũdA

≤ 4π

1−

(
1 +

(
r(s)

z(s) + ξ∞

)2
)− 1

2
 ,

≤ 2π

(
r(s)

z(s) + ξ∞

)2

≤ 2π

(
2

s− 2− ξ∞

)2

,

(7.4)

where we used the inequalities r(s) < 2 and −s < z(s) < −s + 2.
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In fact it is possible, by comparing with a capped cylinder instead of a half
plane, to show that G∞ approaches 2 exponentially fast, however the above
result is sufficient for our purposes.

7.3 The limit of Gn

Let I ⊂ R+ be an arbitrary compact interval. For sufficiently large n, Gn is
defined on I. In this section we wish to show that, restricted to I, Gn → G∞
in the C1,β(I) topology. It is sufficient to show this in the case that I = [0, s∗]
for some arbitrary, but sufficiently large value of s∗. This can be shown using
arguments similar to those used in Section 6.4 when showing the continuity of
the Schauder map.

Lemma 7.3 Let I = [0, s∗] for some arbitrary but sufficiently large value of s∗.
Then,

Gn|I → G∞|I (7.5)

in the C1,β(I) norm.

Proof We cut off Ω∞ at the plane z = z∞(s∗). Let Ω̄∞ = {(r, z) ∈ Ω∞|z >
z∞(s∗)}. Similarly we cut off Ωn at the plane z = zn(s∗), so Ω̄n = {(r, z) ∈
Ωn|z > zn(s∗)}. Since the restrictions of rn and zn to I approach r∞ and z∞ in
C1,β and are uniformly bounded in C1,α, by Lemma 6.2 there exist mappings
φn : Ω̄ → Ωn ⊂ R3 which are uniformly bounded in C1,α and converge to the
identity in the C1,β norm. Let un be the solution of the Dirichlet problem
(with a zero flux condition at the plane z = zn(smax,n) on Ωn, restricted to
Ω̄n. Similarly, let u∞ be the solution to the (unbounded) Dirichlet problem,
restricted to Ω̄n. On Ω̄n respectively Ω̄∞ we define

wn(r, z) =
1√

r2 + (z + ξn)2
− un,

w∞(r, z) =
1√

r2 + (z + ξ∞)2
− u∞.

(7.6)

We examine the compositions wn ◦φn viewed as functions of s and restricted to
I. So wn ◦ φn|I(s) = wn(rn(s), zn(s)). By Lemma 3.3 the terms in the square
roots are bounded from below. Since rn → r∞, zn → z∞ in C1,β and ξn → ξ∞,
the compositions wn ◦ φn|I → w∞(r∞, z∞)|I in the C1,β norm. By Lemma 6.2,
wn ◦φn → w∞ on Ω̄. The same arguments as used at the end of section ?? now
yield that Gn → G∞ in C1,β .

7.4 Solution to the unbounded travelling wave problem

For sufficiently large n, rn is defined on the interval I, and for s ∈ I,

rn(s)2 = 2
∫ s

0

√
rn(σ)2 −Gn(σ)2dσ. (7.7)
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Since rn → r∞ and Gn → G∞, we pass through the limit to see that r∞ and
G∞ satisfy the same equation. Differentiating to s and dividing by r∞(s) shows
that r∞ satisfies the travelling wave ODE on any arbitrary interval I and thus
it satisfies it for all s. Hence r∞, z′∞ and ξ∗∞ solve the unbounded travelling
wave problem.

8 Conclusions

Using a Schauder fixed point argument, we have shown the existence of travelling
solutions to the diffusive Vesicle Supply Centre model. Note that Schauder’s
fixed point theorem does not guarantee uniqueness, and we have not been able
to show that this solution is unique by other means. Possibly one can use
the comparison principle (Theorem 4.4) along with the equation for travelling
solutions (2.11). This is a direction for future research.

Since the equations in Section 2.4 hold for any flux, not only for the diffusive
case, the Schauder map Ψ defined in section 3.1 will have the same form for many
models. Therefore the method described in this article should yield an existence
proof for various related models, provided similar estimates as those in Sections
4 through 6 can be derived.
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