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Summary

Modeling creep and anelasticity in particle strengthened alloys with

strain gradient crystal plasticity

For small material volumes, size effects, e.g. due to the interface constraints or heterogeneous

strain fields, may significantly affect the mechanical behavior of metals such that a deformation

mechanism that is less important for the response in bulk form may become decisive for the per-

formance of the material. Such second order effects were observed experimentally in the last two

decades and form engineering challenges for the development and production of high-end mod-

ern technology. For example, creep and anelasticity observed in metallic thin film components

of capacitive RF-MEMS switches may lead to time dependent deviations from the design specifi-

cations of the device. The characterization and understanding of the mechanical behavior of the

material is indispensable to overcome the reliability issues of these switches which hinder their

full commercialization. In this thesis, a numerical framework is presented for modeling the time

dependent mechanical behavior of thin films made of particle strengthened fcc alloys as an ex-

tension of a previously developed strain gradient crystal plasticity (SGCP) model (here referred

to as Evers-Bayley type model) for pure fcc metals. A physically based flow rule for crystallo-

graphic slip is developed based on the dislocation-dislocation and dislocation-particle interaction

mechanisms. The extended SGCP framework is intrinsically able to capture the effect of an inho-

mogeneous distribution of geometrically necessary dislocation densities on the material behavior

via the formulation of a back stress incorporating a material length scale.

In chapter 2, the physically based Evers-Bayley type model and a thermodynamically consistent

strain gradient theory of crystal plasticity by Gurtin are compared by deriving micro-stresses for

the Gurtin type formulation based on the energetic back stresses of the Evers-Bayley type models,

incorporating dislocation-dislocation interactions. It is shown that the defect energy function for

a micro-stress that contains the physical description of the interaction between dislocations of dif-

ferent slip systems has a more complicated form than those suggested in literature and is possibly

non-convex. It is also shown that similar boundary conditions can be defined for the Evers-Bayley

type and Gurtin type models despite their different additional field equations within the finite el-

ement context. Thereafter, in chapter 3, the SGCP model is employed in electromechanical finite

element simulations of bending of polycrystalline thin beams made of a pure metal and a two phase

alloy with a focus on the description of anelastic material behavior. Simulation results obtained

with the SGCP model show a macroscopic strain recovery over time following the load removal.

However, a detailed analysis demonstrates that the anelastic relaxation time and strength have no

solid physical basis. A comparison of the results with experimental data implies that a single de-

vii



viii SUMMARY

formation mechanism may not be adequate for capturing the material response. Moreover, the slip

law falls short in describing the behavior of a particle enhanced material.

Subsequently, an extension of the SGCP model for a more realistic description of the time depen-

dent mechanical behavior of two phase alloys, i.e. creep and anelasticity, is given in chapter 4

and its application in multiphysical simulations of a capacitive RF-MEMS switch is presented in

chapter 5. A new constitutive rule for crystallographic slip is developed by considering dislocation-

dislocation interactions and three distinct dislocation-particle interactions: i) the Orowan process,

ii) the Friedel process and iii) the climb of edge dislocations over particles. The new constitu-

tive rule is obtained by the combination of separate slip laws for each type of interaction and is

built based on the physically well-founded Orowan type rate equation. A flow rule for the slip

rate of mobile dislocations governed by dislocation-dislocation interactions is written by taking

into account the jerky and continuous glide regimes of dislocations. Slip laws corresponding to

the Orowan and Friedel processes are constructed by considering thermally activated dislocation

motion. The climb of edge dislocations is described via a thermal detachment model. Results of

finite element simulations of bending of a single crystalline thin beam and a micro-clamp experi-

ment with the extended SGCP model show that creep and anelastic behavior of a metallic thin film

can be predicted with the extended SGCP framework. The amounts of the plastic deformation,

anelastic recovery strength and associated relaxation times strongly rely on particle properties, the

diffusional rate and the magnitude of internal stresses. The results of the simulations of the micro-

clamp experiment imply that inhomogeneous material diffusion may play an important role in the

anelastic behavior of polycrystalline thin films. The results also suggest that the internal stress

formulation of the extended SGCP may need to be extended by considering additional sources of

internal stresses. The extended SGCP framework is applied to analyse the behavior of a capacitive

RF-MEMS switch in multiphysical simulations. The electrodes of the switch are considered to be

made of a metal thin film with incoherent second phases and have a polycrystalline structure with

columnar grains through the thickness and passivated surfaces. The variation of the gap between

the electrodes over time is analyzed. First, the influences of particle size, volume fraction, surface

constraints and film thickness on the performance of the switch after a loading and unloading cy-

cle are studied. Then, the effects of cyclic loading and the duration of the unloaded state between

sequential cycles are investigated. The results show that the residual changes in the gap and the

amount and rate of time dependent recovery after the load removal are highly sensitive to the mi-

crostructure and the film thickness. The smallest amounts of permanent deformation and anelastic

recovery are obtained with an upper electrode made of a relatively thin film which has a surface

passivation and involves small incoherent particles with a relatively large volume fraction. Fur-

thermore, the simulations revealed that the maximum residual change of the gap measured after

completion of the unloading stage of each cycle saturates within a few cycles. A shorter dura-

tion of the unloaded state between successive loading-unloading cycles leads to a larger maximum

residual gap change. Due to the decreasing gap, the pull-in voltage also decreases within a few

cycles and shows a tendency to level off to a certain value. However, the release voltage does not

seem to be as sensitive to the residual deformations as the pull-in voltage.

Finally, in chapter 6, the conclusions and recommendations for a future work are given.



CHAPTER ONE

Introduction

Microelectromechanical systems (MEMS) could be applied as switches in wireless networks, e.g.

to satisfy the need for high performance at switching between the different operation bands in (next

generation) smart phones [1]. RF-MEMS switches are superior to the currently used diode based

solid state switches and macromechanical switches due to their small size, high linearity, high iso-

lation, low insertion loss, low power consumption and ease of design [1]. Besides being still more

expensive than their conventional and larger counterparts [1], one of the most important issues for

the commercialization of RF-MEMS is currently their reliability, which is mainly dependent on

the mechanical performance of their components.

a) b)

thin film springs

free-standing electrode

gap

Fmech

Felec(V, gap)gap
V

thin film plate

Figure 1.1: a) SEM picture of a capacitive RF-MEMS switch. Courtesy of Philips. b) Schematic

representation of a capacitive RF-MEMS switch. Felec(V, gap) represents the electro-

static force acting on the plate, which is determined by the size of the gap and the

potential difference between the plates. Fmech denotes the mechanical restoring force

provided by the stiffness of the springs that hold the upper plate.

Capacitive RF-MEMS switches, see figure 1.1a, are one of the two common type of MEMS

switches (the other is of Ohmic type). These switches have a structure that is similar to paral-

lel plate capacitors and allow the modulation of signal transmission by large capacitance changes

[1] created through the vertical motion of the free-standing upper plate under the electrostatic

1



2 1 INTRODUCTION

forces emerging from the application of a potential difference to the plates, cf. figure 1.1b. The

upper plate of the capacitive RF-MEMS switch is held in place by means of cantilever springs,

see figure 1.1a, which are made of a metallic thin film with a few micrometers thickness in this

particular case. A typical vertical displacement response of the free standing plate of a capacitive

RF-MEMS switch with respect to the applied voltage is given in figure 1.2b as a function of time.

As the voltage is increased, the upper plate starts to move downwards and the gap is decreased.

At a device specific voltage, the pull-in voltage, the upper plate snaps on the dielectric layer cov-

ering the ground electrode and the switch is fully closed. The closed configuration of the switch

is also illustrated in figure 1.2a. The dielectric layer ensures a small separation distance between

the electrodes in the closed state, which allows the generation of a large capacitance, enabling to

regulate the signal transmission. In the unloading stage, the upper plate is forced to return to its

original position under the influence of the restoring forces provided by the elastic energy stored

in the springs during the actuation. Upon opening a fully closed switch, another structural insta-

bility occurs at the release voltage at which the upper electrode springs back, leading to a sudden

increase in the gap.

time dependent
strain recovery

displacement

permanent

displacement
residual

time

state
unloaded

0

0

a

a

a) b)

upper electrode

bottom electrode
Vpi

Vrl

Vmax

v
o
lt

ag
e

ch
an

g
e

in
g
ap

Figure 1.2: a) Depiction of vertical position of the upper plate of a capacitive RF-MEMS switch

when the switch is ”on” (solid line) and ”off” (light shaded area with dashed line).

Dark shaded areas highlight hinge regions subjected to relatively large stress levels.

Hence residual deformations easily emerge in these regions, leading to malfunctioning

of the switch. b) Illustration of the vertical displacement of a part of the upper elec-

trode located along a− a axis with respect to time and the applied potential difference

during a loading-unloading cycle and afterwards. Vpi , Vrl and Vmax stand for pull-in

voltage, release voltage and the maximum applied voltage, respectively. Green and

cyan colors show displacement for a completely elastic and an elasto-plastic behavior

of the springs. In case of anelastic strain recovery, the residual change in the gap will

decrease over time, denoted by magenta line.

The final gap between the electrodes in the unloaded state is largely controlled by the mechan-

ical performance of the thin film components, see figure 1.2b. In the ideal case of the springs

(and the plate) behaving fully elastic, the upper plate returns to its original position upon the load

removal and the initial gap width is preserved. However, in practice, the relatively large stress

levels in the springs (e.g. in the closed state, see figure 1.2a) in combination with prolonged ac-

tuation times and the effect of service conditions, such as high temperatures, may trigger plastic

activity in the springs, leading to residual changes in the clearance between the plates when the

switch is opened [2]. Although such a behavior closely resembles creep phenomena in bulk ma-

terials, experimental evidences [3–6] imply that size effects may be important for the mechanical
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performance of the RF-MEMS switches. Moreover, it was found that in some cases, the residual

deformation of free-standing thin films can be fully recovered over time [7], also observed in the

form of an anelastic stress recovery following the load reduction [8]. Investigations [8–12] showed

that above mentioned creep and anelastic behavior of metallic thin films are closely related to the

(microstructural) composition of the material such as grain size, imperfections, size and type of

particles involved in the matrix in case of alloys.

Permanent and evolving changes in the unloaded state of thin film components of capacitive RF-

MEMS switches, see figures 1.2b and 1.3, pose additional challenges for the prediction of the

effective service life of these devices. Therefore, the characterization and understanding of the

mechanical behavior of the free-standing thin films for the service conditions of RF-MEMS devices

is essential for their full commercialization.

gap

deformed springs

free-standing electrode

Figure 1.3: a) SEM picture of a deformed RF-MEMS switch. Courtesy of Philips. The excessive

permanent deformation of the thin film springs may easily lead to device malfunction-

ing.

Scope and outline of the thesis

This thesis addresses the development of a physically motivated mathematical model for the time

and scale dependent mechanical behavior of thin films made of precipitation strengthened fcc al-

loys and the application of it to study mechanical behavior of an RF-MEMS switch under operating

conditions. A recently developed strain gradient crystal plasticity (SGCP) model (here referred to

as Evers-Bayley type model) for pure fcc metals constituted the starting point of this work. Within

this framework, the crystallographic slip is modeled by thermally activated dislocation glide and

described via a modified, Arrhenius type rate equation. A back stress in terms of the gradients

of geometrically necessary dislocation densities is employed to predict the corollaries of the size

effect arising from strain gradients on the material behavior.

In the second chapter of this thesis, the thermodynamical aspects of the Evers-Bayley type model

are discussed through a direct comparison with a thermodynamically consistent strain gradient

theory of crystal plasticity by Gurtin. The similarities and differences between the energetic micro-

stresses which are derived for the Gurtin type formulation based on the physical description of

the back stresses of the Evers-Bayley type models and those suggested in literature are analyzed.

Furthermore, the boundary conditions definable within the Evers-Bayley type and Gurtin type

models are examined.

The third chapter deals with the investigation of the capabilities of the SGCP model for the de-

scription of anelastic material behavior in RF-MEMS structures. For this purpose, multiphysical

simulations are conducted for electrostatic bending of thin beams of a pure metal and a two phase
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alloy. The simulation results are studied in comparison with the experimentally available data for

the implications for modeling of anelastic strain recovery in precipitation strengthened metallic

thin films.

Next, in the fourth chapter, an extensive review of literature about the mechanisms of plastic slip

in particle enhanced alloys is given. Then, the SGCP model is extended to obtain a more real-

istic description of time dependency in the mechanical behavior of two phase alloys, i.e. creep

and anelasticity. The flow rule is replaced by the physically well-founded Orowan type rate equa-

tion. An expression is written for the velocity of mobile dislocations based on thermally activated

dislocation glide and a viscous drag controlled motion. Three different particle overcoming mech-

anisms, i.e. the Orowan process, the Friedel process and a thermally activated detachment model

for the climb of edge dislocations are incorporated into the new flow rule for dislocation-particle

interactions. After analyzing the constitutive behavior described by the extended SGCP model

at the material point level, finite element simulations of bending of a single crystalline beam and

micro-clamp experiment on a polycrystalline beam are performed to evaluate the time dependent

material behavior predicted at macro scale, including the influence of inhomogeneous material

diffusion.

In the fifth chapter, the extended SGCP model is utilized to analyze how the time and scale de-

pendent behavior of the thin film components of a capacitive RF-MEMS switch may influence the

performance of the switch. In doing so, a numerical model of the device is generated by assuming

that its free-standing electrode is made of a polycrystalline metal thin film with columnar grains

through the thickness and containing incoherent second phases. Two sets of multi-physical finite

element simulations of the switch are done. In the first set, the effects of particle size, volume

fraction, surface constraints and film thickness on the mechanical behavior are investigated by re-

ferring to the residual changes in the gap between the plates and its variation over time after a

loading and unloading cycle. In the second set of simulations, the mechanical behavior the switch

under repeated loading-unloading cycles is examined with a focus on the duration of the unloaded

state between sequential loading-unloading cycles.

In the last chapter, the main conclusions are summarized and recommendations are given for future

work.



CHAPTER TWO

Thermodynamical aspects of strain

gradient crystal plasticity theories

Abstract

This chapter focuses on the unification of two frequently used and apparently different strain gra-

dient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity

models proposed by Evers et al. [13, 14] and Bayley et al. [15, 16] (here referred to as Evers-

Bayley type models), where a physical back stress plays the most important role and which are

further extended here to deal with truly large deformations, and (ii) the thermodynamically consis-

tent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin

type model), where the energetic part of a higher order micro-stress is derived from a non-standard

free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted

from the definition of the back stresses of the improved Evers-Bayley type models. The possi-

ble defect energy forms that yield the derived physically-based micro-stresses are discussed. The

duality of both type of formulations is shown further by a comparison of the micro-boundary condi-

tions. As a result, this paper provides a direct physical interpretation of the different terms present

in Gurtin’s model.

2.1 Introduction

Continuous developments in the manufacturing of high-tech devices rely on the use of functional

components, such as micro-electromechanical systems (MEMS). The prediction of service life

(and reliability) of such devices depends on the fundamental understanding of the underlying ma-

terial behavior. It has been experimentally shown [3–5] that on the scale of several micrometers

and below, crystalline materials behave different from their bulk equivalent due to microstructural

effects (e.g. grain size, lattice defects and impurities), gradient effects (e.g. lattice curvature due

to a non-uniform deformation field) and surface constraints (e.g. hard coatings or free interfaces).

These effects may lead to a stronger or weaker mechanical response depending on the size and

the unique microstructure of a material [17]. For discussions and recent experimental analyses of

the size dependent material behavior, one is referred to [18–25]. This scale dependent material

5



6 2 THERMODYNAMICAL ASPECTS OF STRAIN GRADIENT CRYSTAL PLASTICITY THEORIES

response can not be captured by standard continuum theories of plasticity since they are lacking

material length scales in their formulations. One way to include a scale dependent mechanical

response is the incorporation of strain gradients into the constitutive laws [26–29], which is the

starting point of most strain gradient plasticity theories.

Strain gradient plasticity theories can be classified into two groups, i.e. higher and lower order

theories, according to the method of incorporation of the strain gradients. The lower order theories

include governing equations with the same order as those in standard continuum plasticity theories

since no additional stresses arising from gradients of the deformation are taken into account; the

strain gradients enter only into the hardening equations. Hence, no additional boundary conditions

are necessary [30–36]. The higher order theories are based on the consideration of higher order

stresses conjugate to strain gradients and their work (or power) contributions [3, 13–16, 37–47].

Therefore, higher order gradient theories require additional governing equations and boundary

conditions.

Here, two types of higher order strain gradient theories of crystal plasticity with different formula-

tions based on geometrically necessary dislocation (GND) densities are considered: (i) a physically

based strain gradient crystal plasticity model, initially proposed by Evers et al. [13, 14] and ex-

tended by Bayley et al. [15, 16], here referred to as the Evers-Bayley type models, and (ii) the

model derived based on thermodynamics by Gurtin [37, 43–45], further referred to as the Gurtin

type model.

In the Gurtin type model, a higher order micro-stress vector that is intrinsically comprised of an

energetic and a dissipative part and is conjugate to the gradient of slip rate per slip system is in-

troduced in the formulation of the internal power expenditure in consistency with a micro-force

balance equation for each slip system. The corresponding micro-traction, which is conjugate to

the slip rate, appears in the definition of the external power. The model was implemented within

a finite element framework by taking the slip rates on the slip system level as independent vari-

ables in addition to the displacements and using the micro-force balance equation as the additional

governing equation.

In the Evers-Bayley type models, the back stress plays the main role, and originates from a phys-

ical description of the internal stress field resulting from the accumulation of the stress fields of

individual dislocations due to the elastic distortion of the crystal lattice. In the model of Evers

et al. [13, 14], it is formulated by considering the stress fields due to the GNDs of only the slip

system itself, which is also called as the self-internal back stress formulation. This formulation is

extended in the model of Bayley et al. [15, 16] by also including the contributions of the GNDs on

other slip systems, so as to describe the energetic dislocation interactions more realistically, which

is referred to as the full-internal back stress formulation. These models are implemented within a

finite element context by considering the GND densities as the additional degrees of freedom and

by employing the GND density balance equations as the extra field equations.

Recently, [46, 47] compared Gurtin’s framework to several physically based gradient crystal plas-

ticity theories, including their own model that was derived from conventional single crystal plas-

ticity for small deformations. It was shown that for the cases where the back stress relation for

a slip system can be expressed as the divergence of a vector quantity, the micro-stress vector

of the Evers-Bayley type models (there referred as non-work-conjugate formulations) can be re-

cast into the form of Gurtin type models (there referred to as work-conjugate type formulations).

Furthermore, the equivalence of the additional field equations, the micro-force balance law for

work-conjugate and the GND density balance equation for the non-work-conjugate models, was

trivially shown. When the micro-stresses resulting from the back stress relations are used together
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with identical boundary conditions, both type of models capture the same material length scale

effects, leading to the same results, which assures the thermodynamical consistency of the non-

work-conjugate formulations. Their model was extended to finite deformations in [38]. However,

their back stress definitions and therefore the micro-stresses derived from them do not include the

energetic interactions between the GNDs of the different slip systems, which may be far from the

description of the real dislocation mechanisms in metals. Hence, the model in [38] is comparable

to the model of Evers et al. [13, 14], which omits the energetic interactions between slip planes

in the definition of the back stress and also their micro-stress vector is similar to the micro-stress

derived from the model of Evers et al. [13, 14] and to the one of Gurtin [37].

In the current study, an enhancement in the formulations of the Evers-Bayley type models is made

by changing the domain with respect to which the gradient operators as used for crystallographic

slip and dislocation densities, are defined from the reference to the intermediate configuration. Up

to now, the Evers-Bayley type models were used for problems involving small plastic strains only.

However, when the plastic deformations are large, spatial distances in this configuration are af-

fected by the slip on multiple slip systems whereas the orientation of the lattice in the intermediate

configuration remains unchanged. The enhancement allows to apply them for truly large plastic de-

formations as well. Then, as the main focus of interest of this work, the similarities and differences

of the Gurtin type and the Evers-Bayley type models are discussed for the purpose of unification

and at the end, for revealing the thermodynamical consistency of the latter type models. The start-

ing point is the extraction of the energetic micro-stress vectors for the Gurtin type model from the

physical back stress expressions of the Evers-Bayley type models and the discussion of the defect

energy functions from which these micro-stresses can be derived. This is followed by a study on

the additional (micro-)boundary conditions of these models. For the model of Evers et al. [13, 14],

the derived micro-stress is directly comparable with the micro-stresses of Gurtin [37, 44, 45] (ob-

tained from the uncoupled defect energy function) since these frameworks do not consider the

latent back stress interaction between different glide systems and the accompanying defect energy

potentials for these frameworks look the same, i.e. simple quadratic functions in terms of GND

densities. However, successful continuum theories should preserve at least the accumulated ef-

fect of the influence of the discreteness, e.g. interactions between the dislocations of different

slip systems since it affects the dislocation generation, annihilation and consequently the macro-

scopic material response [48, 49]. Therefore, for the complete unification of the work-conjugate

and non-work-conjugate models, the consideration of a non-work-conjugate model is needed with

a back stress form which properly includes the interactions between the dislocations of different

slip systems, i.e. the model of Bayley et al. [15, 16] together the free energy form that may yield

the micro-stress vector corresponding to that energetic back stress tensor. The micro-stress derived

from the back stress of this model contains additional terms corresponding to the contribution to

the internal stress state of a slip system by the GNDs of the other slip systems, which are ignored

by Evers et al. [13, 14] and by Gurtin [44, 45]. These additional terms change the nature of the

defect energy associated to this micro-stress, which may have a non-convex form. In Gurtin [37], a

simple quadratic defect energy is suggested to couple the slip systems. However, in that model, the

energetic interaction is defined in a phenomenological way and the resulting micro-stress vector is

limited to lying in its slip plane, similar to the one derived from an uncoupled defect energy.



8 2 THERMODYNAMICAL ASPECTS OF STRAIN GRADIENT CRYSTAL PLASTICITY THEORIES

2.2 Strain gradient crystal plasticity frameworks

2.2.1 Physically motivated strain gradient crystal plasticity models of Evers et al.

and Bayley et al.

Here, an enhanced version of the Evers-Bayley type models [13–16] is presented. Essentially,

the gradient operators used for slip and dislocation densities, which were defined in the reference

configuration in the original formulations of the Evers-Bayley type models are taken with respect

to the intermediate configuration.

Constitutive framework

The Kröner-Lee decomposition [50, 51] of the deformation gradient tensor F is the starting point

for the models of Evers et al. [13, 14] and Bayley et al. [15, 16]:

F = Fe · Fp, (2.1)

where Fe is the elastic part of the deformation gradient, describing the stretch and the rotation of

the lattice with respect to an intermediate stress free configuration (defined by the plastic deforma-

tion gradient Fp with respect to the material configuration).

The second Piola-Kirchhoff stress tensor S∗ is given in terms of the elastic Green-Lagrange strain

tensor Ee in the intermediate configuration as:

S∗ = C : Ee with Ee =
1

2

(
FT
e · Fe − I

)
, (2.2)

with I the second order identity tensor and C the fourth order elasticity tensor. S∗ is also defined

as:

S∗ = F−1
e · τ · F−T

e with τ = Jσ and J = det (Fe) = det (F). (2.3)

Here, τ is the Kirchhoff stress tensor and σ the Cauchy stress tensor.

The resolved shear stress τα on slip system α is given by:

τα = S∗ : P
α
∗ with Pα

∗ = sα
∗ n

α
∗ , (2.4)

where Pα
∗ is called the Schmid tensor, sα

∗ is the unit direction of the Burgers vector and nα
∗ is the

unit normal of the slip plane of system α1.

The plastic velocity gradient tensor is defined as the summation of all contributions of ns slip

systems α, which are defined by their Schmid tensors and the plastic slip rates γ̇ α:

Lp =

ns∑

α=1

γ̇ α Pα
∗ . (2.5)

1From here onwards, subscripts 0 and ∗ are used to denote a quantity in the reference and intermediate configurations,

respectively, while the quantities without any subscript are in the current configuration.
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The material time derivative of the plastic deformation gradient tensor is obtained from:

Ḟp = Lp · Fp. (2.6)

The evolution of the plastic slip rate is governed by a viscoplastic power-law:

γ̇ α = γ̇0

(

|τ α
eff |
sα

)m

exp

[

−G0

kT

(

1−
|τ α
eff |
sα

)]

sign(ταeff ), (2.7)

where γ̇0 and m are the reference slip rate and the rate sensitivity, respectively. Furthermore, sα

is the slip resistance, T is the absolute temperature and k is the Boltzmann constant. The material

constant G0 represents the thermal activation energy necessary for a dislocation to pass a barrier

preventing crystallographic slip. The effective stress τ α
eff drives the dislocation motion on the slip

system considered. It is expressed by the difference between the externally applied resolved shear

stress τα and the resolved back stress ταb :

τ α
eff = τα − ταb . (2.8)

One of the distinct features of this framework is the formulation of the back stress ταb in terms of

the gradients of the GNDs, which will be further elaborated in section 2.2.1.

The slip system resistance, sα, is the resistance against the dislocation movement on the glide

system α due to the short-range interactions between dislocations. It is formulated following

[26] in terms of both statistically stored dislocation densities ρα
SSD and geometrically necessary

dislocation densities ρα
GND as:

sα = cGb

√
√
√
√

12∑

ξ=1

Aαξ|ρ ξ
SSD |+

18∑

ξ=1

Aαξ|ρ ξ
GND | for α = 1, 2, . . . , ns, (2.9)

where c is a material constant [52], G is the shear modulus, b the magnitude of the Burgers vector,

and Aαξ are the components of the interaction matrix which represents the strength of the interac-

tions between slip systems as determined by [53]. It is composed of the six interaction coefficients

corresponding to self hardening, coplanar hardening, Hirth lock, Glissile junction, Lomer-Cottrell

lock, and cross slip [see 54].

Definition of back stress

The formulation of the back stress in the Evers-Bayley type models is based on a linearization

of the GND distribution, whereby the stress fields of all dislocations are superposed, [55]. The

stress fields of the individual dislocations emanate from the analytical solution within a distorted

infinite lattice. The statistically stored dislocations (SSDs) represent the unsigned fraction of the

total population of dislocations. Their contribution to the internal stress state is zero because of the

cancellation of the individual contributions of SSDs. Hence, the back stress is induced only by the

GNDs.

In Evers et al. [14], the back stress on slip system ξ is defined by considering only the contributions

of the dislocations belonging to slip system ξ, also referred to as the self-internal back stress

formulation. This formulation was later extended in Bayley et al. [15, 16] by incorporation of all

stress contributions from all slip systems into the back stress, which is named the full-internal back
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stress formulation.

Departing from Bayley et al. [16], the internal stress field induced by edge GNDs is given by:

σ int
e =

GbR2

8(1 − ν)

12∑

ξ=1

∇∗ ρ
ξ
GND ,e ·

(

3nξ
∗s

ξ
∗s

ξ
∗ + nξ

∗n
ξ
∗n

ξ
∗ + 4νnξ

∗p
ξ
∗p

ξ
∗

−sξ∗s
ξ
∗n

ξ
∗ − sξ∗n

ξ
∗s

ξ
∗
)

, (2.10)

and the screw GNDs part is:

σ int
s =

GbR2

4

18∑

ξ=13

∇∗ ρ
ξ
GND ,s ·

(

−nξ
∗s

ξ
∗p

ξ
∗ − nξ

∗p
ξ
∗s

ξ
∗ + pξ

∗s
ξ
∗n

ξ
∗ + pξ

∗n
ξ
∗s

ξ
∗
)

(2.11)

with p
ξ
∗ = s

ξ
∗ × n

ξ
∗ associated with slip system ξ and R is the radius of the cylindrical integration

volume. In the case of the self internal back stress formulation, α = ξ and consequently, the

underlined terms vanish.

The back stress is opposite to the internal stress, which is given by the projection of the total stress

field onto the slip system by the related Schmid tensor as:

ταb = −
(
σint
s + σint

e

)
: Pα

∗ for α = 1, 2, . . . , ns. (2.12)

Dislocation density evolution

The evolution of statistically stored dislocation densities ρ ξ
SSD on each slip system ξ, governing

the slip resistance in equation (2.9), is given by:

ρ̇ ξ
SSD =

1

b

(
1

L ξ
− 2 yc ρ

ξ
SSD

)

|γ̇ ξ| with ρ ξ
SSD (t = 0) = ρ ξ

SSD0
, (2.13)

which is the generalized form of the relation originally proposed by [56].

The first term within the parentheses in equation (2.13) describes the accumulation rate, where L ξ

denotes the average dislocation segment length calculated as:

Lξ =
K

√
12∑

ξ=1

Hαξ |ρξSSD |+
18∑

ξ=1

Hαξ |ρ ξ
GND |

. (2.14)

Here, Hαξ represents the mutual interactions anticipated between the sliding SSDs and forest

dislocations [13], built in a way similar to Aαξ in equation (2.9).

The second term in the parentheses in equation (2.13) is the annihilation rate, which depends on

the critical annihilation length yc. This is the average distance between two oppositely signed

dislocations, below which they annihilate.

Geometrically necessary dislocations represent the signed fraction of the total dislocation popu-

lation, since they arise from the gradients of plastic slip and are necessary to preserve the lattice

compatibility in the crystal. In accordance with [26], the slip gradients in the direction of the slip

plane normal do not geometrically induce an excess of dislocations, whereas the slip gradient in
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the direction of slip sα∗ gives rise to edge dislocations and in the direction normal to slip pα
∗ induces

screw dislocations. The densities of edge and screw GNDs are computed as:

ρ ξ
GND = ρ ξ

GND0
+ dξβ

∗ ·∇∗ γ
β , (2.15)

with

dξβ
∗ =

{

−1
b δβξ s

ξ
∗ , ξ, β = 1, 2, ..., 12,

1
b (δβα1

pα1∗ + δβα2
pα2∗ ) , ξ = 13, 14, ..., 18.

(2.16)

Here, ξ runs over 1, 2, ..., 12 for edge GNDs and over 13, 14, ..., 18 for screw GNDs. ρ ξ
GND0

denotes the initial GND density present in the material, α1 and α2 indicate two slip systems with

the same slip direction but different plane normals for each screw GND. A list of indices and

vectors for dislocation densities and slip systems of FCC metals can be found in Evers et al. [13].

Note that, contrary to the original models of Evers et al. [13, 14] and Bayley et al. [15, 16], which

were essentially used to resolve problems with small plastic strains, the gradients of GND densities

in equations (2.10) and (2.11) and the gradient of slip in equation (2.15) are taken with respect to

the intermediate configuration. This modification provides a more accurate calculation of the GND

densities and, in turn, the back stresses, particularly when large strains and slip on multiple slip

systems are concerned.

Variational formulation and boundary conditions

Implementation of the crystal plasticity framework outlined above in a finite element context uses

18 GND densities as the nodal degrees of freedom in addition to 3 nodal displacements. The set of

governing field equations employed are the conventional stress equilibrium (neglecting the body

forces):

∇0 ·TT = 0, (2.17)

(with T being the first Piola-Kirchhoff stress tensor) and the dislocation density balance equation

(2.15):

Weak forms of the governing field equations are obtained by multiplying (2.15) and (2.17) by

weighting functions wu(x0) and wξ
ρ(x∗), respectively and subsequently integrating the result over

the volume V0 in the intermediate configuration followed by application of the Gauss-divergence

theorem:
∫

V0

(∇0wu)
T : TTdV0 =

∫

A0

wu · t0 dA0, (2.18)

with A0 the surface enclosing V0, t0 the surface traction associated with T, and

∫

V∗

(

wξ
ρ ρ

ξ
GND + (∇∗w

ξ
ρ · dξα

∗ ) γα
)

dV∗ =
∫

V∗

wξ
ρ ρ

ξ
GND∗

dV∗ +
∫

A∗

wξ
ρ Γ

ξ
∗ dA∗. (2.19)

The last term in equation (2.19) represents an additional boundary condition where Γ ξ
∗ is a crys-

tallographic slip measure in surface normal direction n∗ along the boundary and is defined as
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Γ ξ
∗ = γβ (dξβ

∗ · n∗). The additional boundary conditions are specified by setting either

ρξGND = 0, (2.20)

which means that the GNDs can escape at the surface, i.e. a free surface condition, or

γβ (dξβ
∗ · n∗) = 0, (2.21)

which can be regarded as a non-slip condition (leading to GND accumulation on the boundary) on

the surface with normal vector n∗, i.e. a hard interface.

2.2.2 A thermodynamically consistent strain gradient crystal plasticity theory by

Gurtin

Framework

Gurtin has introduced a higher order gradient theory of crystal plasticity in [37, 43–45]. The theory

is based on the multiplicative decomposition of the deformation gradient tensor F into its elastic

part Fe and the plastic part Fp as in equation (2.1). It includes a set of micro-force balance laws

derived from the principle of virtual power (omitting the body forces):

∫

A
t · ṽ dA+

∑

α

∫

A
Ξαν̃α dA

︸ ︷︷ ︸

Pext

=

∫

V
σ : L̃e dV +

∑

α

∫

V
(παν̃α + ξα ·∇ν̃α) dV

︸ ︷︷ ︸

Pint

. (2.22)

Here, Pext and Pint denote the external and internal virtual power expenditure in the current state

V . In equation (2.22), α is the slip system index running over 1 to 12 for an FCC metal. ṽ is the

virtual velocity and ν̃α is a measure for the virtual slip rates in each individual slip systems. t is

the surface traction and σ the Cauchy stress tensor. Ξα = ξα · n is a scalar microscopic traction

arising from the micro-stress vector ξα, which is assumed to be a Peach-Köhler force-like quantity

in the present viscoplastic medium that is conjugate to the gradient of the slip rate and n is the unit

surface normal. πα represents the scalar internal force that develops from the creation, annihilation

and interaction of dislocations, which is conjugate to the slip rate.

The velocity gradient (∇v)T is defined as:

(∇v)T = Le + Fe · Lp · F−1
e (2.23)

where Le and Lp are the elastic and plastic deformation rates, respectively, given by:

Le = Ḟe · F−1
e and Lp = Ḟp · F−1

p =
∑

α

ναsα∗n
α
∗ =

∑

α

ναPα
∗ (2.24)

and sα∗ and nα
∗ are the unit lattice vectors in the intermediate configuration.

Next, macroscopic and microscopic force balances and traction conditions are derived. Choosing

a virtual ṽ and ν̃α = 0 results in L̃e = (∇ṽ)T according to equations (2.23) and (2.24). Subse-
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quently, equation (2.22) turns into the conventional virtual power balance for the Cauchy stress:

∫

A
t · ṽ dA =

∫

V
σ : L̃e dV. (2.25)

After some manipulations, equation (2.25) simplifies to the local (i.e. macroscopic) force balance

∇ · σ = 0 (2.26)

and the traction condition t = σ · n.

For a virtual ν̃α and vanishing ṽ, the elastic distortion rate takes the form (cf. equations (2.23) and

(2.24)):

L̃e = −
∑

α

ν̃αPα; Pα = sαnα with

{

sα = Fe · sα∗ ,
nα = F−T

e · nα
∗ .

(2.27)

Then, equation (2.22) reduces to the unconventional microscopic virtual power balance:

∫

V
σ : L̃e dV +

∑

α

∫

V
(πα ν̃α + ξα ·∇ν̃α) dV =

∫

A
Ξα ν̃α dA. (2.28)

Since ν̃α is arbitrary, equation (2.28) is further reduced to the micro-force balance law:

πα − τα −∇ · ξα = 0, (2.29)

with an accompanying micro-traction condition Ξα = ξα · n. Here, τα is the resolved shear stress

which is defined as:

τα = σ : Pα (2.30)

which is conjugate to the slip rate.

The local free energy imbalance, which states that the rate of change of free energy can not be

greater than the external power spent on the body V ,

δ = −J−1ψ̇ + J−1S∗ : Ėe +
∑

α

(ξα ·∇να + πανα) ≥ 0, (2.31)

is postulated for the derivation of the constitutive relations, assuming GND densities and the slip

rate gradients to be the independent variables. In equation (2.31), δ represents the dissipation

per unit volume in the current configuration, J = det(F) = det(Fe), S∗ is the second Piola-

Kirchhoff stress obtained from an elastic pull-back with S∗ = JF−1
e · σ · F−T

e , Ee is the elastic

Green-Lagrange strain tensor and ψ is the free energy function in terms of GND densities per unit

volume in the intermediate configuration which is invariant under all changes in the reference state.

Within the finite deformation formulation of [37], the free energy function ψ is formulated in terms

of the geometrically necessary edge and screw dislocation densities ρ̂αGND ,e and ρ̂αGND ,s , the rate
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of change of which are given in the current configuration by2:

˙̂ραGND ,e = −∇ · qα
GND ,e + σαGND ,e and ˙̂ραGND ,s = −∇ · qα

GND ,s + σαGND ,s , (2.32)

where

qα
GND ,e = να sα and qα

GND ,s = −να pα (2.33)

are respective fluxes of edge end screw GNDs and

σαGND ,e = να∇ · sα and σαGND ,s = −να∇ · pα (2.34)

are spatial edge and screw GND supplies, respectively. pα is a push forward of lattice vector pα
∗

from the intermediate to the current configuration as pα = Fe · pα
∗ with pα

∗ = −sα∗ × nα
∗ . Hence,

equations (2.32)-(2.34) result in:

˙̂ραGND ,e = −∇να · sα and ˙̂ραGND ,s = −∇να · pα. (2.35)

In Gurtin’s model, the micro-stress ξα is additively decomposed into an energetic part ξαen and

a dissipative part ξαdis . The constitutive equation for the energetic part of the micro-stress vector

results from the exploitation of the free energy imbalance, equation (2.31), for a defect energy

function ψD = f(ρ̂GND) together with equation (2.32) and reads:

ξαen ≡ − J−1 ∂ψD

∂ρ̂αGND ,e
︸ ︷︷ ︸

fα
e

sα + J−1 ∂ψD

∂ρ̂αGND ,s
︸ ︷︷ ︸

fα
s

pα (2.36)

with fαe and fαs energetic defect forces for the edge and screw GNDs in the slip system α, respec-

tively.

