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1 Introduction

Diffusion weighted magnetic resonance imaging (dwMRI) has become a standard MRI technique for in vivo
imaging of apparent water diffusion processes in fibrous tissues. Clinical use of dwMRI is hampered by the fact
that dwMRI analysis requires radically new approaches, based on abstract representations, a development still in
its infancy. Examples are rank-2 symmetric positive-definite tensor representations in diffusion tensor imaging
(DTI), pioneered by Basser, Mattiello and Le Bihan et al. [1, 2] and explored by many others [3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14], higher order symmetric positive-definite tensor representations [15, 16, 17, 18, 19, 20, 21],
spherical harmonic representations in high angular resolution diffusion imaging (HARDI) [22, 23, 24, 25, 26],
and SE(3) Lie group representations [27, 28, 29]. The latter type of representation, developed by Duits et al.,
appears to bear a particularly close relationship to the theory outlined below.

In this chapter we concentrate on a possible extension of the Riemannian paradigm used in the context of DTI
in order to account explicitly for the unconstrained number of local directional degrees of freedom of general
dwMRI representations. Riemann-Finsler geometry appears to be ideally suited for this purpose, as has already
been hinted upon in previous work [16, 30, 31, 32]. However, foregoing work is either driven by heuristics or
merely scratches the surface of Riemann-Finsler geometry.

Several outstanding problems remain as long as pivotal questions are left unanswered, such as the putative con-
nection between the so-called Finsler function and anisotropic diffusion and tractography in dwMRI. We do not
claim to readily resolve such fundamental issues here. However, it is clearly necessary to get the gist of the
theory as a conditio sine qua non for clinical applicability. We therefore hope that our overview will encourage
researchers to further contribute to a systematic study of Riemann-Finsler geometry in the context of dwMRI.

Riemann-Finsler geometry has its roots in Riemann’s “Habilitation” [33]. Riemann focused on a special case,
nowadays known as Riemannian geometry. Important application areas, such as Maxwell theory and Einstein’s
(pseudo-Riemannian) theory of general relativity, contributed to the popularity of Riemannian geometry. The
general case was taken up by Finsler in his PhD thesis [34], and subsequently by Cartan [35] (who was the first
to refer to it as “Finsler geometry”) and others.

Although potentially much more powerful, Riemann-Finsler geometry has not been nearly as popular as its Rie-
mannian counterpart. To some extent this may be explained by its rather mind-boggling technicalities and heavy
computational demands. This should no longer withhold practitioners in our technological era, for both symbolic
as well as large-scale numerical manipulations can be readily performed on state-of-the-art computers. Progress
in enabling technologies, such as compressed sensing for fast imaging, also contributes to practical feasibility of
dwMRI, but we believe that the major hurdle is still methodological.

1



2 Theory

2.1 The Finsler Function

The geometric paradigm for DTI hinges on Riemannian geometry, stipulating that the diffusion tensor is precisely
the dual metric tensor gij(x). It is limited to the extent that local anisotropy is captured by 1

2n(n−1)=6 degrees
of freedom in n = 3 spatial dimensions. For state-of-the-art dwMRI, in which local signal attenuations are
recorded under a multitude of magnetic gradient directions, this is too restrictive. The potential power of the
Riemann-Finsler paradigm lies in the fact that it removes this limitation altogether.

The pivot of Riemann-Finsler geometry is a generalised notion of length of a spatial curve C (Hilbert’s invariant
integral [36]):

L (C) =

∫
C

F (x, dx) . (1)

The Lagrangian function F (x, dx) is known as the Finsler function. (An equivalent Hamiltonian formulation will
be given later.) This function cannot be chosen arbitrarily. In order to interpret Eq. (1) properly, one has to require
F (x, dx) = F (x, ẋ)dt, so that the functional L (C) is well-defined and parameter invariant. More specifically,
F (x, ẋ) is required to be smooth for ẋ 6= 0 and to satisfy the following properties1:

F (x, λẋ) = |λ|F (x, ẋ) for all λ ∈ R, (2)
F (x, ẋ) > 0 if ẋ 6= 0, (3)

gij(x, ẋ)ξiξj > 0 if ξ 6= 0, (4)

in which the Riemann-Finsler metric tensor is defined as

gij(x, ẋ) =
1

2

∂2F 2(x, ẋ)

∂ẋi∂ẋj
. (5)

In these definitions and below, ẋ should be regarded as an a priori independent vectorial argument, not necessarily
a tangent vector to an underlying parametrized curve, unless stated otherwise. (If it does denote such a tangent
vector, then ẋ is shorthand for dx/dt.)

