EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A note on BRST quantization of SU(2) Yang-Mils mechanics

Citation for published version (APA):
Fuster, A., & Holten, van, J. W. (2005). A note on BRST quantization of SU(2) Yang-Mils mechanics. Journal of
Mathematical Physics, 46(10), Article 102303. https://doi.org/10.1063/1.2040348

DOI:
10.1063/1.2040348

Document status and date:
Published: 01/01/2005

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://doi.org/10.1063/1.2040348
https://doi.org/10.1063/1.2040348
https://research.tue.nl/en/publications/e74c9543-48c1-46fa-bbd2-b312db67b60e

arXiv:hep-th/0504165v1 20 Apr 2005

NIKHEF /2005-005

A note on BRST quantization
of SU(2) Yang-Mills mechanics

A. Fuster® and J.W. van Holten!
NIKHEF, Amsterdam NL

February 1, 2008

Abstract

The quantization of SU(2) Yang-Mills theory reduced to 0 + 1 space-time dimen-
sions is performed in the BRST framework. We show that in the unitary gauge
Ap = 0 the BRST procedure has difficulties which can be solved by introduction of
additional singlet ghost variables. In the Lorenz gauge Ay = 0 one has additional
unphysical degrees of freedom, but the BRST quantization is free of the problems
in the unitary gauge.
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1 SU(2) Yang-Mills mechanics

We consider SU(2) Yang-Mills mechanics obtained by the reduction of SU(2)
Yang-Mills field theory in (D + 1)-dimensional space-time to a finite-dimen-
sional quantum system, by taking the dynamical variables to depend on the
time co-ordinate ¢t only. The lagrangean of such a theory is

1 1

L = 5(F5)” = 7 (F5)% (1)
2 4
where i, j = (1,..., D), and

R T R @

Such a system has been widely studied in the context of non-perturbative
aspects of (super) Yang-Mills theories [3], 4], and as a first step in the regu-
larized dynamics of membrane theory [B]-[I0).

The lagrangean is invariant under time-dependent gauge transformations
with parameters A“(t), taking the infinitesimal form

DAY = A — ge™ ABAS,  SAT = —gee APAC, (3)

This invariance allows us to impose a gauge condition leaving the physical
dynamics unchanged. The simplest choice is

A% = 0. (4)

With this condition the effective lagrangean for the remaining D-dimensional
vector potentials A, becomes'

1 .
Les = 5 A% —VI[A], (5)
with the potential
2
g
VIA] =T (ATAD - (A.- A7) (6)

In addition, we have to impose a set of (first-class) constraints corresponding
to the previous equations of motion for Aj:

Gl =ge™ AVFS ~ gege Ay - A =0 (7)

'We do not distinguish between upper and lower adjoint indices (a, b, ¢, ...) for SU(2).
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Thus, the physical trajectories in configuration space in the gauge (@) are
the solutions of the Euler-Lagrange equations derived from (H) subject to
the additional constraints ().

In addition to the pure Yang-Mills theory described by the action (), one
can also construct various supersymmetric extensions, based on the reduction
of supersymmetric Yang-Mills field theory in D = 1,3,5,9. The spectra of
these theories are qualitatively different [3, 8, Bl 19, 20, 21], but for the
problem addressed in this note those differences are not relevant.

To keep track of the constraints, especially in the context of the Yang-Mills
quantum theory, we follow the BRST procedure?. Thus we introduce anti-
commuting ghost degrees of freedom (b%, ¢*) as well as commuting auxiliary
scalars N in such a way, that the total gauge-fixed action becomes invariant
under a set of special ghost-dependent gauge transformations, the rigid BRST
invariance. The anti-commuting BRST differentials d are defined before
gauge fixing as follows

00 Ad = (Dyc)® = ¢ — gee Abee, 5 A¢ = (Dic)® = —get Abce,
doc® = e, (8)
Sob® = iN®, SoN® = 0.

The gauge-invariance of the classical action ([Il) implies its invariance un-
der the BRST transformations by construction. The BRST differential has
the standard property that 63 = 0. The implementation of the BRST con-
struction for the gauge Ay = 0 is, to impose this gauge condition using the
Nakanishi-Lautrup fields N* as Lagrange multipliers, and complete the effec-
tive lagrangean so as to make it fully BRST invariant. For the case at hand
this results in the effective lagrangean

Legs = Lyygm + NAG + b (C'a _ ge“bc ASCC) . (9)

We can use the gauge condition implied by the Nakanishi-Lautrup fields to
eliminate A} and N¢ simultaneously; in a path-integral formulation, this
implies integrating out a J-functional 6(Ag). The result is

1. 1
Leff = 5 Ag - Z (Fi(;')2 + by Ca, (10)

2For reviews, see [13] and [T4].