For the derivation of the micro-stresses, defect energy forms have been proposed in [37] in terms

of the net GND density (measured per unit volume in the reference configuration) :

ρ̂αnet =
√

|ρ̂αGND ,e |2 + |ρ̂αGND ,s |2. (2.37)

The simplest one proposed ignores the interactions between different slip systems and it is given

by:

ψD =
1

2
S0L

2
∑

α

(ρ̂αnet)
2 (2.38)

where L is an energetic length scale and S0 is the initial slip resistance. By expressing the edge

and screw GND density in the current configuration ¯̂ραGND ,e and ¯̂ραGND ,s as:

¯̂ραGND ,e = J−1ρ̂αGND ,e and ¯̂ραGND ,s = J−1ρ̂αGND ,s (2.39)

2GND densities in the models of Gurtin and Gurtin et al. (2000-2008) are consistently in units of inverse length (here

indicated by ρ̂αGND,e and ρ̂αGND,s ) due to the absence of the magnitude of the Burgers vector in the decomposition of the

Burgers tensor to the spatial distributions of the GNDs, for instance in equation (1.5) of [44], which also affects the form

of the free energy function and the resulting micro-stress vectors. The definition of GND densities in the Evers-Bayley

type models complies with the decomposition of the Burgers tensor in Sun et al. [57] and Arsenlis and Parks [58] with

the dislocation length per unit of volume having the unit of inverse length squared.
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and by following equation (2.36), the energetic defect forces and, hence, the micro-stresses are

derived as:

ξαen = S0L
2(− ¯̂ραGND ,es

α + ¯̂ραGND ,sp
α). (2.40)

Another defect energy function which couples different slip systems is suggested in [37] as:

ψD =




1

2
S0L

2
∑

α

(ρ̂αnet)
2 + λ

∑

α,β,α6=β

ρ̂αnet ρ̂
β
net



 . (2.41)

where λ is a coupling coefficient. Having defined the dislocation concentrations cαe =
ρ̂α
GND,e

ρ̂αnet
=

¯̂ρα
GND,e

¯̂ραnet
and cαs =

ρ̂α
GND,s

ρ̂αnet
=

¯̂ρα
GND,s

¯̂ραnet
, the energetic defect forces are derived and resulting micro-

stress vector is:

ξαen = S0L
2(cαe s

α + cαsp
α)



 ¯̂ραnet + λ
∑

β,β 6=α

¯̂ρβnet



 . (2.42)

With the definition of the energetic micro-stress, the dissipation inequality in (2.31) reduces to:

δ =
∑

α

(ξαdis ·∇να + πανα) ≥ 0. (2.43)

This reduced dissipation inequality provides the inspiration for the constitutive equation forms for

the dissipative part of the micro-stresses ξdis through the definition of the dissipative scalar force

πα from standard crystal plasticity theories. In [37], πα is given by:

πα = SαR(dα)
να

dα
(2.44)

where Sα is the slip resistance, dα =
√

|να|2 + l2|∇να|2 is an effective flow rate, l is a dissipative

length scale and R(dα) is a sensitivity rate function and |∇να|2 = ∇να · ∇να. The suggested

constitutive relation for ξαdis reads:

ξαdis = SαR(dα) l2
∇να

dα
. (2.45)

The flow rule is obtained by inserting the micro-stress ξα and the internal force πα into the micro-

force balance law (2.29). For the complete framework, see [37, 43–45].

Boundary conditions

The local macro-force balance law (2.26) and the non-local micro-force balance law (2.29) were

used as the governing field equations within a finite element context, taking the nodal displace-

ments and the slip rates of all slip systems as the degrees of freedom.

The external power expended on a slip system α on surface A with the normal vector n by the

micro-stress vector is given by

Wext =

∫

A
(ξα · n)ναdA. (2.46)
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For a zero external power on the surface, i.e. Wext = 0, the necessary boundary conditions can be

derived by taking either

ξα · n = 0 (2.47)

which is the definition of a micro-stress free boundary or

να = 0 (2.48)

which defines a hard boundary, i.e. a non-slip condition.

2.3 Thermodynamical aspects of Evers-Bayley models

2.3.1 Micro-stress vector from back stress definition

The aim of this section is the derivation of the micro-stress vectors ξα∗ based on the physical

definition of the back stress in the Evers-Bayley type models which is given in section 2.2.1.

To do so, consider the dissipative effects in the Evers-Bayley type models which are included

through the slip resistance sα in the flow rule, equation (2.7). When its definition in equation (2.9)

is considered, it can be seen that these models are dissipative in the slip γα via SSD densities

ρξSSD (equation (2.13)) and dissipative in the slip gradient ∇∗γα via GND densities ρξGND . These

models are energetic in ∇∗γα through the definition of back stresses (equation (2.12)) via GND

densities. In the present paper, the contribution of GND densities to the slip resistance is ignored.

Hence, the Evers-Bayley type models become fully dissipative in γα and fully energetic in ∇∗γα.

Consequently, the micro-stress ξα∗ , which is conjugate to ∇∗γα, will be fully energetic, i.e. ξα∗ =
ξαen∗ and ξαdis∗ = 0.

Now, consider the definition of the effective shear stress on a slip plane α:

τ α
eff = τα − ταb . (2.49)

Setting up a relation between the back stresses ταb of the Evers-Bayley type models and the micro-

stress vector ξα∗ (in the intermediate configuration) of [43] such that3

ταb = −∇∗ · ξα∗ (2.50)

is the key step [38, 46, 47] for the unification of the phenomenological model of Gurtin and the

models by Evers et al. and Bayley et al., which, in turn, will also validate the thermodynamical

consistency of the latter type models.

With the definition (2.50), it can be shown through equation (2.49) that the effective resolved

shear stress τ α
eff of the Evers-Bayley type models is the same as the scalar internal stress πα∗ of

3Gurtin’s framework in section 2.2.2 is in the spatial configuration, whereas from section 2.3 onwards, all formula-

tions are presented in the intermediate configuration. This enables a consistent comparison with the Evers-Bayley type

models without loss of generality.
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Gurtin’s model (in the intermediate configuration)4 , and consequently equation (2.49) is identical

to the micro-force balance law (in the intermediate configuration) defined by Gurtin (cf. equation

(2.29)):

τ α
eff = πα∗ ⇔ πα∗ − τα −∇∗ · ξα∗ = 0, (2.51)

yielding the physical interpretation of the micro-force balance law5. Then, by equation (2.51), the

reduced dissipation inequality for the Evers-Bayley type models can be written as

δ =
∑

α

ταeff γ̇
α ≥ 0, (2.52)

cf. equation (2.43). Based on the flow rule used in the Evers-Bayley type models in equation (2.7),

or in a recast form in footnote (4), ταeff and γ̇α always have the same sign, the multiplication of

which results in a positive dissipation, confirming the thermodynamical consistency of the Evers-

Bayley type models.

The micro-stress vector ξα∗ for the model of Evers et al. [14] is derived through equation (2.50)

based on the quantification of a back stress given by equations (2.10)-(2.12):

ξα∗ = − GbR2

8 (1− ν)
ρα
GND ,e s

α
∗ +

GbR2

4
ρα
GND ,s p

α
∗ . (2.53)

Note that this micro-stress vector does not include the influence of the other slip systems on system

α (i.e. the latent hardening) since only the effects of GNDs belonging to slip system α are con-

sidered in the definition of internal stress fields in Evers et al. [14]. Equation (2.53) clearly shows

that ξα∗ lies in its slip plane. From these aspects, ξα∗ compares to the micro-stresses proposed by

[37, 38, 43–47]. In particular, keeping in mind the relation between the GND densities ραGND ,e,s

defined in Gurtin’s model and ραGND ,e,s in Evers’ and Bayley’s model ραGND ,e,s ∼ 1
b ρ

α
GND ,e,s ,

ξα∗ becomes the identical counterpart of the energetic micro-stress (equation (2.40)) that is derived

from a simple quadratic defect energy function when the energetic length scale of Gurtin’s model,

L, is set equal to that of the Evers-Bayley type models, R, and S0 to G
8 (1−ν) for edge and S0 to G

4
for screw GNDs. It should be mentioned that contrary to the energetic length scale L, which is phe-

nomenologically introduced in Gurtin’s model, the energetic length scale R in the Evers-Bayley

type models has a physical meaning: it is the radius of a circular region around a material point in

which GNDs are considered and their individual contributions to the back stress are superposed.

One may refer to Geers et al. [55] for a detailed discussion on the energetic length scales involved

in the Evers-Bayley type models. Note that the Gurtin framework contains one more length-scale

measure, which is phenomenologically introduced as a dissipative length scale l in equations (2.44)

and (2.45) to take into account the gradient of slip in the dissipative processes and to define the

dissipative micro-stress. It cannot be compared to any scale measure in the Evers-Bayley type

4 The original flow rule in equation (2.7), which is used in the models of Evers et al. and Bayley et al. has an

exponential term to account for the thermal activation of the crystallographic slip. Here, for convenience, isothermal

conditions are considered, allowing the omission of the term related to thermal activation. The inverse formulation of

the flow rule then is τ α
eff = πα

∗ = sα sign(γ̇α)
(

|γ̇α|
γ̇0

)m

.

5In the derivation of equation (2.51), one should note that there exists a difference in the definition of GND density

rate between the Evers-Bayley type models and the Gurtin type models. For the former type model, the time derivative

of equation (2.15) involves a term,
˙

∇∗γβ = −LT
p · ∇∗γ

β + ∇∗γ̇
β . In the latter type models, this term is denoted

by ∇∗ν
β , cf. equation (2.35). Here, for the purpose of comparison of the Evers-Bayley type and Gurtin type models,

∇∗γ̇
β is used instead of ∇∗ν

β to represent the rate of the gradient of slip, which is in line with Gurtin’s formulation.
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models since the effect of gradient of slip on the dissipative processes and the dissipative part of

the micro-stress in these models are omitted here. Moreover, while the initial slip resistance S0 is

considered as the same for both edge and screw GNDs in Gurtin’s models, its counterpart in the

Evers-Bayley type models, which comes from the definition of the internal stress due to the distor-

tion in an elastic continuum by GNDs, is different for the different types of GNDs, i.e. G
8 (1−ν) for

an edge and G
4 for a screw GND. For further details, one may refer to [13–16, 49, 55].

The micro-stress vector for the model of Bayley et al. [16] has a more complicated form compared

to the one for the model of Evers et al. in equation (2.53) because in the internal stress field

formulation of Bayley’s model (see equations (2.10) and (2.11)), not only the contributions by the

GNDs of the related slip system but also the contributions by the GNDs of the other slip systems are

considered. First, the third order tensors A
ξ
∗ and B

ξ
∗ are introduced for the sake of compactness:

A ξ
∗ = 3nξ

∗s
ξ
∗s

ξ
∗ + nξ

∗n
ξ
∗n

ξ
∗ + 4νnξ

∗p
ξ
∗p

ξ
∗ − sξ∗s

ξ
∗n

ξ
∗ − sξ∗n

ξ
∗s

ξ
∗, (2.54)

B ξ
∗ = −nξ

∗s
ξ
∗p

ξ
∗ − nξ

∗p
ξ
∗s

ξ
∗ + pξ

∗s
ξ
∗n

ξ
∗ + pξ

∗n
ξ
∗s

ξ
∗. (2.55)

Then, the micro-stress vector for Bayley’s model can be written using equations (2.10)-(2.12) and

(2.50):

ξα∗ =




GbR2

8 (1 − ν)

12∑

ξ=1

ρξGND ,e A
ξ
∗ +

GbR2

4

18∑

ξ=13

ρξGND ,s B
ξ
∗



 : Pα
∗ . (2.56)

Such a complex micro-stress vector, which takes the interactions between individual slip systems

into account within its physical basis, is not present in the models of [43–45] and [38, 46, 47].

In [37], a micro-stress vector that is derived from a defect energy which couples the individual slip

systems is given (cf. equation (2.42)). The coupling in the corresponding defect energy, equation

(2.41) is phenomenological and the derived micro-stress still lies in the plane of the slip system to

which it belongs whereas the micro-stress vector in equation (2.56) does not necessarily lie in the

corresponding slip plane. An out-of-plane micro-stress vector may be physically explained by the

defect forces with their direction out of the slip plane that may arise as a result of the interaction

with a second glide system whose slip plane is not parallel to the slip plane considered.

2.3.2 Defect energy function

The constitutive equation for an energetic micro-stress of a slip system α is defined in terms of

a defect energy function ψD = f(ρGND) in the current configuration by equation (2.36), or its

equivalent in the intermediate configuration as:

ξα∗ =
∂ψD

∂∇∗γα
. (2.57)

A defect energy function that gives the micro-stress vector (2.53) for the framework of Evers et al.

through equation (2.57) can be defined as:

ψD =
Gb2 R2

16(1 − ν)

12∑

α=1

(ραGND ,e)
2 +

Gb2R2

8

18∑

α=13

(ραGND ,s)
2 (2.58)

which is a convex function similar to the defect energies suggested by Gurtin et al. and Gurtin
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[37, 45] (see equation (2.38)) and [38, 47], in which the coupling between different slip systems

is omitted. Such a quadratic function means that the energy will monotonically increase with the

dislocation density, e.g. as the dislocation density increases or decreases, the energy also increases

or decreases, respectively.

From a physical perspective, a quadratic energy function does not suffice to capture the real ener-

getic dislocation interactions across different glide systems, where the total energy may decrease

even though, for instance, the same amount of GND density is preserved in the volume considered.

In fact, this directly affects the form of the defect energy function, as in the case for the model of

Bayley et al. [15, 16]. For this model, the influence of the dislocation interactions from different

slip systems on the micro-stress in equation (2.56) is associated with a defect energy function that

is considerably more complex than the one for the model of Evers et al. [13, 14]. The required

defect energy function is expected to be non-convex in contrast to the one in equation (2.58).

A convex defect energy function that couples the individual slip systems proposed by [37] is given

in equation (2.41). Still, this type of energy form does not allow for a physically based micro-

stress vector of the type identified in equation (2.56) because of its out of plane components,

consistent with a non-convex nature of a defect energy function. Apparently, the incorporation of

the energetic interactions between different slip systems into the Gurtin type models via a defect

energy function (which is ultimately required for a realistic description of the material behavior)

may not be a straightforward task to be handled in a phenomenological approach.

2.3.3 Micro-boundary conditions

The counterpart of the external power expended on the boundaries by the micro-stress ξα in the

current configuration (equation (2.46)) corresponding to its equivalent ξα∗ in the intermediate con-

figuration can be defined as
∫

A∗
(ξα∗ ·n∗) ˙̃γα dA∗. Then, the integral terms from which the additional

(micro-)boundary conditions for the physically based models are obtained by substitution of equa-

tion (2.53) and obtain for the formulation of Evers et al.:

Wext =
∑

α

∫

A∗

[(

− GbR2

8 (1− ν)
ραGND ,e s

α
∗ +

GbR2

4
ραGND ,s p

α
∗

)

· n∗

]

γ̇α dA∗, (2.59)

and by inserting equation (2.56) for the model proposed by Bayley et al.:

Wext =
∑

α

∫

A∗

[(

− GbR2

8 (1− ν)

12∑

ξ=1

ρξGND ,e A
ξ
∗

+
GbR2

4

18∑

ξ=13

ρξGND ,s B
ξ
∗



 : Pα
∗



 · n∗ γ̇
α dA∗. (2.60)

Subsequently, two different boundary conditions can be identified, which assure that equations

(2.59) and (2.60) vanish. The first condition reads:

γ̇α = 0, (2.61)

which implies that the dislocations are trapped at the surface, i.e. a hard boundary layer exists.
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Figure 2.1: Free boundary layers: (a) non-zero edge (⊥) and screw (⊙) GND densities, (b) edge

GNDs escape through the surface, (c) screw GNDs escape through the surface.

For the model of Evers et al. [14], the second condition is given by:

(

− GbR2

8 (1− ν)
ραGND ,e s

α
∗ +

GbR2

4
ραGND ,s p

α
∗

)

· n∗ = 0, (2.62)

whereas for the model of Bayley et al. [16] this reads:







− GbR2

8 (1 − ν)

12∑

ξ=1

ρξGND ,e A
ξ
∗ +

GbR2

4

18∑

ξ=13

ρξGND ,s B
ξ
∗



 : Pα
∗



 · n∗ = 0, (2.63)

which means that the dislocations freely escape from the surface, i.e. a micro-stress free boundary.

Whereas Kuroda and Tvergaard investigated the interpretation of the boundary conditions for a

case similar to Evers et al. [13, 14], here the confrontation of Gurtin’s model with the models

of Evers et al. and Bayley et al. is treated in a more general setting. For the former model,

equations (2.20) and (2.21) are considered and the physically based micro-stress vectors in the

original external power description, i.e. equations (2.59), (2.61) and (2.62), are used for the latter

type model for the unification purpose of the two model types, which is not a necessity for the

proof of the thermodynamical consistency of the former type models.

Free surface: Within the original framework of the Evers-Bayley type models, a micro-stress

free boundary was defined by dislocation densities that vanish on the surface, e.g. ρξGND = 0
(cf. equation (2.20)) whereas it has a more complex definition (equation (2.62)) within the Gurtin

type formulation. Several special cases in which equation (2.62) is fulfilled (except for the trivial

solution of ραGND ,e = ραGND ,s = 0) are depicted in figure 2.1 and can be explained as:

a) The resultant vector r of the orthogonal vectors A sα∗ and B pα
∗ (where A and B are scalar

coefficients defined by A = − GbR2

8 (1−ν) ρ
α
GND ,e and B = GbR2

4 ραGND ,s) is perpendicular to

the unit normal vector n∗ of the surface (i.e. lies in the slip plane) and none of the GND

densities have to vanish.

b) sα∗ · n∗ 6= 0 and pα
∗ · n∗ = 0. In this case, edge GNDs can escape through the surface.

Therefore, ραGND ,e = 0.



2.3 THERMODYNAMICAL ASPECTS OF EVERS-BAYLEY MODELS 21

(a) (b)

(c) (d)A
A

AA

sα∗
sα∗

sα∗sα∗

pα
∗

pα
∗

pα
∗pα

∗

nα
∗

nα
∗

nα
∗

nα
∗

n∗

n∗

n∗n∗

Figure 2.2: Hard boundary layers: (a) a non-zero slip parallel to the surface, (b) non-zero edge (⊥)

and zero screw (⊙) GND densities, (c) zero edge and non-zero screw GND densities,

d) non-zero GND densities.

c) sα∗ · n∗ = 0 and pα
∗ · n∗ 6= 0. In this case, screw GNDs can escape through the surface.

Therefore, ραGND ,s = 0.

Notice that for case (a), the free surface definition depends on the orientation of the slip system

and GND densities are not zero whereas in the model of Evers et al., GND densities are explicitly

assumed to vanish. For the cases (b) and (c), both type of formulations are equivalent to each other.

Hard boundary: Obstructing slip at the surface, for example by a passivation layer, yields a hard

boundary condition. In the Gurtin type model, this type of boundary condition is defined by van-

ishing crystallographic slip on the surface, e.g. γ̇α = 0 (cf. equation (2.48)). The hard boundary

condition in the Evers-Bayley type formulation is given by equation (2.21). Special cases satisfy-

ing equation (2.21) can be distinguished (see figure 2.2):

a) sα∗ · n∗ = 0 and pα
∗ · n∗ = 0. In this case, γα does not have to be zero on A∗.

b) sα∗ · n∗ 6= 0 and pα
∗ · n∗ = 0. Then, mandatorily γα = 0, ραGND ,e 6= 0 and ραGND ,s = 0 on

A∗.

c) sα∗ · n∗ = 0 and pα
∗ · n∗ 6= 0. Then, mandatorily γα = 0, ραGND ,e = 0 and ραGND ,s 6= 0 on

A∗.

d) sα∗ · n∗ 6= 0 and pα
∗ · n∗ 6= 0, then γα = 0 is required.

Hence, it can be concluded that the Gurtin type formulation misses case (a) (cf. figure 2.2) where

the definition of a hard boundary is still valid. For the cases (b), (c) and (d), both models give the

same results. Note that, even though for the model of Bayley et al. [15, 16], it is not possible to

visualize boundary conditions as it is done above, the study of the micro-boundary conditions for

Evers’s formulation demonstrates that similar micro-boundary conditions can be established for

the Gurtin type model and the Evers-Bayley type models.
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2.4 Discussion and concluding remarks

In this study, the thermodynamical consistency of a physically based strain gradient crystal plastic-

ity theory, as proposed in Evers et al. [13, 14, 33] and Bayley et al. [15, 16], has been demonstrated

through a direct comparison with a thermodynamically consistent strain gradient theory of crys-

tal plasticity by Gurtin and Gurtin et al. [37, 43–45]. Evers-Bayley type models, which have

been used for problems with small plastic strains so far, were enhanced by altering the state of

the gradient operator in the internal stress and the dislocation density definitions from the refer-

ence configuration to the intermediate configuration in order to deal with truly large plastic strains.

Then, energetic micro-stresses for the Gurtin type formulation were written based on the physi-

cal description of the back stresses of the Evers-Bayley type models, which provides a physical

interpretation for the micro-stresses and shows that the micro-force balance law for a slip system

corresponds to the definition of the effective resolved shear stress acting on that slip plane.

It has been shown for the model of Evers et al., which is a self-internal back stress formulation

where only the dislocations that belong to the slip system itself contribute to the internal stress

state, that the derived micro-stress is similar to the one given in [37] for an uncoupled defect

energy function and to those in [38, 46, 47]. It lies in the plane of its slip system and the defect

energy function that gives the constitutive equation for this micro-stress vector is a simple quadratic

function in terms of GND densities.

For the full-internal back stress formulation of Bayley et al., which involves the energetic interac-

tions between different slip systems, the derived physical micro-stress has a more complex form

than the one for the formulation of Evers et al. [13, 14]. This micro-stress no longer resides in the

plane of its slip system, which is believed to be a result of the defect forces exerted by the other

slip systems with non-parallel slip planes. Hence, this micro-stress vector is different from those

of Evers et al., Gurtin and Kuroda and Tvergaard where the energetic coupling of the different slip

systems is not included and even from the micro-stress which is derived from a quadratic defect

energy that couples different glide systems in a phenomenological way in Gurtin [37] since with a

constitutive equation of the type as given in equation (2.36), a micro-stress vector of a slip system

with out of plane components can not be handled. The defect energy function associated to the

micro-stress resulting from Bayley et al. implicitly takes a more complex form, which is expected

to be non-convex. As demonstrated in [48, 49] and similar publications, the contribution of GNDs

of the same slip plane to the macroscopic material behavior may be described, at least qualitatively,

by averaging the total effect over the related plane. However, this is not the case for the contribu-

tion arising from the interactions between the GNDs of different slip planes. The discrete-energetic

interactions between different slip planes should be ensured in the definitions of back stresses for

the Evers-Bayley type formulations, e.g. as in [15, 16] and in the definition of energetic micro-

stresses and the associated defect energy functions of the Gurtin type models for a more realistic

description of the material behavior from a physical perspective, which apparently requires more

than simple quadratic energy functions. Furthermore, although apparently completely different ad-

ditional field equations (GND density balance equations vs. the micro-force balance law) are used

within the finite element context, it is shown that similar boundary conditions can be defined for

both types of models. Note that the boundary conditions in between the free surface and hard inter-

faces, which can be important for the interfaces like penetrable surface coating or grain boundaries,

can also be incorporated into these models. However, a physical interpretation of these in-between

boundary conditions would require a separate constitutive model for these boundary conditions,

see, for instance, [59].

This work discusses the thermodynamical consistency of the models by Evers et al. and Bayley et
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al. and the unification with the model of Gurtin. However, the discussions here do not apply only

to the three models considered, i.e. Evers et al., Bayley et al. and Gurtin, but also to other strain

gradient crystal plasticity theories which follow a phenomenological approach.





CHAPTER THREE

Multiphysical simulations with a

gradient theory of crystal plasticity

Abstract

The micro and sub-micro scale dimensions of the components of modern high-tech products pose

challenging engineering problems that require advanced tools to tackle them. An example hereof

is time dependent strain recovery, here referred to as anelasticity, which is observed in metallic thin

film components of RF-MEMS switches. Moreover, it is now well known that the properties of

a thin film material strongly depend on its geometrical dimensions through so-called size effects.

A strain gradient crystal plasticity formulation (SGCP) is hereby required as recently proposed

[13–16], involving a back stress in terms of strain gradients capturing the lattice curvature effect.

In the present work, the SGCP model is used in a realistic simulation of electrostatic bending

of a free standing thin film beam made of either a pure fcc metal or a particle strengthened Al-

Cu alloy. The model capabilities to describe the anelastic and plastic behavior of metallic thin

films in comparison with experimentally available data are thereby assessed. Simulation results

show that the SGCP model is able to predict a macroscopic strain recovery over time following

the load removal. The amount of the anelastic relaxation and the accompanying relaxation times

results from the rate dependent modeling approach, the basis of which is phenomenological only.

The SGCP model is not capable of describing the permanent deformations in an alloy thin beam

as observed in electrostatic experiments. Hence, to incorporate realistic time constants and the

influence of the microstructure into the mechanical behavior of the thin film material, an improved

constitutive law for crystallographic slip is necessary within the SGCP formulation.

3.1 Introduction

Capacitive radio-frequency microelectromechanical systems (RF-MEMS) possess a high potential

for being applied in the next generation of wireless network applications (e.g. GPS systems, radars

or mobile phones). This is due to their high Q factor, low power consumption, low insertion loss,

high isolation and many other superior characteristics compared to their functional equivalents

such as diode based solid state relays [1, 60]. A schematic representation of a capacitive RF-

25
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MEMS is given in figure 3.1. Its working principle is similar to that of parallel plate capacitors:

there exist two electrodes, one of which is suspended over the other by means of springs. The

position of the free-standing electrode is adjusted by application of a voltage. This makes the

device reconfigurable, making it fully operational over a wide range of frequencies.

V
thin film

dielectric layergap

bottom electrode

gas

module

Fmec Felec (gap,V)

Figure 3.1: Schematic representation of a capacitive RF-MEMS device. At pull-in voltage, the

electrostatic force Felec , a function of the gap between the electrodes and the applied

potential difference (V), becomes larger than the elastic restoring force Fmec and the

upper electrode snaps on the bottom electrode. The dielectric layer covering the bot-

tom electrode provides a small clearance between the electrodes in this configuration,

making the generation of a high capacitance possible.

Reliability is one of the important concerns related to RF-MEMS devices. As discussed in [61],

typical reasons for the degradation of MEMS properties during service life are wear, fatigue, creep,

excessive plastic/anelastic deformations, delamination in multi-layered structures and dielectric

charging or residual stresses due to, for instance, the manufacturing processes. The reader is re-

ferred to [61] and the references therein for additional information on the failure modes of MEMS

devices. Most of the mentioned failure types are in one way or another associated to the mechanical

behavior of the materials used, such as the behavior of the springs holding the free-standing elec-

trode in a capacitive RF-MEMS switch. Hence, an accurate description of the material behavior is

necessary for the development of reliable products with a predictable service life.

The springs of the RF-MEMS device considered in this work are polycrystalline thin film com-

ponents that are made of an Al-Cu alloy containing small second phase particles. In the last two

decades, it has been shown [3–5] that the mechanical properties of metallic thin films are clearly in-

fluenced by so-called size effects, e.g. invoked by the distribution of the densities of geometrically

necessary dislocations or by surface constraints like passivation layers [17]. Thin film materials are

also reported to be prone to time dependent deformations such as creep [6, 9–12] and anelasticity

[6–8, 62–65]. Creep, accumulating plastic deformation under a constant load over time, is also

observed in bulk materials, where it is a relatively well studied phenomenon, see [66, 67] and the

references therein. On the contrary, the anelastic time dependent strain recovery of metal thin films

after load removal has recently attracted attention since it appears to be more pronounced in small

material volumes. Time dependent deformation of thin film components in RF-MEMS may easily

lead to malfunctioning of the device. For instance, creep can cause irreversible deformations that

permanently reduce the gap between the electrodes and, in turn, the opening and closing voltages

of the switch. Anelasticity may induce uncontrollable evolving changes in device properties as the

gap height will change over time.

Burg et al. [68] performed micro-beam bending experiments on polycrystalline thin beams of

different lengths and thicknesses. The beams were made of an Al-Cu [1 wt%] alloy with second

phase θ particles. For long beams, the experiments yielded a Young’s modulus and a yield stress
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of around 69 GPa (a value close to that of the bulk material) and 150 MPa, respectively, whereas

these quantities showed large spread for shorter beams. They were not able to identify the effect

of beam thickness on the Young’s modulus and the yield stress. In another study [2], the effect of

creep on a capacitive RF-MEMS switch with polycrystalline thin film electrodes was investigated

by electrostatic experiments and numerical simulations. The material used in the experiments was

considered to be the same as that in [68]. The test structures showed no permanent deformation

after full relaxation at room temperature, whereas at 75◦C and 100◦C, an increasing permanent

deformation was observed with increasing temperature. Additionally, finite element simulations

were done for the reproduction of the experimental results, using a phenomenological constitutive

equation for the plastic strain rate based on dislocation glide [10–12]. However, the simulation

results showed that the employed constitutive law is incapable of predicting the material response.

In [7], experiments were conducted on Al-Cu [1 wt%] free-standing polycrystalline thin films

by using a micro clamp tool to mechanically bend the specimens. In these experiments, it was

observed that after an initial elastic spring back upon unloading, an additional strain recovery

occurs over time and almost no permanent deformation remains. The bulge tests and stress dip

tests by [6] on free-standing polycrystalline Al films with thicknesses between 220 and 550 nm

showed that thinner beams are more resistant to creep deformations. Moreover, at about the same

stress levels, creep strains in thin film samples were at least three orders of magnitude smaller than

that of the material in bulk form. Additionally, some anelasticity was observed in the response,

which was attributed to grain boundary sliding. After a correction for the anelastic relaxation, the

experimental results were reproduced reasonably well by a material model based on dislocation

glide [6]. Quasi-static micro-tensile stress relaxation tests on free-standing Al and Al-Ti thin films

at stress levels below the yield strength were performed by [8, 62]. It was found that the anelastic

recovery depends on the average grain size: relaxation time and strength decrease with increasing

grain size. In case of Al-Ti films that have precipitates along grain boundaries, a smaller amount

of relaxation with larger time constants was observed, suggesting that grain boundary sliding may

be the rate controlling mechanism for the observed relaxations. Similar creep and anelasticity

phenomena were also reported for free-standing gold films in plane strain membrane bulge tests

[63, 65].

In addition to the material non-linearities, the geometry of a capacitive RF-MEMS switch intro-

duces another source of non-linearity. At a device specific voltage, pull-in voltage, the free-floating

electrode snaps onto the dielectric layer covering the bottom electrode. Additionally, the interac-

tion between the thin film surfaces and the inert gas trapped within a device module may provide

additional damping during transient loads.

In this work, the predictive capabilities of a previously developed strain gradient crystal plasticity

(SGCP) model [16] for the description of anelastic material behavior in RF-MEMS structures are

assessed. A higher order description is used since standard continuum theories fail to describe the

scale dependency observed in metal thin films, lacking an internal length scales. Multi-physical

simulations are performed to describe electrostatic bending of thin beams of a pure metal and a two

phase alloy by considering i) the mechanical behavior of the thin film, represented by the SGCP

theory, and ii) electrostatic forces generated by voltage application [69]. The combined effect of the

crystallographic micro-structure of the thin film and distributed electrostatic loads on the overall

structural response is evaluated and compared with available experimental data. The results show

that the SGCP model is able to yield a macroscopic strain recovery over time following the load

removal. However, a detailed analysis demonstrates that the anelastic relaxation time and strength

originate from the rate dependent nature of the model only.
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3.2 Strain gradient crystal plasticity formulation

In the present work, the mechanical behavior of the material is described with the strain gradient

crystal plasticity theory of [13–16]. The model is based on a multiplicative decomposition [50, 51]

of the deformation gradient tensor F into its elastic and plastic parts:

F = Fe · Fp, (3.1)

where the elastic part Fe describes the stretch and the rotation of the lattice with respect to an

intermediate configuration defined by the plastic part Fp.

The elastic second Piola-Kirchhoff stress tensor S is given in the intermediate configuration via

the linear Hookean relation

S = C : Ee with Ee =
1

2

(
FT
e · Fe − I

)
, (3.2)

with the fourth order elasticity tensor C, the elastic Green-Lagrange strain tensor Ee and the second

order identity tensor I. S is defined by the pull-back of the Kirchhoff stress τ to the intermediate

configuration as

S = F−1
e · τ · F−T

e . (3.3)

The rate of the plastic deformation gradient is determined by

Ḟp = Lp · Fp, (3.4)

where Lp is the plastic velocity gradient and is rendered from the crystallographic slip rates of 12

octahedral slip systems for an fcc metal as

Lp =

12∑

α=1

γ̇ α Pα
0 . (3.5)

Here, γ̇ α is the plastic slip rate of system α and Pα
0 = sα0n

α
0 is the Schmid tensor with sα

0 the unit

direction of the Burgers vector and nα
0 the unit normal of the slip plane of system α defined in the

intermediate configuration.

The flow rule is given by a modified Arrhenius type rate equation:

γ̇ α = γ̇0

(

|τ α
eff |
sα

)m

exp

[

−∆F0

kT

(

1−
|τ α
eff |
sα

)]

sign(ταeff ), (3.6)

where γ̇0 is the reference slip rate, m is the rate sensitivity, sα is the slip resistance, T is the

absolute temperature and k is the Boltzmann constant. ∆F0 is the energy necessary to overcome

the crystallographic slip resistance at zero stress. The effective resolved shear stress acting in a slip

system is given by the difference between the applied resolved shear stress τα and the resolved

back stress ταb

τ α
eff = τα − ταb with τα = S : Pα

0 . (3.7)

The back stress is the key ingredient of the SGCP model, through which the influence of the lattice

curvature on the material behavior is incorporated into the framework. It is calculated in a material
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point by the integration of stress fields of non-uniformly distributed densities of geometrically

necessary dislocations (GNDs) in a cylindrical volume. The back stress of a slip system was

initially formulated by [13, 14] in terms of contributions of the GNDs of that slip system only. In

[15, 16], it was extended further by considering the contributions of all slip systems. The internal

stress field due to edge GNDs is given by [15, 16] as

σ int
e =

GbR2

8(1 − ν)

12∑

ξ=1

∇0 ρ
ξ
GND ,e ·

(

3nξ
0s

ξ
0s

ξ
0 + n

ξ
0n

ξ
0n

ξ
0 + 4νnξ

0p
ξ
0p

ξ
0 − s

ξ
0s

ξ
0n

ξ
0 − s

ξ
0n

ξ
0s

ξ
0

)

,

(3.8)

and for screw GNDs, it reads:

σ int
s =

GbR2

4

18∑

ξ=13

∇0 ρ
ξ
GND ,s ·

(

−n
ξ
0s

ξ
0p

ξ
0 − n

ξ
0p

ξ
0s

ξ
0 + p

ξ
0s

ξ
0n

ξ
0 + p

ξ
0n

ξ
0s

ξ
0

)

, (3.9)

with p
ξ
0 = s

ξ
0 × n

ξ
0 associated with slip system ξ and R the radius of the cylindrical integration

volume, which is also a length scale. In [13–16], two screw dislocations with the same direction

of the Burgers vector are coupled into one set, leading to 6 slip systems for screw GNDs whereas

the number of slip systems for edge GNDs is 12. Hence, index ξ runs over 1...12 in case of edge

dislocations and 13...18 for screw dislocations. The back stress is then given by the opposite of the

internal stress that is resolved onto the slip system by the related Schmid tensor:

ταb = −
(
σint
e + σint

s

)
: Pα

0 for α = 1, 2, . . . , 12. (3.10)

Note that although statistically stored dislocations (SSDs) are also involved in the framework, they

do not contribute to the internal stress state as they are randomly distributed. However, together

with GNDs, they determine the resistance, sα, against dislocation glide. The slip resistance of a

slip system is provided by the short-range dislocation-dislocation interactions. Following [26], it

is formulated in terms of both ρα
SSD and ρα

GND as:

sα = cGb

√
√
√
√

12∑

ξ=1

Aαξ|ρ ξ
SSD |+

18∑

ξ=1

Aαξ|ρ ξ
GND | for α = 1, 2, . . . , 12, (3.11)

where c is a material constant [52], G is the shear modulus, b the magnitude of the Burgers vector,

and Aαξ are the components of the matrix that defines the strength of the interactions between

different slip systems [53]. It is composed of six interaction coefficients corresponding to self

hardening, coplanar hardening, Hirth lock, Glissile junction, Lomer-Cottrell lock, and cross slip

[70].

The evolution of SSD densities on each slip system ξ is described by

ρ̇ ξ
SSD =

1

b

(
1

L ξ
− 2 yc ρ

ξ
SSD

)

|γ̇ ξ| with ρ ξ
SSD(t = 0) = ρ ξ

SSD0
for ξ = 1, 2, . . . , 12,

(3.12)

which is the generalized form of the relation originally suggested by [56]. In this equation, the

first term within the parentheses denotes the accumulation , where L ξ is the average dislocation
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segment length defined by

Lξ =
K

√
12∑

α=1
Hξα |ραSSD |+

18∑

α=1
Hξα |ρα

GND |
. (3.13)

Here, K is a material parameter. Hξα are the components of an interaction matrix that is similar

to Aαξ and represents the mutual interactions between the dislocations [13]. The second term in

the parentheses is the annihilation rate where yc stands for the critical annihilation length, which is

the average distance between two oppositely signed dislocations, below which they annihilate.

The GNDs represent the signed fraction of the total dislocation population and are necessary to

preserve the lattice compatibility in a crystal. The gradient of slip in the slip direction sα0 gives the

density of edge GNDs whereas the slip gradient in the direction of pα
0 yields the density of screw

GNDs. The gradient of slip in the direction of the slip plane normal nα
0 does not introduce any

GNDs [26]. A balance equation for the densities of the GNDs can be written as

ρξGND ,e = ρξGND,e0
− 1

b
s
ξ
0 ·∇0γ

ξ, (3.14)

ρξGND ,s = ρξGND,s0
+

1

b

(

p
α1(ξ)
0 ·∇0γ

α1(ξ) + p
α2(ξ)
0 ·∇0γ

α2(ξ)
)

. (3.15)

Here, ξ runs over 1, 2, ..., 12 for edge GNDs and over 13, 14, ..., 18 for screw GNDs. ρ ξ
GND,e0

and ρ ξ
GND,s0

denote the densities of edge and screw GNDs that are initially present in the material,

α1(ξ) and α2(ξ) represent two slip systems with the same slip direction but different plane normals

for each screw GND. Note that equation (3.15) differ slightly from [16].

The SGCP model is implemented in a finite element framework in the commercial software AN-

SYS by using two governing field equations: the momentum balance equation and the GND den-

sity balance equations (3.14) and (3.15). Degrees of freedom are the displacements and densities

of GNDs. 20 noded hexagonal elements are used for the discretization of the displacement domain

with 3 translational displacement degrees of freedom for each node, whereas 8 noded hexagonal

elements are employed for the dislocation density domain with 18 GND densities (12 for edge

and 6 for screw dislocations) as degrees of freedom for each node. Hence, there are 21 degrees of

freedom at the corner nodes of the element and 3 degrees of freedom at the mid-nodes. The two

problems are solved in a strongly coupled manner. The associated variational formulation can be

found in [13–16].

3.3 Electro-mechanical transducer elements

The electrostatic pull down of a cantilever thin beam is next studied using multiphysical simu-

lations. The beam is loaded by means of the attractive forces generated by a voltage difference

between the beam and a ground plate. This phenomenon is modeled by using transducer elements

as existing in the element library of ANSYS. Electro-mechanical transducers are one dimensional

line elements developed by [69], based on the concept of an electrical transducer element with

a variable geometry. The relative position between the plates of the transducer can be changed

by the application of an electric potential to the plates, cf. figure 3.2. A transducer element has

two degrees of freedom per node, a voltage and an axial displacement, and strongly couples the
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δ0

x

i j

ui uj

Figure 3.2: Representation of a transducer element. i and j are indices for the nodes, x quantifies

the distance between the nodes (plates) and is given by x = δ0 + uj − ui where u
denotes nodal displacement and δ0 is the initial separation distance.

structural finite element domain with the electric domain. The electrostatic force f is defined as

[69]

f =
d

dx

[
C(x)

2
V 2

]

(3.16)

where C(x) is the capacitance as a function of the relative displacement x of the plates and V is

the electrical potential difference. Within the electrical domain, the electric current i is given by

i =
d

dt
[C(x)V ] (3.17)

An important input for transducer elements is the relationship between capacitance and relative

displacement. This relationship can be provided either by defining the coefficients of a polynomial

that defines the capacitance versus displacement response, e.g.