Using Eqs. (2–5), it is not difficult to show that

F 2(x, ẋ) = gij(x, ẋ)ẋiẋj . (6)

Riemann’s “quadratic restriction” pertains to the “mildly anisotropic” case gij(x, ẋ) = gij(x), or

F 2(x, ẋ) = gij(x)ẋiẋj . (7)

In general, the Riemann-Finsler metric tensor, Eq. (5), is homogeneous of degree zero: gij(x, λẋ) = gij(x, ẋ).
Zero-homogeneous functions may be viewed as being defined on the projectivized tangent bundle, which may in
turn be interpreted as a (2n−1)-dimensional base manifold of positions and orientations.

Since, in principle, only positions and orientations are of interest, all geometrically relevant quantities will be
zero-homogeneous. Although the Finsler function itself does not qualify as such (its domain of definition is the
2n-dimensional slit tangent bundle of positions and nonzero vectors), it serves as the basic generator for such
quantities.

The role played by the n-dimensional (co)tangent spaces erected at each point x of an n-dimensional Rieman-
nian manifold is replaced by likewise n-dimensional fibers that collectively constitute a so-called pulled-back
(co)bundle or Finsler (co)bundle in Riemann-Finsler geometry. The major difference is that a pulled-back

1Instead of the norm condition, Eq. (2), some accounts require F (x, λẋ) = λF (x, ẋ) instead.
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(co)bundle sits over the (2n−1)-dimensional projectivized tangent bundle or 2n-dimensional slit tangent bun-
dle, rather than over the n-dimensional spatial manifold. Given x-coordinates on the spatial manifold the basis
sections

∂

∂xi

∣∣∣∣
(x,ẋ)

respectively dxi

∣∣∣∣∣
(x,ẋ)

(8)

for its tangent and cotangent bundles can be transplanted to the pulled-back (co)bundle. That is, ẋ plays no role
in the construction of a fiber at a fiducial point (x, ẋ).

2.2 Riemann-Finsler Geometry versus Riemannian Geometry

The nontrivial nature of the Cartan tensor [36, 35, 37, 38],

Cijk(x, ẋ) =
1

4

∂3F 2(x, ẋ)

∂ẋi∂ẋj∂ẋk
, (9)

distinguishes Riemann-Finsler geometry from its Riemannian counterpart. One can show that Cijk(x, ẋ) = 0 if
and only if space (the x-manifold) is Riemannian. In fact it suffices to inspect the Cartan one-form

Ci(x, ẋ) = gjk(x, ẋ)Cijk(x, ẋ) , (10)

in which gij(x, ẋ) denotes the inverse of gij(x, ẋ), a.k.a. the dual Riemann-Finsler metric tensor, i.e.

gik(x, ẋ)gkj(x, ẋ) = δij , (11)

Indeed, space is Riemannian if and only if the Cartan one-form vanishes identically. In view of the remark made
earlier on the significance of zero-homogeneous functions one often encounters the alternative definitions

Aijk(x, ẋ) = F (x, ẋ)Cijk(x, ẋ) respectively Ai(x, ẋ) = F (x, ẋ)Ci(x, ẋ) . (12)

The dual Riemann-Finsler metric may be used for index raising and lowering, e.g.

Ck
ij(x, ẋ) = gk`(x, ẋ)Cij`(x, ẋ) . (13)

(There is no ambiguity here by virtue of symmetry of the covariant Cartan tensor.)

Thus the Cartan one-form measures the degree in which the local structure of the Riemann-Finsler manifold
deviates from Riemannian. Alternatively it tells us something about local volume distortion, viz. if Bn is the
Euclidean unit ball, with volume

volBn =

√
π

n

Γ(n
2 + 1)

, (14)

in which Γ denotes the Gamma function (i.e. Γ(z) =
∫∞
0
e−ttz−1dt), and Bn

x is the unit ball on the fiber at point
x, i.e.

Bn
x = {ẋ ∈ TMx | F (x, ẋ) < 1} , (15)

then the Cartan one-form determines the directional dependence of the distortion

τ(x, ẋ) = ln

√
det gij(x, ẋ)

σF (x)
, (16)

in which
σF (x) =

volBn

vol Bn
x

, (17)

viz.