Note that for D = 3 we can construct a magnetic field by %eiij]f’k = BY,
but this does not hold for a general D. The effective lagrangean (I0) is
invariant under the reduced form of the BRST variations (8) obtained by
taking Ag = 0, and using the equation of motion for N

0b" = iN® ~ ige® (AVFS, — b)) . (11)

The BRST invariance of the effective lagrangean implies an anti-commuting
conserved charge by Noether’s theorem. The BRST charge takes the form

Q=c"G"— % emect bl (12)

The first-class constraints of the classical theory are summarized effectively
by the statement that 2 = 0; more precisely, in the phase-space formulation,
all brackets of physical quantities with {2 must vanish: physical quantities
must be BRST invariant; this is discussed in more detail in the next section.

2 Quantum theory

In the quantum theory the dynamical variables Af and their conjugate mo-
menta P = A?, as well as the Faddeev-Popov ghosts are operators satisfying
(anti-)commutation relations

s Pl =0 ey, [ ], =6 (13)
The hamiltonian is given by

1
2

1
P2+ - F%? (14)

Hepp = R

as for pure Yang-Mills theory, in fact. The hamiltonian determines the time-
evolution of any quantity X constructed from the Yang-Mills or ghost oper-
ators by the Schrodinger equation

X =i[H, X]. (15)
Gauge transformations on (A,, P,) are generated by the SU(2) charges

Ga = g €abc Ab . Pc> (16)
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such that
0. X = 1[Gy, X, 0.Gy = 1[G, Gb) = —g €ape G, (17)
whilst more generally the BRST transformations are given by
doX =1 [Q, X] ., (18)

the sign depending on the fermionic parity of the quantity X: + (anti-
commutator) for fermionic X, and — (commutator) for bosonic X. In par-
ticular, the commutation relation () for the gauge charges together with
the ghost anti-commutator ([3) implies the nilpotency of the BRST charge:

0 =0. (19)

To complete the theory we have to define an inner product on the extended
state space, such that zero-norm states decouple and physical states have
positive norm. For this to happen, it is necessary that the BRST operator is
self-adjoint w.r.t. this inner product. In the co-ordinate representation, with
states being represented by wave functions W[A, ¢|, such an inner product is
defined by the integral [T5]

(@, W) =i / de'dédc® / [T dA: ®[A, JW[A, d]. (20)

It is easily seen that with this definition the ghost operators (6%, ¢*) are self-
adjoint themselves. It follows directly that, indeed,

(Q3,T) = (0,Q0). (21)

3 Physical states

The physical states of Yang-Mills quantum mechanics are constructed by
solving for the eigenstates and eigenvalues of the hamiltonian ([[4]) subject to
the constraint of BRST invariance.

One useful way to construct states is by the Fock-space approach [19], in

which one starts with an oscillator basis for the dynamical degrees of freedom
defined by

1 1
8= 5 (A, +iP,), a =-—=(A,—iP,). (22)

\G)



These creation and annihilation operators satisfy the standard commutation
relations

la,.a]] = 0. 1p, (23)

where 1p is the D-dimensional unit matrix. As implied by eq. () the
ghost operators already behave like fermionic ladder operators. One is free
to consider either ¢* or b* as creation operator; we choose ¢*. Fock states are
now constructed as polynomials in al and c* acting on an empty state W
defined by

aa\Ifo = \Ifo =0. (24)

Such a construction differs from the standard (bosonic or fermionic) creation
and annihilation operators in that ¢* and b* are self-adjoint w.r.t. the inner
product (20) rather than adjoint to each other. A similar treatment of ghost
ladder operators can be found in [2].

The hamiltonian can be represented as a matrix in a basis of Fock states.
Subsequent diagonalization would give the spectrum of the theory?.