C(x) = C0/x+ C1 + C2x+ C3x
2 +C4x

3, (3.18)

or in the form of data that should be generated by running an initial set of electrostatic simulations.

A typical capacitance versus gap curve is given in figure 3.3a. In this figure δmin represents the

minimum distance between the plates, after which the transducer element starts working as a linear

contact element. Figure 3.3b shows the change in the net force acting on the plates with respect to

the gap. When the relative distance between the electrodes are small and the surface areas of elec-

trodes are large, e.g. in case of RF-MEMS switches, the nodal capacitance can be approximated

by

C(x) = ǫ0AN/x, (3.19)

based on the parallel plate assumption where ǫ0 is the free-space permittivity and AN is the nodal

area. In this work, equation (3.19) is used for the calculation of the nodal capacitance in the

electrostatic simulations in the next sections. For additional information on the modeling of the

electrical domain, see appendix A.

Further information on the theory of transducer elements may be found in [69, 71, 72].
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Figure 3.3: Variation of the capacitance (a) and the net force on the plates (b) with respect to the

separation distance between the plates of a transducer element [71].

3.4 Multiphysical simulations by using the SGCP theory

The electrostatic actuated bending of a cantilever thin beam is studied as a representative case for

the solution of the full capacitive switch problem. Several electrostatic beam bending simulations

are performed which are classified in two sets. In the first set, the focus is on the investigation

of the capabilities of the SGCP model to predict an anelastic response for a free-standing pure

metal film. In the second set, multiphysical simulations are done to reproduce the results of an

electrostatic beam bending experiment on a Al-Cu thin film.

3.4.1 Thin film inelasticity

The electrostatic bending of a cantilever thin beam is numerically analyzed for two different surface

conditions: a free surface, through which dislocations can escape, and a passivated surface, which

fully hinders the motion of dislocations. A discussion about boundary conditions that can be

imposed within the SGCP framework can be found in [73]. The dimensions of the finite element

model and the boundary conditions used in the simulations are given in figure 3.4a. The beam is

made of a pure fcc metal having in plane randomly oriented grains, with their [111] axis parallel

to the film surface normal. The mechanical behavior of the thin film material is described by

using the SGCP model while for the electric domain, transducer elements are used, cf. figure 3.4b.

Additionally, non-linear springs are employed to take into account the roughness of the metallic

surfaces inducing contact with the dielectric layer on the bottom electrode. Further information

about the modeling of electric domain and the contact between the beam and the dielectric layer

can be found in appendix section of this chapter. The material parameters associated with the

SGCP formulation are provided in table 3.1. The remaining parameters are taken from literature

[13–16]. Dielectric charging is ignored in the simulations. The loading scheme is depicted in figure

3.5. A potential difference is applied to the beam and the bottom electrode and is increased until

the pull-in voltage Vpi at t1. At Vpi , the cantilever beam becomes unstable and snaps to the bottom

electrode. Since the pull-in of the beam imposes convergence issues, this instability is passed by

a custom solution algorithm: At time t1 at pull-in voltage, the vertical displacements, uz , of some

of the nodes on the bottom surface of the beam which are located in the contact region shown in
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Figure 3.4: a) Finite element model of a polycrystalline cantilever thin beam. b) A y − z cross-

section of the numerical model. The clearance between the bottom surface of the beam

and the top surface of the dielectric layer is about 3.2 µm. The bottom electrode is

located fully c) The instabilities at pull-in and release voltages are overcome by a cus-

tom solution algorithm which uses the nodes on the bottom surface of the beam in the

region of contact with the dielectric layer. The deformed shape of the beam expected

to occur at times t = t0 (initial state), t = t3 (just after the pull-in), t = t5 (at the max-

imum voltage) and t = t7 (after unloading, by assuming that the beam shows residual

deformations) are also shown in dark gray, blue, red and green colors, respectively.

V
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tt1, t2t1 t2 t3 t4-t6 t4 t5 t6t7 t8
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Vt

0

Figure 3.5: A loading-unloading cycle in the multiphysical simulations. Corresponding time and

voltage values are given in table 3.2.

figure 3.4c are constrained and the potential difference is reset to zero. Between t1 and t2, the

beam is pulled down by the application of a prescribed displacement to these constrained nodes

until contact with the bottom electrode is reached. After t2, the electric potential is increased at a

relatively fast rate to Veq , the voltage at which force equilibrium is achieved at the nodes used for

pulling down the beam. At Veq , these constrained nodes are released and the voltage is increased

further to the maximum voltage Vmax at the same rate as in time period [0, t1]. A similar approach

is used during the unloading phase to handle the spring back of the beam at the release voltage,

Vrl , at which the mechanical restoring forces are larger than the electrostatic forces. However, this

time the voltage is reduced to a value (Vt ) slightly lower than the release voltage at t5 following the

constraining of some of the nodes in the contact region at t4. Then, the forced equilibrium position

is searched for at these constrained nodes by reducing the gap at the constant voltage until t6. The

beam is fully unloaded between [t6, t7] and the variation of the vertical displacement of the beam

is traced until t8 for possible anelastic relaxation.
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Table 3.1: Material parameters for the SGCP model.

Parameter Meaning Value Unit

C11 Elastic constant 95230 MPa

C12 Elastic constant 40400 MPa

C44 Elastic constant 53840 MPa

ν Poisson’s ratio 0.37 -

m Strain rate sensitivity 10 -

G0 Activation energy 30 · 10−8 pJ

T Temperature 293 K

b Burgers vector length 2.86 · 10−4 µm

K Material constant 10 -

yc Critical annihilation length 1.6 · 10−3 µm

c Material constant 0.3 -

ρSSD0
Initial SSD density 7 µm−2

γ̇0 Reference plastic strain rate 1 · 10−3 s−1

R Length scale 1 µm

Table 3.2: Time and voltage data associated with figure 3.5.

Time [s] Voltage [V]

t1 = 1.3 Vpi = 130†, 135‡

t2 − t1 ≈ 0.1 V = 0, Veq ≈ 60
t3 = 1.8 Vmax = 180
t4 = 3 Vrl ≈ 60
t6 − t4 ≈ 0.1 Vt ≈ 57
t7 = 3.6 Vmin = 0
t8 = 10 Vmin = 0
† For free surface condition.
‡ For passivated surface condition.
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Figure 3.6: a) Position of a node at the tip of the beam after t7 for free surface and passivated

surface conditions. b) Displacement of the node after t7 vs. time on a logarithmic

scale.

Figure 3.6 shows the time dependent displacement of a node located at the beam tip for the sim-

ulations with two different surface conditions, i.e. free and passivated surfaces, starting from the

moment when the voltage was just decreased to zero at t = t7, where elastic recovery already

started. At t = t7, the vertical location of the control node reads z = −2.78 µm and z = −1.27
µm for free and passivated surface conditions, respectively. This result is in line with the beam with

passivated surfaces having a larger resistance against the plastic deformation because the preven-

tion of slip through surfaces will lead to larger GND densities, the inhomogeneous distribution of

which causes larger internal stresses, i.e. larger back stresses. As seen in figure 3.6a, the amount of

time dependent recovery is also larger for the passivated surface condition than for the free surface

condition, reflecting the role of the internal stresses on the recovery process. Moreover, the differ-

ence in the slopes of the curves in figure 3.6b, which shows the recovery versus time, demonstrates

that the time constants related to recovery are different for the two different surface conditions.

Additional information acquired from the simulations revealing details on the observed anelastic

recovery is presented in figure 3.7. In this figure, (a) and (b) show the vertical displacement profile

of the beam along the z axis at different instants of time for free and passivated surface conditions.

The presence of a passivation layer on the surfaces leads to an extended range, in which the beam

behaves elastically. The results shows that the beam with surface passivation has also a larger

pull-in voltage, cf. table 3.2. This results from an increase in GND density due to the trapping

of dislocations at surfaces. As seen in figures 3.7c and d, the average GND density1 in case of a

passivated surface condition reaches values that are about twice as large as that in case of a free

surface condition. GNDs are typically produced at locations with a large curvature. Moreover, for

the passivated surface condition, the GND density significantly drops in the time period [t3, t8]

while no noticeable change occurs in the GND density for the beam with free surfaces. In fact,

the decrease of the GND densities is related to the recovery of plastic strains. Figure 3.7d reveals

1The average GND density over the length of beam is given by ρ̄GNDxi−1
=

[

N
∑

n=1

(ρnGND ) /N

]xi

xi−1

where

xi−1 and xi are two successive points along the length, N is the number of nodes involved in the volume, the

borders of which are set by xi−1 and xi. ρnGND is the average GND density at a node and given by ρnGND =
√

√

√

√

12
∑

i=1

(

ρiGND,e

)2

+ 0.5

18
∑

i=13

(

ρiGND,s

)2

.
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Table 3.3: Material parameters used for the identification of the parameter governing the relaxation

time during anelastic deformation recovery. Unspecified values are the same as those in

the reference set.

c [-] ρSSD0
[µm−2] m [-] ∆F0 [pJ]

0.3 7 10 30 · 10−8

0.4 - - -

0.5 - - -

- 10 - -

- 20 - -

- - 20 -

- - 50 -

- - - 10 · 10−8

- - - 20 · 10−8

that the density of GNDs is already being reduced during the unloading stage [t3, t7]. The back

stress developed during the loading is large enough to change the sign (or direction) of the effective

resolved shear stress during the unloading phase, cf. figure 3.7f and h. A change of the sign of the

effective resolved shear stress causes a reversal of the direction of crystallographic slip. Figures

3.7d, f and h suggest that in case of a passivated surface condition, the reverse glide continues,

particularly in the regions close to the fixed end of the beam, during [t7, t8], i.e. after the beams are

fully unloaded. Within this period of time, the effective resolved shear stress is mainly composed

of the back stress. During the reverse glide of dislocations, the plastic strain and the density of the

GNDs are reduced (see equations (3.8) and (3.9)). As a result, the back stress decreases (figure

3.7h) and, accordingly, the driving force for the reverse slip shrinks. The recovery goes on until

the effective resolved shear stress will be reduced to a value that does not trigger any significant

crystallographic slip.

Additional simulations are performed to identify the governing time constants for the recovery

of the beam. The material parameter c, initial SSD density ρSSD , stress sensitivity constant m
and activation energy ∆F0 control the anelastic behavior of the material at a constant temperature

through equation (3.6). Note that the reference slip rate, γ̇0, is considered to have the same effect

as the parameters above. The bending of a single crystalline beam with passivated surfaces and

having the same geometry as the beam in figure 3.4a is simulated by using several values for

these parameters, as summarized in table 3.3. The results are presented in figure 3.8. The vertical

displacement of a node at the tip of the beam starting from t = t7 (after the elastic recovery upon

the removal of the load) is given in the left column of the figure. Figures 3.8a, c, e and g show

that the amount of the strain recovery largely relies on parameters c, ρSSD0
and ∆F0, controlling

the overall crystallographic slip resistance. The influence of different values of m in a physical

range on the amount of the anelastic recovery and the relaxation times is negligible compared to

the remaining parameters, i.e. c, ρSSD0
and ∆F0. It can be inferred from the slope of the curves

in figures 3.8a, c, e and g that these three parameters also determine the relaxation times generated

by the SGCP model. Their influence can be interpreted as follows: a larger c or ρSSD0
results in

a larger slip resistance. A larger slip resistance reduces the crystallographic slip activity, i.e. the

amount of plastic slip is decreased, which generates less GNDs and, hence a lower internal stress

for the driving force in reverse slip. Moreover, a large slip resistance will also preclude reverse

slip when the magnitude of the effective resolved shear stress is relatively low with respect to the
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Figure 3.7: Simulation results at various instants of time: deflection profile (a-b), average GND

density ρ̄GND (c-d), and the ratios of the effective resolved shear stress (e-f) and the

back stress (g-h) to the slip resistance. The results on the left and right side are obtained

with free surface and passivated surface conditions, respectively. The data plotted in

(e)-(h) belong to the slip system with the largest crystallographic slip rate.
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slip resistance. A similar interpretation also applies to figure 3.8g. ∆F0 is an activation energy for

both forward and reverse slip, and hence, a smaller activation energy favors anelastic recovery.

The right column of figure 3.8 shows the rate of the deformation recovery, which decays with time.

Note that the smallest recovery rates occur for the largest values of c and ρSSD0
. Due to the large

slip resistance, the slip rate by reverse glide is so small that it would not induce a fast reduction in

the GND density and the back stress. Consequently, the rate of recovery may be either very small

as in figure 3.8d or nearly zero for short observation times, cf. figure 3.8b, but the recovery will be

still noticeable at longer times.

Although the anelastic recovery observed in these simulations is physically explainable based on

a dislocation glide mechanism, the associated relaxation times are not considered to realistic. The

SGCP model does not incorporate a physically justified parameter for the precise characterization

of the time dependency. Simulation results show that the rate of recovery predicted by the SGCP

model is sensitive to the parameters governing the flow rule even though these parameters are

introduced for different purposes. The observed anelasticity is a simple consequence of the rate

dependent modeling of crystal plasticity.

3.4.2 Simulation of electrostatic beam bending experiments

Experiments

Electrostatically actuated bending experiments were conducted by [74] on a thin polycrystalline

cantilever beam in order to characterize the mechanical behavior of the material. The beam was

made of an Al-Cu [1 wt%] alloy, including very small second phase particles. See figure 3.9a for

its geometrical properties. Experiments consisted of successive loading-unloading cycles under

isothermal conditions at 75◦C in order to minimize the effect of humidity and charging of the

dielectric layer. In each cycle, the applied voltage was increased from 0 to a specific value within

about t1 = 1 s. The vertical displacement profile of the beam was measured at that specific voltage

level within t2 − t1 ≈ 7 s. Then, the voltage was decreased to zero within t3 − t2 = 1 s and the

beam profile was re-measured. A schematic representation of a loading cycle is given in figure

3.10.

The experimental results are presented in figure 3.11. It turned out that the beam had an initial cur-

vature at the beginning of the experiment which suggests the presence of a residual stress or strain,

due to the thin film processing. The beam develops a small but noticeable plastic deformation

during the loading-unloading cycle at a loading voltage of 89 V. Displacement profiles for loading

cycles at voltage levels lower than 89 V are not shown in figure 3.11. Above 89 V, the residual

deformation increases with increasing maximum voltage levels. No information is available about

whether or not any anelastic recovery occurred in the experiment after the removal of the voltage

at time t = t3 in each loading cycle.

Simulations

The electrostatic experiments are simulated using the SGCP formulation for the loading cycles at

89 V and 135 V. Note that there is only one beam tested in the experiment. In other words, the

sample is exposed to 9 loading-unloading cycles before the loading cycle to 89 V is started and

14 cycles before the cycle with 135 V. However, two individual simulations are performed for

these two loading cycles, i.e. the voltage is directly increased from 0 to 89 V and 135 V in each
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Figure 3.8: Anelastic recovery during [t7, t8] obtained by using different values of a) the material

parameter c, c) initial SSD density ρSSD0
, e) stress sensitivity constantm and g) activa-

tion energy ∆F0. Figures b, d, f and h involve the rate of the recovery that is plotted in

figures a, c, e and g, respectively. The rates are calculated by u̇zt = (uzt − uzt−1
)/∆t.
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Figure 3.9: a) Polycrystalline Al-Cu cantilever beam with 5 µm thickness used in the electrostatic

experiments. b) The numerical model of the beam used in multiphysical simulations.

Different colors show the orientations of grains. c) The SGCP model is used in the

colored grains. The less deformed gray parts are modeled as a transversely isotropic

elastic medium.
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Figure 3.10: Schematic representation of a loading-unloading cycle for the electrostatic experi-

ments: t1 = 1 s, t2 = 8 s and t3 = 9 s. Since the time dependent strain recovery

was not considered in the electrostatic experiments, time t3 constitutes the last mea-

surement time in the experiments. Time t4 = 15 s is used only in the multiphysical

simulations in the forthcoming section to track possible time dependent changes in

the deformed state of the beam.

simulation. The finite element model of the beam [75] used in the simulations is shown in figure

3.9b. The grains have in plane random orientations with the [111] direction parallel to z axis.

To reduce computational time, the SGCP model is only employed in regions where sufficiently

large plastic strains are anticipated based on the deformed shape of the beam in figure 3.11. These

regions are located near the fixed end of the beam and in the region of high deformation at a

distance of about one third of the beam length from the tip, as shown in figure 3.9c. The rest of the

material is modeled as a transversely isotropic elastic medium. The gap between the bottom surface

of the beam and the ground is about 3.2 µm. The beam is deformed via the application of a voltage

difference to the transducer elements between the beam and the ground according to the loading

scheme in figure 3.10. Three material parameters are considered to be important for the description

of the plastic behavior of the beam: the activation energy ∆F0, material parameter c and the initial

dislocation density ρSSD0
. The activation energy is taken from the work of [12] which involved
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Figure 3.11: Experimental vertical displacement profile of the beam measured for loading-

unloading cycles to 8, 17, 26, 36, 47, 60, 66, 70, 80, 89, 97, 107, 116, 125 and

135 V [74]. The dashed and continuous lines show the completely loaded and unload

states. Colored lines demonstrates the loading cycles considered in the simulations

with the SGCP model.

creep measurements on a thin film of an Al-Cu alloy with a composition similar to the material

in this work. The value of material constant c was determined in previous studies [13–16] for a

crystallographic slip resistance originating from short range dislocation-dislocation interactions in

pure fcc metals. In literature, the material parameter c is reported to depend on several factors [52]

such as deformation rate, dislocation distribution, temperature and the composition of the material.

Given the existence of impurities in the thin film material considered here (e.g. solute atoms or

small precipitates), c must be adequately large values to take into account the additional strength

provided by the interaction between dislocations and impurities. [52] presented values of c that are

larger than 1 for single crystalline Cu alloys and polycrystalline Fe alloys. Therefore, the value of

c is estimated as 1. The remaining parameter, the initial SSD density, is adjusted for capturing the

permanent deformation profile after the load cycle with a maximum voltage of 89 V. The rest of

the material parameters used in the simulations can be found in table 3.4 and elsewhere [13–16].

The simulation results are compared to the experimental data in figure 3.12. The figure shows that

the deformed shape of the beam in the unloaded state at t = t3 after the loading to 89 V can be

well captured by the finite element simulations with the SGCP model. In the loaded state at t = t2,

the deformed shape obtained from the simulation is still close to the experiment but the accuracy

is not as high as that for the unloaded state. No anelastic recovery is noticed in the simulations

with the current material parameter set, which is in line with the results of subsection 3.4.1. Hence,

the state of the material (e.g. residual stress and microstructural quantities such as the density of

edge GNDs) at t = t3 is considered to remain constant until t = t4. Figure 3.12 also contains

the deformed shapes calculated in another simulation by using the same material parameters and

loading scheme but with a larger voltage level, i.e. 135 V. This time, the deformed shape estimated

by the simulation differs significantly from the experiments in the unloaded state (t = t3) whereas

the difference in the loaded state (t = t2) is small. The dependence of the permanent deformation

in the beam on the maximum voltage of the loading cycles in the electrostatic experiment is given

in figure 3.13 for two control points located at different positions along the beam length. It is seen

that the residual deformation grows rapidly with the increasing voltage in the experiment. This

might result from the accumulation of plastic deformation over the repeated loading cycles and

can be identified only by means of dedicated experiments. It is also seen that with the parameters

given in table 3.4, the experimental results belonging to the cases with low voltage levels (e.g. 89
V, 107 V and 116 V for the point close to the beam tip, figure 3.13a) can be reproduced fairly
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Table 3.4: Material parameters used in the electrostatic simulations with the SGCP model.

Parameter Meaning Value Unit Reference

C11 Elastic constant 108000 MPa [70, 76, 77]

C12 Elastic constant 61300 MPa [70, 76, 77]

C44 Elastic constant 28500 MPa [70, 76, 77]

ν Poisson’s ratio 0.347 - [78]

m Strain rate sensitivity 20 - -

G0 Activation energy 64 · 10−8 pJ [12]

T Temperature 348 K -

b Burgers vector length 2.86 · 10−4 µm -

K Material constant 10 - [13–16]

yc Critical annihilation length 1.6 · 10−3 µm [13–16]

c Material constant 1 - [52]

ρSSD0
Initial SSD density 0.4 µm−2 -

γ̇0 Reference plastic strain rate 1 · 10−3 s−1 [13–16]

R Length scale 1.5 µm -

well using the SGCP formulation. However, for higher voltage levels, e.g. 135 V in figure 3.13b,

the SGCP formulation falls short in capturing the material behavior: the simulations yield much

smaller residual deformations than those in the experiment, meaning that the beam behaves more

elastically in the simulations. An additional set of simulations is conducted with a reduced length

scale of R = 1 µm in order to decrease the level of back stress which will lead to an increased

plastic activity. The result of these simulations are shown in figure 3.13 as well. The lowerR value

causes larger permanent deformations at higher voltages and brings the simulation results closer to

those from the experiments. However, the plastic deformation at low voltage levels is increased as

well, hence, therfore not providing a real improvement of the results.

It should be mentioned that the influence of successive loading is assumed to be negligible in

the simulations. The results of another study which involves two sequential load cycles with a

voltage amplitude of 135 V (the largest voltage level considered in the experiment) has shown the

negligible influence of the cycle repetition on the results presented in figures 3.12 and 3.13. The

most significant change in the permanent vertical displacement of the beam over its length due to

the plastic strain accumulation after the second loading cycle to 135 V is about 15 nm, see figure

3.14.

3.5 Summary and concluding remarks

In this study, it is shown by means of multiphysical finite element simulations of the bending

of cantilever thin metallic beams that the SGCP formulation is able to describe a time depen-

dent deformation recovery following the unloading of the material, which can be mechanistically

explained by the reverse glide of dislocations driven by the residual internal stresses due to the

inhomogeneous distribution of the density of GNDs. It is observed that a larger amount of recov-

ery occurs in the presence of larger internal stresses, which decay with the recovery as the GND

densities decrease. A systematic investigation of the anelastic recovery produced by the SGCP



3.5 SUMMARY AND CONCLUDING REMARKS 43

0 50 100 150 200 250 300

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

unloaded

loaded
u
z

[µ
m

]

Length [µm]

exp., 89 V

exp., 135 V

sim., 89 V

sim., 135 V

Figure 3.12: The vertical displacement profile of the beam evaluated from the finite element sim-

ulations with the SGCP model in comparison with the results from the electrostatic

beam bending experiments.

80 90 100 110 120 130 140
0

200

400

600

800

1000

 

 

80 90 100 110 120 130 140
0

200

400

600

800

1000

1200

 

 

-u
z

[n
m

]

-u
z

[n
m

]

Voltage [V]Voltage [V]

sim., R=1.5 µmsim., R=1.5 µm
sim., R=1 µmsim., R=1 µm

experimentexperiment

a) b)

beambeam

consideredconsidered
locationlocation

Figure 3.13: Permanent displacements at two different locations of the beam after loading cycles

with maximum voltage levels of 89 V, 107 V, 116 V and 135 V: a) at about x=290 µm

and b) at about x=156 µm.

model reveals that the amount of the time dependent strain recovery and the related time constants

are significantly dependent on the terms entering the constitutive law for crystallographic slip: c,
ρSSD0

and ∆F0. Because of the fact that these parameters serve for the definition of the overall

slip resistance and are not directly linked to the time scale of the dislocation glide mechanism, it

is concluded that the observed anelasticity is an artifact of the rate dependent modeling of crystal

plasticity.

The SGCP model is also used for the simulation of electrostatical beam bending experiments con-

ducted on a thin Al-Cu [1 wt%], involving several loading-unloading cycles to the different voltage

levels. The simulation results indicate that it is not trivial to accurately describe the material be-

havior in the experiment with the SGCP formulation with a unique set of material parameters. One

reason for this could be the effect of the repeated loading cycles in the experiment, which may

not be properly handled by the SGCP formulation. The results of the simulations involving two

successive loading cycles to the maximum voltage show that the accumulated deformation through

these sequential cycles are significantly smaller compared to the difference between the permanent

deformations from the experiment and the simulations. Another reason would be the nature of the
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model.

flow rule for crystallographic slip in the SGCP formulation: it was originally developed for pure

fcc metals by assuming that only dislocation-dislocation interactions provide the slip resistance.

On the contrary, the thin film tested is made of a metallic alloy which contains solute atoms and

small second phase particles. In this study, the relevant material parameters, i.e. c and ∆F0),

are adjusted to take into account the additional strength that may be provided, for instance, by

particles. However, increasing resistance against crystallographic slip extends the elastic range of

the material described by the SGCP model, and thereby lowers the accuracy to predict the large

permanent deformations remaining after the loading cycles to larger voltage levels. A larger slip

resistance also leads to the vanishing of the anelastic recovery in the simulations since it will hin-

der the reverse slip of mobile dislocation driven by the back stresses despite the fact that the time

dependent deformation recovery in the simulations using the SGCP model is a consequence of the

rate dependent nature of the SGCP. Note, however that time dependent recovery has been observed

in some experiments on thin films of a similar alloy.

The presence of particles and solute atoms in a metal would necessitate the consideration of ad-

ditional forms of interactions such as particle shearing or looping (Orowan and Friedel effects)

with their specific characteristics (e.g. strength, time scales). Additionally, the relatively large

anelastic recovery times observed in the experiments on Al-Cu thin films point to a diffusional

process through which the internal stresses residing in the material after a loading-unloading cycle

are relaxed. This study showed that the development of a new crystallographic slip law which

explicitly takes into account the dislocation-particle (and/or dislocation-solute atoms) interactions

is essential for a proper description of the mechanical behavior of an alloy with the SGCP formu-

lation. The development of such a constitutive law based on physical mechanisms may also give

rise to the introduction of realistic time scales into the material behavior observed in finite element

simulations which is a requirement for capturing the anelastic recovery accurately.

3.6 Appendix: Modeling of electric domain and contact in the simu-

lations

A further information about the modeling of the electric domain and the contact between the free-

standing beam and the dielectric layer in the multiphysical simulations is provided below.
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Modeling of electric domain

The electric domain is idealized by the use of transducer elements. In table 3.5, some of the

parameters that are used for the definition of transducer elements in the simulations of subsection

3.4.1 are listed.

Table 3.5: Some of the parameters for the electric domain in the multiphysical simulations.

Parameter Meaning Value Unit

δair Gap between thin film and dielectric layer 3.2 µm

δrough Average surface roughness of beam 0.15†, 0.06‡ µm

tdiel Thickness of dielectric layer 0.425†, 1.5‡ µm

tbeam Thickness of beam 5†, 4.75‡ µm

ǫdiel Dielectric permittivity 7.3†, 4‡ pF/µm

† For the simulations in section 3.4.1.
‡ For the simulations in section 3.4.2.

The initial air gap between the beam and the bottom electrode, δ0, is an input for transducer ele-

ments and is calculated via

δ0 = δair +
tdiel
ǫdiel

. (3.20)

Another input for a transducer element is the minimum gap, δmin here given by

δmin =
tdiel
ǫdiel

. (3.21)

When the gap between the plates (i.e. the thin beam and the bottom electrode in the present case)

falls below δmin , the transducer starts to behave as a linear contact element. In addition to this, a

non-linear contact formulation is adopted for the contact between the dielectric layer and the thin

beam and is modeled by gasket elements and non-linear springs, discussed in the forthcoming part.

Note that the use of transducers is justified in case of structures with one dimension relatively small

compared to the other two, as is the case for MEMS devices. Nevertheless, the fringe electric fields

may noticeably affect the device behavior. In the simulations of subsection 3.4.1, such fringe

field effects are neglected for simplicity. On the contrary, in the simulations of the electrostatic

experiment in subsection 3.4.2, the influence of the fringe fields is taken into account by additional

transducer elements along the periphery of the beam [75]. The contribution of the fringe field

transducers to the overall capacitance is calculated by the following analytical expression [75, 79]:

C =
ǫ0
π



ln




1 +

√
δ∗

2
(

1−
√
δ∗
)



+ 2



 with δ∗ =

[

1− 1

(tbeam/δ + 1)2

]1/2

(3.22)

where δ is the vertical position of the beam with a thickness of tbeam and varies between δrough
and δair .
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Modeling of contact between beam and dielectric

The contact between the surface of the beam and the dielectric layer on the bottom electrode is

modeled in the simulations of section 3.4.1 by gasket elements with the following loading curve

[75]

gf (z) = gf0 exp(Kg ∆δ(z)), (3.23)

gf (z) is the contact stress in terms of position of the beam along the z axis, gf0 is a pre-exponential

factor and Kg is the gasket stiffness. ∆δ(z) is the amount of penetration into the dielectric layer

as a function of z and has values in the rage of [0, 2δrough ]. For section 3.4.1, δrough = 0.15 µm,

gf0 and Kg are given as 1 · 10−3 µm−1 and 200 MPa, respectively.

In the simulations of section 3.4.2, the contact is modeled by using non-linear springs, which is

different from section 3.4.1. The contact stress is defined by [75]

gf (z) = 2.5Kg






1−




1− exp




−

4
π + a

2

(
∆δ(z)
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)2
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σr

∆δ(z)

)2











1/2





. (3.24)

Here, σr and a are defined by

σr = δroug/5 and a = −8(π − 3)/ (3π(π − 4)) . (3.25)

In equation (3.25), Kg is 1500 MPa and δrough = 0.06 µm.



CHAPTER FOUR

Modeling time and scale dependent

phenomena in particle strengthened

alloys

Abstract

A proper description of the mechanical behavior of metal thin film components of capacitive RF-

MEMS switches is essential for the development of more reliable devices since the main failure

mechanisms are directly related to the behavior of the free-standing electrode of these switches. It

is now a well known phenomenon that thin films are susceptible to size effects, which can be cap-

tured successfully by gradient plasticity theories. Besides the scale dependency, metal thin films

also exhibit time dependent behavior: anelasticity (which is the deformation recovery over time

following elastic spring back upon load removal) and creep (permanent deformation developed

over time at constant loads). This work focuses on the extension of a strain gradient crystal plas-

ticity (SGCP) model [13–16], previously developed for the scale dependent behavior of pure fcc

metals, so that it can be exploited for the description of the scale and time dependent mechanical

behavior of thin films that are made of metal alloys with second phase particles. For this pur-

pose, an extended physically based slip law is developed for crystallographic slip in fcc metals by

considering the deformation mechanisms that are active within the grains. In doing so, the interac-

tion of dislocations with other dislocations and with second phase particles is taken into account.

Three dislocation-particle interactions which may contribute to the overall material resistance are

considered: i) the Orowan mechanism, ii) the Friedel mechanism, and iii) climb over particles.

Moreover, the dynamic nature of the RF-MEMS’ service conditions is expected to lead to an in-

fluence of additional interaction mechanisms such as the interaction of dislocations with phonons

and electrons, which usually governs dislocation motion at high strain rates and which may be

encountered during transient loading of the device and pull-in of the suspended electrode. Sepa-

rate slip rate equations are written for these interaction mechanisms and are then combined into a

new constitutive model for crystallographic slip which covers both, so-called, thermal activation

and viscous drag regimes. The new constitutive equation is incorporated into the SGCP model

and implemented in a finite element framework. Simulations of the bending of a single crystalline

beam show that within the presented model, the strength of a material with semicoherent second

47



48 4 MODELING TIME AND SCALE DEPENDENT PHENOMENA IN PARTICLE STRENGTHENED ALLOYS

phases is determined by the resistance against the slip of screw dislocations at low to moderate

stress levels when dislocation climb is omitted. When dislocation climb is incorporated into the

formulation, its rate controls the plastic slip at low stresses. Provided that a considerable lattice

diffusion occurs and sufficiently large back stresses are exist in the material, the extended SGCP

model predicts that a noticeable fraction of the residual deformation remaining after unloading will

be recovered over time. The magnitude and the characteristic time scale of the anelastic recovery

is controlled by dislocation glide limited by climb. Simulations of the micro-clamp experiment

on a polycrystalline thin beam reveals that the use of an inhomogeneous diffusion constant which

is characteristic for grain boundary diffusion in the close neighborhood of grain boundaries and

close to the coefficient for lattice diffusion within grain interiors provides a material behavior that

is much closer to that observed in the micro-clamp experiment on a polycrystalline thin beam.

Simulation results also suggest that the internal stress formulation may need to be modified by

incorporation of additional sources of internal stresses.

4.1 Introduction

Capacitive radio frequency micro-electro-mechanical systems (RF-MEMS) switches are a class of

MEMS with radio frequency functionality that have recently become commercialized in wireless

networks applications. Similar to parallel plate capacitors, these switches are composed of two

electrodes, which are made of thin metal films of a few micrometers thickness. One of them is sus-

pended above the other with springs and is able to move vertically under the effect of electrostatic

forces generated by the application of a voltage difference between the electrodes. The elastic en-

ergy stored in the springs during the actuation of the switch provides the restoring force to increase

the gap between the electrodes when the voltage is reduced or to open the switch at zero voltage.

This reconfigurability of RF-MEMS allows them to operate over a wide range of frequencies. Be-

cause of this working principle, the reliability of RF-MEMS devices becomes strongly dependent

on the mechanical behavior of the free standing electrode (i.e. the metal thin film). Therefore, the

characterization and understanding of the mechanical behavior of the free standing thin film for the

service conditions of RF-MEMS devices is essential for the development of more reliable devices.

The mechanical properties of metallic thin films at micron and sub-micron scales vary with changes

in dimensions [3–5], which is referred to as scale dependent behavior or size effects. Size effects

are closely related to the material’s specific microstructure and the boundary constraints and usu-

ally result in a stronger mechanical response. Scale dependent behavior can only be described by

continuum theories that involve characteristic length scales of the material in the corresponding

formulations. Several models that make use of strain gradients [26–29] in order to capture specific

aspects of this scale dependency exist in literature [13, 16, 30–42].

Thin films are reported to show time dependent behavior of two types upon unloading after long

loading times: i) creep, the irreversible deformation developed under constant loads [6, 9, 12, 80]

(possibly with accompanying permanent plastic deformations, e.g. due to instantaneous loading),

and ii) anelasticity, a deformation recovery over time (following the elastic spring back) [7, 8, 62–

65, 81]. Creep and anelasticity of thin films are attributed in literature to different deformation

mechanisms such as dislocation glide [6, 80, 82–84], grain boundary sliding [62, 81, 85–89], or a

combination of grain boundary sliding and dislocation glide [64].

Besides the aforementioned nonlinearities in the mechanical behavior, which originate from the

material, an additional nonlinearity adds to the mechanical response during the pull-in of the free

standing electrode due to the structure of the device. Around a certain voltage level, which is
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named the pull-in voltage and is device specific, the free standing thin film looses its stability and

is instantly pulled down to the bottom electrode, leading to a deformation at high strain rates. At

high strain rates, the rate of deformation (or dislocation motion) has only a limited dependence on

dislocation interactions with obstacles. The resistance against dislocation motion then originates

from the viscous drag of phonons, electrons and the relativistic effects on the dislocations and

increases with temperature contrary to the Arrhenius type of temperature dependence at ordinary

strain rates. Impact shear tests on Al single crystals [90] revealed that at stress levels larger than the

thermal activation range, the shear rate varies linearly with the stress and is temperature dependent

within 20-500 K and the observed viscous material behavior can be described by phonon and

electron drag models [91, 92]. The findings of [93] also supports that a linear viscous drag acts

on mobile dislocations in Al. Impact shear tests on Al, prestrained Al and Al-Cu [4 at%] alloy

with θ′′ and θ′ particles at 10-293 K were conducted by [94], and yielded results in line with the

conclusions of [90]. It was shown in the same work that prestressing (i.e. introduction of initial

dislocations) and alloying of the material gave rise to an offset in the measured stresses in Al,

below which relatively little shear strain was observed, which is attributed to the interaction of

gliding dislocations with forest dislocations and the particles.

A strain gradient crystal plasticity (SGCP) model in terms of statistically stored dislocation (SSD)

and geometrically necessary dislocation (GND) densities was previously published by Evers et

al. [13] for the scale dependent behavior of fcc pure metals induced by a lattice curvature effect.

Therein, the size dependency is captured via a back stress, which is calculated for each slip system

in a material point by the analytical integration of the stress fields due to GND density gradients

over a cylindrical volume with a radius as the length scale. In [13], the back stress of a slip system

is defined by considering the interaction of dislocations that belong only to that slip system. In

follow-up work by Bayley et al. [15, 16], this definition was extended in order to incorporate the

influence of the dislocations on the other slip systems.

This study starts with an extensive review about the processes of plastic flow in particle strength-

ened alloys and corresponding models to capture them. Next, an extension of the SGCP framework

[15] is presented for the description of time and scale dependent mechanical behavior of fcc based

alloys with second phase particles, particularly for the creep and anelastic behavior of Al-Cu [1
wt%] thin films. A physically motivated rate equation for slip is presented in terms of the mi-

crostructural quantities. In deriving this equation, it is assumed that the material consists of second

phase particles, more specifically coherent θ′′, incoherent θ or semicoherent θ′ particles, which are

randomly distributed in the Al matrix. It assumed that the deformation occurs through dislocation

glide on multiple slip systems within the grain interior. The rate of dislocation glide, i.e. the dis-

location velocity, is controlled by the thermally activated release of dislocations from obstacles at

stress levels below the strength provided by the interaction of dislocations with other dislocations

and the particles. Four different interaction processes are considered to constitute the rate govern-

ing mechanisms: i) the dislocation-dislocation interaction, ii) the Friedel process, iii) the Orowan

process and iv) dislocation climb over particles. Separate constitutive equations are written for

the crystallographic slip rates of each process and are combined in a physically motivated manner.

For the slip rate governed by the resistance due to dislocation-dislocation interactions, the viscous

glide of dislocations is also taken into account at stresses larger than the resistance provided by

the dislocation-dislocation interactions. The new constitutive law for crystallographic slip is in-

tegrated into the strain gradient crystal plasticity framework of [16] and implemented in a finite

element method. A boundary value problem involving the displacement controlled bending of an

Al-Cu cantilever beam is solved to study the effect of the dislocation-particle interactions on the

mechanical behavior of the material.
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4.2 Material background

The thin films considered in this study are polycrystalline cantilever beams with columnar grains

of about 20 µm and made of an Al-Cu [1 wt%] alloy. Alloying Al with Cu leads to a material

which has a reduced lattice dimension decreasing linearly with the Cu content to a value of 0.4038
nm [95] at the equilibrium solubility of Cu, 5.70%. By alloying with Cu, the Debye temperature

of Al increases to about 517 K [95]. The solid-solid interfacial energy between the matrix and

CuAl2 is 130 − 170 mJ/m2 in the eutectic state, in which the phase disregistry is minimum while

in the random boundaries, the interfacial energy may reach 400− 600 mJ/m2 [95]. For the case of

equiaxed and evenly distributed CuAl2, the strength of the matrix depends on the mean free path

between the particles. The material hardness within the grain is as high as that in grain boundary

regions. By increasing the Cu content, the damping capacity of Al is reduced while its strength at

high temperature is increased and the creep rate is decreased by a factor of 2-10. The activation

energy for creep in the range of 500 − 600 K is around 1.5 eV [95]. The addition of copper also

increases the fatigue strength of Al. The equilibrium vacancy concentration of Al-Cu alloys is

close to that of pure metal, which is around 10−4 − 10−5 vacancies per atom in case of rapid

quenching [95].