Ci(x, ẋ) =
∂τ(x, ẋ)

∂ẋi
. (18)

Cf. [39, 40] for details. In the Riemannian limit volBn is proportional to vol Bn
x by a relative factor given

by the square root of the product of eigenvalues of the Riemannian metric tensor gij(x, ẋ) = gij(x), yielding
σF (x)=

√
det gij(x) and τ(x, ẋ)=0.
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2.3 Connections in Riemann-Finsler Geometry

There is no “obvious” connection (mechanism for parallel transport) on a Riemann-Finsler manifold. The
Berwald, Cartan, Chern-Rund and Hashiguchi connection may all be considered “natural” extensions of the
Levi-Civita connection in Riemannian geometry. For instance, the (torsion-free) Chern-Rund connection is de-
fined by2

Γi
jk(x, ẋ) =

1

2
gi`(x, ẋ)

(
δg`k(x, ẋ)

δxj
+
δgj`(x, ẋ)

δxk
− δgjk(x, ẋ)

δx`

)
. (19)

This expression is obtained from the “classical” Christoffel symbols of Riemannian geometry by formally re-
placing the Riemannian metric gij(x) by the Riemann-Finsler metric gij(x, ẋ), Eq. (5), and spatial derivatives by
horizontal vectors

δ

δxi
def
=

∂

∂xi
−N j

i (x, ẋ)
∂

∂ẋj
. (20)

The coefficients N j
i (x, ẋ) define the so-called nonlinear connection [36]:

N j
i (x, ẋ) = γjik(x, ẋ)ẋk − Cj

ik(x, ẋ)γk`m(x, ẋ)ẋ`ẋm , (21)

in which the formal Christoffel symbols of the second kind are introduced as

γijk(x, ẋ) =
1

2
gi`(x, ẋ)

(
∂g`k(x, ẋ)

∂xj
+
∂gj`(x, ẋ)

∂xk
− ∂gjk(x, ẋ)

∂x`

)
. (22)

Note that in the Riemannian limit, both Eq. (19) as well as Eq. (22) simplify to

Γi
jk(x) =

1

2
gi`(x)

(
∂g`k(x)

∂xj
+
∂gj`(x)

∂xk
− ∂gjk(x)

∂x`

)
. (23)

These are the standard Christoffel symbols of the second kind defining the (torsion-free) Levi-Civita connection
in Riemannian geometry. A computation reveals that3

Γijk(x, ẋ) = (24)
γijk(x, ẋ)− Chjk(x, ẋ)Gh

ẋi(x, ẋ)− Chji(x, ẋ)Gh
ẋj (x, ẋ) + Chik(x, ẋ)Gh

ẋj (x, ẋ) ,

in which indices have been lowered with the help of the Riemann-Finsler metric tensor:

Γijk(x, ẋ) = gj`(x, ẋ)Γ`
ik(x, ẋ) resp. γijk(x, ẋ) = gj`(x, ẋ)γ`ik(x, ẋ) , (25)

and in which the geodesic coefficients are defined as4

Gi
ẋj (x, ẋ) =

∂Gi(x, ẋ)

∂ẋj
with Gi(x, ẋ) =

1

2
γijk(x, ẋ)ẋj ẋk . (26)

In fact we have
Gi

ẋj (x, ẋ) = N i
j(x, ẋ) (27)

recall Eq. (21).

2.4 Horizontal-Vertical Splitting

The heuristic coupling of position and orientation is formalized in terms of the so-called horizontal and vertical
basis vectors, recall Eq. (20),

δ

δxi
def
=

∂

∂xi
−N `

i (x, ẋ)
∂

∂ẋ`
and

∂

∂ẋi
. (28)

2Caveat: In [37] Rund defines these symbols as Γ∗i
jk(x, ẋ).

3Caveat: In [37] Rund defines these symbols as Γ∗
ijk(x, ẋ).