In the context of the co-ordinate representation this construction is realized

by taking
1 0 0
=— A+ —], b = —, 25
) < * 8Aa> dco (25)
and )
Wy = Ne 2 e (26)

with N a normalization factor. In this representation the gauge generators
are of the form
Gy = —1g €ape az - . (27)

We analyze next the restrictions imposed by the BRST symmetry on states
in order to be physical. In the BRST formalism physical states are identified
with the cohomology classes of the nilpotent BRST charge €2

Ker Q
phys ~ 28
" Im Q (28)
This implies that physical states ¥ are BRST-invariant:
QU =0, (U, 0) =1, (29)

3Note one can only construct a basis of finite dimension and therefore any results would
be approximate (see [19]).



and state vectors differing by a BRST-exact state are identified:
U~ U =04 QA (30)

Therefore matrix elements of physical operators between physical states must
be invariant under the BRST transformations (B0):

(B, XT) = (&, XT'), if [Q,X], =0. (31)

These properties are guaranteed if BRST-exact states of the form QA decou-
ple from the physical state space and have zero norm:

(U,QA) = (QU,A) =0, (QA,QA)=(A,Q%)=0.  (32)

Observe that it is crucial for these results that the BRST charge is self-adjoint
w.r.t. to the physical inner product.

To do any practical calculation one needs an explicit expression for the phys-
ical state vectors; this can be achieved by selecting one element from each
equivalence class, using the nilpotent co-BRST operator

0= G — %eabc VY, 0% =0, (33)
Indeed, the co-BRST condition
QU =0, (34)

acts as a gauge fixing condition for the BRST transformations (Bl), reducing
the state space as required [I5]. States satisfying both QU = *QW¥ = 0 are
called BRST harmonic. Physical states are defined as BRST harmonic states
of finite norm. We build first Fock states which are BRST harmonic.

Define the (total) ghost number as the operator

Ny =" (35)

Splitting the Fock space in four sectors corresponding to the eigenvalues n,
of Ny: 0,...,3, we construct states in each ghost sector as follows,

vOM] = Ml[al]w,,

WM = ¢, M[a'] W,

~ 1

\If((f) [M] = 5 Eabe CbCC M[aT] \I](],

~ 1

G (M] = 3 Cabe c“c’c® Ma'] ¥,



Here M|[a'] is some gauge-invariant polynomial in the operators a':
M[;ﬂ] = Z Kay...an all'“alna (36)
and the coefficients fi,,. 4, are invariant SU(2) tensors.

The complete set of solutions consists of two distinct classes: the states at
ghost number n, = 0, ¥©[M], and those at ghost number n, = 3, W& [M].
We discuss next the possibility for these states to have finite norm (see
also [I6], []). The spectrum of the hamiltonian in such a basis would be
guaranteed to be physical.

4 Inner product and ghost vacuum

The existence of two classes of BRST-harmonic states at different ghost num-
ber is of crucial importance for the construction of a non-trivial physical inner
product [4, 16]. Indeed, if we would only have the states at n, = 0 it is
quite obvious from the definition (20) that the vacuum state ¥, would have
Zero norm:

(W, ¥g) = 0, (37)

whilst the BRST-invariant 3-ghost operator has a non-zero vacuum expecta-
tion value: » »

7 7

3¢ E]]
The problem clearly is in the definition of the ghost vacuum, in combination
with the fact that the ghosts are self-conjugate. Therefore the ghost creation
operators ¢* do not act as annihilation operators on the conjugate (bra) vec-
tors; if they would, the BRST charge wouldn’t be self-adjoint. In particular,
it is not an option to replace the space of bra states by the BRST-dual states

abc<abc

cc’c?) (\Ifo, eabe c“cbcc\lfo) =1 (38)

Gt = % TT[M] ebe cachee, (39)

as proposed in [I6, 7], which is equivalent to the replacement of the inner

product (20) by

(®,1) — <<I>,\If>:%e“bc(<1>,cacbcc\lf). (40)



In fact, it is clear that the ghost variables have vanishing matrix elements
between any states (physical or unphysical):

(®,c"V) =0, VU, (41)

i.e. the ghosts would effectively vanish as operators, and the same is true for
the BRST charge (2.