Typical microstructural features that can be expected in thin films, such as the type of precipitates,

their size, density and the distribution of the solute atoms, are obtained from literature on bulk

Al-Cu alloys and Al-Cu alloy thin films. In bulk Al-Cu alloys, the firstly observed precipitates are

disk shaped, fully coherent Guinier-Preston zones (G-PI) which are rapidly formed on defects such

as dislocations [95], with thicknesses of about 2 atomic layers and diameters of 10-30 nm with a

separation of 25-30b with b the magnitude of the Burgers vector [96]. A G-PI zone is composed of

one or two Cu layers lying between {100} planes of Al. As aging continues, coherent G-PII zones

emerge at a much slower rate than G-PI [95]. These are also called θ′′ precipitates and involve

several layers of Cu atoms. They have larger diameters (about 10 − 100 nm [95]) and thicknesses

(about 10 nm) than G-PI zones [97] and have a tetragonal structure with lattice parameters a =
0.404 nm and c = 0.790-0.768 nm [98] with a lattice misfit in the c direction. Usually, optimal

mechanical properties are achieved in the presence of θ′′ precipitates as the stress fields around

the different zones almost overlap [95]. Next, θ′ phase particles with an Al2Cu composition are

formed. It is a semi-coherent phase with broad faces that are coherent (the (001) plane) with the

Al matrix and other incoherent faces (the (100) and (010) planes) and has a tetragonal structure

with lattice parameters a = 0.404 nm and c = 0.580 nm [97, 98]. Depending on the nucleation

time and temperature, this phase may attain diameters of 10-600 nm and thicknesses of 10-150
nm [95]. Dislocations and low and high angle boundaries are preferential nucleation sites for this

phase and its nucleation does not depend on the existence of GP zones [97]. The interface energy

between the θ′ phase and the matrix is in the order of 1530 mJ/m2. Finally, the thermodynamically

stable θ precipitates are formed, which are fully non-coherent particles. This phase has an I4/mcm

(C16) structure with the same composition as θ′ and having lattice parameters a = 0.6030-0.6066
nm and c = 0.4860-0.4874 nm [95, 98–100]. A further discussion on the bulk Al-Cu alloy can be

found in [97] and the references therein.

In case of thin films, the knowledge on precipitation based on bulk materials is questionable due

to the large surface-to-volume ratio. Information available in literature on thin films is limited

in comparison with bulk materials. Mondolfo [95] mentions that G-PI zones form slowly in thin

Al-Cu films while the stable phase θ nucleates rapidly. There are some other papers [101–103]

in literature confirming that θ is usually the only phase present in Al-Cu thin films, sometimes

accompanied by θ′. Mader and Herd [104] studied Al-Cu thin films with 100-200 nm thickness
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by a heat treatment of the solid solution alloy between 100-300◦C. They observed that nucleation

of GP zones is retarded. A high density of θ′ phase particles forms at lower temperatures than

in the bulk form. They are also smaller in size, about 10 nm and nucleate in the absence of θ′′.
θ are precipitated at the same time with θ′ in similar quantities again at lower temperatures than

in the bulk form. At 300◦C, only large θ precipitates exist as the second phase particles. The

distribution of the Cu atoms in Al-Cu polycrystalline thin films of 500 nm thicknesses with up to

1 at% Cu was examined by [105] via thermal cycling between 323 K and 773 K. It has been found

that the density of Al2Cu particles (the θ phase) is similar for free-standing thin films and films on

a substrate. The Cu concentration does not influence the amount of particles but does affect their

size: the lower the Cu concentration, the smaller the particles.

4.3 Plastic flow in particle strengthened alloys

Plastic deformation of a metallic material at the macro scale is the cumulative result of different

mechanisms at the atomic scale, such as dislocation glide, climb or atomic diffusion. The mech-

anism that dominates the rate of plastic flow depends on factors such as temperature, strain rate

and the applied stress. At low homologous temperatures, i.e. at temperatures below half of the

melting temperature of the material, plastic deformation of polycrystalline materials in bulk form

usually occurs via dislocation glide mechanisms, the rate of which is limited by the obstructions

on the glide plane, for instance discrete obstacles (e.g. particles) at ordinary strain rates and a

viscous drag force on gliding dislocations, e.g. due to phonons and electrons, at high strain rates.

At increasing temperatures, diffusive processes start to dominate the rate of plastic deformation,

as in the case of climb controlled dislocation glide, diffusional creep (e.g. Nabarro Herring, Coble

creep) or grain boundary sliding [106]. Also, the contribution of the grain interior and the grain

boundaries varies depending on the stress levels. At low stresses (and high temperatures), strain

is accumulated in the grain boundary regions while at large stresses, a large part of the deforma-

tion is accommodated within the grain interior, mainly via dislocation creep and grain boundary

strengthening [66, 107–110].

In a general sense, it can be stated that depending on the lattice structure and the composition of

the material, the type of the obstacle that provides the most significant portion of the resistance

against dislocation glide may be different. For instance, in case of pure aluminum, which has an

fcc structure, the main slip resistance is due to the interaction of the dislocations, whereby the

contribution of the lattice resistance is negligible, while for a material with a bcc structure, it is the

lattice resistance that gives the main strength of the material. Moreover, for alloys, the presence of

solute atoms (in case of solid solution alloys) and/or second phase particles (particle strengthened

alloys) may significantly increase the strength.

In the following sections, the main focus is on the mechanisms that take place in the grain interior.

Particular deformation mechanisms at grain boundaries, such as grain boundary sliding, are ne-

glected. It is assumed that the plastic deformation essentially results from dislocation glide. A slip

law is proposed for the description of the mechanical behavior of thin metal films that are made of

Al-Cu [1 wt%] alloy. Relying on the available literature, it is assumed that the material consists of

θ′′ or θ′ phase particles with an average radius of 10-30 nm. In setting up the constitutive rule, the

rate of slip is considered to be restricted by the cooperation of the following processes:

i. dislocation-dislocation interaction,

ii. viscous drag (at high strain rates),
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iii. dislocation-particle interaction,

iv. climb of dislocations over particles.

Furthermore, the particles are idealized as spherical in shape, with a constant volume fraction

and size (i.e. they do not evolve during deformation). Possibly, the individual Cu atoms that are

dissolved in the Al matrix also add to the material resistance. However, since the total solute

amount is 1% by weight and since small precipitates are present, this contribution is not taken into

account. Moreover, because of the high stacking fault energy of Al, the dislocations are regarded

as undissociated.

The dislocation-dislocation interactions in fcc pure metals are treated in [13–16, 33]. In the next

section, the dislocation-particle interactions are discussed.

4.3.1 Interaction of dislocations with particles

In fcc pure metals and alloys, the strength against plastic deformation principally originates from

the interaction of mobile dislocations with obstacles on their slip planes, such as other dislocations

or precipitates. For a dislocation that is forced to glide through an array of particles on its plane

under an applied stress, the sampling of the obstacles, i.e. how often and where the dislocation can

encounter an obstruction with what size, is a statistical process.

Following the assumption of spherical particles, an average planar radius rs, cf. figure 4.1, of a

random circular section of a particle on a glide plane is defined as [111, 112]

rs =
πr

4
, (4.1)

where r is the average particle radius. The number of particles, Nv, per unit volume can be

determined by

Nv =
3f

4πr3
, (4.2)

with f the particle volume fraction. The number of intersections of slip planes with particles of

uniform size, Ns, is related to Nv via

Ns = 2rNv. (4.3)

By making use of equation (4.3), the spacing of particles that are distributed in a regular square

array, Lcc , is given by [111, 113, 114]

Lcc =
1

N
1/2
s

=

(
2π

3f

)1/2

r. (4.4)

The average center-to-center spacing between a particle and its closest neighbor intersected by a

random plane for a random particle arrangement is given by [115]

L′
cc = 0.5Lcc. (4.5)

However, the consideration of multiple nearest neighbors is a more correct estimate for the particle
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rs

r

slip plane

Lcc

Figure 4.1: Schematic representation of geometrical properties of a particle with respect to a cut-

ting slip plane.

spacing, which then reads [111, 115, 116] as

L′′
cc = 1.25Lcc. (4.6)

In the rest of this work, equation (4.4) is used to calculate the mean planar center-to-center particle

spacing since the equations used in the following sections are derived based on a square array

particle arrangement and contain coefficients to take the randomness of the particle distribution into

account. IfLcc and rs are comparable, the interparticle spacing must be corrected asL = Lcc−2rs,

which is then the surface-to-surface spacing.

The dislocation-particle interaction may be of influence in two ways [111, 112, 117, 118]:

i. Dislocations feel a resistance upon passing through the individual particles, which can occur

only if the slip planes of these dislocations cut the particles. This type of resistance can be

considered as the accumulation of discrete localized forces.

ii. Dislocations interact with the stress fields around the particles. Such particles have, for in-

stance, a size, lattice or modulus misfit with the matrix. In this case, dislocations experience

diffuse forces. The range of the diffuse forces can be larger than the size of the particles

and, hence, for the interaction with dislocations to occur, their slip planes are not necessarily

required to intersect the particles.

Dislocations can overcome the particles by different processes depending on the strength of the

obstruction. Under a sufficiently large effective resolved shear stress, the dislocations may pass

the particles by bowing in between if the particles are strong enough, e.g. in case of large coherent

(overaged) particles or incoherent particles. This process is referred to as the Orowan mechanism.

If the particles are weak, as in the case of underaged or aged coherent particles, dislocations can

shear them, referred to as the Friedel mechanism. When the applied stress is relatively low for

the Orowan or Friedel mechanisms, edge dislocations can still overcome the obstacles by climb

(for which may require higher temperatures) whereas screw dislocations can pass by them via

cross-slip.

The Orowan, Friedel and climb mechanisms are discussed in the following sections. The cross-slip

phenomenon is omitted within this study.

Friedel mechanism

Under a sufficiently large effective resolved shear stress (τeff ), a dislocation glides on its slip plane

until it is hindered by particles, see figure 4.2. As the applied load is increased, the dislocation bows
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dislocation

Lcc

ΓΓ F

λ

τeff > 0

τeff = 0

Figure 4.2: A dislocation passing through a random array of localized particles in a sub-critical

state, [112].

out between them until a critical dislocation configuration is achieved, i.e. when the force exerted

on the particle by the dislocation through its line tension becomes equal to the particles’ shear

strength, cf. figure 4.3. There, φc denotes the cusp angle, Γc is the line tension of the dislocation,

φc φc

ΓcΓc

F̂

λcλc

τeff = τc

Rc

Rc

Figure 4.3: Dislocation configuration at the critical state.

F̂ is the maximum shear force that can be sustained by the particle, λc is the critical sampling

length along the dislocation line and Rc is the radius of curvature in the critical configuration.

Then, the force balance for a particle can be written as

F̂ = 2Γc cosφc at τeff = τc. (4.7)

A rough estimate of the particle strength can be made based on cosφc = βc. For βc < 0.5 particles

can be considered weak while for strong particles βc gets closer to 1 [119]. When φc = 0, particles

behave as impenetrable and the gliding dislocations escape from them by the Orowan mechanism.

φc > 0 means that the gliding dislocations overcome the particles by shearing them, i.e. via the

Friedel mechanism. Using equation (4.7), the critical stress τc results from the expression for the

radius of curvature of the bowing dislocation

Rc =
Γc

τcb
, (4.8)

and the cusp angle from figure 4.3

cosφc =
λc
2Rc

, (4.9)
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leading to

τc =
2Γc

bλc
cosφc =

F̂

bλc
. (4.10)

The critical sampling length is limited [119] by

λmin ≤ λc ≤ λmax , (4.11)

where λmin is equal to the distance between particles in a uniform square lattice arrangement Lcc

(which means Γ → 0, i.e. an infinitely flexible dislocation) and λmax = 4r
3f corresponds to the

particle separation along a straight dislocation line (Γ → ∞, i.e. a rigid dislocation). The upper

and lower limits for τc can be obtained by using these limits together with equation (4.10) [119]:

τu =
F̂

bλmin

=
2Γc

bλmin

cosφc and τl =
F̂

bλmax

=
2Γc

bλmax

cosφc. (4.12)

Rc

λcλc

SF

Figure 4.4: Steady state unzipping.

Friedel [96] and Fleischer and Hibbard [120] derived an approximation for λc based on the follow-

ing assumptions:

i. uniform particle arrangement,

ii. point-like treatment of particles,

iii. small bowing-out of dislocations.

Their approach is referred to as Friedel-Fleischer (FF) statistics. It is based on the steady state

unzipping condition, that is when a dislocation escapes from a particle, it moves until it encounters

a new particle by increasing its line length with the same radius of curvature [111–115, 117].

Physically, this implies [111, 117] that with increasing particle strength, dislocations will bow

more (where the natural upper bound is the Orowan process), increasing the probability of probing

new obstacles. The dislocation will escape from a particle in the critical configuration and glide

until it is caught by another particle. The area swept during this process, shaded in figure (4.4),

is equal to the glide plane area of an obstacle [117], which is L2
cc . Then, for λc ≪ Rc and small

bending of dislocation, Lcc, λc and the cusp angle φc are related to each other as

L2
cc =

λ3c
2Rc

= λ2c cosφc. (4.13)

Finally, the critical shear stress can be obtained through equations (4.7)-(4.13):

τc =
2Γc

bLcc

(

F̂

2Γc

) 3
2

. (4.14)
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For F̂
2Γc

< 1, dislocations shear the particles by the Friedel mechanism, and τc = τFR while for F̂
2Γ

equal to 1, the Orowan mechanism becomes active, and τc = τOR. It has been shown by computer

simulations [116, 121] that as F̂
2Γc

gets larger than 0.5, dislocations find paths through which the

penetration is easier at the cost of significant deviation from a straight line and the resistance falls

below the values of those calculated by equation (4.14) [112].

When λc is calculated by using equation (4.13), it may exceed λmax in equation (4.12) for very

small F̂ and βc. Therefore, an explicit limit for the Friedel stress should be set as τF ≤ τu
[119]. Also, to satisfy assumption (iii), a bottom limit for the critical sampling length should be

introduced such that λc ≥
√
2Lcc , [119].

The effect of a random particle arrangement was studied by [116, 121, 122] via different statistical

methods where the steady state unzipping condition of FF statistics is dropped but assumption (iii)

is still kept. The equation proposed in [122] for the critical shear stress,

τc = 0.85
2Γc

bLcc

, (4.15)

was shown to be more accurate in describing the results of the computer simulations [116] for

βc > 0.5 while the Friedel equation (4.14) is still the best fit for βc < 0.5, [111]. Another

suggestion for the calculation of τc is [114]:

τc = 0.8
2Γc

bLcc
cosφc for φc < 50◦, (4.16)

τc =
2Γc

bLcc
(cosφc)

3/2 for φc > 50◦. (4.17)

Other empirical equations exist in literature to fit computational results, e.g.

τc =
2Γc

bLcc

(

F̂

2Γc

) 3
2 (

0.8 +
φc
5π

)

. (4.18)

This equation gives similar results to those from equation (4.14) for large φc values. However, for

φc → 0◦, this equation is not strictly correct due to its finite slope at φc = 0◦ [114], even though it

is still preferable over equations (4.16)-(4.17) since it covers the entire range of φc [119]. A similar

empirical equation proposed by [111] reads:

τc = 0.956
2Γc

bLcc

(

F̂

2Γc

) 3
2



1− 1

8

(

F̂

2Γc

)2


 . (4.19)

The equations derived based on FF statistics are valid for localized obstacles, i.e. the case where

dislocations are pinned by point-like obstacles (assumption (ii)). However, a particle has finite di-

mensions in reality. Also, in some cases, such as for a modulus mismatch, the effective interaction

range of the particle with dislocations could be larger than its physical dimensions. These subjects

were investigated numerically by [123], whereby a parameter η0 is introduced

η0 =
y0
Lcc

1

(F̂ /2Γc)1/2
(4.20)

with y0 being the range of the interaction force. It is proposed that for η0 ≪ 1, FF statistics can
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still be used to predict the critical shear stress. As η0 & 0.5, FF statistics is insufficient and should

be modified as

τSL = C1(1 +C2η0)
C3τFF . (4.21)

τFF is the critical shear stress calculated by equation (4.14). In this work, C1 = 0.94, C2 = 2.5
and C3 = 0.33 are taken for elastically interacting particles with 0 ≤ η0 ≤ 4 and C1 = 0.94,

C2 = 0.82, and C3 = 1 for energy storing particles with 0 ≤ η0 ≤ 1.2 [112, 119]. The coefficient

C1 allows to include the effect of the randomness of the particle distribution [119]. When η0 ≫ 1,

the dislocation-particle interaction becomes similar to that in solid-solution alloys, in which partly

overlapping particles are sampled and the interaction forces are relatively weak but more numerous.

Such cases are well presented by Mott-Labusch (ML) statistics, [124–126]. It is stated in [111] that

the applicability of equation (4.21) is limited to cases with small F
2Γ (< 0.3) and cannot be safely

applied to strong particles with a small y0. For a detailed discussion, the reader is referred to

[111, 123].

The particle strength F̂ considered in equations (4.7)-(4.21) can be of different origins, which are

studied and reviewed by many authors in literature [111, 112, 114, 115, 117, 127, 128] and are

summarized below:

a) Chemical strengthening is the result of the generation of additional interfaces during the shear-

ing of energy storing coherent particles. The maximum resistance force experienced by a screw

dislocation during this process is given by [111, 112, 114, 115, 119, 129]

F̂ = 2χsb, (4.22)

with χs the specific energy of the particle-matrix interface. The resistance force for an edge

dislocation can be approximated by the one of a screw dislocation [114, 115, 119, 129]. The

specific energy of the particle-matrix interface of a coherent particle is relatively small. For

semicoherent particles, χs is greater than 200 mJ/m2 [130] (< 500 mJ/m2 for Al2Cu, [96]) and

they are usually unshearable. Incoherent particles cannot be sheared.

The description of the energy barrier (i.e. the activation energy) corresponding to F̂ depends on

the force-displacement profile of the associated strengthening mechanism. In figure 4.5, typ-

ical force-displacement profiles for particle-dislocation interactions are depicted. The energy

barrier corresponding to chemical strengthening can be described by [112]

∆GCHE = 2F̂ r

[

1−
( |τeff |
τFR

)2/3
]

. (4.23)

Note that equation (4.22) is independent of the particle size. Therefore, the critical shear stress

estimated by equation (4.14) decreases with increasing particle size at constant volume fraction,

which makes chemical strengthening important only for very small particles (e.g. underaged).

Based on this fact, it can be said that chemical strengthening can be considered as an assisting

mechanism to other strengthening mechanisms during particle shearing [111, 112, 114, 119].

Chemical hardening can be important for Al rich alloys such as Al-Cu or Al-Ag alloys [111].

b) Stacking fault (SF) strengthening originates from the difference in the SF energies of the matrix

and particles (∆χ). In SF strengthening, the dislocations-particle interaction is considered as

elastic [119]. A lower SF energy of the particles will generate an attractive interaction, which

leads to a local reduction of the dislocation line energy within the precipitate.
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Figure 4.5: Typical force (F )-distance (y) profiles for dislocation-obstacle interactions: a) chemi-

cal interaction, b) a localized obstacle with internal friction or fault (energy storing type

obstacles), c) soft contact obstacle (energy storing or elastically interacting obstacle).

F̂ and Feff are forces corresponding to the peak resistance stress τ̂ and the effective

resolved shear stress τeff . ∆G is the energy barrier for thermally assisted overcoming

of particles. After [112].

A number of papers regarding SF strengthening [111, 112, 119, 131–133] are available in

literature. Here, the approach in [131] is adopted due to its simplicity. Therein, the additional

drag force experienced by a straight dislocation due to the mismatch in stacking fault energies

is given as

F̂ = 2(2d̂rs − d̂2)1/2|∆χ|, (4.24)

where d̂ = min(wm , rs). wm is the equilibrium distance between Shockley partial dislocations

in a material matrix given by1 [132]

wm =
Gmb

2

24πχ

2− 3ν

1− ν

[

1 +
4ν

2− 3ν
sin2 β

]

(4.25)

where β is the angle between the total Burgers vector and the dislocation line. It has been

shown by [134] that equation (4.24) yields larger values than when the dislocation flexibility is

taken into account and it can be corrected by the introduction of a constant factor in front of it.

The SF hardening model [131] is here formulated through an interaction force versus displace-

ment profile that belongs to the class of elastic dislocation particle interactions, which is close

to the profile depicted in figure 4.5c. The corresponding activation energy is given by [112] and

reads:

∆GSFS = rF̂

[

1− 3

2

( |τeff |
τFR

)4/9

+
1

2

( |τeff |
τFR

)4/3
]

. (4.26)

This type of hardening can be important in Al rich alloys due to the high stacking fault energy

of Al.

c) Coherency hardening occurs due to the stress fields that arise from the lattice misfit (ε) between

the coherent particles and the matrix. This hardening type is important for equiaxed particles

1From here onwards, the subscripts m and p are for matrix and particle, respectively.
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with a misfit larger then ≈ 1%, while its significance reduces with decreasing misfit, or for

plate-like particles, [114].

The interaction of the dislocations with the strain field due to the lattice mismatch is of an

elastic and diffuse type [131]. For an infinitely long straight screw dislocation, the interaction

vanishes. Because of that, mainly the interaction with edge dislocations is studied in literature.

Also, when the slip plane contains the center of the particle, there is no interaction. Moreover,

once a dislocation penetrates into a particle, the resistance due to coherency vanishes.

The maximum resistance force that an edge dislocation may experience reads [111, 129, 135–

138]

F̂ = 4G|ε|br, (4.27)

which is achieved when the slip plane cuts the particle at a distance h = r/
√
2 from its center.

Since the particle-dislocation interaction considered here is of the diffuse type, a dislocation

moving on a slip plane that does not intersect the coherent particle may still feel the influence

of that particle. Hence, in contrast to the other strengthening sources mentioned earlier, an

averaging procedure is necessary to describe the overall influence of all particles [111]. In

literature, several equations [111, 114, 129, 135–138] are suggested for the critical resolved

shear stress necessary to shear coherent spherical particles. Many of them take a form similar

to

τCOH = C4(Gmε)
3
2

[
frb

2Γ

] 1
2

and ε =
ap − am
am

[

1 +
2Gm(1− 2νp)

Gp(1 + νp)

]

, (4.28)

where a is the lattice parameter of the matrix and C4 is a constant between 2 and 4 depending

on the averaging procedures used [111, 119].

By making use of equations (4.27) and (4.28), it is inherently assumed that the particles con-

sidered are small and weak enough so that the dislocations are not bent around the particles at

large angles, since these equations are formulated by assuming rigid dislocations [111]. Hence,

these equations are valid for
Gbr|ε|

Γ < 0.25, i.e. F̂
2Γ < 0.5. In other cases, the flexibility of the

dislocation must be taken into account [137].

Depending on the force-distance profile of this type of interactions, an activation energy form

is proposed by [112] as

∆GCOH = rF̂

[

1− 3

2

( |τeff |
τFR

)4/9

+
1

2

( |τeff |
τFR

)4/3
]

. (4.29)

When the coherent particles are large enough, the dislocations interacting with those particles

may be exposed to large resistance forces such that they are bent into large angles [114]. An

optimum particle radius, at which dislocations are bent to large angles, can then be defined by

considering βc = 1, which can also be used to calculate the maximum resistance stress due to

the lattice mismatch [111, 114] as

τCOH ,max = 1.84G|ε|f1/2. (4.30)

In this work, equation (4.28) is used to estimate the additional strength provided by the lattice

mismatch between the particles and the matrix by taking C4 = 3.9, which results from the

substitution of equation (4.27) into equation (4.14).
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d) Modulus hardening occurs due the difference in elastic moduli of the matrix and particles (∆G).

In modulus hardening [131], the matrix dislocations interact elastically with the particles. A

number of papers exist, in which this topic is particularly investigated. The reader is referred to

[111, 119] for a rigorous elaboration on the subject.

In the present case, the study of [139] is used for the incorporation of the effect of a modu-

lus mismatch. In [139], an empirical equation is derived for the maximum force that can be

experienced by an edge dislocation:

F̂ = C5∆Gb
2
(r

b

)C6

, (4.31)

where C5 ≈ 0.05 and C6 ≈ 0.85 are constants [111]. It should be noted that equation (4.31)

is valid for particle sizes in the range of 8b < r < 50b [139]. Since in its derivation, the

assumption of a straight dislocation is used, any influence of the particle-dislocation interaction

on the line tension is ignored. Moreover, the particles are intersected by the slip planes at their

centers and maximum forces always occur approximately at the particle interface.

For a screw dislocation, F̂ is lower than for an edge dislocation. However, an expression

for screw dislocations is not explicitly provided in [139]. Therefore, equation (4.31) is also

used for screw dislocations in this work together with an artificial reduction by 25%, which is

qualitatively in line with the calculation results in [139] for screw type dislocations.

Following [112], an expression for the energy barrier for overcoming the resistance can be

written as

∆GMOD = rF̂

[

1− 3

2

( |τeff |
τFR

)4/9

+
1

2

( |τeff |
τFR

)4/3
]

, (4.32)

which is similar to equation (4.29) due to the similarity between the interactions due to size and

modulus mismatches.

The effect of modulus mismatch may be important for Al alloys since Al has a relatively low

shear modulus.

e) Order strengthening originates from the generation of an anti-phase boundary in the slip plane

of an ordered precipitate during shearing by the dislocations moving in groups. It is presumed

that this kind of particle-dislocation interaction is not observed for the material (Al-Cu [1 wt%]

alloy) considered here.

f) A difference in the Peierls-Nabarro (P-N) stresses [140, 141] of the matrix and the particles

leads to additional strengthening. A modified expression for P-N stress at 0 K is given by

[142, 143]

τPNm,p ≈ Gm,p

1− νm,p
exp

(

−4πζm,p

bm,p

)

with ζm,p =
am,p

2(1− νm,p)
(4.33)

for an edge dislocation whereas for a screw dislocation, the terms (1− νm,p) are to be replaced

by unity. The additional resistance force is then calculated by [112]

F̂ = 2rb∆τPN with τPN = τPNp − τPNm . (4.34)

It is observed that the contribution to the strength of the material due to the difference in PN

stresses is ignorably small, which is not surprising for fcc metals. Keeping in mind that equation
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(4.33) and its equivalent forms estimate Peiers-Nabarro stresses at absolute zero temperature,

the magnitude of this additional strengthening will be even smaller with increasing tempera-

tures. Therefore, it will be omitted in the rest of this work.

Orowan mechanism

The Orowan mechanism is the circumvention process that occurs when the particles involved in the

materials are non-shearable due to full incoherency or very large strength. In this case, dislocations

are bent around the particles until the critical angle φc in figure 4.3 becomes zero. Then, the

wrapping parts of the dislocation collapse on each other and the dislocation escapes from the

particle, leaving behind a dislocation loop around the particle. Referring to equation (4.7), this

process occurs when

F̂

2Γc
= cosφc = 1 (4.35)

at the stress equal to the Orowan stress τOR. An expression for τOR for spherical particles is given

by [119]

τOR = 0.93
Gmb

2π
√
1− ν wlr

ln

(
2wdr

b

)[
ln (2wdr/b)

ln (wlr/b)

]1/2

(4.36)

with Gm and b the shear modulus and the magnitude of the Burgers vector of the matrix, respec-

tively. wr, wq, wl and wd are statistical parameters given by

wr =
π

4
, wq =

2

3
, wl =

√
π wq

f
− 2wr and wd = (w−1

l + (2wr)
−1)−1. (4.37)

Note that wrr gives the mean planar particle radius rs. For small particles, wd ≈ wr and wlr
is equal to Lcc , the mean separation distance between the obstacles in a square lattice array. In

equation (4.36), the factor 0.93 accounts for the random distribution of the obstacles, in line with

equation (4.21). In this work, it is assumed that the Orowan stresses for edge and screw dislocations

are identical.

For non-shearable particles, the process for overcoming the obstacles via the Orowan mechanism

is almost temperature independent. Such a property can be described using a relatively large

activation energy such as ∆GO > 2Gb3 following [106]. Hence, a stress dependent energy barrier

for the Orowan process is proposed here as

∆GO = 3Gb3
(

1− |τeff |
τOR

)

, (4.38)

which is used in the forthcoming sections.

Dislocation climb over particles

In the absence of an applied stress that is large enough for the Friedel or Orowan processes, dislo-

cations can still overcome particles by diffusion, i.e. by means of climb. The early modeling ap-

proaches for dislocation climb over particles were based on so-called local climb [114, 144, 145],

in which dislocations are assumed to profile the surface of the particles. In order for such a climb
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mechanism to be accomplished, the length of the climbing dislocation has to increase and the dif-

fusion involved in the process is very small. The local climb resulting in sharp dislocation bends,

which requires additional energy, is believed to be the source of athermal threshold stresses ob-

served in creep experiments of particle strengthened alloys, above which significant deformation

occurs. However, these sharp bends are unstable and can be quickly relaxed by diffusion, which

may significantly reduce the threshold stress of local climb [114, 146–149]. In such a case, so-

called general climb, the required increase in the line length is small but a relatively large vacancy

diffusion is required. This suggests the existence of other mechanisms for the explanation of the ex-

perimentally observed threshold stresses, such as attractive particle-dislocation interaction [150].

Due to this interaction, the line tension of a climbing dislocation is relaxed at the particle-matrix

interface. Hence, an additional energy must be supplied so that the dislocation attains the energy

level required to detach from the particle. Therefore, two energy barriers for the completion of

the climbing process over a particle exist: i) a climb barrier (for the increase of the line length)

and ii) a detachment barrier (due to the reduction of the line energy). Arzt and Wilkinson [145]

introduced an empirical fit for the critical value of the degree of the line tension relaxation at the

interface, kr, in terms of the particle size (rs) and separation (λ) as:

kc = 0.94(1 − rs
λ
)0.073. (4.39)

For kr < kc, the detachment barrier governs the climbing process and otherwise, the climb barrier.

In reality, kr > 0.7 and it attains its lowest values for incoherent particles [151].

In this work, based on the assumption of the existence of sufficiently strong attractive particle-

dislocation interaction, thermally activated detachment [152] is considered as the rate limiting

process for climb. The attempt frequency v of a dislocation involved in this climb mechanism is

given by [152] as

v = vv exp

(

−Ed

kT

)

with vv =
n

2
νD exp

(

−Qf +Qm

kT

)

=
3Dl

b2
, (4.40)

where vv is frequency of vacancy absorption, Dl =
1
6nb

2νD exp
(

−Ql

kT

)

is the lattice diffusivity,

νD is the Debye frequency, Qf and Qm are the activation energies for vacancy nucleation and

migration, Ql is the activation energy for self diffusion, and Ed is the detachment energy given by

Ed = 2Γr

[

(1− kr)

(

1− |τeff |
τd

)] 3
2

(4.41)

for spherical particles of average radius r where

τd =
√

1− k2r τOR (4.42)

is the detachment threshold stress [146].

Another expression for the detachment threshold stress was suggested by [153]

τd ≈
(

1 +
1

√

1− k2r

)3/2

τOR, (4.43)

by considering a rather weak behavior of dispersions during the thermal detachment which con-

tradicts the strong obstacle approximation by [146]. Equation (4.43) provided a lower threshold
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stress for the detachment than the original formulation by [146]. Moreover, equation (4.43) also

leads to a shift of the critical relaxation parameter from 0.94 to 0.96, which is the limit between

detachment controlled slip and climb controlled slip.

The consideration of the attractive dislocation-particle interaction in the climb process stabilizes

the local climb and leads to a detachment threshold stress τd , which vanishes with increasing

particle size as the Orowan stress is reduced [146, 151, 152]. For small particles, the probability

of the thermally activated detachment becomes larger since the detachment energy is proportional

to the particle size.

4.3.2 Dislocation line tension

There are several approaches for the calculation of the line tension in the equations above. The

simplest one is the fixed line tension approximation which is given by

Γ =
Gb2

2
, (4.44)

which is the same for both edge and screw dislocations.

Another approach is using de Wit-Koehler model

Γ =
Ws

L
+
∂2(Ws/L)

∂β2
, (4.45)

where Ws

L is the elastic energy per length of a straight dislocation in an isotropic crystal with the

definition [78, 114, 154]

Ws

L
=
Gb2

4π

(
1− ν cos2 β

1− ν

)

ln
Ro

Ri
, (4.46)

with inner and outer cutoff-radii Ri and Ro Hence, equation (4.45) becomes

Γ =
Gb2

4π

(
1 + ν − 3ν sin2 β

1− ν

)

ln
Ro

Ri
. (4.47)

Equations (4.45) and (4.46) lead to a smaller radius of curvature for edge dislocations. Hence, a

complete dislocation loop has a shape elongated in the direction of the Burgers vector. This is in

contradiction with equation (4.8) which assumes that a dislocation loop is circular. Ardell [111]

suggested to use the following equations for the improvement of accuracy:

Γe =
Gb2

4π

[

1 + ν − 3ν

(

1− cos2 φc
3

)]

ln
Ro

Ri
, (4.48)

Γs =
Gb2

4π

[
1 + ν − ν cos2 φc

]
ln
Ro

Ri
, (4.49)

which are derived by [155] by calculating the average line tension along the length of an arc that

is assumed to be circular [111].

The line tension of a dislocation derived through equations (4.45)-(4.49) does not contain the effect

of the self-interaction of the dislocation and its configuration (i.e. whether the dislocation bow is

large or small), which may influence the calculated values by a factor of two [156]. The following
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set of equations for the line tensions of an edge (Γe ) and a screw (Γs ) dislocation is therefore

proposed in [156]:

Γe =
Gb2

4π(1− ν)

[

(1− 2ν) ln
eR

Ri
+ 4.78ν − 2.89

]

, (4.50)

Γs =
Gb2

4π(1− ν)

[

(1 + ν) ln
eR

Ri
− 1.89ν − 2.89

]

, (4.51)

with the Euler number e. Equations (4.50) and (4.51) are derived by using the self-energies of

a small bow-out configuration of straight dislocations involving self-interaction effects [78, 156,

157].

In the subsequent sections, equations (4.48) and (4.49) are used for the calculation of the line

tension. The magnitude of the line tension is highly sensitive to the selected value of R0. Different

quantities were substituted for R0 by various authors [111] such as using a constant value justified

for a matrix with peak aged precipitates or using the Friedel sampling length λc. A discussion on

the choice ofR0 can be found in [158]. In this work, the surface-to-surface spacing of the obstacles

that are arranged in a square lattice array, L, is used as a reasonable estimate for the outer cut-off

radius.

4.3.3 Velocity of dislocations

Dislocation motion can be roughly classified into two mechanisms: jerky glide and viscous (con-

tinuous) glide. In case of jerky glide, the applied stress is below the mechanical threshold τ̂ , cf.

figure 4.6, at some locations and the gliding dislocations are trapped at obstacles. Therefore, the

dislocation velocity is controlled by the rate at which the dislocations escape from these obstacles,

which is a statistical process that is assisted through thermal fluctuations, i.e. by thermal activa-

tion. When the applied stress reaches values that are larger than the mechanical threshold stress

everywhere, dislocations move in a continuous manner under the effect of viscous drag forces. In

this regime, the velocity of dislocations depends linearly on the applied stress. Further increase of

the applied stress towards the ideal shear strength τideal activates additional dissipative processes

that set upper limits for the maximum velocity attainable by the dislocations.
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Figure 4.6: Schematic representation of the kinetics of dislocation motion with average dislocation

velocity v̄, after [159].

In the forthcoming subsections, a theoretical background is provided on the kinetics of jerky glide
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and viscous glide of dislocations in the presence of discrete obstacles, mainly based on the work

of Kocks et al. [159].

Viscous glide of dislocations

In a configuration where a dislocation moves at constant velocity vdr along axis y (and where

inertial effects are negligible) under a local driving force b(τ−τ̃(y)), the force equilibrium equation

can be written as [159, 160]

Bvdr (y) = b(τ − τ̃(y)) (4.52)

with drag coefficient B, the magnitude of the Burgers vector b, applied resolved shear stress τ
and glide resistance τ̃ . The average velocity v̄dr of the dislocations between two obstacles is then

defined by the ratio of the distance covered, λ2, over the total time spent during the viscous glide:

v̄dr =
λ2

∫ λ2

0
dy

vdr (y)

. (4.53)

λw

τ̄

2τ̂

τ̃

y

Figure 4.7: Sinusoidal glide resistance.

In case of a glide resistance with a sinusoidal variation, as shown in figure 4.7, τ̃(y) can be ap-

proximated by [159]

τ̃(y) = τ̄ + τ̂ sin

(
2π

λw
y

)

. (4.54)

Here, τ̄ is the mean resistance, τ̂ is the amplitude and λw is the wavelength of the periodic slip

resistance.

For a glide resistance that originates from the stress fields of the dislocations within a square lattice

arrangement, a simple expression can be written by using equation (4.54) [159] via

τ̄ = 0 and τ̂ = s =
Gb

λw
. (4.55)

Then, the average velocity is calculated by substituting equation (4.55) into equation (4.53) [159,

160]:

v̄dr =
b

B

√

τ2 − s2. (4.56)
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λ1
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τ̄

τ̂
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y

Figure 4.8: Schematic representation of the flow resistance profile on a slip plane.

For a glide resistance with sinusoidal variation as in figure 4.7, the separation between the particles

is the same as their width, i.e. λw = λ1 = λ2 in figure 4.8. However, in cases where dislocations

are treated as the source of glide resistances, width λ1 is in the order of a few Burgers vectors [160]

and relatively small in comparison with the separation distance λ2, cf. figure 4.8. Hence, equation

(4.56) needs to be modified to take into the account the time spent in between the particles. The

description of the average velocity for such cases is given by [159] and with the conditions given

in equation (4.55), it reads as

v̄dr =
b
B

√
τ2 − s2

λ1

λ2
+

√
τ2−s2

τ
λ2−λ1

λ2

. (4.57)

Note that for larger values of λ1

λ2
, equation (4.57) reduces to

v̄dr =
b

B
τ. (4.58)

The viscous drag B controlling the dislocation motion can originate from different sources de-

pending on the material. For instance, in crystals with a large Peierls resistance like bcc metals,

B is dominated by the lattice friction. For materials with negligible lattice friction, as in case

of fcc metals such as Al, the drag on the dislocations is linear and B is determined by the inter-

action of the gliding dislocations with phonons and at very low temperatures, with electrons. A

detailed overview of the various types of interactions can be found in [159] and references therein.

As the velocity of dislocations gets closer to the speed of sound, the magnitude of the drag force

increases due to highly nonlinear interactions between the mobile dislocations and phonons and

electrons [159]. Besides, the relativistic contraction of the dislocations at high velocities leads to

an increased line energy, which, in turn, increases the weight of the other drag mechanisms that

are safely neglected at a lower velocities. In summary, above half the speed of sound, the rate of

the energy dissipation increases significantly [159].

A general drag coefficient for temperatures above the Debye temperature resulting from phonon

interactions reads as

B ≃ kT

ΩωA
, (4.59)
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Table 4.1: Material parameters for Al.

G 25.1 GPa

vS 3.06 km/s

ωA 1.07 · 1013 1/s

TD 428 K

B 1.8 · 10−5 Pa s

Ω 16.50 Å
3

which leads to a maximum velocity

vdr =
Ωτ

kT
vS , (4.60)

at the steady state. As mentioned above, the upper bound for the dislocation velocity is set by the

speed of sound. For the satisfaction of this constraint by equation (4.59), the upper bound for the

effective resolved shear stress should be defined as

τ ≪ kT

Ω
, (4.61)

which is around 245 MPa for Al at room temperature for the parameters given in table 4.1.