4Caveat: In [36] Bao et al. write Gi(x, ẋ) = γijk(x, ẋ)ẋj ẋk .
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These constitute a basis for the horizontal and vertical tangent bundles over the slit tangent bundle:

H(x,ẋ)TM = span

{
δ

δxi

∣∣∣∣
(x,ẋ)

}
and V(x,ẋ)TM = span

{
∂

∂ẋi

∣∣∣∣
(x,ẋ)

}
. (29)

Their direct sum yields the complete tangent bundle

TTM\{0} = H TM⊕ V TM (30)

pointwise. By the same token one considers the horizontal and vertical basis covectors,

dxi and δẋi
def
= dẋi +N i

`(x, ẋ)dx` , (31)

yielding the corresponding horizontal and vertical cotangent bundles:

H ∗
(x,ẋ)TM = span

{
dxi
∣∣
(x,ẋ)

}
and V ∗(x,ẋ)TM = span

{
δẋi
∣∣
(x,ẋ)

}
, (32)

such that
T∗TM\{0} = H ∗TM⊕ V ∗TM (33)

pointwise.

The above vectors and covectors satisfy the following duality relations:

dxi
(

δ

δxj

)
= δẋi

(
∂

∂ẋj

)
= δij and dxi

(
∂

∂ẋj

)
= δẋi

(
δ

δxj

)
= 0 . (34)

Incorporating a natural scaling so as to ensure zero-homogeneity with respect to ẋ (so that it indeed represents
orientation rather than “velocity”) we conclude that

TTM\{0} = span
{

δ

δxi
, F (x, ẋ)

∂

∂ẋi

}
, (35)

and similarly

T∗TM\{0} = span
{
dxi ,

δẋi

F (x, ẋ)

}
. (36)

The so-called Sasaki metric furnishes the slit tangent bundle with a natural Riemannian metric:

g(x, ẋ) = gij(x, ẋ) dxi ⊗ dxj + gij(x, ẋ)
δẋi

F (x, ẋ)
⊗ δẋj

F (x, ẋ)
. (37)

The horizontal and vertical tangent bundles, Eq. (29), are orthogonal relative to this metric.

Cf. Appendix A for further motivation.

2.5 Horizontal Curves and Geodesics

The notion of horizontality expresses the fact that spatial trajectories have a “natural” manifestation in the ori-
entation subdomain, viz. through identification of the trajectory’s tangent vector (or rather equivalence class of
local tangent vectors in the zero-homogeneous case) with the vector ẋ (whence its suggestive notation). In other
words, interpreted as a curve along the Finsler manifold a parametrized spatial curve, x = ξ(t), say, has a natural
parametrization (x, ẋ) = (ξ(t), ξ̇(t)). A tangent vector of this curve is given by

T (t) = ξ̇i(t)
∂

∂xi
+ ξ̈i(t)

∂

∂ẋi
. (38)
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The aforementioned splitting suggests that, using Eq. (28), we rather decompose this vector as follows:

T (t) = ξ̇i(t)
δ

δxi
+
(
ξ̈i(t) +N i

j(ξ(t), ξ̇(t))ξ̇j(t)
) ∂

∂ẋi
. (39)

The requirement of horizontality then entails that the vertical component vanishes in the sense that

δẋi (T (t)) = 0 . (40)

Using the basic duality relations, Eqs. (34), this means that

ξ̈i(t) +N i
j(ξ(t), ξ̇(t))ξ̇j(t) = 0 . (41)

By virtue of Eq. (21), using the fact that Cj
ik(ξ, ξ̇)ξ̇k = 0 (a trivial consequence of the homogeneity property of

the Cartan tensor with respect to ẋ), this can be simplified to

ξ̈i(t) + γijk(ξ(t), ξ̇(t))ξ̇j(t)ξ̇k(t) = 0 . (42)

This geodesic equation has the same form as in the Riemannian case, except for the fact that Christoffel symbols
have been replaced by their Finslerian counterparts, Eq. (22).

2.6 Lagrangian versus Hamiltonian Frameworks

The non-singular Riemann-Finsler metric enables the same kind of index gymnastics in Riemann-Finsler geome-
try as the Riemann metric does in Riemannian geometry. In particular we have the “velocity”–“momentum” (i.e.
ẋ–y) duality expressed by the equations

yi = gij(x, ẋ)ẋj and ẋi = gij(x, y)yj , (43)

in which the dual Riemann-Finsler metric has now been redefined such that

gik(x, y)gkj(x, ẋ) = δij , (44)

assuming the aforementioned relationship between ẋ and y, recall Eq. (11). Note that, unlike before, the dual
metric tensor has been expressed as a function of momentum, not velocity.