Part of the solution of this problem, also along lines suggested in [17], is
to use the existence of the second set of solutions of the BRST- and co-BRST
constraints with ny, = 3 to change the definition of the ghost vacuum. If we
define a new vacuum state

1 7
v, =— <1 + = e“bccacbcc> U, 42
MV AT 0 (42)
with corresponding physical excited states W, [M] = M[a'] ¥, the ghost
operators remain self-adjoint and the vacuum is normalizable:

(U4, 0,) =1. (43)

A draw-back is, that the vacuum W, has no well-defined ghost number, and
not even a well defined Grassmann parity, being a sum of an even and odd
ghost number state. Moreover, the vacuum expectation value of the ghosts
[BY) is changed, but still non-vanishing; actually we now have

i abc | a c i abc a c 1
561) (c cbc)+:§(\lf+,eb ccbe \If+):§, (44)
and similarly
4 abe /1apbyc _ 1
o € OB) e = 5. (45)

Although these expectation values are BRST-invariant, they carry a non-zero
ghost number, a manifestation of the non-invariance of both the vacuum and
the inner product itself under ghost rescaling.

Both problems can be solved by introducing a fourth ghost 6, with con-
jugate anti-ghost (:

[0,¢), =1 (46)
The new ghost 6 is taken to be a BRST singlet and has ghost number
ng(6) = —3; thus it has the same quantum numbers as the invariant anti-

ghost operator, whilst ( has the quantum numbers of the corresponding ghost
operator:

z.abcabc 7;abcabc
Qwae b b°b°, nge e’ (47)



We then define the physical vacuum state
1
V2

and the physical excited states

1
o, = (1 + 30 6 e cacbcc> Uy, (48)

®[M] = MIal] ®,. (49)

These physical states have a well-defined ghost number n,(®[M]) = 0 and
Grassmann parity (even). This is especially important in the supersymmet-
ric extensions of the theory, as the action of the gaugino operators would
otherwise cause problems with sign-changes for odd ghost number terms.

Simultaneously we also redefine the inner product (20) in the co-ordinate
representation on the full state space to

(Q%z/ﬁ/@%ﬂé/ﬂ@ﬁ@%@@%@. (50)

W.r.t. this inner product all ghosts, including the new singlet ghost, are
self-adjoint, and so is the BRST charge €2. Observe, that the ghost integra-
tion measure now has vanishing ghost number as well. Finally, the 3-ghost
operator vacuum expectation value vanishes trivially:

/i aoc a C Z aoc a C
ieb<c de >9:§((I>o,eb ccbe <I>0):0. (51)
Of course, there arise new vacuum expectation values
1 1 1
§<9 €abc CaCbCC>9 — §<C 6abc babbbc>9 — 57 (52)

but these expectation values are both BRST invariant and have vanishing
ghost number.
In passing, let us point out a further result of some interest: it is possible

to define new anti-ghost operators 3¢ and n by
a a 1 abc n b c 1 abc a b c
BY=0b +§e Oc’c”, =0 = ettt (53)

These redefinitions preserve the ghost number. Moreover, one easily estab-
lishes the anti-commutation relations

B =8t =1 B =10 =0, (54)
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with all other anti-commutators vanishing as well. In addition
B @y = 1Py =0, (55)

suggesting that @y is the actual Fock vacuum for the new anti-ghosts (7, 5%).
Unfortunately, it is to be noted that these antighosts are no longer self-adjoint
w.r.t. the inner product (&0):
1 1
B = b — 3 e hce, nt=¢+ 3 e cachee, (56)

Hence these operators do not annihilate the conjugate vacuum: for a general
state vector W

(@, 3"¥) = (B Do, U) #0. (57)
Moreover, the conjugate ghosts have non-trivial anti-commutation relations
with the original anti-ghosts, e.g.:

[ﬁlun}_i_ — _Eabc Cbcc7 [6;[“6b}+ — _Eabc Occ. (58)

Therefore the ghost variables (4%, 1) are not of much use in the construction
of states. Nevertheless, they do provide a good way to characterize the ghost
dependence of the physical states by the conditions (B3).