In the following sections, the slip resistance is considered as a result of dislocation-dislocation

interaction and treated as a short range interaction due to large values of λ1

λ2
. Hence, equation

(4.58) is used to define the average velocity of mobile dislocations in the viscous drag regime. The

drag coefficient B is calculated by equation (4.59).

Jerky glide of dislocations

At low levels of the applied stresses, i.e. less than the mechanical threshold stress, the dislocation

motion is at some locations prevented by the obstacles. In such circumstances, the motion can

be continued provided that the energy supplied to the dislocation by the thermal fluctuations is

sufficient to overcome the obstruction, which is referred to as thermal activation. In the thermally

activated slip, dislocations move in a jerky manner, namely, the rate of the motion is governed

by the waiting times spent at the obstacles and the time needed to move between obstacles is

negligible.

A general rate equation for the net rate of the thermally activated release of dislocations at constant

stress, denoted by P , is provided by [159]

P = vG

[

exp

(

−∆Gf

kT

)

− exp

(

−∆Gr

kT

)]

=
1

tw
, (4.62)

with ∆Gf and ∆Gr the forward and backward activation energies, respectively. The inverse of

equation (4.62) yields the waiting time, tw, of the trapped dislocations at an obstacle, which is

needed for the calculation of the average dislocation velocity [160].

The forward activation energies used in this work are defined by [112] in terms of the obstacle
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radius r0
2, the maximum force F̂ and stress τ̂ that can be sustained by the obstacles with different

resistance-displacement profiles are given in figure 4.5. The activation energy ∆Gr (cf. figure 4.9)

for the reverse jumps can be approximated by [159]

∆Gr ≃ ∆Gf + |τeff |b (L+ 2r0) (2λc) (4.63)

for weak particles that can be treated within FF statistics. When the forward and reverse work done

by τeff are equal but with opposite signs, as the case for rectangular waves with L = 0, equation

(4.62) boils down to a hyperbolic form which is oftenly used in the literature, even though it is

only a special case [159].

The term (L+ 2r0) in equation (4.63) stands for the jumping distance or slip distance between

two successive activations. One can approximately calculate this distance by the steady unzipping

condition of FF statistics as

λ2 = (L+ 2r0) ≃
L2
cc

2λc
, (4.64)

where Lcc is the center-to-center planar spacing of obstacles and λc is the critical obstacle sampling

length by dislocations. Then, the average velocity of dislocations in a thermally activated slip can

τb

τeff b

τ̂ b

y

∆Gf
∆Gr

r0r0 L

Figure 4.9: Horizontal and vertical shaded areas denote the activation energies for forward and

reverse slip, respectively, for a system with two identical obstacles with a sine-like

resistance profile.

be written as

v̄th =
λ2
tw
. (4.65)

By the substitution of equations (4.62)-(4.64) into equation (4.65), v̄th reads3

v̄th =
1

2
Lcc

(
Lcc

λc

)

vG exp

(

−∆Gf

kT

)[

1− exp

(

−|τeff |bL2
cc

kT

)]

sign (τeff ) . (4.66)

The backbone assumption of FF statistics, i.e. at the critical configuration,

(
Lcc

λc

)2

= cosφC =
F̂

2Γc
(4.67)

2Note that r0 covers also the effective range of the resistance force, cf. figure 4.9

3Equation (4.65) is formulated such that the dislocation moves in the direction of the effective stress.
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is used to replace the term Lcc

λc
, which finally leads to

v̄th =
1

2
Lcc

(

F̂

2Γc

)1/2

vG exp

(

−∆Gf

kT

)[

1− exp

(

−|τeff |bL2
cc

kT

)]

sign (τeff ) . (4.68)

A closer look at equation (4.68) reveals that in a material with shearable obstructions with constant

properties and by assuming that they can be overcome by the help of thermal fluctuations, the

maximum velocity attainable by the dislocations (i.e. when |τeff | = τ̂ ) is given by the constant

pre-exponential term and depends on the obstacle properties such as particle size, volume fraction,

strength and line tension. Additionally, an equation for the velocity of dislocations in a material

with non-shearable particles is derived in a way similar to equation (4.68) based on the following

justifications:

i. for non-shearable particles

cosφc =
F̂

2Γc
= 1, (4.69)

ii. assuming that the steady state unzipping condition is also valid for the Orowan mechanism, the

dislocation sampling length becomes equal to the mean planar separation distance of particles,

Lcc. Then, the effective slip distance also becomes Lcc.

The dislocation velocity can then be approximated as

v̄ns = LccvG exp

(

−∆Gf

kT

)[

1− exp

(

−|τeff |bL2
cc

kT

)]

sign (τeff ) . (4.70)

4.4 Strain gradient crystal plasticity model

A strain gradient crystal plasticity framework (SGCP) was recently developed by [13–16] to cap-

ture the scale dependent behavior of fcc pure metals due to the lattice curvature effect. Therein, the

size effect is modeled with a back stress, which is obtained by resolving the internal stress fields

due to the non-uniform distribution of geometrically necessary dislocations (GND) onto individual

slip systems. The GNDs represent the signed fraction of the total dislocation population in the ma-

terial and are necessary to preserve the lattice compatibility in the crystal. The SGCP framework

involves also statistically stored dislocations (SSD), however, they do not contribute to the back

stresses due to their random orientation, whereas they do play a role in the isotropic hardening

process.

The framework is based on the multiplicative decomposition [50, 51] of the deformation gradient

tensor F into its elastic, Fe, and plastic, Fp, components

F = Fe · Fp, (4.71)

where Fe describes the stretch and the rotation of the lattice with respect to an intermediate con-

figuration that is defined by Fp with respect to the reference configuration.

The second elastic Piola-Kirchhoff stress tensor S is given in terms of the elastic Green-Lagrange
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strain tensor Ee in the intermediate configuration as:

S = C : Ee with Ee =
1

2

(
FT
e · Fe − I

)
, (4.72)

with C the fourth order elasticity tensor and I the second order identity tensor. S is defined by the

pull-back of the Kirchhoff stress τ to the intermediate configuration as

S = F−1
e · τ · F−T

e . (4.73)

The rate of the plastic deformation gradient is obtained from

Ḟp = Lp · Fp, (4.74)

where Lp is the plastic velocity gradient tensor and is resolved from the plastic slips at the slip

system level (here 12 octahedral slip systems for an fcc metal):

Lp =
12∑

α=1

γ̇ α Pα
0 . (4.75)

In this equation, γ̇ α denotes the plastic slip rate of system α and Pα
0 = sα0n

α
0 is the Schmid tensor

with sα
0 the unit direction of the Burgers vector and nα

0 the unit normal of the slip plane of system

α, both in the intermediate configuration.

The evolution of the plastic slip was described in the previous versions of the model [13–16] by a

power-law type relation:

γ̇ α = γ̇0

(

|τ α
eff |
sα

)m

exp

[

−∆F0

kT

(

1−
|τ α
eff |
sα

)]

sign(ταeff ), (4.76)

where γ̇0 and m are the reference slip rate and the rate sensitivity, respectively. Furthermore,

sα is the slip resistance, T is the absolute temperature and k is the Boltzmann constant. The

material constant ∆F0 represents the energy barrier to be supplied by the thermal fluctuations for

overcoming the slip resistance at vanishing stress levels. τ α
eff is the effective stress which is given

by the difference between the applied resolved shear stress τα and the resolved back stress ταb :

τ α
eff = τα − ταb with τα = S : Pα

0 . (4.77)

The back stress of a slip system in the SGCP model is calculated at a material point by integration

of the stress fields of a distribution of GNDs in a cylindrical volume, the dimension of which rep-

resents a length scale. The definition of ταb was initially given by [13, 14] in terms of contributions

of the GNDs of that slip system only. Later on, it was extended by [15, 16] taking into account the

contributions of all slip systems. The definition of the internal stress field due to edge dislocations

is given by [15, 16] as:

σ int
e =

GbR2

8(1 − ν)

12∑

ξ=1

∇0 ρ
ξ
GND ,e ·

(

3nξ
0s

ξ
0s

ξ
0 + n

ξ
0n

ξ
0n

ξ
0 + 4νnξ

0p
ξ
0p

ξ
0 − s

ξ
0s

ξ
0n

ξ
0 − s

ξ
0n

ξ
0s

ξ
0

)

,

(4.78)
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and for the screw GNDs, it is:

σ int
s =

GbR2

4

18∑

ξ=13

∇0 ρ
ξ
GND ,s ·

(

−n
ξ
0s

ξ
0p

ξ
0 − n

ξ
0p

ξ
0s

ξ
0 + p

ξ
0s

ξ
0n

ξ
0 + p

ξ
0n

ξ
0s

ξ
0

)

(4.79)

with p
ξ
0 = s

ξ
0 × n

ξ
0 associated with slip system ξ and R the radius of the cylindrical integration

volume. In [13–16], two of the screw dislocations with the same Burgers vector are coupled into

one set, leading to 6 screw dislocations while the number of slip systems for edge dislocations

is kept constant. Hence, index ξ runs over 1...12 in case of edge dislocations and 13...18 for the

screw dislocations. The back stress on a slip system α is then calculated by:

ταb = −
(
σint
e + σint

s

)
: Pα

0 for α = 1, 2, . . . , 12. (4.80)

The slip resistance on the glide system, sα, is provided by the short-range dislocation-dislocation

interactions. It is formulated following [26] in terms of both ρα
SSD and ρα

GND as:

sα = cGb

√
√
√
√

12∑

ξ=1

Aαξ|ρ ξ
SSD |+

18∑

ξ=1

Aαξ|ρ ξ
GND | for α = 1, 2, . . . , 12, (4.81)

where c is a material constant [52], G is the shear modulus, b the magnitude of the Burgers vector,

and Aαξ are the components of the interaction matrix that quantifies the strength of the interactions

between slip systems [53]. It is composed of the six interaction coefficients corresponding to self

hardening, coplanar hardening, Hirth lock, Glissile junction, Lomer-Cottrell lock, and cross slip

[70].

The evolution of SSD densities on each slip system ξ is described by the generalized form of the

relation originally proposed by [56]:

ρ̇ ξ
SSD =

1

b

(
1

L ξ
− 2 yc ρ

ξ
SSD

)

|γ̇ ξ| with ρ ξ
SSD(t = 0) = ρ ξ

SSD0
for ξ = 1, 2, . . . , 12.

(4.82)

In this equation, the first term within the parentheses represents the accumulation rate where L ξ

denotes the average dislocation segment length given by:

Lξ =
K

√
12∑

α=1
Hξα |ραSSD |+

18∑

α=1
Hξα |ρα

GND |
. (4.83)

Here, Hξα are the components of an interaction matrix similar to Aαξ , representing the mutual

interactions anticipated between the dislocations [13]. The second term in the parentheses is the

annihilation rate in terms of the critical annihilation length yc, the average distance between two

oppositely signed dislocations, below which they annihilate.

The densities of GNDs are calculated via the gradients of the crystallographic slips. The slip

gradients in the direction of slip sα0 yield the densities of edge GNDs while the gradients in the

direction of pα
0 give screw GND densities. A gradient of slip in the direction of the slip plane

normal nα
0 does not introduce any GNDs [26]. Hence, a balance equation for the densities of the
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GNDs can be written as

ρξGND ,e = ρξGND,e0
− 1

b
s
ξ
0 ·∇0γ

ξ, (4.84)

ρξGND ,s = ρξGND,s0
+

1

b

(

p
α1(ξ)
0 ·∇0γ

α1(ξ) + p
α2(ξ)
0 ·∇0γ

α2(ξ)
)

. (4.85)

Here, ξ runs over 1, 2, ..., 12 for edge GNDs and over 13, 14, ..., 18 for screw GNDs. ρ ξ
GND,e0

and

ρ ξ
GND,s0

denote the initial densities of edge and screw GNDs. The superscripts α1(ξ) and α2(ξ)
represent two slip systems with the same slip direction but different plane normals for each screw

GND. Note that equation (4.85) differs slightly from the implementation by [16].

Scale dependency of the material response due to the lattice curvature effect is well captured by the

current framework [13–16]. However, for a proper description and analysis of the time dependency

observed in the material behavior of the metallic thin film components of RF-MEMS devices,

several aspects should be considered:

i. Incorporation of physically justified time constants into the constitutive equations, e.g. in the

slip rate equation (4.76), is necessary, which is lacking in the current formulation. Although

γ̇0 in equation (4.76) seems to be such a parameter, it is simply a reference slip rate.

ii. The current flow rule considers only the dislocation-dislocation interactions as the source of

the slip resistance, which is treated as a short range obstruction that is overcome by thermal

activation. In this respect, equation (4.76) can be safely used for effective stress levels be-

low the slip resistance, i.e. within the thermal activation regime. At larger stresses, which

can also be interpreted as high strain rates, the dislocation motion falls into the viscous drag

regime and equation (4.76) becomes invalid. Regarding the dynamical working environment

of the capacitive RF-MEMS switches considered here, it is expected that high strain rates are

achieved, especially during the pull-in of the free standing top electrodes.

iii. As mentioned before, equation (4.76) is designed for pure fcc metals, whereas the material

considered in this work is a metal alloy, more specifically Al-Cu [1 wt%] with second phase

particles. Hence, together with the dislocation-dislocation interactions, the influence of the

interaction of dislocations with the solute atoms and the particles on the material behavior

needs to be taken into account.

iv. The slip rate equation (4.76) applies to pure metals and is essentially phenomenological de-

spite the parameters entering into it, such as the effective resolved shear stress and slip resis-

tance, having some physical basis.

In the following sections, based on these justifications, firstly an extended flow rule, which covers

both the thermal activation and viscous drag regimes, is formulated for pure fcc metals based on

the Orowan type slip rate equation. Thereafter, the new flow rule is extended to materials with

second phase particles by involving three additional mechanisms of dislocation-particle interac-

tions contributing to the resistance against crystallographic slip : i) the Friedel mechanism, ii)

the Orowan mechanism and iii) dislocation climb over particles. Separate slip rate equations are

written for each mechanism, which are then combined in a physically motivated manner. All four

mechanisms (one from dislocation-dislocation interaction and three from the dislocation-particle

interaction) inherently involve real time scales via the Granato frequency vG, but more importantly,

the rate equation for climb includes terms originating from diffusion, being important for creep and
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anelasticity. The new flow rule for alloys is incorporated into the SGCP model to substitute equa-

tion (4.76).

4.5 Constitutive modeling of crystallographic slip

When a straight dislocation shears a crystal fully, as depicted in figure 4.10a, the size of the step

generated is given by b, the magnitude of the Burgers vector. When it shears the crystal partially

a) b)

b

h

γ

δi

Lx

Ly

xi

Figure 4.10: Illustration of shear strain due to the slip of an edge dislocation after: a) partial shear-

ing, b) full shearing.

for a distance of xi, as in figure 4.10b, the resulting relative displacement δi can be expressed in

terms of the dimensions of the crystal and the Burgers vector such that

δi =
b

Lx
xi. (4.86)

If there are N sliding dislocations, the resulting overall displacement ∆ will be given by the sum-

mation of their individual contributions:

∆ =

N∑

i

δi =

N∑

i

b

Lx
xi. (4.87)

The shear strain is then calculated by

γ =
∆

h
=

b

hLx

N∑

i

xi. (4.88)

By defining an average slipping distance x̄

x̄ =
1

N

N∑

i

xi, (4.89)

and the density of the gliding dislocations ρm, as the total length of dislocations per volume, such

that

ρm =
NLy

hLxLy
, (4.90)
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the shear strain can be rewritten as

γ = ρmbx̄. (4.91)

The shear rate then reads [119, 128],

γ̇ = ρ̇mbx̄+ ρmb ˙̄x. (4.92)

Based on the assumptions that

i. the total length of the mobile dislocations is large,

ii. in some parts of the crystal, the dislocation length will increase while in some other parts it

decreases,

it is assumed here that the variation in the strains with respect to time is mainly driven by the

variation in the displacements. Hence, equation (4.92) is reduced to the form

γ̇ = ρmbv̄. (4.93)

In this equation, v̄ = ˙̄x denotes the average dislocation velocity. It is highly sensitive to the stress

acting on the gliding dislocations, temperature and the microstructural properties of the material,

such as the obstruction type, the volume fraction of precipitates (if any exist) and their distribution.

Equation (4.93) is the well known Orowan type flow rule, which is a physically based kinematic

equation for the plastic slip rate γ̇.

4.5.1 Flow rule for pure metals

In this section, a constitutive equation for the slip rate in fcc pure metals such as Al is constructed

in a way analogous to [159, 160] by considering two regimes of dislocation motion: thermally

activated glide and viscous glide. It is considered here that the resistance against plastic slip is

only due to the dislocation-dislocation interactions as treated in [13–16].

Average velocity of dislocations

The average velocity of dislocations in viscous motion is given by equation (4.58) as

v̄αdr =
b

B
ταeff . (4.94)

Here, α is an index referring to the slip system to which the dislocation belongs. The average time

spent to span a distance Lα in viscous motion can be estimated by the gliding time

tαr =
Lα

v̄αdr
. (4.95)

For the jerky glide of dislocations in a material with shearable obstacles, the average velocity v̄αth
is given by equation (4.68). Note that for the type of the slip resistance considered here, the mean

planar particle spacing Lcc in equation (4.68) is to be replaced by Lα
d , which is the effective mean

planar distance between the obstructing dislocations on plane α as defined in the forthcoming sub-

sections. In the thermally activated dislocation motion regime, the running time over a distance
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Lα is negligible with respect to the waiting time that dislocations spend at the obstacles until their

release. Hence, the average time passed is almost equal to the waiting time and it reads

tαw =
Lα

v̄αth
. (4.96)

Then, in a plastic flow where viscous and jerky motion are considered together, the average total

time spent to slip a distance of Lα is given by the summation of equations (4.95) and (4.96)

tαtot = tαr + tαw. (4.97)

Finally, the average dislocation velocity is given by the ratio of total distance covered and the total

time spent as [160]

v̄αav =
Lα

tαtot
=

(
1

v̄αdr
+

1

v̄αth

)−1

. (4.98)

At stress levels below the slip resistance, equation (4.98) yields a velocity that is determined by

the thermal activation while at stresses larger than the slip resistance, the velocity is governed by

the viscous drag on the dislocations. A transition regime occurs for a stress level around the slip

resistance where the effects of both the thermal fluctuations and the viscous drag are superposed.

Slip rate of dislocations

The behavior of the material can be described within the crystal plasticity framework by setting up

a relation between the dislocation motion due to an effective resolved shear stress ταeff and the net

resulting slip rate γ̇α for each slip system. Such a constitutive relation is proposed based on the

Orowan type equation (4.93):

γ̇α = ραmbv̄
α
av , (4.99)

where γ̇α and ραm denote the slip rate and the density of mobile dislocations on slip system α,

respectively. In this work, the total slip rate γ̇α is decomposed into two components, cf. figure

4.11:

i. the contribution from edge dislocations, γ̇αe ,

ii. the contribution from screw dislocations, γ̇αs ,

such that

γ̇α = γ̇αe + γ̇αs . (4.100)

This directly implies that the quantities ραm and v̄αav are defined separately for the edge and screw

type dislocations.



76 4 MODELING TIME AND SCALE DEPENDENT PHENOMENA IN PARTICLE STRENGTHENED ALLOYS

γ̇α

γ̇α
e γ̇α

s

τα
effτα

eff

Figure 4.11: Mechanical analogue of the slip rate equation (4.100).

Slip rate of edge dislocations

The contribution of edge dislocations to the evolution of plastic slip is quantified via

γ̇αe = ραm,ebv̄
α
av ,e , (4.101)

where the mobile edge dislocation density ραm,e is defined here as

ραm,e = Φ
(
|ραGND ,e |+ |ραSSD ,e |

)
, (4.102)

with Φ a scalar constant that gives the mobile fraction of all edge dislocations in slip system α. In

a way slightly different than the SGCP model by [13–16], the SSD densities (ραSSD ) calculated by

using equation (4.82) are equally split into edge and screw SSDs in the framework presented here,

denoted by ραSSD ,e and ραSSD ,s , respectively. The average velocity of the mobile edge dislocations,

v̄αav ,e , is given by equation (4.98). Within the current framework, the viscous drag controlled

velocity, v̄αdr , is used for both edge and screw type dislocations as defined by equation (4.58),

where τeff is replaced by ταeff . The average velocity of edge dislocations in the thermal activation

regime, v̄αth,e , is calculated by equation (4.68), in which τ and Lcc are replaced by ταeff and Lα
d ,

respectively. Here, Lα
d is the effective mean planar distance between the dislocations on plane α

given by

Lα
d =





12∑

ξ=1

Aαξ
(

|ρξSSD ,e |+ |ρξSSD ,s |
)

+

18∑

ξ=1

Aαξ |ρξGND |





−1/2

, (4.103)

where Aαξ are the components of the interaction matrix representing the strength of the interac-

tions between slip systems as determined by [53]. It is composed of six interaction coefficients

corresponding to self hardening, coplanar hardening, Hirth lock, Glissile junction, Lomer-Cottrell

lock, and cross slip, cf. [70]. In this study, Lα
d is taken identical for both edge and screw disloca-

tions. The forward activation energy ∆Gf is given by [13–16]

∆Gf = ∆F0

(

1−
|ταeff |
sα

)

. (4.104)

In this equation, ∆F0 represents the energy required to overcome particles at zero stress and sα

stands for the resistance against glide provided by the short-range interactions between dislocations

[13–16] and given by

sα = c
Gb

Lα
d

, (4.105)

where c is a material constant [52]. Note that the slip resistance in equation (4.105) involves

screw SSDs via Lα
d in contrast to [13, 14]. By considering the analogy between equations (4.14)
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and (4.105), an estimation for the maximum resistance force F̂e of edge dislocations, used to

calculate v̄αth,e (cf. equation (4.68)), can be obtained from c = (F̂e/2Γc)
3/2 if the line tension is

approximated by equation (4.44).

Slip rate of screw dislocations

The slip rate due to mobile screw dislocations is calculated in a way similar to that for mobile edge

dislocations by using

γ̇αs = ραm,sbv̄
α
av ,s , (4.106)

where the density of the mobile screw dislocations4 ραm,s reads

ραm,s = Φ
(
|ραGND ,s |+ |ραSSD ,s |

)
. (4.107)

The average velocity of the mobile screw dislocations is also given by equations (4.58), (4.68) and

(4.98). Lα
d , c and sα are taken as the same for both edge and screw dislocation types.

4.5.2 Flow rule for particle strengthened alloys

In section 4.5.1, a constitutive law was formulated for crystallographic slip in pure metals by

considering two different regimes of dislocation motion, i.e. thermally activated dislocation glide

and viscous drag. For alloys, additional obstructions to dislocation glide exist, such as solute

atoms in case of solid-solution alloys or precipitates and/or dispersions in particle strengthened

alloys. In order for plastic slip to occur, dislocations have to overcome the particles via different

processes. The three mechanisms that are listed below are presumed to play an important role in

the deformation of the material studied here (Al-Cu [1 wt%]):

i. the Friedel process,

ii. the Orowan process,

iii. dislocation climb over particles.

These mechanisms were discussed in the previous sections and are used in the formulation of a

physically based constitutive law for the description of crystallographic slip. In doing so, several

assumptions are made:

i. The constitutive law for slip systems aims at capturing the mechanical behavior of the material

within a grain. Hence, any deformation mechanisms occurring at/along grain boundaries are

ignored5.

ii. Only one type of particle phase exists in the matrix phase. Possible effects of the solute atoms

in the matrix are not considered to be significant.

4In equation (4.107), 12 screw dislocation densities are needed. Hence, it is assumed here that the available screw

GND density is equally distributed between the associated slip systems.

5Grain boundary strengthening due the pile-up of dislocations can still be captured by the introduction of impene-

trable boundaries into the material.
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iii. Upon the completion of the Orowan process, dislocation loops are left around the particles, the

pile up of which may lead to an additional hardening. This secondary effect is not considered

in the present formulation.

iv. It is assumed that an attractive interaction exists between the particles and the dislocations.

Based on this assumption, it is assumed further that the climb process is dominated by the

thermal detachment of dislocations from the particles. This assumption can be justified by the

existence of semicoherent and incoherent particles, which is commonly observed in thin films

made of Al-Cu alloy (cf. section 4.2).

v. At low stress levels, the overall slip rate is controlled by the climb of edge dislocations over

the particles.

vi. The geometrical evolution of the particles may be ignored, i.e. the average size and the volume

fraction of particles are constant.

vii. In a material point of the crystal plasticity model, all particles are sampled simultaneously by

the dislocations at the same rate.

Then, the multiple dashpot configuration in figure 4.12 is used to incorporate the effect of particles

into the matrix material, which is treated as pure Al here due to assumption (ii). The dashpot

arrangement in figure 4.12 can be motivated as follows: When the material is loaded, the external

resolved shear stress (τα) must overcome firstly the back stress (ταb ) so that a non-zero effective

resolved shear stress (ταeff ) can drive mobile dislocations. In order to move a dislocation from one

position to another, ταeff has to simultaneously overcome the crystallographic slip resistance by

dislocation-dislocation interactions and dislocation-particle interactions. Dislocation-dislocation

interactions and dislocation-particle interactions are therefore connected in parallel in the first and

second branch, respectively. If ταeff is sufficiently large, dislocations can pass by obstacles via

the Friedel or/and Orowan processes. These two mechanisms are incorporated separately in the

dislocation-particle branch. If ταeff is low, dislocations cannot cut through obstacles or bow around

(meaning that the dashpots connected in parallel yield zero or negligible slip rates). However,

dislocation glide may still occur via diffusional processes. It is assumed in the current formulation

that the climb of dislocations over particles is the only rate limiting diffusional mechanism. A

dashpot representing the dislocation climb is added into the main branch so that finite strain rates

are produced even if the effective resolved shear stress levels are insufficient for the Orowan and

Friedel mechanisms.

As shown in figure 4.12, the constitutive law is characterized by these dashpot systems, governing

the contribution to the total plastic slip rate γ̇α of the edge dislocations, γ̇αe , and the screw disloca-

tions, γ̇αs . The total plastic slip rate is obtained by equation (4.100). Each dashpot in figure 4.12

has its own unique slip law that relates the stress in the branch to the slip rate it delivers. Based on

the combination presented in the figure, the slip rates of individual dashpots and the overall slip

rate are connected to each other by

γ̇αe = γ̇αR,e + γ̇αC ,e = γ̇αO ,e + γ̇αF ,e + γ̇αC ,e , (4.108)

γ̇αs = γ̇αR,s = γ̇αO ,s + γ̇αF ,s . (4.109)

The dashpot systems for the edge and screw dislocations experience the same stress, ταeff , which is

then divided between their underlying branches. This can be formulated as

ταeff = τα1 ,e + τα2 ,e = τα1 ,s + τα2 ,s . (4.110)
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γ̇α

γ̇αe γ̇αs

γ̇αR,e

γ̇αO,e γ̇αF ,e γ̇αC ,e
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Figure 4.12: Mechanical analogue of the constitutive law for a slip system in a particle strength-

ened alloy. In the figure, α denotes slip plane and runs over 1..12 for fcc metals, τα

is the effective resolved shear stress, γ̇α is the total slip rate corresponding to ταeff , τα1
and τα2 are the stresses in the first and second branches. γ̇αR, γ̇αO , γ̇αF and γ̇αC are the

slip rates of the dislocation-dislocation interaction dashpot, the Orowan, the Friedel

and the climb dashpots, respectively. Subscripts (.),e and (.),s represent the quantities

for edge and screw dislocations.

The dashpot in the first branch of each of the parallel dashpot groups in figure 4.12 represents

the slip resistance provided by the dislocation-dislocation interaction, which is given by equation

(4.105). The slip rate for the edge dislocations controlled by the dislocation-dislocation interac-

tions is given by equation (4.101) and for the screw dislocations, it is given by equation (4.106).

The second branch of the parallel dashpot groups takes into account the effect of the particles. As

an important difference with the first branch, the dashpots in this branch work within the thermally

activated slip regime only. As soon as the stress in the branch exceeds the threshold stress of a

dashpot, that dashpot becomes active, and hence the stress in the branch hardly increases further

with an increase in the applied stress and the dashpot of the first branch sustains the further loading

alone. The first dashpot in the second branch denotes the particles that are overcome by the Orowan

process. The stress required for the activation of this process is calculated with equation (4.36).

The velocity of the edge dislocations involved in the process is estimated by using equation (4.70):

v̄αO ,e = LccvG exp

(

−
∆Gα

O ,e

kT

)[

1− exp

(

−
|τα2 ,e |bL2

cc

kT

)]

sign
(
τα2 ,e

)
. (4.111)

The corresponding slip rate is defined in a way similar to equation (4.101):

γ̇αO ,e = ραm,ebv̄
α
O ,e . (4.112)

Equations similar to equations (4.111) and (4.112) are used to calculate the average velocities and

the slip rates for the screw dislocations.

The second dashpot of the branch represents the Friedel process. The threshold of this dashpot,

the Friedel stress τFR, is determined by selecting the largest of the additional stresses that can

be provided by the potential strengthening sources discussed in section 4.3.1. These stresses are

calculated via equations (4.14) and (4.21) by the substitution of the maximum resistance forces

(equations (4.22), (4.24), (4.27) and (4.31)) that a dislocation can experience during particle shear-

ing. The critical line tension in equation (4.14) is calculated by equations (4.48) and (4.49), which
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are the modified version of De Wit-Koehler model with outer cut-off radii equal to the mean pla-

nar particle spacing Lcc . The forward activation energy of the process is also determined by the

strengthening source that determines τFR . Now, the average velocity of the edge dislocations

between two successive arrests at particles can be defined via equation (4.68):

v̄αF ,e = LccvG

(

F̂e

8Γc,e

)1/2

exp

(

−
∆Gα

F ,e

kT

)[

1− exp

(

−
|τα2 ,e |bL2

cc

kT

)]

sign
(
τα2 ,e

)
. (4.113)

Having defined the average velocity of the edge dislocations, the slip rate by the Friedel dashpot

for edge dislocations can be calculated by the same formulation as equation (4.112). The same

procedure is repeated for the screw dislocations as well.

The dashpot system for the edge dislocations, cf. figure 4.12, contains an additional dashpot in

series with the parallel groups of dashpot for the incorporation of the climb of dislocations over

particles, described here by the thermally activated detachment model [152]. The detachment

energy and the detachment threshold stress are given by equations (4.41) and (4.42), respectively.

The average velocity of the edge dislocations which is governed by the thermal detachment is

calculated by

v̄αC ,e = LJ
3Dl

b2
exp

(

−
Eα

d ,e

kT

)[

1− exp

(

−
|ταeff ,e |bL2

cc

kT

)]

sign
(
ταeff ,e

)
. (4.114)

Note that this equation slightly differs from the slip law proposed by [152]. LJ , the average

distance to be traveled after the detachment from a particle until the next encounter with another

particle, is approximated by an effective travel distance L2
cc/λc if τFR < τOR. Otherwise, it is

taken as equal to Lcc . The contribution of the climb dashpot to the slip rate of the second branch

is then calculated via

γ̇αC ,e = ραm,ebv̄
α
C ,e . (4.115)

For screw dislocations, the motion out of the slip plane is referred to as cross-slip and is omitted

here. Note that climb of the edge dislocations over the particles is a diffusional process, which

introduces a real time dependency into the constitutive rule through the diffusion constant and is

assumed to determine the overall crystallographic slip rate of a slip system at low stress levels.

In the proposed constitutive model, the rate of each individual process, as represented by the dash-

pots in figure 4.12, is governed by the thermal activation at the level of the branch stresses (i.e. τα1
and τα2 ) that are lower than the dashpot resistances. At such low stress levels, the total slip rate

is controlled by the slip rate of the climb dashpot. When τα2 is larger than the particle resistance

(namely τOR or τFR), the slip behavior becomes similar to that in a particle-free material and a

further increase in the applied stress is carried only by the resistance arising from the dislocation-

dislocation interactions. As τα1 exceeds sα, the dislocation motion falls into the so-called viscous

drag regime and ταeff does work against the viscous drag forces only.
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4.6 Analysis of the new model for crystallographic slip

4.6.1 Pure metals

Two different constitutive formulations for slip systems in pure fcc metals, one of which is equation

(4.76) proposed by [13–16] and the other is suggested in this work through equations (4.100),

(4.101) and (4.106), are compared at a single slip system level in figure 4.13 for the material

parameters given in tables 4.2 and 4.3. Clearly equation (4.76) has no upper bound for the slip

rate. This contradicts the fact that the speed of sound limits the maximum velocity that dislocations

may attain and thereby imposes an upper bound on the shear rate. At stress levels above the slip

resistance, which is set to 15 MPa in this example, the stress sensitivity of the shear rate is large,

which deviates from the linear stress-strain rate relation found in the viscous drag regime (assuming

the changes in the dislocation density have a negligible effect on the shear rate). Contrarily, the new

flow rule which is developed by considering the influence of viscous drag forces on the mobility of

dislocations does have an upper bound as seen in figure 4.13 and is also valid at stress levels that

are larger than the crystallographic slip resistance provided by dislocation-dislocation interactions.
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Figure 4.13: Comparison of the slip laws proposed by [13–16] and in this work.

4.6.2 Alloys: without dislocation climb

The thin films considered in this work are composed of an Al-Cu alloy. As mentioned in section

4.2, the material essentially contains incoherent θ phases, possibly accompanied by semicoher-

ent θ′ particles. It is next assumed that the material contains only semicoherent particles with an

average radius of 5 nm, which have coherent and fully incoherent interfaces. The incoherent in-

terfaces can have a lattice misfit with the matrix that is large enough to accommodate dislocations,

while along the coherent surfaces a stress field can exist due to the elastic distortions of the ma-

trix triggered by the in-plane lattice misfit. The surface energy of the incoherent faces is so high

that shearing of the particle is possible only at large stresses, before which the Orowan process

intervenes. The contributions of the chemical hardening and the coherency strains to the particle

strength τ̂ are calculated over a range of particle radii at a constant volume fraction by using equa-

tions (4.21), (4.22) and (4.27) and plotted in figure 4.14a for edge dislocations and in figure 4.14c
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Table 4.2: Parameters used to study the typical behavior of flow rules for a single slip system.

r 5 nm

f 1.2 %

γ̇0 1 · 10−3 1/s

y0 2rs nm

s 15 MPa

ρGND ,e 1 1/µm2

ρGND ,s 1 1/µm2

ρSSD ,e 1 1/µm2

ρSSD ,s 1 1/µm2

Φ 1 · 10−2 -

m 10 -

Table 4.3: Material parameters used in this work.

Parameter Meaning Value Unit Reference

r Average particle radius 5, 20 nm -

f Volume fraction 1.2% - -

vG Granato frequency 1 · 1011 s−1 -

Gm Shear modulus 26000 MPa [70, 76]

Gp Shear modulus 40000 MPa [161–163]

νm Poisson’s ratio 0.347 - [78]

νp Poisson’s ratio 0.34 - [161, 162]

b Burgers vector length 2.86 · 10−4 µm [70]

bp Burgers vector length 2.65 · 10−4 µm -

χ Stacking fault energy 166 − 200 · 10−3 pJ/µm2 [164, 165]

χp Stacking fault energy 92 · 10−3 pJ/µm2 [164, 165]

am Lattice constant 4.0417 · 10−4 µm [102]

ap Lattice constant 4.04 · 10−4 µm -

|ε| Lattice constant 0.57 − 5.1 % [166, 167]

χs Surface energy 190 − 600 · 10−3 pJ/µm2 [130, 163, 167]

C4 A constant for coherency hard. 3.9 - -

C5 A constant for modulus hard. 0.05 - [119, 139]

C6 A constant for modulus hard. 0.85 - [119, 139]

∆F0 Activation energy 30 · 10−8 pJ [159, 168]

k Boltzmann constant 1.38054 · 10−11 pJ/K -

T Absolute temperature 293 K -

kr Relaxation coefficient 0.94 - -

ρSSD0 Initial SSD density 7− 20 µm−2 -

R Disl. capture radius 1 µm -

φ Mobile frac of dislocations 1 · 10−2 - -
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for screw dislocations. Note that the lattice mismatch between the particle and the matrix does not

add to the resistance against the slip of screw dislocations within the presented framework due to

the straight dislocation assumption in the derivation of equation (4.27). The Orowan stress, given

by equation (4.36), is also included in the figure as a reference. Two values of 190 mJ/m2 and

600 mJ/m2 are assigned for the surface energy χs and for the lattice misfit 0.57% and 5.1% are

used following [167] and the references therein, with the larger values belonging to the incoherent

interfaces. Figure 4.14a shows that the use of the mismatch parameter of the incoherent particle to

define the Friedel stress τFR leads to very large stresses (dash-dotted curve), exceeding the Orowan

stress over the whole particle size range and the upper bound τu (the largest stress attainable for the

given particle size and volume fraction by equation (4.12)) for a particle radius larger than about 1
nm. Because of this, it can be expected that gliding dislocations on a slip plane that intersects a θ′

particle at its incoherent faces cannot shear the particle but can pass it by the Orowan process.

For mobile edge dislocations penetrating into a semicoherent particle through its coherent face, fig-

ure 4.14a-b shows that the lattice misfit induces a larger shear resistance than chemical hardening.

The Orowan stress is smaller than the Friedel stress for particles with a radius r larger than about

12 nm (for which F̂ /2Γc is about 1 in figure 4.14b). For screw dislocations, the shear resistance

provided by chemical hardening is always smaller than the Orowan stress and F̂ /2Γc is less than

1, cf. figure 4.14c-d. The additional strength against particle shearing offered by chemical hard-
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Figure 4.14: The particle resistance τ̂ and the corresponding strength measure F̂ /2Γc due to chem-

ical hardening and lattice mismatch: (a)-(b) for edge dislocations and (c)-(d) for screw

dislocations. The Orowan stress is taken equal for edge and screw dislocations.
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ening, stacking fault hardening, hardening due to the modulus mismatch and the lattice mismatch

between the matrix and the particle are calculated via equations (4.21), (4.22), (4.24), (4.27) and

(4.31) by using the properties of coherent particles (i.e. chemical energy and lattice mismatch), see

figure 4.15a. It is found that the lattice mismatch constitutes the largest contribution to the shear

resistance of particles in case of edge dislocations for particle radii above about 1 nm. Hence,

it controls the Friedel stress τFR,e of coherent particles for edge dislocations. The particle size

corresponding to the peak aged condition is visible in figure 4.15b at around 12 nm, after which

the Orowan mechanism starts to operate. For mobile screw dislocations, the Friedel stress τFR,s

originates alternatively from the stacking fault strengthening and the modulus mismatch depend-

ing on the particle size. Yet, τFR,s is always smaller than the Orowan stress and F̂ /2Γc is always

smaller than 1, see figure 4.15c-d. Therefore, one may conclude that the additional strength pro-

vided by semicoherent particles levels between the strengthening due to small coherent particles

(which are overcome by the Friedel process) and the strengthening due to large coherent particles

or incoherent particles (which are passed by the Orowan mechanism).
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for screw dislocations. The Orowan stress is taken equal for edge and screw disloca-

tions.

Crystallographic slip rates are calculated via equations (4.100)-(4.107) for a pure metal and via

equations (4.100), (4.108)-(4.115) for an alloy having coherent particles with r = 5 nm, see figure

4.16. The material parameters used in the calculations are given in tables 4.2 and 4.3. Some
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Table 4.4: Several parameters that are calculated and used in the slip rate equations for r = 5 nm.