The foregoing formulation of the theory, in which geometric quantities are considered as functions of position and
velocity, is known as the Lagrangian framework. The alternative formulation, in which the independent variables
are position and momentum, is known as the Hamiltonian framework. The connection between the Lagrangian
and corresponding Hamiltonian frameworks is particularly elegant in Riemann-Finsler geometry, in which the
Hamiltonian function (or dual Finsler function) is given by

H(x, y) = F (x, ẋ) , (45)

again assuming Eq. (43) to hold. As a consequence, the contravariant or dual Riemann-Finsler metric tensor
plays a similar role in the Hamiltonian framework as the covariant Riemann-Finsler metric tensor does in the
Lagrangian framework.

The physical interpretations of the two formulations depend on context and typically differ. The Lagrangian
formalism emphasizes the role of geodesic congruences, i.e. families of geodesics viewed as “particle trajec-
tories”, for which the variable ẋ serves as particle velocity. In the Hamiltonian formalism one considers the
“wave phenomena” induced by such geodesic congruences, in which case one tends to think of the variable y
as wave momentum, which, by definition, is the covector along which the wave fronts propagate. Recall that in
anisotropic media wave fronts induced by the interference of the disturbances caused by individual particles do
not travel in the same direction as the particles themselves. This is expressed by Eq. (43), as the (dual) metric is
not necessarily diagonal.
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2.7 Relation to Diffusion Weighted MRI

Because of its physical interpretation the Hamiltonian framework appears to be most naturally related to the
dwMRI acquisition protocol. This is clear in the Riemannian limit of DTI, since it is the Hamiltonian that governs
signal attenuation via the Bloch-Torrey equations under the Stejskal-Tanner assumption [41, 42, 43, 44, 45]:

S(x, y) = S(x, 0) exp
(
−τH2(x, y)

)
. (46)

Here τ denotes a time constant related to the time ∆ between a pair of balanced diffusion-sensitizing gradients
Gi and pulse duration δ (according to Stejskal-Tanner’s scheme [44] we have, τ = ∆− δ/3), and

H2(x, y) = Dij(x)yiyj , (47)

with covector yi denoting the normalized diffusion-sensitizing gradient,

yi = γδGi , (48)

in which γ is the gyromagnetic ratio of hydrogen. Indeed, the Riemann geometric rationale of DTI stipulates that
Dij(x) is independent of y—an assertion that is inconsistent in significant parts of the brain—and coincides up
to a constant proportionality factor with the dual metric tensor gij(x). If we adopt Eq. (46) without the quadratic
restriction, Eq. (47), we can invoke the powerful machinery of Riemann-Finsler geometry instead, recall Eq. (6)
and Eq. (45):

H2(x, y) = gij(x, y)yiyj , (49)

with τDij(x, y) = gij(x, y). Clearly this is still at best an approximation of reality due to the mono-exponential
decay stipulated by the Stejskal-Tanner equation, Eq. (46), and the axiomatic homogeneity constraint on the
Finsler function and thus on the physical scaling behaviour of the Hamiltonian function, recall Eq. (2):

H(x, λy) = |λ|H(x, y) for all λ ∈ R. (50)

This boils down to the physical constraint that the apparent diffusion coefficient scales quadratically with the
diffusion-sensitizing gradient, which is not invariably true. The conditions under which this is a reasonable
approximation will need to be made explicit.

2.8 Indicatrix and Figuratrix

The indicatrix at fixed point x is the level set, or “glyph”, of the Riemann-Finsler unit sphere, F (x, ẋ) = 1, or,
by virtue of Eq. (6),

gij(x, ẋ)ẋiẋj = 1 . (51)

The figuratrix at fixed point x is the Hamiltonian counterpart, i.e. the level set defined by H(x, y) = 1, recall
Eq. (49):

gij(x, y)yiyj = 1 . (52)

One can show that, as a result of zero-homogeneity of the Riemann-Finsler (dual) metric tensor, both indicatrix
as well as figuratrix represent convex glyphs.

A convenient interpretation of these structures is obtained by “freezing” the (co)vector argument of the Riemann-
Finsler (dual) metric tensor in Eqs. (51–52), so that one ends up with quadratic forms. These are known as the
osculating indicatrix and osculating figuratrix, respectively:

gij(x, ẋ0)ẋiẋj = 1 , (53)
gij(x, y0)yiyj = 1 . (54)

One could think of these as gauge figures of a parametrized family of inner products on the tangent, respectively
cotangent space of the spatial domain, each direction (specified by ẋ0 or y0) having its own unique instance. Of
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course, in the DTI/Riemannian case the coefficients are orientation independent, so that each point in space has a
single and unambiguously defined ellipsoidal shape representing the entire family. In general it is clear that the
Cartan tensor, Eq. (9), must play a pivotal role in geometric tractography methods extending the DTI rationale,
as it relates the individual members of these families.