5 Lorenz gauge

We will now show, that the problems with the definition of physical states
and inner products sketched in sect. Bl do not exist in the Lorenz gauge
quantization. The starting point for our analysis is again the classical theory
defined in egs. ()-(B), and the representation of the nilpotent BRST algebra
defined in eq. (§). In the (0 + 1)-dimensional reduction of the Yang-Mills
theory, the Lorenz gauge takes the form

Ay = 0. (59)

A convenient BRST-invariant extension of the classical lagrangean for this
gauge is

LLorenz = LYMQM + NaAg - 5 Nf - iba(Doc)a

' (60)
3 (Do A™)?* +

Aa 1 a 7a a
(A0)2 T (Fz‘j)z —ib"(Dyc)*,

12

1
2
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where the last line results from elimination of the auxiliary fields N¢. The
corresponding hamiltonian is

_1 a abc Ab c2 1 a\2 1 a\2 92 abc A b 02
Hroren: = i(P + ge AQA) +§(P0) ‘I‘Z(F;]) —E (E AOA)

: a - abc Ab c\ ,a
—l—z(u —ige Aoc)v,

(61)
where the canonical momenta are defined by
P, = (DoA)", Py = A3,
‘ (62)
u® = —(Dyc)*, v* = b,
The conserved BRST charge takes the form
_ va . a Zg abc a b, c a a
Q—Gc—;e ccv” + Fiut, (63)

with the gauge charges G* as in eq. ([8). As neither of the expressions (G1I)
and (B63)) suffer from ordering ambiguities, they can be interpreted directly as
quantum operators, with the fundamental commutation relations given by

[Ag, Py = iday 1p, [Ag, P} = io,
(64)
{Ca,vb}_i_ — 5ab’ {bajub}—i_ — 5ab'

The quantum equations of motion and the BRST transformations then again
take the form ([H), [I8). In the co-ordinate representation, the BRST-
invariant inner product of two wave functions in the full ghost-extended
Hilbert space now takes the form

(@,\If):i/Hdb“dc“/HdAg/HdA?@T[A,AO,c,b]\II[A,AO,c,b].

(65)
To fix the BRST gauge, we introduce the co-BRST operator

Q=G + % eyt + PO, (66)

11



Requiring states to be simultaneously BRST and co-BRST invariant leads
to the conditions

GU =0 XW=0 PO =0, (67)

where

N = ige®cboc, (68)
is the generator of the rigid SU(2) transformations, which is still an invari-
ance of the theory, on the conjugate ghosts variables (¢*,v®). In contrast to
the unitary gauge Aj = 0, in the Lorenz gauge the BRST conditions do not
fix the physical states complelety. We can still impose a further constraint
fixing the dependence of physical states on the anti-ghost variables (b%, u®),
by requiring states to be rigid SU(2) singlets w.r.t. all variables:

YU =0, X% =ige® bul. (69)
Indeed, it is easily checked that X% is a BRST- and co-BRST invariant op-
erator; therefore the constraint can be imposed consistently on all physical
states.
The full set of solutions of conditions (E7) and (B9) are wave functions
which are SU(2) singlets (i.e., gauge invariant), which do not depend on A$,
and whose ghost dependence is constrained to the form

i' Eabc babbbc \Ifg[A]

UonslA,c,b] = \Ifl[A]+ieach“cbchp2[A]+3

3l
(70)

v abc a b c def 1drenf
+(3!)2 (e ccc)(e bbb )\114[A].
With the standard assignement of the ghost number +1 for ¢* and —1 for 6%,
requiring the states to have vanishing ghost number and definite Grassmann
parity imposes the further constraint

Ty[A] = Ty[A] = 0. (71)

Finally, requiring the inner product (B83) to be positive definite in the sub-
space of physical states, we have to fix the space of physical states to be
represented by factorized wave functions

Upys = %[H (?j)z (et crchet) (e bdbebf)] Uy,

(72)
1 . ara
— 7 <1 —i[J(c* )) Uy,

a
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where W, can be taken as a physical Fock state of the form (B6]). Observe
that the operator (i/3!) €2 b*b°b¢ plays the same role here as the extra ghost
0 in our construction of the states in the unitary gauge. Obviously, as in
the unitary gauge, we can define a ghost operator with non-zero vacuum

expectation value
i 1
(3[)2 <H(Caba)> = 57 (73)

a

but like (B2) it is BRST invariant and has vanishing ghost number. Finally,
defining the vacuum state of the physical subspace as

Py = % <1 — z'l;[(c“b“)> W, (74)

where ¥ is the Fock vacuum of the Yang-Mills system, one can again define
ghost operators anihilating &, by taking

1 1
fya = 4 6abc,UbUc 6defududuf7 ﬁa — P — 6abcubuc Edef’UdUde.