Edge dislocations Screw dislocations

F̂ 8.48 · 10−4 3.11 · 10−4 µN

Γc 6.35 · 10−4 1.85 · 10−3 µN

F̂ /2Γc 0.67 0.08 -

η0 0.15 0.41 -

τFR 37.82 5.62 MPa

τOR 75.05 75.05 MPa

τd 12.47† - MPa

† Calculated by equation (4.43). The description of the detach-

ment threshold (equation (4.42)) in the original work [152] yields

a larger value, 25.61 MPa.

resulting quantities necessary to interpret figure 4.16 are listed in table 4.4. The Friedel stress τFR
for edge dislocations, which originates from the stress fields due to the lattice misfit (cf. figure

4.15a), equals about 37.82 MPa, which is smaller than the Orowan stress τOR = 75 MPa, cf. table

4.4. The Friedel stress τFR for screw dislocations is provided by the stacking fault strengthening

(see figure 4.15c) and is about 5.62 MPa, smaller than τOR. Thus, dislocations overcome the

particles via the Friedel mechanism. η0 is smaller than 0.4 for edge dislocations and around 0.4
for screw dislocations, which justifies the use of FF statistics, i.e. the treatment of the particles as

point-like obstacles.
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Figure 4.16: Comparison of constitutive laws for slip systems in pure metals and particle strength-

ened alloys (r = 5 nm): a) Edge dislocations only. b) Edge and screw dislocations.

In figure 4.16a, the slip rates of the edge dislocations are plotted. For pure metals, there is a

transition from thermally activated dislocation glide to viscous glide around 15 MPa, which is the

value assigned to the slip resistance arising from dislocation-dislocation interactions, s. For alloys,

this transition shifts to larger stresses by an amount about equal to the Friedel stress for the edge

dislocations. In figure 4.16b, the total slip rate is plotted. Note that there is still one transition of the

dislocation glide regime around s for pure materials since the resistance provided by dislocation-

dislocation interactions is taken equal for edge and screw dislocations while for alloys, there are
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two transition regions. The first transition, which occurs around 20 MPa is attributed to the screw

dislocations, for which the Friedel stress τFR,s (= 5.62 MPa) is relatively small. As the effective

stress is increased further, the velocity of the mobile screw dislocations will be limited by the

viscous drag force while the mobile edge dislocations are still in the jerky glide regime. Around

τeff = s+τFR,e , the second transition occurs, after which all mobile dislocations slip in the viscous

glide regime.

The slip rates of edge and screw dislocations and the total slip rate are shown in figure 4.17 for two

different particle sizes. For r = 5 nm, both edge and screw dislocations overcome the particles by

the Friedel mechanism since the Friedel stress is less than the Orowan stress, cf. table 4.4. Because

the Friedel stress is considerably less for screw dislocations and the climb of edge dislocations is

not considered, the screw dislocations are more mobile than the edge dislocations, which allows

them to accommodate almost all of the total slip rate at low and moderate stress levels. The

contribution of the edge dislocations to the total slip rate becomes significant only at high stresses,

at which the screw dislocations move already in the viscous drag regime. Note that below 20 MPa,

the contribution of the edge dislocations is almost zero. For r = 20 nm, edge dislocations can pass

the particles only by bowing around them, i.e. via the Orowan mechanism since τOR,e < τFR,e ,

see table 4.5. For screw dislocations, the Friedel stress is still smaller than the Orowan stress, hence

they continue gliding by shearing the particles on their slip path. Since τFR,s is much less than

the Orowan stress for the edge dislocations, the total slip rate still mainly results from the screw

dislocations.
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Figure 4.17: Slip rate (γ̇) versus the effective resolved shear stress (τeff ) for edge dislocations and

screw dislocations for particle sizes (a) r = 5 nm and (b) r = 20 nm. Dislocation

climb is not considered.

Figure 4.18 shows the distribution of the effective resolved shear stress between the branches of

the dashpot system in figure 4.12 and the resulting slip rates of the dashpots, representative for the

individual overcoming mechanisms discussed in the previous sections. It is seen in figure 4.18a

that for edge dislocations, up to about 20 MPa, the effective stress is fully sustained by the particles,

i.e. the second branch. Meanwhile, since the stress in the first branch, τ1 ,e is almost zero (and also

climb of edge dislocations is ignored), the total slip rate of edge dislocations is also negligible, cf.

figure 4.18b. As the effective stress is further increased, the first branch also starts carrying load.

The dashpots in both branches yield slip rates in a compatible manner so that the net total slip rate

increases. At a sufficiently large stress level, i.e. equal to τ2 ,e for edge dislocations (for r = 5
nm), in the second branch, the Friedel dashpot is saturated and the additional increase in the load
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Table 4.5: Several parameters that are calculated and used in slip rate equations for r = 20 nm.

Edge dislocations Screw dislocations

F̂ 3.39 · 10−3 6.55 · 10−4 µN

Γc 1.41 · 10−3 2.33 · 10−3 µN

F̂ /2Γc 1.21 0.14 -

η0 0.1 0.32 -

τFR 44.87 3.67 MPa

τOR 26.43 26.43 MPa

τd 4.39† - MPa

† Calculated by equation (4.43). The description of the detach-

ment threshold (equation (4.42)) in the original work [152] yields

a larger value, 9.02 MPa.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

 

 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

 

 

0 10 20 30 40 50 60 70
10

−20

10
−15

10
−10

10
−5

10
0

10
5

 

 

Edge

0 10 20 30 40 50 60 70
10

−20

10
−15

10
−10

10
−5

10
0

10
5

 

 

Screw

γ̇
[1

/s
]

γ̇
[1

/s
]

τ
[M

P
a]

τ
[M

P
a]

τeff [MPa]

τeff [MPa]

τeff [MPa]

τeff [MPa]

τeff

τeff
τ1 ,e
τ2 ,e

τ1 ,s
τ2 ,s

a) b)

c) d)

Figure 4.18: Branch stresses and the individual contributions of different processes to the slip rate

of edge and screw dislocations for r = 5 nm.

will be carried only by the dashpot representing the dislocation-dislocation interactions. A similar

explanation holds for the screw dislocations in figures 4.18c-d. Note that for screw dislocations,

the fraction of the stress carried by the second branch is noticeably smaller than that for edge

dislocations, since τFR,s is relatively small.
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Figures 4.18a-d show the behavior of a slip system for particles of 5 nm radius. Similar curves

can be obtained for different particle sizes (e.g. figure 4.17b), for which the type of the particle

overcoming mechanism (i.e. the Orowan or Friedel mechanism) and the main source of the strength

in case of the Friedel mechanism can be determined from figures 4.15a-d. For larger and stronger

coherent particles, the Orowan mechanism will become active. In case of incoherent particles, the

Orowan process will be the only particle overcoming mechanism (in the absence of dislocation

climb).

This study showed that when the second phase particles are considered to be of coherent type and

dislocation climb is ignored, the total slip rate of a crystallographic system is mainly dictated by

the screw dislocations within the presented framework. For screw dislocations, the set of equations

used to calculate the threshold stress for the Friedel mechanism always lead to values smaller than

that of the Orowan stress. Hence, they always overcome coherent particles by shearing them re-

gardless of the properties of particles, i.e. their size and volume fraction. Moreover, the magnitudes

of the Friedel stress for screw dislocations are low compared to those for edge dislocations and the

slip resistance due to the dislocation-dislocation interaction. Therefore, it may be stated through

equation (4.100) that coherent particles do not provoke a noticeable strengthening according to the

presented framework. On the contrary, in case of incoherent particles, the stress barrier for the

particle circumvention is the same for both type of dislocations and is determined by the Orowan

stress, which is highly sensitive to particle properties and can assume values up to hundreds of

MPa.

4.6.3 Alloys: with dislocation climb

Within the current framework, the rate of climb of edge dislocations is limited by the thermally

activated detachment from the attractive particles. An important parameter herein is the relaxation

constant kr and it determines the detachment threshold stress as well as the activation energy for the

thermal detachment. In figure 4.19, the threshold stress (τd) and the activation energy (Ed) at zero

effective shear stress are plotted for three different values of kr for a range of particle sizes. Note

that τd decreases with particle size following the reduction of the Orowan stress whileEd increases.

At a constant particle size and volume fraction, the detachment stress and the detachment energy

at zero stress decrease with increasing kr in line with equations (4.41) and (4.42).

The total slip rates that are calculated at slip system level incorporating the contribution of the

climb of edge dislocations are shown in figure 4.20a-b for two size of coherent particles (with a

finite degree of attractive interaction). In these figures, the slip rates of the parallel dashpot groups

for edge and screw dislocations are also explicitly shown. Figure 4.20a shows that the slip rate

of the climb dashpot adds to the crystallographic slip rate at low stress levels depending on τd
and kr , leading to values of the total slip rate that are larger than when the dislocation climb is

neglected (cf. figure 4.17). Note that the slip rate controlled by the thermally activated detachment

is highly sensitive to kr values: the lower kr, the smaller the slip rate limited by climb since the

detachment barrier increases with decreasing kr. Rösler and Arzt [152] studied the creep of an

Al alloy with oxide dispersions over a temperature range of 573-773 K by using the thermally

activated detachment model with an estimated kr value of 0.74. However, such small kr values

will lead to a negligible contribution of the dislocation climb to the overall slip rate due to the large

threshold stress and the detachment energy, particularly at low temperatures considered in this

work. In the rest of this work, kr is set equal to 0.94, the value determined by [145] as the critical

value marking the change of the rate limiting barrier from the thermally activated detachment from

particles to the energy barrier related to the climbing process or vice versa. The effect of particle
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Figure 4.19: Variation of the detachment stress (a) and the detachment energy at zero stress (b)

with particle radius for three different values of the relaxation parameter kr at constant

volume fraction.

size on the slip rate limited by climb is presented in figure 4.20. Although the detachment threshold

is reduced with increasing particle size, the rate of dislocation climb noticeably decreases due to

increasing detachment energy, see figure 4.19.

10
0

10
1

10
−20

10
−10

10
0

 

 

10
0

10
1

10
−20

10
−10

10
0

 

 

γ̇
[1

/s
]

γ̇
[1

/s
]

τeff [MPa]τeff [MPa]

a) b)

EdgeEdge
ScrewScrew
Climb, kr=0.80Climb, kr=0.80
Climb, kr=0.85Climb, kr=0.85
Climb, kr=0.90Climb, kr=0.90
Climb, kr=0.95Climb, kr=0.95

Figure 4.20: Slip rate versus effective shear stress: a) r = 5 nm. b) r = 20 nm. Edge and Screw

denote the parallel dashpot groups for edge and screw dislocations, respectively, while

Climb stands for the climb of edge dislocations for different values of kr. The closed

markers denote the overall slip rates.

Another important parameter that controls the climb rate is the diffusion rate of vacancies. The

original work on the detachment controlled dislocation climb [152] focuses on a range of tem-

peratures that can be considered as elevated temperatures. At high temperatures, the diffusion of

vacancies occurs mainly through the lattice and the rate of the diffusion can be described by an

Arrhenius type equation as Deff ,l = D0,l exp(−Ql/kT ) where Deff ,l is the coefficient of effec-

tive lattice diffusion, D0,l is a pre-exponential coefficient and Ql is the activation energy. At low

temperatures, however, lattice diffusion is rather slow: with the pre-exponential coefficient and

activation energy for pure Al [106] given in table 4.6, Deff ,l ≈ 8.2 · 10−18 µm2/s at room tem-
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Table 4.6: Pre-exponential coefficients and activation energies for different diffusion mechanisms.

Diffusion type D0 Q [eV] # Reference

Lattice∗, Al 1.7 · 108 1.48 [106]

1.1 · 107 1.26 [169]

5 · 107 1.47 · 10−3Tm [170, 171]

7.5 · 106 1.32 [172]

- 1.48 [173]

- 1.26 − 1.48 [174]

Lattice∗, Al-Cu 6 · 102 1.04 [172]

- 1.22 − 1.31 [174]

Core†, Al 7 · 10−1 0.85 [106]

53 1.08 · 10−3Tm [170, 171]

- 0.8− 0.9 [173]

Grain boundary‡ , Al 5 · 104 0.87 [106]

1.5 · 104 7.7 · 10−4Tm [170, 171]

- 0.5− 0.7 [173]

Interface, Al-Al2O3 - 0.9− 1 [173]

∗ For lattice diffusion, D0,l is in µm2/s.
† For core diffusion, D0,c = AcD0,l (in µm4/s) with the effective core

diffusion area Ac = 4b2.
‡ For grain boundary diffusion, D0,g ≈ δgD0,l (in µm3/s) with the ef-

fective width of the grain boundary δg = b.
# Tm is the melting temperature.

perature. Consequently, little material transport occurs via lattice diffusion. Therefore, based on

the hypothesis that the anelastic deformation recovery observed over a longer period of time is the

cumulative result of the diffusional processes occurring at the micro level, i.e. through dislocation

climb, a considerably larger effective diffusion constant is necessary.

At low temperatures, the diffusion rates may be effectively enhanced via the so-called short-circuit

paths, especially in case of small material dimensions. These paths can be the surfaces, interfaces,

grain boundaries or dislocations available in the material [171, 173, 175] depending on the tem-

perature and properties such as grain size and geometrical dimensions, e.g. the thickness. Self

diffusion through the core of dislocations (pipe diffusion) is much faster than diffusion through the

lattice due to its lower activation energy, around 0.85 eV [106, 173, 176], and it can remarkably

improve the rate of mass transport within the material. The core diffusion coefficient is coupled

to the dislocation density and its simplest form is given by Deff ,c = D0 ,c exp(−Qc/kT )ρc where

Deff ,c is the effective core diffusivity, D0 ,c is a pre-exponential coefficient, Qc is the activation

energy and ρc is the density of dislocations contributing to core diffusion. Reasonable values for

the dislocation densities for thin films are reported to be typically less than 100 µm−2 for thin film

conductors [177]. Hence, although the core diffusion coefficient (1.7 · 10−15 µm2/s, see table 4.7)

at room temperature is larger than the coefficient for lattice diffusion by many orders of magnitude,

it is not large enough to produce slip rates that may cause noticeable changes in the macroscopic

deformation state of the material. Grain boundaries can also serve as fast diffusion paths. The coef-

ficient of grain boundary diffusion is related to the grain size byDg ,eff = D0,g exp(−Qg/kT )/Lg ,

where Dg ,eff is the coefficient of effective grain boundary diffusion, D0,g is the pre-exponential
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Table 4.7: Effective diffusion coefficients for different mechanisms at room temperature.

Diffusion type Deff [µm2/s] Reference

Lattice, Al 8.2 · 10−18 [106]

Lattice, Al-Cu 8.9 · 10−16 [172]

Core∗, Al 1.7 · 10−15 [106]

Grain boundary† , Al 1.4 · 10−9 [170, 171]

Interface‡ , Al-Al2O3 7.5 · 10−12 [173]

∗ For ρc = 1 µm−2.
† For Lg = 10 µm and Qg = 0.7 eV.
‡ D0, i is approximated by δiD0,l with the width of inter-

face δi ≈ 1 − 2 nm. The diffusion coefficient is given by

Deff ,i = 2(1/w + 1/t)D0,i exp(−Qi/kT ) for a structure

with a rectangular cross-section with width w = 25 µm and

thickness t = 5 µm.

coefficient, Qc is the activation energy and Lg is the average grain size. Grain boundary diffusion

is a fast process with an activation energy of 0.60 eV [106, 171, 173, 175, 176]. Similarly, inter-

faces, e.g. between the matrix and the oxide layer in case of Al alloys, may constitute preferential

paths for diffusion with an activation energy around 0.85 eV [173]. However, grain boundaries and

interfaces cannot contribute directly to the dislocation climb mechanism considered in this work

unless the average grain size or the thickness is relatively small. Nonetheless, the estimated values

for the coefficients of grain boundary diffusion and interface diffusion are given in table 4.7 for

comparative purposes.

The solute atoms may also lead to an enhanced lattice diffusivity. The activation energy for lattice

diffusion observed in Al-Cu alloys can be as low as about 1 eV [169, 172], which is much smaller

than the value reported by [106] for pure Al of about 1.48 eV, cf. table 4.7. The slip rates delivered

by the climb dashpot with the diffusion constants corresponding to lattice diffusion and core dif-

fusion in pure Al and lattice diffusion in Al-Cu alloy (see table 4.7) are plotted in figure 4.21a. As

will be shown in the next section, the total slip rates obtained by these three diffusion mechanisms

are too low to produce any noticeable changes in the macroscopic strain state of a material.

4.7 Application in strain gradient crystal plasticity framework

The new constitutive model for crystallographic slip in particle strengthened fcc alloys is imple-

mented in the strain gradient crystal plasticity framework of section 4.4 in the commercial finite

element analysis software ANSYS. In the forthcoming sections, firstly, the capabilities of the ex-

tended model in describing creep and anelasticity in thin films are investigated by finite element

simulations of a boundary value problem. Secondly, the new model is employed for the analysis

of a micro-clamp beam bending experiments [7].

4.7.1 Thin film inelasticity

The effect of the climb dashpot on the macroscopic behavior of a material is investigated by sim-

ulating the displacement controlled bending of a thin cantilever beam that is made of a single
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dashed curves represent the slip rate of the parallel dashpot groups for edge and screw

dislocations, respectively. The dotted curves show the slip rate of the dislocation

climb dashpot using lattice diffusion and core diffusion in pure Al and lattice diffusion

in an Al-Cu alloy (see table 4.7). Dash-dotted curves of are climb controlled for a

range of diffusion constants (10−12, 10−11, 10−10, 10−9, 10−8 and 10−7 µm2/s) for

kr = 0.94. The vertical arrow shows the effect of increasing diffusion constants. The

closed circle and square makers denote the upper and lower bounds of the total slip

rate with the considered values of diffusion constants, respectively. b) Similar curves

as those plotted in (a) can be effectively obtained by changing kr values for the same

diffusion coefficient. The dash-dotted and dotted climb curves are obtained for the

diffusion constants of 10−7 and 10−8 µm2/s, respectively, for a range of kr: 0.90,

0.91, 0.92, 0.93 and 0.94. The vertical arrow shows the effect of increasing kr values

at a fixed diffusion constant. Upper and lower bounds for the total slip rate are the

same for (a) and (b).

crystalline material oriented with its [111] direction parallel to the loading direction z, see figure

4.22a. The material is assumed to have semicoherent second phase particles with a radius of 5
nm. The initial dislocation density is ρSSD = 1 µm−2 and kr = 0.90. The rest of the material

parameters used in the simulations are given in table 4.3. It is further assumed that the surface of

the beam is passivated by an oxide layer, which is modeled as an impenetrable layer in the current

formulation where dislocations are trapped at the surface. For a discussion on the boundary condi-

tions in the SGCP framework, the reader is referred to [73]. The dimensions of the beam are given

in figure 4.22a. The beam is meshed with hexagonal elements with 15, 3 and 3 elements in x, y
and z directions, respectively. Detailed information on the element technology used in the present

work can be found in [13–16]. The loading diagram is given in figure 4.22b. The beam is pulled

down at the nodes located along the a-a′ axis by an amount of δz = 1 µm in −z direction within

t1 = 1 s. Then, the beam is kept loaded until the load is removed at t2 = 2 days. Subsequently, the

vertical displacement of a control node located on the tip of the beam is traced until t4 = 4 days.

Six simulations are conducted with a different diffusion constant each time (10−12, 10−11, 10−10,

10−9, 10−8, 10−7 µm2/s), leading to different slip rates of the climb dashpot (see figure 4.21a).

Similar changes in the slip rate would occur by varying kr as shown in figure 4.21b.

Simulation results are presented in figures 4.23-4.27. The time dependent displacement of the tip

between t3 and t4 is given in figure 4.23. It is shown that the residual plastic deformation after

the elastic recovery at time t = t3 gets larger with increasing diffusion constant, i.e. the largest

plastic deformation at t = t3 grows with Deff = 10−7 µm2/s and is δz ≈ −0.563 µm whereas the

lowest value −0.358 µm results for Deff = 10−12 µm2/s. The amount of the anelastic recovery
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that occurs between t3 and t4 and the associated time constants drastically depend on the rate of

the slip controlled by dislocation climb. No noticeable recovery is observed in the simulations with

the smallest diffusion constant. The first visible recovery, around 1 nm, occurs for Deff = 10−11

µm2/s. The largest amount of recovery is found for the largest diffusion constant, yielding about

0.107 µm.

Figure 4.24 shows the variation of the maximum Von Mises stress. It is seen that material starts

to develop plastic strains when the maximum stress level reaches about 40 MPa. As expected,

different diffusion constants have no effect on the stress during this a short loading time. In figure

4.24b, the maximum Von Mises stress is plotted over the complete time span [0, t4]. During the

creep over [t1, t2], a stress relaxation occurs for all values of the diffusion constants. However, the

magnitude of the relaxation is the largest for the largest diffusion constant, Deff = 10−7 µm2/s.

During the anelastic recovery, hardly any relaxation occurs for diffusion constants smaller than

10−10 µm2/s and the drop in the stress is again the largest for Deff = 10−7 µm2/s.
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The change in the maximum of the nodal norm of the edge and screw GNDs6 over time is given

in figure 4.25. It shows that the density of edge GNDs is larger than that of the screw type.

The vast portion of the density of GNDs is created during the loading where the effect of the

diffusion constant is limited. The dislocation density increases during creep and the maximum

value achieved increases with the rate of dislocation climb. The GND densities have a tendency

to decrease during the anelastic recovery due to reverse slip and the magnitude of the reduction

increases with the climb rate.

The overall mechanical behavior of the material during load application, creep and anelastic re-

covery can be clarified at the level of a single material point. In figure 4.26a, the effective resolved

shear stress τeff , the elastic resolved shear stress τel and the back stress τb are plotted for [0, t4] on

the slip system having a slip direction 1/
√
2[1̄11] and slip plane 1/

√
3(111) in an integration point

that is located in the region close to the fixed end of the beam. The figure shows that τeff reaches

its maximum value during the loading period, in which τel and τb also increase significantly. Dur-

ing the creep between t1 and t2, the back stress continues to increase due to the accumulation of

plastic strains. Consequently, the elastic resolved shear stress decreases and so does the effective

resolved shear stress. Figure 4.26b shows that the effective resolved shear stress and its compo-

nents, e.g. τel and τb, hardly vary between t3 and t4 after the release of the beam at time t2. The

total slip rate and its components, i.e. the contributions to the total slip rate by the parallel dashpot

groups for the edge and screw dislocations and the climb dashpot, are plotted in figure 4.26c. The

parallel dashpot group for the edge dislocations does not contribute to the slip rate for the given

loading condition and material parameters since the Friedel stress is larger than the stress available

for cutting of particles. The slip rate of the screw dislocations is relatively large and in the same

order of magnitude as that of the climb dashpot for Deff = 10−12 µm2/s during some fractions

of the total simulation time. The total slip rate, which is the sum of the slip rates delivered by

the parallel dashpot group for screw dislocations and the climb dashpot, increases with loading,

achieving its maximum value in the positive direction and decreasing during the loading stage [0,

t1] (the effective resolved shear stress starts to decrease because of the increasing back stress).

During the creep within [t1, t2], the total slip rate is mainly determined by the climb dashpot and
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Figure 4.25: Maximum of the norm of GNDs during the loading and the total time span for edge

dislocations (a,b) and for screw dislocations (c,d). The arrow shows the effect of

increasing diffusion constant.

decreases. During the period [t3, t4], since τeff is almost constant, the total slip rate also stays

about the same. Figure 4.26c-d demonstrates that the slip rate of the climb dashpot calculated by

using Deff = 10−12 µm2/s does not significantly contribute to the overall slip rate on that slip

system. The order of magnitude of the slip rate is so low that it does not allow any internal stress

relaxation after the release of the beam. The same observation holds for the other slip systems in

the same integration point, having sufficiently large effective resolved shear stresses. Since this

also applies to thr other material points, no visible deformation recovery occurs between t3 and t4
for Deff = 10−12 µm2/s.

Similarly, the variation of the effective resolved shear stress and the total slip rate over time is

plotted in figure 4.27 for the same slip system in the same integration point for Deff = 10−7

µm2/s. The change in the resolved shear stress and its components during the loading is similar

to that of the case with Deff = 10−12 µm2/s. However, the total slip rate is determined only by

the climb dashpot and is significantly higher. During creep, the total slip rate is higher as well,

and hence, τb attains larger values than for Deff = 10−12 µm2/s. Meanwhile, τeff changes its sign

and so does the total slip rate. The most significant effect of the rate of the climb dashpot occurs

after the release of the beam. After t2, a stress redistribution occurs so that the effective resolved

shear stress decays to zero, cf. figure 4.27b. This is realized by the reduction of the back stress at

a rate controlled by dislocation climb. Within the current formulation, the back stress can only be
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reduced by decreasing the GND densities, the signed portion of the dislocations. This occurs by

reverse glide of the dislocations. This phenomenon is illustrated best in figure 4.27. The reversal

of the direction of the effective resolved stress by the release of the beam (such as in figure 4.27b)

leads to reverse glide of the dislocations at the slip system level. If the glide rate is sufficiently

large (cf. figure 4.27c), the GND densities will be reduced (see figure 4.25b), which, in turn, will

lower the back stress. Together with the back stress, the elastic shear stress must also decrease so

that the effective resolved shear stress vanishes, as seen in figure 4.27b. This process continues

until a stress equilibrium is reached. Consequently, the macroscopic time dependent recovery will

have a decreasing rate (which is controlled by the slip rate of the climb dashpot) and will cease

when the total slip rate at the individual slip systems becomes too small to bring about noticeable

variations in the GND densities.
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Figure 4.26: The slip resistance, effective resolved shear stress, elastic resolved shear stress and

the back stress for a slip system having a slip direction 1/
√
2[1̄11] and slip plane

1/
√
3(111) in an integration point located at the fixed end of the beam for Deff =

10−12 µm2/s: (a) over the whole time span, (b) during the anelastic recovery. The

total slip rate and the individual contributions by the climb dashpot and the parallel

dashpot groups for edge and screw dislocations are given in (c) and (d) corresponding

to the effective resolved shear stress plotted in (a) and (b), respectively, where▽ marks

the negative values of the slip rates. Note that only the anelastic recovery period [t3,

t4] is shown in (b) and (d). The slip rate of edge dislocations are about zero and

outside the figure. The total slip rate is mainly governed by the rate of dislocation

climb.
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Figure 4.27: The slip resistance, effective resolved shear stress, elastic resolved shear stress and

the back stress for a slip system having a slip direction 1/
√
2[1̄11] and slip plane

1/
√
3(111) in an integration point located at the fixed end of the beam for Deff =

10−7 µm2/s: (a) over the whole time span, (b) during the anelastic recovery. The total

slip rate and the individual contributions by the climb dashpot and the parallel dashpot

groups for edge and screw dislocations are given in (c) and (d) corresponding to the

effective resolved shear stress plotted in (a) and (b), respectively, where ▽ marks the

negative values of the slip rates. Note that only the anelastic recovery period [t3, t4]

is shown in (b) and (d). The slip rate of edge dislocations are about zero and outside

the figure. The total slip rate is mainly governed by the rate of dislocation climb.

During the loading, creep and anelastic recovery, the slip resistance in the slip system considered in

figures 4.26a and 4.27a either stays constant or increases whereas GND densities decrease signifi-

cantly during the time dependent recovery. This is because the SSD density, the unsigned fraction

of dislocations in the related material point continues to increase as shown in figure 4.28.
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Figure 4.28: L2 norm of the SSD densities in an integration point at the fixed end of the cantilever

beam: a) during the loading phase only [0, t1], b) total time span [0, t4].

4.7.2 Simulation of micro-clamp beam bending experiment

Experiment

A dedicated beam bending experiment was conducted by [7] for the measurement of anelastic

strain recovery in a cantilever thin beam, see figure 4.29a. The beam was made of a polycrystalline

Al-Cu [1 wt%] alloy with a thickness of about 5 µm. The loading scheme is given in figure

4.29b. It was mechanically bent via a knife edge until the tip deflection reached an amount of

−δz = 0.875 µm within t1 = 10 ms. The magnitude of the prescribed deflection was chosen such

that the stress levels will be lower than the yield strength of the material that is estimated as 180
MPa. After t2 = 2 days of loading, the beam was released and the vertical position of the beam tip

was recorded for t4 − t2 = 6 h. The experimental result is shown in figure 4.30a and b. The beam

showed a residual deformation of about 25 nm at t3, which was completely recovered between t3
and t4 following the release of the beam.

Simulations

The micro-clamp experiment [7] is numerically analyzed with the extended SGCP model. Figure

4.29d shows the finite element model of the beam, where different colors represents individual

grains with different orientations determined from OIM measurements, cf. figure 4.29c. The hinge

part of the sample is approximated by three large grains due to lack of available information. It

is assumed that the material involves incoherent particles. It is assumed further that the beam

surface is covered by an oxide layer, i.e. a passivated surface condition is applied. A parameter

sensitivity study is done by using different values of particle radius r, relaxation parameter kr and

effective diffusion coefficient Deff given in table 4.8. These are the parameters that significantly

characterize the material behavior. The simulations are performed for three different values of the

characteristic length scale R, i.e. R = 1.5, 3 and 5 µm. The rest of the parameters are given in

table 4.3 and elsewhere in literature [13–16]. The loading of the beam via a knife edge is idealized

as a prescribed displacement as shown by arrows in figure 4.29d.

Figure 4.30a shows the residual displacement of the beam tip at about 100s after the beam release

(uz,r), since the first 100 s following the load removal was not measured in the experiment [7], and
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Figure 4.29: a) SEM picture of the cantilever beam used in the micro-clamp experiment [7]. b)

Loading scheme: t1 = 10 ms, t2 ≈ t3 ≈ 2 days and t4 − t3 = 6 h. c) OIM picture of

the tested beam. Different colors shows individual grains with the orientations given

in the pole diagrams. d) Numerical model of the beam used in the finite element

simulations. Arrows show the location and the direction of the applied displacement.

the anelastic recovery (δuz) within 6 h obtained from the simulations. As expected, the amount

of the residual deformation increases with increasing kr and Deff since increasing kr reduces the

activation energy and the threshold stress for the detachment and Deff is a direct multiplier for

the crystallographic slip rate, see equations (4.40)-(4.43) and (4.115). The anelastic recovery is

affected by kr and Deff in two ways. The reverse climb rate increases with kr and Deff . Increas-

ing residual deformation with kr and Deff also implies larger densities of GNDs which leads to

larger internal stresses provided that they are inhomogeneously distributed. Since reverse glide is

Table 4.8: Material parameters used in the simulations of figure 4.30a. ”-” denotes the same value

as in the first row of the table.

Set r [nm] kr [-] Deff [µm2/s]

i 5 0.93 5 · 10−8

ii - - 5 · 10−9

iii - - 5 · 10−7

iv - 0.92 -

v - 0.94 -

vi 3 - -

vii 8 - -
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sustained by internal stresses, the larger the internal stresses, the larger the amount of anelastic

recovery. Note that increasing particle size (r) has an opposite effect on uz,r and δuz compared to

increasing kr and Deff since in equation (4.41), the detachment energy at zero effective resolved

shear stress depends on r. In addition, figure 4.30a shows that for a given set of material param-

eters, larger values of R brings the simulation results closer to the experiment result, pointing at

the necessity of a back stress that is sufficiently large not only to limit the accumulation of exces-

sive plastic strains during creep but also to provide a driving force that is large enough for strain

recovery via reverse glide of dislocations.
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Figure 4.30: a) Parameter sensitivity study showing the anelastic displacement of the beam tip

(δuz) and the residual deformation after the beam release (uz,r) described by the

extended SGCP model. White, light gray and dark gray colors show three different

sets of simulations withR = 1.5, 3 and 5 µm, respectively. ⊕ marks the experimental

result [7]. See tables 4.8, 4.10 and 4.11 for the rest of markers. Lines connect the

simulation results obtained by the same set of material parameters but with different

R. b) The comparison of the simulation and experimental results. R takes values of

5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9 and 9.5 µm. The arrow shows the effect of increasing R.

See table 4.9 for the rest of material parameters.

The effect of the back stress on the time dependent material behavior is studied further by per-

forming additional simulations with larger values of R, i.e. R = 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9 and

9.5 µm where r, kr and Deff are constant and given in table 4.9. The volume fraction of particles,

f , is also reduced from 1.2% to 0.4% by assuming that the amount of θ phase particles are lower

than what would be anticipated based on the phase diagram for Al-Cu alloys (due to different cool-

ing rates, leading to different microstructures that are not in thermodynamical equilibrium). At a

constant particle size r, a lower volume fraction leads to a lower detachment threshold stress. The

difference between the Cu contents of these two volume fractions are stored in the matrix as solute

atoms and/or amorphous phases which can provide additional obstructions for gliding dislocations.

The simulation results are compared with the experiment in figure 4.30b. As seen in the figure,

increasing R leads to a reduction of the residual deformation at the start of the anelastic recovery.

However, it does not enhance the deformation recovery. Table 4.10 shows that the maximum per-

centage of the residual deformation that is recovered over time is around 45% and decreases with

increasing R. Increasing R reduces by lowering the gradients of GND densities. This explains why

even with the values of R that are outside a justifiable range, there is relatively little improvement

in capturing the anelastic recovery by the SGCP model with the material parameters given in table
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Table 4.9: Material parameters used in the simulations of figure 4.30b.

Parameter Meaning Value Unit

r Particle radius 4 nm

f Particle volume fraction 0.4 %

Deff Effective diffusion constant 5 · 10−10 µm2/s

kr Relaxation parameter 0.94 -

Φ Mobile fraction of dislocation density 5 · 10−3 -

ρSSD ,e Initial density of edge SSDs 1 1/µm2

ρSSD ,s Initial density of screw SSDs 1 1/µm2

R Dislocation capture radius 5.5-9.5 µm

Table 4.10: Residual displacement of the beam tip at t3 after the release of the beam (uz,r) and the

subsequent anelastic displacement of the tip in 6 h (δuz) for simulations with a large

homogeneous diffusion constant, plotted in figures 4.30a (with marker ”·”) and 4.30b.

Deff R ρ̄GND ,max uz,r δuz δuz /uz,r
[µm2/s] [µm] [1/µm2] [nm] [nm] [%]

5 · 10−10

5.5 0.49 -67.90 30.36 44.71
6.0 0.44 -60.81 27.11 44.58
6.5 0.40 -55.00 24.35 44.27
7.0 0.36 -50.16 21.99 43.84
7.5 0.33 -46.10 19.96 43.30
8.0 0.31 -42.66 18.21 42.69
8.5 0.28 -39.72 16.69 42.02
9.0 0.26 -37.17 15.36 41.32
9.5 0.25 -34.95 14.19 40.60

4.9.

The results presented in subsection 4.7.1 and in figure 4.30 show that two key ingredients are re-

quired for the prediction of the creep and anelastic behavior of the material that is comparable

to the experiment result: i) a diffusion coefficient that is considerably larger than the coefficient

for lattice diffusion and; ii) the storage of sufficiently large internal stresses. However, as seen in

figure 4.30, the relatively large amount of dissipation of energy in each simulation prevents the

recovery of a significant fraction (e.g 60%) of the residual deformation after the load removal.

One way to limit the energy dissipation is the partial restraining of the plastic activity in the ma-

terial. By doing so, the residual deformation of the material after the unloading can be decreased,

and, more importantly, elastic energy can be conserved. In the simulations so far, a homogeneous

diffusion coefficient is used for the whole material with magnitudes up to those characteristic for

grain boundary diffusion. Considering that the creep behavior of the material is governed by the

diffusional climb process, the use of an inhomogeneous diffusion coefficient, i.e. values that are

in the order of lattice diffusion for grain interiors and of grain boundary diffusion for the regions

in the vicinity of grain boundaries, would reduce the total amount of dissipated energy since grain
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interiors will behave more elastically at low stress levels than for a large homogeneous diffusion

constant. In this manner, additional simulations are performed to study the effect of inhomoge-

neous diffusion coefficients on the creep and anelastic behavior of the beam structure by using the

lattice diffusion coefficient Deff = 8.9 · 10−16 µm2/s given in table 4.7 for grain interiors and

diffusion coefficients (Deff ,gb) of 1 · 10−9, 2 · 10−9, 3 · 10−9, 4 · 10−9 and 5 · 10−9 µm2/s for grain

boundary zones7 with R = 4, 5 and 68 µm. The remaining parameters are given in table 4.9. The

simulation results are presented in figure 4.31. It is seen in figure 4.31a that for comparable values

of the residual displacements at t3, the amount of recovery in the simulations with R = 4 µm is

considerably increased by using an inhomogeneous diffusion constant. As shown in table 4.11,

the percentages of the residual deformation that is recovered with time become as large as 70%.

Furthermore, figure 4.31b indicates that the relaxation times obtained from the simulations with

inhomogeneous diffusion constants are closer to the experimental result in comparison with the

simulation results presented in figure 4.30b. However, a noticeable amount of permanent defor-

mation still remains at t4. It can be seen in table 4.11 that the maximum of the norm of the GND

densities9 generated in the simulations with inhomogeneous diffusion constants are larger than

those of simulations with comparable residual deformations at t = t3 listed in table 4.10. Hence,

the magnitude of the internal stresses calculated in the simulations with inhomogeneous diffusion

constants are significantly larger than those from the simulations presented in figure 4.30, since the

gradients are calculated in the initial configuration. Figures 4.30a and 4.31 involve also the results

of the simulations with R = 5 and 6 µm (with markers ”+” and ”*”, respectively, in figure 4.30a).

A larger R brings the residual deformations calculated in the simulations closer to that from the

experiment. The permanent deformations at t = t4 are also smaller for larger R. However, the

deformation recovery proceeds at a slower rate, which is possibly due to the smaller back stresses

due to the lower GND densities.

4.8 Discussion

An enhanced physically based constitutive formulation for crystallographic slip in pure fcc metals

and particle strengthened fcc metals has been presented in sections 4.5.1 and 4.5.2. In figure 4.13,

two distinct regimes of dislocation motion (i.e. jerky glide of dislocations and viscous glide of

dislocations), obtained by the new formulation, were shown, providing a more realistic description

of the material behavior, especially at high stress levels by the introduction of an upper bound for

the velocity of mobile dislocations. On the contrary, the phenomenological slip law used in the

original SGCP model [13–16] may lead to unrealistic crystallographic slip rates since it lacks an

upper bound.

Incorporation of particles into the constitutive equations shifts the critical effective resolved shear

stress by an amount equal to the particle strength, see figure 4.16. The threshold stresses for the

Friedel, Orowan and climb processes determine the resistance of the individual dashpots of the

7In these simulations, grain boundary zones are approximated such that they extend from boundaries towards grain

interiors about 1 µm. The width of grain boundary zones is important as the larger the width, the larger the material

volume in which there is a high plastic slip activity. However, the zones cannot be too small since the validity of the

SGCP formulation becomes questionable very near the grain boundaries.

8Only with Deff ,gb of 1 · 10−9, 2 · 10−9 and 3 · 10−9 µm2/s due to the convergence issues that occur when Deff ,gb

is increased further.