2.9 Covariant Derivatives

The horizontal and vertical one-forms given by Eq. (36) can be used as a basis for decomposing the covariant
differential of an arbitrary tensor field on the slit tangent bundle. For simplicity consider

T (x, ẋ) = T i
j (x, ẋ)

∂

∂xj
⊗ dxi , (55)

and
∇T (x, ẋ) = (∇T )

i
j (x, ẋ)

∂

∂xj
⊗ dxi . (56)

Then each component on the r.h.s. is a one-form, and can thus be written as a sum of horizontal and vertical
one-forms. By definition,

(∇T )
i
j (x, ẋ) = T i

j|k(x, ẋ) dxk + T i
j;k(x, ẋ)

δẋk

F (x, ẋ)
. (57)

By evaluation on the corresponding dual basis, Eq. (35), one obtains the components

T i
j|k(x, ẋ) =

δT i
j (x, ẋ)

δxk
+ T `

j (x, ẋ)Γi
`k(x, ẋ)− T i

` (x, ẋ)Γ`
jk(x, ẋ) , (58)

T i
j;k(x, ẋ) = F (x, ẋ)

∂T i
j (x, ẋ)

∂ẋk
. (59)

Eqs. (58-59) are the components of the horizontal covariant derivative and the vertical covariant derivative of
the tensor field, respectively. Higher order tensors are treated similarly. Their horizontal covariant derivatives
will contain as many “correction terms” involving the Riemann-Finsler Γ-symbols of Eq. (19) as indicated by
their order. Note the elegant similarity with the Riemannian case.

Some cases are particularly important, e.g. those involving the Riemann-Finsler metric tensor or its dual. We
have

gij|k(x, ẋ) = 0 , (60)
gij;k(x, ẋ) = 2F (x, ẋ)Cijk(x, ẋ) , (61)
gij |k(x, ẋ) = 0 , (62)

gij ;k(x, ẋ) = −2F (x, ẋ)Cij
k (x, ẋ) . (63)

The Kronecker tensor is covariantly constant both horizontally as well as vertically:

δij|k = 0 , (64)

δij;k = 0 . (65)

Thus, unlike in the Riemannian case, the Riemann-Finsler metric tensor is covariantly constant only along hor-
izontal directions, whereas its behaviour in vertical direction is governed by the Cartan tensor (the covariant
derivative is said to be “almost metric compatible”).
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2.10 The Unit Vector ` and the Hilbert Form ω

Given any base point (x, ẋ) on the slit tangent bundle, there exists a distinguished direction on the pulled back
bundle, viz. the one pointed out by the vector ẋ. The Finsler function allows us to normalize it to unit Finslerian
length:

`(x, ẋ) = `i(x, ẋ)
∂

∂xi
, (66)

with

`i(x, ẋ) =
ẋi

F (x, ẋ)
. (67)

Its dual is the so-called Hilbert form:
ω(x, ẋ) = `i(x, ẋ)dxi , (68)

with
`i(x, ẋ) = gij(x, ẋ)`j(x, ẋ) . (69)

By construction we have
ω(`) = 1 . (70)

With the definitions of the previous section it readily follows that ` and ω are covariantly constant along horizontal
directions, but not along vertical directions:

`i|k(x, ẋ) = 0 , (71)

`i;k(x, ẋ) = δik − `i(x, ẋ)`k(x, ẋ) , (72)
`i|k(x, ẋ) = 0 , (73)
`i;k(x, ẋ) = gik(x, ẋ)− `i(x, ẋ)`k(x, ẋ) . (74)

The distinguished pair (`(x, ẋ),ω(x, ẋ)) suggests that it may be beneficial to adjust the basis for the pulled back
bundle so as to (i) make it orthonormal relative to the Riemann-Finsler metric, and (ii) align one of the basis
vectors with the a priori preferred direction. Likewise for the dual bundle. This can be achieved through suitable
choice of so-called n-beins uia(x, ẋ) and vai (x, ẋ) (i, a=1, . . . , n):

ea(x, ẋ) = uia(x, ẋ)
∂

∂xi
, (75)