2-3! 2. 3|
(75)
As might be expected from our previous analysis, these operators are not self-
adjoint and do not define a good basis for a complete Fock-space construction
in the ghost sector. Nevertheless, the conditions

’}/aq)o == ﬂaq)o =0 (76)

provide a convenient way to characterize the physical ghost vacuum.

Finally we should remark, that in the physical subspace the integration
over Af is of course divergent in the absence of damping, as the physical
wave functions are Ag-independent. This divergence can be absorbed in a
wave-function renormalization factor

N1 (77)

I Tl dAg

Knowing this, we can remove the A§ from the physical inner product and ef-
fectively set N = 1; we observe, that NV is BRST-invariant, and the procedure
does not jeopardize the BRST-invariance of the integration measure.

13



6 Discussion

In this paper we have shown, that although the physical content of the (0+41)-
dimensional Yang-Mills theory is clearest in the unitary gauge A = 0, the
BRST quantization works in a more straightforward way in the Lorenz gauge
Ag = 0. An important part of the discussion and analysis was based on
the construction of a BRST-invariant inner product w.r.t. which the BRST
charge 2 is self-adjoint.

To get a little more algebraic and geometric insight into the constructions,
consider again the unitary gauge, in which a general state is represented by
a wave function

V[c] = ¢ + "o + 5 Py + 5 Py (78)

Defining the dual wave function

U] = ¢ + P+ 55 Py + o e (79)

3!
with components

w Eabcwabca wa - 6abcwbca
(80)

wab - Eabcww wabc - Eab0¢7

we recognize that the physical states ([{2) are characterized as the self-dual
states U = W, such that the inner product (2) becomes

1
i [dctdctdc® Uiv = 3] abe (¢le¢ + VT ape + 3T pe + 3¢lb¢c)

(81)
= 29"y + 2¢f4p,.
In particular, with ¢ = ¢ = v2 ¢y and ¥, = 1, = 0, this reduces to
i / de'dcde® UMW M) = o, s, (82)

Hence this inner product is positive definite for physical states. Of course,
one can also consider the anti-self dual states ¥ = —W, which then have a

14



negative definite norm. This should not surprise us, as the existence of a
self-adjoint nilpotent BRST operator 2> = 0 is possible only in a space with
indefinite norm. The important point is, that the space of physical states
should have positive norm, and that is realized in the subspace of self-dual
states.

Generalization of this discussion to the Lorenz gauge is simple. Each
component in the wave-function expansion ([[8) now is a function of the ad-
ditional ghost variables b,, and we can again distinguish between components
which are self-dual or anti-self-dual w.r.t. the expansion in b,. In this for-
mulation the physical states are then identified with the wave functions for
which the components of zero ghost-number are completely self dual, i.e.
self-dual both with respect to the c-ghost duality and with respect to the
b-ghost duality.

We have discussed in particular the case of SU(2) Yang-Mills theory. The
generalization to SU(N) is straightforward; with » = N2 — 1 generators, and
the same number of ghost and anti-ghost variables, the self-dual physical
states in the unitary gauge are of the form

rl

| /2]
Ule] = —= (1 + gL ar c‘“...car> Y. (83)

For odd r (even N), both ghost number and Grassmann parity of the wave
functions are ill-defined; for even r (odd N), it is only the ghost number
which is violated. In both case, introduction of a singlet ghost # with ghost
number n,(0) = —r solves the problems. On the other hand, in the Lorenz
gauge this is taken care of automatically by the anti-ghost variables, as the

operator
/2l

e o b (84)

r!
has the same quantum numbers and plays the same role.

Finally we note, that as we have constructed precisely one BRST-invariant
wave function for each physical state, in the supersymmetric extension the
computation of the Witten index [I8]-[21] is not affected by including the
ghost degrees of freedom in the appropriate way.
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