9Note that ρ̄GND,max is a local quantity as it belongs to a node. However, it still clarifies the difference generated in

the mechanical response of the beam by the use of an inhomogeneous diffusion constant.
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and b) logarithmic scale. Thin continuous lines are the simulation results plotted in

figure 4.30b. The arrow shows the effect of increasing Deff ,gb .

system shown in figure 4.12 and are calculated separately for edge and screw dislocations. For

screw dislocations, the present framework yields threshold stresses for the Friedel process that are

always smaller than the Orowan stress for the whole range of relevant particle sizes, which is not

the case for edge dislocations. The Friedel stress for screw dislocations is also always smaller than

the threshold stresses for the Orowan and Friedel processes for edge dislocations. Therefore, since

the slip resistance originating from the dislocation-dislocation interactions is the same for both

dislocation types, screw dislocations govern the total crystallographic slip rate at low and moderate

stress levels according to the current coupling of the slip rates of edge and screw dislocations when

dislocation climb is omitted, see figure 4.17. When dislocation climb is included, at low stresses,

the total slip rate is controlled by the climb of edge dislocations or by the Friedel process for screw

dislocations depending on the slip rate generated.

The results of the single crystalline beam bending simulations show that the rate of dislocation

climb affects the evolution of plastic strains in the material. As the slip rate of the climb dashpot

increases, the overall crystallographic slip rate is also increased, which leads to the generation of

larger densities of GNDs and, therefore, larger back stresses especially during creep. The influence

of the climb rate becomes more prominent in the form of a time dependent deformation recovery

following the elastic recovery after the removal of the external load. The amount of the recovery

and the characteristic time scales depend on the climb rate: larger climb rates result in larger rates

of reverse slip, which lead to faster degradation of GND densities and the back stress. Hence, not

only a faster recovery but also a faster decay of the effective resolved shear stress occurs. The

relaxation parameter kr and the diffusion constant are important since they determine the extreme

values of the climb rate for a given particle size, cf. figures 4.20 and 4.21. The relaxation pa-

rameter controls the size of the energy barrier and the threshold stress for the detachment, and

hence it defines the slip rate versus τeff at stresses below τd, while the diffusion constant directly

influences the maximum value that can be reached, see (4.114) and (4.115). Because of the lack

of sufficient information about the degree of interaction between the climbing dislocations and the

particles present in the material considered, kr is fixed to a value of 0.94 and the diffusion constant

is adjusted to alter the rate of climb in the finite element simulations. In the simulations, signifi-

cant anelastic recovery is observed for values of the diffusion constants larger than 10−11 µm2/s.

Compared to the given values for several diffusion paths in table 4.7, this value is considerably

larger than the lattice diffusion and the core diffusion constants but close to the values that are
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Table 4.11: The maximum of the norm of the GND densities (ρ̄GND,max ) and the residual dis-

placement of the beam tip (uz,r) at t3 and the subsequent anelastic displacement of

the tip (δuz) in 6 h that belong to the results of the simulations with inhomogeneous

diffusion constants, which are plotted in figures 4.30a and 4.31.

Deff R Deff ,gb ρ̄GND ,max uz,r δuz δuz /uz,r Marker in

[µm2/s] [µm] [µm2/s] [1/µm2] [nm] [nm] [%] figure 4.30a

8.9 · 10−16

4

1 · 10−9 0.86 -45.43 27.56 60.66

×
2 · 10−9 1.01 -49.94 32.39 64.86
3 · 10−9 1.17 -52.72 35.49 67.32
4 · 10−9 1.33 -54.76 37.71 68.86
5 · 10−9 1.51 -56.35 39.54 70.17

5

1 · 10−9 0.66 -33.01 20.02 60.65

+

2 · 10−9 0.80 -36.75 23.31 63.43
3 · 10−9 0.98 -39.16 25.45 64.99
4 · 10−9 1.21 -40.96 27.11 66.19
5 · 10−9 1.56 -42.40 28.49 67.19

6

1 · 10−9 0.53 -25.52 15.20 59.56
*2 · 10−9 0.69 -28.83 17.63 61.15

3 · 10−9 0.96 -31.04 19.28 62.11

characteristic for grain boundary diffusion and interface diffusion. Although one would expect

faster diffusion in a thin film material because of the microscale dimensions, the explicit incorpo-

ration of grain boundary diffusion and interface diffusion was omitted since the beam is considered

to be made of a single crystalline with a relatively large width and thickness. If a high diffusion

constant would have a physical meaning, it points to a diffusion mechanism that gives rise to rates

in the order of those achieved in grain boundary diffusion or interface diffusion. In literature, it

is reported that the existence of second phase particles in a material matrix may increase the rate

of the diffusion [174]. Moreover, in case of semicoherent and incoherent particles, the particle-

matrix interfaces may act as vacancy sources, from which vacancies then migrate into the matrix.

Such a diffusion mechanism closely resembles the motion of vacancies from grain boundaries and

lattice defects into the bulk as described in [175] with activation energies as low as 0.62 eV. Such

a mechanism would lead to larger diffusion rates and amplify the slip rate controlled by the climb

of edge dislocations over particles since the diffusion during the climb over a particle occurs only

in the region surrounding that particle.

The results of the finite element simulations of the micro-clamp experiment on a polycrystalline

thin beam [7] with the extended SGCP model show that the use of an inhomogeneous diffusion

coefficient, which takes values in the order of grain boundary diffusion within grain boundary

regions and relatively small values that are comparable to lattice diffusion within grain interiors,

may be more reasonable than a large homogeneous diffusion coefficient leading to an excessive

energy dissipation. By using an inhomogeneous diffusion constant, plastic slip activity is mainly

confined to grain boundary regions. Since the prescribed displacement is small, the stress levels

achieved with the application of the load and during the creep are relatively low. Consequently,

only the dislocation glide mechanism of which the rate is limited by climb is active. Therefore,

the grain interiors deform almost fully elastically due to the small lattice diffusion constant. When

the load is removed, the beam is enforced to return to its original position under the combined
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effect of the internal stresses developed within the grain boundary regions and the large elastic

energy stored within grain interiors. The relaxation of the internal stresses by the reverse glide of

dislocations within the grain boundary regions determines the time scale of the recovery process.

The simulations of the micro-clamp experiment with the extended SGCP model result in permanent

deformations in contrast to the full recovery of the residual deformations stated in [7]. Simulation

results are highly sensitive to the grain texture of the considered specimen. The incomplete ap-

proximation of the grain structure of the hinge part due to lack of experimental details constitutes

a source of noticeable inaccuracy for the simulation results. Moreover, the information about the

microstructure of the material is limited; the properties of (intermetallic) phases present in the ma-

terial, such as their type, size and volume fraction, are not exactly known. The input parameters of

the extended SGCP model are chosen such that they are within the margins reported in literature,

yielding a mechanical behavior that is relatively close to the experimental data.

The simulation results reveals further that the back stresses that are calculated by the current inter-

nal stress formulation with acceptable values of the length scale R is not sufficient to capture the

anelastic strain recovery observed in the micro-clamp experiment. In the simulations, R is varied

to increase the magnitude of internal stresses for the given loading scheme even though the use of

large values for R may not be justified from a physical perspective [55]. However, larger values of

R also do not significantly improve the accuracy of the simulation results at predicting the material

behavior observed in the experiment because the internal stresses are proportional to the gradients

of GNDs densities and the amount of GNDs are reduced with increasing values of R. Hence, pro-

vided that the internal stresses are responsible for the full recovery of strains in the micro-clamp

experiment [7], the simulation results presented in this work suggest that the current internal stress

formulation needs to be extended to account for additional sources of internal stresses. This would

induce large back stresses at low stress levels, as expected to be the case for the experiment [7].

In the present case, several factors, which are also discussed in detail by [178], may contribute

to the internal stress state of the material. For instance, subgrains (if existing) can store energy

when they are elastically bowed under the applied stress. Following the reduction or removal of

the applied load, they can unbow due to this stored energy, driving back the piled-up dislocations

in front of them. Similarly, the line tension in bowed dislocations under loading can act as a back

stress on the dislocations themselves and may cause them to glide in reverse direction once the load

is removed. Additionally, the local pile up of dislocations such as the Orowan rings left around the

particles may locally create internal stress fields. A dislocation which is balanced between such

an internal stress field and the applied external stress may be forced to glide back under the effect

of the local internal stress field when the external stress is removed. Dislocation pile-ups may also

contribute to the recovery process by acting as dislocation sources. Load reductions may lead to

the dispersion of pile-ups and a consequent increase in the amount of mobile dislocations. As a

result, the rate of reverse crystallographic slip per available driving force goes up, which will help

to recover a larger amount of strain. Besides, residual stresses that are present in the material prior

to loading would also be important for the observed anelastic behavior. For instance, the stress

fields due to coherency strains can provide long range back stresses10 and may contribute to the

driving forces for reverse slip of dislocations.

10The additional resistance due to coherency strains around particles is treated as short range interactions within the

extended SGCP model.
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4.9 Summary and concluding remarks

In this work, a physically based constitutive formulation in terms of microstructural quantities

is proposed for time and scale dependent crystallographic slip in precipitate strengthened fcc al-

loys. The presented model covers both thermally activated and viscous drag controlled regimes of

dislocation motion, which extends its applicability to cases where high strain rates are relevant.

Within the presented formulation, the overall material strength is provided by a combination of

dislocation-dislocation and dislocation-particle interactions. The particle-dislocation interaction is

modeled by considering three distinct processes: i) the Friedel process, i.e. particle shearing, ii) the

Orowan process, i.e. circumvention via looping and iii) dislocation climb. The long range inter-

action is modeled via a back stress which is derived from the gradients of geometrically necessary

dislocation densities.

The new model is integrated within a strain gradient crystal plasticity theory and implemented in

a finite element method and its capabilities are investigated by simulations of the bending of a

single crystalline cantilever beam and the simulations of a micro-clamp experiment. Analyses of

the simulation results showed that:

i. When the climb of edge dislocations is neglected, the overall slip rate at slip system level is

dominated by the slip rate of mobile screw dislocations at low and moderate stress levels for

shearable particles.

ii. When dislocation climb is involved, the total slip rate at low stresses is governed by the climb

of edge dislocations, independent of the type of particles (i.e. coherent or incoherent).

iii. The dislocation climb rate, which is determined by the relaxation constant and the diffusion

constant together with size and volume fraction of particles, controls the amount of residual

deformation that remains after the load removal. Residual deformations are developed during

load transients and creep and tend to be larger with increasing rate of dislocation climb.

iv. At low stress levels, the rate of dislocation climb determines also the rate of the reverse slip

that occurs after the removal of applied loads. The reverse crystallographic slip is driven by

the internal stresses (i.e. back stresses), which originate from the inhomogeneous distribution

of GND densities within the extended SGCP model. Therefore, the climb also controls the

amount and the characteristic time scales of anelastic deformation recovery.

v. The magnitude of the time dependent recovery depends not only on the magnitude of the

existing back stress, but also on how easy the dislocations can glide back, in other words,

the magnitude of the rate of reverse crystallographic slip attainable at that stress level. If

the dislocation climb leads to slip rates that are sufficiently large to generate changes, i.e.

reduction, in the GND densities, a stress redistribution will occur: absolute values of the elastic

resolved shear stress and the back stress will be reduced, and hence, the effective resolved

shear stress will decay to zero. A larger climb rate will also result in a faster strain recovery in

parallel to the decay in the GND densities.

vi. The rate of dislocation glide limited by climb strongly relies on the diffusion coefficient at

constant particle properties (i.e. size, volume fraction and relaxation parameter). Results of

single crystalline beam bending simulations show that deformation recovery becomes macro-

scopically visible only with diffusion constants that are considerably larger than that of lattice

diffusion.
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vii. The simulations of the micro-clamp experiment demonstrates that in case of a polycrystalline

material, the use of a large overall diffusion constant leads to an excessive amount of energy

dissipation, which limits the percentage of the residual deformation that is recovered over

time. Instead of a large homogeneous deformation constant, the use of an inhomogeneous dif-

fusion constant which assumes values that are close to grain boundary diffusion in the vicinity

of grain boundaries and values close to lattice diffusion within grain interiors seems justified.

The percentages of recovered deformation are noticeably increased when an inhomogeneous

diffusion constant is utilized due to the storage of a larger amount of elastic energy within

grains and larger back stresses in grain boundary zones. As plastic slip activity occurs within

grain boundary regions, it can be expected that residual deformations will increase with de-

creasing grain size. It may also be expected that time constants associated with deformation

recovery in case of finer grains will be larger because of a larger amount of GNDs which

results in larger internal stresses.

viii. The simulation of micro-clamp experiments also show that the magnitudes of the back stresses

calculated by the current formulation of internal stresses are not sufficient for the full recovery

of the residual deformations in the simulations. This is due to the low GND densities result-

ing from the small prescribed displacement. Employing an inhomogeneous diffusion constant

lead to larger GND densities since plastic strains are localized in grain boundary zones. Conse-

quently, the magnitude of the back stresses gets larger, ensuring a larger and faster deformation

recovery. However, a plastic deformation still remains at the end of simulations whereas the

residual deformation in the micro-clamp experiment fully recovered. Hence, by assuming that

the experimental result is sufficiently reliable and precise, the results of this work suggest that

the current formulation of internal stress may need to be extended by considering additional

sources of internal stresses which can help to recover the whole residual deformation.

ix. In cases where high levels of back stress are developed during the loading times, the anelas-

tic recovery will be controlled both by the Friedel process (or Orowan process depending on

the properties of the particle) and dislocation climb. The recovery, during which the crystal-

lographic slip rates will be governed by the slip rate of the parallel dashpot group, will be

relatively fast. As soon as the effective resolved shear stress drops to a level at which it is

not possible to cut the obstacles (or loop around them), the rate of recovery will start to be

controlled by dislocation climb, i.e. by diffusion which is a slower process.





CHAPTER FIVE

Analysis of the time dependent behavior

of a capacitive RF-MEMS switch

Abstract

Size effects are responsible for scale dependent variations in the global mechanical behavior of

metallic materials with submillimeter dimensions. Such variations may range from a change of

material strength to the activation of new phenomena that are not common at larger scales, such as

anelastic recovery that is observed in polycrystalline thin films [7]. These fine scale phenomenon

can be predicted only by theories that incorporate internal length scales in their formulations.

In this work, multiphysical finite element simulations are performed by using a strain gradient

crystal plasticity model [179] in order to analyze the mechanical performance of a capacitive RF-

MEMS switch containing a free-floating polycrystalline thin film electrode under (cyclic) creep

loading. Simulation results show that the switch is prone to residual changes in the gap between the

electrodes following the load removal, a fraction of which is recovered over time in the unloaded

state. The extended SGCP model predicts that the magnitude of the residual deformation and the

amount and rate of anelastic recovery can be controlled by the modification of the microstructure

and the thickness of the film. Under cyclic loading, the residual deflection of the electrode saturates

within a few loading cycles and the pull-in voltage drops together with the increasing residual

deformation. The saturation magnitude of the residual deformation and the pull-in voltage depend

on the hold time in the unloaded state between sequential cycles.

5.1 Introduction

It is experimentally observed that at sub-millimeter scales, mechanical properties of metallic ma-

terials rely strongly on the material dimensions [3–5] as a result of the increased influence of the

microstructure of the material. Among these, grain orientations, dislocation distributions, and the

boundary constraints, e.g. surface passivation alter the mechanical behavior [17], which is referred

to as scale dependent behavior. These size effects may also result in well known typical material

characteristics that turn out to be markedly different than what is commonly observed in metals at

large scales. Time dependent strain recovery, referred to as anelastic recovery in this work, was ob-

109
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served by [7] in micro-clamp bending experiments on Al-Cu [1 wt%] free-standing polycrystalline

thin beams. It was reported in [7] that the residual deformation that developed within 2 days of

creep loading at stress levels below the yield strength of the material almost fully recovered within

about 6 h following the unloading.

The combined action of size effects and relatively well studied time dependent phenomena, such

as creep [66, 67], can pose additional reliability issues for advanced engineering products that

involve (sub)micron sized components, such as capacitive RF-MEMS switches with metallic thin

film plates. This type of switches generally has an electrode that is suspended by means of springs,

which are also made of thin metal films. The free-standing electrode is able to move vertically

under the effect of electrostatic forces generated by the application of a voltage difference between

the electrodes. The elastic energy stored in the springs during the actuation of the switch provides

the restoring force to increase the gap between the electrodes when the voltage is reduced or to

open the switch when the voltage drops to zero. Hence, the reliability of these switches mainly

depends on the mechanical performance of the free standing electrode and the springs (i.e. the

metal thin film). For instance, creep can cause irreversible deformations in the springs which will

permanently reduce the gap between the electrodes and, in turn, the opening and closing voltages

of the switch. Anelasticity may lead to temporary changes in device properties as the gap height

will change over time.

Scale dependent behavior of a material can only be described by theories that involve character-

istic length scales of the material in the underlying formulation. A higher order crystal plasticity

(SGCP) model that involves statistically stored dislocation (SSD) and geometrically necessary dis-

location (GND) densities was previously proposed by Evers et al. [13] for scale dependent behavior

of pure fcc metals. In this model, a back stress in terms of the gradients of crystallographic slip

was employed to capture the lattice curvature effect. The back stress on a slip system is described

by the interaction between the dislocations of that slip system [13], or as extended by Bayley et al.

[15, 16] by considering the interaction between different slip systems. The SGCP model is further

extended by [179] for modeling creep and anelasticity of fcc alloys containing small second phase

particles. A physically based constitutive law for crystallographic slip was developed based on

thermally activated dislocation glide limited by different mechanisms of dislocation-particle inter-

actions together with dislocation-dislocation interaction. This extension was incorporated into the

SGCP framework.

Here, the results of electro-mechanical finite element simulations of an RF-MEMS device are

presented. In these simulations, the extended SGCP model [179] is utilized for the description of

the mechanical behavior of a thin film component that is made of an Al-Cu [1 wt%] alloy. Two

sets of simulations are performed. In the first set, the effect of various quantities, i.e. particle

size and volume fraction, surface constraints and film thickness, on the mechanical response of the

switch to a loading-unloading cycle is investigated. In the second set, the mechanical performance

of the switch under multiple loading-unloading cycles is studied with a focus on the duration of

the unloaded state between successive cycles.

5.2 A strain gradient crystal plasticity framework for particle hard-

ened alloys

A strain gradient single crystal plasticity framework (SGCP) was recently developed by [13–16]

for the prediction of scale dependent behavior of fcc pure metals. Therein, a phenomenological

power law relationship was employed as the viscoplastic flow rule for crystallographic slip. Three
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different types of dislocation-particle interactions were incorporated into the enhanced flow rule:

i. the Friedel process, i.e. the shearing of particles,

ii. the Orowan process, i.e. the particle by-passing by bowing around them,

iii. the climb of edge dislocations over particles.

5.2.1 Strain gradient crystal plasticity formulation

Within the extended SGCP framework, the deformation gradient F is multiplicatively decomposed

into its elastic, Fe, and plastic, Fp, components [50, 51]:

F = Fe · Fp, (5.1)

where Fe describes the stretch and the rotation of the lattice with respect to an intermediate con-

figuration which is defined by Fp with respect to the reference configuration.

The second elastic Piola-Kirchhoff stress tensor S is defined in terms of the elastic Green-Lagrange

strain tensor Ee in the intermediate configuration as:

S = C : Ee with Ee =
1

2

(
FT
e · Fe − I

)
, (5.2)

where C is the fourth order elasticity tensor and I is the second order identity tensor. S is given by

the pull-back of the Kirchhoff stress τ to the intermediate configuration

S = F−1
e · τ · F−T

e . (5.3)

The rate of the plastic deformation gradient is calculated by

Ḟp = Lp · Fp. (5.4)

Here, Lp is the plastic velocity gradient tensor and is resolved from the plastic slips at the slip

system level (12 octahedral slip systems for an fcc metal):

Lp =

12∑

α=1

γ̇ α Pα
0 . (5.5)

In this equation, γ̇α represents the plastic slip rate of system α. Pα
0 = sα0n

α
0 is the Schmid tensor

with sα0 the unit direction of the Burgers vector and nα
0 the unit normal of the slip plane of system

α, both defined in the intermediate configuration.

The total crystallographic slip rate γ̇α of a slip system α is decomposed into the slip rates due to

mobile edge and screw dislocations reading

γ̇α = γ̇αe + γ̇αs , (5.6)

where subscripts (.)e and (.)s denote edge and screw types, respectively. Note that the dislocation-

particle interactions (i) and (ii) occur for both edge and screw type of mobile dislocations whereas

only edge dislocations can climb. γ̇α results from the sum of both flow rules, which are constructed

for each of dislocation-particle and dislocation-dislocation interaction mechanisms and combined
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in the way demonstrated by figure 5.1. The slip rates due to edge and screw dislocations are given

γ̇α

γ̇αe γ̇αs

γ̇αR,e

γ̇αO,e γ̇αF ,e γ̇αC ,e

ταeffταeff

τα1 ,e

τα2 ,e

γ̇αR,s

γ̇αO,s γ̇αF ,s

τα1 ,s

τα2 ,s

Figure 5.1: Mechanical analogue of the new constitutive law for a slip system in a particle strength-

ened alloy. In the figure, α denotes the slip plane and runs over 1..12 for fcc metals, τα

is the effective resolved shear stress, γ̇α is the total slip rate corresponding to ταeff , τα1
and τα2 are the stresses in the first and second branches. γ̇αR, γ̇αO , γ̇αF and γ̇αC are the slip

rates of the dashpot representing the dislocation-dislocation interactions, the Orowan,

the Friedel and the climb dashpots, respectively. Subscripts (.),e and (.),s represent the

quantities for edge and screw dislocations.

by

γ̇αe = γ̇αR,e + γ̇αC ,e = γ̇αO ,e + γ̇αF ,e + γ̇αC ,e , (5.7)

γ̇αs = γ̇αR,s = γ̇αO ,s + γ̇αF ,s , (5.8)

where subscripts (.)R, (.)O , (.)F and (.)C stand for the slip resistance arising from the dislocation-

dislocation interactions, the Orowan process, the Friedel process and dislocation climb. Further-

more, the effective stress is given by

ταeff = τα1 ,e + τα2 ,e = τα1 ,s + τα2 ,s . (5.9)

In this equation, ταeff , τα1 ,j and τα2 ,j with j1 = {e, s} are the effective resolved shear stresses in the

main branch, the first branch (for dislocation-dislocation interactions) and the second branch (for

dislocation-particle interactions), respectively, see figure 5.1.

The effective resolved shear stress is given by the difference between the applied resolved shear

stress τα and the resolved back stress ταb :

τ α
eff = τα − ταb with τα = S : Pα

0 . (5.10)

The incorporation of the back stress within the extended SGCP framework enables the prediction of

a size dependent material behavior arising from the strain gradients. The back stress is calculated

via the integration of the stress fields of a distribution of geometrically necessary dislocations

(GNDs) in a cylindrical volume, where the radius of the volume is a length scale. The internal

1From here onwards, subscript j is used as an index for dislocation type and reads e and s for edge and screw

dislocations, respectively.
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stress field due to edge dislocations is given by [15, 16] as:

σ int
e =

GmbR
2

8(1 − νm)

12∑

ξ=1

∇0 ρ
ξ
GND ,e ·

(

3nξ
0s

ξ
0s

ξ
0 + n

ξ
0n

ξ
0n

ξ
0 + 4νnξ

0p
ξ
0p

ξ
0 − s

ξ
0s

ξ
0n

ξ
0 − s

ξ
0n

ξ
0s

ξ
0

)

,

(5.11)

and for the screw GNDs, it is defined as:

σ int
s =

GmbR
2

4

18∑

ξ=13

∇0 ρ
ξ
GND ,s ·

(

−n
ξ
0s

ξ
0p

ξ
0 − n

ξ
0p

ξ
0s

ξ
0 + p

ξ
0s

ξ
0n

ξ
0 + p

ξ
0n

ξ
0s

ξ
0

)

, (5.12)

with p
ξ
0 = s

ξ
0 × n

ξ
0 associated with slip system ξ and R the radius of the cylindrical integration

volume. Gm and νm are the shear modulus and Poisson’s ratio of the matrix, respectively. Fol-

lowing [13–16], two of the screw dislocations with the same Burgers vector are coupled into one

set, leading to 6 screw dislocations whereas the number of slip systems for edge dislocations is 12.

The back stress on a slip system α is then calculated by:

ταb = −
(
σint
e + σint

s

)
: Pα

0 for α = 1, 2, . . . , 12. (5.13)

The SGCP model involves also statistically stored dislocations (SSD), the unsigned fraction of

dislocations. The evolution of SSD densities on each slip system ξ is described by the generalized

form of the relation originally proposed by [56]:

ρ̇ξSSD =
1

b

(
1

Lξ
− 2 ycρ

ξ
SSD

)

|γ̇ξ| with ρξSSD(t = 0) = ρξSSD0
for ξ = 1, 2, . . . , 12.

(5.14)

The first term within the parentheses in equation (5.14) is the accumulation rate, whereby L ξ

equals the average dislocation segment length given by:

Lξ =
K

√
12∑

α=1
Hξα |ραSSD |+

18∑

α=1
Hξα |ρα

GND |
. (5.15)

Here, Hξα are the components of a matrix that represents the mutual interactions anticipated be-

tween dislocations [13]. The second term in the parentheses is the annihilation rate in terms of the

critical annihilation length yc, the average distance between two oppositely signed dislocations,

below which they annihilate. ρξSSD0
is the density of SSDs that are initially present in the material.

The non-uniform distribution of densities of GNDs leads to long range back stresses (equal and

opposite to the internal interaction stress) which are given via equations (5.11)-(5.13). The GNDs

also contribute to isotropic hardening processes. The densities of GNDs are calculated via the gra-

dients of the crystallographic slips. The slip gradients in the direction of slip sα0 give the densities

of edge GNDs, while the gradients in the direction of pα
0 give screw GND densities. A gradient

of slip in the direction of the slip plane normal nα
0 does not introduce any GNDs [26]. Hence, a
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balance equation for the densities of the GNDs can be written as

ρξGND ,e = ρξGND ,e0
− 1

b
s
ξ
0 ·∇0γ

ξ, (5.16)

ρξGND ,s = ρξGND ,s0
+

1

b

(

p
α1(ξ)
0 ·∇0γ

α1(ξ) + p
α2(ξ)
0 ·∇0γ

α2(ξ)
)

. (5.17)

Here, ξ runs over 1, 2, ..., 12 for edge GNDs and over 13, 14, ..., 18 for screw GNDs. ρ ξ
GND,e0

and

ρ ξ
GND,s0

denote the initial densities of edge and screw GNDs, if any present in the material, α1(ξ)
and α2(ξ) represent two slip systems with the same slip direction but different plane normals for

each screw GND.

The rate equations for the crystallographic slip are formulated based on the Orowan type flow rule:

γ̇αi ,j = ραm,j bv̄
α
i ,j , (5.18)

where ραm,j is the density of mobile dislocations, b is the magnitude of the Burgers vector and v̄αi ,j
is the average velocity of mobile dislocations in slip system α. Here, i indicates the type of the

interaction between dislocations and particles: for edge dislocations i = {R,O,F,C}, whereas

for screw dislocations i = {R,O,F}.

The densities of mobile edge and screw dislocations in equation (5.18) are calculated via

ραm,j = Φ
(
|ραGND ,j |+ |ραSSD ,j |

)
, (5.19)

with Φ a constant determining the mobile fraction of total dislocations on a slip system. It should be

noticed that equation (5.19) involves 12 screw GNDs whereas equation (5.17), following [13–16],

contains 6 screw GNDs. In this work, 12 screw GNDs are obtained by distributing 6 screw GNDs

equally between the associated slip systems with the same plane normals. Note also that equation

(5.19) has 12 edge and 12 screw SSDs. Equation (5.14) was proposed by [13–16] assuming that

all SSDs were of edge type. In this work, SSD densities calculated via equation (5.14) are equally

divided into edge and screw types.

In the following subsections, the average velocity of mobile edge and screw dislocations are de-

rived based on the type of their interactions with the obstructions for their glide.

5.2.2 Dislocation-dislocation interactions

The resistance in slip system α, sα, originating from the short-range interactions between disloca-

tions, is given by [13–16]

sα = c
Gmb

Lα
d

, (5.20)

where c is a material constant [52] and Lα
d is the effective mean planar distance between the

dislocations, which is given by:

Lα
d =





12∑

ξ=1

Aαξ
(

|ρξSSD ,e |+ |ρξSSD ,s |
)

+

18∑

ξ=1

Aαξ |ρξGND |





−1/2

. (5.21)
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Here,Aαξ are the components of the interaction matrix which represents the strength of the interac-

tions between slip systems as determined by [53]. It is composed of the six interaction coefficients

corresponding to self hardening, coplanar hardening, Hirth lock, Glissile junction, Lomer-Cottrell

lock and cross slip, cf. [70]. Lα
d is taken identical for edge and screw dislocations. Note that the

slip resistance in equation (5.20) contains screw SSDs via Lα
d in contrast to [13, 14].

In the current formulation, sα acts as a stress barrier around which a transition occurs between

two different regimes of dislocation motion [159]. Dislocations driven by the effective resolved

shear stresses lower than sα move in a jerky manner: the time between two sequential hits of

an obstruction is mainly spent in front of obstacles, from which dislocations escape by the help

of thermal fluctuations, referred to as thermally activated release. Here, the average velocity of

dislocations during thermally activated motion is obtained by the generalization of the rate equation

given by [159] for the rate of thermal activated release of dislocations from obstructions and reads:

v̄αth,j =
1

2
Lα
d

(

F̂R,j

2Γc,j

)1/2

vG exp

(

−
∆Gα

R,j

kT

)[

1− exp

(

−
|τα1 ,j |b (Lα

d )
2

kT

)]

sign
(
τα1 ,j
)

(5.22)

with vG the Granato frequency, F̂R,j the maximum force that can be sustained by dislocation-

dislocation interactions and Γc,j the line tension of a dislocation experiencing F̂R,j . The fraction

F̂R,j /2Γc,j is a measure for the magnitude of the slip resistance offered by dislocation-dislocation

interactions and is approximated here by F̂R,j /2Γc,j = c2/3. The pre-exponential term excluding

vG determines an effective jumping distance that a dislocation spans between two successive en-

counters with obstructions. ∆GR,j is the activation energy for the thermally activated overcoming

of the resistance provided by the dislocation-dislocation interactions and is defined as

∆Gα
R,j = ∆F0

(

1−
|τα1 ,j |
sα

)

, (5.23)

in which ∆F0 represents the energy required at zero stress [13–16]. When the effective resolved

shear stress is larger than sα, the applied stress is sustained by viscous drag forces originating

from the interaction of mobile dislocations with phonons and electrons in case of metals with low

lattice resistance [159], such as fcc metals. In this case, dislocation motion is rather continuous

in comparison with thermally activated dislocation glide and the velocity of gliding dislocations is

proportional to the effective resolved shear stress [159].

In this work, the average velocity of mobile dislocations within the viscous drag regime is calcu-

lated by:

v̄αdr ,j =
b

B
τα1 ,j , (5.24)

which is obtained by the simplification of the average dislocation velocity defined by [159] for the

viscous drag regime by assuming a relatively large separation distance between the obstructions in

comparison with the dislocation-dislocation interaction regime [159, 160]. B is the drag coefficient

and approximated by [159]

B ≃ kT

ΩωA
, (5.25)

with Ω the atomic volume and ωA the atomic frequency. B is taken as the same for edge and screw

dislocations.
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Finally, an expression for the average velocity of mobile edge and screw dislocations v̄αR,j is ob-

tained by the combination of these two different regimes of dislocation motion by considering the

times to cover the same distance in case of thermally activated glide only and viscous glide only

[159, 160], which leads to

v̄αR,j =
Lα

tαtot
=

(

1

v̄αdr ,j
+

1

v̄αth,j

)−1

. (5.26)

Equation (5.26) implies that the average velocity of mobile dislocations will be governed by the

slowest of v̄αdr ,j and v̄αth,j .

5.2.3 Dislocation-particle interactions

In the extension of the SGCP framework, it is assumed that the material involves one type of second

phase particles which are treatable by Friedel-Fleischer (FF) statistics [96, 120]. The particles are

considered to have a spherical shape with an average planar radius rs [111, 112]

rs =
πr

4
(5.27)

and a mean planar spacing in a regular square lattice arrangement Lcc [111, 113, 114]

Lcc =

(
2π

3f

)1/2

r, (5.28)

on a glide plane intersecting the particles randomly, where r is the average particle size and f is

the particle volume fraction.

Particles contribute to the strength by hindering the dislocation motion on the slip planes passing

through them. In this work, three different interaction processes are assumed to occur, outlined

below.

Friedel process

When particles that obstruct gliding dislocations have a finite strength, the dislocations can over-

come them by shearing if the driving stress is sufficiently large. An expression for the critical

resolved shear stress required for the shearing of particles by mobile edge and mobile dislocations

based on FF statistics [111–115, 117] reads:

τc,j =
2Γc,j

bLcc

(

F̂F ,j

2Γc,j

) 3
2

. (5.29)

In the current framework, the Friedel stress is calculated by using

τFR,j = C1(1 + C2η0 ,j )
C3τc,j (5.30)

as proposed by [123] for the incorporation of the effect of finite particle size and the randomness

of their distribution on the Friedel stress. In this equation, C1, C2 and C3 are constants given by

[112, 119] as C1 = 0.94, C2 = 2.5, C3 = 0.33 and C1 = 0.94, C2 = 0.82, C3 = 1 for elastically

interacting particles and energy storing particles [111, 117, 118], respectively. η0 ,j is a measure
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for the applicability of FF statistics and is defined as [123]

η0 ,j =
y0
Lcc

1

(F̂F ,j /2Γc,j )1/2
. (5.31)

with y0 being the range of the interaction force. It is proposed that for η0 ,j ≪ 1, FF statistics

can still be used to predict the critical shear stress [123]. When η0 ,j ≫ 1, the dislocation-particle

interaction becomes similar to that in solid-solution alloys, which are well treated by Mott-Labusch

(ML) statistics [124–126].

The line tension of edge and screw dislocations is calculated by using an improved version [111]

of de Wit-Koehler model [154]:

Γc,e =
Gmb

2

4π

[

1 + νm − 3νm

(

1− cos2 φc,e
3

)]

ln
Ro

Ri
, (5.32)

Γc,s =
Gmb

2

4π

[
1 + νm − νm cos2 φc,s

]
ln
Ro

Ri
, (5.33)

which is derived by the calculation of the average line tension along the length of a circular arc

[111, 155]. Here, cosφc,j = F̂R,j/2Γc,j , Ri ≈ b is the inner cut-off radius and Ro is the outer

cut-off radius which is approximated by the mean planar spacing Lcc .

The Friedel stress of a particle, τFR,j , and the activation energy ∆GF ,j are assumed to be de-

termined by the source of strengthening that offers the largest shear resistance among the four

different types below:

a) Chemical strengthening denotes the additional energy required to generate new interfaces dur-

ing the shearing of energy storing particles. The maximum force that a screw dislocation feels

during this process reads [111, 112, 114, 115, 119, 129]

F̂CHE ,s = 2χsb, (5.34)

with χs the specific energy of the particle-matrix interface. The resistance force for an edge

dislocation is approximated to be equal for a screw dislocation [114, 115, 119, 129]. The energy

barrier corresponding to chemical strengthening is described by [112]

∆Gα
CHE ,j = 2F̂CHE ,j r

[

1−
( |τα2 ,j |
τFR,jCHE

)2/3
]

. (5.35)

b) Stacking fault (SF) strengthening is an elastic type of dislocations-particle interaction [119]

that results from the difference in the SF energies of the matrix and particles (∆χ). The SF

strengthening model of [131] is adopted here due to its simplicity. In this model, the maximum

resistance force experienced by a straight dislocation due to the mismatch of SF energies is

given by

F̂SFS ,j = 2(2d̂jrs − d̂2j)
1/2|∆χ|, (5.36)

with d̂j = min(wm,j , rs ). wm,j is the equilibrium distance between Shockley partial disloca-
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tions in the material matrix and calculated by [132]

wm,j =
Gmb

2

24πχ

2− 3νm
1− νm

[

1 +
4νm

2− 3νm
sin2 βj

]

, (5.37)

where βj is the angle between the total Burgers vector and the dislocation line. An equation for

the activation energy of SF strengthening is suggested by [112]:

∆Gα
SFS ,j = rF̂SFS ,j

[

1− 3

2

( |τα2 ,j |
τFR,j SFS

)4/9

+
1

2

( |τα2 ,j |
τFR,jSFS

)4/3
]

. (5.38)

c) Coherency hardening originates from the interaction of dislocations with the stress fields due

to the lattice misfit (ε) between the coherent particles and the matrix, which is of an elastic

and diffuse type [131]. The maximum resistance force that an edge dislocation may experience

reads [111, 129, 135–138]

F̂COH ,e = 4Gm|ε|br, (5.39)

and occurs when its slip plane intersects the particle at a distance of r/
√
2 from the center of

the particle. Strain fields due to a lattice misfit do not pose any resistance against the motion

of a long straight screw dislocation. The critical resolved shear stress necessary to overcome

coherent spherical particles is given by [111, 114, 129, 135–138]

τFR,eCOH
= C4(Gmε)

3
2

[
frb

2Γc,e

] 1
2

and ε =
ap − am
am

[

1 +
2Gm(1− 2νp)

Gp(1 + νp)

]

, (5.40)

where a is the lattice dimension of the matrix and C4 is a constant to take into account the

diffuse nature of the interaction [111, 119]. Equation (5.40) is used to estimate the additional

strength provided by the lattice mismatch between the particles and the matrix by setting C4 ≈
3.9, which results from the substitution of equation (5.39) into equation (5.29). The associated

activation energy is described by

∆Gα
COH ,e = rF̂COH ,j

[

1− 3

2

( |τα2 ,e |
τFR,eCOH

)4/9

+
1

2

( |τα2 ,e |
τFR,eCOH

)4/3
]

, (5.41)

as proposed by [112].

d) Modulus hardening occurs due to the difference in elastic moduli of the matrix and particles

(∆G). In this type of hardening, the matrix dislocations interact elastically with the particles

[131]. Here, an empirical equation which is derived by [139] is used for the calculation of the

maximum force that is experienced by an edge dislocation due to the modulus misfit:

F̂MOD ,e = C5∆Gb
2
(r

b

)C6

, (5.42)

where C5 ≈ 0.05 and C6 ≈ 0.85 are constants [111]. This equation is also used for screw

dislocations with a reduction by 25%, which is qualitatively in line with the numerical results

in [139] for screw type dislocations. Following [112], an expression for the energy barrier to



5.2 A STRAIN GRADIENT CRYSTAL PLASTICITY FRAMEWORK FOR PARTICLE HARDENED ALLOYS 119

overcome the additional resistance offered by the modulus misfit can be written as

∆Gα
MOD ,j = rF̂MOD ,j

[

1− 3

2

( |τα2 ,j |
τFR,jMOD

)4/9

+
1

2

( |τα2 ,j |
τFR,jMOD

)4/3
]

. (5.43)

The Friedel stress is then given by

τFR,j = max{τFR,jCHE
, τFR,j SFS

, τFR,jMOD
, τFR,jCOH

}. (5.44)

In the present work, mobile dislocations overcome particles by means of thermal activation, and

hence the average velocity of dislocations is formulated in a way similar to equation (5.26) such

that

v̄αF ,j =
1

2
LccvG

(

F̂F ,j

2Γc,j

)1/2

exp

(

−
∆Gα

F ,j

kT

)[

1− exp

(

−
|τα2 ,j |bL2

cc

kT

)]

sign
(
τα2 ,j
)
. (5.45)

In this equation, the fraction F̂F ,j /2Γc,j and the activation energy ∆Gα
F ,j come from the same

strengthening source that determines τFR,j .