ωa(x, ẋ) = vai (x, ẋ)dxi , (76)

with inverse

∂

∂xi
= vai (x, ẋ)ea(x, ẋ) , (77)

dxi = uia(x, ẋ)ωa(x, ẋ) , (78)

such that
en(x, ẋ)

def
= `(x, ẋ) and ωn(x, ẋ)

def
= ω(x, ẋ) , (79)

recall Eqs. (66–70). These n-beins simultaneously induce (2n-dimensional) Sasaki-orthonormal bases for the
tangent and cotangent bundle of the slit tangent bundle, viz. (with some ambiguity in the name of keeping notation
simple)

ea(x, ẋ) = uia(x, ẋ)
δ

δxi
, (80)

en+a(x, ẋ) = uia(x, ẋ)F (x, ẋ)
∂

∂ẋi
, (81)

ωa(x, ẋ) = vai (x, ẋ)dxi , (82)

ωn+a(x, ẋ) = vai (x, ẋ)
δẋi

F (x, ẋ)
. (83)
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with inverse

δ

δxi
= vai (x, ẋ)ea(x, ẋ) , (84)

∂

∂ẋi
= vai (x, ẋ)en+a(x, ẋ) , (85)

dxi = uia(x, ẋ)ωa(x, ẋ) , (86)
δẋi

F (x, ẋ)
= uia(x, ẋ)ωn+a(x, ẋ) . (87)

Note that, by construction,

uia(x, ẋ)gij(x, ẋ)ujb(x, ẋ) = ηab , (88)

vai (x, ẋ)gij(x, ẋ)vbj(x, ẋ) = ηab , (89)

in which ηab and ηab are the components of the identity matrix (1 if a = b, 0 otherwise).

3 Conclusion and Discussion

Riemann-Finsler geometry naturally extends the Riemannian rationale used in the context of DTI to general
dwMRI representations, such as HARDI. It can be equivalently approached from a Lagrangian or Hamiltonian
perspective, although the latter appears to be most closely related to the physics of dwMRI acquisition and its
underlying model in terms of an appropriately generalized mono-exponential Stejskal-Tanner equation. We have
illustrated its potential application by deriving the corresponding geodesic equations for dwMRI tractography
from the apparent diffusion coefficient, obtained as a function of position and orientation, without the quadratic
restriction inherent to the DTI model, yet retaining quadratic scaling in the magnitude of the gradient magnetic
field. Although this does not cover the general (multi-exponential) case, the conditions for and limitations of this
conjecture, and in particular the added value relative to DTI, remain to be investigated.

Despite intriguing heuristic analogies it remains an open problem how to exactly relate the present Riemann-
Finsler framework to the Cartan geometric approach by Duits et al. [27, 28, 29]. A suitable construction of the
n-beins of Section 2.10 might provide the necessary insight.

A Horizontal and Vertical Vector and Covector Transformation

We may consider the partial derivatives with respect to xi and ẋi as coordinate vector fields on the tangent bundle
TM , and consider the effect of a coordinate transformation induced by a change of coordinates on the base
manifold M, x = x(ξ) say. Since ẋ is a vector, this induces the following vector transformation law for its
components ẋi:

ẋi =
∂xi

∂ξp
ξ̇p , (90)

or, equivalently,
∂

∂ξ̇p
=
∂xi

∂ξp
∂

∂ẋi
, (91)

so that, by construction,

ẋi
∂

∂xi
= ξ̇p

∂

∂ξp
. (92)
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As a result,
∂

∂ξp
=
∂xi

∂ξp
∂

∂xi
+

∂2xi

∂ξp∂ξq
ξ̇q

∂

∂ẋi
. (93)

Given the definition of the horizontal vectors, Eq. (20), and of the nonlinear connection, Eq. (21), it is then a
tedious but straightforward exercise to deduce that

δ

δξp
=
∂xi

∂ξp
δ

δxi
, (94)

similar to the vector transformation law for the vertical components, recall Eq. (91).

Likewise one has the covector transformation law for the basic horizontal and vertical one-forms, recall Eq. (31):

dxi =
∂xi

∂ξp
dξp , (95)

respectively

δẋi =
∂xi

∂ξp
δξ̇i . (96)

It is the “natural” transformation behaviour expressed by Eqs. (91,94–96) that motivates the stated definitions of
the basic horizontal and vertical vectors and covectors.
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