Orowan process

If the particles are strong because of, for instance, being incoherent or large, gliding dislocations

cannot shear them. However, the particles can still be passed by bowing around them, which is

referred to as the Orowan process. The stress required to complete this process is called the Orowan

stress.

The Orowan stress, τOR,j , is calculated here by using the expression derived by [119]

τOR,j = 0.93
Gmb

2π
√
1− νm wlr

ln

(
2wdr

b

)[
ln (2wdr/b)

ln (wlr/b)

]1/2

(5.46)

where wr, wq, wl and wd are statistical parameters given by

wr =
π

4
, wq =

2

3
, wl =

√
π wq

f
− 2wr and wd = (w−1

l + (2wr)
−1)−1. (5.47)

Note that, the Orowan stresses for edge and screw dislocations are assumed to be the same in this

work.

The Orowan mechanism is almost temperature independent. Such a property can be described

using a relatively large activation energy such as ∆GO > 2Gmb
3 following [106]. Hence, a stress

dependent energy barrier for the Orowan process is used here as

∆Gα
O ,j = 3Gmb

3

(

1−
|τα2 ,j |
τOR,j

)

, (5.48)

which is then used in the formulation of the average velocity of dislocations to circumvent the
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particles via the Orowan process:

v̄αO ,j = LccvG exp

(

−
∆Gα

O ,j

kT

)[

1− exp

(

−
|τα2 ,j |bL2

cc

kT

)]

sign
(
τα2 ,j
)
. (5.49)

Dislocation climb

Within the extended SGCP framework, when applied stress levels are low for overcoming the

obstacles via the Orowan or Friedel processes, a diffusional process, dislocation climb, may assist

mobile edge dislocations to continue their glide.

The climb of edge dislocations is described here by the thermally activated detachment model of

[152] by assuming that there is a sufficiently strong attractive interaction between the particle and

a dislocation climbing over it. In this model, the line tension of the dislocation during its climb is

relaxed due to the attractive interaction. Hence, for its detachment from the particle, an additional

energy must be supplied for the compensation of the energy loss. This detachment energy Ed is

formulated by [152]

Ed ,e = 2Γer

[

(1− kr)

(

1− |τeff |
τd,e

)] 3
2

(5.50)

for spherical particles of average radius r, where

τd ,e =
√

1− k2r τOR,e (5.51)

is the detachment threshold stress [146]. kr is a relaxation constant that represents the strength of

the interaction between climbing dislocations and particles. A lower kr means a stronger interac-

tion, leading to a larger relaxation of line energy during climb. In reality, kr > 0.7 and it attains

its lowest values for incoherent particles [151]. Another expression for the detachment threshold

stress was suggested by [153]

τd ,e ≈
(

1 +
1

√

1− k2r

)3/2

τOR,e , (5.52)

by considering a rather weak behavior of dispersions during the thermal detachment in contrary

to the strong obstacle approximation of [146]. Equation (5.52) yields lower threshold stresses for

the detachment than the original formulation [146]. It also leads to a shift of the critical relaxation

parameter, which marks the transition between detachment controlled slip and climb controlled

slip, from 0.94 to 0.96. In the current work, equation (5.52) is used for the calculation of the

detachment threshold stress. The line tension Γe is calculated by using equation (5.32) with Ro =
2rs which is a suitable approximation for the outer cut-off radius since the dislocation configuration

in the thermal detachment model is similar to that in the Orowan process. An attempt frequency of

dislocations, v, in the thermally activated detachment model of climb is defined in [152] by

v = vv exp

(

−Ed

kT

)

with vv =
n

2
νD exp

(

−Qf +Qm

kT

)

=
3Dl

b2
, (5.53)

where vv is frequency of vacancy absorption, Dl =
1
6nb

2νD exp
(

−Ql

kT

)

is the lattice diffusivity,

νD is the Debye frequency, Qf and Qm are the activation energies for vacancy nucleation and
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migration that together define Ql , the activation energy for self diffusion. In line with equation

(5.53), an expression is used here for the average velocity of the mobile edge dislocations which is

limited by dislocation climb in a way similar to equations (5.26), (5.45) and (5.49):

v̄αC ,e = LJ
3Deff

b2
exp

(

−
Eα

d ,e

kT

)[

1− exp

(

−
|ταeff ,e |b(Lcc)

2

kT

)]

sign
(
ταeff ,e

)
. (5.54)

LJ in this equation can be interpreted as the average distance to be traveled after the detachment

from a particle until the next contact with another particle. Here, LJ is approximated by an ef-

fective travel distance L2
cc/λc,e if τFR < τOR where λc,e is the Friedel sampling length for edge

dislocations and given by λc,e = Lcc/
√

cosφc,e . Otherwise, it is taken as equal to Lcc . Note that

the self diffusion constant Dl in equation (5.53) is replaced by an effective diffusion constant Deff

in equation (5.54).

5.3 Multiphysical simulations with the extended SGCP model

The extended SGCP framework [179] is next used in multiphysical simulations in order to study

the influence of service conditions and material properties on the performance of a capacitive RF-

MEMS switch shown in figure 5.2a. The studied factors are:

i. particle size at constant volume fraction,

ii. volume fraction at constant particle size,

iii. surface constraints,

iv. film thickness,

v. cyclic loading.

By assuming that the grain texture of the device is symmetric about the x and y axes, only one-

fourth of the switch is numerically modeled [75]. The grains are generated by voronoi tessellations

and have their [111] axes parallel to the z axis and in-plane random orientations. The switch is

made of a Al-Cu [1 wt%] alloy with incoherent particles. The upper electrode has a thickness of

4.75 µm and is suspended via the springs by 3.2 µm over the bottom electrode. To save computa-

tion time, the SGCP model is employed only in the parts of the switch where relatively large stress

levels are anticipated, i.e. only for the free-standing spring and the region where it is connected

to the electrode. An inhomogeneous diffusion constant is used with Deff ,gb = 1 · 10−9 µm2/s for

the regions near grain boundaries and Deff = 8.9 · 10−18 µm2/s for grain interiors. The rest of

the electrode plate is modeled as a transversely isotropic medium, see figure 5.2b. Some of the

material parameters in the simulations are given in table 5.1. The parameters that are varied in

the simulations here are listed in table 5.2. The remaining parameters can be found in literature

[13–16]. The electric domain is idealized by using the electromechanical transducer elements with

a parallel plate approximation and involving fringe field effects, see section 3.3 of chapter 3. The

contact between the thin film and the dielectric layer on the bottom electrode is modeled via non-

linear spring elements with the contact curve given in the appendix of chapter 3. The transducer

elements and contact elements are located in the gap between the electrodes as depicted in figure

3.4 in chapter 3. Simulations are performed in two sets. In the first set, the effect of the factors i-iv

are investigated for a loading-unloading cycle within the period of [0, t3]. The second set involves



122 5 ANALYSIS OF THE TIME DEPENDENT BEHAVIOR OF A CAPACITIVE RF-MEMS SWITCH

electrode

springs

hinge

gap

a) b)

x

y

z

Figure 5.2: a) Top view of a capacitive RF-MEMS switch (Courtesy of EPCOS). Only one-fourth

of the switch is considered in the numerical model. Each color highlights a grain

with different orientation. b) The extended SGCP model is used only in the regions

with magenta color. The yellow parts are modeled as a transversely isotropic elastic

medium.

two simulations with multiple loading-unloading cycles with the material parameters belonging

to the reference set in table 5.2. The simulations in this set have the same loading and unloading

times. However, for the time spend during the anelastic strain recovery, which occurs during the

unloaded stage between the completion of a loading-unloading cycle and the start of the next cycle,

different values of 10000 s and 100 s are used. The loading scheme is illustrated in figure 5.3. The

results of the first set of simulations are presented in figure 5.4 and table 5.3.

V
o
lt

ag
e

time

unloaded state

Vmax

t1 t2 t3 t40

Figure 5.3: Loading scheme used in the simulations. Only one loading-unloading cycle is consid-

ered in the first set of simulations with t1 = 180 ms, t2−t1 ≈ 10000 s, and t3−t2 ≈ t1
and the unloaded stage t4 − t3 ≈ 10000 s. Vmax = 60 V. The second set is composed

of two simulations involving 4 loading-unloading cycles with the same loading and un-

loading times as defined via t1-t3 but different durations of the unloaded state, 10000
s and 100 s.

Figure 5.4a shows the maximum change in the gap between the plates. Note that the data plotted

here does not necessarily belong to a single node. It is seen in comparison with the reference

curve that the residual displacement at t = t3 decreases with decreasing particle size since the

detachment threshold stress grows proportionally with the Orowan stress which increases with

decreasing particle size at constant volume fraction. The opposite effect is created by reducing

the volume fraction of particles at constant size, which results in a smaller Orowan stress. The

factors that lead to an increase in the detachment threshold stress also reduce the amount and rate

of deformation recovery. Similarly, those resulting in smaller detachment threshold stresses yield
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Table 5.1: Material parameters used in the simulations.

Parameter Meaning Value Unit Reference

C11 Elastic constant 108000 MPa [70, 76, 77]

C12 Elastic constant 61300 MPa [70, 76, 77]

C44 Elastic constant 28500 MPa [70, 76, 77]

νm Poisson’s ratio 0.347 - [78]

k Boltzmann constant 1.38054 · 10−11 pJ/K -

T Temperature 293 K -

b Burgers vector length 2.86 · 10−4 µm [70]

K Material constant 10 - [13–16]

yc Critical annihilation length 1.6 · 10−3 µm [13–16]

c Material constant 0.3 - [52]

ρSSD0
Initial SSD density 5 µm−2 -

R Length scale 2 µm -

vG Granato frequency 1 · 1011 s−1 -

ωA Atomic frequency 1.07 · 10−13 1/s -

Ω Atomic volume of Al 16.50 Å3 -

Gm Shear modulus 26000 MPa [70, 76]

∆F0 Activation energy 64 · 10−8 pJ [12]

kr Relaxation coefficient 0.94 - -

Deff Eff. latt. diff. for grain interiors 8.9 · 10−18 µm2/s -

Deff ,gb Eff. latt. diff. for grain boundary regions 1 · 10−9 µm2/s -

φ Mobile fraction of dislocations 5 · 10−3 - -

Table 5.2: Material parameters used in the simulations. Unspecified values are the same as those

in the first row.

Sim.
Particle size Volume fraction Surface Thickness

[nm] [%] condition [µm]

Ref. 4 0.4 Passivated 5
i 8 - - -

ii - 1.2 - -

iii - - Free -

iv - - - 3.17
v 2 2 - 3.17



124 5 ANALYSIS OF THE TIME DEPENDENT BEHAVIOR OF A CAPACITIVE RF-MEMS SWITCH

0 2000 4000 6000 8000 10000
−700

−600

−500

−400

−300

−200

−100

0

 

 

10
0

10
2

10
4

−700

−600

−500

−400

−300

−200

−100

0

 

 

a) b)

t− t3 [s]t− t3 [s]

d
is

p
la

ce
m

en
t

[n
m

]

d
is

p
la

ce
m

en
t

[n
m

]

Ref.Ref.
i - P. sizei - P. size
ii - V. frac.ii - V. frac.
iii - Free s.iii - Free s.
iv - Thick.iv - Thick.
Set vSet v

1 2

3 4v
o
lt

time

Figure 5.4: Gap displacement during the unloaded stage over time with: a) linear scale, b) log-

arithmic scale. The curve belonging to the case with a free surface condition almost

coincides with the curve of the reference parameter set.

Table 5.3: Residual gap displacement uz,r at t = t3, displacement recovery δuz during the un-

loaded stage and the percentage of the recovered deformation.

Sim. uz,r [nm] δuz [nm] δuz/uz,r [%]

Ref. -373.1 -145.3 61.1
i -477 -160.6 66.6
ii -195.4 -154 21.2
iii -658.1 -525.8 20.1
iv -372.9 -162.7 56.4
v -85.8 -55.0 35.9

larger amounts and rates of deformation recovery, see figure 5.4a and b and table 5.3. Figure 5.4a

shows that the maximum residual deformation is significantly affected by changing the surface

condition: the free surface condition leads to a substantial decrease in the gap at both t = t3
and t = t4. Furthermore, the smallest percentage of the deformation recovery is recorded in this

simulation. The figure also demonstrates that for the same set of material parameters, reducing

the thickness of the free-standing beam to two-third of the original thickness has no significant

influence on the maximum residual change of the gap at t = t3 and at t = t4 deformation at t = t4
(which is here explicitly referred to as permanent deformation).

The effect of a smaller thickness on the mechanical behavior is illustrated further in contour plots

of the gap change and norm of the GND densities2 at t = t3 and t = t4 in figures 5.5 and 5.6.

Figure 5.5 reveals that the beam thickness has an important effect on the amount of the residual

displacement at t = t3 and the permanent deformation remaining at t = t4. In the case with the

smaller thickness, the major portion of the beam deforms much less than for the case with the

reference parameter set. However, there is a large gradient in the vertical displacement field of

the plate and the maximum residual displacements at t = t3 and t = t4 are comparable to those

2Given by

√

√

√

√

12
∑

i=1

(

nρiGND,e

)2

+ 0.5

18
∑

i=13

(

nρiGND,s

)2

, where
n(.) denotes that the term is a nodal quantity.
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from the simulations with the reference parameter set. This explains why figure 5.4a misleadingly

suggests that thickness has a negligible influence on the residual and permanent deformations. It

can be seen in figure 5.6 that less GNDs are generated in case of the thinner beam. The pull-in

and release voltages, at which the upper electrode snaps on the bottom electrode during loading

and springs back during unloading, respectively, are compared in figure 5.7. It is found for the

simulations with the reference parameter set and the parameter sets (i)-(iii), in which the beam

thickness is the same, that the influence of the deformations accumulated during creep loading on

the release voltage is limited; they vary between 9 − 10 V. Although the residual and permanent

deformations from the simulation with the parameter set (iii) is about three times as large as those

with the parameter set (ii) (see table 5.3), the difference between the release voltages of two sim-

ulations is only about 1 V. As expected, there is no difference in pull-in voltages (41 V) in these

four simulations as it is determined by the elastic properties of the beams, which are the same. For

the switch with the smaller thickness corresponding to parameter set (iv), the pull-in voltage reads

about 14 V. The release voltage is around 9 V and close to the values from the simulations with the

other parameter sets.

The results presented in figures 5.4, 5.5 and 5.6 suggest that a switch with an upper electrode that

is made of a thinner film with large number of small incoherent particles would display a better

mechanical performance. A surface passivation is expected to make a signifcant contribution to

the prevention of plastic strains, though this contribution may be very limited. In this respect, a

simulation is performed with the parameter set (v) given in table 5.2. The residual displacement

and permanent deformation are greatly reduced in this case, see table 5.3 and figures 5.4 and 5.8a,

and the GND densities are much lower, cf. figure 5.8b. The pull-in voltage and the release voltage

are close to those from the simulation with parameter set (iv) and read 14 V and 7 V, respectively.

The results of the second set of simulations that involve four successive loading-unloading cycles

are presented in figures 5.9 and 5.10. Figure 5.9a shows the maximum gap displacement over time

that is obtained from the first simulation of this set (i.e. with equal duration of creep loading and

unloaded state). The direct comparison of the change of the maximum gap displacement over time

after each loading-unloading cycle in figure 5.9c demonstrates that the residual displacements just

at the end of the unloading stage (which is the beginning of the unloaded state) of a cycle and at the

end of the following unloaded state (which is the beginning of the next loading-unloading cycle)

increase with the number of applied loading-unloading cycles, however at a decreasing rate. The

noticeable drop in the magnitude of the change of the gap displacement with the third and espe-

cially the fourth loading-unloading cycle suggests that the magnitude of the residual displacements

at the start and at the end of unloaded state will be saturated after a number of cycles. Figure 5.9b,

which contains the results of the second simulation (i.e. with a duration of unloaded state that is

equal to 1% of the duration of creep loading), shows that although the magnitude of the residual

displacement will still saturate with further cycling, the saturation will require a larger number of

cycles and the magnitude of the residual deformations at saturation will be larger provided that

no sufficiently long time for anelastic strain recovery is given. Such prediction of the material

behavior by the extended SGCP model is due to the larger amount of dislocation accumulation in

the material in case of shorter durations of unloaded states between loading cycles, which acts as

a reservoir of mobile dislocations for the next subsequent loading cycle. The pull-in and release

voltages within each loading cycle are plotted in figure 5.10. The figure indicates that in the simu-

lation with an unloaded state of 10000 s between sequential loading-unloading cycles, the pull-in

voltage for the second loading cycle decreases. This is due to the residual deformation at the

beginning of the second loading-unloading cycle. Since the change in the residual deformation is

small after the second cycle, the pull-in voltage remains almost the same for the subsequent cycles.

For the simulation with a shorter duration of the unloaded state (100 s), the pull-in voltage for the
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Figure 5.5: Contour plots of residual displacement at t = t3 and permanent deformation at t = t4
obtained from the simulations with the reference parameter set (Ref.) and with a thinner

beam (Thick.), see table 5.2. Gray color shows displacements that are larger than the

upper bound of the contour bars.
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Figure 5.6: Contour plots of norm of GND densities at t = t3 and permanent deformation at

t = t4 obtained from the simulations with the reference parameter set (Ref.) and with

a thinner beam (Thick.), see table 5.2. Gray color shows the elastic elements.
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Figure 5.7: Pull-in and release voltages obtained from the first set of simulations.

second loading cycle is smaller due to the larger residual deformation at the start of the second

loading cycle. The pull-in voltage for the third loading cycle is even smaller than for the second

loading cycle due to the large contribution of the second loading cycle to the residual deformation

that remains at the start of the third cycle. The figure suggests that pull-in voltages will saturate
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Figure 5.8: Results of the simulation with parameter set (v). a) The residual deformation (at t = t3)

and permanent deformation (at t = t4). b) The GND density norms taken at t = t3 and

t = t4. Gray color shows the elastic elements.

and will not decrease further after a number of additional loading-unloading cycles as the residual

deformation will saturate. In contrast to the pull-in voltage, the release voltage does not change

between loading cycles and also between two simulations.

5.4 Discussion and concluding remarks

This work presents multiphysical finite element simulations of an RF-MEMS switch by using an

extended SGCP model for the description of the mechanical behavior of its thin film components.

The influence of particle size and volume fraction, surface condition, film thickness and the cyclic

loading on the mechanical performance of the switch is investigated.

In all of these simulations, the extended SGCP model results in residual changes in the gap after

the switches are completely unloaded. It is also found that the gap increases over time due to

anelastic strain recovery during the unloaded state. The magnitude of the residual deformation and

the amount and the rate of the deformation recovery are highly sensitive to the properties of the

free-floating thin film. The simulation results show that the residual deformations can be signifi-

cantly reduced by incorporating small incoherent particles with a large volume fraction because of

relatively large Orowan stresses required for passing by the particles. The extended SGCP frame-

work employs the thermally activated detachment model of [152] for modeling dislocation glide,

the rate of which is limited by the climb of edge dislocations over particles at low stress (and high

temperature) levels. The detachment model [152] contains a threshold stress which is proportional
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Figure 5.9: Change of the maximum gap displacement over time obtained from two simulations

which involve four loading-unloading cycles with the same loading-unloading times

but different durations of the unloaded state (red curves) between sequential loading-

unloading cycles, which are 10000 s, in (a) and (c), and 100 s, in (b) and (d).

to the Orowan stress. In the present case, the increase in the threshold stress with decreasing par-

ticle size is important for lowering the residual deformations. A larger particle volume fraction

results in lower residual deformations also due to the reduced separation distance between the par-

ticles, which increases the number of times mobile dislocations hit particles within a unit distance.

The simulations demonstrate that surface passivation makes the upper plate of the switch more

resistant against plastic deformations.

The anelastic deformation recovery captured by the extended SGCP model is due to the reverse

glide of mobile dislocations upon the reduction or the removal of applied loads, which is driven

by the back stresses (internal stresses) that arise from the inhomogeneous distribution of GND

densities. Within this context, two quantities are important, the resistance against reverse glide

and the magnitude of the back stress available for reverse glide. As simulation results indicate,

any modification that leads to a larger resistance against crystallographic slip will also increase the

resistance against the reverse slip of dislocations. Therefore, a large number of small particles also

effectively limits time dependent changes in the clearance between the plates, i.e. by reducing the

amount and the rate of anelastic deformation recovery. The anelastic recovery will continue as long

as the magnitude of the back stress is sufficiently large in comparison with the slip resistance that

is determined by the combined effect of the resistance due the dislocation-dislocation interactions

sα, the Orowan stress τOR,j (in case of (semi)coherent particles also the Friedel stress τFR,j ) and
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Figure 5.10: Pull-in and release voltages obtained from the two simulations which involve four

loading-unloading cycles with the same loading-unloading times but different dura-

tions of the unloaded state between sequential loading-unloading cycles, which are

10000 s (closed triangles) and 100 s (open triangles).

the detachment stress τd ,e . The observation of the anelastic strain recovery in all simulations and

the relatively stronger (i.e. more elastic) behavior of the switch with a thinner plate suggest that the

mechanical performance of capacitive RF-MEMS switches is intrinsically exposed to size effects

arising from strain gradients.

This study also reveals that under cyclic loading conditions, the residual and permanent changes

in the gap increase at a decreasing rate. The saturation magnitude of the residual and permanent

deformations and the number of loading cycles required for the saturation tend to be larger with

decreasing duration of the unloaded state between sequential loading-unloading cycles. The pull-

in voltage decreases together with the reduction of the gap with each loading cycle. Although

the drop in the pull-in voltage is large after the first loading-unloading cycle, the pull-in voltage

levels off as residual deformation saturates within a few cycles. The simulation results show that

the release voltage is less sensitive to the plastic strains than the pull-in voltage. It can be stated

that measures for reducing the residual deformations will also reduce the degradation of the pull-in

voltage (and the release voltage).



CHAPTER SIX

Conclusion and recommendations

This thesis mainly focuses on the development of a strain gradient crystal plasticity formulation for

modeling of creep and anelasticity in fcc thin film alloys as an extension of a previously developed

SGCP framework [13–16]. The SGCP framework [13–16] was developed for the description of

size effects on the behavior of fcc pure metals, arising from strain gradients. For this purpose, a

physically based back stress was formulated, incorporating the gradients of crystallographic slip

and the energetic dislocation-dislocation interactions. The framework involved a phenomenolog-

ical power-law type relation as the constitutive equation for the rate of crystallographic slip, gov-

erned by a short range slip resistance originating from dislocation-dislocation interactions. In

the second chapter of this thesis, the thermodynamical consistency of this framework was demon-

strated by a direct comparison with a thermodynamically consistent strain gradient theory of crystal

plasticity by Gurtin et al. [37, 43–45]. This study also showed that:

• The energetic micro-stresses for the Gurtin type formulation derived based on the physical

description of the back stresses of the Evers-Bayley type models provide a physical inter-

pretation for the micro stress terms in the Gurtin type formulation.

• The micro-stress based on the definition of the full-internal back stress formulation of Bayley

et al. [15, 16] involves the energetic interactions between different slip systems. It no

longer resides in the plane of its slip system, which is believed to be a result of the defect

forces exerted by the other slip systems with non-parallel slip planes. This micro-stress

vector differs from those of Evers et al. [13, 14], Gurtin [44, 45] and Kuroda and Tvergaard

[38], which were derived from a quadratic defect energy omitting the interactions between

different slip systems. It is also different from the micro-stress of Gurtin [37] derived from a

constitutive equation that couples different glide systems in a phenomenological way and is

incapable of handling a micro-stress vector of a slip system with out of plane components.

The defect energy function associated to the micro stress resulting from Bayley et al. takes

a form that is more complex than a simple quadratic function and is expected to be non-

convex.

• Despite the different additional field equations (GND density balance equations vs. the

micro-force balance law) used for each model within the finite element context, similar

boundary conditions can be defined for the Evers-Bayley type and Gurtin type models.

131
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Next, in chapter 3, the capabilities of the SGCP model to describe the time dependent mechanical

behavior of thin metal films are investigated via multiphysical finite element simulations. It is

found that:

• The SGCP model is able to predict anelastic deformation recovery after load removals, re-

sulting from the reverse glide of dislocations under the effect of residual internal stresses.

However, the observed time dependent deformation recovery is a result of the phenomeno-

logical rate dependent modeling of crystal plasticity since the amounts of the recovery and

the associated relaxation times rely strongly on the parameters of the flow rule for crys-

tallographic slip, such as initial dislocation density or activation energy, that serve for the

definition of slip resistance and are not directly relevant for the time scales of the dislocation

motion.

• The results of the simulations of electrostatic thin beam bending experiments on an Al-Cu

alloy suffer from a significant inaccuracy in predicting the experimentally observed perma-

nent deformations. This is believed to originate from the fact that the SGCP framework was

developed for modeling the behavior of pure fcc materials whereas the thin film sample used

in the experiments was made of an alloy containing solute atoms and small precipitates.

Hence, it is concluded that together with the dislocation-dislocation interactions, the incorpora-

tion of the interaction mechanisms between gliding dislocations and particles/solute atoms into the

physically motivated constitutive rules, including terms for the characteristic time scales of the rel-

evant mechanisms, is indispensable for an accurate modeling of the (time dependent) mechanical

behavior of thin films made of alloys.

In chapter 4, a new constitutive law for crystallographic slip is developed in order to describe creep

and anelasticity in fcc thin film materials with small second phase particles. This constitutive law is

obtained by combining separate Orowan type slip rate equations for dislocation-dislocation inter-

actions, the Orowan process, the Friedel process and the climb of edge dislocations over particles.

The analysis of the new crystallographic slip law at a material point level reveals that:

• The crystallographic slip rate is highly sensitive to particle type, size and volume fraction as

well as the strength of dislocation-dislocation interactions.

• For coherent particles, the new model predicts that mobile edge dislocations experience a

larger resistance than mobile screw dislocations. For edge dislocations, the particle over-

coming mechanism (the Orowan or Friedel process) is determined by the particle properties

(e.g. size) whereas screw dislocations always pass the particles through shearing them.

• When dislocation climb is omitted, the total slip rate is mainly determined by mobile screw

dislocations at all stress levels for fully coherent particles. If climb is considered, in the

existence of an attractive interaction between climbing dislocations and particles, the total

slip rate is determined by the climb of edge dislocations and mobile screw dislocations at low

stress levels and mainly by screw dislocations at larger stress levels. In case of incoherent

particles, dislocation climb governs the total slip rate at low stresses.

The SGCP framework is extended by the integration of the new constitutive law. The extended

SGCP model is used in the finite element simulations of bending of a single crystalline thin beam

(at low stress levels) and the micro-clamp bending experiment on a polycrystalline thin beam [7].

The conclusions obtained from these simulations are summarized as follows:
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• The extended SGCP model is capable of describing the plastic deformations emerging during

the load application via the process for dislocation-dislocation interactions and the Orowan

and Friedel processes. The strain accumulation during creep loading is also well captured

by the extended model by the glide of edge dislocations governed by climb over particles.

Moreover, the model is able to produce a time dependent deformation recovery following the

load removal via the reverse glide of dislocations driven by the residual internal stresses, the

rate of which is governed by dislocation climb. The amount of the residual deformation, the

recovery percentage and the associated relaxation times are determined by the parameters of

the climb model such as diffusion constant, detachment threshold stress (determined by the

particle size and volume fraction) and the relaxation constant.

• Although the single crystalline beam bending simulations suggest that values of the homoge-

neous diffusion constant comparable to the grain boundary diffusion constant are necessary

for traceable anelastic deformation recovery, the simulations of the micro clamp bending ex-

periment on a polycrystalline thin beam reveals that the use of an inhomogeneous diffusion

constant, with the values of the lattice diffusion constant within grain interiors and values

close to the grain boundary diffusion constant in the vicinity of the grain boundaries, yields

more accurate results. Such an inhomogeneous diffusion constant results in strong grain

interiors and weak grain boundary regions during the creep phase, leading to the accumula-

tion of plastic strains within the grain boundary regions. Hence, larger internal stresses are

achieved for smaller plastic deformations due to larger gradients of GND densities, which

ensure the recovery of a larger percentage of the residual deformations after the load re-

moval.

Furthermore, multiphysical simulations are performed with the extended SGCP model to analyze

the time dependent behavior of a capacitive RF-MEMS switch with a free-standing thin film (under

cyclic loading conditions). The simulations demonstrate that:

• The gap between the electrodes of the switch, an important parameter for the functionality

of the device, is reduced after a loading-unloading cycle in a way highly sensitive to the mi-

crostructural properties of the thin film electrode. The amount of the residual changes can be

controlled by small incoherent particles with a relatively large volume fraction, providing a

more effective obstruction for dislocation motion. It is also observed that surface passivation

limits the plastic slip activity.

• After the unloading, the clearance between the electrodes increases over time (as the internal

stresses arising from the gradients of GND densities are relaxed via the reverse glide of

dislocations governed by climb). The measures for the restriction of forward dislocation

motion will also inhibit the time dependent variations of the gap since firstly the internal

levels will be reduced and, secondly, the resistance against the reverse glide of dislocations

will increase.

• The mechanical behavior of the thin film electrode of the switch may be prone to size effects,

since, on average, the amount of the residual change in the gap and its variation over time in

the unloaded state are decreased for a smaller film thickness.

• Under cyclic loading conditions, the gap is reduced at a decreasing rate after each loading-

unloading cycle towards a saturation value. The saturation value of the change of the gap and

the number of cycles required for saturation increase with shorter durations of the unloaded

state between successive loading-unloading cycles.



134 6 CONCLUSION AND RECOMMENDATIONS

• In relation to the gap reduction, the pull-in voltage decrease after the first loading-unloading

cycle, with a larger drop for the shorter duration of the unloaded state before the second

cycle. The change in the pull-in voltage after the subsequent loading-unloading cycles is

small and tends to zero within a few cycles. The release voltage is almost not affected by the

residual deformations of the free-standing thin film.

A proper assessment of the capabilities of the extended SGCP formulation may require dedicated

experiments on single crystalline materials. Such experiments will allow to characterize the abil-

ities to model creep and, if existing, anelastic behavior of thin films (and the effect of surface

diffusion) without any interference arising from grain boundaries. The simulation results show

that the thin film behavior predicted by the extended SGCP model is highly sensitive to the mate-

rial’s unique (micro)structure, e.g. grain orientations, type, size and volume fraction of particles.

Moreover, the possibilities of the validation of the model are also limited by the accuracy of the

experiments. Therefore, a healthier evaluation of the performance of the model is possible only in

the presence of sufficiently accurate experimental data for samples with a sufficiently well charac-

terized microstructure.

The simulations of the micro-clamp bending experiment on an Al-Cu thin film showed a perma-

nent deformation at the end of the time allocated for the anelastic strain recovery whereas in the

experiment, the residual deformation was fully recovered over time. Disregarding the experimental

inaccuracies, the enhancement of the internal stress formulation in the extended SGCP model by

considering additional sources of residual stresses may be necessary to improve the accuracy of

the model to reproduce the experimental result.

The elimination of the assumptions made in the development of the new constitutive law for crys-

tallographic slip will provide a more complete framework for modeling the material behavior. For

instance, the dislocation loops left around the particles as a result of the Orowan process can lead

to local stress fields and add to the overall slip resistance against dislocation glide. Similarly, solute

atoms in the matrix phase may diffuse to dislocations and, hence, restrict their motion. Also, in

its current form, the new slip law can handle only one particle type, either coherent or incoherent.

However, it can be extended straightforwardly for the treatment of multiple types of particles. Fur-

thermore, the effect of semi-coherent particles on the material response can be taken into account

in a way similar to the incoherent particles (or coherent particles) with a correction factor.

Finally, the application of the extended SGCP model to different types of fcc metals with spherical

precipitates and dispersions may provide valuable insights into the description of the mechanical

behavior of thin films.
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Samenvatting

Samenvatting Voor kleine volumes materiaal kunnen lengteschaaleffecten, zoals door de aan-

wezigheid van interfaces of heterogene rekvelden, significant bijdragen aan het mechanische

gedrag van metalen. Hierdoor kan een deformatie mechanisme dat minder belangrijk is voor

het gedrag van het materiaal in bulk vorm bepalend worden voor de prestaties van het materi-

aal. Zulke tweede orde effecten zijn experimenteel vastgesteld en vormen belangrijke uitdagingen

voor de ontwikkeling en productie van geavanceerde moderne technologie. Zo kunnen bijvoor-

beeld kruip en anelasticiteit, zoals waargenomen in dunne metallische componenten van capac-

itieve RF-MEMS schakelaars, leiden tot tijdsafhankelijke afwijkingen van ontwerpspecificaties

van een product. Karakterisatie en begrip van het mechanische gedrag van het materiaal zijn

cruciaal voor het oplossen van betrouwbaarheidsvraagstukken voor deze schakelaars, die commer-

cialisering van deze producten in de weg staan. In dit proefschrift wordt een numeriek model

gepresenteerd voor het beschrijven van het tijdsafhankelijke mechanische gedrag van dunne films

van deeltjesversterkte fcc legeringen als een uitbreiding van een eerder ontwikkeld rekgradiënten

kristalplasticiteitsmodel (SGCP) voor pure fcc metalen, waarnaar verwezen wordt als het Evers-

Bayley type model. Een vloeiwet met een fysische achtergrond voor kristallografische slip is

ontwikkeld gebaseerd op mechanismen voor dislocatie-dislocatie en dislocatie-deeltje interacties.

Het uitgebreide SGCP model is in staat om de effecten van een inhomogene verdeling van ge-

ometrisch noodzakelijke dislocatiedichtheden op het materiaalgedrag te beschrijven via de formu-

lering van een back stress met daarin een lengteschaal.

In hoofdstuk 2 zijn het fysisch gebaseerde Evers-Bayley type model en een thermodynamisch con-

sistente rekgradiënttheorie voor kristalplasticiteit van Gurtin vergeleken door middel van het aflei-

den van de microspanningen voor het Gurtin type model gebaseerd op de energetische back stresses

van het Evers-Bayley type model waarin dislocatie-dislocatie interacties zijn opgenomen. Aange-

toond is dat de energiefunctie voor een microspanning die gebaseerd is op de fysische beschrijving

van de interactie tussen dislocaties in verschillende slip systemen een meer gecompliceerde vorm

heeft dan gesuggereerd wordt in de literatuur en mogelijk niet convex is. Het is ook aangetoond

dat vergelijkbare randvoorwaarden gedefinieerd kunnen worden voor het Evers-Bayley type model

en het Gurtin type model ondanks de verschillende toegevoegde vergelijkingen in de eindige el-

ementenformulering. Vervolgens is in hoofdstuk 3 het SGCP model toegepast in elektromecha-

nische eindige elementensimulaties van buiging van polykristallijne dunne balken van een zuiver

metaal en een tweefasen legering met daarbij een nadruk op anelastisch materiaalgedrag. Nu-

merieke resultaten verkregen met het SGCP model laten een macroscopisch rekherstel in de tijd

volgend op het verwijderen van de belasting zien. Een gedetailleerde analyse laat echter zien

dat de anelastische relaxatietijd en sterkte geen goede fysische basis hebben. Een vergelijking

van de resultaten met experimentele data laat zien dat een enkel deformatiemechanisme mogelijk
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niet voldoende is voor het beschrijven van het materiaalgedrag. Verder is de slipwet niet in staat

om het gedrag van een deeltjesversterkt materiaal te beschrijven. Een uitbreiding van het SGCP

model voor een meer realistische beschrijving van het tijdsafhankelijke mechanische gedrag van

tweefasen legeringen, te weten kruip en anelasticiteit, is gegeven in hoofdstuk 4 en de toepass-

ing ervan in multifysische simulaties van een capacitieve RF-MEMS schakelaar is gepresenteerd

in hoofdstuk 5. Een nieuwe constitutieve wet voor kristallografische slip is ontwikkeld waarbij

dislocatie-dislocatie interacties en drie verschillende interacties tussen dislocaties en deeltjes zijn

beschouwd: i) het Orowan proces, ii) het Friedel proces en iii) het klimmen van dislocaties over

deeltjes. De nieuwe constitutieve wet is verkregen door het combineren van de afzonderlijke slip-

wetten voor ieder type interactie en is opgesteld gebaseerd op de fysisch onderbouwde Orowan

type snelheidsafhankelijke formulering. Een vloeiwet voor de slipsnelheid door mobiele dislo-

caties en gebaseerd op dislocatie-dislocatie interacties is opgesteld waarbij onregelmatige en con-

tinue regimes van dislocatiebeweging zijn opgenomen. Slip wetten overeenkomstig met de Orowan

en Friedel processen zijn opgesteld gebaseerd op thermisch geactiveerde dislocatiebeweging. Het

klimmen van randdislocaties is beschreven via een thermisch scheidingsmodel. Resultaten van

eindige elementensimulaties van buiging van een dunne balk van een éénkristal en een microklem

experiment met het uitgebreide SGCP model laten zien dat kruip en anelastisch gedrag van een

metallische dunne film beschreven kunnen worden. De hoeveelheden van de plastische defor-

matie, anelastisch herstel en de bijbehorende relaxatietijden hangen sterk af van de eigenschappen

van de deeltjes, de diffusiesnelheid en de grootte van de interne spanningen. De resultaten van de

simulaties van het microklem experiment laten zien dat inhomogene diffusie mogelijk een grote

rol speelt in het anelastische gedrag van polykristallijne dunne films. De resultaten laten ook zien

dat de interne spanningsformulering van het uitgebreide SGCP model mogelijk uitgebreid dient

te worden met extra bronnen voor interne spanningen. Het uitgebreide SGCP model is toegepast

voor de analyse van het gedrag van een capacitieve RF-MEMS schakelaar in multifysische simu-

laties. De elektrodes van de schakelaar zijn verondersteld te bestaan uit een metalen dunne film

met incoherente tweede fase deeltjes en een polykristalijne structuur met kolomvormige korrels

door de dikte met gepassiveerde oppervlakten. De variatie van de spleet tussen de elektrodes in

de tijd is geanalyseerd. De invloed van de deeltjesgrootte, volume fractie, oppervlaktecondities en

filmdikte op het gedrag van de schakelaar na een cyclus van belasting en ontlasting zijn bestudeerd.

Vervolgens zijn de effecten van een cyclische belasting en de duur van de onbelaste toestand tussen

twee opeenvolgende cycli bestudeerd. De resultaten laten zien dat de residuele veranderingen in

de spleetgrootte en de hoeveelheid en snelheid van tijdsafhankelijk herstel na verwijdering van de

belasting zeer gevoelig zijn voor de microstructuur en de filmdikte. De kleinste hoeveelheid per-

manente deformatie en anelastisch herstel zijn verkregen met een bovenste elektrode gemaakt van

een relatief dunne film met een gepassiveerd oppervlakte en kleine incoherente deeltjes met een

relatieve grote volumefractie. Verder blijkt uit de simulaties dat de maximale residuele verandering

van de spleetgrootte gemeten na voltooiing van het onbelaste stadium van iedere cyclus verzadigt

binnen enkele cycli. Een kortere duur van de onbelaste toestand tussen opeenvolgende cycli van

belasting en ontlasting leidt tot een grotere maximale verandering van de residuele spleetgrootte.

Door de afnemende spleetgrootte neemt het pull-in voltage tevens af binnen enkele cycli en vlakt

deze verandering af naar een bepaald niveau. Echter, het release voltage blijkt niet zo gevoelig te

zijn voor residuele deformaties als het pull-in voltage.

Tenslotte worden in hoofdstuk 6 de conclusies en aanbevelingen voor toekomstig onderzoek

gegeven.
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